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Abstract

In this master’s thesis the phase space structure of a Wightman function is
studied for a temporally varying background. First we introduce coherent
quasiparticle approximation (cQPA), an approximation scheme in finite
temperature field theory that enables studying non-equilibrium phenom-
ena. Using cQPA we show that in non-translation invariant systems the
phase space of the Wightman function has in general structure beyond
the traditional mass-shell particle- and antiparticle-solutions. This novel
structure, describing nonlocal quantum coherence between particles, is
found to be living on a zero-momentum k0 = 0 -shell.

With the knowledge of these coherence solutions in hand, we take on
a problem in which such quantum coherence effects should be promi-
nent. The problem, a Dirac equation with a complex and time-dependent
mass profile, is manifestly non-translation invariant due to the temporal
variance of the mass, and is in addition motivated by electroweak baryo-
genesis.

The Dirac equation is solved analytically, with no reference to the cQPA-
formalism. The exact mode function solutions of the problem are then
used to study the phase space of the system. We use the exact solutions
to construct the Wightman function of the system, and Wigner transform
it to get a picture of the phase space structure. This structure is found to
match well with the one predicted by cQPA, containing particles, antipar-
ticles and coherence. It is also noted that for weakly interacting systems
the phase space near the mass wall may contain also coherence struc-
tures corresponding to correlations coming from different sides of the
wall. These correlations are seen to be largely suppressed by interactions,
and their existence is therefore limited to the vicinity of the wall. Further
away from the wall only the cQPA-structure exists.
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Tiivistelmä

Tässä pro gradu -tutkielmassa tarkastellaan aikariippuvan taustan omaa-
van Wightmanin funktion faasiavaruuden rakennetta. Aluksi esittelem-
me koherentin kvasihiukkasapproksimaation (cQPA), joka on epätasapai-
noilmiöiden tutkimiseen soveltuva lähestymistapa äärellisen lämpötilan
kenttäteoriaan. Osoitamme cQPA:n avulla, että jos tarkastelemme systee-
miä, joka ei ole translaatioinvariantti, sen faasiavaruudessa on perinteis-
ten massakuoria vastaavien hiukkas- ja antihiukkasratkaisujen lisäksi uu-
denlaista rakennetta. Tämä hiukkasten välistä epälokaalia kvanttikohe-
renssia kuvaava rakenne ilmenee nollaliikemääräkuorella k0 = 0.

Seuraavaksi otamme tarkasteltavaksemme ongelman, jossa koherenssira-
kenteen tulisi näkyä. Valitsemamme systeemi, Diracin yhtälö kompleksi-
sella aikariippuvalla massalla, ei ole translaatioinvariantti aikariippuvan
massan vuoksi, minkä takia faasiavaruuden rakenne voi olla epätriviaali.
Motivaationa ongelmalle on sähköheikko baryogeneesi.

Ratkaisemme kyseisen Diracin yhtälön analyyttisesti ilman cQPA-teknii-
koita. Tuloksena saatavia eksakteja moodifunktioita käytämme systeemin
faasiavaruuden tutkimiseen. Konstruoimme eksakteista ratkaisuista sys-
teemin Wightmanin funktion, ja Wigner-muuntamalla sen pääsemme kä-
siksi faasiavaruuden rakenteeseen. Rakenne vastaa hyvin cQPA:n ennus-
tuksia, sisältäen kuorirakennetta vastaten hiukkasia, antihiukkasia ja nii-
den välistä koherenssia. Lisäksi havaitsemme, että heikosti vuorovaikutta-
vien systeemien tapauksessa faasiavaruudessa voi olla massavallin lähel-
lä koherenssirakenteita vastaten vallin eri puolilta tulevia korrelaatioita.
Vuorovaikutukset heikentävät näitä pitkän matkan korrelaatioita voimak-
kaasti, ja rakennetta ilmeneekin vain massavallin läheisyydessä. Kauem-
pana massamuutoksesta havaitaan vain cQPA-rakennetta.
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1 Introduction

Modern particle physics studies the fundamental interactions and prop-
erties of the known subatomic particles. The most notable particle physics
theory is the Standard Model, which very successfully describes a major
part of observed particle phenomena. Despite its success, the Standard
model also leaves phenomena unexplained, and theories reaching outside
it and trying to fill its deficiencies are commonly called beyond Standard
Model theories. Whether one consider the Standard model or one of its ex-
tensions, one is usually dealing with some kind of a quantum field theory.

Essentially quantum field theories are collections of calculational tech-
niques that have turned out to be overwhelmingly suitable for describing
the physics of fundamental particles. They can be also applied to many
phenomena outside particle physics; for example certain condensed mat-
ter systems can be elegantly studied in a quantum field theoretical set-
ting. Different situations require different techniques and correspond-
ingly different quantum field theories. Most of these are however zero-
temperature theories, i.e. the energy of the system being studied is as-
sumed to be so high that the temperature of the surroundings can be ne-
glected. When one is studying situations where the energy of the system
is comparable to temperature, one needs techniques from finite tempera-
ture field theory.

Finite temperature field theory has also many different approaches to
it but, regardless of the chosen method, calculations are fairly tedious.
In order to be able to study sensible physical situations one has to, as
in general in physics, choose a set of approximations and assumptions
that simplify the problem while maintaining its important properties. A
common assumption is that the system under consideration is translation
invariant, i.e. its properties do not change if it is translated in space-
time. This assumption is in general well justified, but it does not hold in
situations where the system is out of thermal equilibrium.

The coherent quasiparticle approximation (cQPA) provides an approxi-
mation scheme in finite temperature field theory that does not assume
the system to be nearly translation invariant. Abandoning this assump-
tion gives rise to completely new solutions in the phase space of the sys-
tem. The phase space of a system is the space where all possible states
of the system reside. Usually in particle physics the phase space consists
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of two kinds of solutions: particles and antiparticles. In addition to these
usual solutions cQPA predicts the existence of solutions describing nonlo-
cal quantum coherence. To be more precise, these novel solutions consist of
quantum mechanical interaction between e.g. particles and antiparticles
with the same helicity and opposite momenta.

The existence of these coherence-solutions is the principal motivation be-
hind this thesis. The main goal is to find these solutions by using an
approach different from cQPA. This is done by choosing a problem that
is expected to exhibit the coherence-structure and by studying the prob-
lem with techniques outside cQPA.

The problem studied in this thesis is a fermionic particle with a mass
that is complex and affected by the background. This kind of a system is
definitely not translation invariant because of the altering mass. Such a
situation is physically motivated by electroweak baryogenesis, which is a
proposed mechanism trying to explain the matter-antimatter asymmetry
of the universe. The mechanism includes particles acquiring their masses
during a phase transition in the early universe, which gives rise to a
system with an effectively space-time-dependent mass. The mass is also
required to be complex, because this permits CP-violation, which is one
of the vital ingredients for a successful baryogenesis.

Mathematically the aforementioned problem is expressed as a Dirac equa-
tion with a space-time-dependent mass. In this thesis such a Dirac equa-
tion is solved analytically for a certain mass profile. The so-obtained solu-
tions are then used to construct an object, the so-called Wigner function,
that carries information about the phase space structure of the system.
The Wigner function is analyzed numerically to obtain illustrations of the
possible phase space structures, and these results are compared to the
predictions made by cQPA.

The structure of this thesis is as follows. Chapter 2 gives a short re-
view of electroweak baryogenesis as a model for explaining the matter-
antimatter asymmetry of the universe. Chapter 3 introduces finite tem-
perature field theory and especially a certain approach to it called the
Schwinger–Keldysh formalism. It also includes an introduction to coher-
ent quasiparticle approximation, containing a derivation of the coherence-
structure in a certain case. In Chapter 4 we lay aside cQPA and solve the
Dirac equation for a complex time-dependent mass profile. These exact
solutions are then used in Chapter 5 to construct the Wigner function and
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to analyze the phase space structure of the system. Finally, Chapter 6 is
devoted to conclusions, discussion and summary.
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2 Electroweak baryogenesis

The Standard Model of particle physics very successfully describes the
structure of the matter we are used to seeing in everyday life. Its par-
ticle content is also capable of dealing with not-so-familiar phenomena
such as supernovae and superfluidity. One of the basic predictions of the
Standard Model is the existence of antiparticles, which annihilate with
particles into radiation or are correspondingly born from it as particle-
antiparticle pairs. One especially speaks of antimatter, which consists of
antibaryons as opposed to ordinary matter consisting of baryons. Yet all
the matter we see around us seems to consist of, well, matter. Why do we
not see clumps of antimatter around us?

The previous question can be easily extended outside Earth. A famous
argument states that Moon does not consist of antimatter since Neil Arm-
strong did not annihilate when laying his foot on its surface. This naïve
reasoning is supported by firm observational data: the observable uni-
verse consists almost entirely of ordinary matter instead of a more bal-
anced mixture of antimatter and matter. The amount of baryonic matter
is usually described by the baryon-to-photon ratio η, which is measured to
be [1]

η =
nB

nγ
= (6.05± 0.07)× 10−10.

This dominance of ordinary matter is intriguing, since all usual particle
physics processes create (or destroy) an equal amount of baryons and an-
tibaryons. Of course one could just argue that this was how things started
in the first place: the universe was born with more matter than antimatter.
This argument however meets a dead end in the light of inflation theory.
According to inflation, the universe went through an epoch of exponen-
tial expansion right after the Big Bang. This expansion was so fierce, that
any abundances and disproportions existing in the usual particle content
before it would have been wiped out to nonexistent. Due to its many
triumphs, the theory of inflation is well-established in the modern theory
of cosmology, and hence the observed matter content cannot be taken as
an initial condition.

We are then facing a fundamental question: where did all this matter
come from? This question remains among the most important unsolved
problems of modern physics. According to the above reasoning, there
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has to exist a post-inflationary process that produces more baryons than
antibaryons. This hypothetical process is called baryogenesis. Although we
do not have a correct model for baryogenesis, we do know what it should
look like. In his 1967 paper [2] the Russian physicist Andrei Sakharov
outlined three necessary conditions that every model trying to explain
the observed matter-antimatter asymmetry has to fulfil:

1. Baryon number violation.

2. C- and CP-violation.

3. Interactions out of thermal equilibrium.

Condition 1 is obvious; in order to create a net baryon number out of
nothing, there has to be a physical process in which baryon number is
not conserved. The second condition deals with the symmetry opera-
tions C (charge-conjugation) and CP (charge-conjugation and parity). A
system with an equal amount of particles and antiparticles is invariant
under C- and CP-transformations, unlike a system with more baryons
than antibaryons. Hence both C- and CP-symmetry have to violated dur-
ing a baryogenesis process. However, CPT-symmetry (CP combined with
time reversal T) is an exact symmetry of every relativistic quantum field
theory. This implies that, even though C- and CP-symmetry may not be
conserved, the masses of the produced particles and antiparticles have to
match precisely. This brings us to Condition 3; in thermal equilibrium
particles and antiparticles would have the same distribution functions,
and therefore any excess of baryons would be compensated by processes
decreasing the baryon number.

Remarkably, all the three Sakharov conditions are satisfied by the Stan-
dard Model. Even though the Standard Model Lagrangian density con-
serves baryon number at a classical level (and indeed all observed particle
physics processes seem to conserve it too), there are anomalies rising from
non-perturbative effects that allow it to be violated. The baryonic current
can be shown to be non-vanishing as [3]

∂µ Jµ
B =

ngg2

32π2 εµναβWa
µνWa

αβ,

where ng is the number of generations, g the SU(2) coupling and Wa
µν the

SU(2) field strength. Therefore Condition 1 can indeed be met within the
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Standard Model. Condition 2 is fulfilled due to the electroweak sector,
where both C- and CP-symmetry are violated, as also experiments have
verified. The third condition, out of equilibrium conditions, is offered
by the expansion and cooling of the universe. A particularly interesting
epoch where Condition 3 can be satisfied occurs when the universe had
cooled down to approximately 100 GeV. This is when the universe went
through the electroweak phase transition (EWPT), and particles acquired
their masses. This situation will be described in more detail when we
introduce electroweak baryogenesis.

Since the Standard Model indeed seems to lay down suitable conditions
for production of matter-antimatter asymmetry, why is there need for
new baryogenesis scenarios? Because the Sakharov conditions are neces-
sary, but not sufficient. Even with the right ingredients, there is no guar-
antee that a matter-antimatter asymmetry will be produced. In addition,
a successful baryogenesis has to produce the right number of baryons.
This is exactly where the Standard Model baryogenesis falters; it fails
to produce enough baryons. There is need for beyond-Standard-Model
physics.

Numerous models have been proposed to solve the baryogenesis prob-
lem. Leptogenesis tries to tackle the problem by first creating a lepton-
antilepton asymmetry, which could then be mediated by Standard Model
processes into a baryon-antibaryon asymmetry. One is then led to search
for mechanisms that would produce a lepton-antilepton asymmetry in
the first place. The Affleck–Dine Mechanism is a baryogenesis model in-
volving a scalar field with a non-zero baryon number. This mechanism
is mostly interesting in supersymmetric settings. GUT-scale baryogenesis
proposes that the baryon excess was created right after the Big Bang at
Grand Unified Theory (GUT) temperatures T ∼ 1015 GeV. In a GUT-
scenario baryon number violation is a built-in feature, since quarks and
leptons are coupled by massive GUT-bosons. Models like this however
suffer from the fact that they are practically impossible to test experimen-
tally due to the enormous energies. The same is true with Planck-scale
baryogenesis models, which indeed operate at the Planck scale T ∼ 1019

GeV. At those energies quantum gravity has to be taken into account, and
the basic conservation laws for particle numbers do not hold anymore.
In addition to being untestable, Planck- and GUT-scale baryogeneses are
assumed to be pre-inflationary processes, and hence their contributions
to baryon-antibaryon asymmetry would probably have been washed out
during inflation.
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By far the most popular model has been electroweak baryogenesis (EWBG).
This model will lay down a motivation for the main topic of this the-
sis, and will therefore be now considered in more detail. As mentioned
earlier, the Standard Model does contain processes which violate baryon
number. One such process is mediated by a non-perturbative field con-
figuration called sphaleron. The vacuum of the electroweak theory is in-
finitely degenerate, with the ground states separated by energy barriers.
Sphalerons are field solutions living at the tops of these barriers, i.e. sad-
dle points of the electroweak potential energy. Different ground states
have in general different baryon numbers, and hence moving from one
ground state to another could produce a baryon-antibaryon asymmetry.
At low temperatures this transition would have to occur via quantum
tunneling. This tunneling is however suppressed by a factor of the order

e−8π2/g2 ∼ 10−162,

where g is again the SU(2) coupling. This tiny barrier penetration factor
makes it impossible to obtain the baryon-antibaryon asymmetry of the
universe from quantum tunnelings. At very high temperatures the situa-
tion changes. Instead of tunneling, the field can go from one ground state
to another by surpassing the barrier with the help of thermal fluctuations.
This sphaleron process could have produced baryon number violation in
the hot early universe.

