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SUMMARY 

The main purpose of this paper is to illustrate the effect of ferromagnetic materials 
on field enhancement and field distribution in a useful magnet aperture. Also treated 
are the effects of perturbations due to manufacturing constraints. 

A selected number of magnet types was chosen, such as axially-symmetric mag- 
nets, and higher order coils. The field distribution is calculated in the presence or ab- 
sence of iron return yokes, The field values are obtained by using computer codes for 
*variable permeability problems based on vector potential calculations. Computational 
results are compared to simplified first-order calculation methods utilizing uniform 
permeability distribution or infinite permeability in iron. 

To show the extent of perturbations due to coil manufacturing upon field or gradient 
homogeneity in beam transport magnets, a calculating method based on complex vari- 
ables is used. Field or gradient distribution in the coil aperture, due to ideal current 
density distribution, is compared to flux densities or field gradients when the ideal coil 
configuration has been modified to a more practical shape. Current filaments (multi- 

- poles) are used to correct for field inhomogeneities. 

Computer calculations have their limitations due to convergence problems, size 
limitation, digitalization, and boundary effects. 
the order of 10-5 

Specifically,, if field homogeneity in 
over a certain experimental area is required, ,computational errors 

overshadow actual results due to the presence of iron with variable iron permeability 
or partial saturation, Based on a practical 8th-order coil, a computational method is 
illustrated, which overcomes this deficiency. 

I. INTRODUCTION 

‘3 . Ferromagnetic flux return paths have been used in magnets since 1911. New types 
of laboratory magnets were introduced by Du Bois. Weiss, Dreyfuss, Fabry, and 
Bitter incorporated improvements in iron shaping, utilizing uniform and optimum mag- 
netization in iron poles and yokes. 1 Bitter used iron return yokes in magnets with 
10-T central fields. Most of these magnets had a high-field volume of only a few cm3. 

*Work supported by the U. S. Atomic Energy Commission. 
**Guest at Stanford Linear Accelerator Center in 1969. 
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Large magnets with a working space of several m 3 and magnetic fields in the order of 
5 2 T have been built by several laboratories. In magnets with higher fields, due to 
iron saturation, the coil must generate the major part ( 2 90%) of the magnetic field. 
In these magnets (2 3 T), field-shaping must also be performed mainly by correcting 
coils. Thus iron yokes were abandoned, e. g. , in superconducting or cryogenic mag- 
nets, for a short time for magnets generating fields of 5 T or higher. As shielding is 
mandatory for most experiments to protect instruments and equipment, iron as a flux 
return path became attractive again. Iron enhances, at the same coil excitation, the 
central field, yields more balanced force conditions, and may be used as part of the 
coil support structure. 

Methods to calculate the effect of iron on the magnitude and distribution of the field 
within the magnet aperture had to be extended to obtain accurate data. From early as- 
sumptions of uniform iron magnetization or infinite iron permeability, a more sophisti- 
cated computational method was developed to solve “quasi-Poisson” equations with 
variable iron permeability by means of difference e 
available are SYBYL,2 TRIM, 3 POISSON,4 MARE, 9 

uations. The computer codes now 
and NUTCRACKER,6 to name on1 

a few. Parallel to this development, complex variables were used extensively by s Beth 
and Halbach, 8 to calculate the magnetic fields of coils and iron-bound magnets. 

It is well understood that by utilizing iron as a flux return path, either the field in 
the useful magnet aperture is enhanced or the coil MMF can be accordingly reduced, if 
the same field amplitude is being sought. It is a general assumption, however, that due 
tb non-uniform magnetization of iron, the field homogeneity of a magnet is no longer 
guaranteed and thus, specifically in high-precision 6th- and 8th-order coils, the iron 
return yoke may cause more harm than good. Utilization of the iron flux path serves 
several important functions: 

1. 

2. 

3. 

4. 

5. 

Properly designed, it shields the fringing field around the magnet and makes 
it possible to locate counters, photomultipliers, and other test devices close 
to the magnet. 

It enhances the field in the center. As to how much (we will give some sim- 
plified calculating methods), this depends on the iron geometry, the amount of 
iron being placed around the coil, and the proximity of iron to the coil. 

It tends to reduce the forces between coils, due to reduction of the magnetic 
field energy (split coil arrangement). For cryogenic and superconducting mag- 
nets, the iron return yoke may be used to support dewars and vacuum vessels. 

The reduction in MMF is not trivial and in saturated iron, this reduction may 
exceed 10% of the total MMF. In non-superconducting magnets, the power re- 
duction may be considerable. In the case of superconducting magnets, the 
coils may be smaller and superconducting material may be saved. 

Magnet time constant is increased. When a superconducting coil quenches, 
the iron return path acts as a secondary transformer winding and prevents 
coil damage 0 

In high-field magnets, one important property of the iron is lost: the field-shaping 
property. As the relative permeability approaches unity, the iron surface is no longer 
equipotential. Field-shaping is now entirely due to the magnet coil configuration, and 
correcting coils, if required. However, methods of field-shaping by means of super- 
conducting screens and sheets become more attractive and are being attempted for 
large-aperture spark and wire chamber magnets. 

Although we are basically studying high-field magnets, where the field at the con- 
ductor is in the order of 5 T or more, we will show that the role of iron is not merely 
for shielding and thus of minor importance, but that it affects substantially the overall 
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field configuration within the useful aperture of the magnet. If iron is placed symmet- 
rically around the coil, the field homogeneity obtained by the coil alone is not only re- 
duced but may be improved. 

