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ABSTRACT: The resonant substructure of D® — 7t7~nT 7~ decays is studied using data
collected by the CLEO-c detector. An amplitude analysis is performed in order to dis-
entangle the various intermediate state contributions. To limit the model complexity a
data driven regularization procedure is applied. The prominent contributions are the de-
cay modes D° — a1(1260)* 7=, D° — o f5(1370) and D° — p(770)° p(770)°. The broad
resonances a1 (1260)", m(1300)™ and a1(1640)™ are studied in detail, including quasi-model-
independent parametrizations of their lineshapes. The mass and width of the a1(1260)"
meson are determined to be mg, (1260)+ = [1225+9 (stat) £17 (syst) +10 (model)] MeV /c?
and T'y, (1260)+ = [430 £ 24 (stat) 4 25 (syst) + 18 (model)] MeV. The amplitude model of
DY — KT*K—7ntn~ decays obtained from CLEO IL.V, CLEO III, and CLEO-c data is
revisited with improved lineshape parametrizations. The largest components are the decay
modes D — ¢(1020)p(770)°, D° — K1(1270)" K~ and D° — K (1400)" K.

The fractional CP-even content of the decay D — ntn~nt7~ is calculated from the
amplitude model to be F'!™ = [72.940.9 (stat)£1.5 (syst)£1.0 (model)] %, consistent with
that obtained from a previous model-independent measurement. For D° — K+tK w7~
decays, the CP-even fraction is measured for the first time and found to be F f Kar —
[75.3 + 1.8 (stat) £ 3.3 (syst) = 3.5 (model)] %.

The global decay rate asymmetries between D° and D° decays are measured to be
AX, = [+0.5441.04 (stat)+0.51 (syst)]% and ABE™ = [4+1.8441.74 (stat)£0.30 (syst)]%.
A search for CP asymmetries in the amplitude components yields no evidence for CP vio-
lation in either decay mode.

KEYwoORDS: Charm physics, CP violation, e+-e- Experiments, Flavor physics, Spec-
troscopy
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1 Introduction

We present amplitude analyses for D® — hth~ 77~ decays, where h* is either a pion or
a kaon. These decay modes have the potential to make an important contribution to the
determination of the CP-violating phase v (¢3) = —arg(VyqV,,/VeaVy,) in B~ — DK™
and related decays [1-6]. The all-charged final states (impossible in three-body decays
of D°) particularly suit the environment of hadron collider experiments, such as LHCb.
The sensitivity to the weak phase can be significantly improved with a measured D-decay
amplitude model, either to be used directly in the « extraction, or in order to optimize
model-independent measurements [4, 7-10].

A study of the rich resonance structure of these four-body decays is also of considerable
interest in its own right. Figure 1 shows the dominant processes that contribute to the
visible structure in the phase space. The color-favored tree diagram manifests as a cascade
whereby a resonance decays into another resonance before decaying into the final state. Due
to the identical quark content produced in the weak and spectator interactions, a given
process and its CP-conjugate may arise even from the same initial state. Such processes,
which we refer to as non-self-conjugate, are also known as flavor-non-specific decays as
flavor-tagging is required to distinguish between the source of these two partners despite
not being CP eigenstates. The color-suppressed tree diagram and the W-exchange diagram
result in self-conjugate intermediate states such as p(770)°p(770)° or p(770)°$(1020) whose
partial waves are eigenstates of CP. Certain intermediate states in D° — KtK w7~
decays, for instance K*(892)° K*(892)°, are only accessible via the W-exchange diagram.

The decay DY — ntn~ 77~ provides an excellent environment to study the prop-
erties of the a1(1260)" meson, whose width is an unresolved question, currently given
as 250 — 600 MeV in the Particle Data Group’s Review of Particle Physics (PDG) [11].
The only previous analysis of the D? — 7T7~ 77~ amplitude structure was published
by the FOCUS collaboration based on approximately 6000 DY, DY — 77~ 77~ signal
events [12]. The analysis presented here benefits from the ability to distinguish D from
DY decays and a larger data sample of approximately 7000 signal events.

Based on the four-body amplitude formalism and analysis software used in the D? —
KTK~7ntn~ amplitude analysis performed by the CLEO collaboration [13], we introduce
significant improvements especially in the parametrization of three-body resonances. Us-
ing a state-of-the-art parametrization of the a1(1260)" lineshape, we present new mea-
surements of the a;(1260)" mass and width. By utilizing different parametrizations, we
confirm a significant dependence of the measured width on the lineshape itself. We also
observe contributions from the decay modes D° — a1(1640)" 7~ and D° — 7(1300)* 7~
not seen in previous analyses and provide model-independent complex lineshapes for the
a1(1260)™, a1(1640)" and 7(1300)" mesons.

In addition to our new D' — 7t7~7t7~ analysis, we also revisit the CLEO DY —
KTK~7ntr~ data using the improved formalism and analysis procedures presented in this
paper. Prior to the CLEO analysis, an amplitude analysis of the decay D° — K+K w7~
was also performed by FOCUS [14].
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Figure 1. Examples of the color-favored (a), color-suppressed (b) and W-exchange (c) diagrams
that contribute towards the resonant structure in D° — 7f7~7f7~ and D' — KTK ntn~
decays.

This article is structured as follows: after an introduction to the CLEO II.V, CLEO III,
and CLEO-c experiments in section 2 and a description of the event selection in section 3,
the amplitude formalism and its implementation is described in section 4 and section 5.
The results of the fit to data, including a model-dependent measurement of the fractional
CP-even content and search for direct CP violation, are presented in section 6 and sec-
tion 7. Systematic uncertainties are outlined in section 8, and our conclusions are given in
section 9. Additional technical details of the analyses can be found in the appendices and
supplementary material.

2 Data set and CLEO detector

The data analyzed in this paper were produced in symmetric eTe™ collisions at CESR
between 1995 and 2008, and collected with three different configurations of the CLEO
detector: CLEO IL.V, CLEO III, and CLEO-c.

In CLEO IL.V [15, 16] tracking was provided by a three-layer double-sided silicon
vertex detector, and two drift chambers. Charged particle identification came from dE/dx
information in the drift chambers, and time-of-flight (TOF) counters inserted before the
calorimeter. For CLEO III [17] a new silicon vertex detector was installed, and a ring
imaging Cherenkov (RICH) detector was deployed to enhance the particle identification
abilities [18]. In CLEO-c, the vertex detector was replaced with a low-mass wire drift
chamber [19]. A superconducting solenoid supplied a 1.5 T magnetic field for CLEO II.V
and III, and 1 T for CLEO-c operation, where the average particle momentum was lower.
In all detector configurations, neutral pion and photon identification was provided by a
7800-crystal Csl electromagnetic calorimeter.

Four distinct data sets are analyzed in the present study:



(1) approximately 9 fb~! accumulated at /s ~ 10 GeV by the CLEO IL.V detector;

(2) a total of 15.3 fb~! accumulated by the CLEO III detector in an energy range /s =
7.0 — 11.2 GeV, with over 90% of this sample taken at /s = 9.5 — 10.6 GeV;

(3) 818pb~! collected at the 1(3770) resonance by the CLEO-c detector;
(4) a further 600 pb~! taken by CLEO-c at /s = 4170 MeV,

where /s is the total energy delivered by the beam in the center-of-mass system (CMS).
These samples are referred to as the CLEO II.V, CLEO III, CLEO-c 3770 and CLEO-c
4170 data sets, respectively.

Detector response is studied with GEANT-based [20] Monte Carlo (MC) simulations
of each detector configuration, in which the MC events are processed with the same recon-
struction algorithm as used for data.

3 Event selection

We select events where one neutral D meson decays eitherintoan™n 777~ or KT K 7'«
final state. The analysis considers two classes of signal decays, for both of which informa-
tion on the quantum numbers of the meson decaying to the signal mode is provided by an
event tag.

(i) Flavor-tagged decays are selected from the CLEO IL.V and CLEO III data sets, in
which the flavor of the decaying meson is determined by the charge of the ‘slow pion’,
75, in the D*T — DO7F decay chain. Flavor-tagged decays are also selected from
the two CLEO-c data sets, where here the tag is obtained through the charge of a
kaon associated with the decay of the other D meson in the event. The wrong tag
fractions for each data set are represented by the parameter w, given in ref. [13].

(ii) CP-tagged decays are selected in the CLEO-c 3770 data set alone. In v (3770) decays
the D — D pair is produced coherently. Therefore, the CP of the signal D can be
determined if the other D meson is reconstructed in a decay to a CP-eigenstate.
Useful information is also obtained if the tagging meson is reconstructed decaying
into the modes Kgﬁ+7r_ or K27r+7r_, for which the relative contribution of CP-even
and CP-odd states is known [21].

The D° — 7t7~7t7~ analysis uses only the flavor-tagged subset of the CLEO-c
3770 data sample, while D° — K+ K~ 77~ makes use of all the data sets described. The
selection criteria for producing the data sets of each of these classes is discussed in detail
in ref. [13] and is identical to that used in our analysis, except for a few improvements that
will be highlighted where applicable.

3.1 DY — xtx—ntr~ selection

Apart from other backgrounds, there is a source of peaking background arising from D% —
KY(— 77 ) nt 7~ decays. Although this has the same final state as the signal, it is an



incoherent process since the Kg lifetime is much longer than those of any other possible
intermediate resonance. Therefore, Kg decays are rejected if the invariant mass of any
7w~ combination is within 7.5 MeV /c? of the world-average K2 mass [11].

Two nearly uncorrelated kinematic variables are used to define a signal and two side-
band background regions. These variables are defined as the beam-constrained mass,

Mpe = <\f>2 — pp?, (3.1)

where pp is the reconstructed three-momentum of the candidate D in the CMS; and the
missing energy AF,

AE =FEp— \ég, (3.2)
where Ep is the total reconstructed energy of candidate D in the CMS. Signal events
should have missing energy close to zero and beam-constrained mass close to that of the
nominal DY mass, mp [11]. By construction, the my. width is a measure of the beam-
energy spread while the AF width is dominated by the detector resolution. Candidates
that satisfy mp. > 1.83 GeV/c? and |AE| < 0.1 GeV are retained for further analysis.

As the sideband events are used to study the background contribution within the signal
region, it is crucial to select signal and background regions with a mutual and constant
invariant mass, i.e. that of the D meson. First, a region of constant invariant mass is
obtained by selecting events with

VAE? £ AEVs +m2, —mp]| < 15MV/c. (3.3)

This relation describes an annulus in my,. and AFE space. Lines normal to this annulus of
constant invariant mass have an angle of inclination

\/§+2AE>

3.4
2 Mpe ( )

f = arctan (

about the center of the annulus. A signal region around the D mass peak is then defined by
requiring |6 — 0p| < 0.004, where my. = mp and AE =0 GeV at 6p, as shown in figure 2.
Similarly, sideband regions are defined with |# — p| > 0.006. These criteria preserve the
range of invariant mass selected throughout the kinematic variables my. and AFE, ensuring
the distribution of events in phase space are consistent between regions. The signal region
contains 9247 D — nt w7 tw~ candidates.

To estimate the signal purity of the sample, a two-dimensional unbinned maximum
likelihood fit to myp. and AFE is performed in the whole range. While the signal peak
is modeled with a sum of three (two) Gaussian functions, the combinatorial background
is described by an ARGUS [22] (linear) function in mp. (AE). The number of signal
events within the signal region is estimated from the fit result displayed in figure 3, to be
7250 £+ 56 (stat) & 46 (syst) events, where the first uncertainty is statistical and second is
systematic. The signal fraction fsig, in this region is fgig = (78.4£0.6 (stat)£0.5 (syst))%.
These systematic uncertainties are estimated by repeating the fit with different appropriate
probability density function (PDF) hypotheses. As we observed a negligible impact of the
background on our analysis, further improvements of the signal purity were not studied.
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Figure 2. Distribution of D° — ntn~nt7n~ candidate events in missing energy AE and beam
constrained mass within the selection regions, which are bounded by the annulus of constant in-
variant mass and lines normal to it. The central region (blue) is defined as the signal region, with
sideband regions (red) providing background samples.
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Figure 3. Beam constrained mass (a) and missing energy (b) distribution of D° — 7fr= 77~
candidates, overlaid with the projections of the fitted PDF (solid black line). The signal component
is shown in blue (dashed) and the background component in red (dashed).

3.2 D & Kt*K—ntn~ selection

With respect to ref. [13], we veto the 777~ invariant mass region around the Kg mass,
which removes essentially all peaking background from D° — K2%(— 777 )KT K—,
greatly simplifying our analysis. The Kg veto depends on the CLEO configuration, as
the mass resolution is better for data collected with the CLEO-c configurations. For data
collected with CLEO (CLEO-c), the 7t 7~ invariant mass combination does not fall within
16.5 (12) MeV /c? of the world-average K3 mass.

In addition, for the flavor-tagged data, several changes have been applied with respect
to ref. [13]. The CLEO IL.V minimum track momenta cut for the D daughters is raised



Sample Signal region Sideband
CLEO ILV  144.6 MeV/c®> < Am < 146.2 MeV /c? 148.5 MeV/c? < Am < 160.0 MeV /c?
CLEO III  144.6 MeV/c? < Am < 146.1 MeV/c? 148.5 MoV /c® < Am < 160.0 MeV /¢
CLEO-c 3770 |mpe — mpl| < 0.005 GeV/c? 1.834 GeV/c? < my. < 1.854 GeV/c?
1.876 GeV/c* < myp. < 1.890 GeV/c?
CLEO-c 4170 2.005 GeV/c? < myp. < 2.030 GeV/c?>  1.880 GeV/c? < my. < 1.920 GeV /c?

Table 1. Signal region and sideband definitions in the Am or my. kinematic variable, for flavor-
tagged D° — K+*K~ntr~ data in the different CLEO configurations.

Sample Signal candidates fsig
CLEO IL.V 237 0.759 4+ 0.019
CLEO III 1163 0.898 £+ 0.004
CLEO-c 3770 1300 0.871 £+ 0.005
CLEO-c 4170 598 0.694 £+ 0.010

Table 2. Updated number of signal candidates and fractions in the signal region, for flavor-tagged
DY — K+*K~—nt7~ data in the different CLEO configurations.

to 275MeV /c as the MC was found not to represent the data sufficiently well below this
value. As in ref. [13], the kinematic variables that describe signal in the CLEO IL.V and
CLEO III samples are the reconstructed D mass mg g, and the mass difference between
the D* and D candidates, Am. We take advantage of the possibility to ensure a constant
D-candidate invariant mass range across different kinematic regions. For CLEO II.V, we
choose |mgxrr —mp| < 5 MeV/cz; for CLEO III, we require that mgg.~ is between
(mp — 11.2) and (mp + 8.3) MeV/c?. For CLEO-c 3770, we utilize the criteria given in
eq. (3.3); for CLEO-c 4170 eq. (3.3) is also used, but the tolerance of the annulus of constant
invariant mass, with respect to mp, is reduced from 15 to 10 MeV /c? in order to boost
the signal purity in this sample. The signal and sidebands definitions in the respective
accompanying kinematic variables (Am or my,.) are defined accordingly in table 1. In the
CLEO IL.V and CLEO III (CLEO-c 3770) samples, signal candidates are chosen to have
Am (myp.) near the expected value for signal D decays. In the CLEO-c 4170 sample, we
isolate our signal D candidates from D* D* events, which have the highest rate and intrinsic
purity [23].

The procedure to measure the purity in the signal region of each sample is identical
to that of the previous analysis [13]. The events retained for the amplitude analysis and
signal fractions for the improved selection criteria are given in table 2.

4 Amplitude analysis formalism

Previous four-body amplitude analyses of D decays have been performed by the
Mark III collaboration for D — Knnm comprising a total of four Cabibbo-favored de-
cay modes modes of D and DT [24], FOCUS for D — atn ntr~, KTK ntn—,
K-K-K*rt [12, 14, 25] and most recently, for the decay D° — KTK -atn~, by
CLEO [13]. Here, we further develop the formalism and analysis software used in ref. [13].