In order to create a net baryon excess, sphaleron processes themselves
are not enough. At high temperatures they violate the baryon number
constantly, and any net baryon excess would have been also wiped off.
This is why the hypothetical electroweak baryogenesis takes place at the
electroweak phase transition, which broke the electroweak symmetry. If
this phase transition was strongly first order, the new phases with bro-
ken symmetry would have emerged and expanded as bubbles in the old
symmetric phase. With time these bubbles would collide and amalga-
mate, eventually filling the whole space. During this process, particles
in the plasma would collide and scatter with the bubble walls. These
phase transition domain walls create out-of-equilibrium conditions to-
gether with C- and CP-violation, and therefore the Sakharov conditions
are satisfied. The key to a baryon excess is that, while sphaleron processes
still proceed without restraint in the symmetric phase, they are very rare
in the broken phase. A net baryon number created at the bubble wall will
not be wiped out in the broken phase, and therefore at the end of the
phase transition a baryon-antibaryon asymmetry remains.
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The popularity of EWBG arises from the fact that it can, unlike many of
its cousin models, be tested with man-made particle accelerators. EWBG
in the Standard Model has already been ruled out. The electroweak phase
transition in the Standard Model is a smooth crossover [4] instead of being
strongly first order, and hence all baryon-antibaryon asymmetry would
have been washed out by sphalerons. EWBG still remains a plausible
model for many theories reaching beyond the Standard Model.

The main topic of this thesis involves solving the equation of motion of
a fermion with a time-dependent mass. Exactly his kind of a situation
occurs in EWBG, as particles obtain their masses during the phase transi-
tion. In Chapter 4 the analysis is performed for a general complex mass
(even though the mass profile corresponding to the bubble wall has to be
specified), which is significant because CP-violation is directly related to
the change in the real and imaginary parts of the mass during the bub-
ble transition. The derived mode functions will give valuable information
about the behaviour of the particle in the vicinity of the bubble wall. They
will especially be used to investigate coherence phenomena near the do-
main wall. In the next chapter we will present another technique that is
of great use in studying EWBG-scenarios.
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3 Coherent quasiparticle approximation (cQPA)

3.1 Finite temperature field theory

Usually when referring to quantum field theory (QFT), one is consid-
ering calculations performed at zero temperature. In most cases these
techniques work, since the energy scale of the system under considera-
tion is often large compared to its temperature. There are however also
situations in which the zero-temperature approximation is not valid, e.g.
many phenomena of the early universe. In such situations one has to em-
ploy new techniques, and these techniques constitute what is commonly
called finite temperature field theory or thermal field theory (TFT).

TFT has to for example take into account the fact that propagating parti-
cles interact with their surroundings, when the energy of the particle and
the temperature of its surroundings are comparable. Particles are also
often short-lived due to a large number of interactions, and hence the
usual asymptotic in- and out-states familiar from zero-temperature QFT
are ill-defined. This eventually leads one to consider temporal expecta-
tion values instead of transition amplitudes.

There are two main formulations of TFT: the real-time and the imaginary-
time formalisms. We will now describe the main features of both of these
briefly. These short reviews are based mainly on [5] and [6], which the
reader is guided to consult for more detailed and thorough treatment
of finite temperature field theory. Some ideas are taken from [7], which
offers a modern and more mathematical exposition.

3.1.1 Imaginary-time formalism

As the name suggests, this formalism is based on performing calcula-
tions with the help of an imaginary time parameter. One starts by Wick-
rotating the time parameter t as t → −iτ, τ ∈ R.1 Similarly in momen-
tum space one replaces k0 → −ik̃0. As a result the notions of conven-
tional quantum mechanics, probability amplitudes (with imaginary time
arguments) can be written as path integrals. This further enables one to

1Note that this also corresponds to a change between the Minkowski and the Eu-
clidean space: t2 −~x2 → −(τ2 +~x2).
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express (quantum) partition functions, describing the properties of sys-
tems at non-zero temperature, as path integrals too. The step to finite
temperature field theory is then just a matter of defining a generating
functional by adding a source to the partition function. This allows one
to use the tools familiar from zero-temperature QFT, such as functional
differentiation and diagrammatic techniques.

Even though introducing an imaginary time parameter might feel ques-
tionable and obscure, it is still just a certain parametrization. All real-time
physical observables are in the end retained by an analytic continuation.

All in all, the imaginary-time formalism is the one most frequently used
in TFT, and it is indeed a powerful toolbox able to deal with many kinds
of phenomena. It however lacks the ability to cope with a certain situ-
ation that plays a crucial role in this thesis. When considering systems
out of equilibrium, the partition function needed in the imaginary-time
formalism cannot be generally constructed. Hence, there is a need for a
theory capable of treating non-equilibrium phenomena.

3.1.2 Real-time formalism

One can also perform TFT calculations without expressing the results in
terms of an imaginary time parameter. There are a couple of ways to do
this. One way is to introduce a closed time path (CTP) in the complex
plane and study Green’s functions along it. In the next section we will
consider a specific CTP formalism of TFT, which will hopefully clarify
this method a bit and which will be essential in understanding the basics
of cQPA.

Another way to avoid imaginary time is to use the so called thermo field
dynamics. This method, which we will not consider here (see [7] for an
introduction to the subject), is based on doubling the states in the Hilbert
space of the system.

3.2 Schwinger–Keldysh formalism

The coherent quasiparticle approximation, the subject of the next chap-
ter, is based on the Schwinger–Keldysh formalism, a certain variant of the
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real-time formalism of TFT. The basics of this formalism were laid out by
J. S. Schwinger [8] and L. V. Keldysh [9]. Instead of the usual “in-out”
calculations one is interested in “in-in” calculations, and hence it is con-
venient to introduce a closed time path going from some initial time t to
some future time t0 and then back to t again. This enables one to calculate
expectation values instead of transition amplitudes.

Figure 1: The Schwinger–Keldysh contour in the complex time plane, running
from some initial time to an arbitrary future time and back again.

Consider the contour C in Figure 1, which starts from some initial value
t + iε, travels to some t0 along the upper half-plane and then returns to
t− iε in the lower half-plane (in the end one may set ε→ 0, t→ −∞, t0 →
∞).2 We define n-particle propagators (also called n-point Green’s func-
tions and correlators) as time-ordered expectation values of the fields
Θ(xi),

G(n)(x1, x2, . . . , xn)
.
= 〈Ω |TC{Θ(x1)Θ(x2) · · ·Θ(xn)}|Ω〉
.
= Tr[ρ̂ Θ(x1)Θ(x2) · · ·Θ(xn)]

where TC denotes time-ordering along the path C (one can think of time
flowing along C) and ρ̂ is an unknown quantum density matrix describing
the system. We are especially interested in 2-point Green’s functions, for
which we define the propagator

i∆(u, v) .
= 〈TC{φ(u)φ†(v)}〉

2One could complain that we are using imaginary time after all, but this is just a real
integral performed in the complex plane. All results are in the end expressed in terms
of real time, and there is no need for any analytic continuations.
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for scalar fields φ and

iSαβ(u, v) .
= 〈TC{ψα(u)ψβ(v)}〉

for fermionic fields ψ. Note that we omitted the ground state Ω from the
notation for the expectation value. Since the object of interest for us will
be the fermionic propagator S (from which we shall suppress the Dirac
indices unless they are explicitly needed), we shall, in what follows, state
all results in terms of it. The bosonic propagator ∆ can be dealt with in a
similar fashion, the only difference being in the commutation relations.

Due to the nature of the path C, a propagator splits in general to four
pieces. We define

iS++(u, v) .
= iSF(u, v) = 〈T {ψ(u)ψ(v)}〉, (1a)

iS+−(u, v) .
= iS<(u, v) = 〈ψ(v)ψ(u)〉, (1b)

iS−+(u, v) .
= iS>(u, v) = 〈ψ(u)ψ(v)〉, (1c)

iS−−(u, v) .
= iSF(u, v) = 〈T {ψ(u)ψ(v)}〉. (1d)

A few comments on the above definitions (1a)–(1d) are now in order.

• The plus and minus signs as superscripts indicate how the time-like
components of u and v are oriented on C. For example iS−+(u, v)
refers to the case where u0 ∈ C− and v0 ∈ C+ (see Figure 1).

• F and F refer to the usual chronological (Feynman) and anti-chrono-
logical (anti-Feynman) Green’s functions, respectively.

• S< and S>, the “mixed” cases, are related to the self-correlation of
the fermionic field ψ between the space-time points u and v. They
are called Wightman functions, and will later be our main interest.

• The Wightman function S< in (1b) is often defined with an addi-
tional minus sign, which is just a mere convention arising from the
anticommutation of the fermionic fields.

• T is the regular time-ordering (not along C) and T denotes the
“anti-time-ordering”:

T {ψ(u)ψ(v)} =
{

ψ(v)ψ(u), v0 < u0

ψ(u)ψ(v), u0 < v0.
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The propagators (1a)–(1d) are not all linearly independent of each other.
Using the explicit form of the time-ordering

T {ψ(u)ψ(v)} = θ(u0 − v0)ψ(u)ψ(v) + θ(v0 − u0)ψ(v)ψ(u)

(and also that of the anti-time-ordering) we can write{
SF(u, v) = θ(u0 − v0)S>(u, v) + θ(v0 − u0)S<(u, v), (2a)

SF(u, v) = θ(v0 − u0)S>(u, v) + θ(u0 − v0)S<(u, v). (2b)

We shall further define a couple of interesting quantities. The advanced
propagator is given by

Sa .
= SF − S> = S< − SF = θ(v0 − u0)(S< − S>), (3)

where the last two equalities follow from the definitions and equation
(2a). Similarly the retarded propagator is

Sr .
= SF − S< = S> − SF = θ(u0 − v0)(S> − S<). (4)

The definitions (1b) and (1c) imply the following hermiticity relation for
the Wightman functions S<,>:[

iS<,>(u, v)γ0
]†

= iS<,>(v, u)γ0. (5)

This hermitian version of the Wightman function is often denoted by
S<,>(u, v) .

= iS<,>(u, v)γ0. Using this together with equations (3) and
(4) gives[

iSa,r(u, v)γ0
]†

= −iSr,a(v, u)γ0,

which encourages us to decompose Sa and Sr into their hermitian and
skew-hermitian parts. Indeed we define

SH
.
=

1
2
(Sr + Sa) ,

SSH
.
=

i
2
(Sr − Sa) =

i
2
(
S> − S<

) .
= A,

where the second part A is called the spectral function. One can then write

Sa,r = SH ± iSSH.
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3.3 Basics of cQPA

3.3.1 Generalities

A quasiparticle is “a disturbance, in a medium, that behaves as a particle and
that may conveniently be regarded as one”, according to Encyclopædia Bri-
tannica [10]. This encapsulates quite well what physicists usually mean
by a quasiparticle: something that is not quite a particle but can still be, at
least mathematically, treated as one. Such situations often occur in many-
body systems, where particles interact with their surroundings forming
different kind of collective structures. These structures can adopt particle-
like properties, like effective masses. One example is a charged particle
moving amidst a sea of other charged particles, both of the same and op-
posite charge than the particle under consideration. Under appropriate
circumstances the moving particle will attract a “cloud” of particles of
the opposite charge around it, and the whole clump can be considered
as a quasiparticle moving in the system (see Figure 2 for an enlightening
illustration of the situation). Another example of a quasiparticle is the
electron we observe in experiments. According to quantum electrody-
namics, it is actually a system consisting of the bare electron surrounded
by a cloud of virtual photons.3

In literature the term “quasiparticle” is sometimes used interchangeably
with the term “collective excitation”. Some authors (cf. [13]) prefer to
conjoin quasiparticles to fermionic systems and collective excitations to
bosonic systems. Generally speaking collective excitations describe usu-
ally phenomena where many particles act in a similar way to form a
bigger structure, instead of there being a single source at the core of the
structure, as is usually the case with quasiparticles. Examples of such
phenomena include phonons, plasmons and magnons.

Using a quasiparticle approximation (QPA) means basically assuming that a
part of our system can be, to a reasonable approximation, considered as
a quasiparticle. This can for example mean that the Green’s function re-
lated to this quasiparticle is close to that of a free particle, i.e. it is strongly
enough peaked around its (effective) mass shell [14]. In any case, a tra-
ditional QPA usually has to assume weak interactions (the quasiparticles
are screened by the clouds surrounding them) and a slowly varying back-

3See Chapter 6.5 in [12] for a discussion on how the whole concept of a “free electron”
is questionable.
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Figure 2: A quasiparticle consisting of a bare particle and a cloud of surrounding
particles, compared with a quasihorse consisting of a real horse surrounded by
a dust cloud following it. The picture is taken from [11] which contains many
similar amusing analogies (such as the propagation of a drunken man, which is
worth seeing).

ground (otherwise there would be no time for the quasiparticle to form,
or it would be very short-lived). Furthermore, it is usually assumed that
the system under consideration is close to thermal equilibrium, i.e. nearly
translation invariant [15].

The coherent quasiparticle approximation (cQPA) is a certain approxima-
tion scheme that relinquishes one of the above mentioned assumptions,
namely that of translation invariance. It was first introduced in [16] and
has since been developed in [15] and [17–23]. The major property of
this formalism is that in addition to the ordinary mass-shell solutions it
includes completely new singular shell solutions that are absent in the
translation invariant case. These solutions have been deduced to carry
the information of nonlocal quantum coherence between e.g. particle-
and antiparticle-solutions. This makes cQPA a valuable tool when one is
interested in non-equilibrium phenomena where coherence-effects may
also play a role, for example electroweak baryogenesis where also the
mass is space-time-dependent. Other possible applications of the formal-
ism include inflation and preheating, neutrino flavour oscillation in an
inhomogeneous background, decoherence, thermalization and leptogen-
esis.
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3.3.2 Formalism

In this thesis we will only need cQPA for fermions with no flavour mixing.
Notations will mainly follow those of [16]; a different formulation can
be found in [23] where also flavour mixing is taken into account. For
our purposes the objects of interest are the fermionic 2-point Wightman
functions S<,>(u, v) defined in (1b) and (1c). These functions describe
the most interesting properties of out-of-equilibrium systems; they are
for example related to the particle density and density of states of the
system [24].

In order to get our hands on the Wightman functions, we must first spec-
ify the underlying setting in terms of the fermion spinors ψ. We will start
with a Lagrangian density of the form,

L = ψ(i/∂ − PRm− PLm∗)ψ, (6)

where PR = 1
2

(
1 + γ5) and PL = 1

2

(
1− γ5) are the standard projection

operators, and the mass is allowed to be space-time-dependent and com-
plex. The origin of this Lagrangian density is explained in more detail in
Chapter 4, for now we will just take it as a model describing e.g. EWBG-
scenarios where the mass is effectively varying. The Dirac equation im-
plied by (6) is(

i/∂u − PRm− PLm∗
)
ψ(u) = 0. (7)

Multiplying equation (7) from the right hand side by ψ(v) and taking an
expectation value yields an equation for one of the Wightman functions:(

i/∂u − PRm− PLm∗
)
〈ψ(u)ψ(v)〉 = 0.

The corresponding equation for the other Wightman function is obtained
by multiplying equation (7) by ψ(v) from the left, and the results can be
compactly written as(

i/∂u − PRm− PLm∗
)
S<,>(u, v) = 0. (8)

Another useful form is(
i/∂u −mR − imIγ

5)S<,>(u, v) = 0, (9)

where we have decomposed the mass as m .
= mR + imI.
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It turns out to be useful to separate the internal (microscopic) degrees of
freedom of the system from the external (macroscopic) ones, i.e. work in
a mixed representation. In order to do this, we first define the relative
coordinate r .

= u − v and the average coordinate X .
= 1

2(u + v), which
correspond to microscopic and macroscopic scales, respectively. Then we
perform a Fourier-transform with respect to the average coordinate r, i.e.
introduce the so-called Wigner transformation

S<,>(k, X)
.
=
∫

d4r eik·rS<,>
(

X +
r
2

, X− r
2

)
, (10)

where k is the internal conjugate momentum related to r. We shall refer
to this Wigner-transformed Wightman function as the Wigner function. It
is often credited as being the closest phase space representation one can
obtain of a quantum mechanical system. It will be of particular impor-
tance to us, since a system that is not translation invariant will depend on
both the internal and the external coordinate.4 The relative coordinate r is
related to the coherence of the system between different points, basically
measuring the nonlocality of the coherence. The average coordinate X
gives the average position of the two points whose mutual coherence r is
measuring; it will be related to macroscopic distances.