In this paper, we study various types of magnets, such as beam transport magnets 
with and without return yokes, iron-bound solenoids, dipole -type magnets for use in 
wire or spark chambers, and high-homogeneity magnets. Methods of computer calcu- 
lations are not given here. There is a vast amount of literature available for study. We 
give simplified calculation methods based on actual measurements and comparative 
computation, 

In high-field magnets; where field generation is dominated by the coils, any per- 
turbation effect is important. We study only a few: misplaced coil configurations, and 
shifted or askew coils. We also present simple methods of field correction. 

Coil end effects are more pronounced in high-field magnets and may adversely af- 
fect the beam dynamics. The end effects cannot be corrected with iron shaping, We 
summarize the result of the three-dimensional coil end effect calculation and present 
a method of field-correcting, using superconducting screens or superconducting shields. 

II. MAGNETIC FIELD EQUATIONS FOR 
TWO-DIMENSIONAL COILS AND IRON CORES 

Coils. The magnetic field in a two-dimensional space due to a conductor of arbitrary 
shape (Fig. 1) and overall current density h J is given byg: 

I 

with : 
C 

H* = 3 -WY 

Z = X+jY 

Z* = X-jY 

Equation (1) is valid for all points in space, both inside and outside the coil region. 

The field gradient is obtained from Eq. (1) by differentiation: 

G* =-$f?- = '2 .- jg 

0 0 0 
which yields : 

(1) 

j = (-q1/2 

G* =+$- 
f 

z* dZ 

C 
(z - zojr 

(2) 

We approximate the arbitrary coil shape by a polygon, consisting of n straight lines, 
each having the equation: 

X = aY +- b 
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where a and b are general complex constants of the form: 

a = xk+l - xk 

‘kt.1 - ‘k 

b= xk ’ ‘k+l -‘k+l l ‘k 

‘k+l -‘k 

b ‘k xk-xk+l = -y ( -= ) 
a xk+l -xk k 

and obtain for the field at Zo: 
N 

AJ H* =2n 

To obtain field multipole coefficients, we expand the field in a power series over a 
region excluding all currents: 

H*(Zo) = 2 Cn* Z;-l 

n=l 

with , 

c, =g 
,f 

z* dZ 
Zn ,I ,. 

(5) 

In particular: 

N ’ 
AJ 

Cl =2?r c 
L l bk Ln 

k=l ‘+’ 

. 

(6) 

If a -a, 
-. N 
AJ 

Cl =Zn c 
k=l 

Forn 2 3: 

N 
AJ 

cn=271. c (7) 
k=l 
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With the specific case of a -co, 
l-n l-n 

C hJ ‘k+l -‘k 
n=Z -‘k l-n 1 

k=l 

Field corrections. The magnetic field due to a current filament is given by 

H*zj.&* zJz 
0 

If N wires parallel to each other are placed on the circumference 
the total field is accordingly: 

N 00 

H*=j-&- c z’z = 

1 0 c 
c,zgn-l 

1 

of a circle (Fig. 2), 

N 
I 

=j,, c 
1 

1 z l--J- 
( 1 

I g+pg =j,, 

zO 1 1 z 

In Eq. (9): n = 1 corresponds to N = 2 (dipole configuration) 
n = 2 corresponds to N = 4 (quadrupole configuration) 

General: 2n = N for a multipole, 

and 
2n 

cn=j-& 
c 

f-1)” - 1 
on 

m=l 6 

as the complex constant. 

(9) 

To cancel any perturbation indicated by a field coefficient, one places a current 
filament I at a selected place. The current filament is located such that the vector Fn 
is perpendicular to the radius vector r. The sign of the current is given by the sign of 
the real part of Cn and the magnitude of the current by 

I = real (A g, (-1:-l) (11) 

Contribution of iron (simplified assumptions). Field distribution of a multipole air 
core magnet surrounded by iron is given by Blewett. 10 For coils having finite thickness 
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(Fig. 3) and the iron permeability being infinite, we express the two field components 
by: 

-azBn a.&+ ’ 
1 1 

n+2 n+2 n-l 
2 2n a2 ( -al 

)i 
*I: *sinnO 

(n+ 2)b, 
I 

(12) 

B 2p0 =-W. L(azwnmafDn 
Y r 1 

2-n 2 ,I . - Irr; 2 
- 
+- 

(II+ 
1 2n 
2)b 

(an+2-an-t2) 2 1 
1 

I 
n-l 

l r - cosnB 

for r s al, and 

l sinn8 

(13) 

2p0 By=Ir AJ* 
m-1 
-_-.- - 

S 

&T 1 1 
b2n 2 ( )( n+2 a2 

n+Zman+2) 
1 l cosn8 

1 
m+l 

3 

for r 2 al. 

In Eq. (12) and (13), the coil aperture and the iron shell are assumed to be circu- 
lar. In all multipoles considered, we assume constant average current density distri- 
bution over the coil cross-sectional area, but each coil section may follow the two- 
thirds rule expanding over a sector of n poles. n= 1 applies to a dipole, n= 2 to a 
quadrupole, etc. To determine the thickness of iron surrounding the coils, field cal- 
culations based on variable iron permeability indicate that for all values of B => 1 T, 
the flux density distribution in the yoke is according to: 

with BI being the field at the inner radius bI and B2 at the outer radius b2. The flux 
density is reduced considerably over the last outer part of the iron boundary where 
B 5 1 T, as seen from several field plots for circular iron shields given in Fig. 4. 