Key differences are in the formalism used for the spin factors, where we now use a more
consistent and intuitive implementation of the Zemach formalism [26-28], and an improved
description of the lineshapes of resonances decaying to three-body final states.
The differential decay rate of a D° meson with mass, m o, decaying into four pseu-
doscalar particles with four-momenta p; = (E;, p;) (i = 1,2,3,4) is given by
1 2
dl' = m |Apo(x)|“dPy, (4.1)
where the transition amplitude Apo(x), describes the dynamics of the interaction, d®,
is the four-body phase space element [29], and x represents a unique set of kinematic
conditions within the phase space of the decay. Each final state particle contributes three
observables, manifesting in their three-momentum, summing up to twelve observables in
total. Four of them are redundant due to four-momentum conservation and the overall
orientation of the system can be integrated out. The remaining five independent degrees of
freedom unambiguously determine the kinematics of the decay. Convenient choices for the
kinematic observables include the invariant mass combinations of the final state particles

mi; = (pi +p;)°,
mix = (pi + pj + pr)? (4.2)

or acoplanarity and helicity angles [30, 31]. It is however important to take into account

that, while m?,, m3; are sufficient to fully describe a three-body decay, the obvious exten-
2

ijo
are insufficient to describe the parity-odd moments possible in four-body kinematics.

sion to four-body decays with m m?j ;. requires additional care, as these variables alone

In practice, we do not need to choose a particular five-dimensional basis, but use the
full four-vectors of the decay in our analysis. The dimensionality is handled by the phase
space element which can be written in terms of any set of five independent kinematic
observables, x = (z1,...,x5), as

ddy = ¢y(x)d°z, (4.3)

is the phase space density. In contrast to three-body decays,

where ¢4(x) = Lm
the four-body phase space density function is not flat in the usual kinematic variables.
Therefore, an analytic expression for ¢4 is taken from ref. [32].

The total amplitude for the D° — hq ho hs hy decay is given by the coherent sum over
all intermediate state amplitudes A;(x), each weighted by a complex coefficient a; = |a;| ¢? %
to be measured from data,

Apo(x) = a; Ai(x). (4.4)
(2

To construct A;(x), the isobar approach is used, which assumes that the decay process
can be factorized into subsequent two-body decay amplitudes [33-35]. This gives rise to
two different decay topologies; quasi two-body decays D — (Ry — hy ho) (Ra — h3 hy)
or cascade decays DY — hy [R1 — ho (R2 — h3 hyg)]. In either case, the intermediate state
amplitude is parameterized as a product of form factors By, included for each vertex of the



decay tree, Breit-Wigner propagators T, included for each resonance R, and an overall
angular distribution represented by a spin factor S,

Ai(x) = Brp (%) [Brg, (%) T, (¥)] [BLy, (%) Tk, (%)] Si(x) - (4.5)

As the 777~ 7~ 7T final state involves two pairs of indistinguishable pions, the amplitudes
are Bose-symmetrized and therefore symmetric under exchange of like-sign pions.

We define the CP-conjugate phase space point X such that it is mapped onto x by the
interchange of final state charges, and the reversal of three-momenta. If x, X are expressed
as a function of the four-momenta (FE;,p;) (where i labels the particle), this implies for
D — KtK~—mtn~ that

X [(EK+7ﬁK+)7 (EKfvﬁK*% (E7r+7ﬁ7r+>7 (Eﬂfvﬁwf)]
=X [(EK—a _ﬁK—)’ (EK+’ _ﬁK+)a (ETK'_’ _ﬁﬂ'_)? (E7T+’ _ﬁﬂ""')] ) (46)

and equivalently for D° — 7t7~7t7~. The CP-conjugate of a given intermediate state
amplitude, A;(x), is defined as
A;(x) = Ai(X), (4.7)

and the total D° decay amplitude is defined as
Apo(x) =Y @ Ai(x) = > a:Ai(X). (4.8)

Unless stated otherwise, we assume CP conservation in the D decay, implying a; = a;.
Moreover, CP conservation in the strong interaction is implemented in the cascade topology
by the sharing of couplings between related quasi-two-body final states. For example, given
the two a; parameters required for D® — 7~a;(1260)" with a1(1260)* — p(770)° 7 and
a1(1260)" — o7t the amplitude D° — 7 a;(1260)~ with a;(1260)~ — p(770)° 7~ and
a1(1260)” — o7~ only requires one additional global complex parameter to represent the
different weak processes of D° — a1(1260)" 7~ and D° — a;(1260)~ 7+, while the relative
magnitude and phase of a;(1260)~ — p(770)° 7~ and a1(1260)~ — o 7~ are the same as
for a1(1260)* — p(770)° 7+ and a;(1260)* — o 7. For historical reasons, this constraint
is only applied to the #*7~ 77~ final state, but, as discussed in section 7, the results we
obtain for the K™K 77~ final state are also compatible with CP conservation in the
strong interaction.

4.1 Form factors and resonance lineshapes

To account for the finite size of the decaying resonances, the Blatt-Weisskopf penetration
factors, derived in ref. [36] by assuming a square well interaction potential with radius rgw,
are used as form factors, By. They depend on the breakup momentum ¢, and the orbital
angular momentum L, between the resonance daughters. Their explicit expressions are

Bo(q) =1,
Bi(q) = 1/3/1 + (grmBW)?,
Ba(q) = 1/3/9+ 3 (grw)? + (arBw)™. (4.9)



Resonance lineshapes are described as function of the energy-squared, s, by Breit-Wigner

propagators
1

- M2(s) —s—imoL'(s)’
featuring the energy-dependent mass M (s) (defined below), and total width, I'(s). The
latter is normalized to give the nominal width, I'y, when evaluated at the nominal mass

T(s)

(4.10)

mo, i.e. Do = T'(s = md).
For a decay into two stable particles R — AB, the energy dependence of the decay
width can be described by

2L+1 2
) mo (g Br(q)
T §) =Ty -2 (L EEAS VAR 4.11
a5 (%) ° s <QO> Br.(q0)? (4.11)

where ¢ is the value of the breakup momentum at the resonance pole [37].

The energy-dependent width for a three-body decay R — ABC, on the other hand,
is considerably more complicated and has no analytic expression in general. However,
it can be obtained numerically by integrating the transition amplitude-squared over the
phase space,

1
I, apc(s) = NG /!AReABCIQd%a (4.12)

and therefore requires knowledge of the resonant substructure. The three-body ampli-
tude Ar_,4pc can be parameterized similarly to the four-body amplitude in eq. (4.5). In
particular, it includes form factors and propagators of intermediate two-body resonances.

Both eq. (4.11) and eq. (4.12) give only the partial width for the decay into a specific
channel. To obtain the total width, a sum over all possible decay channels has to be
performed,

I'(s) = Zgi Li(s), (4.13)

where the coupling strength to channel 4, is given by g;. Branching fractions B; are related
to the couplings g; via the equation [11]

o gimoL'i(s)
B; = / - ds. 4.14
o VP2(5) 5 —imo 55 0, T3 (5) P (4.14)

As experimental values are usually only available for the branching fractions, eq. (4.14)

needs to be inverted to obtain values for the couplings. In practice, this is solved by
minimizing the quantity x2(g) = 3., [Bi — Zi(g)]* /ABZ, where Z;(g) denotes the right-
hand side of eq. (4.14).

The energy-dependent mass follows from the decay width via the Kramers-Kronig
dispersion relation [38, 39]:

M2(s) = mi + 20 /:O <F<5/) _ 1;(8,) ,> ds’. (4.15)

T s—s  mg—s

Here, the energy-dependent mass is normalized such that M?(s = m%) = mg. In practice,
the energy-dependent mass is often approximated as being constant, i.e. M?(s) = m%, since

~10 -



its calculation requires a detailed understanding of the decay width for arbitrarily large
energies and is computationally expensive. This is usually justified as the energy-dependent
mass needs to satisfy the condition,

dM?(s)
ds 2

8:m0

=0, (4.16)

such that M?2(s) is indeed, approximately constant near the on-shell mass [40]. Larger
dispersive effects are thus only expected for very broad resonances.

The treatment of the lineshape for various resonances considered in this analysis is
described in what follows. The nominal masses and widths of the resonances are taken
from the PDG [11] with the exceptions described below. We assume an energy-independent
mass unless otherwise stated.

For the broad scalar resonance o, the model from Bugg is used [41]. Besides 0 — 77w
decays, it includes contributions from the decay modes 0 — KK, 0 — nn and 0 — w7 as
well as dispersive effects due to the channel opening of the latter. We use the Gournaris-
Sakurai parametrization for the p(770)° — 77 propagator which provides an analytical
description of the dispersive term, M?(s) [42]. The energy-dependent width of the fo(980)
resonance is given by the sum of the partial widths into the 77 and KK channels [43],

T 1y (050)(8) = Gm T o0y o (8) + 9565 TP has0) i (9): (4.17)
where the coupling constants g, and gx i, as well as the mass and width are taken from
a measurement performed by the BES Collaboration [44]. The total decay widths for both
the f2(1270) and the f,(1370) meson take the channels 77, K K, nn and 7w into account.
While the two-body partial widths are described by eq. (4.11), a model for the partial width
for a decay into four pions is taken from ref. [45]. The corresponding branching fractions
are taken from the PDG [11]. The nominal mass and width of the f;(1370) resonance are
taken from an LHCDb measurement [46]. Equation (4.11) is used for all other resonances
decaying into a two-body final state.

To describe the decay width of the axial vector resonance a1(1260), the decay channels
mnm and K K7 are considered,

_ (3) ERC)
L, (1260)(5) = grrrr Fa1(1260)ﬁ7r7r7r(3) + 9k kr Fa1(1260)—>Kf(7r(8)’ (4.18)
here isosi v 4 ie T® _®
where isospin symmetry is assumed, i.e. a1(1260)+_m+7r_7r+(3) 01 (1260)F 570707+ (s).
The partial width r® (s) is calculated from eq. (4.12) assuming the decay pro-

a1(1260)—» KK
ceeds entirely via aq(1260) — K*(892) K. The corresponding branching fraction is taken

from a CLEO analysis of hadronic 7 decays [47]. The calculation of the partial width
3)

a1(1260)%7r7r7r(8)

three pion Dalitz plot structure of the a;(1260) resonance whose determination in turn,

is more complicated due to the fact that it requires information about the
needs the propagator as input. For this reason, we follow an iterative approach. The initial

amplitude fit, described in section 6, is performed using an energy-dependent width distri-
bution derived from an uniform phase space population. Afterwards, the energy-dependent
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Figure 4. Energy-dependent width (a) and energy-dependent mass (b) for the a;(1260) reso-

nance. The total width is shown in black (solid), while the partial widths I‘Ei)(l%o) onn(8) and
3)

01 (1260) > K K (s) are shown in blue (dashed) and red (dotted), respectively.

width is recalculated with the results of the substructure analysis and the amplitude fit
is subsequently repeated with the new propagator. It is found that the energy-dependent
width is not highly sensitive to the details of the Dalitz plot as this procedure converges
after a few iterations. As the a1(1260) resonance is very broad, the dispersive term is
calculated as well. Figure 4 shows the final iteration of the energy-dependent width and
mass. The energy-dependent width varies strongly around s ~ 0.8 GeV? where the energy
of the 7+ 7~ subsystem is equal to the p(770)° on-shell mass. Around s = 2 GéV?, a
small hump develops due to the opening of the K K7 channel. The energy-dependent mass
indeed shows a plateau around the nominal mass as expected. Note that as the condition
of eq. (4.16) is not explicitly enforced by eq. (4.15), it serves as an independent check of
whether the main thresholds have been included [38, 47].

For the resonances 7(1300), a1(1640) and m5(1670), the energy-dependent width is
obtained via the same iterative procedure as for the a;(1260) resonance. In case of the
72(1670) meson, the K K7 and wp(770)° thresholds are included with the PDG branching
fractions taken from ref. [11], otherwise only decays to three pions are considered. In
the D — K™K~ 7Tn~ analysis, resonant decays of the K;(1270) and K;(1400) mesons
into the Kp(770)°, K*(892)m, K;(1430)7w, K fo(1370) and Kw decay channels are taken
into account assuming the lowest possible angular momentum state. For the purpose of
evaluating the energy-dependent widths of the excited kaons, these decay channels are
assumed to be incoherent and the branching fractions from the PDG are used [11]. The
same procedure is applied to obtain the energy-dependent width for the K*(1410) and
K*(1680) resonances. In their case, the decay channels Kp(770)", K*(892)r and K7 are
considered. For the K*(1410) meson there are only upper limits for the branching fractions
into the K p(770)° and K*(892)7 channels available. We assume no K*(1410) — K p(770)°
contribution and B[K*(1410) — K*(892)7] = 1 — B[K*(1410) — K=| = (93.4+1.3) % [11].
All energy-dependent widths not shown in this section are shown in appendix A.

Some particles may not originate from a resonance but are in a state of relative or-
bital angular momentum. We denote such non-resonant states by surrounding the particle
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system with brackets and indicate the partial wave state with an subscript; for example
(mm)gs refers to a non-resonant di-pion S-wave. The lineshape for non-resonant states is set
to unity.

4.2 Spin densities

The spin amplitudes are phenomenological descriptions of decay processes that are required
to be Lorentz invariant, compatible with angular momentum conservation and, where ap-
propriate, parity conservation. They are constructed in the covariant Zemach (Rarita-
Schwinger) tensor formalism [26-28]. At this point, we briefly introduce the fundamental
objects of the covariant tensor formalism which connect the particle’s four-momenta to the
spin dynamics of the reaction and give a general recipe to calculate the spin factors for
arbitrary decay trees. Further details can be found in refs. [48, 49].

A spin-S particle with four-momentum p, and spin projection A, is represented by the
polarization tensor € g)(p,A), which is symmetric, traceless and orthogonal to p. These
so-called Rarita-Schwinger conditions reduce the a priori 4% elements of the rank-S tensor
to 25 + 1 independent elements in accordance with the number of degrees of freedom of a
spin-S state [27, 50].

The spin projection operator Pé)...uSV1...u5(

pr), for a resonance R, with spin S =
{0,1,2}, and four-momentum pg, is given by [49]:

P(’Sg(pR) =1
P 0%
2

P(‘il)/(pR) =—g"+ »
R

1 v 1
Pl (o) = 5 [p(qc)*(pR) PS(pr) + P (oR) P(Vf;(pR)} -3 By (or) P (pr),  (4.19)
where g" is the Minkowski metric. Contracted with an arbitrary tensor, the projection
operator selects the part of the tensor which satisfies the Rarita-Schwinger conditions.
For a decay process R — AB, with relative orbital angular momentum L, between
particle A and B, the angular momentum tensor is obtained by projecting the rank-L
vt

tensor ¢ ¢ . .. q}%, constructed from the relative momenta qgr = p4 — pg, onto the spin-
L subspace,

Ly PR ar) = (=) Py ppnown (PR) @i - - aF- (4.20)

Their |7r|" dependence accounts for the influence of the centrifugal barrier on the transition
amplitudes. For the sake of brevity, the following notation is introduced,

5)(R) = g(5)(PR; AR),
Ps)(R) = Ps)(pr),
L1)(pRr: qr). (4.21)

=

G

=
I

Following the isobar approach, a four-body decay amplitude is described as a product
of two-body decay amplitudes. Each sequential two-body decay R — A B, with relative
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orbital angular momentum L 4p, and total intrinsic spin Sap, contributes a term to the
overall spin factor given by

SrAB(X|LAB, SAB; AR, Aa, AB) = €(5,)(R) X (SR, Lap, SaB) L(r,5)(R)
X ®(x[SapiAa, Ap), (4.22)

where
@(X‘SAB; )\A, )\B) = P(SAB)(R) X(SAB, SA, SB) €?SA)(A) E?SB)(B) . (4.23)

Here, a polarization vector is assigned to the decaying particle and the complex conjugate
vectors for each decay product. The spin and orbital angular momentum couplings are
described by the tensors P(g,\(R) and L(y,, ,)(R), respectively. Firstly, the two spins Sa
and Sp, are coupled to a total spin-Sap state, ®(x|Sap), by projecting the corresponding
polarization vectors onto the spin-Ssp subspace transverse to the momentum of the de-
caying particle. Afterwards, the spin and orbital angular momentum tensors are properly
contracted with the polarization vector of the decaying particle to give a Lorentz scalar.
This requires in some cases to include the tensor €,5+5 p‘;% via,

1 if jo + Jp + je even

X (Jas Jbs Je) = { (4.24)

Eapys DR if Ja + b + je 0dd
where £,3,5 is the Levi-Civita symbol and j refers to the arguments of X defined in
egs. (4.22) and (4.23). Its antisymmetric nature ensures the correct parity transformation
behavior of the amplitude. The spin factor for a whole decay chain, for example R —
(R1 — AB)(R2 — CD), is obtained by combining the two-body terms and performing a
sum over all unobservable, intermediary spin projections

> Srorirs(XILR Ry ARy ARy) SRy AB(X|LaB; ARy) Sry—op(X|Lop; AR, ), (4.25)

ARy ARy

where AR = A4 = Ap = A\c = Ap =0, Sap = Scp = 0 and Sgr,r, = LRr,R,, as only
pseudoscalar initial /final states are involved.