Our next task is then to correspondingly Wigner-transform the Dirac
equation (9). The first step is to write the equation as a sort of a con-
volution:∫

d4w
[
i/∂u −mR(u)− iγ5mI(u)

]
δ(4)(u− w)S<,>(w, v) = 0. (11)

The point in doing this is that there is a known formula for the Wigner
transformation of this kind of an object. It is given by [25]∫

d4(u− v)eik·(u−v)
∫

d4w f (u, w)g(w, v) = e−i♦ { f (k, X)} {g(k, X)} , (12)

where the diamond operator ♦ acting on a pair of functions is defined as5

♦{ f }{g} .
=

1
2
[(∂X f ) · (∂kg)− (∂k f ) · (∂Xg)] . (13)

4For translation invariant propagators we can write S<,>(u, v) = S<,>(u − v, 0) =
S<,>(r), i.e. they only depend on the relative coordinate.

5The diamond operator bears a resemblance to the Poisson bracket of two functions.
Using equation (13) one can define ♦n for every n ∈ N, and furthermore e−i♦.
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Transforming equation (11) with respect to the relative coordinate r =
u− v and using equation (12) allows us to write the Dirac equation as

e−i♦ {F(k, X)}
{

S<,>(k, X)
}
= 0, (14)

where we are left to compute the Wigner transformation of

F(u, v) .
=
[
i/∂u −mR(u)− iγ5mI(u)

]
δ(4)(u− v).

This can be done by writing the delta function as a Fourier transforma-
tion, resulting in

F(k, X) = /k −mR(X)− imI(X)γ5.

Note that in obtaining the above result we also shifted the variables inside
the integral as u→ u− r

2 to get the mass parameters as functions of X.

Now we will turn our attention to the diamond exponential. It can be
formally rearranged as

e−i♦ .
=

∞

∑
n=0

1
n!
(−i♦)n = 1− i♦+

1
2!
(−i♦)2 +

1
3!
(−i♦)3 + . . .

= 1− i
2
(∂X · ∂k) +

1
2!

(
− i

2
∂X · ∂k

)2

+
1
3!

(
− i

2
∂X · ∂k

)3

+ . . .

+
i
2
(∂k · ∂X) +

1
2!

(
i
2

∂k · ∂X

)2

+
1
3!

(
i
2

∂k · ∂X

)3

+ . . .

+ {mixed terms}

= e−
i
2 ∂X ·∂k + e

i
2 ∂k·∂X − 1 + {mixed terms}.

So equation (14) can then be written as(
e−

i
2 ∂X ·∂k + e

i
2 ∂k·∂X − 1 + {mixed terms}

){
/k −mR(X)

−imI(X)γ5}{S<,>(k, X)
}
= 0,

(15)

where the pairs of derivatives operate on the objects inside the brackets
as dictated by the diamond operator. The first thing to notice in equation
(15) is that operating with the mixed terms gives no contribution. This is
due to the fact that the object inside the first brackets is linear in k, and
all the mixed terms differentiate it with respect to k and X. Similarly the
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terms with (∂k · ∂X)
n, n > 1, in the second exponential can be left out;

the term inside the brackets goes to zero when differentiated with these
higher order terms. All in all we can write the remaining equation as{

/k +
i
2

/∂X −
[
mR(X)− imIγ

5
]

e−
i
2
←
∂X ·∂k

}
S<,>(k, X) = 0, (16)

where the arrow above the other partial derivative in the exponential
indicates that these spatial derivatives only operate to the left on the mass
functions, while the derivative with respect to k only operates on S<,>. If
we further define operators m̂0 and m̂5 such that

m̂0,5S(k, X)
.
= mR,Ie−

i
2
←
∂X ·∂k S(k, X),

we can write the Wigner-transformed Dirac equation in a final compact
form:(

/k +
i
2

/∂X − m̂0 − im̂5γ5
)

S<,>(k, X) = 0. (17)

We shall proceed to work with hermitian Wightman functions. Applying
the hermiticity condition (5) to equation (10) tells us that S<,>(k, X) are
hermitian:[

iS<,>(k, X)γ0
]†

= iS<,>(k, X)γ0.

Multiplying equation (17) from the right by iγ0 results in an equation for
the hermitian Wightman functions:(

/k +
i
2

/∂X − m̂0 − im̂5γ5
)

S<,>(k, X) = 0 (18)

If we further multiply equation (18) from the right by γ0 and represent
the Dirac gamma matrices as direct products in the chiral (Weyl) repre-
sentation (see Appendix A), we find the following equation of motion for
S<,>(k, X):{

k0 +
i
2

∂t + σ3 ⊗
[
~σ ·
(
~k− i

2
~∇
)]
−
(

σ1m̂0 − σ2m̂5

)
⊗ 1

}
S<,> = 0. (19)

In the above equation ~σ = (σ1, σ2, σ3) is a vector of the Pauli sigma ma-
trices.
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Due to the nature of the operators m̂0 and m̂5, equation (19) contains an
infinite amount of derivatives and is therefore difficult to study in its most
general form. Imposing different space-time symmetries can however
reduce the equation to a more easily approached one. The two most
simple choices are a static system and a system with spatial symmetry. In
this cQPA-introduction we shall concentrate on spatial homogeneity, since
it is related to our later studies of the Dirac equation. See for example [16]
for a similar treatise of a static case with planar symmetry.

Assuming spatial homogeneity, S<,>(k, X) = S<,>(k, t), allows us to drop
spatial derivatives in equation (19), resulting in[

k0 +
i
2

∂t − γ0
(
~γ ·~k− m̂0 − iγ5m̂5

)]
S<,>(k, t) = 0. (20)

Also the mass operators contain only derivatives with respect to t and k0,
since three-momentum is now conserved. The amount of derivatives is
still infinite, of course. A system with spatial homogeneity has another
advantage. Let us consider the helicity operator ĥ defined in terms of the
spin operator Ŝ = γ0~γγ5 as

ĥ = k̂ · Ŝ =
~k∣∣~k∣∣ · Ŝ.

In the chiral representation this becomes just

ĥ = 1⊗ k̂ ·~σ,

from which it is easy to see that the helicity operator commutes with the
differential operator (Hamiltonian)

D = k0 +
i
2

∂t − γ0
(
~γ ·~k− m̂0 − iγ5m̂5

)
= k0 +

i
2

∂t + σ3 ⊗~σ ·~k− σ1m̂0 ⊗ 1+ σ2m̂5 ⊗ 1

of equation (20). This guarantees that helicity is a good quantum num-
ber for our system, a conserved quantity. We are therefore encouraged
to decompose the Wightman function into a block-diagonal helicity-con-
serving form, namely

S<
h = g<h ⊗

1
2

(
1+ hk̂ ·~σ

)
,

20



where g<h is an unknown 2× 2-matrix and our new object of interest. The
point of this form is that now the Wightman function is an eigenstate of
the helicity operator with an eigenvalue h ∈ {−1, 1}, i.e. ĥS<

h = hS<
h .

An exactly similar decomposition can of course be done for S> too; for
simplicity we shall from now on state our results for S< only.

Substituting S<
h into equation (20) allows us to write the following equa-

tion for g<h :(
k0 +

i
2

∂t + h
∣∣~k∣∣σ3 − m̂0σ1 − m̂5σ2

)
g<h = 0. (21)

To analyze different properties of equation (21), we will first write g<h in
a vector form with a basis given by the Pauli spin matrices:

g<h =
1
2

(
gh

0 +
3

∑
i=1

gh
i σi

)
. (22)

Plugging this representation into equation (21), multiplying the result-
ing equation individually by each σi and finally taking the trace of each
of the remaining equations gives us four equations containing the four
unknowns gh

µ:

(
ko +

i
2

∂t

)
gh

0 + h
∣∣~k∣∣gh

3 − m̂0gh
1 + m̂5gh

2 = 0, (23a)(
ko +

i
2

∂t

)
gh

1 − ih
∣∣~k∣∣gh

2 − m̂0gh
0 + im̂5gh

3 = 0, (23b)(
ko +

i
2

∂t

)
gh

2 + ih
∣∣~k∣∣gh

1 + im̂0gh
3 + m̂5gh

0 = 0, (23c)(
ko +

i
2

∂t

)
gh

3 + h
∣∣~k∣∣gh

0 − im̂0gh
2 − im̂5gh

1 = 0. (23d)

These equations can further be divided into real and imaginary parts,
resulting in a total of eight equations:

4

∑
β=0

Âh
αβgh

β = ∂tgh
α, (24a)

4

∑
β=0

B̂h
αβgh

β = 0. (24b)
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The matrices Â and B̂ in the above equations can be read from equations
(23). Equation (24a) governs the time evolution of the g<h -functions, and
is therefore called the kinetic equation. Equation (24b) on the other hand
restricts the phase space structure of the Wightman functions, and is ac-
cordingly called the constraint equation. The infinite amount of derivatives
however makes the situation still complicated, and we shall consequently
introduce one more approximation.

We shall truncate the gradient expansion in the mass operators m̂0 and
m̂5 to zeroth order, in which case the operators reduce to the real and
imaginary part of the mass:

m̂0,5 −→ mR,I.

This approximation actually corresponds to an expansion in h̄, since in
normal units we have ∂ → h̄∂. Formally the approximation holds when
∂X � k, i.e. the changes in the background field (characterized by the
macroscopic scale X) are small compared to the momenta of the particles.
Let us now study what the constraint equation (24b) tells us under this
assumption. The matrix B̂ becomes just a constant matrix

B̂ =


k0 −mR mI h

∣∣~k∣∣
mI 0 k0 0
−mR k0 0 0
h
∣∣~k∣∣ 0 0 k0

 ,

and equation (24b) is thus in this case an algebraic one. In order to obtain
non-trivial solutions for equation (24b), the determinant of B̂ has to van-
ish. This requirement restricts the possible phase space structure of our
system:

det(B̂) = k2
0

(
k2 − |m|2

)
= 0.

So in addition to the usual mass-shell solutions given by the standard dis-

persion relation k0 = ±ωk
.
= ±

√∣∣~k∣∣2 + |m|2, the constraint equation al-
lows solutions living at k0 = 0. The full solution of our system, acquiring
a singular shell structure, is hence in general proportional to δ(k2− |m|2)
and δ(k0). These novel k0 = 0 -solutions are at the heart of cQPA, and
they are the main motivation behind this thesis.

The constraint equation (24b) can be solved separately for the cases k0 6= 0
and k0 = 0. Doing this and plugging the solutions to the decomposition
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Figure 3: The shell structure of the Wightman function S< predicted by cQPA.
Here we have chosen |m| = 1. For a given value of

∣∣~k∣∣ one has the on-shell-
solutions corresponding to particles (purple) and antiparticles (orange), and in
addition solutions corresponding to coherence between them (brown), living at
k0 = 0.

(22) one finds that the full matrix solution is in general of the form

g<h (k0,
∣∣~k∣∣; t) = 2π|k0| f h

sk0
(
∣∣~k∣∣, t)

1− h|~k|
k0

m
k0

m∗
k0

1 + h|~k|
k0

 δ(k2 − |m|2)

+ π

 f h
2 (
∣∣~k∣∣, t)

 hmR
|~k|

1

1 − hmR
|~k|

+ f h
3 (
∣∣~k∣∣, t)

− hmI
|~k|

−i

i hmI
|~k|

 δ(k0),

where f h
i are unknown real functions parametrizing the solutions on dif-

ferent shells, and we have denoted sk0

.
= sgn(k0). Here the full shell-

structure of the system is apparent. The upper line describes the basic
particle- and antiparticle-solutions living on the positive- and negative-
energy shells ±ωk. The second line contains the solutions living on the
mysterious k0 = 0 -shell. These zero-momenta solutions are interpreted
to encode the information about quantum coherence between particles and
antiparticles with the same helicity h and opposite momenta~k.6 The complete
shell structure predicted by cQPA is illustrated in Figure 3.

6The easiest way to see the coherence-nature of these solutions is to observe that the
quantum interference of the particle- and antiparticle plane waves e±iωkt contributes at
zero momenta k0 = 0. E.g. reference [16] contains many other discussions establishing
this interpretation.
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This is as far as we will go in this short introduction to cQPA. In this
thesis we are more interested in the existence of these new spectral shells
than in their origin. Now that we have seen how they emerge naturally
in the cQPA-formalism, we shall leave the formalism aside and take an-
other route towards these k0 = 0 -solutions. In the next chapter we will
take on a problem that should exhibit the coherence structure, namely a
fermion whose mass changes as a function of time. This kind of prob-
lem most definitely is not translation invariant, and quantum mechanical
coherence-effects will play a role since the changing mass will give rise
to both particle- and antiparticle-solutions. In the end our goal is to con-
struct the Wigner function out of the solutions to the given problem and
use it to examine the whole phase space structure of the system, including
the coherence structure predicted by cQPA.

As a final note let us point out, that this introduction to cQPA has been a
narrow and in some sense primitive one. The approach adopted here fol-
lows the one used in the early cQPA-studies, and the formalism has since
seen many refinements and generalizations. Rigorous transport equations
have been studied, Feynman rules derived and flavour-coherence exam-
ined, to name a few. A major advance has been successfully adding inter-
actions through a collision term, giving rise to decoherence and damping
of the coherence solutions. The methods used here however serve well
for our purposes, and are an equally correct way to reveal the somewhat
hidden coherence structure.
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4 Dirac equation with a varying mass

4.1 General case

We want to examine the motion of a fermionic particle with a space-time-
dependent complex mass. The motivation for this kind of a situation
was explained in Chapter 2. Basic quantum mechanics tells us that the
motion of the particle is described by the Dirac equation. The complex
and space-time-dependent mass however alters the situation, and one
cannot just take the basic Dirac equation with the real mass replaced by a
varying complex one. In order to find the correct Dirac equation for this
situation, one has to mathematically specify the problem, i.e. write down
an appropriate Lagrangian density.

The Lagrangian density that gives the familiar Dirac equation is the one
describing a free fermion field ψ:

LDirac = ψ(i/∂ −m)ψ. (25)

Indeed, the Euler–Lagrange equation with respect to ψ is

∂LDirac

∂ψ
− ∂µ

[
∂LDirac

∂
(
∂µψ

)] = 0

⇒ (i/∂ −m)ψ = 0.

By using the projection operators PR and PL defined as

PR =
1
2

(
1 + γ5

)
, PL =

1
2

(
1− γ5

)
,

we can divide the spinor ψ into left- and right-chiral components:

ψ = (PR + PL)ψ = PRψ + PLψ
.
= ψR + ψL.

The Lagrangian density (25) can then be written as

LDirac = iψR/∂ψR + iψL/∂ψL −mψRψL −mψLψR. (26)

Now it is evident why we cannot take this Lagrangian density as the one
describing our model. We expect our Lagrangian density to be hermi-
tian, because then its expectation values would be real, corresponding to
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physical states. For a complex mass m ∈ C this condition is not fulfilled
by LDirac due to the mass terms:(

mψRψL + mψLψR
)†

= m∗ψRψL + m∗ψLψR

⇒ L†
Dirac 6= LDirac.

This however gives us a clear clue on how the structure of LDirac should be
altered. To retain hermiticity we take our effective free-field Lagrangian
density to be

L = iψR/∂ψR + iψL/∂ψL −m∗ψRψL −mψLψR, (27)

where the mass m is allowed to be space-time-dependent. The above
Lagrangian density clearly satisfies L† = L. The space-time-dependence
of the mass can be generated for example by an interaction of the fermion
field ψ with a scalar field φ, i.e. through a Yukawa interaction

LYukawa = −gψφψ,

where the coupling g is now complex. This can be approximated as

−gψφψ ≈ −gψ〈φ(x)〉ψ = −m(x)ψψ,

corresponding to complex and space-time-dependent mass-terms in (27).