In polygonally-shaped multipoles, the field distribution over the iron cross section 
has a slight drop along the X and Y directions, We may assume in this case an average 
value of B for a first approximation to calculate iron contribution. This is also observed 
in axially symmetric magnets, which makes computation simpler. For all values of 
r => a2, which is the iron region, the two field components are written in the fcrm: 
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Similar equations are derived for multipole magnets with straight yoke portions, such 
.as in the case of a polygon. As an example, for a square quadrupole, we may write: 

. 
2 2 

r . sinn 0 (14) 

The above equations permit determination of the iron thickness. However, these 
calculations do not give more accurate results than about 8%. The assumption of an 
average relative permeability-and uniform magnetization is not justified in most high- 
field iron-bound magnets. 

Contribution of iron (exact two-dimensional calculationsl. In order to determine the 
field in a two-dimensional configuration, the equation 

+72x + vp x (VXX) + T= 0 (15) 

must be solved. In our particular case, J and A have only z components, and thus we 
may write: 

V* i VA (x,y) + J (x,y) = 0 

or explicitly in Cartesian coordinates: 

(17) 

. which is known as the “non-linear” Poisson equation. In cylindrical coordinates, 
Eq. (1’7) is written: 

$-~($+$)+~~+$zf+$rAz+~~r)-f(~A) +J(r,z)=O 

(18) 

In Eq. (17) and (18), the permeability 

depends only on the magnitude of the field. 

It is not the purpose of this paper to derive solutions of Eq. (17) or (18) by means 
of approximations through finite difference equations. The method of finite differences 
results through a process of discretization. Numerical approximations to the contin- 
uum problem are given at a finite set of points. These points (meshpoints) are sep- 
arated by a characteristic distance h, and the field components, in terms of potentials 
U, are expressed by: 

Bx = ‘E - ‘W ‘N - ‘S 
2h By= 2h (19) 



8 

with 

‘E=‘i+l,j ‘W=‘i-l,j ‘N=‘i,j+l us=u. . 
191-l 

u. =u. . 
193 

with Ui the potential at the point (Pi j) at which we are performing the calculation. The 
assumption of h being constant yields a truncation error of O(h2), which may be adequate 
for a variety of magnets, but is not useful for high-homogeneity, higher-order coils. 

lf Uo represents the average value of the continuous function u(x, y) over a region 
R, then expanding UE or VW, etc. , about Uo at the point of interest in a Taylor series 
yields : 

where we assumed hE = hW = . YZ =_h. 

The accuracy of the problem depends, of course, on the mesh size (the choice of 
h), which is a function of the storage capacity of the modern computer. The various 
presently available computational methods, their efficiency, accuracy, and speed of 
convergence, depend on a number of basic, but fundamental, assumptions, such as 
iteration methods, choice of boundaries (Neumann, Dirichlet), location of external 
k = 0 or A = constant boundaries to confine the problem, use of single or double pre- 
cision methods, etc. 

The earliest method for solving the variable permeability problem is given by 
Trutt, l1 where he solved difference equations by the method of over-relaxation (SOR). 

Erdelyi and Ahamed12 solve the equation for the vector potential. In addition to 
‘the SOR parameter, they introduced an accelerating method for convergence by com- 
put ing 

S. 
1 / 

JidA 

ci = 

Hd4 
(21) 

0.96 6 C S 1.04 

around each conductor. 

Perin13 developed, in program MARE, a modified scalar potential $*, satisfying 
the condition: 

V$*=H-M (22) 

The programs use square mesh. 

The most active group in solving nonlinear magnetostatic probletis is the LRL 
group, which has developed TRIM and, with modifications, POISSON. Winslow14 
derives difference equations by the use of Gauss’s theorem. His equations are of the 
form: 

6 

c wn (‘n -Uo) +J=O (23) 
n=l 



where Wn corresponds to the length 
programs. The truncation error in 
the order 
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of the sides of the triangular meshes used in these 
this program with regular triangular meshes is in 

- $ h4tv4u)o 

whereas for a rectangular mesh, the leading term for approximation is of the order 

- !$v4u3 0 

Another program (NU’fCRACKER), developed at SLAC, 6 is similar to the pro- 
grams developed by other groups. The results of the SLAC program are used for cal- 
culating some of the high-field magnets described below. 

In large two-dimensional or axially-symmetric systems, where the number of 
meshpoints may exceed 3 X 104, the basic questions are the time of convergence, the 
time necessary for one iteration, and the convergence limit for a required accuracy! 
Several methods of SOR, as well as methods of choosing and calculating the SOR pa- 
rameter w, are given in literature. The convergence can be accelerated markedly 
when w is varied with the number of iterations. As long as w s WF) the problem is 
stable, where 

WF 
= 2 - T (p + + $ 1’2 

[, 3 P q 
(24) 

is the Franckel extrapolation parameter, and p and q are the number of meshpoints in 
the x and y or r and z directions, respectively. ? 