The main difference to the formalism used in ref. [13] is the inclusion of additional
projection operators, i.e. Pg,,)(R) and the one intrinsic to Ly, ,)(R), which ensure pure
spin and angular momentum tensors. The spin factors for all decay topologies considered
in this analysis are explicitly given in appendix B.

4.3 Measurement quantities

Here, we define all quantities derived from the amplitude model that are of physical im-
portance. In order to provide implementation-independent measurements in addition to
the complex coefficients a;, we define two quantities. Firstly, the fit fractions

_ S lai Ai(x)|? Ay
[ Apo(x)? dey’

(4.26)

i

— 14 —



which are a measure of the relative strength between the different transitions. Secondly,
the interference fractions are given by

[ 2R[aia} Ai(x) A% (x)] dPy
J1Apo(x)* ddy
which measures the interference effects between amplitude pairs. Constructive interference
leads to I;; > 0, while destructive interference leads to I;; < 0. Note that ) . F; +

Zj<k Iy =1
The global fractional CP-even content is defined as,
P, = J1AL? doy
JTAL [+ [A_]2do,
where A4 = Apo(x)+A50(x) is the decay amplitude for a D meson in a CP-even / CP-odd
state. The parameter F, can be determined from an amplitude model (eq. (4.28)) or by

I = : (4.27)

(4.28)

using model-independent methods [51]; the consistency of the two techniques provides a
useful cross-check of the amplitude model. The fractional CP-even content also provides
useful input to the determination of the CKM phase v (¢3) in B¥ — DK® and related
decays. Additionally, knowledge of F for all D decay final states can be used to deter-
mine the net CP-content of the D meson system, which is related to the charm-mixing
parameter yp [52].

Finally, measurements of direct CP violation will also be reported. For this purpose,
the amplitude coefficients are expressed in terms of a CP-conserving (¢;) and a CP-violating
(Ac;) parameter,

a; = ¢ (1 + ACZ'), a; = ¢ (1— Aci). (4.29)

For Ac; = 0 there is no CP violation between the corresponding D° and D° interme-
diate state amplitudes. Note that the CP-violating parameters are included only for
distinct weak decay processes as the strong interaction is assumed to be CP-conserving
such that e.g. the amplitudes for the processes D — 7~ [a1(1260)" — «+ p(770)°] and
D° — 7~ [a1(1260)* — 7t o] share a common Ac;, while having different CP-conserving
parameters. As we do not measure the time distribution, we have no sensitivity to the
overall phase difference between D° and DY and thus, the phase difference between Ao (x)
and Apo(x) is fixed to null. From these separate amplitudes, the direct CP violation in
each amplitude is simply calculated from the fit coefficients as

: |ai? — |ai|”
p = — . 4.30
CcP ‘ai’2+’di’2 ( )
In principle, the global direct CP asymmetry can be calculated from
A 2do, — [|A5 2de
o = AP EOP A%4 = [ |4 (30 4, wan

S 1Apo(x)|2d®s + [ |Apo(x)]|? APy’
however to avoid an unnecessary systematic uncertainty arising from the amplitude model,
this will instead be determined from an asymmetry in the integrated decay rates,

I'(D° — hth=nta) —T(D° — hth=7ntn) _ €TagNpo — €TagN o
F(DO — hth—ntn—) 4+ F(EO — hth—ntn™) ETagNpo + ETagNﬁo’

ACP = (432)
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composed of the number of signal candidates tagged as D° (DY) mesons, Npo (Ngo). For
the CLEO-c data, the signal tagging efficiency ratio,
gTag
—— = 0.9899 £ 0.0015, (4.33)
ETag

has been determined from an average over the D — K7, Knn® and Knrn efficiencies
given in ref. [53]. No asymmetry in pion identification is found in the preceding CLEO
data samples and thus the tagging efficiency ratio is set to unity with an uncertainty of
1.5% [54].

5 Likelihood fit

Due to flavor tagging, there are two independent data sets available; D° — h*h~ 77~ and
D® — h=hTn~n events which can be described by the amplitudes Apo(x) and Az0(x),
respectively. In general, the signal PDF for events tagged as DY — hTh~ w7~ is given by

[(1 = w) [Apo ()2 + w |Apo ()| esig (%) da(x)

Psig(x) =
e JIADo () + [Apo ()] esig(x) ds

(5.1)

where egiz(x) is the phase-space efficiency and w is the wrong tag fraction as defined in
section 3. In the case of no CP violation, the integrals over the D? and D° amplitudes
will be equal. For the CP-tagged data sets used in the D® — K+K~nTx~ analysis, the
signal PDFs are given in ref. [13]. We do not account for effects of neutral charm meson
oscillations, as we expect these to be negligible in these analyses.

Note that the efficiency in the numerator appears as an additive constant in the log £
that does not depend on any fit parameters such that it can be ignored. However, the
efficiency function still enters via the normalization integrals. These normalization terms
are determined numerically by a MC integration technique. For this purpose, we use
simulated events generated according to a preliminary model, pass them through the full
detector simulation and apply the same selection criteria as for data in order to perform
the MC integrals. For example, the first integral in eq. (5.1) can be approximated as

Nuc 2
1 Apo(x
/|AD0(X)|2 €sig(x) APy ~ Noo [4po(xi)l” ,DO( k)’2 (5.2)
MC G| Al (x) |

where A", labels the preliminary amplitude model and xy is the k-th MC event. As a
result, the efficiency can be included in the amplitude fit without explicitly modeling it.
For D' — nta~nt7n~, we use a sample of Nyic = 600000 MC events to ensure that the
uncertainty on the integral is less than 0.5%. For D° — Kt K~ 7t7~, we use samples of
Nyce = 900000 events each, produced under each of the CLEO III and CLEO-c detector
conditions. MC representing the CLEO II.V detector conditions is simulated from CLEO
IIT MC via the reweighting process discussed in ref. [13]. The uncertainty on the integral
for each D° — KT K~nt7~ MC sample is less than 0.5%.
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The background PDF,

_ €sig(x) B(x) ¢a(x)
Prig(x) = T egSig(X) B(x) d®y’

is determined in section 5.1 from sideband data. Note that because of the integration

(5.3)

method, the background parameters only have meaning relative to the signal efficiency.
The event likelihood is constructed from the signal PDF and the background PDF,

L = fsig Psig(x]0) + (1 — fsig) Poig(x[0), (5.4)
where fgi, is the signal fraction as determined in section 3.1 and 8 is the set of fit parameters.

5.1 Background model

Background events arise from randomly combined particles from various processes such as
other D decays or continuum which, by chance, fulfill all required selection criteria. Some of
them may even contain resonances that do not arise from the signal D" decay. The chosen
background PDF for the D° — 77~ 777~ mode includes Breit-Wigner (BW) contribu-
tions from the resonances o, p(770)°, fo(980) and two ad-hoc scalar resonances (SY, S5 )
with free masses and widths. They are added incoherently on top of two non-resonant
components. In addition, several exponential and polynomial functions are included to
allow for more flexibility. The background function is explicitly given by

7
B(x) =Y bi|Bi(x)?, (5.5)
=1

where,

Bi(x) = BWq(s12) - BW,(s34),
By (x) = BW ,(770)0(s12) - exp(— a1 - s34),
Bs(x) = BW g, (980)(512) - BW £, (980 (534),

Bg(x) = exp(— ag - s14) - exp(— a3 - s23),

4 5
Br(x) = (Z d; - 5%24) ' (Z €~ 5%2) ) (5.6)
i=0 i=0
with s;; = m2(mi7;), sijg = m2(mmjmg) and D° — w7y 737y, The real parameters
b;, o, ¢;,d; and e; are extracted from a fit to the sideband samples defined in section 3.1.

For D° — KT K—7ntn~ decays, the background shape is determined for each data set
and is simply modeled by an incoherent sum of the K;(1400)" — K*(892)°7T, ¢(1020),
K*(892)°, K*(892)°, p(770)° resonances and a constant term with relative couplings de-

termined from the relevant sidebands.
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5.2 Signal model construction

The light meson spectrum comprises multiple resonances which are expected to contribute
to D® — hTh~nT 71~ decays as intermediate states. Apart from clear contributions com-
ing from resonances such as aj(1260) — p(770)%7, ¢(1020) and K*(892)°, the remaining
structure is impossible to infer due to the cornucopia of broad, overlapping and interfering
resonances within the phase space boundary. The complete list of considered amplitudes
can be found in appendix C.

To build the amplitude model, one could successively add amplitudes on top of one an-
other until a reasonable agreement between data and fit was achieved. However, this step-
wise approach is not particularly suitable for amplitude analyses as discussed in ref. [55].
Instead, we include the whole pool of amplitudes in the first instance and use the Least
Absolute Shrinkage and Selection Operator [55, 56] (LASSO) approach to limit the model
complexity. In this method, the event likelihood is extended by a penalty term

—2logL — —2log L+ A Z \// la; A;(x)]? d®y, (5.7)

which shrinks the amplitude coefficients towards zero. The amount of shrinkage is con-
trolled by the parameter A, to be tuned on data. Higher values for A encourage sparse
models, ¢.e. models with only a few non-zero amplitude coefficients. The optimal value for
A is found by minimizing the Bayesian information criteria [57] (BIC),

BIC(X) = —2 log £ + r log Nsig, (5.8)

where Nygjg is the number of signal events and 7 is the number of amplitudes with a decay
fraction above a certain threshold. In this way, the optimal A balances the fit quality
(—2 log £) against the model complexity. The LASSO penalty term is only used to select
the model. Afterwards, this term must be discarded in the final amplitude fit with the
selected model, otherwise the parameter uncertainties would be biased.

The implementation of the LASSO procedure differs between the D® — hth=—ntn~
analyses. For DY — wtr~7ntn~ decays, the set of amplitudes is selected using the op-
timal value of A = 28, and is henceforth called the LASSO model; figure 5(a) shows the
distribution of BIC values obtained by scanning over A where we choose the decay fraction
threshold to be 0.5%. It is important to note that there are certain groups of amplitudes
with the same angular distribution that are prone to produce artificially high interference
effects. Amongst them are the di-scalar amplitudes: D — (7w 7)g(7m)s, D — (77)so0,
D — oo, D — o fy(1370) and D — fp(1370) fo(1370) as well as the di-vector amplitudes:
D — (rm)p(nm)p, D — (m7)p p(1450)° and D — p(1450)° p(1450)°. In these cases, only
one amplitude of the group is included at a time and the model selection is performed for
each choice. It was further observed that the inclusion of the D — x[m(1300) — 7 (7 7)p]
amplitude leads to a D — p(770)" p(770)" D-wave fraction much larger than the S-wave
fraction with a large destructive interference. As we consider this as unphysical we do not
include it in our default approach but in an alternative model presented in appendix D. In
addition, we repeated the model selection procedure under multiple different conditions:
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Figure 5. Difference in the BIC value from its minimum as function of the LASSO parameter A
for D — 7fn~7t7~ (a) and Stage 1 D° — KTK~7t7~ (b).

(a) The fit fraction threshold for inclusion in the final model was varied within the interval
[0.05,5]%. The set of selected amplitudes is stable for thresholds between 0.1% and
1%. Other choices result in marginally different models containing one component
more or less.

(b) Instead of BIC, the Akaike information criteria (AIC(\) = —2 log £ + 27 [58]) was
used to optimize A. For a given threshold, the AIC method tends to prefer lower A
values. However, the set of models obtained varying the threshold within the interval
[0.05,5]% is identical to the BIC method.

(¢) The amplitudes selected under nominal conditions were excluded one-by-one from
the set of all amplitudes considered.

From that we obtained a set of alternative models shown in appendix D.

Due to the vast number of potential amplitude components and computational limits
imposed by the consideration of multiple data samples in the D — K+ K~ntnx~ anal-
ysis, a staged LASSO method using only the flavor-tagged data, representing over 90%
of the available statistics, is employed. The approach taken is based on the assump-
tion that the signal decay proceeds primarily by doubly resonant decays, i.e. cascade and
quasi-two-body decays, rather than decay amplitudes with non-resonant components. In
Stage 1, only doubly resonant decays along with the simplest non-resonant component
(KTK™)g (m"m)g are considered. Figure 5(b) shows a plot of the complexity factor A,
against the resulting BIC values. We found that the fit cannot distinguish between am-
plitudes with K*(1680)* — K*(892)° 7T and K*(1410)T — K*(892)° #F, which both
peak outside the kinematic range of the D decay’s phase space. We therefore only include
K*(1680)T — K*(892) 7T in our nominal model. An alternative fit with the K*(1410)%,
which has marginally worse fit quality is presented in table 20.

In Stage 2, the LASSO procedure is again performed with the components selected
by Stage 1 and all single-resonant components. It should be noted in the case of cascade
decays that if LASSO picked an amplitude component but not its conjugate decay in the
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first stage, the conjugate is also considered again in this stage. Once more, the interplay be-
tween D — SS amplitudes leads to very large interference terms, and thus f,(980) (77 7)g
and f((980) (KT K~)s components are considered as a replacement for the non-resonant
(KTK™)g ("7 )s component in an alternative model. The final fit merges the compo-
nents chosen in Stage 1 and Stage 2 and includes the CP-tagged data. Within this set of
amplitudes, 6 are considered insignificant relative to their error and removed from the fit
with no significant impact on fit quality.

6 D° — nta—ntwx~ amplitude analysis results

6.1 Amplitude model fit results

Table 3 lists the real and imaginary part of the complex amplitude coefficients a;, obtained
by fitting the LASSO model to the data, along with the corresponding fit fractions. The
letters in square brackets refer to the relative orbital angular momentum of the decay prod-
ucts. If no angular momentum is specified, the lowest angular momentum state consistent
with angular momentum conservation and, where appropriate, parity conservation is used.
The interference fractions are given in appendix E. Figure 6 shows the distributions of
selected phase space observables, which demonstrate reasonable agreement between data
and the fit model. We also project into the transversity basis to demonstrate good de-
scription of the overall angular structure in figure 7: the acoplanarity angle y, is the angle
between the two decay planes formed by the 77~ combination with minimum invariant
mass, min[m(7+77)], and the remaining 777~ combination in the D rest frame; boosting
into the rest frames of the two-body systems defining these decay planes, the two helicity
variables are defined as the cosine of the angle, #, of each 7™ momentum with the D flight
direction.

In order to quantify the quality of the fit in the five-dimensional phase space, a x?
value is determined by binning the data;

) Nbins (Nb o N;}XP)Q

X = Z NP (6.1)
b=1 b

where Ny is the number of data events in a given bin, Npr is the event count predicted
by the fitted PDF and Ny is the number of bins. An adaptive binning used in ref. [13] is
used to ensure sufficient statistics in each bin for a robust x? calculation. At least 25 events
per bin are required. The number of degrees of freedom v, in an unbinned fit is bounded
by Npins — 1 and (Npins — 1) — Npar, where Np,, is the number of free fit parameters. We use
the x? value divided by v = (Npjns — 1) — Npar as a conservative estimate. For the LASSO
model, this amounts to x?/v = 1.40 with v = 221 and Npar = 34, indicating a decent fit
quality.