Now that we have specified the Lagrangian density modeling our system,
we are ready to bring up the Dirac equation associated with it. Using
ψL,R = ψPL,R together with other properties of the projection operators
we can write L in (27) compactly as

L = ψ(i/∂ − PRm− PLm∗)ψ, (28)

which is what we already used in Chapter 3.3 when introducing the
cQPA-formalism. Applying the Euler–Lagrange equations to equation
(28) gives us straightforwardly the desired Dirac equation:

∂L
∂ψ
− ∂µ

[
∂L

∂
(
∂µψ

)]︸ ︷︷ ︸
= 0

= 0

⇒ (i/∂ − PRm− PLm∗)ψ = i/∂ψ−mψR −m∗ψL = 0.
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In this thesis, as in [26], we will for simplicity consider the case where the
mass is time-dependent but spatially homogeneous. This will essentially
lead to particle numbers while the space-dependent case is related to re-
flection problems. The underlying situation is the same in both cases: a
fermionic particle in the presence of an altering mass profile. A space-
dependent case with a real mass has been considered in [27], and the
analysis was extended to a perturbatively imaginary space-dependent
mass in [28]. The studies performed here and in [26] have the advan-
tage of setting no restrictions for the magnitude of the mass parameters,
resulting in more freedom for the amount of desired CP-violation.

To conclude these preliminaries, let us finally write the Dirac equation
with the explicit space-time-dependences:[

i/∂ − PRm(t)− PLm∗(t)
]
ψ(t,~x) = 0. (29)

This equation is the one we will proceed to solve. Our final goal is to use
the exact solutions of the above equation to construct the Wigner function
which we already examined using cQPA.

In order to get to the mode function solutions, we shall start by perform-
ing a canonical quantization of the spinor ψ. We will consider it as a
spinor operator ψ̂, which is assumed to obey the basic fermionic anti-
commutation relations{

ψ̂α(t,~x1), ψ̂†
β(t,~x2)

}
= δ(3)(~x1 −~x2)δαβ,{

ψ̂α(t,~x1), ψ̂β(t,~x2)
}
= 0.

The spinor is then expanded in terms of creation and annihilation opera-
tors. In the helicity basis this reads

ψ̂(t,~x) =
∫ d3k

(2π)3 ∑
h=±

[
â~khµh(t,~k)ei~k·~x + b̂†

~kh
νh(t,~k)e−i~k·~x

]
, (30)

where µh and νh are momentum-space spinors corresponding to parti-
cles and antiparticles, respectively. â†

~kh
and b̂†

~kh
denote creation operators

creating fermions and antifermions, respectively, with momentum~k and
helicity h. Similarly â~kh and b̂~kh are the usual fermionic annihilation op-
erators for particles and antiparticles. These operators satisfy the usual
anticommutation algebra{

â~k1h1
, â†
~k2h2

}
= (2π)3δ(3)(~k1 −~k2)δh1h2 =

{
b̂~k1h1

, b̂†
~k2h2

}
(31)
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with all other anticommutators vanishing. The spinors µ and ν are as-
sumed to be normalized according to the rule

µ†
h(t,~k)µh(t,~k) = 1 = ν†

h(t,~k)νh(t,~k). (32)

In Chapter 3.3 we already noted that helicity is a conserved quantity in
the cQPA-formalism. This is a similar case, and we shall in the same way
separate helicity in our spinors from the time-dependent part. This is
formally done by decomposing the spinors µh and νh as

µh(t,~k) =

[
ηh(t,~k)
ζh(t,~k)

]
⊗ ξh(~k), (33a)

νh(t,~k) =

[
ηh(t,~k)
ζh(t,~k)

]
⊗ ξh(~k), (33b)

where ξh is the helicity two-eigenspinor satisfying

ĥξh(~k) = hξh(~k); h = ±1,

for the helicity operator ĥ = k̂ ·~σ. The new main objects of interest are
the above introduced one-dimensional mode functions ηh, ζh, ηh and ζh.
Applying the normalization condition (32) to the decompositions (33a)
and (33b) gives us conditions for these new mode functions. For example:

1 = µ†
h(t,~k)µh(t,~k) =

[
η∗h(t,~k) ζ∗h(t,~k)

] [ηh(t,~k)
ζh(t,~k)

]
⊗ ξ†

h(
~k)ξh(~k)︸ ︷︷ ︸
= 1

⇒
∣∣∣ηh(t,~k)

∣∣∣2 + ∣∣∣ζh(t,~k)
∣∣∣2 = 1. (34)

Similarly the normalization condition for νh implies∣∣∣ηh(t,~k)
∣∣∣2 + ∣∣∣ζh(t,~k)

∣∣∣2 = 1. (35)

Our next task is to substitute these decompositions with the expansion
(30) into the Dirac equation (29). We will be again using the chiral repre-
sentation of the Dirac matrices in which the projections operators become
simply

PR =

[
0 0
0 1

]
=

1
2
(1− σ3)⊗ 1,

PL =

[
1 0
0 0

]
=

1
2
(1 + σ3)⊗ 1.
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After substituting the decomposed spinor into the Dirac equation (29) one
finds the following two equations:

i∂t

[
ηh
ζh

]
⊗ ξh + σ3

[
ηh
ζh

]
⊗ (~k ·~σ)ξh −

m∗

2
(σ1 − iσ2)

[
ηh
ζh

]
⊗ ξh

−m
2
(σ1 + iσ2)

[
ηh
ζh

]
⊗ ξh = 0,

i∂t

[
ηh
ζh

]
⊗ ξh − σ3

[
ηh
ζh

]
⊗ (~k ·~σ)ξh −

m∗

2
(σ1 − iσ2)

[
ηh
ζh

]
⊗ ξh

−m
2
(σ1 + iσ2)

[
ηh
ζh

]
⊗ ξh = 0.

Using then (~k ·~σ)ξh = h
∣∣~k∣∣ξh together with the explicit forms of the Pauli

matrices, the above equations become{
i∂t

[
ηh
ζh

]
+ h
∣∣~k∣∣[ ηh
−ζh

]
−m∗

[
0
ηh

]
−m

[
ζh
0

]}
⊗ ξh = 0,{

i∂t

[
ηh
ζh

]
+ h
∣∣~k∣∣[−ηh

ζh

]
−m∗

[
0
ηh

]
−m

[
ζh
0

]}
⊗ ξh = 0.

All in all we have then four equations for each helicity h:
i∂tηh + h

∣∣~k∣∣ηh = mζh (36a)

i∂tζh − h
∣∣~k∣∣ζh = m∗ηh (36b)

i∂tηh − h
∣∣~k∣∣ηh = mζh (36c)

i∂tζh + h
∣∣~k∣∣ζh = m∗ηh. (36d)

These equations could be decoupled into two second order equations by
differentiating them with respect to time. Instead of doing this, we pro-
ceed by introducing yet another basis, because, as it turns out, this makes
it easier to find analytic solutions for the problem we will be dealing with.
We define the positive and negative frequency basis as the following lin-
ear combinations of the mode functions ηh, ζh, ηh and ζh:

φ±h(t,~k)
.
=

1√
2

[
ηh(t,~k)± ζh(t,~k)

]
, (37a)

φ±h(t,~k)
.
=

1√
2

[
ηh(t,~k)± ζh(t,~k)

]
. (37b)
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According to equations (34) and (35) they obey the following normaliza-
tion conditions:∣∣∣φ+h(t,~k)

∣∣∣2 + ∣∣∣φ−h(t,~k)
∣∣∣2 = 1 =

∣∣∣φ+h(t,~k)
∣∣∣2 + ∣∣∣φ−h(t,~k)

∣∣∣2 . (38)

A straightforward calculation shows that in this basis the equations (36a)–
(36d) can be written as

(i∂t ∓mR) φ±h = −(h
∣∣~k∣∣± imI)φ∓h, (39a)

(i∂t ∓mR) φ±h = (h
∣∣~k∣∣∓ imI)φ∓h, (39b)

where the mass is written as m(t) = mR(t) + imI(t).

Note that we still have four equations; the positive and negative frequency
basis just permits a more compact notation. The two equations contained
in (39a) can be however decoupled, as well as those in (39b). At this
point it is useful to notice that switching h ↔ −h in equation (39a) gives
equation (39b) with φ±h replaced by φ±−h. Hence the mode functions
φ±h will obey the same equations of motion as φ±−h, and it suffices to
concentrate on φ±h, for example.

To decouple the equations (39a), one can start by solving for example φ−h
and its time derivative in terms of φ+h and its derivative:

φ−h =
mRφ+h − i∂tφ+h

h
∣∣~k∣∣+ imI

, ∂tφ−h =
iω2φ+h + mR∂tφ+h

h
∣∣~k∣∣+ imI

,

where ω2(t) =
∣∣~k∣∣2 + ∣∣m(t)

∣∣2. Then taking the time derivative of equa-
tion (39a) with the upper signs, substituting the above expressions and
manipulating the result, one finds the following second order differential
equation for φ+h:[

∂2
t −

i(∂tmI)

h
∣∣~k∣∣+ imI

∂t + ω2 + i(∂tmR) +
mR(∂tmI)

h
∣∣~k∣∣+ imI

]
φ+h = 0.

A similar analysis produces a corresponding equation of motion for φ−h.
These two equations can again be compactly expressed together as[

∂2
t ∓

i(∂tmI)

h
∣∣~k∣∣± imI

∂t + ω2 ± i(∂tmR) +
mR(∂tmI)

h
∣∣~k∣∣± imI

]
φ±h = 0. (40)
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Let us emphasize that equation (40) is still completely general when it
comes to the shape of the mass profile. This is as far as we are going to
go with general arguments. In order to be able to search for solutions for
equation (40), a mass profile has to be specified. The next step towards an
exact solution is hence to choose an appropriate time-dependence for our
mass function. Before specifying our choice, we shall introduce certain
mathematical tools which we will need later on.

4.2 Gauss’ hypergeometric functions

This section is based largely on [29] and [30]. Several other books on
mathematical methods of physics provide a similar introduction to hy-
pergeometric functions, and more mathematical expositions are of course
numerous. Here the focus is on the basic properties of the functions and
on relations that will be needed later on. Most of the identities given here
are also presented in [26], and some have been taken from [31].

Definition. Let a, b ∈ C and c ∈ C \ Z≤0. For all z ∈ C, |z| < 1, Gauss’
hypergeometric function7 is defined as

2F1(a, b, c; z) .
=

∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
,

where (q)n denotes the Pochhammer symbol

(q)n
.
=


1, n = 0,
n−1

∏
i=0

(q + i) = q(q + 1) · · · (q + n− 1), n > 0.

From the above definition one immediately sees that if either a or b is
a negative integer, one of the Pochhammer symbol terminates the series
and the result is just a polynomial. The three parameters a, b and c give
a lot of room to play with. Indeed, many functions can be recognized as
special cases of the hypergeometric function, as the following examples
illustrate:

ln(1 + z) = z× 2F1(1, 1, 2;−z), (41)

7Also often called just the hypergeometric function.
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1
(1− z)a = 2F1(a, 1, 1; z), (42)

arcsin(z) = z× 2F1

(
1
2

,
1
2

,
3
2

; z2
)

, (43)

K(z) =
π

2
× 2F1

(
1
2

,
1
2

, 1; z2
)

, (44)

Tn(z) = 2F1

(
−n, n,

1
2

;
1− z

2

)
, (45)

where K(z) is the complete elliptic integral of the first kind and Tn(z)
is the Chebyshev polynomial. The list could be continued readily; this
is just to underline the versatility and generality of the hypergeometric
function. It is not very far-fetched to think of it as the mother of all
functions.8

The Pochhammer symbol can be written in terms of the gamma func-
tion as (q)n = Γ(q+n)

Γ(q) . Using this we get another useful form for Gauss’
hypergeometric function:

2F1(a, b, c; z) =
∞

∑
n=0

Γ(a + n)Γ(b + n)Γ(c)
Γ(c + n)Γ(a)Γ(b)

zn

n!
. (46)

Note that even though we have only defined the hypergeometric function
in the disc |z| < 1, it can be analytically continued to the region |z| ≥ 1
too by avoiding the branch points of the function.

For us the most important feature of Gauss’ hypergeometric function
2F1(a, b, c; z) is that it solves Euler’s hypergeometic differential equation{

z(1− z)
d2

dz2 + [c− (1 + a + b)z]
d
dz
− ab

}
f (z) = 0. (47)

This can be verified e.g. by substituting (46) into the differential equa-
tion and doing the differentiations and manipulating the sums and coef-
ficients, or alternatively by searching for a solution via Frobenius method.
Assuming that c is not an integer, the two independent solutions to equa-
tion (47) read

f1(z) = C1 × 2F1(a, b, c; z), (48a)

8Yet it is itself a special case of the generalized hypergeometric function pFq, which is
further generalized by the Fox–Wright function, which is a special case of the Fox H-
function...
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f2(z) = C2 z1−c × 2F1(1 + a− c, 1 + b− c, 2− c; z), (48b)

where C1 and C2 are constants.

There are many relations concerning the hypergeometric function that
will be needed later on. We will end this short section on hypergeometric
functions by listing them here as identities. Some of these relations are
obvious, while others would require a more elaborate treatment for a
proof.

Identity 1 (Permutation symmetry).

2F1(a, b, c; z) = 2F1(b, a, c; z)

Identity 2 (Euler’s transformation).

2F1(a, b, c; z) = (1− z)c−a−b × 2F1(c− a, c− b, c; z)

Identity 3.

2F1(a, b, c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

× 2F1(a, b, 1 + a + b− c; 1− z)

+
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
(1− z)c−a−b × 2F1(c− a, c− b, 1− a− b + c; 1− z)

Identity 4.

d
dz

[
2F1(a, b, c; z)

]
=

ab
c
× 2F1(1 + a, 1 + b, 1 + c; z)

Identity 5.

abz
c
× 2F1(1+ a, 1+ b, 1+ c; z) = (c− 1)

[
2F1(a, b, c− 1; z)− 2F1(a, b, c; z)

]
Identity 6.

(c− b− 1)× 2F1(a, b, c; z) = (c− 1)× 2F1(a, b, c− 1; z)
− b× 2F1(a, 1 + b, c; z)

Identity 7.

(c− b− 1)× 2F1(a, b, c; z) = (a− b− 1)(1− z)× 2F1(a, 1 + b, c; z)
+ (c− a)× 2F1(a− 1, 1 + b, c; z)
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Identity 8 (Mirror symmetry).

[2F1(a, b, c; z)]∗ = 2F1(a∗, b∗, c∗; z∗),

where the asterisk denotes complex conjugation.

Identity 9 (Wronskian).

W
[

2F1(a, b, c; z), z1−c(1− z)c−a−b × 2F1(1− a, 1− b, 2− c; z)
]

= (1− c)z−c(1− z)c−a−b−1,

whereW computes the Wronskian,W [ f1, f2] = f1
d f2
dz −

d f1
dz f2 for two differen-

tiable functions f1(z) and f2(z).