The general approach to most computer codes is the choice of an arbitrary p value 
and an SOR parameter o 2 WF. The number of iterations can be limited by the selec- 
tion of a convergence value generally in the order of 10-G. If double precision is used, 
which results in reducing the number of meshpoints and thus the dimensional accuracy 
of the problem, the convergence value may reach 10-T. Results obtained using one of 
the computational methods and compared to measurements are in agreement within 
0.1%. The results may not be attractive for high-precision magnets. Some newer 
computer codes use calculation methods where variable mesh sizes could be used. l5 
This method is of special attraction if precise field values in the useful magnet aper- 
ture are required. Boundary matching may prove to be a problem. Three-dimensional 
computation methods are reported by Caeymaex l6 and Halacsy . l7 

III. FERROMAGNETIC PROPERTIES OF IRON 

In the course of solving magnetostatic problems of iron-bound and iron-core mag- 
nets, the permeability of iron must be recalculated numerous times during the iterative 
process. Any large-sized magnet of 104 nodes may require between 250 to 500 itera- 
tions. One must calculate the permeability 2.5 x 106 - 5 X lo6 times! The usual 
method is to find the values of permeability from tabulated experimental data and use 
extrapolation methods to obtain intermittent data. 

Magnetization properties as a function of impurities are reported by Gerold18 and 
Brechna. 13 Cold work (cold rolling), grain orientation, and annealing procedures have 
profound effects upon magnetization properties and thus any computer code should use, 
as a subroutine, experimental data for the particular iron used for the magnet being 
considered. 
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Modern steels used in d. c. magnets have an impurity content (N2 + S + P +Ap + MO) of 
less than O.l%, (Cr+Cu+Mn+Ni+Si) of less than 0.7%. Carbon, which is the most da - 
gerous impurity, is limited to 0.1%. However, steels recently developed in Japan, 2% 
have a carbon content of less than 0.005%! Pure iron is costly and too soft to be ma- 
chined and handled for magnet cores. Si has been alloyed to the steel to about O.l%, 
which improves mechanical strength without reducing saturation flux density appreci- 
ably. A search in literature shows that no data for H greater than 105 A/m are avail- 
able for any steels. As iron is being used for high-field magnets (pulsed or supercon- 
ducting), the field computation necessitates the extension of the magnetization curve to 
values of H > lo8 A/m. The experimental law observed for specific magnetization at 
high fields is given by: 

m =ms(l-a/H-b/H21 +!cOH 

with ms the saturation magnetization and KO the it&tial susceptibility of iron. The value 
of MS from measurements of ms by Danan et al. is: 

. 
MS = 2.1936 T 

The induction B can be determined from MS as shown in Fig. 5. The magnetization 
curve is subdivided into four regions: 

. Region I: 0 5 H(A/m) 5 1.6 x lo2 0 5 M(T) 5 9.148 x 10 -1 

Region II: 1.989 x lo2 5 H (A/m) 5 1.592 X lo4 1.1 6 M(T) 5 1.910 

Region III: 2 x lo4 $ H (A/m) 2 1.000 X lo8 - 1.95 6 M(T) 5 2.1936 

Region IV: lo8 5 H (A/m) 6 1o1O M = 2.1936T 

Each region may now be fitted by second-order splines involving low-order polynomials. 
The position of joints was optimized by the program developed by Smith22 using an iter- 
ative graphic method. 
the order of 10-2 

The errors due to curve fitting to the experimental data are in 
or less, which is adequate if one realizes that different iron speci- 

mens vary in their composition to produce uncertainty at least in the same order of 
magnitude. 

IV. AXIALLY SYMMETRIC SYSTEMS 

We consider two distinct aspects of iron shielding: 

(a) The economical aspect 

(b) The field enhancement in the aperture and possible field 
I redistribution due to non-uniform iron magnetization 

(a) To study the impact of an iron return yoke upon the magnet cost, one has several 
solutions from which to choose: Comparison of small-bore-diameter, high-field 
magnets to low-field, large-bore magnets, based on effective length comparison. 
We also may compare magnets of equal size and equal fields, but if non-supercon- 
ducting magnets are compared to superconducting magnets, it can be shown that 
above a central field of 3 T, the power consumption in conventional magnets would 
be exorbitant. Thus we deviate from the goal of studying 5-T or higher field mag- 
nets, and compare magnets having a central field of 2.6 T. This also enables us 
to compare data with magnets already built. 
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We consider a split-coil arrangement with an inner useful bore diameter of 1.4 m 
and a central field of 2.6 T. The series of magnets given in Tables I and II are 
optimized. The magnets compared are a coil with copper conductor, aluminum 
conductor, liquid-hydrogen-cooled magnet, and a superconducting magnet, with and 
without iron return yokes. The prices calculated are based on current values. In 
the tables, PI = (2b + g)/al is half the axial length of the coil, and /32 = g/al the 
axial coil separation. 

The two tables (I and II) show that in the field range of s 3 T, room temperature 
and superconducting magnets are comparable pricewise. The magnets with iron 
return yokes are less expensive compared to coils without iron return yokes. Cry- 
ogenic magnets, thanks to the high resistivity of strained copper and aluminum con- 
ductor at liquid hydrogen temperature (which is their optimum operational temper- 
ature), have considerable refrigeration requirements and thus become unattractive 
for continuous -duty operation. For intermittent use, they may be competitive. 

(b) With regard to field enhancement, Tables I and II illustrate the field contribution 
due to the iron return yoke. The magnet configuration is considered to be open- 
structured, as seen in Fig. 6. In room-temperature magnets, the iron contribution 
to the field is about 27%; in superconducting magnets, only 17%. 

