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Abstract: The resonant substructure of D0 → π+π−π+π− decays is studied using data

collected by the CLEO-c detector. An amplitude analysis is performed in order to dis-

entangle the various intermediate state contributions. To limit the model complexity a

data driven regularization procedure is applied. The prominent contributions are the de-

cay modes D0 → a1(1260)+ π−, D0 → σ f0(1370) and D0 → ρ(770)0 ρ(770)0. The broad

resonances a1(1260)+, π(1300)+ and a1(1640)+ are studied in detail, including quasi-model-

independent parametrizations of their lineshapes. The mass and width of the a1(1260)+

meson are determined to be ma1(1260)+ = [1225±9 (stat)±17 (syst)±10 (model)] MeV/c2

and Γa1(1260)+ = [430 ± 24 (stat) ± 25 (syst) ± 18 (model)] MeV. The amplitude model of

D0 → K+K−π+π− decays obtained from CLEO II.V, CLEO III, and CLEO-c data is

revisited with improved lineshape parametrizations. The largest components are the decay

modes D0 → φ(1020)ρ(770)0, D0 → K1(1270)+K− and D0 → K(1400)+K−.

The fractional CP -even content of the decay D0 → π+π−π+π− is calculated from the

amplitude model to be F 4π
+ = [72.9±0.9 (stat)±1.5 (syst)±1.0 (model)] %, consistent with

that obtained from a previous model-independent measurement. For D0 → K+K−π+π−

decays, the CP -even fraction is measured for the first time and found to be FKKππ+ =

[75.3± 1.8 (stat)± 3.3 (syst)± 3.5 (model)] %.

The global decay rate asymmetries between D0 and D̄0 decays are measured to be

A4π
CP = [+0.54±1.04 (stat)±0.51 (syst)]% andAKKππCP = [+1.84±1.74 (stat)±0.30 (syst)]%.

A search for CP asymmetries in the amplitude components yields no evidence for CP vio-

lation in either decay mode.

Keywords: Charm physics, CP violation, e+-e- Experiments, Flavor physics, Spec-

troscopy
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1 Introduction

We present amplitude analyses for D0 → h+h−π+π− decays, where h± is either a pion or

a kaon. These decay modes have the potential to make an important contribution to the

determination of the CP -violating phase γ (φ3) ≡ − arg(VudV
∗
ub/VcdV

∗
cb) in B− → DK−

and related decays [1–6]. The all-charged final states (impossible in three-body decays

of D0) particularly suit the environment of hadron collider experiments, such as LHCb.

The sensitivity to the weak phase can be significantly improved with a measured D-decay

amplitude model, either to be used directly in the γ extraction, or in order to optimize

model-independent measurements [4, 7–10].

A study of the rich resonance structure of these four-body decays is also of considerable

interest in its own right. Figure 1 shows the dominant processes that contribute to the

visible structure in the phase space. The color-favored tree diagram manifests as a cascade

whereby a resonance decays into another resonance before decaying into the final state. Due

to the identical quark content produced in the weak and spectator interactions, a given

process and its CP -conjugate may arise even from the same initial state. Such processes,

which we refer to as non-self-conjugate, are also known as flavor-non-specific decays as

flavor-tagging is required to distinguish between the source of these two partners despite

not being CP eigenstates. The color-suppressed tree diagram and the W -exchange diagram

result in self-conjugate intermediate states such as ρ(770)0ρ(770)0 or ρ(770)0φ(1020) whose

partial waves are eigenstates of CP . Certain intermediate states in D0 → K+K−π+π−

decays, for instance K∗(892)0 K̄∗(892)0, are only accessible via the W -exchange diagram.

The decay D0 → π+π−π+π− provides an excellent environment to study the prop-

erties of the a1(1260)+ meson, whose width is an unresolved question, currently given

as 250 − 600 MeV in the Particle Data Group’s Review of Particle Physics (PDG) [11].

The only previous analysis of the D0 → π+π−π+π− amplitude structure was published

by the FOCUS collaboration based on approximately 6000 D0, D0 → π+π−π+π− signal

events [12]. The analysis presented here benefits from the ability to distinguish D0 from

D0 decays and a larger data sample of approximately 7000 signal events.

Based on the four-body amplitude formalism and analysis software used in the D0 →
K+K−π+π− amplitude analysis performed by the CLEO collaboration [13], we introduce

significant improvements especially in the parametrization of three-body resonances. Us-

ing a state-of-the-art parametrization of the a1(1260)+ lineshape, we present new mea-

surements of the a1(1260)+ mass and width. By utilizing different parametrizations, we

confirm a significant dependence of the measured width on the lineshape itself. We also

observe contributions from the decay modes D0 → a1(1640)+ π− and D0 → π(1300)+ π−,

not seen in previous analyses and provide model-independent complex lineshapes for the

a1(1260)+, a1(1640)+ and π(1300)+ mesons.

In addition to our new D0 → π+π−π+π− analysis, we also revisit the CLEO D0 →
K+K−π+π− data using the improved formalism and analysis procedures presented in this

paper. Prior to the CLEO analysis, an amplitude analysis of the decay D0 → K+K−π+π−

was also performed by FOCUS [14].
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Figure 1. Examples of the color-favored (a), color-suppressed (b) and W -exchange (c) diagrams

that contribute towards the resonant structure in D0 → π+π−π+π− and D0 → K+K−π+π−

decays.

This article is structured as follows: after an introduction to the CLEO II.V, CLEO III,

and CLEO-c experiments in section 2 and a description of the event selection in section 3,

the amplitude formalism and its implementation is described in section 4 and section 5.

The results of the fit to data, including a model-dependent measurement of the fractional

CP -even content and search for direct CP violation, are presented in section 6 and sec-

tion 7. Systematic uncertainties are outlined in section 8, and our conclusions are given in

section 9. Additional technical details of the analyses can be found in the appendices and

supplementary material.

2 Data set and CLEO detector

The data analyzed in this paper were produced in symmetric e+e− collisions at CESR

between 1995 and 2008, and collected with three different configurations of the CLEO

detector: CLEO II.V, CLEO III, and CLEO-c.

In CLEO II.V [15, 16] tracking was provided by a three-layer double-sided silicon

vertex detector, and two drift chambers. Charged particle identification came from dE/dx

information in the drift chambers, and time-of-flight (TOF) counters inserted before the

calorimeter. For CLEO III [17] a new silicon vertex detector was installed, and a ring

imaging Cherenkov (RICH) detector was deployed to enhance the particle identification

abilities [18]. In CLEO-c, the vertex detector was replaced with a low-mass wire drift

chamber [19]. A superconducting solenoid supplied a 1.5 T magnetic field for CLEO II.V

and III, and 1 T for CLEO-c operation, where the average particle momentum was lower.

In all detector configurations, neutral pion and photon identification was provided by a

7800-crystal CsI electromagnetic calorimeter.

Four distinct data sets are analyzed in the present study:

– 3 –
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(1) approximately 9 fb−1 accumulated at
√
s ≈ 10 GeV by the CLEO II.V detector;

(2) a total of 15.3 fb−1 accumulated by the CLEO III detector in an energy range
√
s =

7.0− 11.2 GeV, with over 90% of this sample taken at
√
s = 9.5− 10.6 GeV;

(3) 818 pb−1 collected at the ψ(3770) resonance by the CLEO-c detector;

(4) a further 600 pb−1 taken by CLEO-c at
√
s = 4170 MeV,

where
√
s is the total energy delivered by the beam in the center-of-mass system (CMS).

These samples are referred to as the CLEO II.V, CLEO III, CLEO-c 3770 and CLEO-c

4170 data sets, respectively.

Detector response is studied with GEANT-based [20] Monte Carlo (MC) simulations

of each detector configuration, in which the MC events are processed with the same recon-

struction algorithm as used for data.

3 Event selection

We select events where one neutral D meson decays either into a π+π−π+π− orK+K−π+π−

final state. The analysis considers two classes of signal decays, for both of which informa-

tion on the quantum numbers of the meson decaying to the signal mode is provided by an

event tag.

(i) Flavor-tagged decays are selected from the CLEO II.V and CLEO III data sets, in

which the flavor of the decaying meson is determined by the charge of the ‘slow pion’,

πs, in the D∗+ → D0π+
s decay chain. Flavor-tagged decays are also selected from

the two CLEO-c data sets, where here the tag is obtained through the charge of a

kaon associated with the decay of the other D meson in the event. The wrong tag

fractions for each data set are represented by the parameter w, given in ref. [13].

(ii) CP -tagged decays are selected in the CLEO-c 3770 data set alone. In ψ(3770) decays

the D − D pair is produced coherently. Therefore, the CP of the signal D can be

determined if the other D meson is reconstructed in a decay to a CP -eigenstate.

Useful information is also obtained if the tagging meson is reconstructed decaying

into the modes K0
Sπ

+π− or K0
Lπ

+π−, for which the relative contribution of CP -even

and CP -odd states is known [21].

The D0 → π+π−π+π− analysis uses only the flavor-tagged subset of the CLEO-c

3770 data sample, while D0 → K+K−π+π− makes use of all the data sets described. The

selection criteria for producing the data sets of each of these classes is discussed in detail

in ref. [13] and is identical to that used in our analysis, except for a few improvements that

will be highlighted where applicable.

3.1 D0 → π+π−π+π− selection

Apart from other backgrounds, there is a source of peaking background arising from D0 →
K0
S(→ π+π−)π+ π− decays. Although this has the same final state as the signal, it is an

– 4 –
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incoherent process since the K0
S lifetime is much longer than those of any other possible

intermediate resonance. Therefore, K0
S decays are rejected if the invariant mass of any

π+ π− combination is within 7.5 MeV/c2 of the world-average K0
S mass [11].

Two nearly uncorrelated kinematic variables are used to define a signal and two side-

band background regions. These variables are defined as the beam-constrained mass,

mbc ≡

√(√
s

2

)2

− ~pD2, (3.1)

where ~pD is the reconstructed three-momentum of the candidate D in the CMS; and the

missing energy ∆E,

∆E ≡ ED −
√
s

2
, (3.2)

where ED is the total reconstructed energy of candidate D in the CMS. Signal events

should have missing energy close to zero and beam-constrained mass close to that of the

nominal D0 mass, mD [11]. By construction, the mbc width is a measure of the beam-

energy spread while the ∆E width is dominated by the detector resolution. Candidates

that satisfy mbc > 1.83 GeV/c2 and |∆E| < 0.1 GeV are retained for further analysis.

As the sideband events are used to study the background contribution within the signal

region, it is crucial to select signal and background regions with a mutual and constant

invariant mass, i.e. that of the D meson. First, a region of constant invariant mass is

obtained by selecting events with∣∣∣∣√∆E2 + ∆E
√
s +m2

bc −mD

∣∣∣∣ < 15 MeV/c2. (3.3)

This relation describes an annulus in mbc and ∆E space. Lines normal to this annulus of

constant invariant mass have an angle of inclination

θ = arctan

(√
s+ 2 ∆E

2mbc

)
(3.4)

about the center of the annulus. A signal region around the D mass peak is then defined by

requiring |θ− θD| < 0.004, where mbc = mD and ∆E = 0 GeV at θD, as shown in figure 2.

Similarly, sideband regions are defined with |θ − θD| > 0.006. These criteria preserve the

range of invariant mass selected throughout the kinematic variables mbc and ∆E, ensuring

the distribution of events in phase space are consistent between regions. The signal region

contains 9247 D → π+π−π+π− candidates.

To estimate the signal purity of the sample, a two-dimensional unbinned maximum

likelihood fit to mbc and ∆E is performed in the whole range. While the signal peak

is modeled with a sum of three (two) Gaussian functions, the combinatorial background

is described by an ARGUS [22] (linear) function in mbc (∆E). The number of signal

events within the signal region is estimated from the fit result displayed in figure 3, to be

7250± 56 (stat) ± 46 (syst) events, where the first uncertainty is statistical and second is

systematic. The signal fraction fSig, in this region is fSig = (78.4±0.6 (stat)±0.5 (syst))%.

These systematic uncertainties are estimated by repeating the fit with different appropriate

probability density function (PDF) hypotheses. As we observed a negligible impact of the

background on our analysis, further improvements of the signal purity were not studied.

– 5 –
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Figure 3. Beam constrained mass (a) and missing energy (b) distribution of D0 → π+π−π+π−

candidates, overlaid with the projections of the fitted PDF (solid black line). The signal component

is shown in blue (dashed) and the background component in red (dashed).

3.2 D0 → K+K−π+π− selection

With respect to ref. [13], we veto the π+π− invariant mass region around the K0
S mass,

which removes essentially all peaking background from D0 → K0
S(→ π+π−)K+K−,

greatly simplifying our analysis. The K0
S veto depends on the CLEO configuration, as

the mass resolution is better for data collected with the CLEO-c configurations. For data

collected with CLEO (CLEO-c), the π+ π− invariant mass combination does not fall within

16.5 (12) MeV/c2 of the world-average K0
S mass.

In addition, for the flavor-tagged data, several changes have been applied with respect

to ref. [13]. The CLEO II.V minimum track momenta cut for the D daughters is raised
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Sample Signal region Sideband

CLEO II.V 144.6 MeV/c2 < ∆m < 146.2 MeV/c2 148.5 MeV/c2 < ∆m < 160.0 MeV/c2

CLEO III 144.6 MeV/c2 < ∆m < 146.1 MeV/c2 148.5 MeV/c2 < ∆m < 160.0 MeV/c2

CLEO-c 3770 |mbc −mD| < 0.005 GeV/c2 1.834 GeV/c2 < mbc < 1.854 GeV/c2

1.876 GeV/c2 < mbc < 1.890 GeV/c2

CLEO-c 4170 2.005 GeV/c2 < mbc < 2.030 GeV/c2 1.880 GeV/c2 < mbc < 1.920 GeV/c2

Table 1. Signal region and sideband definitions in the ∆m or mbc kinematic variable, for flavor-

tagged D0 → K+K−π+π− data in the different CLEO configurations.

Sample Signal candidates fSig

CLEO II.V 237 0.759± 0.019

CLEO III 1163 0.898± 0.004

CLEO-c 3770 1300 0.871± 0.005

CLEO-c 4170 598 0.694± 0.010

Table 2. Updated number of signal candidates and fractions in the signal region, for flavor-tagged

D0 → K+K−π+π− data in the different CLEO configurations.

to 275 MeV/c as the MC was found not to represent the data sufficiently well below this

value. As in ref. [13], the kinematic variables that describe signal in the CLEO II.V and

CLEO III samples are the reconstructed D mass mKKππ, and the mass difference between

the D∗ and D candidates, ∆m. We take advantage of the possibility to ensure a constant

D-candidate invariant mass range across different kinematic regions. For CLEO II.V, we

choose |mKKππ − mD| < 5 MeV/c2; for CLEO III, we require that mKKππ is between

(mD − 11.2) and (mD + 8.3) MeV/c2. For CLEO-c 3770, we utilize the criteria given in

eq. (3.3); for CLEO-c 4170 eq. (3.3) is also used, but the tolerance of the annulus of constant

invariant mass, with respect to mD, is reduced from 15 to 10 MeV/c2 in order to boost

the signal purity in this sample. The signal and sidebands definitions in the respective

accompanying kinematic variables (∆m or mbc) are defined accordingly in table 1. In the

CLEO II.V and CLEO III (CLEO-c 3770) samples, signal candidates are chosen to have

∆m (mbc) near the expected value for signal D decays. In the CLEO-c 4170 sample, we

isolate our signal D candidates from D∗D∗ events, which have the highest rate and intrinsic

purity [23].

The procedure to measure the purity in the signal region of each sample is identical

to that of the previous analysis [13]. The events retained for the amplitude analysis and

signal fractions for the improved selection criteria are given in table 2.

4 Amplitude analysis formalism

Previous four-body amplitude analyses of D decays have been performed by the

Mark III collaboration for D → Kπππ comprising a total of four Cabibbo-favored de-

cay modes modes of D0 and D+ [24], FOCUS for D0 → π+π−π+π−, K+K−π+π−,

K−K−K+π+ [12, 14, 25] and most recently, for the decay D0 → K+K−π+π−, by

CLEO [13]. Here, we further develop the formalism and analysis software used in ref. [13].

– 7 –
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Key differences are in the formalism used for the spin factors, where we now use a more

consistent and intuitive implementation of the Zemach formalism [26–28], and an improved

description of the lineshapes of resonances decaying to three-body final states.

The differential decay rate of a D0 meson with mass, mD0 , decaying into four pseu-

doscalar particles with four-momenta pi = (Ei, ~pi) (i = 1, 2, 3, 4) is given by

dΓ =
1

2mD0

|AD0(x)|2 dΦ4 , (4.1)

where the transition amplitude AD0(x), describes the dynamics of the interaction, dΦ4

is the four-body phase space element [29], and x represents a unique set of kinematic

conditions within the phase space of the decay. Each final state particle contributes three

observables, manifesting in their three-momentum, summing up to twelve observables in

total. Four of them are redundant due to four-momentum conservation and the overall

orientation of the system can be integrated out. The remaining five independent degrees of

freedom unambiguously determine the kinematics of the decay. Convenient choices for the

kinematic observables include the invariant mass combinations of the final state particles

m2
ij = (pi + pj)

2,

m2
ijk = (pi + pj + pk)

2 (4.2)

or acoplanarity and helicity angles [30, 31]. It is however important to take into account

that, while m2
12,m

2
23 are sufficient to fully describe a three-body decay, the obvious exten-

sion to four-body decays with m2
ij ,m

2
ijk requires additional care, as these variables alone

are insufficient to describe the parity-odd moments possible in four-body kinematics.

In practice, we do not need to choose a particular five-dimensional basis, but use the

full four-vectors of the decay in our analysis. The dimensionality is handled by the phase

space element which can be written in terms of any set of five independent kinematic

observables, x = (x1, . . . , x5), as

dΦ4 = φ4(x) d5x, (4.3)

where φ4(x) =
∣∣∣ ∂Φ4
∂(x1,...x5)

∣∣∣ is the phase space density. In contrast to three-body decays,

the four-body phase space density function is not flat in the usual kinematic variables.

Therefore, an analytic expression for φ4 is taken from ref. [32].

The total amplitude for the D0 → h1 h2 h3 h4 decay is given by the coherent sum over

all intermediate state amplitudes Ai(x), each weighted by a complex coefficient ai = |ai| ei φi
to be measured from data,

AD0(x) =
∑
i

aiAi(x) . (4.4)

To construct Ai(x), the isobar approach is used, which assumes that the decay process

can be factorized into subsequent two-body decay amplitudes [33–35]. This gives rise to

two different decay topologies; quasi two-body decays D0 → (R1 → h1 h2) (R2 → h3 h4)

or cascade decays D0 → h1 [R1 → h2 (R2 → h3 h4)]. In either case, the intermediate state

amplitude is parameterized as a product of form factors BL, included for each vertex of the

– 8 –
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decay tree, Breit-Wigner propagators TR, included for each resonance R, and an overall

angular distribution represented by a spin factor S,

Ai(x) = BLD(x) [BLR1
(x)TR1(x)] [BLR2

(x)TR2(x)]Si(x) . (4.5)

As the π+π−π−π+ final state involves two pairs of indistinguishable pions, the amplitudes

are Bose-symmetrized and therefore symmetric under exchange of like-sign pions.

We define the CP -conjugate phase space point x such that it is mapped onto x by the

interchange of final state charges, and the reversal of three-momenta. If x, x are expressed

as a function of the four-momenta (Ei, ~pi) (where i labels the particle), this implies for

D0 → K+K−π+π− that

x [(EK+ , ~pK+), (EK− , ~pK−), (Eπ+ , ~pπ+), (Eπ− , ~pπ−)]

≡ x [(EK− ,−~pK−), (EK+ ,−~pK+), (Eπ− ,−~pπ−), (Eπ+ ,−~pπ+)] , (4.6)

and equivalently for D0 → π+π−π+π−. The CP -conjugate of a given intermediate state

amplitude, Ai(x), is defined as

Ai(x) ≡ Ai(x), (4.7)

and the total D0 decay amplitude is defined as

AD0(x) ≡
∑
i

āiAi(x) =
∑
i

āiAi(x). (4.8)

Unless stated otherwise, we assume CP conservation in the D0 decay, implying āi = ai.

Moreover, CP conservation in the strong interaction is implemented in the cascade topology

by the sharing of couplings between related quasi-two-body final states. For example, given

the two ai parameters required for D0 → π−a1(1260)+ with a1(1260)+ → ρ(770)0 π+ and

a1(1260)+ → σ π+, the amplitude D0 → π+ a1(1260)− with a1(1260)− → ρ(770)0 π− and

a1(1260)− → σ π− only requires one additional global complex parameter to represent the

different weak processes of D0 → a1(1260)+ π− and D0 → a1(1260)− π+, while the relative

magnitude and phase of a1(1260)− → ρ(770)0 π− and a1(1260)− → σ π− are the same as

for a1(1260)+ → ρ(770)0 π+ and a1(1260)+ → σ π+. For historical reasons, this constraint

is only applied to the π+π−π+π− final state, but, as discussed in section 7, the results we

obtain for the K+K−π+π− final state are also compatible with CP conservation in the

strong interaction.

4.1 Form factors and resonance lineshapes

To account for the finite size of the decaying resonances, the Blatt-Weisskopf penetration

factors, derived in ref. [36] by assuming a square well interaction potential with radius rBW,

are used as form factors, BL. They depend on the breakup momentum q, and the orbital

angular momentum L, between the resonance daughters. Their explicit expressions are

B0(q) = 1,

B1(q) = 1/
√

1 + (q rBW)2,

B2(q) = 1/
√

9 + 3 (q rBW)2 + (q rBW)4. (4.9)
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Resonance lineshapes are described as function of the energy-squared, s, by Breit-Wigner

propagators

T (s) =
1

M2(s)− s− im0 Γ(s)
, (4.10)

featuring the energy-dependent mass M(s) (defined below), and total width, Γ(s). The

latter is normalized to give the nominal width, Γ0, when evaluated at the nominal mass

m0, i.e. Γ0 = Γ(s = m2
0).

