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Abstract

The BABAR experiment operating at the PEP-II e+e− collider is designed to study

CP violation effects in the B-meson system. The data sample collected between May

1999 and July 2004 consists of 231.8 million BB pairs. This data is used to study

the decays B− → K−π−π+ and B+ → K+π+π−. A Dalitz-plot analysis is used to

examine the resonant and non-resonant contributions to these three-body decays.

A discussion of the fitting technique used and the alternative genetic algorithm

procedure is given. Measurements, including full statistical and systematic errors,

for the fit fractions and phases are provided for the following components:

• K∗0(892)π±

• K∗0
0 (1430)π±

• ρ0(770)K±

• f0(980)K±

• χc0 K±

• non-resonant K±π±π∓

Upper limits are set for the fit fractions of additional higher resonances that are found

to have small contributions to the Dalitz plots. The inclusive branching fractions are

measured as (64.1±3.5±4.5)×10−6 for B− → K−π−π+and (64.7±3.5±4.6)×10−6

for B+ → K+π+π−.

i



Dedication

This thesis is dedicated to my dad

I wish you were here to see the finished article. Thank you for always believing in

me and your unconditional support.

I miss you so much.

ii



Acknowledgements

For Patrick, Emma, James, Clare, Julia, Kate, Sugi and Emma for being the best

friends I could ever ask for. Thanks for helping me through the bad times and

celebrating with me in the good times. Thanks to Jo and Jason for always being

willing to chat even from foreign lands. Thanks to the rest of the Maggiedog group

of New College graduates and also to my New College tutors who convinced me I

could be a physicist and helped to set me on this road.

For Kelly, for our mutual love of football, introducing me to the world of shoes, and

a thousand other things that have made these last three years so much fun. Thank

you so much for keeping me sane.

For Tom for being a gentlemen and an amazing person to work with. Thanks for

being my computer administrator and introducing me to the world of fine wine.

Thanks to my supervisor Chris Hawkes for his guidance, support and valuable input.

Thanks also to Alan Watson and the rest of the staff in the Birmingham Particle

Physics Group. Thanks to Bruce for cinema trips and listening to me rant when

things were going badly, and the other students in Birmingham for fun lunchtimes

and distractions from work. Thanks to Fiona and Saher for memorable nights out

and helping me to make it through my first year.

Thanks to Paul and Theresa Harrison for their wisdom and support. Thanks to

John Back for being an incredibly nice guy and always answering my questions.

iii



Thanks to the rest of the Charmless Group for providing advice and being great

people to collaborate with and learn from.

Thanks to Marc, Jack and the rest of the UK physicists who spent time at SLAC

for making my time in California so enjoyable. Thanks to Jamie for sharing my love

of rugby and watching the games with me in the middle of the night.

Thanks to PPARC for funding my studies and allowing me to spend time living in

California.

And finally special thanks to Mum and Rhys, my family, I couldn’t have done this

without you. Thanks for everything, but mostly for providing a much needed non-

academic sense of reality and always being there to go home to.

iv



Declaration

I declare that no part of the work in this thesis has been previously presented to

this, or any other, university as part of the requirements of a higher degree.

The data used in this analysis was collected at the BABAR experiment by the BABAR

collaboration. The author contributed to the running of the detector through the

taking of general shifts and being a member of the team responsible for the mainte-

nance of the electromagnetic trigger.

The event selection described in Chapter 3 uses code available to all BABAR mem-

bers, and specific pre-selection code developed by the charmless three-body analysis

working group. The cut optimisation described in Section 3.6.3 was performed by

John Back. The Laura++ code used for the Dalitz-plot analysis was developed by the

author, Paul Harrison, John Back and Tom Latham. The B± → K±π±π∓ analysis

described in Chapters 4, 5 and 6 was undertaken jointly with Tom Latham. The

background normalisation fit (Section 4.6) and the optimisation of the K∗0
0 (1430)

lineshape (Section 6.3.2) is the sole work of Tom Latham. The work on the analytical

continuum model (Section 4.5.1), the optimisation of the f0(980) lineshape (Section

6.3.1), the work on the seven component model (Section 6.7) and the calculation of

the upper limits (Section 6.10) are the sole work of the author. The description and

analysis of fitting routines and genetic algorithms (Chapter 5) is also the work of

the author.