4.3 Kink-wall

We shall now return to equation (40) and proceed to solve it in a cer-
tain case. With applications to EWBG in mind, we choose the time-
dependence of the mass to be

m(t) = m1 + m2 tanh
(
− t

τw

)
, (49)

where m1 and m2 are complex time-independent mass parameters and
τw is a parameter describing the time scale (or width) of the wall. This
choice, known as the kink profile, is common in studies related to EWBG,
and it is expected to describe different phase transition scenarios quite
well [26, 27]. At early times (t → −∞) the mass becomes m1 + m2 and at
late times (t → ∞) m1 −m2. Choosing m1 = −m2 corresponds then to a
situation where the mass changes continuously from a zero value to some
finite value. We shall however keep the parameters unspecified for now.
Figure 4 illustrates the shape of the mass function for certain parameters.

Before substituting our Ansatz (49) into our equations of motion, let us
note that

mI(t)
mR(t)

=
m1I + m2I tanh

(
− t

τw

)
m1R + m2R tanh

(
− t

τw

) ,

where we have written m1 = m1R + im1I and m2 = m2R + im2I. So the ratio
of the imaginary and real parts of the mass is indeed time-dependent, and
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(a) (b)

Figure 4: The kink profile of equation (49), describing the change of the mass in
time. The mass parameters in both figures are m1 = 3 and m2 = −2. Figure (a)
has τw = 5, while Figure (b) has τw = 1 corresponding to a more abrupt mass
change.

our model may involve CP-violation. Without affecting this CP-violation,
we are free to perform global rotations on our spinors. It turns out that for
the problem at hand it is suitable to perform a rotation that removes the
imaginary part of the mass parameter multiplying the hyperbolic tangent.
Such a rotation is given by

m(t) −→ m(t)eiι; ι = arctan
(
− m2I

m2R

)
.

Indeed, letting ϕ1 and ϕ2 be the phases of m1 and m2, respectively, the
above rotation amounts to

m(t) −→
[

m1 + m2 tanh
(
− t

τw

)]
eiι

=

[
|m1|eiϕ1 + |m2|eiϕ2 tanh

(
− t

τw

)]
e−iϕ2

= |m1|ei(ϕ1−ϕ2) + |m2| tanh
(
− t

τw

)
.
= m̂1 + m̂2 tanh

(
− t

τw

)
,

where now m̂1 ∈ C and m̂2 ∈ R. In what follows we shall for convenience
drop the hats from these parameters and call them again m1 = m1R + im1I
and m2 = m2R. It should be kept in mind that these are not the parameters
m1 and m2 we started with, but are related to them through the global
rotation.
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The main advantage of the rotation is that now our mass is of the form

m(t) = m1R + m2R tanh
(
− t

τw

)
+ im1I = mR(t) + imI, (50)

i.e. there is no time-dependence in the imaginary part of the mass. The
two terms involving ∂tmI in equation (40) can then be dropped, and we
are left with the following evidently simpler equation of motion:[

∂2
t + ω2 ± i(∂tmR)

]
φ±h = 0. (51)

Despite the simple appearance of the above equation, it still is a second
order differential equation containing also a derivative of the hyperbolic
tangent, and its solutions are not obvious at first sight. The situation can
be simplified by defining a new variable that factorizes the singularities:

z =
1
2

[
1− tanh

(
− t

τw

)]
.

Now the limit z → 0 corresponds to early times (t → −∞) and z → 1
to late times (t → ∞). With this new variable we can write the mass as
m = m1 + (1− 2z)m2. Let us now transform the quantities in equation
(51) accordingly (for clarity we will from now on use total derivatives
instead of partial ones, since they are in this case equivalent):

•
d
dt

mR =
d
dt

[
m2R tanh

(
− t

τw

)]
= −m2R

τw

[
1− tanh2

(
− t

τw

)]
=

4m2R

τw
z(z− 1)

•
d
dt

=
2

τw
z(1− z)

d
dz

•
d2

dt2 =

[
2

τw
z(1− z)

]2 d2

dz2 +
4

τ2
w

z(1− z)(1− 2z)
d

dz

• ω2 =
∣∣~k∣∣2 + m2

R + m2
I

=
∣∣~k∣∣2 + m2

I + (m1R + m2R)
2 − 4m1Rm2Rz− 4m2

2Rz(1− z).
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Equation (51) in terms of the z-coordinate is hence{[
2

τw
z(1− z)

]2 d2

dz2 +
4

τ2
w

z(1− z)(1− 2z)
d
dz
−4m1Rm2Rz

− 4m2Rz(1− z)
(

m2R ±
i

τw

)
+
∣∣~k∣∣2 + m2

I + (m1R + m2R)
2

}
φ±h = 0.

(52)

Next we redefine φ±h in terms of yet new mode functions Ξ±h(z) as

φ±h = zα(1− z)βΞ±h(z). (53)

The parameters α and β are chosen to be

α = − i
2

τwω−, β = − i
2

τwω+, (54)

where ω− and ω+ are defined as the early- and late-time limits of the
basic dispersion relation:

ω∓
.
= ω(t→ ∓∞) =

√∣∣~k∣∣2 + m2
I + (m1R ±m2R)2.

This specific rescaling is chosen because it allows us to finally deform
the equations of motion (52) into a form whose solutions are known.
Substituting the rescaling (53) into equation (52) and performing a fair bit
of algebra one ends up with the following equation for Ξ±h:{

z(1− z)
d2

dz2 + [1 + 2α− 2z(1 + α + β)]
d

dz
+τwm2

2R

± iτ2
wm2

2R + (α + β)(1 + α + β)

}
Ξ±h(z) = 0.

(55)

To make one last simplification, we define the following parameters:
a±

.
= 1 + α + β∓ iτwm2R (56a)

b±
.
= α + β± iτwm2R (56b)

c .
= 1 + 2α. (56c)

Straight from the above definitions one can verify that

c− (1 + a± + b±)z = 1 + 2α− 2z(1 + α + β),

a±b± = τwm2
2R ± iτ2

wm2
2R + (α + β)(1 + α + β).
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So with these parameters equation (55) can be finally written as{
z(1− z)

d2

dz2 + [c− (1 + a± + b±)z]
d
dz
−a±b±

}
Ξ±h(z) = 0. (57)

Now it should be clear why we took the side road and talked about
Gauss’ hypergeometric functions in the previous section. Comparing
equation (57) with equation (47) yields a rather satisfying fact: the equa-
tions of motion for the mode functions have reduced to Euler’s hyperge-
ometric differential equation, solutions of which are the previously con-
sidered Gauss’ hypergeometric functions.

Since the parameter c is clearly not an integer, each of equations (57)
has two independent solutions. These solutions are the ones given by
equations (48):

Ξ(1)
±h(z) = C(1)

±h × 2F1(a±, b±, c; z), (58a)

Ξ(2)
±h(z) = C(2)

±h z1−c × 2F1(1 + a± − c, 1 + b± − c, 2− c; z), (58b)

where C(1)
±h and C(2)

±h are constants. The solutions to equations (51) are
then obtained by simply multiplying the above expressions by zα(1− z)β:

φ
(1)
±h = C(1)

±hzα(1− z)β × 2F1(a±, b±, c; z), (59a)

φ
(2)
±h = C(2)

±h z−α(1− z)β × 2F1(1 + a± − c, 1 + b± − c, 2− c; z), (59b)

where we noticed that in the second solution we have 1 + α− c = −α in
the exponent of z. Our next mission is to determine the constants C(1,2)

±h
so that the modes φ±h constructed suitably from the above solutions are
normalized according to equation (38). Since this task will require some
effort, a new chapter will be devoted to it.

4.4 Normalization

We shall start by looking at the asymptotic behaviours of the solutions
(59). At early times (z → 0) the hypergeometric functions 2F1 approach
unity, as is clear from their definition. For the prefactors we may use the
observation that

z =
1
2

[
1− tanh

(
− t

τw

)]
=

et/τw

e−t/τw + et/τw
≈ e2t/τw
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for small values of z (i.e. large negative values of t). From these we de-
duce that at early times the modes attain the following asymptotic forms:

φ
(1)
±h

t→−∞−−−→ C(1)
±h e2tα/τw = C(1)

±h e−itω− , (60a)

φ
(2)
±h

t→−∞−−−→ C(2)
±h e−2tα/τw = C(2)

±h eitω− . (60b)

This is certainly delightful: we obtain the basic positive and negative
frequency plane-wave solutions (as we should, of course). From these
we will only pick the positive frequency solution (60a) to represent our
solution φ±h (this is just choosing an initial condition). So from now
on the mode function we will be normalizing is just φ

(1)
±h = φ±h, and

therefore we will for simplicity drop the upper indices from the constants
too: C±h

.
= C(1)

±h .

At late times we expect to have a mixture of the positive and negative
frequency solutions, and this indeed turns out to be the case. To estab-
lish this fact we may use Identity 3, which allows us to transform the
arguments of the hypergeometric functions from z to 1− z. Under this
transformation our mode function becomes

φ±h = C±h
Γ(c)Γ(c− a± − b±)
Γ(c− a±)Γ(c− b±)

zα(1− z)β

×2F1(a±, b±, 1 + a± + b± − c; 1− z)

+C±h
Γ(c)Γ(a± + b± − c)

Γ(a±)Γ(b±)
zα(1− z)−β

×2F1(c− a±, c− b±, 1− a± − b± + c; 1− z),

(61)

where we used the fact that β + c − a± − b± = −β. Now the late-time
limit z→ 1 (t→ ∞) is easy to consider since the hypergeometric functions
approach again unity. For the prefactors we may now use

1− z =
e−t/τw

e−t/τw + et/τw
≈ e−2t/τw

for large values of t. Under these limits the expression (61) gives the
following asymptotic form for the mode function at late times:

φ±h
t→∞−−→C±h

Γ(c)Γ(c− a± − b±)
Γ(c− a±)Γ(c− b±)

e−2tβ/τw + C±h
Γ(c)Γ(a± + b± − c)

Γ(a±)Γ(b±)
e2tβ/τw

=C±h
Γ(c)Γ(c− a± − b±)
Γ(c− a±)Γ(c− b±)

eitω+ + C±h
Γ(c)Γ(a± + b± − c)

Γ(a±)Γ(b±)
e−itω+ .
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Indeed, we obtained a combination of the positive and negative frequency
waves at late times.

In a similar fashion as we got the early-time positive and negative fre-
quency modes (60), one can construct the corresponding positive and
negative frequency solutions for late times. Since φ±h are solutions to our
equations of motion, so must be both parts of expression (61) indepen-
dently, since the two are linearly independent. We can thus construct the
following solutions applicable at late times:

φ̃
(1)
±h = C̃(1)

±hzα(1− z)−β × 2F1(c− a±, c− b±, 1− a± − b± + c; 1− z)

= C̃(1)
±hz−α(1− z)−β × 2F1(1− a±, 1− b±, 1− a± − b± + c; 1− z)

(62a)

φ̃
(2)
±h = C̃(2)

±h zα(1− z)β × 2F1(a±, b±, 1 + a± + b± − c; 1− z), (62b)

where we used Identities 1 and 2, and C̃(1)
±h and C̃(2)

±h are constants. As the
earlier performed analysis shows, these indeed reduce to positive and
negative frequency solutions at late times:

φ̃
(1)
±h

t→∞−−→ C̃(1)
±h e−itω+ , (63a)

φ̃
(2)
±h

t→∞−−→ C̃(2)
±h eitω+ . (63b)

Perhaps it should be stressed, that all the so far represented solutions are
equally valid at all times. The above analysis merely distinguishes them
by their behaviour at different times and therefore allows one to easily
construct solutions suitable for different scenarios.

We shall proceed to work with φ±h and the determination of the constants
C±h. First we will work out how the two constants C+h and C−h are
related to each other. This relation is buried in equation (39a), relating
φ+h to φ−h. Using mR = m1R + (1− 2z)m2R and writing (39a) in terms of
the z-coordinate gives{

z(1− z)
d

dz
± iτw

2
[m1R + (1− 2z)m2R]

}
φ±h =

iτw

2
(h
∣∣~k∣∣± imI)φ∓h. (64)

Remember that with the kink-profile for the mass we were able to rotate
the time dependence of mI away, and therefore mI remains in the above
equation as it is. The parameters m1R and m2R can be written in terms of
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the parameters inside the hypergeometric functions a±, b± and c. To see
this, consider the following relations:

1) ± im1Rτw =
(a± + b± − 1)(1 + a± + b± − 2c)

2(a± − b± − 1)
,

2) ± im2Rτw =
1− a± + b±

2
.

These can be easily verified by straightforward calculations. Using them
one can replace m1R and m2R in equation (64) by the parameters of the
hypergeometric functions. Doing this and substituting φ±h from equation
(59a) to equation (64) gives, after a minor effort, the following result:[

z(1− z)
d

dz
+α(1− z)− βz +

(a± + b± − 1)(1 + a± + b± − 2c)
4(a± − b± − 1)

+
1− a± + b±

4
(1− 2z)

]
C±h × 2F1(a±, b±, c; z) =

iτw

2
(h
∣∣~k∣∣± imI)C∓h

× 2F1(a∓, b∓, c; z).

The left-hand side can be further simplified by using

α =
c− 1

2
, β =

a± + b± − c
2

.

The result is[
z(1− z)

d
dz

+
b±(a± − c)
a± − b± − 1

− b±z
]

C±h × 2F1(a±, b±, c; z)

=
iτw

2
(h
∣∣~k∣∣± imI)C∓h × 2F1(a∓, b∓, c; z).

In order to relate the hypergeometric functions on both sides to each
other, they should contain same parameters. To this end we can use the
relations a∓ = b± + 1 and b∓ = a± − 1 together with Identity 1 to obtain[

z(1− z)
d

dz
+

b±(a± − c)
a± − b± − 1

− b±z
]

C±h × 2F1(a±, b±, c; z)

=
iτw

2
(h
∣∣~k∣∣± imI)C∓h × 2F1(a± − 1, 1 + b±, c; z).

(65)

Let us now focus on the left-hand side and try to get the hypergeometric
function match the one on the right-hand side. Identities 4 and 5 enable
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us to write equation (65) as{
(1− z)(c− 1)× 2F1(a±, b±, c− 1; z) +

[
b±(a± − c)
a± − b± − 1

+ 1− c

+ (c− 1− b±)z

]
× 2F1(a±, b±, c; z)

}
C±h =

iτw

2
(h
∣∣~k∣∣± imI)C∓h

× 2F1(a± − 1, 1 + b±, c; z).

This is already great since we have got rid of all the derivatives. Now
applying Identity 6 to the left-hand side of the above equation results in

b±(1− z)× 2F1(a±, 1 + b±, c; z) +
b±(1 + b± − c)

a± − b± − 1
× 2F1(a±, b±, c; z)

=
iτw

2
(h
∣∣~k∣∣± imI)

C∓h
C±h
× 2F1(a± − 1, 1 + b±, c; z).

The final identity to be used here is Identity 7 which is almost tailor-made
for the situation at hand. Using it the above equation finally attains the
form

b±(a± − c)
a± − b± − 1

× 2F1(a± − 1, b± + 1, c; z) =
iτw

2
(h
∣∣~k∣∣± imI)

C∓h
C±h

× 2F1(a± − 1, b± + 1, c; z).

Now the hypergeometric functions on both sides of the equation match.
Since the equation has to hold for all values of z, we may deduce the
following relation between the constants:

C±h
C∓h

=
iτw(a± − b± − 1)

2b±(a± − c)
(h
∣∣~k∣∣± imI). (66)

Equation (66) is basically enough so that we could start to apply the nor-
malization conditions for determining the constants. Let us first however
write equation (66) completely in terms of physical parameters, i.e. re-
move the parameters a±, b± and c. This can be done with the help of the
following relations:

3) (a± − b± − 1)2 = −4m2
2Rτ2

w,

4) b±(a± − c) = m2Rτ2
w(m1R + m2R ∓ω−),

5) (a± − 1)(1 + b± − c) = m2Rτ2
w(m1R + m2R ±ω−),

6)
b±(a± − 1)(a± − c)(1 + b± − c)

(a± − b± − 1)2 =
τ2

w
4
(
∣∣~k∣∣2 + m2

I ).
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Proofs of these relations are again direct calculations. Using the above
relations one can write equation (66) as

C±h
C∓h

= −
h
∣∣~k∣∣± imI√∣∣~k∣∣2 + m2

I

√
ω− ± (m1R + m2R)

ω− ∓ (m1R + m2R)
, (67)

where the right-hand side indeed consists of only physical parameters.