For a decay into two stable particles R → AB, the energy dependence of the decay

width can be described by

Γ
(2)
R→AB(s) = Γ0

m0√
s

(
q

q0

)2L+1 BL(q)2

BL(q0)2
, (4.11)

where q0 is the value of the breakup momentum at the resonance pole [37].

The energy-dependent width for a three-body decay R → ABC, on the other hand,

is considerably more complicated and has no analytic expression in general. However,

it can be obtained numerically by integrating the transition amplitude-squared over the

phase space,

Γ
(3)
R→ABC(s) =

1

2
√
s

∫
|AR→ABC |2 dΦ3, (4.12)

and therefore requires knowledge of the resonant substructure. The three-body ampli-

tude AR→ABC can be parameterized similarly to the four-body amplitude in eq. (4.5). In

particular, it includes form factors and propagators of intermediate two-body resonances.

Both eq. (4.11) and eq. (4.12) give only the partial width for the decay into a specific

channel. To obtain the total width, a sum over all possible decay channels has to be

performed,

Γ(s) =
∑
i

gi Γi(s), (4.13)

where the coupling strength to channel i, is given by gi. Branching fractions Bi are related

to the couplings gi via the equation [11]

Bi =

∫ ∞
smin

gim0 Γi(s)

|M2(s)− s− im0
∑

j gj Γj(s)|2
ds. (4.14)

As experimental values are usually only available for the branching fractions, eq. (4.14)

needs to be inverted to obtain values for the couplings. In practice, this is solved by

minimizing the quantity χ2(g) =
∑

i [Bi − Ii(g)]2 /∆B2
i , where Ii(g) denotes the right-

hand side of eq. (4.14).

The energy-dependent mass follows from the decay width via the Kramers-Kronig

dispersion relation [38, 39]:

M2(s) = m2
0 +

m0

π

∫ ∞
smin

(
Γ(s′)

s− s′
− Γ(s′)

m2
0 − s′

)
ds′. (4.15)

Here, the energy-dependent mass is normalized such that M2(s = m2
0) = m2

0. In practice,

the energy-dependent mass is often approximated as being constant, i.e. M2(s) = m2
0, since

– 10 –
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its calculation requires a detailed understanding of the decay width for arbitrarily large

energies and is computationally expensive. This is usually justified as the energy-dependent

mass needs to satisfy the condition,

dM2(s)

ds

∣∣∣∣
s=m2

0

= 0, (4.16)

such that M2(s) is indeed, approximately constant near the on-shell mass [40]. Larger

dispersive effects are thus only expected for very broad resonances.

The treatment of the lineshape for various resonances considered in this analysis is

described in what follows. The nominal masses and widths of the resonances are taken

from the PDG [11] with the exceptions described below. We assume an energy-independent

mass unless otherwise stated.

For the broad scalar resonance σ, the model from Bugg is used [41]. Besides σ → ππ

decays, it includes contributions from the decay modes σ → KK, σ → ηη and σ → ππππ as

well as dispersive effects due to the channel opening of the latter. We use the Gournaris-

Sakurai parametrization for the ρ(770)0 → ππ propagator which provides an analytical

description of the dispersive term, M2(s) [42]. The energy-dependent width of the f0(980)

resonance is given by the sum of the partial widths into the ππ and KK channels [43],

Γf0(980)(s) = gππ Γ
(2)
f0(980)→ππ(s) + gKK Γ

(2)
f0(980)→KK(s), (4.17)

where the coupling constants gππ and gKK , as well as the mass and width are taken from

a measurement performed by the BES Collaboration [44]. The total decay widths for both

the f2(1270) and the f0(1370) meson take the channels ππ,KK, ηη and ππππ into account.

While the two-body partial widths are described by eq. (4.11), a model for the partial width

for a decay into four pions is taken from ref. [45]. The corresponding branching fractions

are taken from the PDG [11]. The nominal mass and width of the f0(1370) resonance are

taken from an LHCb measurement [46]. Equation (4.11) is used for all other resonances

decaying into a two-body final state.

To describe the decay width of the axial vector resonance a1(1260), the decay channels

πππ and KK̄π are considered,

Γa1(1260)(s) = gπππ Γ
(3)
a1(1260)→πππ(s) + gKK̄π Γ

(3)

a1(1260)→KK̄π(s), (4.18)

where isospin symmetry is assumed, i.e. Γ
(3)
a1(1260)+→π+π−π+(s) = Γ

(3)
a1(1260)+→π0π0π+(s).

The partial width Γ
(3)

a1(1260)→KK̄π(s) is calculated from eq. (4.12) assuming the decay pro-

ceeds entirely via a1(1260) → K∗(892)K. The corresponding branching fraction is taken

from a CLEO analysis of hadronic τ decays [47]. The calculation of the partial width

Γ
(3)
a1(1260)→πππ(s) is more complicated due to the fact that it requires information about the

three pion Dalitz plot structure of the a1(1260) resonance whose determination in turn,

needs the propagator as input. For this reason, we follow an iterative approach. The initial

amplitude fit, described in section 6, is performed using an energy-dependent width distri-

bution derived from an uniform phase space population. Afterwards, the energy-dependent
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Figure 4. Energy-dependent width (a) and energy-dependent mass (b) for the a1(1260) reso-

nance. The total width is shown in black (solid), while the partial widths Γ
(3)
a1(1260)→πππ(s) and

Γ
(3)

a1(1260)→KK̄π(s) are shown in blue (dashed) and red (dotted), respectively.

width is recalculated with the results of the substructure analysis and the amplitude fit

is subsequently repeated with the new propagator. It is found that the energy-dependent

width is not highly sensitive to the details of the Dalitz plot as this procedure converges

after a few iterations. As the a1(1260) resonance is very broad, the dispersive term is

calculated as well. Figure 4 shows the final iteration of the energy-dependent width and

mass. The energy-dependent width varies strongly around s ≈ 0.8 GeV2 where the energy

of the π+ π− subsystem is equal to the ρ(770)0 on-shell mass. Around s = 2 GeV2, a

small hump develops due to the opening of the KK̄π channel. The energy-dependent mass

indeed shows a plateau around the nominal mass as expected. Note that as the condition

of eq. (4.16) is not explicitly enforced by eq. (4.15), it serves as an independent check of

whether the main thresholds have been included [38, 47].

For the resonances π(1300), a1(1640) and π2(1670), the energy-dependent width is

obtained via the same iterative procedure as for the a1(1260) resonance. In case of the

π2(1670) meson, the KK̄π and ωρ(770)0 thresholds are included with the PDG branching

fractions taken from ref. [11], otherwise only decays to three pions are considered. In

the D0 → K+K−π+π− analysis, resonant decays of the K1(1270) and K1(1400) mesons

into the Kρ(770)0, K∗(892)π, K∗0 (1430)π, Kf0(1370) and Kω decay channels are taken

into account assuming the lowest possible angular momentum state. For the purpose of

evaluating the energy-dependent widths of the excited kaons, these decay channels are

assumed to be incoherent and the branching fractions from the PDG are used [11]. The

same procedure is applied to obtain the energy-dependent width for the K∗(1410) and

K∗(1680) resonances. In their case, the decay channels Kρ(770)0, K∗(892)π and Kπ are

considered. For the K∗(1410) meson there are only upper limits for the branching fractions

into the Kρ(770)0 and K∗(892)π channels available. We assume no K∗(1410)→ Kρ(770)0

contribution and B[K∗(1410)→ K∗(892)π] = 1−B[K∗(1410)→ Kπ] = (93.4±1.3) % [11].

All energy-dependent widths not shown in this section are shown in appendix A.

Some particles may not originate from a resonance but are in a state of relative or-

bital angular momentum. We denote such non-resonant states by surrounding the particle
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system with brackets and indicate the partial wave state with an subscript; for example

(ππ)S refers to a non-resonant di-pion S-wave. The lineshape for non-resonant states is set

to unity.

4.2 Spin densities

The spin amplitudes are phenomenological descriptions of decay processes that are required

to be Lorentz invariant, compatible with angular momentum conservation and, where ap-

propriate, parity conservation. They are constructed in the covariant Zemach (Rarita-

Schwinger) tensor formalism [26–28]. At this point, we briefly introduce the fundamental

objects of the covariant tensor formalism which connect the particle’s four-momenta to the

spin dynamics of the reaction and give a general recipe to calculate the spin factors for

arbitrary decay trees. Further details can be found in refs. [48, 49].

A spin-S particle with four-momentum p, and spin projection λ, is represented by the

polarization tensor ε(S)(p, λ), which is symmetric, traceless and orthogonal to p. These

so-called Rarita-Schwinger conditions reduce the a priori 4S elements of the rank-S tensor

to 2S + 1 independent elements in accordance with the number of degrees of freedom of a

spin-S state [27, 50].

The spin projection operator Pµ1...µSν1...νS
(S) (pR), for a resonance R, with spin S =

{0, 1, 2}, and four-momentum pR, is given by [49]:

Pµν(0)(pR) = 1

Pµν(1)(pR) = − gµν +
pµR p

ν
R

p2
R

Pµναβ(2) (pR) =
1

2

[
Pµα(1) (pR)P νβ(1)(pR) + Pµβ(1) (pR)P να(1) (pR)

]
− 1

3
Pµν(1)(pR)Pαβ(1) (pR) , (4.19)

where gµν is the Minkowski metric. Contracted with an arbitrary tensor, the projection

operator selects the part of the tensor which satisfies the Rarita-Schwinger conditions.

For a decay process R → AB, with relative orbital angular momentum L, between

particle A and B, the angular momentum tensor is obtained by projecting the rank-L

tensor qν1
R qν2

R . . . qνLR , constructed from the relative momenta qR = pA − pB, onto the spin-

L subspace,

L(L)µ1...µL(pR, qR) = (−1)L P(L)µ1...µLν1...νL(pR) qν1
R . . . qνLR . (4.20)

Their |~qR|L dependence accounts for the influence of the centrifugal barrier on the transition

amplitudes. For the sake of brevity, the following notation is introduced,

ε(S)(R) ≡ ε(S)(pR, λR),

P(S)(R) ≡ P(S)(pR),

L(L)(R) ≡ L(L)(pR, qR). (4.21)

Following the isobar approach, a four-body decay amplitude is described as a product

of two-body decay amplitudes. Each sequential two-body decay R → AB, with relative
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orbital angular momentum LAB, and total intrinsic spin SAB, contributes a term to the

overall spin factor given by

SR→AB(x|LAB, SAB;λR, λA, λB) = ε(SR)(R)X(SR, LAB, SAB)L(LAB)(R)

× Φ(x|SAB;λA, λB), (4.22)

where

Φ(x|SAB;λA, λB) = P(SAB)(R)X(SAB, SA, SB) ε∗(SA)(A) ε∗(SB)(B) . (4.23)

Here, a polarization vector is assigned to the decaying particle and the complex conjugate

vectors for each decay product. The spin and orbital angular momentum couplings are

described by the tensors P(SAB)(R) and L(LAB)(R), respectively. Firstly, the two spins SA
and SB, are coupled to a total spin-SAB state, Φ(x|SAB), by projecting the corresponding

polarization vectors onto the spin-SAB subspace transverse to the momentum of the de-

caying particle. Afterwards, the spin and orbital angular momentum tensors are properly

contracted with the polarization vector of the decaying particle to give a Lorentz scalar.

This requires in some cases to include the tensor εαβγδ p
δ
R via

X(ja, jb, jc) =

{
1 if ja + jb + jc even

εαβγδ p
δ
R if ja + jb + jc odd

, (4.24)

where εαβγδ is the Levi-Civita symbol and j refers to the arguments of X defined in

eqs. (4.22) and (4.23). Its antisymmetric nature ensures the correct parity transformation

behavior of the amplitude. The spin factor for a whole decay chain, for example R →
(R1 → AB) (R2 → CD), is obtained by combining the two-body terms and performing a

sum over all unobservable, intermediary spin projections∑
λR1

,λR2

SR→R1R2(x|LR1R2 ;λR1 , λR2)SR1→AB(x|LAB;λR1)SR2→CD(x|LCD;λR2), (4.25)

where λR = λA = λB = λC = λD = 0, SAB = SCD = 0 and SR1R2 = LR1R2 , as only

pseudoscalar initial/final states are involved.

The main difference to the formalism used in ref. [13] is the inclusion of additional

projection operators, i.e. P(SAB)(R) and the one intrinsic to L(LAB)(R), which ensure pure

spin and angular momentum tensors. The spin factors for all decay topologies considered

in this analysis are explicitly given in appendix B.

4.3 Measurement quantities

Here, we define all quantities derived from the amplitude model that are of physical im-

portance. In order to provide implementation-independent measurements in addition to

the complex coefficients ai, we define two quantities. Firstly, the fit fractions

Fi ≡
∫
|aiAi(x)|2 dΦ4∫
|AD0(x)|2 dΦ4

, (4.26)
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which are a measure of the relative strength between the different transitions. Secondly,

the interference fractions are given by

Iij ≡
∫

2<[aia
∗
j Ai(x)A∗j (x)] dΦ4∫
|AD0(x)|2 dΦ4

, (4.27)

which measures the interference effects between amplitude pairs. Constructive interference

leads to Iij > 0, while destructive interference leads to Iij < 0. Note that
∑

i Fi +∑
j<k Ij,k = 1.

The global fractional CP -even content is defined as,

F+ ≡
∫
|A+|2 dΦ4∫

|A+|2 + |A−|2 dΦ4
(4.28)

where A± ≡ AD0(x)±AD0(x) is the decay amplitude for a D meson in a CP -even / CP -odd

state. The parameter F+, can be determined from an amplitude model (eq. (4.28)) or by

using model-independent methods [51]; the consistency of the two techniques provides a

useful cross-check of the amplitude model. The fractional CP -even content also provides

useful input to the determination of the CKM phase γ (φ3) in B± → DK± and related

decays. Additionally, knowledge of F+ for all D decay final states can be used to deter-

mine the net CP -content of the D meson system, which is related to the charm-mixing

parameter yD [52].

Finally, measurements of direct CP violation will also be reported. For this purpose,

the amplitude coefficients are expressed in terms of a CP -conserving (ci) and a CP -violating

(∆ci) parameter,

ai ≡ ci (1 + ∆ci), āi ≡ ci (1−∆ci). (4.29)

For ∆ci = 0 there is no CP violation between the corresponding D0 and D0 interme-

diate state amplitudes. Note that the CP -violating parameters are included only for

distinct weak decay processes as the strong interaction is assumed to be CP -conserving

such that e.g. the amplitudes for the processes D0 → π−
[
a1(1260)+ → π+ ρ(770)0

]
and

D0 → π− [a1(1260)+ → π+ σ] share a common ∆ci, while having different CP -conserving

parameters. As we do not measure the time distribution, we have no sensitivity to the

overall phase difference between D0 and D0 and thus, the phase difference between AD0(x)

and AD0(x) is fixed to null. From these separate amplitudes, the direct CP violation in

each amplitude is simply calculated from the fit coefficients as

AiCP ≡
|ai|2 − |āi|2

|ai|2 + |āi|2
. (4.30)

In principle, the global direct CP asymmetry can be calculated from

ACP ≡
∫
|AD0(x)|2 dΦ4 −

∫
|AD0(x)|2 dΦ4∫

|AD0(x)|2 dΦ4 +
∫
|AD0(x)|2 dΦ4

, (4.31)

however to avoid an unnecessary systematic uncertainty arising from the amplitude model,

this will instead be determined from an asymmetry in the integrated decay rates,

ACP ≡
Γ(D0 → h+h−π+π−)− Γ(D0 → h+h−π+π−)

Γ(D0 → h+h−π+π−) + Γ(D0 → h+h−π+π−)
=
ε̄TagND0 − εTagND0

ε̄TagND0 + εTagND0

, (4.32)

– 15 –



J
H
E
P
0
5
(
2
0
1
7
)
1
4
3

composed of the number of signal candidates tagged as D0 (D0) mesons, ND0 (ND0). For

the CLEO-c data, the signal tagging efficiency ratio,

ε̄Tag

εTag
= 0.9899± 0.0015, (4.33)

has been determined from an average over the D → Kπ, Kππ0 and Kπππ efficiencies

given in ref. [53]. No asymmetry in pion identification is found in the preceding CLEO

data samples and thus the tagging efficiency ratio is set to unity with an uncertainty of

1.5% [54].

5 Likelihood fit

Due to flavor tagging, there are two independent data sets available; D0 → h+h−π+π− and

D0 → h−h+π−π+ events which can be described by the amplitudes AD0(x) and AD0(x),

respectively. In general, the signal PDF for events tagged as D0 → h+h−π+π− is given by

PSig(x) =
[(1− w) |AD0(x)|2 + w

∣∣AD0(x)
∣∣2] εSig(x)φ4(x)∫

[|AD0(x)|2 +
∣∣AD0(x)

∣∣2] εSig(x) dΦ4

, (5.1)

where εSig(x) is the phase-space efficiency and w is the wrong tag fraction as defined in

section 3. In the case of no CP violation, the integrals over the D0 and D0 amplitudes

will be equal. For the CP -tagged data sets used in the D0 → K+K−π+π− analysis, the

signal PDFs are given in ref. [13]. We do not account for effects of neutral charm meson

oscillations, as we expect these to be negligible in these analyses.

Note that the efficiency in the numerator appears as an additive constant in the log L
that does not depend on any fit parameters such that it can be ignored. However, the

efficiency function still enters via the normalization integrals. These normalization terms

are determined numerically by a MC integration technique. For this purpose, we use

simulated events generated according to a preliminary model, pass them through the full

detector simulation and apply the same selection criteria as for data in order to perform

the MC integrals. For example, the first integral in eq. (5.1) can be approximated as

∫
|AD0(x)|2 εSig(x) dΦ4 ≈

1

NMC

NMC∑
k

|AD0(xk)|2∣∣A′
D0(xk)

∣∣2 (5.2)

where A′D0 labels the preliminary amplitude model and xk is the k-th MC event. As a

result, the efficiency can be included in the amplitude fit without explicitly modeling it.

For D0 → π+π−π+π−, we use a sample of NMC = 600000 MC events to ensure that the

uncertainty on the integral is less than 0.5%. For D0 → K+K−π+π−, we use samples of

NMC ≈ 900000 events each, produced under each of the CLEO III and CLEO-c detector

conditions. MC representing the CLEO II.V detector conditions is simulated from CLEO

III MC via the reweighting process discussed in ref. [13]. The uncertainty on the integral

for each D0 → K+K−π+π− MC sample is less than 0.5%.
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The background PDF,

PBkg(x) =
εSig(x)B(x)φ4(x)∫
εSig(x)B(x) dΦ4

, (5.3)

is determined in section 5.1 from sideband data. Note that because of the integration

method, the background parameters only have meaning relative to the signal efficiency.

The event likelihood is constructed from the signal PDF and the background PDF,

L = fSig PSig(x|θ) + (1− fSig)PBkg(x|θ), (5.4)

where fSig is the signal fraction as determined in section 3.1 and θ is the set of fit parameters.

5.1 Background model

Background events arise from randomly combined particles from various processes such as

other D decays or continuum which, by chance, fulfill all required selection criteria. Some of

them may even contain resonances that do not arise from the signal D0 decay. The chosen

background PDF for the D0 → π+π−π+π− mode includes Breit-Wigner (BW) contribu-

tions from the resonances σ, ρ(770)0, f0(980) and two ad-hoc scalar resonances (S0
1 , S

−
2 )

with free masses and widths. They are added incoherently on top of two non-resonant

components. In addition, several exponential and polynomial functions are included to

allow for more flexibility. The background function is explicitly given by

B(x) =

7∑
i=1

bi |Bi(x)|2, (5.5)

where,

B1(x) = BWσ(s12) · BWσ(s34),

B2(x) = BWρ(770)0(s12) · exp(−α1 · s34),

B3(x) = BWf0(980)(s12) · BWf0(980)(s34),

B4(x) = BWS0
1
(s12) ·

(
5∑
i=0

ci · si34

)
,

B5(x) = BWS−2
(s124),

B6(x) = exp(−α2 · s14) · exp(−α3 · s23),

B7(x) =

(
4∑
i=0

di · si124

)
·

(
5∑
i=0

ei · si12

)
, (5.6)

with sij = m2(πi πj), sijk = m2(πi πj πk) and D0 → π+
1 π
−
2 π

+
3 π
−
4 . The real parameters

bi, αi, ci, di and ei are extracted from a fit to the sideband samples defined in section 3.1.

For D0 → K+K−π+π− decays, the background shape is determined for each data set

and is simply modeled by an incoherent sum of the K1(1400)+ → K∗(892)0π+, φ(1020),

K∗(892)0, K̄∗(892)0, ρ(770)0 resonances and a constant term with relative couplings de-

termined from the relevant sidebands.
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5.2 Signal model construction

The light meson spectrum comprises multiple resonances which are expected to contribute

to D0 → h+h−π+π− decays as intermediate states. Apart from clear contributions com-

ing from resonances such as a1(1260) → ρ(770)0π, φ(1020) and K∗(892)0, the remaining

structure is impossible to infer due to the cornucopia of broad, overlapping and interfering

resonances within the phase space boundary. The complete list of considered amplitudes

can be found in appendix C.

To build the amplitude model, one could successively add amplitudes on top of one an-

other until a reasonable agreement between data and fit was achieved. However, this step-

wise approach is not particularly suitable for amplitude analyses as discussed in ref. [55].

Instead, we include the whole pool of amplitudes in the first instance and use the Least

Absolute Shrinkage and Selection Operator [55, 56] (LASSO) approach to limit the model

complexity. In this method, the event likelihood is extended by a penalty term

− 2 logL → −2 logL+ λ
∑
i

√∫
|aiAi(x)|2 dΦ4, (5.7)

which shrinks the amplitude coefficients towards zero. The amount of shrinkage is con-

trolled by the parameter λ, to be tuned on data. Higher values for λ encourage sparse

models, i.e. models with only a few non-zero amplitude coefficients. The optimal value for

λ is found by minimizing the Bayesian information criteria [57] (BIC),

BIC(λ) = −2 logL+ r logNSig, (5.8)

where NSig is the number of signal events and r is the number of amplitudes with a decay

fraction above a certain threshold. In this way, the optimal λ balances the fit quality

(−2 logL) against the model complexity. The LASSO penalty term is only used to select

the model. Afterwards, this term must be discarded in the final amplitude fit with the

selected model, otherwise the parameter uncertainties would be biased.