v



Contents

Introduction 1

1 CP Violation in the B-meson system 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 CP Violation in the Standard Model and the CKM Matrix . . . . . . 4

1.3 The Unitarity Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Different Types of CP Violation . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 CP Violation in Decay . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 CP Violation in Mixing . . . . . . . . . . . . . . . . . . . . . . 9

1.4.3 CP Violation in the Interference Between Decay and Mixing . 10

1.5 Experimental Measurements of CP Violation . . . . . . . . . . . . . . 11

1.5.1 Constraints on the CKM Matrix . . . . . . . . . . . . . . . . . 11

1.5.2 Angles of the Unitarity Triangle . . . . . . . . . . . . . . . . . 12

1.5.3 Direct CP Violation in B Meson Decay . . . . . . . . . . . . . 15

1.6 B± → K±π±π∓ Decay . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vi



1.6.1 Charmless Hadronic Three-Body B Decays . . . . . . . . . . . 15

1.6.2 Intermediate Resonances . . . . . . . . . . . . . . . . . . . . . 16

1.6.3 Decay Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6.4 Theoretical Predictions . . . . . . . . . . . . . . . . . . . . . . 18

1.6.5 Previous Experimental Measurements . . . . . . . . . . . . . . 19

1.7 Dalitz Plot Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7.1 Dalitz Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 The BABAR Experiment 26

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 PEP-II B Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 The Injection System and Interaction Region . . . . . . . . . . 27

2.2.2 Machine Backgrounds . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 PEP-II Performance . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 The BABAR Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Silicon Vertex Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Drift Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Detector of Internally Reflected Cerenkov Light . . . . . . . . . . . . 36

2.7 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Instrumented Flux Return . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



2.9 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.9.1 L1 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.9.2 L3 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.10 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 Online Prompt Reconstruction . . . . . . . . . . . . . . . . . . . . . . 45

2.12 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Data Reconstruction and Event Selection 48

3.1 Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Data Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Discriminating Variables . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Kinematic Variables . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Event Shape Variables . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Tracking Efficiency Corrections . . . . . . . . . . . . . . . . . 57

3.5 Particle Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Kaon Identification . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 Particle Identification Efficiency Corrections . . . . . . . . . . 60

3.5.3 Electron Identification . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



3.6.1 Event Pre-Selection . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.2 Batch Level Pre-Analysis . . . . . . . . . . . . . . . . . . . . . 61

3.6.3 Final Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Dalitz-Plot Analysis 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Dalitz Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Per Event Likelihood . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.2 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 Fit Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Signal Resonance Modelling . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 f0(980) modelling . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 The Kπ S-wave . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.3 Excited ππ resonances . . . . . . . . . . . . . . . . . . . . . . 72

4.4 BB Background Modelling . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Charm Vetoes . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 χc0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Continuum Background Modelling . . . . . . . . . . . . . . . . . . . . 81

4.5.1 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.2 Histogram Model . . . . . . . . . . . . . . . . . . . . . . . . . 83

ix



4.6 Background Normalisations . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Efficiency Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.7.1 Self Cross Feed Decays . . . . . . . . . . . . . . . . . . . . . . 93

5 Fitting Procedures 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Multiple Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Minuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Toy MC Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Full MC Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6.1 Default Genetic Algorithm Setup . . . . . . . . . . . . . . . . 107

5.6.2 Initial Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6.3 Steady State Reproduction . . . . . . . . . . . . . . . . . . . . 109

5.6.4 Mutation Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6.5 Final Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 B± → K±π±π∓ Dalitz Analysis - Final Results 118

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

x



6.2 Data Projection Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.1 Nominal Model . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Lineshapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.1 f0(980) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.2 Kπ S Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Results - Six Component Nominal Model . . . . . . . . . . . . . . . . 133

6.5 Omission Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6 Addition Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.7 Results - Seven Component Model . . . . . . . . . . . . . . . . . . . 143

6.7.1 Projection Plots . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.7.2 Addition Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.8 Systematic Errors on Fit Fractions and Phases . . . . . . . . . . . . . 149

6.8.1 Histogram Fluctuations . . . . . . . . . . . . . . . . . . . . . 149

6.8.2 Background Fraction Fluctuations . . . . . . . . . . . . . . . . 149

6.8.3 Fit Bias Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.9 Model Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.10 Final Results for the Six Component Nominal Model . . . . . . . . . 163