In addition to the best five models as determined by the LASSO procedure, a further
four alternative models are studied and presented in table 18. These comprise an “Ex-
tended” model whereby all conjugate partners of non-self-conjugate intermediate states
chosen by the LASSO procedure are included. Two involving the removal of the 7(1300)

—90 —



‘POIOPISUOD S[OPOUWL SATYRUIS)[B S} WOIJ SISLIE UOIIORIJ 91 97} Ul AJUTR)ISOUN PIIY)
O], 'SOOINOS JI}BWI)SAS WIOIJ SOSLIB PUOIIS I} S[IYM ‘TedI)SIje)s SI AJUTeIIaoun pajonb §sIy oY) ‘SHUSIOIPO0d 31 9} IO '§ UOIJI9S UI PICLIOSIpP se
+(0921)™ _x < (7 pue _(09Z1)'0 4L < (7 J0 oseyd pue opnjruSeur 0AI}R[OL 9} SOLIISOP _(09ZT) D L < (7 103 poysi] 1o3ourered 35 xo[dwoo oy,
TOPOW OSSV'T _ L L 2 L 4 (7 OU3 JO jyuouoduwon yoes JOo UOIORY 1 PUR Sjusmiood opnjrjdure xo[duwoo ayy jo jred Areurdew pue [eoy ‘g 9[qe],

9LFVIFO0OTF0cCT

wng

ECFEOFIO0FTC
GEFLIFOTFCS
E0FI9TFG0F0L
OTFTIFLO0FTC
0€EFCTFOTF99
CeFCVTF8TIFCIC
60F80F90+FC€E

T0°LC + TL°TC + L8'CLT—
LLYV FCICF VI L—
L9€F8F'T+080C—
E8'TFGE'T F68°8
€69 F¢9€ F v ac—
VAT F 179 F €612
84TV + 1¢'¢¢ + 86°60C—

9Y°¢C F TL'1C F LV vE—
ITGFVEEF66€E—
WTFECTFIGC—
00 F VST FLEC
Vv F617F+66'1F
VO'6T + 189 F 1L°LC
8T'GT + T¢'¢C + G€' 16—

(0221)%f (0L21)% « (a

0(0LL)0 0+ a
(0L£1)% 0 (a

[0 42 < 1 (029T)%2] _1 <

0(0L2)d o(0L2)d «+ [alea
0(022)d 4(0LL)7 + [d]oa
0(022)9 4(0LL) « [S]oa

od

60FL0OFI90TFLT LSTY FG6°0V F 68°8FE  FFLLTF €TTh F €667 — [(0221)%f t2 <+ (0L91)%%] _L <
CIFTTIFLOFVE VSFEFCTICFR6T6— VO TIE F6STCF LG LL [0 2 (0¥91) 0] _x <+
STF60FI0FCHT  GLETFLOGIF680T— 0982 F 6502 F0raei— [o(0LL)d vx <+ [@](0¥91)'0] _r <+ (@

0c+0Cc+90+0€
T'EFSTF60F89
VOFTOFC0F80
60FS0F90FTE
GCFTICFVIFCOI
LTFCTEFECTTTRE

¢S’ LF+329Cc+614l
06'¢ F75€F 0861

LT0°0 F 7200 F 08T°0
8E'6T F IGFT F L8 LIT
(poxy) 00°0

809 +6€C + 87'9—
V76 +80€F IT'GT—

9€0°0 F 820°0 F 8120
6771 F S8°€T F 979G
(Poxy) 007001

—(09z1)™ L2« (@

[0 1 1(092T)™] _x <
[6(022)0 42— 4 (092T) 0] _x

[0 _x < _(00€1)] 42+ o
[0 42 L(00€T)L] —L + o
[0 _x < _(0921)"] L2 (@

[o(022)d _x + _(0921)'] 42+ o7

oad
— oa

(%)

('n)g

("0)¥%

[Puueyd ARd9(]

- 21 —



< 600F T q < [ ]
= F E S (o .
2 S00F E ]
&) E 3 QO 800 - n
l’(\} 400 |- ] % F B
S o ] (=] I 1
g F 1 - 600 —
SAI = 1 S °F ]
172 r b 172} = -
5 200F {1 5% E
@ F ] @ r ]
100 3 200 - .
0 E ! I P, 7 0 L ]
0 0.2 0.4 0.6 0.8 1 0 1 2
min[mX(xw* T)] (GeVZc*) max[m2(n* T)] (GeVZc?)
ra E T T E fa T T 3
:8 3 3 2o ]
> 800E E ]
O 700F E O]OOO —
D 600F 1 2 so0f 3
< E < i ]
S 500 =) [ ]
3 400 EE 3
= E = ]
o 300 E S 400 e
| 200 E soofl ]
100 f 3 E
% 1 2 % 1 2
mX(m* ) (GeVch m2(wt ) (GeV/ch
g 900 z_ T _i 4\; oo g | L E L R AL | 'é
O 700F 3 of 3
8 600F E & s00f 3
S S00E 3 S 400F E
7 400 E Z E 3
= . F i g 30F E
S 300F 1 ¢ _f E
B 200 4 & E
100E- 3 100 E
E FRRTCRRRRTT N TR LT, L E . " T [T Y =
% 1 2 3 0 1 2 3
min[mX(w* ©* )] (GeV/c?) max[m2(n* T+ )] (GeVZc?)
Yo 800F HERE: N ' ' i
- i KX 700F E
s "8 ERC: E
g 600 - 4 O E
E ] o0 '_ -
g swf ERS S00 E
S 400f s E
2] E 3 12} F 3
£ 300F 3 £ 300 3 E
R 200 1 @ 00F E
0 E L. . 0 ; s N N s 1 1 N N R .:
0 1 2 3 1 2 3
min[mX(r* © )] (GeV¥c? max[m2(n* 7 1)) (GeVZ/c*)

Figure 6. Invariant mass distributions of D° — 7t7~7t7~ signal candidates (points with
error bars) and fit projections (black solid line). The signal component is shown in blue
(dashed), the background component in red (dashed) and the wrongly tagged contribution in green
(dashed). While the m? (77 ~) includes all four possible 77~ combinations, the min[m? (77 ~)]
(max[m? (77 ~)]) distribution includes the two 77~ combinations with the lowest (highest) in-
variant mass. The min[m? (7t 77 7)] (max[m? (7t 7t77)]) distribution includes the 7+ 77~ com-
bination with the lowest (highest) invariant mass. The effect of the K2 veto can clearly be seen in
the top left projection.
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Figure 7. Angular projections of the D° — 77~ 7+ 7~ fit results (black solid line) in the transver-
sity basis. The signal component is shown in blue (dashed), the background component in red
(dashed) and the wrongly tagged contribution in green (dashed).

and a1(1640) resonances are described in the next section, while another based on the
FOCUS model [12] is also considered. From this sample of alternative models, except the
one based on the FOCUS model due to its poor fit quality, a model-dependent error on
the fit fractions and the resonance parameters is derived from the variance. If one of the
nominal amplitudes is not included in an alternative model, the corresponding fraction is
set to zero.

The dominant contribution is the a;(1260) resonance in the decay modes a1(1260) —
p(770)°7 and a1(1260) — on followed by the quasi-two-body decays D — o f5(1370)
and D — p(770)°p(770)°. We find that the decay D — a;(1260)" 7~ dominates over
D° — a1(1260)"7", which is similar to the pattern observed in the B sector, where
B® — a1(1260) "7~ is preferred over B® — a1(1260) 7" [59, 60].

6.2 Lineshapes of a;(1260), 7(1300), a;(1640)

Resonance properties that were also determined from the fit to data are given in tables 4
and 5. The mass and width of the a;(1260) meson are in good agreement with the PDG
estimates, mg, (1260) = 1230 £ 40 MeV/c? and Lay1260) = 250 — 600 MeV; however they
differ somewhat from one of the most precise single measurements to date, mq, (1260) =
1255 £ 6 (stat)ﬂ7 (syst) MeV /¢ and Ty, (1260) = 367 £ 9 (stat)fgg (syst) MeV, performed
by the COMPASS Collaboration [61]. It is, however, not straightforward to compare
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Parameter

Value

Ma, (1260) (MeV/c?)
Ly, (1260) (MeV)

1225 29+ 17+ 10
430 £24 £ 25 £ 18

1128 £ 26 £ 59 £ 37
314 £39£61£26
1691 £18 £16 £25
171 +£33+20+ 35

M7 (1300) (MeV/CQ)
Lx(1300) (MeV)
Ma, (1640) (MeV /e?)
L'y, (1640) (MeV)

Table 4. Resonance parameters determined from the fit to D° — 77~ 77~ decays. The uncer-
tainties are statistical, systematic and model-dependent, respectively.

Ma1(1260) Lai(1260) May(1640) Laq(1640)  Mr(1300) L (1300)
M, (1260) +1.000 +0.689 —0.065 —0.282 +0.116 —0.258
L. (1260 +1.000 —-0.114 —0.176 +0.013 —0.004
My (1640) 41.000  -0335 —0.136 —0.119
L4, (1640) +1.000 —0.258  40.370
M (1300) +1.000  —0.425
'z (1300) +1.000

Table 5. The statistical correlation coefficients between the resonance parameters determined from
the DO — nta—rtr~ fit.

these values to our measurement since the COMPASS analysis was performed assuming a
relativistic Breit-Wigner, cf. eq. (4.11), for the lineshape of the a;(1260) resonance. When
fitting our data with a relativistic Breit-Wigner for the a1(1260) propagator we obtain the
values my, (1260),RBW = 1221 £ 8 (stat) MeV /c? and Ly, (1260),RBW = 387 £ 18 (stat) MeV.
When fitting our data with a constant width for the a;(1260) propagator, we obtain the
values mg, (1260),s8w = 1134 + 8 (stat) MeV /c? and Ly, (1260),9Bw = 367 £ 15 (stat) MeV.
Our nominal lineshape model is preferred over the relativistic Breit-Wigner (constant width
Breit-Wigner) with a significance of 100 (7o), determined from the log-likelihood difference
o = +/A(—2logL). The a1(1260) lineshape parameters have also been measured in the
three-pion decay of the tau-lepton. The most recent measurement using this decay is by
CLEO and finds m,, (1260) = 1331 £10 £ 3 MeV /c? and Ly, (1260) = 814 £ 36 £ 13 MeV [62].
The unusually large value for the width might be related to the specific choice of lineshape
parametrization. In ref. [39], the three-pion decay of the 7 lepton was studied using a
similar model for the a1(1260) propagator as used in the analysis presented here. From a
simultaneous fit to ALEPH [63], ARGUS [64], OPAL [65] and CLEO [62] data, the following
results are obtained: mg, (1260) = 1233 £ 18 MeV /c? and L'ay(1260) = 431 £+ 20 MeV, which
are in very good agreement with our measurement. The results of the FOCUS amplitude
analysis [12] are my, (1260) = 1240750 MeV /c? and T'y, (1260) = 56075 MeV; a potentially
relevant difference between their model and ours is that the only intermediate state decaying
to three pions included is the a;(1260) resonance, while our LASSO model also includes
the 7(1300), a1(1640) and m2(1670) resonances.
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Figure 8. Magnitude-squared (a), phase (b) and Argand diagram (c) of the quasi-model-
independent @;(1640) lineshape. The fitted knots are displayed as points with error bars and
the black line shows the interpolated spline. The Breit-Wigner lineshape with the mass and width
from the nominal fit is superimposed (red area). The latter is chosen to agree with the interpolated
spline at the point #(4) =1, (A) = 0.

The a1(1640) resonance, the first radial excitation of the a;(1260) meson, was ob-
served in ref. [66] decaying to om and f2(1270)7, and in ref. [67] decaying to (p(770)°7)p,
though confirmation is still needed. We find the decay modes a;(1640) — (p(770)°7)p
and a1(1640) — (o) with a combined fit fraction of 6.6%. The mass and width obtained
from the fit are compatible with the PDG average of m, (1640) = 1647 4+ 22 MeV/ c? and
L4 (1640) = 254 £27MeV. The scalar 7(1300)" resonance is seen decaying to or™ and its
mass and width are also measured to be in agreement with other experiments [11].

It is important to note that even though the a;(1640) and the 7(1300) resonances
are selected by the model building, satisfactory fit results can also be obtained without
them. The LASSO models obtained when explicitly excluding the a;(1640) and the 7(1300)
resonance from the pool of amplitudes are given in appendix D. These models are used to
generate many pseudo-data sets according to the “no-aq(1640)” or “no-7(1300)” hypotheses
denoted as Hy. The pseudo-data is then fitted with Hy and the alternative hypotheses, e.g.
a1(1640) hypothesis Hy, in order to predict the distributions of the log-likelihood differences
A(—=2log £) =2 log(L(H1)/L(Hp)) under the Hy hypotheses. We use a Gaussian function
to parameterize the A(—2 log £) distributions. By integrating the tails of the Gaussians
above the A(—2 log £) value observed on the real data, the Hy hypotheses can be excluded
in favor of the a;(1640) and m(1300) alternate hypotheses at the 2.4¢0 and 6.1c levels,
respectively.

Since the a1(1640)™ resonance is not yet well established, we verify its resonant phase
motion in a quasi-model-independent way as pioneered in ref. [68]. For this purpose, the
Breit-Wigner lineshape is replaced by a complex-valued cubic spline. The interpolated
cubic spline has to pass through independent complex knots spaced in the m?(rtat7™)
region around the nominal mass. The position of the knots is chosen ad-hoc. We verified
on simulated experiments that with this choice a Breit-Wigner lineshape can be properly
reproduced, given there is a real resonance. The fitted magnitudes and phases of the
knots are shown in figure 8, where the expectations from a Breit-Wigner shape with
the mass and width from the nominal fit are superimposed taking only the statistical
uncertainties on the mass and width into account. The interpolated spline generally
reproduces the features of the Breit-Wigner parametrization. In particular, the resulting
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Figure 10. Magnitude-squared (a), phase (b) and Argand diagram (c) of the quasi-model-
independent 7(1300) lineshape. The fitted knots are displayed as points with error bars and the
black line shows the interpolated spline. The Breit-Wigner lineshape with the mass and width from
the nominal fit is superimposed (red area). The latter is chosen to agree with the interpolated
spline at the point #(A4) =1, I(A) = 0.

Argand diagram shows a circular, counter-clockwise trajectory which is the expected
behavior of a resonance. Note that the high-mass tail of the a;(1640) is outside of the
phase space boundary such that it is not possible to investigate the full phase motion.
Similar quasi-model-independent studies are performed for the a;(1260) and m(1300)
resonances as shown in figures 9 and 10, respectively. Since the investigated resonances are
all very broad, the quasi-model-independent lineshapes can absorb statistical fluctuations
in the data, especially near the phase space boundaries. Therefore, the agreement with
the Breit-Wigner expectation in all cases indicates that it is qualitatively reasonable that
these resonances are indeed real features of the data.

6.3 Global CP content measurement

The fractional CP-even content, F{™, is determined from the integral in eq. (4.28), using
4

it
decay. The uncertainty on Fj‘;“ is calculated from pseudo-experiments by randomly varying

the nominal model for A‘gro and AT assuming no direct CP violation in the D meson
the free parameters of the amplitude fit within their measured statistical and systematic
uncertainties. For each variation, Ffr is redetermined, and the square root of the sample
variance of these values is taken as the uncertainty. An additional systematic uncertainty
is assigned by computing Ffr for each of the alternative amplitude models. The standard
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Decay channel Lp (%) Significance (o)

D% — 7~ ay(1260)™ +4.7+2.6+4.3+24 0.9
DO — 7% ay(1260)~ +13.74+13.8 +£9.8+5.8 0.8
DY — 7= 7(1300)* —1.6+£129+50+44 0.1
DY — 7% 7(1300)~ —5.6£11.9 +25.6 +10.3 0.2
D — 7~ a1(1640)t  +8.6 £17.8 £16.0 + 10.8 0.3
D° — 7~ m3(1670)* +7.3+15.14+8.0+6.6 0.4
D° — o f5(1370) —14.6 +£16.5+9.3+1.3 0.8
D° — o p(770)° +2.5+16.8 +-13.8 - 14.6 0.1

DY — p(770)° p(770)° —56+50+22+1.9 1.0
DO — f5(1270) f2(1270) —28.34+12.3+18.5+9.7 1.2

Table 6. Direct CP asymmetry and significance for each component of the D° — #tr—7nt7n~
LASSO model. The first uncertainty is statistical, the second systematic and the third due to
alternative models.

deviation of these values is taken as the additional model uncertainty. The obtained result,

F!™ (favor-tagged, model-dependent) = [72.9 & 0.9 (stat) £ 1.5 (syst) £ 1.0 (model)] %,

(6.2)
is consistent with a previous model-independent analysis of CP-tagged events [51],
F{™(CP-tagged, model-independent) = (73.7 & 2.8) %. (6.3)

6.4 Search for direct CP violation

A search for CP violation is performed by fitting the LASSO model to the flavor-tagged
DY and D° samples. In contrast to our default fit described in section 5, we now allow
the amplitude coefficients for D° — 7t7~7T7~ and D — 7~ nT7~ 7t decays to differ, as
described in section 4.3.