The implementation of the LASSO procedure differs between the D0 → h+h−π+π−

analyses. For D0 → π+π−π+π− decays, the set of amplitudes is selected using the op-

timal value of λ = 28, and is henceforth called the LASSO model; figure 5(a) shows the

distribution of BIC values obtained by scanning over λ where we choose the decay fraction

threshold to be 0.5%. It is important to note that there are certain groups of amplitudes

with the same angular distribution that are prone to produce artificially high interference

effects. Amongst them are the di-scalar amplitudes: D → (π π)S (π π)S , D → (π π)S σ,

D → σ σ, D → σ f0(1370) and D → f0(1370) f0(1370) as well as the di-vector amplitudes:

D → (π π)P (π π)P , D → (π π)P ρ(1450)0 and D → ρ(1450)0 ρ(1450)0. In these cases, only

one amplitude of the group is included at a time and the model selection is performed for

each choice. It was further observed that the inclusion of the D → π[π(1300) → π(π π)P ]

amplitude leads to a D → ρ(770)0 ρ(770)0 D-wave fraction much larger than the S-wave

fraction with a large destructive interference. As we consider this as unphysical we do not

include it in our default approach but in an alternative model presented in appendix D. In

addition, we repeated the model selection procedure under multiple different conditions:
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Figure 5. Difference in the BIC value from its minimum as function of the LASSO parameter λ

for D0 → π+π−π+π− (a) and Stage 1 D0 → K+K−π+π− (b).

(a) The fit fraction threshold for inclusion in the final model was varied within the interval

[0.05, 5]%. The set of selected amplitudes is stable for thresholds between 0.1% and

1%. Other choices result in marginally different models containing one component

more or less.

(b) Instead of BIC, the Akaike information criteria (AIC(λ) = −2 logL + 2 r [58]) was

used to optimize λ. For a given threshold, the AIC method tends to prefer lower λ

values. However, the set of models obtained varying the threshold within the interval

[0.05, 5]% is identical to the BIC method.

(c) The amplitudes selected under nominal conditions were excluded one-by-one from

the set of all amplitudes considered.

From that we obtained a set of alternative models shown in appendix D.

Due to the vast number of potential amplitude components and computational limits

imposed by the consideration of multiple data samples in the D0 → K+K−π+π− anal-

ysis, a staged LASSO method using only the flavor-tagged data, representing over 90%

of the available statistics, is employed. The approach taken is based on the assump-

tion that the signal decay proceeds primarily by doubly resonant decays, i.e. cascade and

quasi-two-body decays, rather than decay amplitudes with non-resonant components. In

Stage 1, only doubly resonant decays along with the simplest non-resonant component

(K+K−)S (π+π−)S are considered. Figure 5(b) shows a plot of the complexity factor λ,

against the resulting BIC values. We found that the fit cannot distinguish between am-

plitudes with K∗(1680)+ → K∗(892)0 π+ and K∗(1410)+ → K∗(892)0 π+, which both

peak outside the kinematic range of the D decay’s phase space. We therefore only include

K∗(1680)+ → K∗(892)0 π+ in our nominal model. An alternative fit with the K∗(1410)+,

which has marginally worse fit quality is presented in table 20.

In Stage 2, the LASSO procedure is again performed with the components selected

by Stage 1 and all single-resonant components. It should be noted in the case of cascade

decays that if LASSO picked an amplitude component but not its conjugate decay in the
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first stage, the conjugate is also considered again in this stage. Once more, the interplay be-

tween D → SS amplitudes leads to very large interference terms, and thus f0(980) (π+π−)S
and f0(980) (K+K−)S components are considered as a replacement for the non-resonant

(K+K−)S (π+π−)S component in an alternative model. The final fit merges the compo-

nents chosen in Stage 1 and Stage 2 and includes the CP -tagged data. Within this set of

amplitudes, 6 are considered insignificant relative to their error and removed from the fit

with no significant impact on fit quality.

6 D0 → π+π−π+π− amplitude analysis results

6.1 Amplitude model fit results

Table 3 lists the real and imaginary part of the complex amplitude coefficients ai, obtained

by fitting the LASSO model to the data, along with the corresponding fit fractions. The

letters in square brackets refer to the relative orbital angular momentum of the decay prod-

ucts. If no angular momentum is specified, the lowest angular momentum state consistent

with angular momentum conservation and, where appropriate, parity conservation is used.

The interference fractions are given in appendix E. Figure 6 shows the distributions of

selected phase space observables, which demonstrate reasonable agreement between data

and the fit model. We also project into the transversity basis to demonstrate good de-

scription of the overall angular structure in figure 7: the acoplanarity angle χ, is the angle

between the two decay planes formed by the π+π− combination with minimum invariant

mass, min[m(π+π−)], and the remaining π+π− combination in the D rest frame; boosting

into the rest frames of the two-body systems defining these decay planes, the two helicity

variables are defined as the cosine of the angle, θ, of each π+ momentum with the D flight

direction.

In order to quantify the quality of the fit in the five-dimensional phase space, a χ2

value is determined by binning the data;

χ2 =

Nbins∑
b=1

(Nb −N exp
b )2

N exp
b

, (6.1)

where Nb is the number of data events in a given bin, N exp
b is the event count predicted

by the fitted PDF and Nbins is the number of bins. An adaptive binning used in ref. [13] is

used to ensure sufficient statistics in each bin for a robust χ2 calculation. At least 25 events

per bin are required. The number of degrees of freedom ν, in an unbinned fit is bounded

by Nbins−1 and (Nbins−1)−Npar, where Npar is the number of free fit parameters. We use

the χ2 value divided by ν = (Nbins− 1)−Npar as a conservative estimate. For the LASSO

model, this amounts to χ2/ν = 1.40 with ν = 221 and Npar = 34, indicating a decent fit

quality.

In addition to the best five models as determined by the LASSO procedure, a further

four alternative models are studied and presented in table 18. These comprise an “Ex-

tended” model whereby all conjugate partners of non-self-conjugate intermediate states

chosen by the LASSO procedure are included. Two involving the removal of the π(1300)
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Figure 6. Invariant mass distributions of D0 → π+π−π+π− signal candidates (points with

error bars) and fit projections (black solid line). The signal component is shown in blue

(dashed), the background component in red (dashed) and the wrongly tagged contribution in green

(dashed). While the m2(π+π−) includes all four possible π+π− combinations, the min[m2(π+π−)]

(max[m2(π+π−)]) distribution includes the two π+π− combinations with the lowest (highest) in-

variant mass. The min[m2(π+π±π−)] (max[m2(π+π±π−)]) distribution includes the π+π±π− com-

bination with the lowest (highest) invariant mass. The effect of the K0
S veto can clearly be seen in

the top left projection.
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Figure 7. Angular projections of the D0 → π+π−π+π− fit results (black solid line) in the transver-

sity basis. The signal component is shown in blue (dashed), the background component in red

(dashed) and the wrongly tagged contribution in green (dashed).

and a1(1640) resonances are described in the next section, while another based on the

FOCUS model [12] is also considered. From this sample of alternative models, except the

one based on the FOCUS model due to its poor fit quality, a model-dependent error on

the fit fractions and the resonance parameters is derived from the variance. If one of the

nominal amplitudes is not included in an alternative model, the corresponding fraction is

set to zero.

The dominant contribution is the a1(1260) resonance in the decay modes a1(1260)→
ρ(770)0π and a1(1260) → σπ followed by the quasi-two-body decays D → σf0(1370)

and D → ρ(770)0ρ(770)0. We find that the decay D0 → a1(1260)+π− dominates over

D0 → a1(1260)−π+, which is similar to the pattern observed in the B sector, where

B0 → a1(1260)+π− is preferred over B0 → a1(1260)−π+ [59, 60].

6.2 Lineshapes of a1(1260), π(1300), a1(1640)

Resonance properties that were also determined from the fit to data are given in tables 4

and 5. The mass and width of the a1(1260) meson are in good agreement with the PDG

estimates, ma1(1260) = 1230 ± 40 MeV/c2 and Γa1(1260) = 250 − 600 MeV; however they

differ somewhat from one of the most precise single measurements to date, ma1(1260) =

1255 ± 6 (stat)+7
−17 (syst) MeV/c2 and Γa1(1260) = 367 ± 9 (stat)+28

−25 (syst) MeV, performed

by the COMPASS Collaboration [61]. It is, however, not straightforward to compare
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Parameter Value

ma1(1260) ( MeV/c2) 1225± 9± 17± 10

Γa1(1260) ( MeV) 430± 24± 25± 18

mπ(1300) ( MeV/c2) 1128± 26± 59± 37

Γπ(1300) ( MeV) 314± 39± 61± 26

ma1(1640) ( MeV/c2) 1691± 18± 16± 25

Γa1(1640) ( MeV) 171± 33± 20± 35

Table 4. Resonance parameters determined from the fit to D0 → π+π−π+π− decays. The uncer-

tainties are statistical, systematic and model-dependent, respectively.

ma1(1260) Γa1(1260) ma1(1640) Γa1(1640) mπ(1300) Γπ(1300)

ma1(1260) +1.000 +0.689 −0.065 −0.282 +0.116 −0.258

Γa1(1260) +1.000 −0.114 −0.176 +0.013 −0.004

ma1(1640) +1.000 −0.335 −0.136 −0.119

Γa1(1640) +1.000 −0.258 +0.370

mπ(1300) +1.000 −0.425

Γπ(1300) +1.000

Table 5. The statistical correlation coefficients between the resonance parameters determined from

the D0 → π+π−π+π− fit.

these values to our measurement since the COMPASS analysis was performed assuming a

relativistic Breit-Wigner, cf. eq. (4.11), for the lineshape of the a1(1260) resonance. When

fitting our data with a relativistic Breit-Wigner for the a1(1260) propagator we obtain the

values ma1(1260),RBW = 1221 ± 8 (stat) MeV/c2 and Γa1(1260),RBW = 387 ± 18 (stat) MeV.

When fitting our data with a constant width for the a1(1260) propagator, we obtain the

values ma1(1260),SBW = 1134 ± 8 (stat) MeV/c2 and Γa1(1260),SBW = 367 ± 15 (stat) MeV.

Our nominal lineshape model is preferred over the relativistic Breit-Wigner (constant width

Breit-Wigner) with a significance of 10σ (7σ), determined from the log-likelihood difference

σ =
√

∆(−2 logL). The a1(1260) lineshape parameters have also been measured in the

three-pion decay of the tau-lepton. The most recent measurement using this decay is by

CLEO and finds ma1(1260) = 1331± 10± 3 MeV/c2 and Γa1(1260) = 814± 36± 13 MeV [62].

The unusually large value for the width might be related to the specific choice of lineshape

parametrization. In ref. [39], the three-pion decay of the τ lepton was studied using a

similar model for the a1(1260) propagator as used in the analysis presented here. From a

simultaneous fit to ALEPH [63], ARGUS [64], OPAL [65] and CLEO [62] data, the following

results are obtained: ma1(1260) = 1233 ± 18 MeV/c2 and Γa1(1260) = 431 ± 20 MeV, which

are in very good agreement with our measurement. The results of the FOCUS amplitude

analysis [12] are ma1(1260) = 1240+30
−10 MeV/c2 and Γa1(1260) = 560+120

−40 MeV; a potentially

relevant difference between their model and ours is that the only intermediate state decaying

to three pions included is the a1(1260) resonance, while our LASSO model also includes

the π(1300), a1(1640) and π2(1670) resonances.
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Figure 8. Magnitude-squared (a), phase (b) and Argand diagram (c) of the quasi-model-

independent a1(1640) lineshape. The fitted knots are displayed as points with error bars and

the black line shows the interpolated spline. The Breit-Wigner lineshape with the mass and width

from the nominal fit is superimposed (red area). The latter is chosen to agree with the interpolated

spline at the point <(A) = 1, =(A) = 0.

The a1(1640) resonance, the first radial excitation of the a1(1260) meson, was ob-

served in ref. [66] decaying to σπ and f2(1270)π, and in ref. [67] decaying to (ρ(770)0π)D,

though confirmation is still needed. We find the decay modes a1(1640) → (ρ(770)0π)D
and a1(1640)→ (σπ) with a combined fit fraction of 6.6%. The mass and width obtained

from the fit are compatible with the PDG average of ma1(1640) = 1647 ± 22 MeV/c2 and

Γa1(1640) = 254± 27 MeV. The scalar π(1300)+ resonance is seen decaying to σπ+ and its

mass and width are also measured to be in agreement with other experiments [11].

It is important to note that even though the a1(1640) and the π(1300) resonances

are selected by the model building, satisfactory fit results can also be obtained without

them. The LASSO models obtained when explicitly excluding the a1(1640) and the π(1300)

resonance from the pool of amplitudes are given in appendix D. These models are used to

generate many pseudo-data sets according to the “no-a1(1640)” or “no-π(1300)” hypotheses

denoted as H0. The pseudo-data is then fitted with H0 and the alternative hypotheses, e.g.

a1(1640) hypothesis H1, in order to predict the distributions of the log-likelihood differences

∆(−2 logL) = 2 log(L(H1)/L(H0)) under the H0 hypotheses. We use a Gaussian function

to parameterize the ∆(−2 logL) distributions. By integrating the tails of the Gaussians

above the ∆(−2 logL) value observed on the real data, the H0 hypotheses can be excluded

in favor of the a1(1640) and π(1300) alternate hypotheses at the 2.4σ and 6.1σ levels,

respectively.

Since the a1(1640)+ resonance is not yet well established, we verify its resonant phase

motion in a quasi-model-independent way as pioneered in ref. [68]. For this purpose, the

Breit-Wigner lineshape is replaced by a complex-valued cubic spline. The interpolated

cubic spline has to pass through independent complex knots spaced in the m2(π+π+π−)

region around the nominal mass. The position of the knots is chosen ad-hoc. We verified

on simulated experiments that with this choice a Breit-Wigner lineshape can be properly

reproduced, given there is a real resonance. The fitted magnitudes and phases of the

knots are shown in figure 8, where the expectations from a Breit-Wigner shape with

the mass and width from the nominal fit are superimposed taking only the statistical

uncertainties on the mass and width into account. The interpolated spline generally

reproduces the features of the Breit-Wigner parametrization. In particular, the resulting
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Figure 9. Magnitude-squared (a), phase (b) and Argand diagram (c) of the quasi-model-

independent a1(1260) lineshape. The fitted knots are displayed as points with error bars and

the black line shows the interpolated spline. The Breit-Wigner lineshape with the mass and width

from the nominal fit is superimposed (red area). The latter is chosen to agree with the interpolated

spline at the point <(A) = 1, =(A) = 0.

Figure 10. Magnitude-squared (a), phase (b) and Argand diagram (c) of the quasi-model-

independent π(1300) lineshape. The fitted knots are displayed as points with error bars and the

black line shows the interpolated spline. The Breit-Wigner lineshape with the mass and width from

the nominal fit is superimposed (red area). The latter is chosen to agree with the interpolated

spline at the point <(A) = 1, =(A) = 0.

Argand diagram shows a circular, counter-clockwise trajectory which is the expected

behavior of a resonance. Note that the high-mass tail of the a1(1640) is outside of the

phase space boundary such that it is not possible to investigate the full phase motion.

Similar quasi-model-independent studies are performed for the a1(1260) and π(1300)

resonances as shown in figures 9 and 10, respectively. Since the investigated resonances are

all very broad, the quasi-model-independent lineshapes can absorb statistical fluctuations

in the data, especially near the phase space boundaries. Therefore, the agreement with

the Breit-Wigner expectation in all cases indicates that it is qualitatively reasonable that

these resonances are indeed real features of the data.

6.3 Global CP content measurement

The fractional CP -even content, F 4π
+ , is determined from the integral in eq. (4.28), using

the nominal model for A4π
D0 and A4π

D0 assuming no direct CP violation in the D meson

decay. The uncertainty on F 4π
+ is calculated from pseudo-experiments by randomly varying

the free parameters of the amplitude fit within their measured statistical and systematic

uncertainties. For each variation, F 4π
+ is redetermined, and the square root of the sample

variance of these values is taken as the uncertainty. An additional systematic uncertainty

is assigned by computing F 4π
+ for each of the alternative amplitude models. The standard
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Decay channel AiCP (%) Significance (σ)

D0 → π− a1(1260)+ +4.7± 2.6± 4.3± 2.4 0.9

D0 → π+ a1(1260)− +13.7± 13.8± 9.8± 5.8 0.8

D0 → π− π(1300)+ −1.6± 12.9± 5.0± 4.4 0.1

D0 → π+ π(1300)− −5.6± 11.9± 25.6± 10.3 0.2

D0 → π− a1(1640)+ +8.6± 17.8± 16.0± 10.8 0.3

D0 → π− π2(1670)+ +7.3± 15.1± 8.0± 6.6 0.4

D0 → σ f0(1370) −14.6± 16.5± 9.3± 1.3 0.8

D0 → σ ρ(770)0 +2.5± 16.8± 13.8± 14.6 0.1

D0 → ρ(770)0 ρ(770)0 −5.6± 5.0± 2.2± 1.9 1.0

D0 → f2(1270) f2(1270) −28.3± 12.3± 18.5± 9.7 1.2

Table 6. Direct CP asymmetry and significance for each component of the D0 → π+π−π+π−

LASSO model. The first uncertainty is statistical, the second systematic and the third due to

alternative models.

deviation of these values is taken as the additional model uncertainty. The obtained result,

F 4π
+ (flavor-tagged, model-dependent) = [72.9± 0.9 (stat)± 1.5 (syst)± 1.0 (model)] %,

(6.2)

is consistent with a previous model-independent analysis of CP -tagged events [51],

F 4π
+ (CP -tagged, model-independent) = (73.7± 2.8) %. (6.3)

6.4 Search for direct CP violation

A search for CP violation is performed by fitting the LASSO model to the flavor-tagged

D0 and D0 samples. In contrast to our default fit described in section 5, we now allow

the amplitude coefficients for D0 → π+π−π+π− and D0 → π−π+π−π+ decays to differ, as

described in section 4.3.

The masses and widths of the resonances are fixed to the values obtained in the nom-

inal fit. Possible additional biases due to this assumption are included in the systematic

uncertainties which are otherwise determined as described in section 8. Table 6 compares

the resulting fit fractions for the D0 and D0 decays. The sensitivity to AiCP is at the level

of 4% to 22% depending on the decay mode. No significant CP violation is observed for

any of the amplitudes. Also, the integrated CP asymmetry over phase space is found to be

A4π
CP = [+0.54± 1.04 (stat)± 0.51 (syst)]%, (6.4)

which is consistent with CP conservation. Due to the cancellation of systematic uncer-

tainties in asymmetry-like quantities, the only remaining source considered for the global

CP asymmetry is the tagging efficiency ratio, which is set to unity for this purpose. This

nominal value of A4π
CP is consistent with that which can be found from the amplitude model

via eq. (4.31), A4π
CP = [+0.60± 0.56 (stat)]%.
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7 D0 → K+K−π+π− amplitude analysis results

7.1 Amplitude model fit results

Table 7 lists the real and imaginary part of the complex amplitude coefficients ai, along

with the corresponding fit fractions. The interference fractions are given in appendix E.

Figures 11 and 12 show the distributions of selected phase space observables, which demon-

strate reasonable agreement between data and the fit model. For the flavor-tagged data

only, we also project into the transversity basis to demonstrate good description of the over-

all angular structure in figure 13: the acoplanarity angle χ, is the angle between the two

decay planes formed by the K+K− combination and the π+π− combination in the D rest

frame; boosting into the rest frames of the two-body systems defining these decay planes,

the two helicity variables are defined as the cosine of the angle, θK+ , of the K+ momentum

with the D flight direction, and the cosine of the angle, θπ+ , of the π+ momentum with the

D flight direction. In contrast to the treatment of the a1(1260) and π(1300) substructure

in the D0 → π+π−π+π− analysis, we do not enforce the same amplitude substructure for

the K(1270)+, K(1400)+, K(1680)+ decays as for K(1270)−, K(1400)−, K(1680)−; this

choice has historical reasons. It is re-assuring to see that the results we obtain without

these constraints are consistent with what one would expect if such constraints had been

applied (cf. model A in table 20). For the LASSO model, the χ2/ν is 1.5 with ν = 116,

where the effective number of degrees of freedom is determined with a pseudo-experiment

technique. Its value is chosen to be the one that best converts the distribution of χ2 val-

ues for each experiment into the standard uniform distribution. This method differs from

that used in D0 → π+π−π+π− as the relatively small size of the data sample here would

otherwise result in negative degrees of freedom.

Four alternate models are presented in appendix D:

(A) a model that requires the use of conjugate amplitudes for all present non-self-

conjugate decays

(B) replacing K∗(1680)+ → K∗(892)0 π+ with the K∗(1410)+ → K∗(892)0 π+ amplitude

(C) replacing the flat non-resonant term with the f0(980) (π+π−)S and f0(980) (K+K−)S
amplitudes

(D) the model previously reported in ref. [13]

The results between models are broadly consistent where the largest individual fit

fraction corresponds to the D0 → φ(1020) ρ(770)0 amplitude. We found that we cannot

distinguish between the K∗(1680) meson in our default model and the K∗(1410) meson

trialled in alternative model B. Both of these components peak outside the kinematically

allowed range.