Field patterns in high-field split-coil magnets are illustrated in Fig. 7. The iron 
yoke is shown without a window for beam entry. Using the iron yoke alone as a flux 
return passage, the central field was enhanced approximately 16.5%. The fringing 
field at Points B and C are 0.084 T and 0.046 T, respectively, which affects ad- 
versely only instrumentation around the magnet. Additional iron shields increased 
the central field at A from 5.96 T to 7.1 T , which is a gain of - 19%! The fringing 
field is reduced to small values. 
A J = 2.5 X lo7 A/in2.) 

(The overall magnet current density in the coil 

In Fig. 8, the field homogeneity is shown for the above magnet. The homogeneity 
improvement is obvious in the magnet configuration with iron return yoke and addi- 
tional shields. It may be pointed out that the iron yoke is assumed to be axially 
symmetric without any windows, perturbations due to bolts, etc. However, meas- 
urements with this magnet used with the SLAC bubble chamber, having a central 
field of 2.6 T, indicate that the field inhomogeneity over X = f 0.25 m and R= f 0,5 m 
was better than f 1.5%. 
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Table I 

Technical data and cost comparison of a water-cooled split-coil 

arrangement with and without iron return yokes 

Copper Copper Aluminum Aluminum 
coil, coil, coil, coil, 
no iron with iron no iron with iron 

Central field (T) 

al (m) 
a 

81 

B2 
W (A/m2) 

p pw 

w,,fl 0%) 

WFe (kg)(‘) 

&oil (T) 

BFe (T) 

Cost in US 
dollars of: 

Coil 

Iron 

Power supply 

. Safety, 
Instrumentation 

support 

Design, 
Engineering, 
Installation 

Miscellaneous 

2.6 

0.7 

2.2 . 
1.471 

0.271 

5.68~10~ 

7.2 

57.8 x103 

2.6 

2.6 

0,7 

1.95 
1.171 

0.271 

5.3 x106 

4.8 

32 x103 

135 x lo3 

1.9 

0.7 

2.6 

0.7 

3.2 
1.471 

0.271 

2.9 x106 

10.3 

41.6 x103 

2.6 

2.6 

0.7 

2.5 
1.371 

0.271 

3.06~10~ 

6' 

33.6 x103 

199 x103 

1.88 

0.72 

2.11x105 

1.49x1o5(4) 

2.4 x105 

1.87 x 105(3) 

3.6 x105 

0.5 x105 

0.3 x105 

4.84~10~ 

0.5 x105 

0.3 x105 

1.51x105 

2.19x105 

3.0 x105 

0.5 x105 

0.3 x105 

0.5 x105 

o.35x105 

0.7 x105 0.7 x105 0.7 x105 0.7 x105 

0.6 x105 0.5 x105 0.6 HO5 0.6 x105 

TOTAL (US dollars) 9.52 x lo5 8 x105 8.81X105 8.85~ lo5 

(1) The iron thickness is 0.5 m. 

(2) The present price of a copper coil, insulated and wound, including coil from 
fixtures, etc. , is approximately $6.OO/kg . The price of extruded copper 
conductor is $2.20/kg. 

(3) The present price of an aluminum coil, wound, is $4.5O/kg. The price of 
extruded aluminum conductor is $1.65/kg. 

(4) The price of low-carbon steel, machined at matching surfaces, is estimated 
at $l.lO/kg. 
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Table II 

Technical data and cost comparison 

of a cryogenic and superconducting split-coil arrangement 

with iron return yokes 

AlUmi.nUm 
coil, 
r = 400(l) 

Copper Superconducting Superconducting 
coil, coil with constant coil with current 
r = 176(l) overall current optimization 

density 

Central field (T) 

a1 (m) -. 

o! 

2.6 

0.75 

81 
82 
J.J (A/m2) 

2.6 

0.75 

1.8 1.2 

1.293 0.663 

0.293 0.293 

5.9x106 4.2 x107 

18 

15.4x103 2 x103 21 x lo3 

190 x103 110 x103 110 x103 

2.1 2.15 2.15 

0.5 0.45 0.45 

2.6 

0.75 
2 

1.293 

0.293 

4.8~10~ 

‘22 

70 x103 

210 x103 

2.1 

0.5 

2.6 

0.75 

1.2 

0.68 

0.293 

p orw 

wcoil (kg) 
WFe lkg) 

&oil (T)_ 

BFe (l-1 

Cost in US 
dollars of: 

Coil 

Iron 

Cryostat 

Power supply, 
Instrumentat ion 

Refrigerator 

Coil support 

Vacuum system 

Design, 
Engineering, 
Installation 

3.6 x 105(2) 2.8 x105 2.3 x105 

2. 1x105 1.15 x lo5 1.15 x lo5 

o.3x105 0.25x105 0.25 x lo5 

-0.2 x105 0.2 x105 

6.5x105 1.3 x105 1.3 x105 

o.5x105 0.4 x105 0.4 x105 

o.5x105 0.5 x105 0.5 x105 

1.8 x105 

1 x105 

7 x105 

o.4x105 

0.5 x105 

1.4x105 

1 x105 

1.4x lo5 1.8 x105 

1 x105 1 x105 Miscellaneous 

TOTAL (US dollars) 15.9 x 105 17.5x105 9.4 x105 8.9 x105 

(1) r is expressed in terms of ~360/~210~. Magnetoresistance, mechanical strain, 
thermal contraction forces, influence of thermal and magnetic cycling are taken 
into account. 