The masses and widths of the resonances are fixed to the values obtained in the nom-
inal fit. Possible additional biases due to this assumption are included in the systematic
uncertainties which are otherwise determined as described in section 8. Table 6 compares
the resulting fit fractions for the D? and D decays. The sensitivity to Aic p is at the level
of 4% to 22% depending on the decay mode. No significant CP violation is observed for
any of the amplitudes. Also, the integrated CP asymmetry over phase space is found to be

A, = [+0.54 4 1.04 (stat) £ 0.51 (syst)]%, (6.4)

which is consistent with C'P conservation. Due to the cancellation of systematic uncer-
tainties in asymmetry-like quantities, the only remaining source considered for the global
CP asymmetry is the tagging efficiency ratio, which is set to unity for this purpose. This
nominal value of A4C7rp is consistent with that which can be found from the amplitude model
via eq. (4.31), A, = [+0.60 & 0.56 (stat)]%.
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7 D° 5 KTK-ntn~ amplitude analysis results

7.1 Amplitude model fit results

Table 7 lists the real and imaginary part of the complex amplitude coefficients a;, along
with the corresponding fit fractions. The interference fractions are given in appendix E.
Figures 11 and 12 show the distributions of selected phase space observables, which demon-
strate reasonable agreement between data and the fit model. For the flavor-tagged data
only, we also project into the transversity basis to demonstrate good description of the over-
all angular structure in figure 13: the acoplanarity angle y, is the angle between the two
decay planes formed by the KK~ combination and the 777~ combination in the D rest
frame; boosting into the rest frames of the two-body systems defining these decay planes,
the two helicity variables are defined as the cosine of the angle, O+, of the K™ momentum
with the D flight direction, and the cosine of the angle, 6+, of the 77 momentum with the
D flight direction. In contrast to the treatment of the a1(1260) and 7(1300) substructure
in the D — 77~ 7t 7~ analysis, we do not enforce the same amplitude substructure for
the K (1270)", K(1400)", K(1680)" decays as for K(1270)~, K(1400)~, K(1680); this
choice has historical reasons. It is re-assuring to see that the results we obtain without
these constraints are consistent with what one would expect if such constraints had been
applied (cf. model A in table 20). For the LASSO model, the x?/v is 1.5 with v = 116,
where the effective number of degrees of freedom is determined with a pseudo-experiment
technique. Its value is chosen to be the one that best converts the distribution of x? val-
ues for each experiment into the standard uniform distribution. This method differs from
that used in D° — 7t7~ 77~ as the relatively small size of the data sample here would
otherwise result in negative degrees of freedom.
Four alternate models are presented in appendix D:

(A) a model that requires the use of conjugate amplitudes for all present non-self-
conjugate decays

(B) replacing K*(1680)" — K*(892)" 7T with the K*(1410)" — K*(892)° 7+ amplitude

(C) replacing the flat non-resonant term with the fy(980) (77~ )s and f,(980) (KK ™)g
amplitudes

(D) the model previously reported in ref. [13]

The results between models are broadly consistent where the largest individual fit
fraction corresponds to the D° — ¢(1020) p(770)° amplitude. We found that we cannot
distinguish between the K*(1680) meson in our default model and the K*(1410) meson
trialled in alternative model B. Both of these components peak outside the kinematically
allowed range.

Relative to the previous analysis of the same data set [13], the most notable apparent
difference in our default model is the fit fraction of the ¢(1020) p(770)° S-wave, which
was 38.3% in ref. [13], but only 28.1% in our current analysis. This is because of our
modified description of the V'V D-wave. In ref. [13], the component labeled as D-wave is
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Figure 11. Invariant 2-body mass distributions of D — K+ K~nT7~ signal candidates shown
as points with error bars. The overall fit projection is shown in black, the signal in blue and the
background in red. The effect of the Kg veto can clearly be seen in the bottom right projection.

a superposition of D and S waves, a choice which was motivated by the convention used
in four-body amplitude analyses at the time. This led to a large interference between the
components labeled as S wave and D wave of -15.7%. In this analysis, as we parametrize a
pure D-wave, we find an interference fraction between the ¢(1020) p(770)" S- and D-waves
of -3.7%. Taking these interference fractions into account, the combined ¢(1020) p(770)° S-
and D-wave fraction of 26% is therefore consistent between both analyses. In contrast to
ref. [13], we also find a small, but significant ¢(1020) p(770)° P-wave component. Another
difference in the two-resonance topology is in the K*(892)° K*(892)° mode, where our
results indicate a significant P- and D-wave contribution, while in ref. [13], only an S-
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Figure 12. Invariant 3-body mass distributions of D° — K*K~7t7~ signal events shown as
points with error bars. The overall fit projection is shown in black, the signal in blue and the
background in red.

wave contribution was observed. Note though, that model 6 in ref. [13] has a P-wave in
the K*(892) (Kn)p decay of a similar size as our K*(892)° K*(892)° P-wave. The largest
differences in our results are, as might be expected, in the cascade topology, because of
the significant changes we implemented to improve the description of the lineshapes of
resonance decays to three-body final states. We find that the process DY — K*** K~
where K** represents any excited kaon, dominates over D — K**~ Kt analogous to
the dominance of D — a;(1260)" 7~ over D° — a1(1260)~ 7T decays. In ref. [13], this
was only the case for the K(1270) — K*(890) m amplitude. We also observe a significant
K(1270) — K*(1430)7 component in agreement with ref. [14] but not with ref. [13].
The description of this type of decay chain, with a daughter whose mean mass is outside
the kinematically allowed region, benefits particularly from our improved lineshapes. As in
ref. [14], but unlike in ref. [13], we also see a significant K (1400) — K*(890) 7 contribution,
albeit at a lower level.

7.2 Global CP content measurement

Following the same approach as for D° — 7t7~7+7~ decays, for the fractional CP-even
content we obtain

FERTT = [75.3 £ 1.8 (stat) % 3.3 (syst) & 3.5 (model)] %, (7.1)

for the nominal D° — K+ K ~7nt7~ model, the first such measurement in this final state.
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7.3 Search for direct CP violation

Following the same approach as for D° — 7t7~ 77~ decays, we measure the direct CP
violating parameters given in table 8. The CP asymmetry over phase space is found to be

ABET™™ — [11.84 4 1.74 (stat) =+ 0.30 (syst)]%. (7.2)

All measurements are consistent with CP conservation.

8 Systematic uncertainties

There are three main sources of systematic uncertainties on the fit parameters to be consid-
ered; an intrinsic fit bias, as well as experimental and model-dependent uncertainties. For
each four-body decay, the fit bias itself is determined from a large ensemble of MC pseudo-
experiments generated from the nominal LASSO model. The mean difference between the
generated and fitted parameters are taken as a systematic uncertainty.

The experimental systematic uncertainties occur due to imperfect knowledge of the
yield of background events and their distribution in phase space, the wrong tag proba-
bility, and various effects on the efficiency variation over phase space. To estimate the
systematic uncertainty related to the background shape that was fixed from sideband, the
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Decay channel AL p (%) Significance (o)
DY — K~ K;(1270)* +25.34+9.7+9.2+8.8 1.6
DY — K+ K(1270)~ —-50.4+12.0£159+24 2.5
D° 5 K~ K, (1400)* +9.2+£15.1+203+ 1.1 0.4
D° 5 K~ K*(1680)* 1714+ 21.8+18.0+4.2 0.6
DO 5 K*(892)°K*(892)°  —4.6+9.0+9.8+5.7 0.3
DO — $(1020) p(770)° 1.5+ 4.6+8.0+0.5 0.1
D° — K*(892)° (K~ n+)s —13.1+17.90429.7+9.4 0.4
DO = (1020) (rT 77 )s  —4.0+18.0 £ 44.6 £ 1.2 0.1
DO - (K+K-)g(ntn)s +8.2+£10.9+16.9+2.7 0.4

Table 8. Direct C'P asymmetry and significance for each component of the D° — KTK - 7t7~
LASSO model. The first uncertainty is statistical, the second systematic and the third due to
alternative models.

amplitude fit is repeated where the background parameters are allowed to vary within
their statistical uncertainties. In addition, several alternative background PDF's are tested
whereby each background contribution is replaced, one at a time, by a flat, non-resonant
model. The largest deviations from the nominal values are assigned as systematic uncer-
tainties. The uncertainty due to both the signal fraction and the wrong tag probabilities
in the flavor-tagged samples are estimated by repeating the fit and allowing them to vary
under Gaussian constraints. The signal fraction uncertainty for the CP-tagged sample is
determined by fixing the fraction to unity and repeating the fit. Various assumptions made
on the acceptance in the fit model are also considered. As the acceptance comes from MC,
we account for differences between data and MC arising from tracking and particle iden-
tification as a function of momentum of the daughter particles. Using correction factors
obtained from independent internal CLEO studies, the MC is reweighted separately for
each effect and the fit to data repeated. While detector resolution can be safely ignored
in D° — 7t7~ 77~ decays, neglecting the effect of finite momentum resolution on the
#(1020) resonance in D° — KTK~ntn~ decays may lead to a bias. To counter this, a
large number of pseudo-experiments were generated by distributing MC events that have
passed full selection and weighted by the LASSO model found from data. Each experiment
is then fit with the signal model where the mean difference between the generated and
fitted parameters are assigned as systematic uncertainties. Finally, the integration error
due to the limited size of the MC sample is of the order of 0.5%, so it is neglected as a
source of systematic uncertainty.

Model-dependent uncertainties arise from fixed lineshape parameters and the effects
of interference from Cabbibo-suppressed decays on the tag-side in the CLEO-c¢ flavor-
tagged data samples. The uncertainties due to fixed masses and widths of resonances are
evaluated by varying them one-by-one within their quoted errors. In our nominal fit, the
Blatt-Weisskopf radial parameter is set to rgw = 1.5 (GeV/c)™1. As a systematic check,
we set the radial parameter to zero. For the calculation of the energy-dependent widths,
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the partial widths into the w77 channel are obtained using an iterative procedure described
in section 4.1. The systematic error of this approach is estimated by repeating the fit using
the iteration previous to the final. In some cases, the energy-dependent width relies on
external measurements of intermediate branching fractions. In D% — 7ta~ 77, their
impact is studied by recalculating the width considering only decays into the mrm (77)
final state for three-body (two-body) resonances. For D® — K+K~7t7~, the energy-
dependent widths of the three-body resonances are recalculated assuming a flat phase
space distribution. Similarly, the energy-dependent mass of the a;(1260) resonance is
approximated by a constant and the resulting shifts of the fit parameters are assigned as
systematic errors.

The systematic uncertainty related to interference from the tag-side arising between
the CKM-favored ¢ — s and CKM-suppressed ¢ — d amplitudes in the final states used
for flavor-tagging is accounted for by using an alternative signal PDF at the cost of two
additional fit parameters as described in ref. [13].

All systematic uncertainties are added in quadrature and summarized in tables 9 and 10
for D° — 77~ 7t7~ and in tables 11 and 12 for D° - KT K- 7nt7n~.

9 Conclusion

The first amplitude analysis of flavor-tagged D° — 777~ 77~ decays has been presented
based on CLEO-c data. Due to the large amount of possible intermediate resonance compo-
nents, a model-building procedure has been applied which balances the fit quality against
the number of free fit parameters. The prominent contribution is found to be the a;(1260)
resonance in the decay modes a1(1260) — p(770)° 7 and a1(1260) — o 7. Along with the
a1(1260), further cascade decays involving the resonances m(1300) and a;(1640) are also
seen. The masses and widths of these resonances are determined using an advanced line-
shape parametrization taking into account the resonant three-pion substructure. The reso-
nant phase motion of these states has been verified by means of a quasi-model-independent
study. In addition to these cascade topologies, there is a significant contribution from the
quasi-two-body decays D° — p(770)° p(770)° and D° — & f5(1370). The CP-even fraction
of the decay D° — ntn~nt7~ as predicted by the amplitude model is consistent with a
previous model-independent study. The amplitude model has also been used to search for
CP violation in D* — 77~ 77~ decays, where no CP violation among the amplitudes is
observed within the given precision of a few percent.

Moreover, the amplitude analysis of D — KK -7 7~ decays performed by CLEO [13]
has been revisited by applying the significantly improved formalism presented in this
paper, using decays obtained from CLEO II.V, CLEO III, and CLEO-c data. The
largest components are the processes D° — $(1020) p(770)°, D° — K;(1270)" K~ and
D% — K(1400)* K —, which together account for over half of the D® — K+ K~nt7~ decay
rate. The fractional CP-even content is measured for the first time and a search for CP
asymmetries in the amplitude components yields no evidence for CP violation.

In addition to shedding light on the dynamics of D° — hth~7t7~ decays, these
results are expected to provide important input for a determination of the CP-violating
phase v (¢3) in B~ — DK~ decays.
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A Energy-dependent widths
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Figure 14. Energy-dependent width for the f,(1370) (a) and f2(1270) (b) resonances. The total
width is shown in black (solid), while the partial widths into the channels 77, 7rrm and KK + nn
are shown in blue (dashed), red (dotted) and green (dashed-dotted), respectively.
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Figure 15. Final iteration of the energy-dependent width for the 7(1300) (a) and a1(1640) (b)
resonances.
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Figure 16. Energy-dependent width for the m5(1670) resonance. The total width is shown in
black (solid), while the partial widths into the channels 77, wp(770) and K K7 are shown in blue
(dashed), red (dotted) and green (dashed-dotted), respectively.
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Figure 17. Energy-dependent width for the K;(1270) (a) and K;(1400) (b) resonances. The total
width is shown in black (solid), while the partial widths into the channels K7m and Kw are shown
in blue (dashed) and red (dotted), respectively.
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Figure 18. Energy-dependent width for the K*(1410) (a) and K*(1680) (b) resonances. The total
width is shown in black (solid), while the partial widths into the channels K7m and K7 are shown
in blue (dashed) and red (dotted), respectively.
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B Spin amplitudes

The spin factors used for D — P; P, P3 Py decays are given in table 13. To fix our phase
convention, we give the exact matching of the particles P, P», P3, and P, in the spin factor

definition to the final state particles in specific decay chains in tables 14 and 15.

Number Decay chain Spin amplitude

1 D— (PP), P—(SP), S — (P3Py) 1

2 D= (PP),P— (VP),V—(P;P) Wal(P) L) (V)

3 D= (AR), A= (VP),V = (PsPy) a(D) (A )L<1> V)

4 D — (AP), A[D] = (P, V), V = (Ps Py) L(l)a( ) (2)(A) Lays(V)

5 D= (AP), A= (SPy), S — (Ps Py) Li1ya(D) L{;(A)

6 D= (AP), A= (TPR), T — (P Py) Liya(D) Lys(A) Ly (T)

7 D= (Vib), i = (VaP), Vo — (Ps Py) Liayu(D) P4 (Vi) €apns Ly (Vi) i, L) (Va)
8 D — (PTPy), PT — (V P,), V — (P3 Py) Ligyas(D) P (PT) L1y (PT) Liys(V)
9 D — (PTPy), PT — (SP,), S — (P3 Py) Lisyap(D) Loy (PT)*?

10 D — (PT Py), PT — (T Py), T — (P3 Py) Lizyas(D) Py (PT) Lzyss(T)

11 D= (TP), T~ (VP), V= (PsP)  Lgu(D) P(f;jﬂ”(T) €ags Loy, (T) P} PG (T) Lityo (V)
12 D — (Ty P), Ty = (T2 Py), T — (P3 Py) L2y, (D) PlyP(Th) €agno Ly (T1) Y, Ly (Th)
13 D — (51 53), S — (P Py), Sa — (P3 Py) 1

14 —(VS),V = (P P), S — (P Py) Li1ya(D) L (V)

15 D= (W), Vi = (PLP), Va = (B3 Py) Lya(V1) L{}) (V2)

16 D[P] = (Vi Va), Vi = (P, P2), Va — (P3 Py) €agno L) (D) Ly (Vi) LY, (V) bl

17 D[D] — (Vi V2), Vi = (P1 P2), Va — (P3 Py) Liz)ap(D) L )(VI)L (V2)

18 D= (TS), T — (PLP), S — (PsPy) Lizyas(D) Ly (T)

19 - (VT), T = (P P),V = (PsPy) Wal(D) Laﬁ( T) L1ys(V)

20 D[D] = (T'V), T = (P P2), V = (P3 Py) €asy L3 (D) L‘f L Ly (V) b

21 D — (T\Ty), Ty — (P, Pb), Ty — (P3 Py) Ligyas(Th) Ly (T2)

22 DIP] = (W Ty), Ty — (P Py), Ty — (P3 Py) €agno LYy (D) L3 (T1) LYy, (To) Pl

23 D[D] — (T Tz), Ty — (Py P2), To — (P3 Py) Ligyas(D) L) (T1) Ly, (T2)

Table 13. Spin factors for all topologies considered in this analysis.

In the decay chains, S, P,

V, A, T and PT stand for scalar, pseudoscalar, vector, axial vector, tensor and pseudotensor,
respectively. If no angular momentum is specified, the lowest angular momentum state compatible
with angular momentum conservation and, where appropriate, parity conservation, is used.