Relative to the previous analysis of the same data set [13], the most notable apparent

difference in our default model is the fit fraction of the φ(1020) ρ(770)0 S-wave, which

was 38.3% in ref. [13], but only 28.1% in our current analysis. This is because of our

modified description of the V V D-wave. In ref. [13], the component labeled as D-wave is
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Figure 11. Invariant 2-body mass distributions of D0 → K+K−π+π− signal candidates shown

as points with error bars. The overall fit projection is shown in black, the signal in blue and the

background in red. The effect of the K0
S veto can clearly be seen in the bottom right projection.

a superposition of D and S waves, a choice which was motivated by the convention used

in four-body amplitude analyses at the time. This led to a large interference between the

components labeled as S wave and D wave of -15.7%. In this analysis, as we parametrize a

pure D-wave, we find an interference fraction between the φ(1020) ρ(770)0 S- and D-waves

of -3.7%. Taking these interference fractions into account, the combined φ(1020) ρ(770)0 S-

and D-wave fraction of 26% is therefore consistent between both analyses. In contrast to

ref. [13], we also find a small, but significant φ(1020) ρ(770)0 P -wave component. Another

difference in the two-resonance topology is in the K∗(892)0 K̄∗(892)0 mode, where our

results indicate a significant P - and D-wave contribution, while in ref. [13], only an S-

– 30 –



J
H
E
P
0
5
(
2
0
1
7
)
1
4
3

)4/c2) (GeV+
π

­
K+(K2m

1.5 2 2.5 3

)
4

/c
2

E
v

e
n

ts
/(

0
.0

4
9

 G
e
V

0

20

40

60

80

100

120

140

160

180

200

)4/c2) (GeV­
π

­
K+(K2m

1.5 2 2.5 3

)
4

/c
2

E
v

e
n

ts
/(

0
.0

4
9

 G
e
V

0

20

40

60

80

100

120

140

160

180

200

220

240

)4/c2) (GeV­
π

+
π

+(K2m
0.5 1 1.5 2

)
4

/c
2

E
v

e
n

ts
/(

0
.0

3
7

 G
e
V

0

50

100

150

200

250

300

)4/c2) (GeV­
π

+
π

­
(K2m

0.5 1 1.5 2

)
4

/c
2

E
v

e
n

ts
/(

0
.0

3
7

 G
e
V

0

50

100

150

200

250

300

Figure 12. Invariant 3-body mass distributions of D0 → K+K−π+π− signal events shown as

points with error bars. The overall fit projection is shown in black, the signal in blue and the

background in red.

wave contribution was observed. Note though, that model 6 in ref. [13] has a P -wave in

the K∗(892) (Kπ)P decay of a similar size as our K∗(892)0 K̄∗(892)0 P -wave. The largest

differences in our results are, as might be expected, in the cascade topology, because of

the significant changes we implemented to improve the description of the lineshapes of

resonance decays to three-body final states. We find that the process D0 → K∗∗+K−,

where K∗∗ represents any excited kaon, dominates over D0 → K∗∗−K+, analogous to

the dominance of D0 → a1(1260)+ π− over D0 → a1(1260)− π+ decays. In ref. [13], this

was only the case for the K(1270) → K∗(890)π amplitude. We also observe a significant

K(1270) → K∗(1430)π component in agreement with ref. [14] but not with ref. [13].

The description of this type of decay chain, with a daughter whose mean mass is outside

the kinematically allowed region, benefits particularly from our improved lineshapes. As in

ref. [14], but unlike in ref. [13], we also see a significant K(1400)→ K∗(890)π contribution,

albeit at a lower level.

7.2 Global CP content measurement

Following the same approach as for D0 → π+π−π+π− decays, for the fractional CP -even

content we obtain

FKKππ+ = [75.3± 1.8 (stat)± 3.3 (syst)± 3.5 (model)] %, (7.1)

for the nominal D0 → K+K−π+π− model, the first such measurement in this final state.
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Figure 13. Angular projections of the D0 → K+K−π+π− fit results (black solid line) in the

transversity basis, to the flavor-tagged data sample only. The signal component is shown in blue

(dashed) and the background component in red (dashed).

7.3 Search for direct CP violation

Following the same approach as for D0 → π+π−π+π− decays, we measure the direct CP

violating parameters given in table 8. The CP asymmetry over phase space is found to be

AKKππCP = [+1.84± 1.74 (stat)± 0.30 (syst)]%. (7.2)

All measurements are consistent with CP conservation.

8 Systematic uncertainties

There are three main sources of systematic uncertainties on the fit parameters to be consid-

ered; an intrinsic fit bias, as well as experimental and model-dependent uncertainties. For

each four-body decay, the fit bias itself is determined from a large ensemble of MC pseudo-

experiments generated from the nominal LASSO model. The mean difference between the

generated and fitted parameters are taken as a systematic uncertainty.

The experimental systematic uncertainties occur due to imperfect knowledge of the

yield of background events and their distribution in phase space, the wrong tag proba-

bility, and various effects on the efficiency variation over phase space. To estimate the

systematic uncertainty related to the background shape that was fixed from sideband, the
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Decay channel AiCP (%) Significance (σ)

D0 → K−K1(1270)+ +25.3± 9.7± 9.2± 8.8 1.6

D0 → K+ K̄1(1270)− −50.4± 12.0± 15.9± 2.4 2.5

D0 → K−K1(1400)+ +9.2± 15.1± 20.3± 1.1 0.4

D0 → K−K∗(1680)+ −17.1± 21.8± 18.0± 4.2 0.6

D0 → K∗(892)0K̄∗(892)0 −4.6± 9.0± 9.8± 5.7 0.3

D0 → φ(1020) ρ(770)0 +1.5± 4.6± 8.0± 0.5 0.1

D0 → K∗(892)0 (K−π+)S −13.1± 17.9± 29.7± 9.4 0.4

D0 → φ(1020) (π+π−)S −4.0± 18.0± 44.6± 1.2 0.1

D0 → (K+K−)S (π+π−)S +8.2± 10.9± 16.9± 2.7 0.4

Table 8. Direct CP asymmetry and significance for each component of the D0 → K+K−π+π−

LASSO model. The first uncertainty is statistical, the second systematic and the third due to

alternative models.

amplitude fit is repeated where the background parameters are allowed to vary within

their statistical uncertainties. In addition, several alternative background PDFs are tested

whereby each background contribution is replaced, one at a time, by a flat, non-resonant

model. The largest deviations from the nominal values are assigned as systematic uncer-

tainties. The uncertainty due to both the signal fraction and the wrong tag probabilities

in the flavor-tagged samples are estimated by repeating the fit and allowing them to vary

under Gaussian constraints. The signal fraction uncertainty for the CP -tagged sample is

determined by fixing the fraction to unity and repeating the fit. Various assumptions made

on the acceptance in the fit model are also considered. As the acceptance comes from MC,

we account for differences between data and MC arising from tracking and particle iden-

tification as a function of momentum of the daughter particles. Using correction factors

obtained from independent internal CLEO studies, the MC is reweighted separately for

each effect and the fit to data repeated. While detector resolution can be safely ignored

in D0 → π+π−π+π− decays, neglecting the effect of finite momentum resolution on the

φ(1020) resonance in D0 → K+K−π+π− decays may lead to a bias. To counter this, a

large number of pseudo-experiments were generated by distributing MC events that have

passed full selection and weighted by the LASSO model found from data. Each experiment

is then fit with the signal model where the mean difference between the generated and

fitted parameters are assigned as systematic uncertainties. Finally, the integration error

due to the limited size of the MC sample is of the order of 0.5%, so it is neglected as a

source of systematic uncertainty.

Model-dependent uncertainties arise from fixed lineshape parameters and the effects

of interference from Cabbibo-suppressed decays on the tag-side in the CLEO-c flavor-

tagged data samples. The uncertainties due to fixed masses and widths of resonances are

evaluated by varying them one-by-one within their quoted errors. In our nominal fit, the

Blatt-Weisskopf radial parameter is set to rBW = 1.5 (GeV/c)−1. As a systematic check,

we set the radial parameter to zero. For the calculation of the energy-dependent widths,
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the partial widths into the πππ channel are obtained using an iterative procedure described

in section 4.1. The systematic error of this approach is estimated by repeating the fit using

the iteration previous to the final. In some cases, the energy-dependent width relies on

external measurements of intermediate branching fractions. In D0 → π+π−π+π−, their

impact is studied by recalculating the width considering only decays into the πππ (ππ)

final state for three-body (two-body) resonances. For D0 → K+K−π+π−, the energy-

dependent widths of the three-body resonances are recalculated assuming a flat phase

space distribution. Similarly, the energy-dependent mass of the a1(1260) resonance is

approximated by a constant and the resulting shifts of the fit parameters are assigned as

systematic errors.

The systematic uncertainty related to interference from the tag-side arising between

the CKM-favored c → s and CKM-suppressed c → d amplitudes in the final states used

for flavor-tagging is accounted for by using an alternative signal PDF at the cost of two

additional fit parameters as described in ref. [13].

All systematic uncertainties are added in quadrature and summarized in tables 9 and 10

for D0 → π+π−π+π− and in tables 11 and 12 for D0 → K+K−π+π−.

9 Conclusion

The first amplitude analysis of flavor-tagged D0 → π+π−π+π− decays has been presented

based on CLEO-c data. Due to the large amount of possible intermediate resonance compo-

nents, a model-building procedure has been applied which balances the fit quality against

the number of free fit parameters. The prominent contribution is found to be the a1(1260)

resonance in the decay modes a1(1260) → ρ(770)0 π and a1(1260) → σ π. Along with the

a1(1260), further cascade decays involving the resonances π(1300) and a1(1640) are also

seen. The masses and widths of these resonances are determined using an advanced line-

shape parametrization taking into account the resonant three-pion substructure. The reso-

nant phase motion of these states has been verified by means of a quasi-model-independent

study. In addition to these cascade topologies, there is a significant contribution from the

quasi-two-body decays D0 → ρ(770)0 ρ(770)0 and D0 → σ f0(1370). The CP -even fraction

of the decay D0 → π+π−π+π− as predicted by the amplitude model is consistent with a

previous model-independent study. The amplitude model has also been used to search for

CP violation in D0 → π+π−π+π− decays, where no CP violation among the amplitudes is

observed within the given precision of a few percent.

Moreover, the amplitude analysis of D → K+K−π+π− decays performed by CLEO [13]

has been revisited by applying the significantly improved formalism presented in this

paper, using decays obtained from CLEO II.V, CLEO III, and CLEO-c data. The

largest components are the processes D0 → φ(1020) ρ(770)0, D0 → K1(1270)+K− and

D0 → K(1400)+K−, which together account for over half of the D0 → K+K−π+π− decay

rate. The fractional CP -even content is measured for the first time and a search for CP

asymmetries in the amplitude components yields no evidence for CP violation.

In addition to shedding light on the dynamics of D0 → h+h−π+π− decays, these

results are expected to provide important input for a determination of the CP -violating

phase γ (φ3) in B− → DK− decays.

– 34 –



J
H
E
P
0
5
(
2
0
1
7
)
1
4
3

F
it

p
a
ra

m
et

er
1

2
3

4
5

6
7

8
9

T
o
ta

l

D
0
→
π
−

[ a 1(
1
2
6
0
)+
→
π

+
σ
] <

(a
i
)

0
.5

5
0
.1

1
0
.1

6
0
.0

9
0
.2

0
0
.7

8
0
.1

7
0
.2

2
0
.1

4
1
.0

5

D
0
→
π
−

[ a 1(
1
2
6
0
)+
→
π

+
σ
] =

(a
i
)

1
.2

0
0
.1

9
0
.2

8
0
.1

6
0
.1

9
0
.2

8
0
.1

1
0
.1

4
0
.1

8
1
.3

3

D
0
→
π

+
a

1
(1

2
6
0
)−
<

(a
i
)

0
.4

3
1
.1

3
0
.2

4
0
.1

1
0
.2

2
0
.1

6
0
.1

8
0
.0

9
0
.1

1
1
.2

9

D
0
→
π

+
a

1
(1

2
6
0
)−
=

(a
i
)

0
.5

6
0
.3

5
0
.1

0
0
.1

2
0
.1

0
0
.0

4
0
.1

5
0
.0

7
0
.0

9
0
.7

1

D
0
→
π
−

[ π(1
3
0
0
)+
→
π

+
σ
] <

(a
i
)

1
.3

2
1
.7

2
0
.0

6
0
.1

9
0
.2

9
0
.2

2
0
.5

4
0
.2

8
2
.0

7
3
.0

8

D
0
→
π
−

[ π(1
3
0
0
)+
→
π

+
σ
] =

(a
i
)

0
.1

2
0
.5

3
0
.2

0
0
.1

7
0
.2

5
0
.2

2
0
.0

8
0
.0

9
1
.5

1
1
.6

7

D
0
→
π

+
[ π(1

3
0
0
)−
→
π
−
σ
] <

(a
i
)

0
.7

4
1
.8

3
0
.1

7
0
.0

3
0
.1

0
0
.4

5
0
.3

3
0
.0

3
1
.3

9
2
.5

1

D
0
→
π

+
[ π(1

3
0
0
)−
→
π
−
σ
] =

(a
i
)

0
.0

1
1
.0

1
0
.2

3
0
.0

8
0
.4

0
0
.3

3
0
.1

0
0
.1

7
2
.5

0
2
.7

6

D
0
→
π
−

[ a 1(
1
6
4
0
)+

[D
]
→
π

+
ρ
(7

7
0
)0
] <

(a
i
)

0
.8

5
0
.4

4
0
.0

9
0
.1

1
0
.0

6
0
.9

0
0
.1

4
0
.3

4
0
.3

3
1
.3

9

D
0
→
π
−

[ a 1(
1
6
4
0
)+

[D
]
→
π

+
ρ
(7

7
0
)0
] =

(a
i
)

0
.5

3
0
.2

6
0
.3

9
0
.0

8
0
.0

3
0
.3

8
0
.0

5
0
.1

7
0
.4

0
0
.9

0

D
0
→
π
−

[ a 1(
1
6
4
0
)+
→
π

+
σ
] <

(a
i
)

0
.9

7
0
.4

4
0
.3

7
0
.1

5
0
.0

3
0
.6

9
0
.0

8
0
.1

7
0
.4

2
1
.4

2

D
0
→
π
−

[ a 1(
1
6
4
0
)+
→
π

+
σ
] =

(a
i
)

0
.4

5
1
.2

3
0
.1

9
0
.1

3
0
.2

3
0
.8

0
0
.1

2
0
.0

1
0
.3

5
1
.6

1

D
0
→
π
−

[ π 2(
1
6
7
0
)+
→
π

+
f
2
(1

2
7
0
)] <

(a
i
)

0
.7

0
1
.5

7
0
.4

4
0
.0

2
0
.1

6
0
.2

4
0
.1

1
0
.1

3
0
.4

1
1
.8

4

D
0
→
π
−

[ π 2(
1
6
7
0
)+
→
π

+
f
2
(1

2
7
0
)] =

(a
i
)

0
.2

1
0
.3

8
0
.1

4
0
.0

8
0
.0

6
0
.8

9
0
.1

5
0
.0

7
0
.1

6
1
.0

3

D
0
→
π
−

[ π 2(
1
6
7
0
)+
→
π

+
σ
] <

(a
i
)

0
.4

7
0
.0

5
0
.0

3
0
.0

8
0
.1

5
0
.2

6
0
.0

2
0
.1

9
0
.3

2
0
.6

8

D
0
→
π
−

[ π 2(
1
6
7
0
)+
→
π

+
σ
] =

(a
i
)

0
.0

7
1
.8

2
0
.1

6
0
.1

1
0
.1

1
0
.2

9
0
.1

0
0
.0

3
0
.2

4
1
.8

7

D
0
→
σ
f
0
(1

3
7
0
)
<

(a
i
)

0
.3

7
0
.7

1
0
.2

9
0
.0

4
0
.2

5
0
.2

6
0
.1

1
0
.0

1
2
.6

2
2
.7

9

D
0
→
σ
f
0
(1

3
7
0
)
=

(a
i
)

0
.8

5
2
.2

4
0
.1

5
0
.0

4
0
.1

8
0
.2

8
0
.5

3
0
.1

0
1
.0

9
2
.7

1

D
0
→
σ
ρ
(7

7
0
)0
<

(a
i
)

0
.0

1
0
.8

6
0
.2

2
0
.0

7
0
.0

7
0
.4

9
0
.0

7
0
.2

0
0
.2

4
1
.0

6

D
0
→
σ
ρ
(7

7
0
)0
=

(a
i
)

0
.8

1
0
.9

9
0
.1

8
0
.0

9
0
.1

1
1
.0

5
0
.1

9
0
.0

5
0
.6

6
1
.8

1

D
0
[S

]
→
ρ
(7

7
0
)0
ρ
(7

7
0
)0
<

(a
i
)

0
.2

5
1
.0

5
0
.0

6
0
.0

7
0
.1

3
1
.1

1
0
.1

3
0
.1

5
0
.4

0
1
.6

2

D
0
[S

]
→
ρ
(7

7
0
)0
ρ
(7

7
0
)0
=

(a
i
)

1
.2

4
0
.3

5
0
.2

5
0
.0

5
0
.0

8
0
.2

6
0
.1

3
0
.0

5
0
.0

3
1
.3

5

D
0
[P

]
→
ρ
(7

7
0
)0
ρ
(7

7
0
)0
<

(a
i
)

0
.1

7
0
.9

7
0
.1

6
0
.0

8
0
.1

8
0
.3

1
0
.0

2
0
.1

1
0
.3

2
1
.1

1

D
0
[P

]
→
ρ
(7

7
0
)0
ρ
(7

7
0
)0
=

(a
i
)

0
.1

8
2
.0

8
0
.1

0
0
.1

1
0
.2

0
1
.3

2
0
.0

9
0
.1

7
0
.1

5
2
.5

0

D
0
[D

]
→
ρ
(7

7
0
)0
ρ
(7

7
0
)0
<

(a
i
)

0
.4

5
1
.3

3
0
.0

5
0
.0

8
0
.0

9
0
.4

3
0
.0

4
0
.0

1
0
.3

1
1
.5

1

D
0
[D

]
→
ρ
(7

7
0
)0
ρ
(7

7
0
)0
=

(a
i
)

0
.0

5
1
.6

0
0
.3

4
0
.0

7
0
.0

3
0
.7

8
0
.1

9
0
.2

0
0
.0

5
1
.8

3

D
0
→
f
2
(1

2
7
0
)
f
2
(1

2
7
0
)
<

(a
i
)

0
.6

7
0
.5

2
0
.2

3
0
.1

0
0
.2

2
0
.3

7
0
.1

0
0
.2

4
0
.1

7
1
.0

3

D
0
→
f
2
(1

2
7
0
)
f
2
(1

2
7
0
)
=

(a
i
)

0
.5

0
1
.1

1
0
.1

9
0
.0

2
0
.0

7
0
.0

2
0
.0

6
0
.0

4
0
.1

5
1
.2

4

m
a
1
(1

2
6
0
)

1
.3

1
1
.1

5
0
.1

4
0
.0

4
0
.1

4
0
.1

0
0
.1

3
0
.1

5
0
.5

2
1
.8

5

Γ
a
1
(1

2
6
0
)

0
.1

0
0
.4

8
0
.0

4
0
.0

4
0
.0

1
0
.0

4
0
.1

3
0
.0

3
0
.8

8
1
.0

3

m
π

(1
3
0
0
)

0
.7

5
0
.7

8
0
.1

9
0
.1

5
0
.3

6
0
.1

0
0
.3

9
0
.1

2
1
.9

0
2
.2

6

Γ
π

(1
3
0
0
)

0
.1

1
0
.8

2
0
.0

6
0
.0

2
0
.2

5
0
.0

5
0
.1

6
0
.1

7
1
.2

7
1
.5

5

m
a
1
(1

6
4
0
)

0
.6

4
0
.4

5
0
.0

6
0
.0

5
0
.1

3
0
.0

3
0
.0

7
0
.2

2
0
.3

7
0
.8

9

Γ
a
1
(1

6
4
0
)

0
.5

4
0
.2

1
0
.1

2
0
.0

9
0
.0

5
0
.0

4
0
.0

5
0
.3

8
0
.0

7
0
.6

1

T
a
b

le
9

.
S

y
st

em
at

ic
u

n
ce

rt
ai

n
ti

es
on

th
e

fi
t

p
ar

a
m

et
er

s
o
f

o
u

r
n

o
m

in
a
l
D

0
→

π
+
π
−
π

+
π
−

m
o
d

el
in

u
n

it
s

o
f

st
a
ti

st
ic

a
l

st
a
n

d
a
rd

d
ev

ia
ti

o
n

s,
σ

.

T
h

e
d

iff
er

en
t

co
n
tr

ib
u

ti
on

s
ar

e:
1)

B
la

tt
-W

ei
ss

ko
p

f
b

a
rr

ie
r

fa
ct

o
rs

,
2
)

M
a
ss

es
a
n

d
w

id
th

s
o
f

re
so

n
a
n

ce
s,

3
)

B
a
ck

g
ro

u
n

d
m

o
d

el
,

4
)

S
ig

n
a
l

fr
a
ct

io
n

,

5)
W

ro
n

g
ta

g
fr

ac
ti

on
s,

6)
T

ag
-s

id
e

in
te

rf
er

en
ce

,
7
)

E
ffi

ci
en

cy
,

8
)

F
it

b
ia

s,
9
)

E
n

er
g
y
-d

ep
en

d
en

t
m

a
ss

es
a
n

d
w

id
th

s.