6.11 Upper Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.12 Total Rate Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 166

xi



6.12.1 Systematics on Total Rate Measurement . . . . . . . . . . . . 167

7 Conclusion and Discussion 170

A GA Evolution Histograms 174

B Pull Plots 178

xii



List of Tables

1.1 Theoretical Predictions for the B+ → ρ0(770)K+ mode . . . . . . . . 20

1.2 Theoretical Predictions for the B+ → K∗0(892)π+ mode . . . . . . . 20

3.1 Definitions of fitting regions. . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Summary of average efficiencies in the analysis of B± → K±π±π∓ . . 64

4.1 Possible resonances in the ππ spectrum . . . . . . . . . . . . . . . . . 73

4.2 Charm B+B− background modes . . . . . . . . . . . . . . . . . . . . 75

4.3 Charmless B+B− background modes . . . . . . . . . . . . . . . . . . 76

4.4 Charm B0B0 background modes. . . . . . . . . . . . . . . . . . . . . 77

4.5 Charmless B0B0 background modes . . . . . . . . . . . . . . . . . . . 78

4.6 The invariant mass veto ranges . . . . . . . . . . . . . . . . . . . . . 80

4.7 The event yields from the fit to mES . . . . . . . . . . . . . . . . . . . 90

5.1 Fitted parameters of the two solutions in the negative log-likelihood

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Magnitude and phase pulls in fit with 6 components . . . . . . . . . . 102

xiii



5.3 Magnitude and phase results of fit to reweighted MC dataset with six

signal components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Fitted parameters of the solutions found by five GA fits with the

default setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Fitted parameters of the solutions found by five GA fits after initial

optimisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Fitted parameters of the solutions found by five GA fits using different

reproduction plans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Fitted parameters of the solutions found by five GA fits with the new

reproduction plan and subsequent settings. . . . . . . . . . . . . . . . 111

5.8 Fitted parameters of the solutions found by five GA fits with a new

mutation plan and three different mutation rates. . . . . . . . . . . . 112

5.9 Fitted parameters of the solutions found by five GA fits with different

numbers of individuals. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.10 Fitted parameters of the solutions found by five GA fits with different

numbers of digits encoding the phenotypes. . . . . . . . . . . . . . . . 117

6.1 Results of fits to B− and B+ data with nominal 6 component model . 134

6.2 Results of fit to B− data with 5 components. . . . . . . . . . . . . . . 138

6.3 Results of fit to B+ data with 5 components. . . . . . . . . . . . . . . 139

6.4 Results of fit to B− data with 7 components . . . . . . . . . . . . . . 141

6.5 Results of fit to B+ data with 7 components . . . . . . . . . . . . . . 142

6.6 Results of fit to B− data with 8 components . . . . . . . . . . . . . . 147

xiv



6.7 Results of fit to B+ data with 8 components . . . . . . . . . . . . . . 148

6.8 Absolute systematic errors on the fit fractions and phases due to the

efficiency histogram fluctuation . . . . . . . . . . . . . . . . . . . . . 150

6.9 Absolute systematic errors on the fit fractions and phases due to the

qq background histogram fluctuation . . . . . . . . . . . . . . . . . . 151

6.10 Absolute systematic errors on the fit fractions and phases due to the

BB background histogram fluctuation . . . . . . . . . . . . . . . . . 152

6.11 Absolute systematic errors on the fit fractions and phases due to the

qq background fraction fluctuation . . . . . . . . . . . . . . . . . . . . 153

6.12 Absolute systematic errors on the fit fractions and phases due to the

BB background fraction fluctuation . . . . . . . . . . . . . . . . . . . 154

6.13 Magnitude, fit fraction and phase pulls in toy MC tests using the

nominal fit results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.14 Fit fraction distribution means and widths from toy MC samples

using the nominal fit results . . . . . . . . . . . . . . . . . . . . . . . 158

6.15 Phase distribution means from toy MC samples using the nominal fit

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.16 Percentage systematic errors on the fit fractions of the nominal six

component model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.17 Absolute systematic errors on the phases of the nominal six compo-

nent model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.18 Results of fits to B− and B+ data with different lineshape models . . 163

xv



6.19 Final results of fits with statistical, systematic and model dependent

errors, to B− and B+ data with 6 component model. . . . . . . . . . 164

6.20 Upper limits for the χc0 and non-resonant components . . . . . . . . 165

6.21 Upper limits for the components used in the addition tests . . . . . . 165

6.22 Efficiency correction factors . . . . . . . . . . . . . . . . . . . . . . . 167

7.1 Final branching fraction results with statistical and systematic errors. 171

7.2 Final upper limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

xvi



List of Figures

1.1 Unitarity Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 B0 - B0 mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 The (ρ, η) plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Decay diagrams for B− → ρ0(770)K−. . . . . . . . . . . . . . . . . . 17