Using the normalization condition (38) together with the solution (59a)
and equation (66) we can write

1 =
∣∣∣C+hzα(1− z)β × 2F1(a+, b+, c; z)

∣∣∣2
+
∣∣∣C−hzα(1− z)β × 2F1(a−, b−, c; z)

∣∣∣2
= |C+h|2

[
|2F1(a+, b+, c; z)|2 − b+(a+ − c)

(a+ − 1)(1 + b+ − c)
|2F1(a−, b−, c; z)|2

]
,

(68)

where in the last step we used also the fact that α and β are, according to
their definition (54), purely imaginary. In order to get to manipulate the
moduli of the hypergeometric functions, we first note that a∗± = 2− a±,
b∗± = −b± and c∗ = 2− c. Using this together with Identity 8 and the fact
that z is real allows us to write

|2F1(a±, b±, c; z)|2 = 2F1(2− a±,−b±, 2− c; z)2F1(a±, b±, c; z).

Hence equation (68) can be written as

1 = |C+h|2
[

2F1(a+, b+, c; z)× 2F1(2− a+,−b+, 2− c; z)

− b+(a+ − c)
(a+ − 1)(1 + b+ − c)

× 2F1(a+ − 1, 1 + b+, c; z)

× 2F1(1− a+, 1− b+, 2− c; z)

]
,

(69)

where we again used the relations a∓ = b± + 1 and b∓ = a± − 1 and
Identity 1.

From the equation above it is clear that the difficulty in solving a mean-
ingful form for the constants C±h is once more in the hypergeometric
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functions. In order to get progress they should be somehow simplified,
which is exactly what we are about to do. Combining equation (65) with
equation (66) gives rise to the following relation:[

a+ − b+ − 1
b+(a+ − c)

z(1− z)
d

dz
+

1− a+ + b+
a+ − c

z + 1
]
× 2F1(a+, b+, c; z)

= F1(a+ − 1, 1 + b+, c; z).
(70)

Upon interchanging a+ → 1− b+, b+ → 1− a+ and c → 2− c in the
above relation and using Identity 1 another useful relation comes out:[

a+ − b+ − 1
(1− a+)(c− b+ − 1)

z(1− z)
d

dz
+

1− a+ + b+
c− b+ − 1

z + 1
]

× 2F1(1− a+, 1− b+, 2− c; z) = 2F1(2− a+,−b+, 2− c; z).
(71)

The usefulness of these relations lies in the fact that the hypergeometric
functions on the right-hand sides of equations (70) and (71) appear also
in equation (69). Substituting the functions into equation (69) results in

1 = |C+h|2
{

2F1(a+, b+, c; z)

[
a+ − b+ − 1

(1− a+)(c− b+ − 1)
z(1− z)

d
dz

+1

+
1− a+ + b+
c− b+ − 1

z

]
× 2F1(1− a+, 1− b+, 2− c; z)

− b+(a+ − c)
(a+ − 1)(1 + b+ − c)

[
a+ − b+ − 1
b+(a+ − c)

z(1− z)
d

dz

[
2F1(a+, b+, c; z)

]
+

(
1− a+ + b+

a+ − c
z + 1

)
× 2F1(a+, b+, c; z)

]

× 2F1(1− a+, 1− b+, 2− c; z)

}
.

(72)

At this point one could (quite justly) argue that we have only succeeded
in achieving an even more complicated expression. However, we have
been able to reduce the number of hypergeometric functions with dif-
ferent arguments from four to two, which is already a worthy improve-
ment. Moreover, this new horrible-looking expression can be simplified
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by making use of the Wronskian of hypergeometric functions. First we
write equation (72) with the help of the WronskianW [·, ·] as

1 = |C+h|2
{

a+ − b+ − 1
(1− a+)(c− b+ − 1)

z(1− z)

[
2F1(a+, b+, c; z)

× d
dz

[
2F1(1− a+, 1− b+, 2− c; z)

]
− 2F1(1− a+, 1− b+, 2− c; z)

× d
dz

[
2F1(a+, b+, c; z)

]]
+ 2F1(a+, b+, c; z)

[
1− b+(a+ − c)

(a+ − 1)(1 + b+ − c)

+
a+ − b+ − 1
1 + b+ − c

(
1 +

b+
a+ − 1

)
z

]
× 2F1(1− a+, 1− b+, 2− c; z)

}

= |C+h|2
{

a+ − b+ − 1
(1− a+)(c− b+ − 1)

z(1− z)

×W
[

2F1(a+, b+, c; z), 2F1(1− a+, 1− b+, 2− c; z)
]

+ 2F1(a+, b+, c; z)

[
1− b+(a+ − c)

(a+ − 1)(1 + b+ − c)

+
a+ − b+ − 1
1 + b+ − c

(
1 +

b+
a+ − 1

)
z

]
× 2F1(1− a+, 1− b+, 2− c; z)

}
.

(73)

Then we can make use of Identity 9. Opening the Wronskian in the iden-
tity, differentiating the pre-factors in front of the hypergeometric func-
tions, reforming a new Wronskian out of the hypergeometric functions
and doing some algebraic manipulations results in the following relation:

W
[

2F1(a, b, c; z), 2F1(1− a, 1− b, 2− c; z)
]
=

1− c
z(1− z)

− 2F1(a, b, c; z)
(

1− c
z

+
a + b− c

1− z

)
× 2F1(1− a, 1− b, 2− c; z).

The Wronskian in the above relation is exactly the one appearing in
equation (73) too. Substituting the Wronskian gives rise to an equation
with only two kinds of hypergeometric functions and no derivatives nor
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(1− z)−1-poles:

1 = |C+h|2
{
(a+ − b+ − 1)(1− c)
(1− a+)(c− b+ − 1)

+ 2F1(a+, b+, c; z)

×
[

1− b+(a+ − c)
(a+ − 1)(1 + b+ − c)

+
a+ − b+ − 1
1 + b+ − c

(
1 +

b+
a+ − 1

)
z

− (a+ − b+ − 1)(1− c)
(1− a+)(c− b+ − 1)

(1− z)− (a+ − b+ − 1)(a+ + b+ − c)
(1− a+)(c− b+ − 1)

z

]

× 2F1(1− a+, 1− b+, 2− c; z)

}
.

(74)

Now we have arrived at a point where all the hard labor finally bears
fruit and a miracle of some sort happens. Carefully calculating the part
between the hypergeometric functions in equation (74) above, one finds
that this part is identically zero. We are left with a remarkably simple
equation:

|C+h|2 =
(1− a+)(c− b+ − 1)
(a+ − b+ − 1)(1− c)

. (75)

Using the earlier mentioned relations 2) and 5), equation (74) can be
expressed as

|C+h|2 =
ω− + m1R + m2R

2ω−
. (76)

We have now arrived at the end of the normalization procedure. From
equation (76) we choose

C+h =

√
ω− + m1R + m2R

2ω−
. (77)

Equation (67) then dictates the second constant to be

C−h =
imI − h

∣∣~k∣∣√∣∣~k∣∣2 + m2
I

√
ω− −m1R −m2R

2ω−
. (78)
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4.5 Solutions

Plugging the afore-obtained constants into equation (59a) gives us two
correctly normalized mode functions:

φ+h
.
= φ

(1)
+h =

√
ω− + m1R + m2R

2ω−
zα(1− z)β × 2F1(a+, b+, c; z) (79a)

φ−h
.
= φ

(1)
−h =

imI − h
∣∣~k∣∣√∣∣~k∣∣2 + m2

I

√
ω− −m1R −m2R

2ω−
zα(1− z)β

× 2F1(a−, b−, c; z). (79b)

These are called early-time mode functions due to the fact that at early times
they reduce to positive frequency solutions, cf. equation (60a). A simi-
lar normalization procedure would give us the second pair of early-time
solutions φ

(2)
±h, the ones reducing to negative frequency solutions at early

times (cf. equations (59b) and (60b)). We will not be needing these since
we choose our early-time solution to consist of the positive frequency so-
lutions only. The real and imaginary parts of solutions (79a) and (80a) are
plotted in Figure 5 for certain parameters to illustrate the nature of the
solutions.

Then there are of course the late-time mode functions φ̃
(1,2)
±h , given in equa-

tion (62), which at late times reduce to positive and negative frequency
solutions (cf. equation (63)). For completeness we will also give these
solutions. At late times we want to have both positive and negative fre-
quency solutions due to the wall, and hence we will keep the solution
as general as possible. The solutions φ̃

(1,2)
±h can be normalized following

an analogous procedure to the one described in the previous section. As
a result one will obtain the following two pairs of normalized late-time
solutions:

φ̃
(1)
+h =

√
ω+ + m1R −m2R

2ω+
z−α(1− z)−β

× 2F1(1− a+, 1− b+, 2− c̃; 1− z), (80a)

φ̃
(1)
−h =

imI − h
∣∣~k∣∣√∣∣~k∣∣2 + m2

I

√
ω+ −m1R + m2R

2ω+
z−α(1− z)−β

× 2F1(1− a−, 1− b−, 2− c̃; 1− z), (80b)
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Figure 5: The real and imaginary parts of the mode functions φ+ and φ− of
equations (79a) and (79b) near the mass change. Here we have used the following
set of parameters: h = 1,

∣∣~k∣∣ = 0.4, m1R = 0.5, m2R = 2.5, mI = 0.1 and τw = 5.
The oscillating feature of the hypergeometric functions is apparent.

and

φ̃
(2)
+h =

√
ω+ −m1R + m2R

2ω+
zα(1− z)β × 2F1(a+, b+, c̃; 1− z), (81a)

φ̃
(2)
−h =

h
∣∣~k∣∣− imI√∣∣~k∣∣2 + m2

I

√
ω+ + m1R −m2R

2ω+
zα(1− z)β

× 2F1(a−, b−, c̃; 1− z), (81b)

where we have for simplicity defined c̃ .
= 1 + 2β = 1 + a± + b± − c.

The full late-time solution φ̃±h will be a linear combination of equations
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(80) and (81):

φ̃±h = κ±hφ̃
(1)
±h + λ±hφ̃

(2)
±h,

where the coefficients κ±h and λ±h are in general ~k-dependent. They
again obey the normalization condition

|κ±h|2 + |λ±h|2 = 1.

These coefficients can be determined using the fact that the early- and
late-time solutions have to coincide:

φ±h = φ̃±h = κ±hφ̃
(1)
±h + λ±hφ̃

(2)
±h.

Let us look at φ+h = φ̃+h first. On the left-hand side we have

φ+h =

√
ω− + m1R + m2R

2ω−
zα(1− z)β × 2F1(a+, b+, c; z)

=

√
ω− + m1R + m2R

2ω−
zα(1− z)β

[
Γ(c)Γ(c− a+ − b+)
Γ(c− a+)Γ(c− b+)

× 2F1(a+, b+, c̃; 1− z) +
Γ(c)Γ(a+ + b+ − c)

Γ(a+)Γ(b+)
(1− z)c−a+−b+

× 2F1(c− a+, c− b+, 1− a+ − b+ + c; 1− z)

]
, (82)

where we used Identity 3. The right-hand side can be on the other hand
written as

φ̃+h = κ+h

√
ω+ + m1R −m2R

2ω+
z−α(1− z)−β

× 2F1(1− a+, 1− b+, 2− c̃; 1− z) + λ+h

√
ω+ −m1R + m2R

2ω+

× zα(1− z)β × 2F1(a+, b+, c̃; 1− z)

= zα(1− z)β

[
κ+h

√
ω+ + m1R −m2R

2ω+
(1− z)c−a+−b+

× 2F1(c− a+, c− b+, 1− a+ − b+ + c; 1− z)

+ λ+h

√
ω+ −m1R + m2R

2ω+
× 2F1(a+, b+, c̃; 1− z)

]
(83)
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with the help of Identity 2. Expressions (82) and (83) contain now the
same hypergeometric functions. Since the expressions have to match for
all values of z, we can read off the following relations by comparing the
coefficients in front of the hypergeometric functions:

κ+h

√
ω+ + m1R −m2R

2ω+
=

√
ω− + m1R + m2R

2ω−

Γ(c)Γ(a+ + b+ − c)
Γ(a+)Γ(b+)

,

λ+h

√
ω+ −m1R + m2R

2ω+
=

√
ω− + m1R + m2R

2ω−

Γ(c)Γ(c− a+ − b+)
Γ(c− a+)Γ(c− b+)

.

The equation φ−h = φ̃−h can be treated in an exactly same way, and all in
all we end up with the following expressions for all the coefficients:

κ±h =

√
ω+[ω− ± (m1R + m2R)]

ω−[ω+ ± (m1R −m2R)]

Γ(c)Γ(a± + b± − c)
Γ(a±)Γ(b±)

, (84a)

λ±h = ±

√
ω+[ω− ± (m1R + m2R)]

ω−[ω+ ∓ (m1R −m2R)]

Γ(c)Γ(c− a± − b±)
Γ(c− a±)Γ(c− b±)

. (84b)

This is as far as we will go with the Dirac equation. The most important
results from this section and the ones that will be used in the following
investigations are equations (79). These exact solutions will be used to
reveal the phase space structure of the problem.

In Appendix B the Dirac equation of this Chapter is studied in the con-
stant mass limit. The corresponding solutions are given, and they are
used to derive another form for the normalization of this time-dependent
problem.
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5 Phase space structure of the Wigner function

In this chapter we will use the exact mode functions of the Dirac equation
studied in Chapter 4 to establish the entire phase space structure of the
problem. This will allow us to make comparison with the predictions of
cQPA considered in Chapter 3.3.

5.1 Wightman function

Our goal is to somehow construct the Wigner function (10) that was used
to reveal the coherence structure in the context of cQPA. We need to how-
ever be careful that we really construct an object of correct nature. The
exact mode functions resulted from analyzing a free problem, while the
Wigner function is inherently an object related to interacting situations
(at least in every sensible physical scenario). This subtlety will be ad-
dressed more carefully in the next section, first we will straightforwardly
construct the Wightman function appearing inside the Wigner transfor-
mation.

The Wigner function is obtained by integrating the 2-point correlator in
the average and relative coordinates. Concentrating on S<, we should
then compute

iS<
(

X +
r
2

, X− r
2

)
=
〈

Ω
∣∣∣ψ (X− r

2

)
ψ
(

X +
r
2

)∣∣∣Ω
〉

, (85)

where we have explicitly included the ground state Ω in the notation.
The tricky point here is that our problem actually contains two distinct
vacua: the one deep in the symmetric phase (long before the mass change)
and the one deep in the broken phase (long after the mass change).9

However, since we construct the spinors ψ and ψ out of the complete exact
solutions of the problem, they will operate naturally between the both
vacua. Therefore the vacuum expectation value can be treated exactly in
the way we are used to.