– 35 –



J
H
E
P
0
5
(
2
0
1
7
)
1
4
3

D
ec

ay
ch

an
n

el
1

2
3

4
5

6
7

8
9

T
o
ta

l

D
0
→
π
−
[ a 1(1

26
0)

+
→
π

+
ρ
(7

7
0
)0
]

0
.1

9
1
.3

2
0
.1

8
0
.1

5
0
.1

8
0
.1

7
0
.0

8
0
.0

8
0
.1

5
1
.3

9

D
0
→
π
−

[a
1
(1

26
0)

+
→
π

+
σ

]
1
.0

9
0
.7

6
0
.2

2
0
.1

3
0
.1

7
0
.5

4
0
.1

8
0
.0

3
0
.2

5
1
.5

0

D
0
→
π

+
[ a 1(1

26
0)
−
→
π
−
ρ
(7

7
0
)0
]

0
.5

5
0
.5

6
0
.1

9
0
.0

6
0
.1

1
0
.1

0
0
.1

3
0
.0

9
0
.0

6
0
.8

3

D
0
→
π

+
[a

1
(1

26
0)
−
→
π
−
σ

]
0
.1

4
0
.2

4
0
.2

4
0
.1

1
0
.2

0
0
.2

1
0
.1

3
0
.0

6
0
.0

6
0
.5

0

D
0
→
π
−

[π
(1

30
0)

+
→
π

+
σ

]
0
.5

5
1
.2

5
0
.2

6
0
.0

5
0
.2

0
0
.5

1
0
.4

0
0
.0

7
0
.6

2
1
.6

7

D
0
→
π

+
[π

(1
30

0)
−
→
π
−
σ

]
0
.0

8
1
.3

4
0
.2

6
0
.0

9
0
.3

2
1
.0

1
0
.1

1
0
.0

6
2
.8

5
3
.3

3

D
0
→
π
−
[ a 1(1

64
0)

+
[D

]
→
π

+
ρ
(7

7
0
)0
] 0

.6
8

0
.5

5
0
.1

4
0
.1

1
0
.0

9
1
.0

8
0
.2

2
0
.0

9
0
.4

7
1
.5

0

D
0
→
π
−

[a
1
(1

64
0)

+
→
π

+
σ

]
0
.6

5
1
.0

7
0
.1

2
0
.1

5
0
.2

0
0
.8

9
0
.1

3
0
.0

2
0
.1

3
1
.5

7

D
0
→
π
−

[π
2
(1

67
0)

+
→
π

+
f 2

(1
2
7
0
)]

0
.1

8
0
.7

9
0
.1

9
0
.0

1
0
.0

6
0
.7

9
0
.0

9
0
.0

6
0
.1

8
1
.1

7

D
0
→
π
−

[π
2
(1

67
0)

+
→
π

+
σ

]
0
.3

5
1
.2

3
0
.1

2
0
.0

7
0
.0

8
0
.3

1
0
.0

6
0
.0

2
0
.1

4
1
.3

3

D
0
→
σ
f 0

(1
37

0)
0
.7

0
1
.7

9
0
.0

9
0
.1

0
0
.1

5
0
.8

1
0
.5

2
0
.0

3
0
.8

8
2
.3

3

D
0
→
σ
ρ
(7

70
)0

0
.5

8
0
.2

2
0
.1

4
0
.0

6
0
.0

4
0
.8

3
0
.0

7
0
.0

5
0
.5

8
1
.2

0

D
0
[S

]
→
ρ
(7

70
)0
ρ
(7

70
)0

1
.1

2
0
.9

3
0
.2

7
0
.0

5
0
.1

5
0
.4

6
0
.1

2
0
.0

7
0
.1

7
1
.5

7

D
0
[P

]
→
ρ
(7

70
)0
ρ
(7

70
)0

0
.0

9
1
.8

4
0
.2

4
0
.0

3
0
.0

2
2
.6

0
0
.1

3
0
.2

6
0
.1

3
3
.2

0

D
0
[D

]
→
ρ
(7

70
)0
ρ
(7

70
)0

0
.7

4
1
.1

9
0
.0

9
0
.0

7
0
.0

6
0
.9

0
0
.1

7
0
.0

7
0
.2

6
1
.7

0

D
0
→
f 2

(1
27

0)
f 2

(1
27

0)
0
.1

7
0
.4

8
0
.1

1
0
.0

7
0
.1

6
0
.1

7
0
.0

4
0
.1

1
0
.1

6
0
.6

0

T
a
b

le
1
0

.
S

y
st

em
at

ic
u

n
ce

rt
ai

n
ti

es
on

th
e

fi
t

fr
a
ct

io
n

s
fr

o
m

o
u

r
n

o
m

in
a
l
D

0
→

π
+
π
−
π

+
π
−

m
o
d

el
in

u
n

it
s

o
f

st
a
ti

st
ic

a
l

st
a
n

d
a
rd

d
ev

ia
ti

o
n

s,
σ

.

T
h

e
d

iff
er

en
t

co
n
tr

ib
u

ti
on

s
ar

e:
1)

B
la

tt
-W

ei
ss

ko
p

f
b

a
rr

ie
r

fa
ct

o
rs

,
2
)

M
a
ss

es
a
n

d
w

id
th

s
o
f

re
so

n
a
n

ce
s,

3
)

B
a
ck

g
ro

u
n

d
m

o
d

el
,

4
)

S
ig

n
a
l

fr
a
ct

io
n

,

5)
W

ro
n

g
ta

g
fr

ac
ti

on
s,

6)
T

ag
-s

id
e

in
te

rf
er

en
ce

,
7
)

E
ffi

ci
en

cy
,

8
)

F
it

b
ia

s,
9
)

E
n

er
g
y
-d

ep
en

d
en

t
m

a
ss

es
a
n

d
w

id
th

s.

– 36 –



J
H
E
P
0
5
(
2
0
1
7
)
1
4
3

F
it

p
a
ra

m
et

er
1

2
3

4
5

6
7

8
9

1
0

1
1

T
o
ta

l

D
0
→
K
−

[ K 1(
1
2
7
0
)+
→
π

+
K
∗
(8

9
2
)0
] <

(a
i
)

0
.7

3
2

2
.1

2
6

0
.1

9
0

0
.1

9
9

0
.0

1
9

0
.0

0
1

0
.1

0
1

0
.3

7
6

0
.0

9
0

0
.2

1
1

1
.5

0
5

2
.7

5
7

D
0
→
K
−

[ K 1(
1
2
7
0
)+
→
π

+
K
∗
(8

9
2
)0
] =

(a
i
)

0
.3

3
1

2
.3

9
6

0
.2

0
7

0
.1

4
7

0
.0

8
7

0
.0

0
1

0
.0

6
4

0
.3

0
0

0
.0

4
0

0
.2

3
3

0
.0

5
4

2
.4

6
5

D
0
→
K
−

[ K 1(
1
2
7
0
)+
→
π

+
K
∗
(1

4
3
0
)0
] <

(a
i
)

0
.4

9
3

2
.0

5
0

0
.2

4
4

0
.2

7
7

0
.0

0
5

0
.0

0
1

0
.2

1
2

0
.0

9
0

0
.2

7
4

0
.4

3
4

0
.3

4
4

2
.2

4
0

D
0
→
K
−

[ K 1(
1
2
7
0
)+
→
π

+
K
∗
(1

4
3
0
)0
] =

(a
i
)

0
.2

9
5

1
.1

2
5

0
.1

9
6

0
.1

4
7

0
.0

2
4

0
.0

0
2

0
.8

4
2

0
.0

6
0

0
.1

9
0

0
.0

8
5

0
.4

4
5

1
.5

3
8

D
0
→
K
−

[ K 1(
1
2
7
0
)+
→
K

+
ρ
(7

7
0
)0
] <

(a
i
)

0
.4

7
0

2
.0

1
1

0
.1

9
9

0
.1

5
4

0
.0

0
9

0
.0

0
2

0
.2

0
7

0
.0

6
3

0
.2

9
2

0
.2

8
3

0
.3

3
2

2
.1

5
7

D
0
→
K
−

[ K 1(
1
2
7
0
)+
→
K

+
ρ
(7

7
0
)0
] =

(a
i
)

0
.0

1
4

1
.1

2
7

0
.1

6
5

0
.1

8
1

0
.0

2
7

0
.0

0
1

0
.4

6
6

0
.2

1
5

0
.0

4
2

0
.0

2
1

0
.7

8
0

1
.4

8
5

D
0
→
K

+
[ K 1(

1
2
7
0
)−
→
K
−
ρ
(7

7
0
)0
] <

(a
i
)

0
.5

6
0

0
.9

7
2

0
.1

6
0

0
.1

6
9

0
.1

7
2

0
.0

0
1

0
.5

1
2

0
.1

3
9

0
.1

0
0

0
.2

2
6

0
.7

4
6

1
.4

9
7

D
0
→
K

+
[ K 1(

1
2
7
0
)−
→
K
−
ρ
(7

7
0
)0
] =

(a
i
)

1
.0

0
8

2
.1

2
5

0
.2

1
3

0
.2

9
8

0
.1

2
3

0
.0

0
0

0
.3

4
6

0
.2

1
6

0
.3

0
6

0
.1

7
8

0
.7

7
3

2
.5

6
4

D
0
→
K
−

[ K 1(
1
2
7
0
)+
→
K

+
ω

(7
8
2
)] <

(a
i
)

0
.5

4
9

0
.7

1
3

0
.1

4
9

0
.2

1
6

0
.0

2
4

0
.0

0
1

0
.1

6
5

0
.0

2
5

0
.1

5
7

0
.0

8
7

0
.6

0
5

1
.1

4
2

D
0
→
K
−

[ K 1(
1
2
7
0
)+
→
K

+
ω

(7
8
2
)] =

(a
i
)

0
.0

3
0

1
.5

0
6

0
.0

9
7

0
.0

3
3

0
.0

3
2

0
.0

0
0

0
.7

1
4

0
.2

7
4

0
.1

7
8

0
.3

8
7

1
.7

8
5

2
.4

9
7

D
0
→
K
−

[ K 1(
1
4
0
0
)+
→
π

+
K
∗
(8

9
2
)0
] <

(a
i
)

0
.2

2
8

1
.5

8
7

0
.2

9
2

0
.1

7
6

0
.1

3
2

0
.0

0
0

0
.2

2
1

0
.1

8
0

0
.0

5
7

0
.1

6
9

0
.4

8
9

1
.7

4
8

D
0
→
K
−

[ K 1(
1
4
0
0
)+
→
π

+
K
∗
(8

9
2
)0
] =

(a
i
)

0
.0

9
0

1
.8

8
0

0
.1

0
1

0
.1

4
6

0
.0

4
7

0
.0

0
1

0
.8

2
1

0
.1

5
1

0
.3

1
2

0
.0

8
2

1
.4

0
9

2
.5

2
2

D
0
→
K
−

[ K∗
(1

6
8
0
)+
→
π

+
K
∗
(8

9
2
)0
] <

(a
i
)

0
.6

3
6

0
.7

3
2

0
.6

3
9

0
.0

9
5

0
.1

0
6

0
.0

0
0

0
.9

8
9

0
.2

4
6

0
.0

1
0

0
.5

6
7

0
.4

6
7

1
.7

1
6

D
0
→
K
−

[ K∗
(1

6
8
0
)+
→
π

+
K
∗
(8

9
2
)0
] =

(a
i
)

0
.4

2
3

0
.7

1
6

0
.2

5
4

0
.1

3
6

0
.0

6
6

0
.0

0
3

0
.0

5
1

0
.0

6
0

0
.0

4
3

0
.3

0
1

1
.2

0
6

1
.5

2
7

D
0
[S

]
→
K
∗
(8

9
2
)0
K̄
∗
(8

9
2
)0
<

(a
i
)

0
.0

4
4

0
.5

4
7

0
.2

1
8

0
.1

7
7

0
.0

5
4

0
.0

0
2

1
.0

0
6

0
.2

2
1

0
.3

5
7

0
.1

4
6

0
.8

9
2

1
.5

4
5

D
0
[S

]
→
K
∗
(8

9
2
)0
K̄
∗
(8

9
2
)0
=

(a
i
)

0
.5

3
6

1
.1

5
1

0
.1

6
9

0
.1

3
5

0
.0

2
6

0
.0

0
1

0
.2

3
7

0
.0

2
8

0
.0

9
1

0
.0

1
9

1
.7

9
0

2
.2

2
0

D
0
[P

]
→
K
∗
(8

9
2
)0
K̄
∗
(8

9
2
)0
<

(a
i
)

0
.5

7
5

0
.4

3
7

0
.1

7
1

0
.2

6
1

0
.0

1
6

0
.0

0
1

1
.9

0
9

0
.1

9
8

0
.0

1
5

0
.2

3
6

0
.2

1
3

2
.0

9
8

D
0
[P

]
→
K
∗
(8

9
2
)0
K̄
∗
(8

9
2
)0
=

(a
i
)

0
.5

1
8

0
.4

8
0

0
.4

1
2

0
.2

0
5

0
.0

1
1

0
.0

0
1

0
.4

0
1

0
.1

5
4

0
.2

2
6

0
.0

2
0

0
.5

0
1

1
.0

9
4

D
0
[D

]
→
K
∗
(8

9
2
)0
K̄
∗
(8

9
2
)0
<

(a
i
)

0
.8

6
3

0
.2

5
2

0
.6

3
6

0
.2

7
3

0
.0

6
8

0
.0

0
0

0
.0

5
5

0
.1

4
1

0
.0

6
9

0
.4

3
0

0
.1

3
2

1
.2

3
4

D
0
[D

]
→
K
∗
(8

9
2
)0
K̄
∗
(8

9
2
)0
=

(a
i
)

0
.4

4
5

0
.5

9
5

0
.1

6
2

0
.2

2
8

0
.0

8
5

0
.0

0
2

0
.4

5
3

0
.1

5
4

0
.0

1
3

0
.1

6
2

1
.4

8
9

1
.7

6
3

D
0
[P

]
→
φ

(1
0
2
0
)ρ

(7
7
0
)0
<

(a
i
)

0
.6

9
5

0
.1

6
1

0
.1

4
5

0
.4

3
5

0
.0

0
9

0
.0

0
3

1
.0

0
6

0
.0

2
3

0
.1

2
8

0
.1

3
2

0
.1

3
9

1
.3

3
6

D
0
[P

]
→
φ

(1
0
2
0
)ρ

(7
7
0
)0
=

(a
i
)

0
.2

4
3

0
.2

8
9

0
.2

0
9

0
.7

9
3

0
.0

1
4

0
.0

0
0

0
.0

8
5

0
.0

9
9

0
.1

1
2

0
.3

2
2

0
.7

4
7

1
.2

2
8

D
0
[D

]
→
φ

(1
0
2
0
)ρ

(7
7
0
)0
<

(a
i
)

0
.7

0
9

0
.1

0
0

0
.7

5
0

0
.1

7
9

0
.0

1
3

0
.0

0
1

0
.0

4
0

0
.1

8
5

0
.0

0
9

0
.3

9
9

0
.4

4
9

1
.2

2
7

D
0
[D

]
→
φ

(1
0
2
0
)ρ

(7
7
0
)0
=

(a
i
)

0
.0

6
4

0
.2

2
7

0
.5

2
4

0
.3

4
9

0
.0

0
2

0
.0

0
1

0
.0

5
3

0
.0

2
3

0
.1

5
2

0
.1

0
7

0
.1

7
8

0
.7

2
3

D
0
→
K
∗
(8

9
2
)0

(K
−
π

+
) S
<

(a
i
)

0
.7

6
2

1
.1

6
1

0
.4

6
4

0
.1

1
4

0
.1

4
6

0
.0

0
2

1
.3

5
7

0
.1

3
4

0
.3

0
9

0
.2

3
3

0
.5

4
8

2
.1

1
9

D
0
→
K
∗
(8

9
2
)0

(K
−
π

+
) S
=

(a
i
)

0
.6

9
3

0
.3

5
8

0
.1

6
2

0
.1

4
5

0
.1

1
8

0
.0

0
1

0
.0

7
0

0
.1

0
5

0
.2

2
8

0
.1

9
4

0
.5

0
2

1
.0

1
3

D
0
→
φ

(1
0
2
0
)(
π

+
π
−

) S
<

(a
i
)

0
.1

3
2

0
.2

0
9

0
.2

1
0

0
.2

4
7

0
.0

1
3

0
.0

0
1

0
.6

7
0

0
.1

0
7

0
.4

4
6

0
.6

5
7

1
.2

0
8

1
.6

4
8

D
0
→
φ

(1
0
2
0
)(
π

+
π
−

) S
=

(a
i
)

0
.6

8
5

0
.1

9
4

0
.3

0
2

0
.7

5
5

0
.0

8
7

0
.0

0
1

1
.7

2
0

0
.0

5
7

0
.2

9
2

0
.4

0
2

0
.2

6
6

2
.1

1
1

D
0
→

(K
+
K
−

) S
(π

+
π
−

) S
<

(a
i
)

1
.1

6
3

0
.5

1
9

0
.2

0
1

0
.4

9
9

0
.0

4
9

0
.0

0
1

0
.2

5
5

0
.1

6
9

0
.0

4
4

0
.0

8
7

1
.3

0
1

1
.9

2
6

D
0
→

(K
+
K
−

) S
(π

+
π
−

) S
=

(a
i
)

0
.9

9
9

0
.5

2
5

0
.2

0
2

0
.6

0
6

0
.3

1
9

0
.0

0
1

1
.2

2
3

0
.2

9
1

0
.0

2
0

0
.0

3
8

0
.5

3
1

1
.9

1
0

T
a
b

le
1
1

.
S

y
st

em
at

ic
u

n
ce

rt
ai

n
ti

es
on

th
e

fi
t

p
ar

a
m

et
er

s
o
f

o
u

r
n

o
m

in
a
l
D

0
→

K
+
K
−
π

+
π
−

m
o
d

el
in

u
n

it
s

o
f

st
a
ti

st
ic

a
l

st
a
n

d
a
rd

d
ev

ia
ti

o
n

s,

σ
.

T
h

e
d

iff
er

en
t

co
n
tr

ib
u

ti
on

s
ar

e:
1)

B
la

tt
-W

ei
ss

ko
p

f
b

a
rr

ie
r

fa
ct

o
rs

,
2
)

M
a
ss

es
a
n

d
w

id
th

s
o
f

re
so

n
a
n

ce
s,

3
)
C
P

-t
a
g
g
ed

si
g
n

a
l

fr
a
ct

io
n

,
4
)

F
la

vo
r-

ta
gg

ed
b

ac
k
gr

ou
n

d
m

o
d

el
,

5)
F

la
vo

r-
ta

gg
ed

si
g
n

a
l

fr
a
ct

io
n

s,
6
)

M
is

ta
g

ra
te

s,
7
)

T
a
g
-s

id
e

in
te

rf
er

en
ce

,
8
)

E
ffi

ci
en

cy
,

9
)

F
it

b
ia

s,
1
0
)

D
et

ec
to

r

re
so

lu
ti

on
,

11
)

E
n

er
g
y
-d

ep
en

d
en

t
m

as
se

s
an

d
w

id
th

s.

– 37 –



J
H
E
P
0
5
(
2
0
1
7
)
1
4
3

D
ec

ay
ch

an
n

el
1

2
3

4
5

6
7

8
9

1
0

1
1

T
o
ta

l

D
0
→
K
−
[ K 1(

12
70

)+
→
π

+
K
∗ (

89
2)

0
]

0.
2
2
4

0
.9

6
0

0
.0

8
4

0
.0

7
1

0
.0

2
8

0
.0

0
0

0
.0

3
4

0
.1

4
0

0
.0

2
7

0
.0

9
4

0
.4

0
6

1
.0

8
7

D
0
→
K
−
[ K 1(

12
70

)+
→
π

+
K
∗ (

14
30

)0
] 0.

4
3
6

1
.8

1
2

0
.2

1
7

0
.2

4
5

0
.0

0
6

0
.0

0
1

0
.2

3
6

0
.0

8
0

0
.2

4
3

0
.3

8
2

0
.3

1
2

1
.9

8
7

D
0
→
K
−
[ K 1(

12
70

)+
→
K

+
ρ
(7

70
)0
]

0.
3
1
9

1
.4

4
3

0
.1

5
1

0
.1

2
9

0
.0

1
3

0
.0

0
1

0
.2

3
9

0
.0

9
9

0
.1

9
9

0
.1

9
2

0
.3

9
4

1
.5

8
8

D
0
→
K

+
[ K 1(

12
70

)−
→
K
−
ρ
(7

70
)0
]

0.
4
9
5

1
.0

0
9

0
.1

1
3

0
.1

4
7

0
.0

8
7

0
.0

0
0

0
.2

5
2

0
.1

1
0

0
.1

4
0

0
.1

1
8

0
.4

4
9

1
.2

7
1

D
0
→
K
−

[K
1
(1

27
0)

+
→
K

+
ω

(7
82

)]
0.

1
7
8

0
.8

7
9

0
.0

7
3

0
.0

7
2

0
.0

2
0

0
.0

0
0

0
.4

0
6

0
.1

5
5

0
.1

1
2

0
.2

2
0

1
.0

2
5

1
.4

5
4

D
0
→
K
−
[ K 1(

14
00

)+
→
π

+
K
∗ (

89
2)

0
]

0.
0
6
3

1
.1

2
5

0
.0

7
4

0
.0

8
9

0
.0

3
4

0
.0

0
1

0
.4

8
1

0
.0

9
2

0
.1

8
3

0
.0

5
4

0
.8

2
7

1
.4

9
8

D
0
→
K
−
[ K∗ (

16
80

)+
→
π

+
K
∗ (

89
2)

0
]

0.
4
2
0

0
.4

9
6

0
.4

1
6

0
.0

6
8

0
.0

7
0

0
.0

0
1

0
.6

3
9

0
.1

5
9

0
.0

1
1

0
.3

7
1

0
.3

9
3

1
.1

5
3

D
0
[S

]
→
K
∗ (

89
2)

0
K̄
∗ (

89
2)

0
0.

2
2
4

0
.6

3
0

0
.1

7
8

0
.1

4
5

0
.0

4
2

0
.0

0
2

0
.7

6
4

0
.1

6
7

0
.2

7
1

0
.1

1
0

1
.0

0
0

1
.4

8
3

D
0
[P

]
→
K
∗ (

89
2)

0
K̄
∗ (

89
2)

0
0.

5
2
8

0
.4

2
4

0
.2

4
8

0
.2

3
3

0
.0

1
4

0
.0

0
1

1
.5

4
0

0
.1

7
6

0
.1

1
4

0
.1

8
9

0
.3

0
4

1
.7

6
6

D
0
[D

]
→
K
∗ (

89
2)

0
K̄
∗ (

89
2)

0
1.