— 41 —



Decay channel Spin factor number P, P, P3; Py
DY — 7~ [a1(1260)" — 7T p(770)°] 3 = at at T
D% — 7~ [a1(1260)" — 7t o] 5  at ot 7
DY — 7t [a1(1260)~ — 7~ p(770)°] 3 AR S S
DY — ot [a1(1260) — 7 o] 5 O S S
D% — 7= [7(1300)T — 77 o] 1 m at ot 7~
DY — 7t [7(1300)” — 7~ o] 1 AR S S
DY — 7~ [a1(1640)" D] — 7t p(770)°] 4 O S S
DY — 7~ [a1(1640)* *o] 5 o A Y
D% — 7~ [m2(1670)F — 7T+ f2(1270)] 10 m at ot 7
DY — 7~ [m2(1670)™ *o] 9 T wt ot a~
DY — o £,(1370) 13 ORI S S
D% — o p(770)° 14 UL S S
DO[S] — p(770)° p(770)° 15 ORI S S
DO[P] — p(770)° p(770)° 16 ORI S S
D[D] — p(770)° p(770)° 17 oL S Y
D% — £5(1270) f2(1270) 21 R S S

Table 14. Spin factors used for the decay chains included in the D® — 77~ 77~ LASSO model,
including the particle numbering scheme. The second column refers to the spin factors as numbered
in table 13, and the particles Py, P>, P53, and Py refer to those defined in table 13.

Decay channel Spin factor number P Py Py P
DY — K~ [K1(1270)" — n K*(892)"] 3 K- 7t Kt 7~
D° - K~ [K1(1270)* — 't K*(1430)°] 5 K- 7t Kt 7~
D° — K~ [K1(1270)* — K+ p(770)Y] 3 K- Kt at n~
D° - K+ [K;(1270)~ — K~ p(770)°] 3 Kt K- 7 «t
D° - K~ [K1(1270)" — KT w(782)] 3 K- Kt gt 7~
D% — K~ [K1(1400)" — 7+ K*(892)"] 3 K- 7t Kt 7~
D° — K~ [K*(1680)" — 7+ K*(892)7] 7 K- =« Kt =n~
DO[S] — K*(892)° K*(892)° 15 Kt & K- =t
D°[P] — K*(892)° K*(892)° 16 Kt 7= K- ot
D°[D] — K*(892)° K*(892)° 17 Kt 7« K «F
DO[S] — $(1020) p(770)° 15 Kt K- 7t n~
DO[P] — $(1020) p(770)° 16 Kt K- at 7~
D°[D] — ¢(1020) p(770)° 17 Kt K- #t 7
D% — K*(892)° (K~ 71)g 14 Kt 7= K- xt
DY — ¢(1020) (7t 77 )s 14 Kt K- 7t n~
DY = (KTK™)g(rt77)s 13 Kt K- 7t n°

Table 15. Spin factors used for the decay chains included in the D° — K+*K-atx~ LASSO
model, including the particle numbering scheme. The second column refers to the spin factors as
numbered in table 13, and the particles Py, P5, P3, and Py refer to those defined in table 13.
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C Considered decay chains

The various decay channels considered in the model building are listed in tables 16 and 17.

Decay channel

T o rto]

D° - 7~ [a1(1260)" — 7t o]
D° — 7w~ [a1(1260) T[S, D] — 7 p(770)°]
D° = 7~ [a1(1260)" — 7 f0(980)]
D° = 7~ [a1(1260)" — 7 f,(1270)]
D° = 7~ [a1(1260)" — 7 fo(1370)]
D° — 7~ [a1(1260) T[S, D] — 7 p(1450)°]
D% — 7~ [7(1300)" — 7t o]
D° — 7~ [7(1300)" — 7 p(770)0]
D° — 7w~ [7(1300)" = 7T (777 )p]
D° — 77 [a2(1320)T = 7t p 770)0]
D° = 7~ [a2(1320)" — 7 £,(1270)]
D° = 7~ [a1(1420)" — 7 fo(980)]
D° — w~ [m1(1600)T — 7t p(770)°]
D° = 7~ [a1(1640)* — 7t o]
D° = 7~ [a1(1640)"[S, D] — ' p(770)°]
D° = 7~ [a1(1640)" — 7 f5(1270)]
(1670)
(1670)
(1670)

D° — & £0(980)

D° — & £o(1370)

D° — £5(980) £0(980)
D° — £5(1370) fo(1370)
D — p(770)

770)° £0(980)

= p(
— p(770)° fo(1370)
= p(

1450)° &
DO[S, P,D] = (rm)p (nm)p
D°[S, P, D] — p(770)° (x 7)p
DP[S, P, D] — p(770)° p(770)°
D°[S, P, D] — p(770)° w(782)°
D[S, P, D] — w(782)° w(782)°
D[S, P, D] — p(1450)° (7 ) p
D[S, P, D] — p(1450)° p(1450)°
D° — £,(1270) o

D° — £5(1270) fo(980)
D[P, D] — f2(1270) p(770)°
D[S, P, D] — f2(1270) f2(1270)

Table 16. Decays considered in D° — 7t7~7+t7~ LASSO model building. For cascade non-self-
conjugate channels, the conjugate partner is implied.

43 —



Decay channel

D — K~ [K*(1410)* — 7+ K*(892)"]
D° — K~ [K,(1270)*[S, D] — ©+ K*(892)°]
D° — K~ [K(1270)"[S, D] — 7+ K*(1430)°]
D° — K~ [K(1270)F[S, D] — K7 p(770)]
D° — K~ [K(1270)F[S, D] — K+ w(782)]
D° — K~ [K;(1400) T[S, D] — 7+ K*(892)°]
D — K~ [K3(1430)t — 7+ K*(892)"]
D° — K~ [K3;(1430)t — KT p(770)"]
D° — K~ [K*(1680)" — 7+ K*(892)"]

[

D[S, P, D] — K*(892)° K*(892)°
D[S, P, D] — ¢(1020) p(770)°

DY — $(1020) w(782)

D[P, D] — f5(1270)° $(1020)

DY — p(7T70)° (KTK™)s

D[S, P, D] — p(770)° (KTK~)p
DY — K*(892)° (K~nt)s

D[S, P,D] — K*(892)° (K~77)p
DY — $(1020) (777 )s

DY[S, P, D] — ¢(1020) ("7 ~)p
DY — fo(980) (rF7™)s

DY — £(980) (K+K™)s

DY — (KTK™)s(rt77)s

Table 17. Decays considered in D° — K+t K~7t7~ LASSO model building. For cascade non-self-
conjugate channels, the conjugate partner is implied.

D Alternative fit models

The fit fractions and y? values of the baseline and several alternative models are summa-
rized in tables 18-20.
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Decay mode Extended No m(1300) No a;(1640) FOCUS
D® - 7~ [a1(1260)" — 7 p(770)°] 37.3+1.9 41.0+27 36.74£29 382428
D° = 7~ [a1(1260) " [D] — 7 p(770)°] - - 2.64+0.5 7.0+ 1.2
D° = 7~ [a1(1260)" — 7t o] 81+12  55+0.7 51+0.8 6.6 0.9
D° — 7 [a1(1260) — 7w~ p(770)°] 21404  3.0£05 1.040.2 -
D° — 7" [a1(1260) " [D] — 7~ p(770)°] - - 0.07 £ 0.04 -
D° — 7t [a1(1260) — 7~ o] 05+02  04£02  0.14£0.06 -
D° — 7~ [7(1300)* — 7t o] 8.6+0.9 - 10.7+1.8 -
D° — 7 [7(1300)" = 7~ o] 5.0+ 0.7 - 2.8+£0.8 -
D° = 77 [a1(1640)*[D] — 7t p(770)°]  2.9+£0.4 6.5+0.8 - -
D° — 7~ [a1(1640)" — 7t o] 3.0+0.7 - - -
D° — 77 [a1(1640)T — 7t f,(1270)] - 2.1+0.8 - -
D° — 7 [a1(1640) " [D] — 7~ p(770)°]  1.0+£0.6 - - -
D% = 7t [a1(1640)" — 7~ o] 1.1+0.6 - - -
D° — 7~ [ma(1670)" — 7T f2(1270)] 0.8+0.3 2.6+£0.7 3.4+08 -
D° = 7~ [m2(1670)T — 7t o] 33+05  34£06 1.0+0.3 -
D° — 7t [m2(1670) — 7 f2(1270)] 0.34+0.2 - - -
D° — 7t [m2(1670)” — 7~ o] 1.34+0.6 - - -
D 5o (nm)s - - - 24.7+2.7
D° — o fo(1370) 261+1.8 94+1.0 28.442.8 -
D° — £0(980) (7 7)s - - - 46+1.1
D — o p(770)° 10.6+1.1  63+0.9 74412 -
DO[S] — p(770)° p(770)° 0.9+0.3 3.240.7 0.8+0.4 5.0+ 1.4
DO[P] — p(770)° p(770)° 6.8+ 0.5 6.5+0.6 6.9+0.5 6.3+0.7
DO[D] — p(770)° p(770)° 1324+1.0 3.74+08 118416 32408

O f2(1270) (7 7)s - - - 24406

0 — f(1270) o - 1.14+0.7 1.4+0.4 -

O — f2(1270) f0(980) - 4.6+ 1.0 - -

O — £2(1270) f2(1270) 21404 79417 40408 -
Sum 135+4 107 +4 124+5 98 +4
My (1260) (MeV/c?) 12254+10  1225+9 123049 1304 + 14
Tu, (1260) (MeV) 442 + 26 460 + 30 421 + 26 529 + 38
Mo (1300) (MeV/c?) 1093 + 21 - 1135 + 22 -

' (1300) (MeV) 314 + 36 - 308 & 36 -

M, (1640) (MeV /c?) 1710 +£20  1727+20 - -

Lo, (1640) (MeV) 201 + 38 141 4+ 45 - -

X2 /v 1.52 1.79 1.55 2.36

v 217 223 223 237
FI™ (%) 70.84+0.9 70.8+0.9 72.6+0.9  61.7+0.8

Table 18. Fit fractions in percent for each component of specific alternative models for D° —

7tn~ntr~. Resonance parameters, Ffﬁ” and x?/v are also given. The uncertainties are statistical

only.
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Decay mode Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5
DO — 7 [a1(1260)T — 7T p(770)°] 37.1+£23 383424 352426 384+£25 357427
= [a1(1260)" — 77" o] 113410 98412 94+1.2 11.6+14 114+1.7
D° — 7% [a1(1260)" — 7~ p(770)°] 21405 33+06 37+£07 31406 41£07
D° = 7 [a1(1260)” — 7~ o] 06+02 09+£02 10+03 09402 13+03
D° = 7~ [7(1300)" — 7 (7 77 )p] - - - - 6.4+1.3
D° = n~ [7(1300)" — 7t o] 81+1.0 86+14 60+1.0 7.7+1.6 43=£11
D° — 7t [7(1300)" = 7~ (n" 7 7)p] - - - - 2.5+0.5
D° = 7 [7(1300)” = 7~ o] 43409 40+15 68+£16 49+1.6 1.7+04
~ [a1(1640)" [D] — «t p(770)°]  2.7+£09 45+15 39+16 52+1.1 3.7+1.8
= [a1(1640)" — 7t o] 32+13 14£05 24+1.0 3.0+09 12+07
= [m2(1670)T — 7t f2(1270)] 1.8405 06+02 12404 17405 1.6+04
= [m2(1670)T — 7T p(770)°] 2.7+0.5 - - - -
= [m2(1670)T — 7t o] 21+04 39+£06 33+06 38406 35+06
0 — afo(1370) 20.7+£2.2 193424 21.3+24 218425 204+2.1
D° — o p(770)° 554+1.0 87412 87+14 - 4.841.2
D° — £0(980) p(770)° - - 3.6+£0.8 - -
D — £,(1370) p(770)° - - - 5.8+1.0 -
D°[S] — p(770)° p(770)° - 1.5+04 08404 12404 09+04
D°[P] — p(770)° p(770)° 73405 68405 69+05 68405 64405
D°[D] — p(770)° p(770)° 104409 83+10 114414 109+12 160+2.1
D° — £>(1270) f(1270) 25405 - 1.2+03 14404 11403
Sum 122+4  120+£3 127 +4 128 +£4 127+ 6
May (1260) (MeV /c?) 119848 1220+8 1213+9 12154+8 1231+£9
Ly, (1260) (MeV) 429424 408 +23 434424  4204+24 459+ 25
Mar(1300) (MeV/c?) 11104+ 17 1079425 10754+22 1077+36 1180+ 15
' (1300) (MeV) 314439 347+40 330+£39 37741 297+36
M, (1640) (MeV /c?) 1694419 1681 +£18 1672422 1686+ 18 1644+ 16
L'y, (1610) (MeV) 177445 171436 250459  209+28 222456
X2/ 1.50 1.42 1.43 1.50 1.33
v 221 223 219 221 219
FI™ (%) 71.7+£09 729+£09 73.0+09 733£09 735409

Table 19. Fit fractions in percent for each component of various alternative models for DY —
7 tn 7wt r~ based on fit quality. Resonance parameters, Ffr and x?/v are also given. The uncer-
tainties are statistical only.
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Decay Mode Model A Model B Model C Model D
D% — K~ [Ki(1270)" — 7t K*(892)°]  5.76 + 1.65  6.06 + 1.45  8.23 + 1.29  9.38 & 0.98
D% — KT [K1(1270)" — 7~ K*(892)°]  1.12 + 0.76 - - 0.50 4 0.28
D° - K~ [K1(1270)Y — 7t K*(1430)°] 5.78 £ 1.63  6.31 £ 1.20  9.51 + 1.64 -

D° — K+ [K1(1270)” — 7~ K*(1430)°]  0.69 & 0.60 - - -

D% — K~ [K1(1270)" — KT w(782)] 0.78 £ 0.41  0.58 £0.26  0.94 + 0.34 -

D% — KT [K1(1270)" — K~ w(782)) 0.39 4+ 0.37 - - -
D° — K~ [K1(1270)T — K™ p(770)°] 9.06 + 1.85 943 £ 1.56 1045 + 1.79  7.58 + 0.95
D% — K+ [K1(1270) — K~ p(770)°] 1.42 4 0.76  4.84+0.73  5.054+0.83 6.10 &+ 0.83
D° — K~ [K:(1400)" — 7T K*(892)°]  14.05 + 3.13  14.51 + 2.82  22.28 4+ 3.52 -

D% — K+ [K1(1400)” — 7~ K*(892)°]  1.17 £ 1.00 - - -

D° - K~ [K*(1680)" — n" K*(892)°]  2.97 4+ 0.95 - 4.60 4 0.92 -

D? - KV [K*(1680)" — 7~ K*(892)°]  0.68 & 0.43 - - -
D°[S] — K*(892)° K*(892)° 460 £1.19 454 +0.77 484 +0.81 914 + 1.29
D°[P] — K*(892)° K*(892)° 3.06 £ .10 391 4+0.70 5.14 £ 0.78 -
D°[D] — K*(892)° K*(892)° 355 +£0.75 3.83+0.63 5.08+0.76 -
D°[S] = ¢(1020) p(770)° 27.13 + 1.59  27.47 4+ 1.32  27.66 + 1.35 31.08 + 1.38
D°[P] — $(1020) p(770)° 1.91 £ 047 1804039  1.70 4+ 0.37 -
D°[D] — ¢(1020) p(770)° 1.58 + 0.46  1.474+ 042 1.70 +£ 045 2.60 & 0.61
D° — K*(892)° (K~n%)s 533 £1.40 575+ 1.21  6.20 + 1.34 -
D° — K*(892)° (KTn™)s 1.26 + 0.83 - - -

D° — $(1020) (777 )s 4354+ 0.85 447+ 0.69 540 £0.76  7.86 + 0.88
D —» (K"K )s (ntn7)s 10.14 £ 1.41  10.82 4+ 1.22 - -

D° — K~ [K:1(1410)" — 7t K*(892)°) - 3.35 £ 0.78 - 3.23 & 0.69
D° — KT [K1(1410)” — 7~ K*(892)"] - - - 5.55 &+ 0.77
D% — £5(980) (T 77 )s - - 1.32 4 0.76 -

D% — fo(980) (KTK™) - - 1.01 + 0.64 -
D’ - (K~ n")p (K*r) - - - 10.69 & 1.10
Sum 106.76 4+ 5.83 109.13 4+ 4.70 121.11 4+ 5.38 93.72 + 3.10
X2 /v 1.490 1.503 1.707 1.754

v 116 116 116 116
FEE™™ (%) 77.5+ 3.0 7424+ 1.9 68.1+2.0 73.8 4+ 2.0

Table 20. Fit fractions in percent for each component of various alternative models for DY —
KTK~ntn~ based on fit quality. The FEX™ and y?/v values are also given. The uncertainties
are statistical only.
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E Interference fractions

Tables 21-24 list the interference fractions, ordered by magnitude, for the nominal models
of D —» rtr~atn~ and D° - Kt*K-rntn—.