(2) Price of the pure aluminum strip is estimated at $25/kg. 

(3) Cost of power supply is (u $3000 - $5000 an is included inthe Miscellaneous figure. d 
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V. BEAM TRANSPORT MAGNETS 

To compare field distribution of beam transport magnets with and without iron re- 
turn yokes, we used the field equations given in Section II, as well as results of the 
SLAC Computer Code NUTCRACKER. It may be recalled that the SLAC code utilizes 
only square mesh configuration: Although a program is written which simulates the 
coil and core contours fairly accurately to any desired shape, results in the border 
area close to the inner coil radius are not accurate. 

The quadrupole magnets studied are shown in Fig. 9 (a - h). The coils are as- 
sumed to be symmetrical and obey the 2/3 rule. 
1.7 x lo8 A/m2 and constant. 

The current density in all coils is 
The coil inner diameter is also kept constant at 

2 al = 0.2 m. The gradient distribution over X and Y is illustrated in Fig. 9. 

For shell-type quadrupoles with cylindrical iron yokes, the maximum field gra- 
dient of 

gives good fourth-order results compared to the results obtained from variable iron 
permeability calculation. If iron is in the proximity of the coil (bl=a2), the iron in- 
fluence improves field homogeneity. However, in superconducting magnets, it is not 
desirable to cool the iron return yoke to cryogenic temperature and thus the iron inner 
diameter is, in general, much larger than the coil outer diameter (bI > al) to accom- 
modate dewars and vacuum tanks. For Panofsb-type quadrupoles, the equation 

2p0A J 
Gmmax = r 

tan-l 1 -t2 
2t (27) 

yields results with y 5% of data obtained from variable p computer outputs. In this 
equation, t =1/a, the ratio of the coil height to the aperture width, and (Y =a2/ale The 
iron dimension is chosen such that ample space is provided for dewars, vacuum tanks, 
or other auxiliary parts required for cryogenic and superconducting magnets. The 
field in quadrupoles with iron in proximity of the coil had a value of H 7 T at r = bl. 
The iron outer dimensions are determined from the field distribution within the iron. 
If the field in the iron at b2 is approximately 0.6 T, the fringing field in air around the 
iron will be less than 0.1 T . 

The field distribution in iron 
this particular quadrupole, lines of 
in. Fig. 11. 

is illustrated in Fig. 10. For 
the coil aperture are given 

The next set of data is given for quadrupoles composed of two intersecting ellipses, 
with 2b as the major and a as the minor diameter. The field gradient 

dBY G(O) = ax = pOAJ a-b 
a+b (28) I 

is for the particular case studied in Fig. 12 and equal to G = 40 T/m with the maximum 
field at the conductor By = 6 T. The current density in the coil is h J = lo* A/m2, 
witha=-0.15mandb=0.29m. 

For calculation purposes, the coil contour is approximated by 12 straight lines 
such that Eq. (4) is applicable. The number of straight lines was selected such that 
‘the calculation error everywhere in the aperture is smaller than 10W3. To illustrate 
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the effect of perturbations, we assume that only one coil segment (out of 4) is shifted 
in the Y direction by 1O-3 m. The effect of this perturbation is shown in Fig. 13. 
Compared to the ideal case, the region of 0.1% homogeneity is reduced in the first 
quadrant e 

If, again, one coil section is moved by 10-3 
according to Fir14 is obtained. 

m in the X direction, the field pattern 
These perturbations introduced in our coils are 

small. In practice,- winding and assembling of coils may result in much larger coil 
asymmetries which affect the region of AG/GOO 5 10-3 quite drastically. In Fig. 15, 
we illustrate the practical case that at the int&rsection of the two ellipses, the conduc- 
tor has been removed. Also a gap of 2 x 10-3 m is assumed between the coils and di- 
rectly adjacent to the X and Y axes. The G distribution can be compared to the ideal 
case given in Fig. 10. To correct for the perturbations shown in Fig. IS, we use a 
12-pole coil with conductors parallel to the 2 axis. The current passing through each 
conductor is 2.6 X lo3 A (0.31% of the total coil MMF) if a 12-pole configuration is 
chosen, or 3.6 X 103 A (0. ‘72% of the total coil MMF) if a 20-pole configuration is 
preferred. 

To study dipole coils and the effect of perturbations, we have selected the well- 
known case of intersecting circles. If c denotes the distance between the centers of 
the two intersecting circles of radius a, the field inside the useful aperture is given by 

pO . 
By=2 l c*AJ 

(29)- - ! 
Bx = 0 

. 1 
. 

For a current density AJ = 108 A/m2, a = 0.198 m, c = 0.096 m, we have ti cen- 
tral field of BO = 6 T. The aperture diameter d = 0.15 m. In Fig. 17, the field con - 
tours for f 0.1% and f 0.5% homogeneity are illustrated for the ideal case. 