1
8
2

0
.4

0
5

0
.8

6
5

0
.3

7
9

0
.0

9
7

0
.0

0
1

0
.1

8
1

0
.1

9
9

0
.0

9
4

0
.5

8
6

0
.5

7
2

1
.7

9
3

D
0
[S

]
→
φ

(1
02

0)
ρ
(7

70
)0

1.
1
9
0

0
.2

6
5

0
.8

3
2

0
.6

2
2

0
.0

2
1

0
.0

0
3

0
.8

0
7

0
.2

1
1

0
.1

3
7

0
.5

2
4

0
.7

1
2

2
.0

1
5

D
0
[P

]
→
φ

(1
02

0)
ρ
(7

70
)0

0.
6
3
5

0
.1

9
3

0
.1

5
9

0
.5

2
4

0
.0

1
0

0
.0

0
3

0
.9

0
6

0
.0

4
8

0
.1

2
5

0
.1

8
5

0
.3

5
1

1
.3

1
8

D
0
[D

]
→
φ

(1
02

0)
ρ
(7

70
)0

0.
6
2
0

0
.0

9
7

0
.6

6
3

0
.1

6
9

0
.0

1
1

0
.0

0
1

0
.0

3
6

0
.1

6
2

0
.0

2
9

0
.3

4
9

0
.3

9
4

1
.0

8
0

D
0
→
K
∗ (

89
2)

0
(K
−
π

+
) S

0.
3
2
8

0
.5

0
0

0
.2

0
0

0
.0

4
9

0
.0

6
3

0
.0

0
1

0
.5

8
4

0
.0

5
8

0
.1

3
3

0
.1

0
0

0
.2

3
6

0
.9

1
2

D
0
→
φ

(1
02

0)
(π

+
π
−

) S
0.

6
0
6

0
.2

1
4

0
.2

9
5

0
.6

7
9

0
.0

7
7

0
.0

0
1

1
.5

6
4

0
.0

8
3

0
.3

7
6

0
.5

3
8

0
.7

8
3

2
.1

1
3

D
0
→

(K
+
K
−

) S
(π

+
π
−

) S
0.

9
4
6

0
.4

5
8

0
.1

7
7

0
.4

9
0

0
.2

0
6

0
.0

0
1

0
.7

9
7

0
.2

1
2

0
.0

2
9

0
.0

5
8

0
.8

5
1

1
.6

8
1

T
a
b

le
1
2

.
S

y
st

em
at

ic
u

n
ce

rt
ai

n
ti

es
on

th
e

fi
t

fr
a
ct

io
n

s
fr

o
m

o
u

r
n

o
m

in
a
l
D

0
→

K
+
K
−
π

+
π
−

m
o
d

el
in

u
n

it
s

o
f

st
a
ti

st
ic

a
l

st
a
n

d
a
rd

d
ev

ia
ti

o
n

s,

σ
.

T
h

e
d

iff
er

en
t

co
n
tr

ib
u

ti
on

s
ar

e:
1)

B
la

tt
-W

ei
ss

ko
p

f
b

a
rr

ie
r

fa
ct

o
rs

,
2
)

M
a
ss

es
a
n

d
w

id
th

s
o
f

re
so

n
a
n

ce
s,

3
)
C
P

-t
a
g
g
ed

si
g
n

a
l

fr
a
ct

io
n

,
4
)

F
la

vo
r-

ta
gg

ed
b

ac
k
gr

ou
n

d
m

o
d

el
,

5)
F

la
vo

r-
ta

gg
ed

si
g
n

a
l

fr
a
ct

io
n

s,
6
)

M
is

ta
g

ra
te

s,
7
)

T
a
g
-s

id
e

in
te

rf
er

en
ce

,
8
)

E
ffi

ci
en

cy
,

9
)

F
it

b
ia

s,
1
0
)

D
et

ec
to

r

re
so

lu
ti

on
,

11
)

E
n

er
gy

-d
ep

en
d

en
t

m
as

se
s

an
d

w
id

th
s.

– 38 –



J
H
E
P
0
5
(
2
0
1
7
)
1
4
3

Acknowledgments

This analysis was performed using CLEO II.V, CLEO III and CLEO-c data. The authors,

some of whom were members of CLEO, are grateful to the collaboration for the privilege

of using these data. We wish to thank Lauren Atkin and Andrew Powell who helped

with their invaluable expertise; we also thank Jonathan Rosner and Roy Briere for their

careful reading of the draft manuscript and their valuable suggestions. We also acknowledge

the support of the U.K. Science and Technology Facilities Council (STFC), the European

Research Council 7 / ERC Grant Agreement number 307737, the German Federal Ministry

of Education and Research (BMBF) and the Particle Physics beyond the Standard Model

research training group (GRK 1940).

A Energy-dependent widths

) 
2

 s (GeV

0 1 2 3

(s
) 

(G
e
V

)
Γ 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
(a)

) 
2

 s (GeV

0 1 2 3

(s
) 

(G
e
V

)
Γ 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 (b)

Figure 14. Energy-dependent width for the f0(1370) (a) and f2(1270) (b) resonances. The total

width is shown in black (solid), while the partial widths into the channels ππ, ππππ and KK + ηη

are shown in blue (dashed), red (dotted) and green (dashed-dotted), respectively.
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Figure 15. Final iteration of the energy-dependent width for the π(1300) (a) and a1(1640) (b)

resonances.
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Figure 16. Energy-dependent width for the π2(1670) resonance. The total width is shown in

black (solid), while the partial widths into the channels πππ, ωρ(770) and KK̄π are shown in blue

(dashed), red (dotted) and green (dashed-dotted), respectively.
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Figure 17. Energy-dependent width for the K1(1270) (a) and K1(1400) (b) resonances. The total

width is shown in black (solid), while the partial widths into the channels Kππ and Kω are shown

in blue (dashed) and red (dotted), respectively.
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Figure 18. Energy-dependent width for the K∗(1410) (a) and K∗(1680) (b) resonances. The total

width is shown in black (solid), while the partial widths into the channels Kππ and Kπ are shown

in blue (dashed) and red (dotted), respectively.
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B Spin amplitudes

The spin factors used for D → P1 P2 P3 P4 decays are given in table 13. To fix our phase

convention, we give the exact matching of the particles P1, P2, P3, and P4 in the spin factor

definition to the final state particles in specific decay chains in tables 14 and 15.

Number Decay chain Spin amplitude

1 D → (P P1), P → (S P2), S → (P3 P4) 1

2 D → (P P1), P → (V P2), V → (P3 P4) L(1)α(P ) Lα(1)(V )

3 D → (AP1), A→ (V P2), V → (P3 P4) L(1)α(D)Pαβ(1) (A)L(1)β(V )

4 D → (AP1), A[D]→ (P2 V ), V → (P3 P4) L(1)α(D)Lαβ(2)(A)L(1)β(V )

5 D → (AP1), A→ (S P2), S → (P3 P4) L(1)α(D)Lα(1)(A)

6 D → (AP1), A→ (T P2), T → (P3 P4) L(1)α(D)L(1)β(A)Lαβ(2)(T )

7 D → (V1 P1), V1 → (V2 P2), V2 → (P3 P4) L(1)µ(D)Pµα(1) (V1) εαβγδ L
β
(1)(V1) pγV1

Lδ(1)(V2)

8 D → (PT P1), PT → (V P2), V → (P3 P4) L(2)αβ(D)Pαβγδ(2) (PT )L(1)γ(PT )L(1)δ(V )

9 D → (PT P1), PT → (S P2), S → (P3 P4) L(2)αβ(D)L(2)(PT )αβ

10 D → (PT P1), PT → (T P2), T → (P3 P4) L(2)αβ(D)Pαβγδ(2) (PT )L(2)γδ(T )

11 D → (T P1), T → (V P2), V → (P3 P4) L(2)µν(D)Pµνρα(2) (T ) εαβγδ L
β
(2)ρ(T ) pγT P

δσ
(1)(T )L(1)σ(V )

12 D → (T1 P1), T1 → (T2 P2), T2 → (P3 P4) L(2)µν(D)Pµνρα(2) (T1) εαβγδ L
β
(1)(T1) pγT1

Lδ(2)ρ(T2)

13 D → (S1 S2), S1 → (P1 P2), S2 → (P3 P4) 1

14 D → (V S), V → (P1 P2), S → (P3 P4) L(1)α(D)Lα(1)(V )

15 D → (V1 V2), V1 → (P1 P2), V2 → (P3 P4) L(1)α(V1)Lα(1)(V2)

16 D[P ]→ (V1 V2), V1 → (P1 P2), V2 → (P3 P4) εαβγδ L
α
(1)(D)Lβ(1)(V1)Lγ(1)(V2) pδD

17 D[D]→ (V1 V2), V1 → (P1 P2), V2 → (P3 P4) L(2)αβ(D)Lα(1)(V1)Lβ(1)(V2)

18 D → (T S), T → (P1 P2), S → (P3 P4) L(2)αβ(D)Lαβ(2)(T )

19 D → (V T ), T → (P1 P2), V → (P3 P4) L(1)α(D)Lαβ(2)(T )L(1)β(V )

20 D[D]→ (T V ), T → (P1 P2), V → (P3 P4) εαβδγ L
αµ
2 (D)Lβ2µ L

γ
(1)(V ) pδD

21 D → (T1 T2), T1 → (P1 P2), T2 → (P3 P4) L(2)αβ(T1)Lαβ(2)(T2)

22 D[P ]→ (T1 T2), T1 → (P1 P2), T2 → (P3 P4) εαβγδ L
α
(1)(D)Lβµ(2)(T1)Lγ(2)µ(T2) pδD

23 D[D]→ (T1 T2), T1 → (P1 P2), T2 → (P3 P4) L(2)αβ(D)Lαγ(2)(T1)Lβ(2)γ(T2)

Table 13. Spin factors for all topologies considered in this analysis. In the decay chains, S, P ,

V , A, T and PT stand for scalar, pseudoscalar, vector, axial vector, tensor and pseudotensor,

respectively. If no angular momentum is specified, the lowest angular momentum state compatible

with angular momentum conservation and, where appropriate, parity conservation, is used.
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Decay channel Spin factor number P1 P2 P3 P4

D0 → π−
[
a1(1260)+ → π+ ρ(770)0

]
3 π− π+ π+ π−

D0 → π− [a1(1260)+ → π+ σ] 5 π− π+ π+ π−

D0 → π+
[
a1(1260)− → π− ρ(770)0

]
3 π+ π− π− π+

D0 → π+ [a1(1260)− → π− σ] 5 π+ π− π− π+

D0 → π− [π(1300)+ → π+ σ] 1 π− π+ π+ π−

D0 → π+ [π(1300)− → π− σ] 1 π+ π− π− π+

D0 → π−
[
a1(1640)+[D]→ π+ ρ(770)0

]
4 π− π+ π+ π−

D0 → π− [a1(1640)+ → π+ σ] 5 π− π+ π+ π−

D0 → π− [π2(1670)+ → π+ f2(1270)] 10 π− π+ π+ π−

D0 → π− [π2(1670)+ → π+ σ] 9 π− π+ π+ π−

D0 → σ f0(1370) 13 π+ π− π+ π−

D0 → σ ρ(770)0 14 π+ π− π+ π−

D0[S]→ ρ(770)0 ρ(770)0 15 π+ π− π+ π−

D0[P ]→ ρ(770)0 ρ(770)0 16 π+ π− π+ π−

D0[D]→ ρ(770)0 ρ(770)0 17 π+ π− π+ π−

D0 → f2(1270) f2(1270) 21 π+ π− π+ π−

Table 14. Spin factors used for the decay chains included in the D0 → π+π−π+π− LASSO model,

including the particle numbering scheme. The second column refers to the spin factors as numbered

in table 13, and the particles P1, P2, P3, and P4 refer to those defined in table 13.

Decay channel Spin factor number P1 P2 P3 P4

D0 → K− [K1(1270)+ → π+K∗(892)0] 3 K− π+ K+ π−

D0 → K− [K1(1270)+ → π+K∗(1430)0] 5 K− π+ K+ π−

D0 → K− [K1(1270)+ → K+ ρ(770)0] 3 K− K+ π+ π−

D0 → K+ [K̄1(1270)− → K− ρ(770)0] 3 K+ K− π− π+

D0 → K− [K1(1270)+ → K+ ω(782)] 3 K− K+ π+ π−

D0 → K− [K1(1400)+ → π+K∗(892)0] 3 K− π+ K+ π−

D0 → K− [K∗(1680)+ → π+K∗(892)0] 7 K− π+ K+ π−

D0[S]→ K∗(892)0 K̄∗(892)0 15 K+ π− K− π+

D0[P ]→ K∗(892)0 K̄∗(892)0 16 K+ π− K− π+

D0[D]→ K∗(892)0 K̄∗(892)0 17 K+ π− K− π+

D0[S]→ φ(1020) ρ(770)0 15 K+ K− π+ π−

D0[P ]→ φ(1020) ρ(770)0 16 K+ K− π+ π−

D0[D]→ φ(1020) ρ(770)0 17 K+ K− π+ π−

D0 → K∗(892)0 (K−π+)S 14 K+ π− K− π+

D0 → φ(1020) (π+π−)S 14 K+ K− π+ π−

D0 → (K+K−)S (π+π−)S 13 K+ K− π+ π−

Table 15. Spin factors used for the decay chains included in the D0 → K+K−π+π− LASSO

model, including the particle numbering scheme. The second column refers to the spin factors as

numbered in table 13, and the particles P1, P2, P3, and P4 refer to those defined in table 13.
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C Considered decay chains

The various decay channels considered in the model building are listed in tables 16 and 17.

Decay channel

D0 → π−
[
a1(1260)+ → π+ σ

]
D0 → π−

[
a1(1260)+[S,D]→ π+ ρ(770)0

]
D0 → π−

[
a1(1260)+ → π+ f0(980)

]
D0 → π−

[
a1(1260)+ → π+ f2(1270)

]
D0 → π−

[
a1(1260)+ → π+ f0(1370)

]
D0 → π−

[
a1(1260)+[S,D]→ π+ ρ(1450)0

]
D0 → π−

[
π(1300)+ → π+ σ

]
D0 → π−

[
π(1300)+ → π+ ρ(770)0

]
D0 → π−

[
π(1300)+ → π+ (π+π−)P

]
D0 → π−

[
a2(1320)+ → π+ ρ(770)0

]
D0 → π−

[
a2(1320)+ → π+ f2(1270)

]
D0 → π−

[
a1(1420)+ → π+ f0(980)

]
D0 → π−

[
π1(1600)+ → π+ ρ(770)0

]
D0 → π−

[
a1(1640)+ → π+ σ

]
D0 → π−

[
a1(1640)+[S,D]→ π+ ρ(770)0

]
D0 → π−

[
a1(1640)+ → π+ f2(1270)

]
D0 → π−

[
π2(1670)+ → π+ σ

]
D0 → π−

[
π2(1670)+ → π+ ρ(770)0

]
D0 → π−

[
π2(1670)+ → π+ f2(1270)

]
D0 → (π π)S (π π)S

D0 → σ (π π)S

D0 → σ σ

D0 → σ f0(980)

D0 → σ f0(1370)

D0 → f0(980) f0(980)

D0 → f0(1370) f0(1370)

D0 → ρ(770)0 σ

D0 → ρ(770)0 f0(980)

D0 → ρ(770)0 f0(1370)

D0 → ρ(1450)0 σ

D0[S, P,D]→ (π π)P (π π)P

D0[S, P,D]→ ρ(770)0 (π π)P

D0[S, P,D]→ ρ(770)0 ρ(770)0

D0[S, P,D]→ ρ(770)0 ω(782)0

D0[S, P,D]→ ω(782)0 ω(782)0

D0[S, P,D]→ ρ(1450)0 (π π)P

D0[S, P,D]→ ρ(1450)0 ρ(1450)0

D0 → f2(1270) σ

D0 → f2(1270) f0(980)

D0[P,D]→ f2(1270) ρ(770)0

D0[S, P,D]→ f2(1270) f2(1270)

Table 16. Decays considered in D0 → π+π−π+π− LASSO model building. For cascade non-self-

conjugate channels, the conjugate partner is implied.
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Decay channel

D0 → K− [K∗(1410)+ → π+K∗(892)0]

D0 → K− [K1(1270)+[S,D]→ π+K∗(892)0]

D0 → K− [K1(1270)+[S,D]→ π+K∗(1430)0]

D0 → K− [K1(1270)+[S,D]→ K+ ρ(770)0]

D0 → K− [K1(1270)+[S,D]→ K+ ω(782)]

D0 → K− [K1(1400)+[S,D]→ π+K∗(892)0]

D0 → K− [K∗2 (1430)+ → π+K∗(892)0]

D0 → K− [K∗2 (1430)+ → K+ ρ(770)0]

D0 → K− [K∗(1680)+ → π+K∗(892)0]

D0 → K− [K∗(1680)+ → K+ ρ(770)0]

D0[S, P,D]→ K∗(892)0 K̄∗(892)0

D0[S, P,D]→ φ(1020) ρ(770)0

D0 → φ(1020)ω(782)

D0[P,D]→ f2(1270)0 φ(1020)

D0 → ρ(770)0 (K+K−)S

D0[S, P,D]→ ρ(770)0 (K+K−)P

D0 → K∗(892)0 (K−π+)S

D0[S, P,D]→ K∗(892)0 (K−π+)P

D0 → φ(1020) (π+π−)S

D0[S, P,D]→ φ(1020) (π+π−)P

D0 → f0(980) (π+π−)S

D0 → f0(980) (K+K−)S

D0 → (K+K−)S (π+π−)S

Table 17. Decays considered in D0 → K+K−π+π− LASSO model building. For cascade non-self-

conjugate channels, the conjugate partner is implied.

D Alternative fit models

The fit fractions and χ2 values of the baseline and several alternative models are summa-

rized in tables 18–20.
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Decay mode Extended No π(1300) No a1(1640) FOCUS

D0 → π−
[
a1(1260)+ → π+ ρ(770)0

]
37.3± 1.9 41.0± 2.7 36.7± 2.9 38.2± 2.8

D0 → π−
[
a1(1260)+[D]→ π+ ρ(770)0

]
- - 2.6± 0.5 7.0± 1.2

D0 → π−
[
a1(1260)+ → π+ σ

]
8.1± 1.2 5.5± 0.7 5.1± 0.8 6.6± 0.9

D0 → π+
[
a1(1260)− → π− ρ(770)0

]
2.1± 0.4 3.0± 0.5 1.0± 0.2 -

D0 → π+
[
a1(1260)−[D]→ π− ρ(770)0

]
- - 0.07± 0.04 -

D0 → π+
[
a1(1260)− → π− σ

]
0.5± 0.2 0.4± 0.2 0.14± 0.06 -

D0 → π−
[
π(1300)+ → π+ σ

]
8.6± 0.9 - 10.7± 1.8 -

D0 → π+
[
π(1300)− → π− σ

]
5.0± 0.7 - 2.8± 0.8 -

D0 → π−
[
a1(1640)+[D]→ π+ ρ(770)0

]
2.9± 0.4 6.5± 0.8 - -

D0 → π−
[
a1(1640)+ → π+ σ

]
3.0± 0.7 - - -

D0 → π−
[
a1(1640)+ → π+ f2(1270)

]
- 2.1± 0.8 - -

D0 → π+
[
a1(1640)−[D]→ π− ρ(770)0

]
1.0± 0.6 - - -

D0 → π+
[
a1(1640)− → π− σ

]
1.1± 0.6 - - -

D0 → π−
[
π2(1670)+ → π+ f2(1270)

]
0.8± 0.3 2.6± 0.7 3.4± 0.8 -

D0 → π−
[
π2(1670)+ → π+ σ

]
3.3± 0.5 3.4± 0.6 1.0± 0.3 -

D0 → π+
[
π2(1670)− → π− f2(1270)

]
0.3± 0.2 - - -

D0 → π+
[
π2(1670)− → π− σ

]
1.3± 0.6 - - -

D0 → σ (π π)S - - - 24.7± 2.7

D0 → σ f0(1370) 26.1± 1.8 9.4± 1.0 28.4± 2.8 -

D0 → f0(980) (π π)S - - - 4.6± 1.1

D0 → σ ρ(770)0 10.6± 1.1 6.3± 0.9 7.4± 1.2 -

D0[S]→ ρ(770)0 ρ(770)0 0.9± 0.3 3.2± 0.7 0.8± 0.4 5.0± 1.4

D0[P ]→ ρ(770)0 ρ(770)0 6.8± 0.5 6.5± 0.6 6.9± 0.5 6.3± 0.7

D0[D]→ ρ(770)0 ρ(770)0 13.2± 1.0 3.7± 0.8 11.8± 1.6 3.2± 0.8

D0 → f2(1270) (π π)S - - - 2.4± 0.6

D0 → f2(1270) σ - 1.1± 0.7 1.4± 0.4 -

D0 → f2(1270) f0(980) - 4.6± 1.0 - -

D0 → f2(1270) f2(1270) 2.1± 0.4 7.9± 1.7 4.0± 0.8 -

Sum 135± 4 107± 4 124± 5 98± 4

ma1(1260) ( MeV/c2) 1225± 10 1225± 9 1230± 9 1304± 14

Γa1(1260) ( MeV) 442± 26 460± 30 421± 26 529± 38

mπ(1300) ( MeV/c2) 1093± 21 - 1135± 22 -

Γπ(1300) ( MeV) 314± 36 - 308± 36 -

ma1(1640) ( MeV/c2) 1710± 20 1727± 20 - -

Γa1(1640) ( MeV) 201± 38 141± 45 - -

χ2/ν 1.52 1.79 1.55 2.36

ν 217 223 223 237

F 4π
+ (%) 70.8± 0.9 70.8± 0.9 72.6± 0.9 61.7± 0.8

Table 18. Fit fractions in percent for each component of specific alternative models for D0 →
π+π−π+π−. Resonance parameters, F 4π

+ and χ2/ν are also given. The uncertainties are statistical

only.