Now that we understand the nature of the expectation value (85), we can
just plug in it the full spinor expansion given in equation (30). This gives

9These vacua are related by a Bogoliubov transformation, the coefficients for which
are given by κ±h and λ±h of equation (84) [26].
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(again omitting the ground states from the expectation value) e.g.

iS<
αβ(u, v) =

〈
ψβ (v)ψα (u)

〉
=
∫ dk3

1dk3
2

(2π)3(2π)3 ∑
h1,h2

〈[
â†
~k2h2

µh2β(v0,~k2)e−i~k2·~v +b̂~k2h2
νh2β(v0,~k2)ei~k2·~v

]
×
[

â~k1h1
µh1α(u0,~k1)ei~k1·~u + b̂†

~k1h1
νh1α(u0,~k1)e−i~k1·~u

]〉
= ∑

h1,h2

∫ dk3
1dk3

2
(2π)3(2π)3 ei(~k1·~u+~k2·~v)νh2β(v0,~k2)νh1α(u0,~k1)

〈
bk2h2b†

k1h1

〉
= ∑

h

∫ dk3

(2π)3 ei~k·(~v−~u)νhβ(v0,~k)νhα(u0,~k),

where we made use of the commutation relations (31) for the creation and
annihilation operators. The problem studied in Chapter 4 was spatially
homogeneous, and the solutions ended up depending only on the mag-
nitude of the three-momentum and time. Therefore the integral over the
three-momentum in the previous equation becomes just a delta function,
and we can write

iS<
αβ(u, v) = iS<

αβ(u0, v0) = ∑
h

νhβ(v0)νhα(u0). (86)

Following the same steps one can write the other Wightman function as

iS>
αβ(u, v) = iS>

αβ(u0, v0) = ∑
h

µhα(u0)µhβ(v0). (87)

The spinor products can be straightforwardly calculated using the de-
compositions (33):

νhνh =

{[
ζ
∗
hζh ζ

∗
hηh

η∗hζh η∗hηh

]
⊗ ξhξ†

h

}
γ0, (88)

µhµh =

{[
ηhη∗h ηhζ∗h
ζhη∗h ζhζ∗h

]
⊗ ξhξ†

h

}
γ0. (89)

The interesting (time-dependent) parts of the above objects lie in the func-
tions ηh, ζh, ηh and ζh, which can be easily written in terms of the exact
mode functions through relations (37). In what follows we shall only con-
centrate on the time-dependent parts, and therefore denote for example

iS>
h γ0 =

[
ηhη∗h ηhζ∗h
ζhη∗h ζhζ∗h

]
. (90)
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This just means that we essentially want to consider the time-dependent
part of the Wightman function for a specific helicity, and according to the
block-diagonal form of equations (88) and (89), the most relevant objects
are the ones given in equation (90) (and the similar equation for S<).

5.2 Wigner function

Now it is time to turn our focus on the real object of interest, the Wigner
function. As already mentioned, the nature of the object we want to study
is a little unsettled. A naïve approach would be to just take the original
definition (10), which in our spatially homogeneous case would together
with e.g. equation (87) result in

iS>
αβ(k0, T) = ∑

h

∫
dr0 eik0r0 µhα

(
T +

r0

2

)
µhβ

(
T − r0

2

)
, (91)

where T denotes the time component of the average coordinate X. This
expression is however bound to lead to rather unphysical results. To see
what is wrong with the above expression and how it should be altered,
we shall look first at a simplified case.

5.2.1 Step-function correlator with a finite Fourier transform

Studying the correlator (91) analytically with the full solutions is in prac-
tice of no avail due to the complexity of the hypergeometric solutions.
An intuitive picture can be obtained by squeezing the time-width of the
wall and considering a case where the solutions consist of plane waves
immediately before and after the mass change. This way we can neglect
the hypergeometric behaviour of the full solutions while still maintaining
the correct qualitative picture of the situation. So we say that the mass
changes essentially like a step function, and study mode functions of the
form

η
step
h (t) .

= θ(−t)e−iω−t + θ(t)
(

αe−iω+t + βeiω+t
)

, (92)

where ω− and ω+ are still the early- and late-time forms of the energy, θ
is the Heaviside step function and α, β ∈ C.

The problem with the definition (91) for the Wigner function arises essen-
tially from the integration over the relative coordinate r0. This integration
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picks correlations between the mode function and its complex conjugate,
and when the integration is performed from minus infinity to infinity,
there are correlations coming from separate sides of the wall with arbitrarily
large time distances. Such large-distance correlations are however not sen-
sible, in the sense that in a physical setting interactions will diminish the
large-scale correlations. The first step towards understanding this prob-
lem is to consider a Fourier transform performed in a finite-sized box, i.e.
limit the relative coordinate correlations by imposing a cut-off distance to
the integration. To this end we define the Wigner function in a box10 as

S<,>
L (k0, T) .

=
1

2L

L∫
−L

dr0 eik0r0 S<,>
(

T +
r0

2
, T − r0

2

)
. (93)

The Wightman function can of course be computed exactly similarly as
before resulting in an expression similar to (91), the only difference being
in the integration limits and the normalization 1/2L.

Let us now see what information our new definition gives for the step
function correlator. Looking at e.g. the (1, 1)-component of iS>γ0, we
have [

iS>
L γ0

]
11

=
1

2L

L∫
−L

dr0 eik0r0 ηstep
(

T +
r0

2

)
ηstep∗

(
T − r0

2

)
,

where we have ignored the helicity-part. Plugging in the mode functions
and being careful with the Heaviside step functions the integral can be
straightforwardly computed, resulting in[

iS>
L γ0

]
11

=
1
L
(J1 + J2 + J3) , (94)

where

J1
.
=

sin(2|T|(k0 −ω−))

k0 −ω−
θ(−T),

J2
.
= |α|2 sin(2|T|(k0 −ω+))

k0 −ω+
θ(T) + |β|2 sin(2|T|(k0 + ω+))

k0 + ω+
θ(T)

+ 2Re
(

αβ∗e−2iω+T
) sin(2|T|k0)

k0
θ(T),

10In our spatially homogeneous case this is just a Fourier transformation on an inter-
val. The definition generalizes readily to higher dimensions.
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J3
.
= Re

{
iαeiT(ω−−ω+)

k0 − ω−+ω+
2

[
ei2|T|

(
k0−

ω−+ω+
2

)
− eiL

(
k0−

ω−+ω+
2

)]

+
iβeiT(ω−+ω+)

k0 − ω−−ω+
2

[
ei2|T|

(
k0−

ω−−ω+
2

)
− eiL

(
k0−

ω−−ω+
2

)]}
θ(L− 2|T|).

We have purposely split the result in three different parts due to their dis-
tinct nature. J1 and J2 correspond to the early- and late-time solutions,
respectively, while J3 contains structure depending on the size of the box
L.

The essential properties of these different correlations can be neatly re-
vealed with the help of the following formal11 representation of the Dirac
delta function

δ(x) = lim
ε→0

[
sin(x/ε)

πx

]
. (95)

In the limit T → −∞ of equation (94) only J1 remains due to the step
functions, and with the help of equation (95) we can write

lim
T→−∞

[
iS>

L γ0
]

11
=

π

L
δ(k0 −ω−).

So at early times we only expect to see spectral structure at the k0 = ω−
-shell, which is sensible since our initial condition includes just a particle
with energy ω−. In the late time limit on the other hand we have

lim
T→∞

[
iS>

L γ0
]

11
=

π

L
|α|2 δ(k0 −ω+) +

π

L
|β|2 δ(k0 + ω+)

+
π

L
×OSCILLATION× δ(k0).

This triumphant result contains exactly the structure predicted by cQPA.
First, we see that at late times the phase space has the expected structure
corresponding to particles (k0 = ω+) and antiparticles (k0 = −ω+). In
addition, there is spectral structure at the k0 = 0 -shell, which accord-
ing to cQPA describes coherence between the particle- and antiparticle-
solutions. The nature of this structure is oscillatory, which is also seen
from cQPA when one solves the shell-functions parametrizing the spec-
tral structures.

11Formal in the sense that the right hand side of equation (95) (which does not con-
verge on its own) acts as the delta distribution when integrated against sensible func-
tions.
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The results above give us the correct qualitative picture of the phase space
structure at early and late times. However, there is also the peculiar term
J3. As indicated by the step function, the existence of this term is re-
stricted by the size of the Fourier transform L. Nevertheless, for large
values of L this structure exists long before and after the mass change. At
those times, the term can give rise to spectral-like structure corresponding
to shells

k0 =
ω− + ω+

2
and k0 =

ω− −ω+

2
.

These structures are immediately recognized as correlations coming from
different sides of the mass wall. They are mixtures of the early-time particle-
solution with the late time particle- and antiparticle-solutions. The larger
the Fourier transform range L, the larger the distance between the furthest
correlations. These kinds of coherences are not predicted by cQPA, or
by any other approach to our knowledge. This does however not render
cQPA erroneous. cQPA is essentially a local approximation, so these kinds
of nonlocal beyond-the-wall coherences should be outside its scope. One
of the approximations made in cQPA was the gradient approximation,
which requires that the background changes at a relatively slow pace and
can be treated classically. This approximation does not hold now near the
mass change, because the mass changes infinitely rapidly at the step wall.
Of course this kind of a mass change is not very physical, and the results
with the kink-potential will be of more interest. This step wall however
allows us to study the situation qualitatively.

Before returning to the exact solutions of the kink-potential, we shall look
at the step-wall from another point of view. Even though the beyond-the-
wall coherences identified above can and do exist, there should not be
correlations coming from arbitrarily large distances from separate sides
of the wall. This is because in a physical setting interactions would not
permit such large scale coherences. In the previous approach these corre-
lations where limited by the size of the Fourier transform L, but this is in
no way a proper way to limit the correlations. In principle, we should be
able to make the Fourier transform as large as we want; a priori it should
be infinite. The limit L → ∞ is not meaningful in the earlier expressions,
since the finite Fourier transform we defined is not related to the full
Fourier transform in such a continuous way. Instead, we should start out
with a Wigner function that takes into account all possible correlations,
but in a physically meaningful way.

This is where the free nature of our solutions steps in. The problematic
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correlations arise because we are just plugging the free-particle solutions
blindly into the Wigner function. The correct way to do this is to in-
troduce the mean free path Γ of the particles, and damp the large scale
correlations with it. This is what is done in the next section.

5.2.2 Step-function correlator with a damped Fourier transform

Instead of limiting the size of the Fourier transform, we define the fol-
lowing damped Wigner transform:

S<,>
Γ (k0, T) .

=

∞∫
−∞

dr0 eik0r0−Γ|r0| S<,>
(

T +
r0

2
, T − r0

2

)
. (96)

Here Γ > 0, the mean free path of the particles, suppresses the correla-
tions coming from large time distances from separate sides of the mass
wall. A large mean free path Γ corresponds to weak interactions, and a
small one to strong interactions.

We can use this to analyze the step function correlator similarly as with
the finite-sized Wigner transform of the previous section. Concentrating
again on one component, the Wigner function splits into three pieces:

[
iS>

Γ γ0
]

11
=

∞∫
−∞

dr0 eik0r0−Γ|r0| ηstep
(

T +
r0

2

)
ηstep∗

(
T − r0

2

)
= JΓ1 + JΓ2 + JΓ3,

where now

JΓ1
.
=

2
(k0 −ω−)2 + Γ2

[
Γ + (k0 −ω−)e−2Γ|T| sin(2|T|(k0 −ω−))

−Γe−2Γ|T| cos(2|T|(k0 −ω−))
]

θ(−T),

JΓ2
.
=

2|α|2
(k0 −ω+)2 + Γ2

[
Γ + (k0 −ω+)e−2Γ|T| sin(2|T|(k0 −ω+))

−Γe−2Γ|T| cos(2|T|(k0 −ω+))
]

θ(T)

+
2|β|2

(k0 + ω+)2 + Γ2

[
Γ + (k0 + ω+)e−2Γ|T| sin(2|T|(k0 + ω+))
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−Γe−2Γ|T| cos(2|T|(k0 + ω+))
]

θ(T)

+
4Re

(
αβ∗e−2iω+T)
k2

0 + Γ2

[
Γ + k0e−2Γ|T| sin(2|T|k0)

−Γe−2Γ|T| cos(2|T|k0)
]

θ(T),

JΓ3
.
= 2Re

 −αeiT(ω−−ω+)

i
(

k0 − ω−+ω+
2

)
− Γ

e2|T|
[
i
(

k0−
ω−+ω+

2

)
−Γ
]

− βeiT(ω−+ω+)

i
(

k0 − ω−−ω+
2

)
− Γ

e2|T|
[
i
(

k0−
ω−−ω+

2

)
−Γ
] .

Let us now look first at this mysterious term JΓ3. Again we see the rise
of spectral-like structure at k0 = ω−±ω+

2 . However, if we move away from
the mass wall in time, these solution die off due to the damping factor
e−2|T|Γ. The definition (96) of the Wigner function gives us the correct
qualitative picture, and allows us to get rid of the box-artifacts apparent
in the L-dependent Wigner function (93).

Then the other terms. First note that in the limit of weak interactions one
has

JΓ1
Γ→0−−→ 2 sin(2|T|(k0 −ω−))

k0 −ω−
θ(−T),

JΓ2
Γ→0−−→ 2|α|2 sin(2|T|(k0 −ω+))

k0 −ω+
θ(T) + 2|β|2 sin(2|T|(k0 + ω+))

k0 + ω+
θ(T)

+ 4Re
(

αβ∗e−2iω+T
) sin(2|T|k0)

k0
θ(T),

so that in this limit the expressions reduce at early and late times to the
expected spectral solutions:

JΓ→0,1
T→−∞−−−−→ 2πδ(k0 −ω−),

JΓ→0,2
T→∞−−−→ 2π|α|2δ(k0 −ω+) + 2π|β|2δ(k0 + ω+)

+ OSCILLATION× 4πδ(k0).

Of course JΓ3 too gives a long-living spectral structure in the weak inter-
action limit. However, if we fix Γ, the only early-time structure is

lim
T→−∞

[
iS>

Γ γ0
]

11
= lim

T→−∞
JΓ1 =

2Γ
(k0 −ω−)2 + Γ2 .
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So instead of a delta function we get a Breit–Wigner type of distribution,
which is exactly what we should now that we have added the interaction
strength to the integration. At early times there is a resonance in the phase
space at k0 = ω−. At late times the structure becomes

lim
T→∞

[
iS>

Γ γ0
]

11
= lim

T→∞
JΓ2 =

2|α|2Γ
(k0 −ω+)2 + Γ2 +

2|β|2Γ
(k0 + ω+)2 + Γ2

+ OSCILLATION× Γ
k2

0 + Γ2
,

i.e. we have three Breit–Wigner type of distributions. The resonances cor-
respond to particles (k0 = ω+), antiparticles (k0 = −ω+) and coherence
(k0 = 0) which has again the oscillating feature, as it should.

At this point it should be quite clear that the damped Wigner function
(96) is a reasonable object to study. Now that we have also obtained a
qualitative picture of the emerging phase space structure, we are ready to
get back to our original calculation with the more physical kink-potential.

5.2.3 Wigner function for the kink-potential

As with the step function, we shall for simplicity only consider one of
the Wightman functions. To be more precise, we will be interested in the
object

W(k0, t) .
= iS>

Γh(k0, t)γ0 =

∞∫
−∞

dr0 eik0r0−Γ|r0| iS>
(

t +
r0

2
, t− r0

2

)
γ0

=

∞∫
−∞

dr0 eik0r0−Γ|r0|
[

ηh
(
t + r0

2

)
η∗h
(
t− r0

2

)
ηh
(
t + r0

2

)
ζ∗h
(
t− r0

2

)
ζh
(
t + r0

2

)
η∗h
(
t− r0

2

)
ζh
(
t + r0

2

)
ζ∗h
(
t− r0

2

)] ,

since it should establish the full phase space structure (note that for clarity
we named the time coordinate t, although it still refers to the average
coordinate). The computation of this Wightman function from the exact
mode functions is a non-trivial numerical problem. The results of this
computation for different parameter sets, performed using MATLAB, are
shown in Figures 6 - 16. We shall now analyze these figures in detail.