To illustrate the effect of ferromagnetic return yokes, we have chosen iron con- 
figurations shown in Fig. 18 (a - e). The ideal coil configuration is approximated by 
a step function, with a1 = 0.15 m inner radius. 
alone having a current density of h J = 108 A/m2 

The central field generated by a coil 
is BOO = 6.14 T. With the iron shield, 

a field of BO 0 = 5.74 T was produced at a current den’sity of A J = 7 X 107 A/m2. The 
average iron) permeability is 113. Increasing the iron such that a better coupling be- 
tween coil and return yoke is obtained, the field is increased to BOO = 6.05 T at the 
overall current density of X J = 7 X 107 A/m2. Finally, by increaging the iron cross 
section even more, as seen in Fig. 18e, at A J = 7 x 107 A/m2 a centr 1 field of 6.57 T 
with an average permeability of 140 was obtained. The B = ($ -F B.$)‘fi distribution 
over the dipole coil and the field pattern in the iron return yokes is given in Fig. 19. 

To illustrate the effect of perturbation, we chose the ideal coil configuration (inter- 
secting circles) without iron return yoke and approximated the coil with a series of 
straight lines forming a polygon with 18 straight sections per coil quadrant. At 
hJ = lo8 A/m2, B(O,O) = 6 T. If the coil section A1 is moved parallel to the Y axis by 
2 X 10-3 m, forming a gap between the coil and the X axis, its field distribution is given 
in Fig. 20. If a gap of 2 x 10-3 m is formed between the A1 section of coil and the Y 
axis, the field distribution is according to Fig. 21. 

-If in all four coil sections a segment with a height of 3.2 X 10m3 m is cut out and 
in addition, a gap of 2 x 10-3 m is left between the coil and the X axis, a field distri- 
bution according to Fig. 22 is obtained. To correct the effect of perturbations, a num- 
ber of filamentary conductors parallel to the z axis were placed at the coil in the 
diameter. 

To give an order of magnitude of correction by choosing a sextupole configuration, 
the current of 4.1 x lo3 A per current line (0.33% of the total coil MMF) is necessary 



to produce the correction given in Fig. 23. If a lo-pole correction is selected, a cur- 
rent of 4.23 X lo3 A per current line is required, which corresponds to 0.57% of the 
total coil MMF. 

VI. HIGH-HOMOGENEITY MAGNETS 

It was shown that iron improves two-dimensional field homogeneity in uniformly 
shielded, axially-symmetric, and beam transport magnets. For these magnets, re- 
quirements on homogeneity are not stringent. 
neity of 10m3 

The experiment may require a homoge- 
over the useful magnet aperture, which is not difficult to achieve, if devia- 

tion from the ideal coil configuration can be kept to a minimum (conductor tolerances , 
dimensional stability, symmetrical coil arrangements). 

However, problems become more complex when full accessibility to the aperture 
from one or more directions is required. In 6th- and 8th-order coils, where field 
homogeneities in the order of 10s5 are required over a certain space to accommodate 
the experimental setup, the choice of iron, its shape and thickness, must be made with 
more care. 

While the direct field calculation in coils without iron does not pose any problem, 
the presence of iron shields around the coils introduces a number of errors in the 
accuracy of computational results. A few reasons are summarized below: 

1. The variable permeability computation must converge to an error of at least 
10-7 or less, if the data would be trustworthy. Single precision calculation 
used in the SLAC code yielded an error of N 10e6 after 500 iterations. The 
error function oscillates and does not converge further. Double precision 
improved the situation, and an error of 10-7 was obtainable. 

2. With the SLAC computer (360/91) a magnetostatic problem with 150 x 150 
nodes or any combination not exceeding 2.25 x lo4 nodes can be solved. Re- 
quiring double precision reduces the area to 100 X 100 meshpoints. If, in 
open-type magnets (with or without ferromagnetic shields), the potential 
boundaries (A = 0 or constant) are close to the magnet (say a ratio of the dis- 
tance to the boundary to the magnet extension will be 1.5/l or 2/l in either di- 
rection), the computational errors are in the order of low2 to 5 x 10V3. Con- 
tour plots for lines of constant AB/B or AG/G are distorted. In order to 
minimize the influence from border-lines, the magnet extensions must be at 
least one-fifth of the distance from the border-line, or image methods should 
be used. 

To illustrate the difficulties, the example of an 8th-order axially-symmetric coil 
with a central field of 5 T and homogeneity of N 10-5 over the area of 22 x 24 cm2 is 
calculated. The coil geometry without an iron shield and contour lines of constant 
AB/B is given in Fig. 24. The coil system yields, in the area of interest, contours 
fairly close to the ideal dipole distribution. Field calculations for the same magnet 
with a ferromagnetic shield are given in Fig. 25. Direct comparison of calculations 
utilizing variable permeability programs with iron return yoke removed to the results 
obtained in Fig. 24 proved to be misleading. Field calculations utilizing difference 
equations used the position of boundaries with A = 0 or A = constant at a finite distance 
from the magnet, while field calculations of coils without iron place the A = 0 boundary 
at infinity. The location of the boundary, dictated by the storage capacity of the com- 
puter, arbitrarily distorts the field contour pattern. The position of the line AB/B = 0 
shifted to the right (X direction). The computational error (using double precision) 
after 370 iterations was w 2 x 10m7* The mesh size chosen had the dimension of 
1.676 X 1.676 cm2. The magnet extension in the X direction from the symmetry axis 
was 29 meshpoints, while the boundary A = 0 was at node 100. The absolute value of 
AB/B is also changed from 8 x 10-5 to’3.5 x 10e4 within the 12 X 12 cm area, which is 
one-fourth of the area of interest. This is due to computational errors as well as 
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fitting the coil geometry into mesh units, which dictates accurate positioning of individ- 
ual coils. 