– 45 –



J
H
E
P
0
5
(
2
0
1
7
)
1
4
3

Decay mode Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5

D0 → π−
[
a1(1260)+ → π+ ρ(770)0

]
37.1± 2.3 38.3± 2.4 35.2± 2.6 38.4± 2.5 35.7± 2.7

D0 → π−
[
a1(1260)+ → π+ σ

]
11.3± 1.0 9.8± 1.2 9.4± 1.2 11.6± 1.4 11.4± 1.7

D0 → π+
[
a1(1260)− → π− ρ(770)0

]
2.1± 0.5 3.3± 0.6 3.7± 0.7 3.1± 0.6 4.1± 0.7

D0 → π+
[
a1(1260)− → π− σ

]
0.6± 0.2 0.9± 0.2 1.0± 0.3 0.9± 0.2 1.3± 0.3

D0 → π−
[
π(1300)+ → π+ (π+ π−)P

]
- - - - 6.4± 1.3

D0 → π−
[
π(1300)+ → π+ σ

]
8.1± 1.0 8.6± 1.4 6.0± 1.0 7.7± 1.6 4.3± 1.1

D0 → π+
[
π(1300)− → π− (π+ π−)P

]
- - - - 2.5± 0.5

D0 → π+
[
π(1300)− → π− σ

]
4.3± 0.9 4.0± 1.5 6.8± 1.6 4.9± 1.6 1.7± 0.4

D0 → π−
[
a1(1640)+[D]→ π+ ρ(770)0

]
2.7± 0.9 4.5± 1.5 3.9± 1.6 5.2± 1.1 3.7± 1.8

D0 → π−
[
a1(1640)+ → π+ σ

]
3.2± 1.3 1.4± 0.5 2.4± 1.0 3.0± 0.9 1.2± 0.7

D0 → π−
[
π2(1670)+ → π+ f2(1270)

]
1.8± 0.5 0.6± 0.2 1.2± 0.4 1.7± 0.5 1.6± 0.4

D0 → π−
[
π2(1670)+ → π+ ρ(770)0

]
2.7± 0.5 - - - -

D0 → π−
[
π2(1670)+ → π+ σ

]
2.1± 0.4 3.9± 0.6 3.3± 0.6 3.8± 0.6 3.5± 0.6

D0 → σ f0(1370) 20.7± 2.2 19.3± 2.4 21.3± 2.4 21.8± 2.5 20.4± 2.1

D0 → σ ρ(770)0 5.5± 1.0 8.7± 1.2 8.7± 1.4 - 4.8± 1.2

D0 → f0(980) ρ(770)0 - - 3.6± 0.8 - -

D0 → f0(1370) ρ(770)0 - - - 5.8± 1.0 -

D0[S]→ ρ(770)0 ρ(770)0 - 1.5± 0.4 0.8± 0.4 1.2± 0.4 0.9± 0.4

D0[P ]→ ρ(770)0 ρ(770)0 7.3± 0.5 6.8± 0.5 6.9± 0.5 6.8± 0.5 6.4± 0.5

D0[D]→ ρ(770)0 ρ(770)0 10.4± 0.9 8.3± 1.0 11.4± 1.4 10.9± 1.2 16.0± 2.1

D0 → f2(1270) f2(1270) 2.5± 0.5 - 1.2± 0.3 1.4± 0.4 1.1± 0.3

Sum 122± 4 120± 3 127± 4 128± 4 127± 6

ma1(1260) ( MeV/c2) 1198± 8 1220± 8 1213± 9 1215± 8 1231± 9

Γa1(1260) ( MeV) 429± 24 408± 23 434± 24 420± 24 459± 25

mπ(1300) ( MeV/c2) 1110± 17 1079± 25 1075± 22 1077± 36 1180± 15

Γπ(1300) ( MeV) 314± 39 347± 40 330± 39 377± 41 297± 36

ma1(1640) ( MeV/c2) 1694± 19 1681± 18 1672± 22 1686± 18 1644± 16

Γa1(1640) ( MeV) 177± 45 171± 36 250± 59 209± 28 222± 56

χ2/ν 1.50 1.42 1.43 1.50 1.33

ν 221 223 219 221 219

F 4π
+ (%) 71.7± 0.9 72.9± 0.9 73.0± 0.9 73.3± 0.9 73.5± 0.9

Table 19. Fit fractions in percent for each component of various alternative models for D0 →
π+π−π+π− based on fit quality. Resonance parameters, F 4π

+ and χ2/ν are also given. The uncer-

tainties are statistical only.
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Decay Mode Model A Model B Model C Model D

D0 → K− [K1(1270)+ → π+ K∗(892)0] 5.76 ± 1.65 6.06 ± 1.45 8.23 ± 1.29 9.38 ± 0.98

D0 → K+ [K1(1270)− → π− K̄∗(892)0] 1.12 ± 0.76 - - 0.50 ± 0.28

D0 → K− [K1(1270)+ → π+ K∗(1430)0] 5.78 ± 1.63 6.31 ± 1.20 9.51 ± 1.64 -

D0 → K+ [K1(1270)− → π− K̄∗(1430)0] 0.69 ± 0.60 - - -

D0 → K− [K1(1270)+ → K+ ω(782)] 0.78 ± 0.41 0.58 ± 0.26 0.94 ± 0.34 -

D0 → K+ [K1(1270)− → K− ω(782)] 0.39 ± 0.37 - - -

D0 → K− [K1(1270)+ → K+ ρ(770)0] 9.06 ± 1.85 9.43 ± 1.56 10.45 ± 1.79 7.58 ± 0.95

D0 → K+ [K1(1270)− → K− ρ(770)0] 1.42 ± 0.76 4.84 ± 0.73 5.05 ± 0.83 6.10 ± 0.83

D0 → K− [K1(1400)+ → π+ K∗(892)0] 14.05 ± 3.13 14.51 ± 2.82 22.28 ± 3.52 -

D0 → K+ [K1(1400)− → π− K̄∗(892)0] 1.17 ± 1.00 - - -

D0 → K− [K∗(1680)+ → π+ K∗(892)0] 2.97 ± 0.95 - 4.60 ± 0.92 -

D0 → K+ [K̄∗(1680)+ → π− K̄∗(892)0] 0.68 ± 0.43 - - -

D0[S]→ K∗(892)0 K̄∗(892)0 4.60 ± 1.19 4.54 ± 0.77 4.84 ± 0.81 9.14 ± 1.29

D0[P ]→ K∗(892)0 K̄∗(892)0 3.06 ± 1.10 3.91 ± 0.70 5.14 ± 0.78 -

D0[D]→ K∗(892)0 K̄∗(892)0 3.55 ± 0.75 3.83 ± 0.63 5.08 ± 0.76 -

D0[S]→ φ(1020) ρ(770)0 27.13 ± 1.59 27.47 ± 1.32 27.66 ± 1.35 31.08 ± 1.38

D0[P ]→ φ(1020) ρ(770)0 1.91 ± 0.47 1.80 ± 0.39 1.70 ± 0.37 -

D0[D]→ φ(1020) ρ(770)0 1.58 ± 0.46 1.47 ± 0.42 1.70 ± 0.45 2.60 ± 0.61

D0 → K∗(892)0 (K−π+)S 5.33 ± 1.40 5.75 ± 1.21 6.20 ± 1.34 -

D0 → K̄∗(892)0 (K+π−)S 1.26 ± 0.83 - - -

D0 → φ(1020) (π+π−)S 4.35 ± 0.85 4.47 ± 0.69 5.40 ± 0.76 7.86 ± 0.88

D0 → (K+K−)S (π+π−)S 10.14 ± 1.41 10.82 ± 1.22 - -

D0 → K− [K1(1410)+ → π+ K∗(892)0] - 3.35 ± 0.78 - 3.23 ± 0.69

D0 → K+ [K1(1410)− → π− K̄∗(892)0] - - - 5.55 ± 0.77

D0 → f0(980) (π+π−)S - - 1.32 ± 0.76 -

D0 → f0(980) (K+K−)S - - 1.01 ± 0.64 -

D0 → (K−π+)P (K+π−)S - - - 10.69 ± 1.10

Sum 106.76 ± 5.83 109.13 ± 4.70 121.11 ± 5.38 93.72 ± 3.10

χ2/ν 1.490 1.503 1.707 1.754

ν 116 116 116 116

FKKππ+ (%) 77.5± 3.0 74.2± 1.9 68.1± 2.0 73.8± 2.0

Table 20. Fit fractions in percent for each component of various alternative models for D0 →
K+K−π+π− based on fit quality. The FKKππ+ and χ2/ν values are also given. The uncertainties

are statistical only.
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E Interference fractions

Tables 21–24 list the interference fractions, ordered by magnitude, for the nominal models

of D0 → π+π−π+π− and D0 → K+K−π+π−.

Channel i Channel j Iij (%)

(1) D0 → π−[a1(1260)+ → σπ+] D0 → π−[a1(1260)+ → ρ(770)0π+] 20.010 ± 1.186

(2) D0 → π−[π(1300)+ → σπ+] D0 → f0(1370)σ -10.766 ± 0.835

(3) D0 → ρ(770)0 σ D0 → π−[a1(1260)+ → ρ(770)0π+] -6.942 ± 0.752

(4) D0 → π−[a1(1260)+ → σπ+] D0 → π−[a1(1640)+ → σπ+] -6.150 ± 1.186

(5) D0 → π−[a1(1260)+ → ρ(770)0π+] D0[D]→ ρ(770)0 ρ(770)0 -5.244 ± 0.331

(6) D0 → π−[a1(1640)+ → σπ+] D0 → π−[a1(1260)+ → ρ(770)0π+] -5.072 ± 0.686

(7) D0 → π+[π(1300)− → σπ−] D0 → f0(1370)σ -4.495 ± 0.872

(8) D0 → π−[a1(1260)+ → σπ+] D0[D]→ ρ(770)0 ρ(770)0 -4.301 ± 0.335

(9) D0 → π−[π2(1670)+ → σπ+] D0 → π−[π2(1670)+ → f2(1270)π+] -3.058 ± 0.429

(10) D0 → π−[π(1300)+ → σπ+] D0 → π+[π(1300)− → σπ−] 2.897 ± 0.338

(11) D0 → π−[a1(1260)+ → ρ(770)0π+] D0 → π+[a1(1260)− → ρ(770)0π−] 2.757 ± 0.128

(12) D0 → π−[a1(1260)+ → σπ+] D0 → f0(1370)σ 2.653 ± 0.186

(13) D0 → f2(1270) f2(1270) D0 → π−[π2(1670)+ → f2(1270)π+] -2.604 ± 0.531

(14) D0 → f0(1370)σ D0 → π−[a1(1260)+ → ρ(770)0π+] 2.418 ± 0.135

(15) D0 → π−[π2(1670)+ → σπ+] D0 → f2(1270) f2(1270) 2.189 ± 0.273

(16) D0[S]→ ρ(770)0 ρ(770)0 D0[D]→ ρ(770)0 ρ(770)0 2.046 ± 0.438

(17) D0 → π−[a1(1640)+[D]→ ρ(770)0π+] D0[D]→ ρ(770)0 ρ(770)0 1.995 ± 0.323

(18) D0 → π−[a1(1260)+ → σπ+] D0[S]→ ρ(770)0 ρ(770)0 -1.805 ± 0.388

(19) D0 → π+[a1(1260)− → ρ(770)0π−] D0[D]→ ρ(770)0 ρ(770)0 -1.753 ± 0.089

(20) D0 → π+[a1(1260)− → ρ(770)0π−] D0[S]→ ρ(770)0 ρ(770)0 -1.747 ± 0.294

(21) D0 → π+[a1(1260)− → σπ−] D0 → π+[a1(1260)− → ρ(770)0π−] 1.612 ± 0.095

(22) D0 → π−[a1(1260)+ → σπ+] D0 → π+[a1(1260)− → ρ(770)0π−] 1.600 ± 0.070

(23) D0 → π−[a1(1260)+ → σπ+] D0 → π+[a1(1260)− → σπ−] 1.511 ± 0.172

(24) D0 → f0(1370)σ D0[D]→ ρ(770)0 ρ(770)0 -1.403 ± 0.096

(25) D0 → π−[a1(1260)+ → σπ+] D0 → π−[π2(1670)+ → σπ+] 1.333 ± 0.120

(26) D0 → π−[a1(1640)+[D]→ ρ(770)0π+] D0 → f2(1270) f2(1270) 1.286 ± 0.146

(27) D0 → π+[a1(1260)− → ρ(770)0π−] D0 → π−[a1(1640)+[D]→ ρ(770)0π+] -1.219 ± 0.088

(28) D0 → π−[a1(1260)+ → σπ+] D0 → π+[π(1300)− → σπ−] 1.192 ± 0.159

(29) D0 → π−[a1(1260)+ → σπ+] D0 → π−[π2(1670)+ → f2(1270)π+] -1.188 ± 0.161

(30) D0 → π−[a1(1260)+ → σπ+] D0 → π−[π(1300)+ → σπ+] -1.149 ± 0.097

(31) D0 → π+[a1(1260)− → σπ−] D0[S]→ ρ(770)0 ρ(770)0 -1.072 ± 0.124

(32) D0 → π+[a1(1260)− → σπ−] D0 → ρ(770)0 σ -1.029 ± 0.116

(33) D0 → π−[a1(1640)+[D]→ ρ(770)0π+] D0[S]→ ρ(770)0 ρ(770)0 -1.011 ± 0.129

(34) D0 → π−[a1(1640)+ → σπ+] D0 → f0(1370)σ -1.000 ± 0.162

(35) D0 → π−[a1(1640)+ → σπ+] D0[D]→ ρ(770)0 ρ(770)0 0.966 ± 0.148

(36) D0 → π−[π2(1670)+ → σπ+] D0 → f0(1370)σ -0.959 ± 0.081

(37) D0 → π+[a1(1260)− → σπ−] D0[D]→ ρ(770)0 ρ(770)0 -0.907 ± 0.098

(38) D0 → π−[a1(1640)+ → σπ+] D0 → π+[a1(1260)− → ρ(770)0π−] -0.892 ± 0.119

(39) D0 → π+[π(1300)− → σπ−] D0 → π−[π2(1670)+ → σπ+] -0.865 ± 0.123

(40) D0 → π−[π(1300)+ → σπ+] D0 → π−[a1(1260)+ → ρ(770)0π+] -0.837 ± 0.096

(41) D0 → π+[a1(1260)− → σπ−] D0 → π−[a1(1640)+ → σπ+] -0.815 ± 0.184

(42) D0 → f0(1370)σ D0 → π+[a1(1260)− → ρ(770)0π−] 0.801 ± 0.033

(43) D0 → ρ(770)0 σ D0 → π−[a1(1640)+[D]→ ρ(770)0π+] 0.780 ± 0.115

(44) D0 → π−[a1(1640)+ → σπ+] D0 → π−[π(1300)+ → σπ+] 0.752 ± 0.104

(45) D0 → π−[π2(1670)+ → σπ+] D0 → π+[a1(1260)− → ρ(770)0π−] -0.689 ± 0.054

(46) D0 → π−[a1(1260)+ → ρ(770)0π+] D0 → f2(1270) f2(1270) 0.673 ± 0.073

(47) D0 → π−[a1(1640)+ → σπ+] D0 → π+[π(1300)− → σπ−] -0.672 ± 0.155

(48) D0 → f0(1370)σ D0[S]→ ρ(770)0 ρ(770)0 -0.665 ± 0.111

(49) D0 → ρ(770)0 σ D0 → π+[a1(1260)− → ρ(770)0π−] -0.649 ± 0.194

(50) D0 → π−[a1(1260)+ → ρ(770)0π+] D0 → π−[π2(1670)+ → f2(1270)π+] -0.634 ± 0.154

(51) D0 → π−[π2(1670)+ → σπ+] D0[S]→ ρ(770)0 ρ(770)0 0.627 ± 0.082

(52) D0 → π−[a1(1640)+ → σπ+] D0 → f2(1270) f2(1270) -0.623 ± 0.144

(53) D0 → π−[a1(1640)+ → σπ+] D0[S]→ ρ(770)0 ρ(770)0 0.616 ± 0.169

(54) D0 → π−[π2(1670)+ → σπ+] D0 → π−[a1(1640)+[D]→ ρ(770)0π+] -0.613 ± 0.063

(55) D0 → π−[π(1300)+ → σπ+] D0[D]→ ρ(770)0 ρ(770)0 -0.609 ± 0.067

(56) D0 → π−[a1(1260)+ → σπ+] D0 → f2(1270) f2(1270) 0.592 ± 0.130

(57) D0 → π−[a1(1640)+ → σπ+] D0 → π−[π2(1670)+ → σπ+] -0.574 ± 0.094

(58) D0 → π−[π2(1670)+ → σπ+] D0 → ρ(770)0 σ 0.522 ± 0.103

(59) D0 → ρ(770)0 σ D0 → π−[π2(1670)+ → f2(1270)π+] -0.521 ± 0.088

(60) D0 → π+[π(1300)− → σπ−] D0 → π−[a1(1260)+ → ρ(770)0π+] 0.515 ± 0.054

(61) D0 → π−[a1(1640)+ → σπ+] D0 → π−[a1(1640)+[D]→ ρ(770)0π+] 0.513 ± 0.129

(62) D0 → π−[a1(1260)+ → ρ(770)0π+] D0 → π−[a1(1640)+[D]→ ρ(770)0π+] 0.507 ± 0.074

Table 21. Interference fractions |Iij | > 0.5%, as defined in eq. (4.27), ordered by magnitude, for

the nominal D → π+π−π+π− amplitude fit. Only the statistical uncertainties are given.
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(63) D0 → π−[a1(1260)+ → σπ+] D0 → ρ(770)0 σ -0.497 ± 0.373

(64) D0[S]→ ρ(770)0 ρ(770)0 D0 → π−[π2(1670)+ → f2(1270)π+] 0.496 ± 0.088

(65) D0 → π−[π(1300)+ → σπ+] D0 → π−[π2(1670)+ → f2(1270)π+] 0.492 ± 0.054

(66) D0 → π+[a1(1260)− → σπ−] D0 → f0(1370)σ 0.452 ± 0.064

(67) D0 → π−[a1(1260)+ → ρ(770)0π+] D0[S]→ ρ(770)0 ρ(770)0 0.420 ± 0.873

(68) D0[S]→ ρ(770)0 ρ(770)0 D0 → f2(1270) f2(1270) -0.402 ± 0.103

(69) D0 → π+[π(1300)− → σπ−] D0[D]→ ρ(770)0 ρ(770)0 -0.399 ± 0.046

(70) D0 → π+[a1(1260)− → σπ−] D0 → π−[π(1300)+ → σπ+] 0.399 ± 0.057

(71) D0 → π+[a1(1260)− → σπ−] D0 → π−[a1(1640)+[D]→ ρ(770)0π+] -0.393 ± 0.035

(72) D0 → π−[π(1300)+ → σπ+] D0 → ρ(770)0 σ -0.388 ± 0.238

(73) D0 → π−[a1(1260)+ → σπ+] D0 → π−[a1(1640)+[D]→ ρ(770)0π+] -0.333 ± 0.138

(74) D0 → π−[a1(1640)+ → σπ+] D0 → ρ(770)0 σ 0.333 ± 0.241

(75) D0 → π−[π2(1670)+ → σπ+] D0[D]→ ρ(770)0 ρ(770)0 0.327 ± 0.051

(76) D0 → f0(1370)σ D0 → π−[π2(1670)+ → f2(1270)π+] 0.318 ± 0.033

(77) D0 → π−[π2(1670)+ → σπ+] D0 → π−[a1(1260)+ → ρ(770)0π+] 0.314 ± 0.054

(78) D0 → π+[π(1300)− → σπ−] D0 → ρ(770)0 σ -0.313 ± 0.207

(79) D0 → π+[a1(1260)− → σπ−] D0 → π−[π2(1670)+ → σπ+] -0.283 ± 0.032

(80) D0 → π+[π(1300)− → σπ−] D0 → π+[a1(1260)− → ρ(770)0π−] -0.245 ± 0.026

(81) D0 → π−[π(1300)+ → σπ+] D0 → π−[π2(1670)+ → σπ+] -0.243 ± 0.037

(82) D0 → π−[π(1300)+ → σπ+] D0 → π+[a1(1260)− → ρ(770)0π−] 0.236 ± 0.014

(83) D0 → π+[π(1300)− → σπ−] D0 → π−[a1(1640)+[D]→ ρ(770)0π+] -0.233 ± 0.031

(84) D0 → π−[a1(1640)+ → σπ+] D0 → π−[π2(1670)+ → f2(1270)π+] 0.229 ± 0.061

(85) D0 → π−[π(1300)+ → σπ+] D0 → π−[a1(1640)+[D]→ ρ(770)0π+] 0.226 ± 0.029

(86) D0 → π+[a1(1260)− → σπ−] D0 → π−[π2(1670)+ → f2(1270)π+] 0.187 ± 0.022

(87) D0 → π+[π(1300)− → σπ−] D0 → π−[π2(1670)+ → f2(1270)π+] 0.180 ± 0.030

(88) D0 → π+[a1(1260)− → σπ−] D0 → π+[π(1300)− → σπ−] -0.173 ± 0.024

(89) D0 → ρ(770)0 σ D0[D]→ ρ(770)0 ρ(770)0 0.171 ± 0.012

(90) D0[D]→ ρ(770)0 ρ(770)0 D0 → f2(1270) f2(1270) 0.152 ± 0.115

(91) D0 → π+[a1(1260)− → σπ−] D0 → π−[a1(1260)+ → ρ(770)0π+] 0.146 ± 0.085

(92) D0 → π+[a1(1260)− → ρ(770)0π−] D0 → π−[π2(1670)+ → f2(1270)π+] 0.143 ± 0.021

(93) D0 → π−[a1(1640)+[D]→ ρ(770)0π+] D0 → π−[π2(1670)+ → f2(1270)π+] -0.128 ± 0.017