Channel 7 Channel j Iy (%)

(1) D° = 77 [a1(1260)T — oxT] D° — 77 [a1(1260)T — p(770)0 7] 20.010 + 1.186
(2) DY = 7~ [x(1300)t — onT) D° — £0(1370) o -10.766 + 0.835
(3) DY = p(770)° & D° — 77 [a1(1260)T — p(770)0 7] -6.942 + 0.752
(4) D° - 77 [a1(1260)T — onT] D° - 77 [a1(1640)T — onT] -6.150 + 1.186
(5) DO — 7~ [a1(1260)F — p(770)07x ] DO[D] — p(770)° p(770)° -5.244 + 0.331
(6) D° - 7~ [a1(1640)T — on ] DY — 77 [a1(1260)F — p(770)07 ] -5.072 =+ 0.686
(7) DY = =F[x(1300)~ — on "] D° — f¢(1370) o -4.495 + 0.872
(8) D° = 77 [a1(1260)T — onT] D[D] — p(770)° p(770)° -4.301 =+ 0.335
(9) D° - 77 [72(1670)T — on ] D° — 77 [72(1670)T — fo(1270)7 7] -3.058 =+ 0.429
(10) DY — 7~ [x(1300)T — on ] D° - 7t [x(1300)" — o] 2.897 + 0.338
(11) DY — 77 [a1(1260)T — p(770)07 ] DY — 7% [a1(1260) " — p(770)%7 7] 2.757 4+ 0.128
(12) DY — 77 [a1(1260)T — oxT] DY — £ (1370) ¢ 2.653 + 0.186
(13) D% — f2(1270) f2(1270) DY — 77 [m2(1670)T — fa(1270)7 7] -2.604 + 0.531
(14) DY — fo(1370) o D° — 77 [a1(1260)T — p(770)0 7] 2.418 4 0.135
(15) DY — 77 [72(1670)T — onT] DY — f5(1270) f2(1270) 2.189 4 0.273
(16) DY[S] — p(770)° p(770)° DO[D] — p(770)° p(770)° 2.046 + 0.438
(17) DY — 77 [a1(1640)T[D] — p(770)°x+]  DO[D] — p(770)° p(770)° 1.995 + 0.323
(18) DY — 77 [a1(1260)T — oxT] DO[S] — p(770)° p(770)° -1.805 =+ 0.388
(19) DY = 71[a1(1260)~ — p(770)%7x ] DO[D] — p(770)° p(770)° -1.753 £ 0.089
(20) DY — 71 [a1(1260) ™ — p(770)°7x ] DO[S] — p(770)° p(770)° -1.747 + 0.294
(21) DY — 71[a1(1260) " — ox 7] D° — 71 [ay(1260)~ — p(770)°x ] 1.612 £ 0.095
(22) DY — 77 [a1(1260)T — ox ] D° — 71 (a1 (1260) " — p(770)°x ] 1.600 £ 0.070
(23) DY — 77 [a1(1260)T — oxT] D° - 71 [a1(1260)” — on | 1.511 + 0.172
(24) DY — £¢(1370) o DO[D] — p(770)° p(770)° -1.403 =+ 0.096
(25) DY — 77 [a1(1260)T — oxT] DY = 77 [m3(1670)T — o] 1.333 4 0.120
(26) DY — 77 [a1(1640)T[D] = p(770)°x+] DO — f5(1270) f2(1270) 1.286 + 0.146
(27) DY — 71 [a1(1260) ™ — p(770)°7x ] D° — 77 [a1(1640)T[D] — p(770)°7F]  -1.219 + 0.088
(28) DY — 77 [a1(1260)T — ox ] D° — 71 [x(1300) " — o] 1.192 + 0.159
(29) DY — 77 [a1(1260)T — ox ] D° — 77 [72(1670)T — f3(1270)7 7] -1.188 =+ 0.161
(30) DY — 77 [a1(1260)T — ox ] DY = 7~ [x(1300)T — o] -1.149 =+ 0.097
(31) DY - 71[a1(1260)~ — on ] DO[S] — p(770)° p(770)° -1.072 £ 0.124
(32) D° — 71 [a1(1260) — on ] DY = p(770)° o -1.029 + 0.116
(33) D% — 7 [a1(1640) T [D] — p(770)°xF]  DO[S] = p(770)° p(770)° -1.011 + 0.129
(34) DY — 77 [a1(1640)T — ox ] D° — fo(1370) o -1.000 + 0.162
(35) DY — 77 [a1(1640)T — ox ] DO[D] — p(770)° p(770)° 0.966 + 0.148
(36) D° — 7 [72(1670)T — o] D° — fo(1370) & -0.959 =+ 0.081
37) DY — 71 [a1(1260) " — ox ] DO[D] — p(770)° p(770)° -0.907 =+ 0.098
(38) D° — 7 [a1(1640)T — on) DY — 7t [ay(1260) " — p(770)°x ] -0.892 + 0.119
(39) D% — 7T [7(1300)~ — o7 | D° — 77 [m2(1670)T — ont] -0.865 + 0.123
(40) D% = 7~ [7(1300)t — ox ] D° — 77 [a1(1260)T — p(770)07 ) -0.837 + 0.096
(41) DY — 71 [a1(1260) " — ox ] D° - 77 [a1(1640)T — oxT] -0.815 + 0.184
(42) DY — £¢(1370) o DY — 7% [a1(1260) " — p(770)%7 7] 0.801 + 0.033
(43) DY — p(770)° & DY — 7~ [a1(1640) T [D] — p(770)%7 ] 0.780 + 0.115
(44) DY - 77 [a1(1640)T — oxT] DY — 77 [x(1300)T — on ] 0.752 4 0.104
(45) DY — 77 [72(1670)t — on ™) D° — 7t [ay(1260)~ — p(770)°x ] -0.689 + 0.054
(46) DY — 77 [a1(1260)T — p(770)0x ] DY — f5(1270) f2(1270) 0.673 4 0.073
(47) DY — 77 [a1(1640)T — oxT] D° — 7t [x(1300)" — o] -0.672 + 0.155
(48) DY — £¢(1370) o DO[S] — p(770)° p(770)° -0.665 =+ 0.111
(49) DY — p(770)° & DY — 7% [a1(1260) " — p(770)%7 ] -0.649 =+ 0.194
(50) DY — 77 [a1(1260)T — p(770)%x ] DY — 77 [m(1670)T — fo(1270) 7] -0.634 =+ 0.154
(51) D° — 7~ [72(1670)F — oxt] DO[S] — p(770)° p(770)° 0.627 4 0.082
(52) DY — 77 [a1(1640)T — ox ] DY — f2(1270) f2(1270) -0.623 + 0.144
(53) DY — 77 [a1(1640)T — ox ] DO(S] — p(770)° p(770)° 0.616 + 0.169
(54) DY — 77 [72(1670)T — on ] D° — 77 [a1(1640)T[D] — p(770)°x*]  -0.613 + 0.063
(55) DY — 7~ [x(1300)T — ont] DO[D] — p(770)° p(770)° -0.609 =+ 0.067
(56) DY — 7~ [a1(1260)T — o] DY — f5(1270) £2(1270) 0.592 + 0.130
(57) D° — 7 [a1(1640)T — on ) DY = 77 [r2(1670)T — ont) -0.574 + 0.094
(58) DY — 77 [72(1670)T — onT] D° = p(770)° & 0.522 4 0.103
(59) D% — p(770)° & DO — 77 [m2(1670)T — £2(1270)n 1] -0.521 + 0.088
(60) DY — 71 [x(1300)" — on ] D° — 77 [a1(1260)T — p(770)0 7] 0.515 + 0.054
(61) DY — 77 [a1(1640)T — oxT] DY — 77 [a1(1640) T [D] — p(770)%7 7] 0.513 + 0.129
(62) DY — 7~ [a1(1260)T — p(770)0x ] DY — 77 [a1(1640) T [D] — p(770)0x 7] 0.507 + 0.074

Table 21. Interference fractions |I;;| > 0.5%, as defined in eq. (4.27), ordered by magnitude, for
the nominal D — 7t7~ 7w "7~ amplitude fit. Only the statistical uncertainties are given.
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Table 22. Interference fractions |I;;| < 0.5%, as defined in eq. (4.27), ordered by magnitude, for
the D — nt 7~ w7~ amplitude fit using the LASSO model. Only the statistical uncertainties are

given.

Channel ¢

Channel j

I;; (%)

(63) DY — 77 [a1(1260)T — ox ]

(64) DO[S] — p(770)° p(770)°

(65) DY — 7~ [x(1300)T — ont]

(66) DO — 71 [a1(1260) — on ]

(67) DO — 7 [a1(1260)T — p(770)°x 1]
(68) DO[S] — p(770)° p(770)°

(69) DY — 71 [x(1300)~ — on ]

(70) DY — 71 [a1(1260)~ — on ]

(71) DY — 71 [a1(1260)~ — on ]

(72) DY — 7~ [x(1300)T — ont]

(73) DY — 77 [a1(1260)T — oxT]

(74) DY — 77 [a1(1640)T — ox ]

(75) DY — 77 [72(1670)T — on )

(76) DY — £o(1370) o

(77) DY — 77 [72(1670)T — on ]

(78) DY — 71 [x(1300)" — on ]

(79) DY — 71 [a1(1260)" — ox ]

(80) DY — 71 [x(1300)" — on ]

(81) DY — 7~ [x(1300)T — on ]

(82) DY — 7~ [x(1300)T — on ]

(83) DO — 7T [7(1300)~ — o]

(84) DY — 77 [a1(1640)T — ox ]

(85) DY — 7~ [x(1300)T — on ]

(86) DY — 71[a1(1260)~ — ox )

(87) DY — 71 [x(1300)" — on ]

(88) D° — 71 [a1(1260) — on ]

(89) D% — p(770)° &

(90) DO[D] — p(770)° p(770)°

(91) DY - 71 [a1(1260)~ — on ]

(92) DY — 7t [a1(1260)~ — p(770)%7x ]
(93) DY — 7~ [a1(1640)T[D] — p(770)0x ]
(94) DY — £¢(1370) o

(95) DY — 7t [a1(1260)~ — p(770)°7x ]
(96) DY — 77 [a1(1260)T — p(770)0x ]
(97) DY — £¢(1370) o

(98) DY — 71 [a1(1260)" — ox ]

(99) DY — 7~ [x(1300)T — on ]

(100) D® — 7 [a1(1260)~ — p(770)°7 7]
(101) D® — n~ [a1(1640) T [D] — p(770)°= 1]

(102) D® — p(770)% &

(103) D° — 77 [a1(1260)T — on ]
(104) DO[D] — p(770)° p(770)°
(105) DO[S] — p(770)° p(770)°
(106) D° — fo(1370) &

(107) D® — =~ [x(1300)t — onT]
(108) DO[P] — p(770)° p(770)°

(109) D° — p(770)° &

(110) D® — 7t [x(1300)~ — o7 ]
(111) D® — 7=~ [x(1300)F — ont]
(112) D% — xF[x(1300)~ — on ]
(113) D% — p(770)° &

(114) D° — 7~ [w2(1670)F — onT]
(115) D% — nt[a1(1260)~ — o]
(116) D% — p(770)0 &

(117) D° — 7t [x(1300)~ — on ]

(118) DO[D] — p(770)° p(770)°
(119) DO[P] — p(770)° p(770)°
(120) D° — 77 [a1(1640)T — ont]

D° — p(770)0 &

DO — 77 [m2(1670)T — f2(1270)7 )]
DY — 77 [r2(1670)T — f2(1270)n ]
D° — £0(1370) o

DO[S] — p(770)° p(770)°

DO — £5(1270) f2(1270)

DO[D] — p(770)° p(770)°

DO — 7~ [x(1300)T — oxT]

DO — 7~ [a1(1640) T [D] — p(770)° 7]
DO - p(770)° o

DO — 7~ [a1(1640) T [D] — p(770)° 7]
DO - p(770)° o

DY[D] — p(770)° p(770)°

DY — 77 [m2(1670) T — f3(1270)7 7]
D° - 77 [a1(1260)T — p(770)07x ]
DO - p(770)° o

DY — 77 [72(1670)T — on ]

D° — 7t [a1(1260)~ — p(770)°7x ]
DY = 77 [72(1670)T — on ]

D° — 7% [a1(1260)~ — p(770)°7 ]
D® — 77 [a1(1640) T [D] — p(770)07 1]
DY — 77 [r2(1670)T — f2(1270)n 1)
D® — 77 [a1(1640) T [D] — p(770)°7 1]
DO — 77 [m2(1670)T — f2(1270)7 )]
DO — 77 [m2(1670)T — f2(1270)7 ]
D° — 7t [x(1300)" — on ]

DO[D] — p(770)° p(770)°

DO — f5(1270) f2(1270)

DO — 77 [a1(1260)T — p(770)°7x ]
DO — 77 [m2(1670)T — f£2(1270)7 1)
DO — 7~ [m2(1670)T — f£2(1270)n )
DO — 7~ [a1(1640) T [D] — p(770)° 7]
DO — f5(1270) f2(1270)

DO[P] — p(770)° p(770)°

DY — £5(1270) f2(1270)

DY — £5(1270) f2(1270)

DO[P] — p(770)° p(770)°

DO[P] — p(770)° p(770)°

DO[P] — p(770)° p(770)°

D° — £3(1370) o

DO[P] — p(770)° p(770)°

DO — 77 [m2(1670)T — f2(1270)n )
DO[P] = p(770)° p(770)°

DO[P] — p(770)° p(770)°

DO[S] — p(770)° p(770)°

DO — £5(1270) f2(1270)

DO[S] — p(770)° p(770)°

DO — £5(1270) f2(1270)

DO — £5(1270) f2(1270)

DO[S] — p(770)° p(770)°

DO[P] — p(770)° p(770)°

DO[P] — p(770)° p(770)°

DO[P] — p(770)° p(770)°

DO — f5(1270) f2(1270)

DO[P] — p(770)° p(770)°

DO[P] — p(770)° p(770)°

DY — 77 [m2(1670) T — f3(1270)7 7]
DO[P] — p(770)° p(770)°

-0.497 £ 0.373
0.496 £ 0.088
0.492 £ 0.054
0.452 £+ 0.064
0.420 £+ 0.873
-0.402 £+ 0.103
-0.399 + 0.046
0.399 £ 0.057
-0.393 £+ 0.035
-0.388 + 0.238
-0.333 + 0.138
0.333 £ 0.241
0.327 £ 0.051
0.318 £ 0.033
0.314 £ 0.054
-0.313 £ 0.207
-0.283 £ 0.032
-0.245 £ 0.026
-0.243 £ 0.037
0.236 £+ 0.014
-0.233 £ 0.031
0.229 + 0.061
0.226 £ 0.029
0.187 £ 0.022
0.180 £ 0.030
-0.173 4+ 0.024
0.171 £+ 0.012
0.152 £+ 0.115
0.146 £ 0.085
0.143 £+ 0.021
-0.128 + 0.017
-0.110 £+ 0.009
0.098 + 0.022
-0.096 £+ 0.007
-0.071 £ 0.042
-0.060 £ 0.032
0.050 £ 0.003
-0.043 £ 0.002
0.041 £ 0.003
0.038 £ 0.006
-0.037 £ 0.002
-0.035 £ 0.041
0.033 £ 0.004
-0.029 £ 0.003
-0.027 £ 0.003
0.026 £ 0.003
0.024 £ 0.007
0.019 £ 0.003
0.014 £ 0.001
-0.012 £+ 0.003
0.011 £ 0.001
-0.010 £+ 0.001
-0.009 + 0.001
0.009 + 0.003
0.006 + 0.002
-0.005 £ 0.006
0.005 £ 0.002
0.003 £ 0.001
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Channel 1% Channel j Iij (%)

(1)D® — K~ [K1(1270)T — =T K*(1430)°) DY — K~ [K1(1270)T — KT p(770)°] -8.145 + 1.542
(2)DY — K~ [K1(1270)T — =1 K*(892)9) D% - K*(892)° (K~ 7t)g -5.650 =+ 0.917
(3)DY — K~ [K1(1400)T — =1 K*(892)9) DO[S] — K*(892)° K*(892)° -3.686 =+ 0.838