Placing the iron shield around the coils counteracts the effect of A = 0 boundary and 
changes the contour plot. The line of AB/B = 0 is now shifted towards positive Y and 
the maximum value of AB/B is 2 X 10-3 in the area of interest. The main reason for 
the field distortion is due to the arbitrary choice of the iron thickness ( N 14 cm) and 
iron shape. The component of the flux density in the iron changed from 3.2 ‘I’ at the 
symmetry axis to 1.9 T in the cylindrical part, and from 2 T to - 0.5 T in the end 
plates. Optimum iron shaping is being attempted and seems promising. 

An attempt to improve this deficiency is the following: The high homogeneity coil 
is calculated as a first approximation with large mesh sizes, such that the distances of 

.the boundaries to the symmetry axes are at least 10 times the maximum coil extensions 
in both coordinates (x, y) or (I:, 8 ).’ For this case, lines of constant A are calculated. 
Double precision must be used. The problem must converge to errors of about 10e6 or 
smaller. 

The magnet can now be subdivided into smaller mesh units. As the distance ratios 
between magnet dimensions and boundaries are changed (magnet grows in size within 
boundaries at fixed positions given by the size of the computer memory), the A bound- 
aries, located at a new relative distance to the coil, must have the new values of A cal- 
culated at the first attempt with the larger mesh sizes. The relative error introduced 
by the finite field limitations is reduced due to this digitalization. However, in computer 
codes using square mesh, any subdivision into new mesh sizes will introduce geomet- 
rical errors, which either must be eliminated or corrected by means of current sheets. 

VII. FIELD DISTORTION DUE TO COIL END EFFECTS 

In beam transport and experimental magnets, the advantage of the high flux density 
(reducing magnet overall length) is somewhat counteracted by field distortion at the mag- 
net entrance and exit due to coil end effects and the enhanced fringing field. The fringing 
field and the coil end effect influence field uniformity in the gap. Field corrections by 
means of correcting coils are complicated. 

Field measurement in a wire chamber magnet with the bore dimensions of 2 m height, 
3 m width, and 2 m depth, at a maximum field of 2 T showed that the deviation of SBdQ 
over the median plane in the uncorrected magnet exceeded 770, and over the entire gap 
volume, 15% 0 Correcting the gap by appropriate pole shimming yielded a uniformity of 
JB& of 2%over 90% of the entire gap. As this result was not satisfactory, supercon- 
ducting screens were used, which were placed between coil ends and the iron horizontal 
yokes to further improve SBd.!? to 1%. 

Calculations23 with simplified coil end shapes indicate that for magnets without iron 
return yokes, coil end effects in quadrupoles influence two-dimensional field patterns 
within the gap to a depth of 2.5 al (AG/G g 10e3). 
sist to a depth of 20 al (AB/B z 10-3). 

In dipole coils, the end effects per- 

The length of a dipole magnet without iron must be at least 40 al in order that the 
field homogeneity within the coil aperture, due to end sections, is 103. This imposes 
a new constraint on the minimum magnet length, cotdera&.ing the high field advantage 
of the superconductor. Methods of end field correction need more investigation if 
high-field magnets are to become tools in high-energy physics research. 
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FIGURE CAPTIONS 

1. Cross section of a conductor. 

2: Current filaments for field corrections. 

3. Conductor and iron configuration for quadrupole magnet. 

4. Distribution of BX over the iron yoke cross section. 

1. Y =0,x e = r/4 
2. y =0,x 8 =o 

w;* ;;; 
1 . 

3. Y=O,X - 8 = n/4 
4. y = 0,x e=o 

;;i; “9;; . 
1 . 

5. Y=O,X ’ 8 = lr/4 
6. y =0,x 8 =o 

;;i; ;;; 
i e 

5. Magnetization curves of low-carbon steel. 

6. Axial symmetries, magnet lines of constant B. 

7. Axially-symmetric magnet with iron yoke and shields. 

8. Lines of constant AB/B for the magnet (Fig. 7). 

9. AG/GO curves for quadrupole arrangements given in (a - h). 

10. Line of constant B for a quadrupole arrangement. 

11. Contour lines of constant AG/GOO (quadrupole, Fig. 10). 

12. Ideal quadrupole formed from two intersecting ellipses. 

13. Quadrupole (Fig. 12) with one quadrant moved 0.1 cm in Y direction. 

14. Quadrupole (Fig. 12) with one quadrant moved 0.1 cm in X direction. 

15. Quadrupole (Fig. 12) with all quadrants moved. 

16. Quadrupole (Fig. 15) with corrections by means of current filaments. 

17. Ideal dipole configuration (AJ = lo8 A/m2). 

18. AB/B lines for dipole (h J = 108 A/m2 core, h J = 7 X lo7 A/m2 iron yoke) 
with iron return yokes. 

19. Line of constant B for dipole (Fig. 18). 

20. Dipole (Fig. 17) with section All shifted 0,2 cm in Y direction. 

21. Dipole (Fig. 17) with one coil shifted 0.2 cm in X direction. 

22. Dipole (Fig. 17) with both coils displaced. 

23. Dipole (Fig. 17) with corrections (current filaments parallel to Z axis. ) 
24. Eighth-order coil without iron. 

25. Eighth-order coil with and without iron return yoke (field computation with 
SLAC NUTCRACKER). 
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