(94) D0 → f0(1370)σ D0 → π−[a1(1640)+[D]→ ρ(770)0π+] -0.110 ± 0.009

(95) D0 → π+[a1(1260)− → ρ(770)0π−] D0 → f2(1270) f2(1270) 0.098 ± 0.022

(96) D0 → π−[a1(1260)+ → ρ(770)0π+] D0[P ]→ ρ(770)0 ρ(770)0 -0.096 ± 0.007

(97) D0 → f0(1370)σ D0 → f2(1270) f2(1270) -0.071 ± 0.042

(98) D0 → π+[a1(1260)− → σπ−] D0 → f2(1270) f2(1270) -0.060 ± 0.032

(99) D0 → π−[π(1300)+ → σπ+] D0[P ]→ ρ(770)0 ρ(770)0 0.050 ± 0.003

(100) D0 → π+[a1(1260)− → ρ(770)0π−] D0[P ]→ ρ(770)0 ρ(770)0 -0.043 ± 0.002

(101) D0 → π−[a1(1640)+[D]→ ρ(770)0π+] D0[P ]→ ρ(770)0 ρ(770)0 0.041 ± 0.003

(102) D0 → ρ(770)0 σ D0 → f0(1370)σ 0.038 ± 0.006

(103) D0 → π−[a1(1260)+ → σπ+] D0[P ]→ ρ(770)0 ρ(770)0 -0.037 ± 0.002

(104) D0[D]→ ρ(770)0 ρ(770)0 D0 → π−[π2(1670)+ → f2(1270)π+] -0.035 ± 0.041

(105) D0[S]→ ρ(770)0 ρ(770)0 D0[P ]→ ρ(770)0 ρ(770)0 0.033 ± 0.004

(106) D0 → f0(1370)σ D0[P ]→ ρ(770)0 ρ(770)0 -0.029 ± 0.003

(107) D0 → π−[π(1300)+ → σπ+] D0[S]→ ρ(770)0 ρ(770)0 -0.027 ± 0.003

(108) D0[P ]→ ρ(770)0 ρ(770)0 D0 → f2(1270) f2(1270) 0.026 ± 0.003

(109) D0 → ρ(770)0 σ D0[S]→ ρ(770)0 ρ(770)0 0.024 ± 0.007

(110) D0 → π+[π(1300)− → σπ−] D0 → f2(1270) f2(1270) 0.019 ± 0.003

(111) D0 → π−[π(1300)+ → σπ+] D0 → f2(1270) f2(1270) 0.014 ± 0.001

(112) D0 → π+[π(1300)− → σπ−] D0[S]→ ρ(770)0 ρ(770)0 -0.012 ± 0.003

(113) D0 → ρ(770)0 σ D0[P ]→ ρ(770)0 ρ(770)0 0.011 ± 0.001

(114) D0 → π−[π2(1670)+ → σπ+] D0[P ]→ ρ(770)0 ρ(770)0 -0.010 ± 0.001

(115) D0 → π+[a1(1260)− → σπ−] D0[P ]→ ρ(770)0 ρ(770)0 -0.009 ± 0.001

(116) D0 → ρ(770)0 σ D0 → f2(1270) f2(1270) 0.009 ± 0.003

(117) D0 → π+[π(1300)− → σπ−] D0[P ]→ ρ(770)0 ρ(770)0 0.006 ± 0.002

(118) D0[D]→ ρ(770)0 ρ(770)0 D0[P ]→ ρ(770)0 ρ(770)0 -0.005 ± 0.006

(119) D0[P ]→ ρ(770)0 ρ(770)0 D0 → π−[π2(1670)+ → f2(1270)π+] 0.005 ± 0.002

(120) D0 → π−[a1(1640)+ → σπ+] D0[P ]→ ρ(770)0 ρ(770)0 0.003 ± 0.001

Table 22. Interference fractions |Iij | ≤ 0.5%, as defined in eq. (4.27), ordered by magnitude, for

the D → π+π−π+π− amplitude fit using the LASSO model. Only the statistical uncertainties are

given.
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(1)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0 → K− [K1(1270)+ → K+ ρ(770)0] -8.145 ± 1.542

(2)D0 → K− [K1(1270)+ → π+K∗(892)0] D0 → K∗(892)0 (K−π+)S -5.650 ± 0.917

(3)D0 → K− [K1(1400)+ → π+K∗(892)0] D0[S]→ K∗(892)0 K̄∗(892)0 -3.686 ± 0.838

(4)D0[S]→ φ(1020) ρ(770)0 D0[D]→ φ(1020) ρ(770)0 -3.673 ± 0.490

(5)D0 → K− [K1(1270)+ → K+ ρ(770)0] D0[S]→ φ(1020) ρ(770)0 3.338 ± 0.480

(6)D0 → K− [K1(1270)+ → π+K∗(892)0] D0 → K− [K1(1400)+ → π+K∗(892)0] 2.621 ± 1.832

(7)D0 → K− [K1(1270)+ → π+K∗(892)0] D0 → K− [K1(1270)+ → K+ ρ(770)0] -2.615 ± 0.462

(8)D0 → K+ [K1(1270)− → K− ρ(770)0] D0[S]→ φ(1020) ρ(770)0 2.321 ± 0.335

(9)D0 → K− [K1(1400)+ → π+K∗(892)0] D0[S]→ φ(1020) ρ(770)0 2.211 ± 0.253

(10)D0 → K− [K1(1270)+ → K+ ω(782)] D0 → K− [K1(1270)+ → K+ ρ(770)0] 1.941 ± 0.740

(11)D0 → K− [K1(1270)+ → π+K∗(892)0] D0[S]→ K∗(892)0 K̄∗(892)0 1.614 ± 0.426

(12)D0 → K− [K1(1270)+ → K+ ρ(770)0] D0 → K∗(892)0 (K−π+)S 1.565 ± 0.206

(13)D0[S]→ K∗(892)0 K̄∗(892)0 D0[D]→ K∗(892)0 K̄∗(892)0 1.417 ± 0.145

(14)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0 → K+ [K1(1270)− → K− ρ(770)0] 1.244 ± 0.260

(15)D0 → K− [K1(1270)+ → K+ ρ(770)0] D0[S]→ K∗(892)0 K̄∗(892)0 -1.182 ± 0.166

(16)D0 → K− [K1(1270)+ → π+K∗(892)0] D0[D]→ K∗(892)0 K̄∗(892)0 -1.144 ± 0.212

(17)D0 → K− [K1(1270)+ → K+ ρ(770)0] D0 → K− [K1(1400)+ → π+K∗(892)0] 1.119 ± 0.516

(18)D0 → K− [K1(1400)+ → π+K∗(892)0] D0 → K∗(892)0 (K−π+)S -1.052 ± 1.575

(19)D0 → K− [K1(1400)+ → π+K∗(892)0] D0[D]→ K∗(892)0 K̄∗(892)0 -0.966 ± 0.222

(20)D0 → K− [K1(1270)+ → K+ ω(782)] D0[S]→ φ(1020) ρ(770)0 0.849 ± 0.201

(21)D0[S]→ K∗(892)0 K̄∗(892)0 D0[S]→ φ(1020) ρ(770)0 -0.729 ± 0.164

(22)D0 → K∗(892)0 (K−π+)S D0 → φ(1020) (π+π−)S 0.691 ± 0.098

(23)D0 → K− [K∗(1680)+ → π+K∗(892)0] D0[P ]→ K∗(892)0 K̄∗(892)0 -0.689 ± 0.620

(24)D0[S]→ φ(1020) ρ(770)0 D0[D]→ K∗(892)0 K̄∗(892)0 -0.687 ± 0.055

(25)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0[S]→ φ(1020) ρ(770)0 0.647 ± 0.405

(26)D0 → K− [K1(1270)+ → K+ ω(782)] D0 → K− [K1(1400)+ → π+K∗(892)0] 0.526 ± 0.136

(27)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0 → φ(1020) (π+π−)S 0.485 ± 0.085

(28)D0 → K− [K1(1270)+ → π+K∗(892)0] D0 → K+ [K1(1270)− → K− ρ(770)0] 0.424 ± 0.061

(29)D0 → K+ [K1(1270)− → K− ρ(770)0] D0[S]→ K∗(892)0 K̄∗(892)0 -0.398 ± 0.123

(30)D0 → K− [K1(1270)+ → π+K∗(892)0] D0 → φ(1020) (π+π−)S -0.354 ± 0.055

(31)D0 → K− [K1(1270)+ → K+ ω(782)] D0 → K+ [K1(1270)− → K− ρ(770)0] 0.346 ± 0.162

(32)D0 → K∗(892)0 (K−π+)S D0[S]→ φ(1020) ρ(770)0 -0.341 ± 0.052

(33)D0[P ]→ K∗(892)0 K̄∗(892)0 D0[P ]→ φ(1020) ρ(770)0 0.330 ± 0.079

(34)D0 → K− [K∗(1680)+ → π+K∗(892)0] D0[P ]→ φ(1020) ρ(770)0 0.303 ± 0.126

(35)D0 → K− [K1(1400)+ → π+K∗(892)0] D0 → φ(1020) (π+π−)S 0.302 ± 0.125

(36)D0 → K+ [K1(1270)− → K− ρ(770)0] D0 → K− [K1(1400)+ → π+K∗(892)0] 0.280 ± 0.110

(37)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0 → K− [K1(1270)+ → K+ ω(782)] 0.225 ± 0.533

(38)D0 → K− [K1(1270)+ → K+ ρ(770)0] D0 → K+ [K1(1270)− → K− ρ(770)0] -0.220 ± 0.452

(39)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0 → (K+K−)S (π+π−)S 0.218 ± 0.022

(40)D0 → K+ [K1(1270)− → K− ρ(770)0] D0 → (K+K−)S (π+π−)S -0.207 ± 0.020

(41)D0 → K+ [K1(1270)− → K− ρ(770)0] D0[D]→ φ(1020) ρ(770)0 -0.204 ± 0.031

(42)D0 → K− [K1(1270)+ → K+ ρ(770)0] D0[D]→ K∗(892)0 K̄∗(892)0 0.197 ± 0.049

(43)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0[D]→ φ(1020) ρ(770)0 -0.196 ± 0.040

(44)D0 → K− [K1(1270)+ → π+K∗(892)0] D0[S]→ φ(1020) ρ(770)0 0.195 ± 0.149

(45)D0 → K+ [K1(1270)− → K− ρ(770)0] D0[D]→ K∗(892)0 K̄∗(892)0 -0.190 ± 0.025

(46)D0 → K− [K1(1270)+ → K+ ρ(770)0] D0 → (K+K−)S (π+π−)S 0.144 ± 0.015

(47)D0 → K− [K1(1270)+ → K+ ω(782)] D0[S]→ K∗(892)0 K̄∗(892)0 -0.142 ± 0.054

(48)D0 → K∗(892)0 (K−π+)S D0 → (K+K−)S (π+π−)S 0.127 ± 0.015

(49)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0 → K∗(892)0 (K−π+)S -0.103 ± 0.015

(50)D0 → K∗(892)0 (K−π+)S D0[D]→ φ(1020) ρ(770)0 -0.095 ± 0.035

(51)D0 → K− [K1(1270)+ → π+K∗(892)0] D0[D]→ φ(1020) ρ(770)0 0.080 ± 0.015

(52)D0 → K− [K1(1270)+ → π+K∗(892)0] D0 → (K+K−)S (π+π−)S -0.075 ± 0.010

(53)D0 → K− [K1(1400)+ → π+K∗(892)0] D0[D]→ φ(1020) ρ(770)0 -0.075 ± 0.042

(54)D0 → (K+K−)S (π+π−)S D0[P ]→ K∗(892)0 K̄∗(892)0 -0.066 ± 0.007

(55)D0 → K+ [K1(1270)− → K− ρ(770)0] D0 → K∗(892)0 (K−π+)S 0.064 ± 0.097

(56) D0 → K− [K∗(1680)+ → π+K∗(892)0] D0[D]→ K∗(892)0 K̄∗(892)0 0.061 ± 0.009

(57)D0 → K∗(892)0 (K−π+)S D0[D]→ K∗(892)0 K̄∗(892)0 0.057 ± 0.008

(58)D0 → K− [K1(1400)+ → π+K∗(892)0] D0 → (K+K−)S (π+π−)S 0.048 ± 0.019

(59)D0 → K− [K1(1400)+ → π+K∗(892)0] D0 → K− [K∗(1680)+ → π+K∗(892)0] -0.048 ± 0.016

(60)D0 → K− [K1(1270)+ → π+K∗(892)0] D0 → K− [K1(1270)+ → K+ ω(782)] 0.044 ± 0.173

(61)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0 → K− [K1(1270)+ → π+K∗(892)0] 0.044 ± 0.007

(62)D0 → K− [K1(1270)+ → π+K∗(892)0] D0[P ]→ K∗(892)0 K̄∗(892)0 0.044 ± 0.008

(63)D0 → K− [K1(1270)+ → K+ ω(782)] D0[D]→ φ(1020) ρ(770)0 -0.042 ± 0.015

(64)D0 → K− [K1(1270)+ → K+ ρ(770)0] D0[P ]→ K∗(892)0 K̄∗(892)0 -0.036 ± 0.004

(65)D0 → K− [K∗(1680)+ → π+K∗(892)0] D0[S]→ K∗(892)0 K̄∗(892)0 -0.034 ± 0.007

(66)D0[S]→ K∗(892)0 K̄∗(892)0 D0[P ]→ K∗(892)0 K̄∗(892)0 -0.033 ± 0.007

(67)D0[S]→ φ(1020) ρ(770)0 D0[P ]→ φ(1020) ρ(770)0 0.033 ± 0.004

(68)D0 → K− [K1(1270)+ → π+K∗(892)0] D0 → K− [K∗(1680)+ → π+K∗(892)0] -0.033 ± 0.008

(69)D0 → K− [K1(1270)+ → K+ ω(782)] D0 → K∗(892)0 (K−π+)S 0.027 ± 0.069

(70)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0[P ]→ K∗(892)0 K̄∗(892)0 0.024 ± 0.003

(71)D0 → K− [K1(1270)+ → K+ ω(782)] D0[D]→ K∗(892)0 K̄∗(892)0 -0.023 ± 0.008

Table 23. Interference fractions |Iij | > 0.02%, as defined in eq. (4.27), ordered by magnitude, for

the nominal D → K+K−π+π− amplitude fit. Only the statistical uncertainties are given.
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Channel i Channel j Iij (%)

(72)D0 → φ(1020) (π+π−)S D0[S]→ φ(1020) ρ(770)0 -0.019 ± 0.021

(73)D0 → (K+K−)S (π+π−)S D0[P ]→ φ(1020) ρ(770)0 -0.019 ± 0.003

(74)D0 → (K+K−)S (π+π−)S D0[S]→ φ(1020) ρ(770)0 -0.018 ± 0.004

(75)D0 → K+ [K1(1270)− → K− ρ(770)0] D0[P ]→ φ(1020) ρ(770)0 0.017 ± 0.003

(76)D0 → K− [K1(1400)+ → π+K∗(892)0] D0[P ]→ K∗(892)0 K̄∗(892)0 0.017 ± 0.014

(77)D0 → K− [K1(1270)+ → K+ ρ(770)0] D0[D]→ φ(1020) ρ(770)0 0.017 ± 0.064

(78)D0[S]→ K∗(892)0 K̄∗(892)0 D0 → φ(1020) (π+π−)S 0.016 ± 0.004

(79)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0 → K− [K1(1400)+ → π+K∗(892)0] -0.015 ± 0.005

(80)D0 → K− [K1(1270)+ → K+ ω(782)] D0 → (K+K−)S (π+π−)S 0.013 ± 0.008

(81)D0 → (K+K−)S (π+π−)S D0 → φ(1020) (π+π−)S -0.013 ± 0.007

(82)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0[S]→ K∗(892)0 K̄∗(892)0 0.012 ± 0.007

(83)D0[D]→ K∗(892)0 K̄∗(892)0 D0[D]→ φ(1020) ρ(770)0 0.012 ± 0.033

(84)D0 → K+ [K1(1270)− → K− ρ(770)0] D0[P ]→ K∗(892)0 K̄∗(892)0 0.011 ± 0.003

(85)D0 → K∗(892)0 (K−π+)S D0[P ]→ K∗(892)0 K̄∗(892)0 0.011 ± 0.002

(86)D0 → K− [K1(1270)+ → K+ ρ(770)0] D0 → φ(1020) (π+π−)S -0.010 ± 0.002

(87)D0[S]→ K∗(892)0 K̄∗(892)0 D0 → K∗(892)0 (K−π+)S -0.008 ± 0.001

(88)D0[D]→ φ(1020) ρ(770)0 D0[P ]→ φ(1020) ρ(770)0 0.008 ± 0.001

(89)D0[S]→ K∗(892)0 K̄∗(892)0 D0[P ]→ φ(1020) ρ(770)0 -0.008 ± 0.001

(90)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0 → K− [K∗(1680)+ → π+K∗(892)0] 0.007 ± 0.018

(91)D0 → φ(1020) (π+π−)S D0[D]→ K∗(892)0 K̄∗(892)0 0.007 ± 0.003

(92)D0 → K− [K1(1270)+ → K+ ω(782)] D0 → K− [K∗(1680)+ → π+K∗(892)0] -0.006 ± 0.002

(93)D0 → K+ [K1(1270)− → K− ρ(770)0] D0 → K− [K∗(1680)+ → π+K∗(892)0] 0.006 ± 0.006

(94)D0 → K− [K∗(1680)+ → π+K∗(892)0] D0 → (K+K−)S (π+π−)S 0.006 ± 0.020

(95)D0 → K− [K∗(1680)+ → π+K∗(892)0] D0 → K∗(892)0 (K−π+)S -0.006 ± 0.001

(96)D0 → K− [K1(1400)+ → π+K∗(892)0] D0[P ]→ φ(1020) ρ(770)0 -0.006 ± 0.002

(97)D0 → (K+K−)S (π+π−)S D0[D]→ K∗(892)0 K̄∗(892)0 -0.005 ± 0.008

(98)D0 → K− [K∗(1680)+ → π+K∗(892)0] D0[S]→ φ(1020) ρ(770)0 -0.005 ± 0.001

(99)D0 → K− [K1(1270)+ → π+K∗(892)0] D0[P ]→ φ(1020) ρ(770)0 -0.005 ± 0.002

(100)D0 → φ(1020) (π+π−)S D0[P ]→ K∗(892)0 K̄∗(892)0 0.004 ± 0.001

(101)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0[D]→ K∗(892)0 K̄∗(892)0 -0.004 ± 0.004

(102)D0 → K− [K1(1270)+ → K+ ρ(770)0] D0[P ]→ φ(1020) ρ(770)0 -0.004 ± 0.007

(103)D0 → K− [K∗(1680)+ → π+K∗(892)0] D0[D]→ φ(1020) ρ(770)0 -0.004 ± 0.001

(104)D0 → φ(1020) (π+π−)S D0[D]→ φ(1020) ρ(770)0 0.003 ± 0.014

(105)D0[D]→ K∗(892)0 K̄∗(892)0 D0[P ]→ K∗(892)0 K̄∗(892)0 0.003 ± 0.001

(106)D0[D]→ K∗(892)0 K̄∗(892)0 D0[P ]→ φ(1020) ρ(770)0 0.003 ± 0.001

(107)D0 → K∗(892)0 (K−π+)S D0[P ]→ φ(1020) ρ(770)0 0.002 ± 0.001

(108)D0 → (K+K−)S (π+π−)S D0[D]→ φ(1020) ρ(770)0 -0.002 ± 0.001

(109)D0 → K− [K∗(1680)+ → π+K∗(892)0] D0 → φ(1020) (π+π−)S 0.002 ± 0.002

(110)D0 → K− [K1(1270)+ → K+ ω(782)] D0[S]→ K∗(892)0 K̄∗(892)0 -0.002 ± 0.002

(111)D0 → K− [K1(1270)+ → K+ ρ(770)0] D0 → K− [K∗(1680)+ → π+K∗(892)0] 0.002 ± 0.007

(112)D0[S]→ K∗(892)0 K̄∗(892)0 D0 → (K+K−)S (π+π−)S -0.001 ± 0.001

(113)D0[S]→ φ(1020) ρ(770)0 D0[P ]→ K∗(892)0 K̄∗(892)0 0.001 ± 0.003

(114)D0 → K− [K1(1270)+ → K+ ω(782)] D0[P ]→ φ(1020) ρ(770)0 0.001 ± 0.001

(115)D0[D]→ φ(1020) ρ(770)0 D0[P ]→ K∗(892)0 K̄∗(892)0 -0.001 ± 0.001

(116)D0 → K− [K1(1270)+ → π+K∗(1430)0] D0[P ]→ φ(1020) ρ(770)0 0.001 ± 0.002

(117)D0 → K− [K1(1270)+ → K+ ω(782)] D0 → φ(1020) (π+π−)S 0.001 ± 0.001

(118)D0 → K+ [K1(1270)− → K− ρ(770)0] D0 → φ(1020) (π+π−)S 0.000 ± 0.003

(119)D0[S]→ K∗(892)0 K̄∗(892)0 D0[D]→ φ(1020) ρ(770)0 0.000 ± 0.010

(120)D0 → φ(1020) (π+π−)S D0[P ]→ φ(1020) ρ(770)0 0.000 ± 0.004

Table 24. Interference fractions |Iij | < 0.02%, as defined in eq. (4.27), ordered by magnitude, for

the nominal D → K+K−π+π− amplitude fit. Only the statistical uncertainties are given.

Supplemental material. We provide a collection of C macros to reproduce all energy-

dependent masses and widths described in section 4.1. These are intended to be parsed

by the ROOT software and have names indicating which energy-dependent quantity and

resonance they correspond to.

Two additional text files containing the statistical correlation matrices of the nominal

results for D0 → π+π−π+π− and D0 → K+K−π+π− are provided. Their filenames are

Correlations4pi.txt and CorrelationsKKpipi.txt, respectively. The format of each

file is as follows. Firstly, each free parameter is assigned a numerical identifier. Following

this, the lower diagonal correlation matrix is given for these indices.
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