(4)DO[S] — ¢(1020) p(770)°

DY[D] — $(1020) p(770)°

-3.673 £ 0.490

(5)D° — K~ [K1(1270)t — KT p(770)°] DO[S] — ¢(1020) p(770)° 3.338 4 0.480
(6)DY — K~ [K1(1270)T — =1 K*(892)°) D% - K~ [K1(1400)T — =1 K*(892)] 2.621 + 1.832
(1)DY — K~ [K1(1270)T — =1 K*(892)9) DO - K~ [K1(1270)T — Kt p(770)°] -2.615 =+ 0.462
(8)DY — K1 [K1(1270)~ — K~ p(770)9] DO[S] — ¢(1020) p(770)° 2.321 + 0.335
(9)D° = K~ [K;(1400)t — 71 K*(892)0] DO[S] — ¢(1020) p(770)° 2.211 + 0.253
(10)D° — K~ [K1(1270)T — KT w(782)] DO — K~ [K1(1270)" — Kt p(770)°) 1.941 4 0.740
(11)D° — K~ [K1(1270)T — =1 K*(892)°) DO[s] — K*(892)0 K*(892)° 1.614 + 0.426
(12)D° — K~ [K1(1270)T — KT p(770)0] DY — K*(892)° (K~ nT)g 1.565 £ 0.206

(13)DO[S] — K*(892)° K*(892)°

DY[D] — K*(892)° K*(892)°

1.417 £ 0.145

(14)D° — K~ [K1(1270)T — =1 K*(1430)°] D° — KT [K;(1270)" — K~ p(770)°] 1.244 + 0.260
(15)D° — K~ [K1(1270)T — KT p(770)0] DO[S] — K*(892)0 K*(892)° -1.182 + 0.166
(16)D° — K~ [K1(1270)T — =1 K*(892)°) DY[D] —» K*(892)° K*(892) -1.144 + 0.212
(17)D° — K~ [K1(1270)T — K1 p(770)0] DY - K~ [K1(1400)T — =1 K*(892)°] 1.119 + 0.516
(18)D° — K~ [K1(1400)t — =+ K*(892)0] DY - K*(892)° (K~ nT)g -1.052 + 1.575
(19)D° — K~ [K1(1400)T — =1 K*(892)°) DO[D] — K*(892)° K*(892)° -0.966 =+ 0.222
(20)D° — K~ [K1(1270)T — K1 w(782)] DO[S] — ¢(1020) p(770)° 0.849 + 0.201

(21)DO[S] — K* (892)DK (892)°

(22)D° — K*(892)° (K~ = 1)g
(23)D° — K~
(24)DO[S] — #(1020) p(770)°

[K*(1680)T — =T K*(892)0]

DO[S] = ¢(1020) p(770)°

0 5 $(1020) (T 77 )g
DO[P] — K*(892)° K*(892)°
DY[D] —» K*(892)° K*(892)Y

-0.729 £ 0.164
0.691 £ 0.098
-0.689 + 0.620
-0.687 £ 0.055

(25)D° — K~ [K1(1270)T — =1 K*(1430)°]  D°[S] — ¢(1020) p(770)° 0.647 + 0.405
(26)D° — K~ [K1(1270)T — K1 w(782)] DY - K~ [K1(1400)T — =1 K*(892)°] 0.526 4 0.136
(27)D° — K~ [K1(1270)t — =t K*(1430)°] 0 5 #(1020) (xT7 ) g 0.485 4 0.085
(28)D° — K~ [K;(1270)T — =1 K*(892)0) DO — KT [K1(1270)” — K~ p(770)°] 0.424 + 0.061
(29)D° — KT [K;(1270)~ — K~ p(770)°] DO[S] — K* (892)0 *(892)° -0.398 =+ 0.123
(30)DY — K~ [K1(1270)T — = K*(892)] DY — $(1020) (xT7 ") g -0.354 =+ 0.055
(31)D% — K~ [K1(1270)T — KT w(782)] DY — KT [K1(1270)" — K~ p(770)°] 0.346 + 0.162

(32)D% — K*(892)° (K~ =n1)g

DO[S] — ¢(1020) p(770)°

-0.341 + 0.052

(33)DO[P] — K*(892)° K*(892)° DO[P] — ¢(1020) p(770)° 0.330 + 0.079

(34)D° — K~ [K*(1680)T — =t K*(892)°) DO[P] — ¢(1020) p(770)° 0.303 + 0.126
(35)DY — K~ [K1(1400)T — =t K*(892)] D% — $(1020) (rT77)g 0.302 £ 0.125
(36)D° — KT [K1(1270) — K~ p(770)°] DY — K~ [K1(1400)T — =1 K*(892)°] 0.280 + 0.110
37)D° - K~ [K1(1270)T — =1 K*(1430)°] D° — K~ [K1(1270)T — K1 w(782)] 0.225 + 0.533
(38)D° — K~ [K1(1270)T — KT p(770)0] DY — K1 [K(1270)" — K~ p(770)°] -0.220 + 0.452
(39)D° — K~ [K1(1270)T — =t K*(1430)°] DY - (KTK 7 )g(stn7)s 0.218 4 0.022
(40)D° — KTt [K;(1270)~ — K~ p(770)°) DO 5 (KTK )g(ntn)g -0.207 =+ 0.020
(41)D° — KT [K;(1270)~ — K~ p(770)°] DO[D] — $(1020) p(770)° -0.204 =+ 0.031
(42)D% — K~ [K1(1270)T — K1 p(770)0] DO[D] — K*(892) K*(892)° 0.197 + 0.049
(43)D° — K~ [K1(1270)T — =1 K*(1430)°] [D] — $(1020) p(770)° -0.196 £ 0.040
(44)D° — K~ [K1(1270)T — =1 K*(892)°) DOY[S] — ¢(1020) p(770)° 0.195 4 0.149
(45)D° — K1 [K1(1270)" — K~ p(770)°] DO[D] — K*(892)0 K*(892)° -0.190 =+ 0.025
(46)D° — K~ [K1(1270)T — KT p(770)0] DY 5 (KTK™)g (7r7 T s 0.144 4 0.015
47)D° — K~ [K1(1270)T — K1 w(782)] DOY[S] — K*(892)0 K*(892)° -0.142 + 0.054
(48)D% — K*(892)° (K~ =n1)g DO 5 (KTK )g (ntn)g 0.127 + 0.015
(49)D° — K~ [K1(1270)T — =T K*(1430)°] D° — K*(892)° (K~ 71)g -0.103 =+ 0.015
(50)D% — K*(892)° (K~ = 1)g DO[D] — $(1020) p(770)° -0.095 =+ 0.035
(51)D° — K~ [K1(1270)T — =1 K*(892)°) DY[D] — $(1020) p(770)° 0.080 + 0.015

(52)D° — K~

[K1(1270)T — 71 K*(892)°]

DY 5 (KTK g (xtn)g

-0.075 £ 0.010

(53)D° — K~ [K1(1400)T — =1 K*(892)°) DY[D] — $(1020) p(770)° -0.075 =+ 0.042
(54)D° — (KTK 7 )g (xTn7)g DO[P] — K*(892)° K*(892)° -0.066 =+ 0.007
(55)D° — K1 [K;(1270)~ — K~ p(770)°] DY — K*(892)° (K~ =T)g 0.064 %+ 0.097

(56) D — K~
K*(892)0 (K~ nt)g
(58)D° — K~

(57)D° —

[K*(1680)T — =1 K*(892)°)

[K1(1400)t — =t K*(892)0)

(66)DO[S] — K (892)° K*(892)°

DO[D] — K*(892)° K*(892)°
DY[D] — K*(892)° K*(892)°
D & (KTK )g(vtn)g

P] —» K*(892)0 K* (392)0

0.061 £+ 0.009
0.057 £ 0.008
0.048 + 0.019

-0.033 £ 0.007

(59)D° — K~ [K1(1400)T — =1 K*(892)°) D% — K~ [K*(1680)T — =T K*(892)°]  -0.048 + 0.016
(60)D° — K~ [K1(1270)T — =T K*(892)] DO & K~ [K1(1270)T — K1 w(782)] 0.044 + 0.173
(61)D° — K~ [K1(1270)T — =1 K*(1430)7] D0 — K~ [K1(1270)T — =T K*(892)°] 0.044 + 0.007
(62)D° — K* [K1(1270)T — =+ K*(892)0) [P] — K*(892)° K*(892)° 0.044 + 0.008
(63)D° — K~ [K1(1270)T — KT u(782)] [D] — ¢(1020) p(770)0 -0.042 + 0.015
(64)D° — K~ [K1(1270)t — KTt p(770)° ] [P] — K*(892)° K*(892)° -0.036 + 0.004
(65)D° — K~ [K*(1680)T — =t K*(892)7) [ ] — K*(892)° K*(892)° -0.034 =+ 0.007

[

DO

(67)DO[S] — ¢(1020) p(770)°

P] — ¢(1020) p(770)°

0.033 £ 0.004

(68)D° — K~ [K1(1270)T — =1 K*(892)°) D% — K~ [K*(1680)T — =T K*(892)°]  -0.033 + 0.008
(69)D° — K~ [K1(1270)T — K1 w(782)] DY — K*(892)° (K~ =T)g 0.027 + 0.069
(70)D° — K~ [K1(1270)T — =1 K*(1430)°] D°[P] — K*(892)° K*(892)° 0.024 + 0.003
(71)D° — K~ [K1(1270)T — K1 w(782)] DY[D] —» K*(892)° K*(892) -0.023 =+ 0.008
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Table 23. Interference fractions |I;;| > 0.02%, as defined in eq. (4.27), ordered by magnitude, for
the nominal D — KT K~nT7~ amplitude fit. Only the statistical uncertainties are given.




Channel ¢

Channel j Lij (%)

(72)D® — ¢(1020) (r T 77 )g

(73)D° - (KTK " )g (xTn7)g

(74)D° - (KTK 7 )g (xTn7)g

(75)D% — KT [K1(1270)" — K~ p(770)°]
(76)D° — K~ [K1(1400)T — =1 K*(892)7)
(77)D° — K~ [K1(1270)T — K1 p(770)0)
(78)D°[S] — K*(892)0 K*(892)°

(79)D° — K~ [K1(1270)T — =1 K*(1430)7)
(80)D% — K~ [K1(1270)T — K1 w(782)]
81)D° - (KTK )g(nTn7)g

(82)D% — K~ [K1(1270)T — =1 K*(1430)9)
(83)DO[D] — K*(892)° K*(892)°

(84)D° — K1 [K1(1270) — K~ p(770)°]
(85)D% — K*(892)° (K= T)g

(86)D° — K~ [K1(1270)T — KT p(770)°)
(87)DO[S] — K*(892)° K*(892)°

(88)DO[D] — $(1020) p(770)°

(89)DO[S] — K*(892)0 K*(892)°

(90)D° — K~ [K1(1270)T — =1 K*(1430)9)
(91)D° — $(1020) (xT 77 )g

(92) D% — K~ [K;1(1270)T — K1 w(782)]
(93)D% — KT [K1(1270)" — K~ p(770)°]
(94)D° — K~ [K*(1680)T — =1 K*(892)]
(95)D% — K~ [K*(1680)T — =1 K*(892)°)
(96)D° — K~ [K1(1400)T — =1 K*(892)7)
(9ND% —» (KTK™)g (xT77)g

(98)D% — K~ [K*(1680)T — =1 K*(892)°]
(99)D° — K~ [K1(1270)T — =1 K*(892)°]
(100)D° — ¢(1020) (v T 7" )g

(101)D° - K~ [K1(1270)T — =T K*(1430)°]
(102)D° - K~ [K;(1270)t — KT p(770)9]
(103)D° — K~ [K*(1680)T — 71T K*(892)9]
(104)D° — ¢(1020) (v T 77 )g

(105)D°[D] — K*(892)° K*(892)°
(106)D°[D] — K*(892)° K*(892)°

(107)D° — K*(892)° (K~ nt)g

(108)D° —» (KTK ™ )g (xT77)g

(109)D° - K~ [K*(1680)T — =« K*(892)0]
(110)D° —» K~ [K1(1270)T — KT w(782)]
(111)D° —» K~ [K;(1270)T — KT p(770)°]
(112) DO[S] — K*(892)0 K*(892)°
(113)D°[S] — $(1020) p(770)°

(114)D° - K~ [K;(1270)t — KT w(782)]
(115)D°[D] — ¢(1020) p(770)°

(116)D° — K~ [K1(1270)t — 7T K*(1430)°]
(117)D° —» K~ [K1(1270)T — KT w(782)]
(118)D° — K1 [K1(1270)~ — K~ p(770)°]
(119)DO[S] — K*(892)° K*(892)°

(120)D° — ¢(1020) (v 7" )g

DY[S] — ¢(1020) p(770)°
DO[P] — $(1020) p(770)°
DO[S] — ¢(1020) p(770)°
DO[P] — ¢(1020) p(770)°
DO[P] — K*(892)° K*(892)°
DO[D] — ¢(1020) p(770)°
DO — $(1020) (z T 7 7)g
DY - K~ [K;(1400)T — =T K*(892)°]
D° 5 (KTK g (ntn)g
DO — $(1020) (zT 77 )g
DOY[S] — K*(892)° K*(892)°
DO[D] — ¢(1020) p(770)°
DO[P] — K*(892)° K*(892)°
DO[P] — K*(892)° K*(892)°
DY — $(1020) (x T 77 )g
DY - K*(892)° (K~ nt)g
DY[P] — ¢(1020) p(770)°
DO[P] — ¢(1020) p(770)°
DO - K~ [K*(1680)T — =T K*(892)9]
D°[D] — K*(892)° K*(892)°
DY - K~ [K*(1680)T — =T K*(892)"]
DY - K~ [K*(1680)T — =T K*(892)Y]
DO - (KTK )g (rtn)g
DO - K*(892)° (K~ nt)g
DO[P] — ¢(1020) p(770)°
D°[D] — K*(892)° K*(892)°
DO[S] — ¢(1020) p(770)°
DO[P] = $(1020) p(770)°
DY[P] — K*(892)° K*(892)°
DY[D] —» K*(892)° K*(892)°
DO[P] — ¢(1020) p(770)°
D°[D] — ¢(1020) p(770)°
DO[D] — ¢(1020) p(770)°
]
]
]

-0.019 £ 0.021
-0.019 £ 0.003
-0.018 £ 0.004
0.017 £ 0.003
0.017 £ 0.014
0.017 £ 0.064
0.016 £+ 0.004
-0.015 £ 0.005
0.013 £ 0.008
-0.013 £ 0.007
0.012 £ 0.007
0.012 £ 0.033
0.011 £ 0.003
0.011 £ 0.002
-0.010 £ 0.002
-0.008 £ 0.001
0.008 £ 0.001
-0.008 + 0.001
0.007 £+ 0.018
0.007 £+ 0.003
-0.006 £ 0.002
0.006 £ 0.006
0.006 £ 0.020
-0.006 £+ 0.001
-0.006 + 0.002
-0.005 4+ 0.008
-0.005 £ 0.001
-0.005 £ 0.002
0.004 £ 0.001
-0.004 £ 0.004
-0.004 + 0.007
-0.004 £+ 0.001
0.003 £ 0.014
0.003 £ 0.001
0.003 £ 0.001
0.002 £ 0.001
-0.002 £ 0.001
0.002 £ 0.002
-0.002 £ 0.002
0.002 £ 0.007
-0.001 £ 0.001
0.001 £ 0.003
0.001 £ 0.001
-0.001 + 0.001
0.001 £ 0.002
0.001 £ 0.001
0.000 £ 0.003
0.000 £ 0.010
0.000 + 0.004

DO[P] — K*(892)° K*(892)°
DO[P] — ¢(1020) p(770)°
DY[P] — ¢(1020) p(770)°
DO[D] — ¢(1020) p(770)°

DO — $(1020) (v T 77 )g
DO[S] — K*(892)0 K*(892)°
DY - K~ [K*(1680)T — =T K*(892)]
DY 5 (KTK )g (vt77)g
DO[P] — K*(892)° K*(892)°
DO[P] — ¢(1020) p(770)°
DO[P] — K*(892)° K*(892)°
DO[P] — $(1020) p(770)°

DY — $(1020) (z T 77 )g

DY — $(1020) (x T 77 )g
DO[D] — ¢(1020) p(770)°
DO[P] — ¢(1020) p(770)°

Table 24. Interference fractions |I;;| < 0.02%, as defined in eq. (4.27), ordered by magnitude, for

the nominal D — KT K ~ntn~ amplitude fit. Only the statistical uncertainties are given.

Supplemental material.

dependent masses and widths described in section 4.1. These are intended to be parsed
by the ROOT software and have names indicating which energy-dependent quantity and

resonance they correspond to.

Two additional text files containing the statistical correlation matrices of the nominal
results for D — r7t7r~7t7~ and D° —
Correlations4dpi.txt and CorrelationsKKpipi.txt, respectively. The format of each
file is as follows. Firstly, each free parameter is assigned a numerical identifier. Following

We provide a collection of C macros to reproduce all energy-

KTK~ntr~ are provided. Their filenames are

this, the lower diagonal correlation matrix is given for these indices.
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