Figure 7a has the absolute value of the Wigner function W for one set
of parameters. For clarity we have also plotted the (k0, t)-projection of
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it in Figure 7b. Already in Figure 7a we see that the phase space struc-
ture behaves exactly as we anticipated it to. At early times there is one
Breit–Wigner-peak, whereas at late times there are three different peaks;
particles, antiparticles and coherence. The complete structure becomes
particularly clear when one looks at the Wigner function from a bird’s-
eye view, as is done in Figure 7b. The early-time particle-solution trans-
forms at the mass change into the three solutions predicted by cQPA. In
this case the parameters have been chosen so that the total energy of the
particle decreases, as can be seen in the figures. The energy function

ω(t) =
√∣∣~k∣∣2 + |m(t)|2

for these parameters is shown in Figure 6. It is clear that the particle-shell
in Figure 7b follows exactly this energy function.
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Figure 6: The energy function ω(t) for parameters
∣∣~k∣∣ = 0.4, m1R = 0.5, m2R = 2,

mI = −0.005 and τw = 5.

The essential parameters characterizing the properties of the possible
phase space structure are the magnitude of the mass of the particle |m|,
the time-width of the wall τw and the interaction strength Γ. How does al-
tering these parameters and their relative magnitudes change the possible
structure?

Figure 9 has the absolute value of the Wigner function W with the same
parameters as Figure 7, except that now the time-width of the wall τw is
substantially larger. This corresponds to a smoother mass change. The
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(a) The absolute value of W.

(b) The absolute value of W projected onto the (k0, t)-plane.

Figure 7: The Wigner function W for parameters h = 1,
∣∣~k∣∣ = 0.4, m1R = 0.5,

m2R = 2, mI = −0.005, τw = 5 and Γ = 2.
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change in the phase space structure is clear; the shells are sharper and the
coherence- and antiparticle-solutions have diminished. The antiparticle-
solution has basically vanished, and the coherence shell is very low too.
This is sensible; a smooth mass change does not generate much structure
in the phase space. The particle solution on the other hand is clear as
opposed to the smeared shell of Figure 7. The interaction strength Γ and
mass |m| are now much larger compared to the characteristic time scale
of the mass wall, given by τ−1

w . The particle solution holds together, since
the smooth mass wall does not have time to smear it out. The energy
function ω(t) in this case is shown in Figure 8, and comparison with the
energy function of Figure 6 confirms the less abrupt nature of the mass
change.
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Figure 8: The energy function ω(t) for parameters
∣∣~k∣∣ = 0.4, m1R = 0.5, m2R = 2,

mI = −0.005 and τw = 20.

An interesting question is: what will happen if the interaction strength
Γ is taken to be smaller? According to the analysis performed with the
step-function correlator in the previous section, one would expect that in
such a weakly interacting system the long-range correlations mixing the
early- and late-time solutions should play a role near the mass wall.

In Figure 10 we have again plotted the absolute value of the Wigner func-
tion W with the parameters of Figure 7, except that we have reduced
the interaction strength by a factor of 20. A first note is that the shells
are much more peaked. This is once more an expected feature, since in
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(a) The absolute value of W.

(b) The absolute value of W projected onto the (k0, t)-plane.

Figure 9: The absolute value of the Wigner function W for parameters h = 1,∣∣~k∣∣ = 0.4, m1R = 0.5, m2R = 2, mI = −0.005, τw = 20 and Γ = 2.
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the previous section we noted that in the limit Γ → 0 the Breit–Wigner-
distributions approach delta functions.

A more interesting phenomenon is the rise of new structure at the mass
change. In the early- and late-time limits the phase space structure is the
one predicted by cQPA and seen in Figure 7. In the vicinity of t = 0
there are however spectral structures that do not correspond to standard
particles nor antiparticles. Instead, they are exactly the mixture solutions
we encountered with the step-function correlator. In the (k0, t)-plane they
are positioned at

k0 =
ω− ±ω+

2
,

meaning that they constitute of contributions from the particle- and anti-
particle-solutions from separate sides of the wall. For large values of
|t| they however die out, which is again consistent with our previous
analysis. When one goes enough far from the mass wall, the large scale
correlations are suppressed by the damping factor even in this weakly
interacting system. Near the wall they can however give a dominant
contribution to the phase space structure. This can be seen in the figures,
where the mixture shells rise, albeit for a short time, above the other
structure. They peak at t = 0, and then shrink again while the particle-,
antiparticle- and coherence-solutions return to be the governing structure.

At this point it is worth mentioning that Figures 7, 9 and 10 fulfil the
ultimate goal of this thesis. They provide a clear picture of the phase
space structure of the system under consideration, and are in excellent
agreement with cQPA. Moreover, the novel structure emerging in Figure
10 is well understood in the light of the step-function correlator analysis,
completing the full qualitative picture of the situation.

It is still worthwhile to produce a few more pictures, just to see how
altering the parameters affects the solutions. In Figure 11 we have a pa-
rameter set with a relatively large

∣∣~k∣∣. Since in this situation the energy
is quite larger compared to the mass change, there should not be much
new structure emerging in the phase space. This is seen manifestly in
the figure, where we have essentially nothing but the particle solution.
The relatively small change in the energy is also especially clear in the
projected figure. Figure 12 contains the actual energy function.

In Figure 14 we have chosen the mass parameters so that the mass (en-
ergy) is increasing. We have also used relatively small values for the
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(a) The absolute value of W.

(b) The absolute value of W projected onto the (k0, t)-plane.

Figure 10: The absolute value of the Wigner function W for parameters h = 1,∣∣~k∣∣ = 0.4, m1R = 0.5, m2R = 2, mI = −0.005, τw = 5 and Γ = 0.1.
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(a) The absolute value of W.

(b) The absolute value of W projected onto the (k0, t)-plane.

Figure 11: The absolute value of the Wigner function W for parameters h = −1,∣∣~k∣∣ = 4, m1R = 1.6, m2R = −1, mI = 0.1, τw = 6 and Γ = 2.
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Figure 12: The energy function ω(t) for parameters
∣∣~k∣∣ = 4, m1R = 1.6, m2R =

−1, mI = 0.1 and τw = 6.

parameters, especially for the interaction strength. This leads again to
the emergence of mixture shells near the mass wall, as can be seen in the
figure. The energy profile, shown in Figure 13, is also again seen to fit
nicely into the particle solution in the phase space.
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Figure 13: The energy function ω(t) for parameters
∣∣~k∣∣ = 0.05, m1R = 0.12,

m2R = −0.107, mI = 0.01 and τw = 6.
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(a) The absolute value of W.

(b) The absolute value of W projected onto the (k0, t)-plane.

Figure 14: The absolute value of the Wigner function W for parameters h = −1,∣∣~k∣∣ = 0.05, m1R = 0.12, m2R = −0.107, mI = 0.01, τw = 6 and Γ = 0.05.
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In Figure 16 we have a somewhat more physical set of parameters, in
the sense that the wall is rather smooth and the interaction strength is
larger than the time scale of the wall. Once more we see exactly what we
are expecting to. There is a clear particle-solution, a definite coherence-
solution and a faint yet visible antiparticle-solution. The mixture shells
are absent, because the rather large interaction strength cuts correlations
coming from large time distances from different sides of the mass wall.
The energy profile for these parameters is shown in Figure 15.

It is worthwhile to note, that the amount of structure corresponding to an-
tiparticles depends strongly on the mass parameters and the time-width
of the wall. A general feature is that a smoother mass change generates
less antiparticle-solution. This is natural, since making the wall thinner
enhances the quantum nature of the process and produces possibly more
antiparticle-solution.
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Figure 15: The energy function ω(t) for parameters
∣∣~k∣∣ = 0.28, m1R = 0.4,

m2R = 1.8, mI = −0.005 and τw = 20.

69



(a) The absolute value of W.

(b) The absolute value of W projected onto the (k0, t)-plane.

Figure 16: The absolute value of the Wigner function W for parameters h = 1,∣∣~k∣∣ = 0.28, m1R = 0.4, m2R = 1.8, mI = −0.005, τw = 20 and Γ = 2.
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6 Conclusions

In this thesis we have studied the phase space structure of the Wight-
man function of the Schwinger–Keldysh formalism in a non-trivial back-
ground, and connected the results to the coherent quasiparticle approxi-
mation (cQPA). We started out by introducing electroweak baryogenesis
(EWBG), a model trying to explain the particle-antiparticle asymmetry
of the universe. This served as a motivation to study non-equilibrium
quantum phenomena. We then went on to study the basics of the cQPA-
formalism, most importantly revealing the novel coherence structure pre-
dicted by it in the phase space of non-translation invariant systems.

After reviewing cQPA we left it aside, and picked up a problem where the
coherence structure should be visible. This problem was a Dirac equation
with a time-dependent complex-valued mass profile, motivated by mass-
altering CP-violating phase transitions. We proceeded to solve this equa-
tion with analytic means, arriving finally at a set of exact mode function
solutions for the problem.

The obtained exact solutions were used to construct the Wigner-trans-
formed Wightman function (i.e. the Wigner function) of the problem.
This function was used to study the phase space structure of the prob-
lem, both in its full glory using numerical techniques and analytically in
a certain limit, namely that of a mass changing in time as a step func-
tion. Already the analytic study of the Wigner function revealed that
the Wightman function exhibits the full cQPA-structure; the phase space
consists of solutions related to particles, antiparticles and quantum co-
herence between them. This step function analysis also suggested that
for weakly interacting systems the phase space structure near the mass
change may be more complicated than expected. New coherence solu-
tions corresponding to correlations coming from different sides of the
mass wall were found to exist. In physical situations these large-scale
correlations are of course suppressed by interactions, and this led us to
redefine the Wigner function so that it takes into account the mean free
path of particles when computing the correlations. It was also noted that
these correlations coming from separate sides of the mass wall should be
(as they are) absent in the cQPA-formalism, since cQPA is essentially a
local approximation.

The numerical analysis was made in light of the information obtained
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with the step function correlator. Several plots of the redefined Wigner
function with the full exact solutions were produced, and the phase space
structure was analyzed for different sets of parameters. The results were
in perfect agreement with cQPA, showing a clear coherence structure in
the phase space in addition to the ordinary particle- and antiparticle-
solutions. The mixed coherence shells, coming from large-scale correla-
tions, were also found to emerge when the interaction strength of the
system was taken to be rather weak. These mixture shells exist only in
vicinity of the mass wall, and farther away from the wall only the cQPA-
structure remains.

The significance of these results lies in the fact that we arrived at them
without using any cQPA-techniques. The Wightman functions were con-
structed out of exact solutions, ruling out all possible ambiguities which
could be present in approximative studies of the phase space. This un-
questionably affirms that the phase space of quantum systems that are
not translation invariant has in general structure besides the traditional
particle- and antiparticle-shells, namely that corresponding to quantum
coherence. These coherence solutions are entirely absent in standard ap-
proaches to non-equilibrium quantum field theory. The coherent quasi-
particle approximation provides a comprehensive tool capable of reveal-
ing them and studying them with rigorous quantum transport equations.

The main goal of this thesis was to verify the cQPA-structure with the
help of the exact solutions. This task was successfully completed, and
in addition we found out about the existence of the novel mixing shells,
whose nature was also studied and understood. The investigations per-
formed in this thesis leave also room for further studies. An immediate
follow-up would be to generalize the analysis from a time-dependent
mass profile to a mass depending on one spatial coordinate. This would
essentially be a quantum reflection problem, and it would have direct ap-
plications in EWBG-scenarios. It would also be interesting to see what
kind of a role the mixing large-scale coherences would play in the space-
dependent case. Another potential future application would be to seek
for possible ways to improve the cQPA-formalism with the help of the
exact mode functions.
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Appendix A Conventions

Throughout the thesis we will be using natural units, in which

c = h̄ = 1.

A space-time four-vector will in general be denoted as

x = (t,~x) = (x0,~x)

and the four-momentum similarly

k = (k0,~k).

Deviations from these notation should be clear from the context. For ex-
ample for the average coordinate appearing in the Wigner transformation
we write X = (T, ~X). The space-time metric is chosen to be the one often
used in particle physics:

gµν = gµν = diag(1,−1,−1,−1).

The Dirac gamma matrices will be represented in the chiral (Weyl) basis,
in which

γ0 =

[
0 1

1 0

]
= σ1 ⊗ 1, γi =

[
0 σi

−iσi 0

]
= iσ2 ⊗ σi

where i runs from 1 to 3 and σi are the Pauli sigma matrices. The fifth
gamma matrix is defined as

γ5 .
= iγ0γ1γ2γ3.
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Appendix B Constant mass solutions

In this appendix we consider solutions for the Dirac equation (29) in the
limit of constant mass. We also use these solutions to derive another
expression for the normalization of the mode functions.

For simplicity we will only consider the particle spinor µh. This will be
sufficient to determine the normalization, since we choose our initial state
to consist only of a particle solution, whereas the late-time solution will
be a mixture of particle- and antiparticle-solutions. The equations for the
mode functions appearing in µh are{

i∂tηh + h
∣∣~k∣∣ηh = mζh (97a)

i∂tζh − h
∣∣~k∣∣ζh = m∗ηh. (97b)

In the limit of a constant mass our solutions can be written in terms of
plane waves, µh(t,~k) ∼ uh(k)e−ik·x, and therefore equations (97) reduce
to {

k0ηh + h
∣∣~k∣∣ηh = mζh (98a)

k0ζh − h
∣∣~k∣∣ζh = m∗ηh. (98b)

These are just the basic component equations of the Dirac equation in
the chiral basis with the exception of a complex mass. Solving the above
equations with positive energy k0 = E > 0 gives us a spinor solution

µh(t,~k) =

[
ηh(t,~k)
ζh(t,~k)

]
⊗ ξh(~k) =

N

 √
E− h

∣∣~k∣∣√
E + h

∣∣~k∣∣e−iθ

⊗ ξh(~k)

 e−ik·x,

(99)

where N is a normalization constant and θ is the phase of the mass.
We will choose the constant mass to correspond to that of the early-time
particle-solution deep in the unbroken phase in the case with varying
mass. This accounts to (cf. equation (50))

θ = arctan
(

m1I

m1R + m2R

)
.

To fulfil the normalization condition (32) we set

N =
1√
2E

.
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Note that this also normalizes accordingly the full spinor ψ to unity, since
we have not included the usual factor of (2E)−1/2 in the expansion (30).

Let us now use solution (99) to normalize the solutions of the problem
with a time-dependent mass. We start with the mode functions from
equation (59a)

φ±h = D±hzα(1− z)β × 2F1(a±, b±, c; z),

which at early times reduce to the positive frequency solution:

φ±h
t→−∞−−−→ D±h e−itω− .

Then we require that at early times the mode function is normalized to
the constant mass solution. Together with equations (37a) and (99) this
gives us the relation

D±h =
1
2

√1−
h
∣∣~k∣∣

ω−
±

√
1 +

h
∣∣~k∣∣

ω−
e−iθ

 , (100)

where we have identified the energy E of the incoming particle as the
early-time limit ω− of the varying energy. Even though at first sight
these normalization constants look rather different from the ones pre-
sented in equations (77) and (78), they should nevertheless correspond to
each other. One can verify this quite easily by first writing

e−iθ =

√
m1R + m2R − im1I

m1R + m2R + im1I

with the use of the logarithmic form of the arctan-function, and then
computing the ratios C+/C− and D+/D−. These ratios are found to
be inverses of each other, which guarantees that the normalizations are
essentially the same indeed.
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