1.5 Simulated Dalitz plots for the B± → K±π±π∓ decay . . . . . . . . . 24

2.1 The SLAC linac and PEP-II storage rings . . . . . . . . . . . . . . . 27

2.2 The PEP-II interaction region . . . . . . . . . . . . . . . . . . . . . . 28

2.3 The BABAR detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 The SVT detector: end view . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 The SVT detector: longitudinal view . . . . . . . . . . . . . . . . . . 32

2.6 The DCH detector: longitudinal view . . . . . . . . . . . . . . . . . . 34

2.7 The DCH detector: first four superlayers . . . . . . . . . . . . . . . . 35

2.8 The DIRC detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9 The EMC detector: longitudinal view . . . . . . . . . . . . . . . . . . 39

xvii



2.10 The energy resolution of the EMC . . . . . . . . . . . . . . . . . . . . 40

2.11 The IFR detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.12 The IFR detector: Cross section of an RPC . . . . . . . . . . . . . . 42

2.13 Schematic diagram of the data acquisition . . . . . . . . . . . . . . . 45

3.1 ∆E–mES plane, showing signal strip, sideband and signal box. . . . . 51

3.2 |cos θT | distributions for non-resonant B± → K±π±π∓ MC events and

off-resonance events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 F distributions for non-resonant B± → K±π±π∓ MC events and off-

resonance events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Track reconstruction efficiency . . . . . . . . . . . . . . . . . . . . . . 56

3.5 DCH dE/dx distributions for data . . . . . . . . . . . . . . . . . . . 58

4.1 Simulated Dalitz plot for B+ → K+π+π−. . . . . . . . . . . . . . . . 70

4.2 BB background invariant mass squared distributions for B− and B+ 79

4.3 BB background histograms . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Invariant mass distributions for on-resonance events in different side-

band mES regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Results of fit to on-resonance sideband data . . . . . . . . . . . . . . 84

4.6 qq background invariant mass squared distributions for off-resonance

and on-resonance sideband events . . . . . . . . . . . . . . . . . . . . 85

4.7 qq background invariant mass squared distributions for B− and B+ . 86

xviii



4.8 qq background Dalitz-plot distribution . . . . . . . . . . . . . . . . . 87

4.9 The mES fit to B− data events . . . . . . . . . . . . . . . . . . . . . . 89

4.10 The mES fit to B+ data events . . . . . . . . . . . . . . . . . . . . . . 89

4.11 Reconstruction efficiency Dalitz plot histograms . . . . . . . . . . . . 92

4.12 Efficiency variation across the Dalitz plot . . . . . . . . . . . . . . . . 92

4.13 SCF variation across the Dalitz plot . . . . . . . . . . . . . . . . . . . 94

5.1 Negative log-likelihood distributions for the toy MC experiment . . . 97

5.2 Negative log-likelihood distributions for different toy MC samples. . . 98

5.3 Negative log-likelihood distributions for the toy MC experiment using

different initial step sizes . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Negative log-likelihood distributions for the toy MC experiment using

different Minuit strategies . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Magnitude pull distributions for the 500 toy MC samples . . . . . . . 101

5.6 Phase pull distributions for the 500 toy MC samples . . . . . . . . . . 101

5.7 Evolution of the GA for the ρ0(770) component . . . . . . . . . . . . 113

5.8 Negative log-likelihood distributions for different toy MC samples fit-

ted with the GA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Data Dalitz plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Invariant mass projections for the B− data . . . . . . . . . . . . . . . 120

6.3 Invariant mass projections for the B+ data . . . . . . . . . . . . . . . 121

xix



6.4 Background subtracted data Dalitz plots . . . . . . . . . . . . . . . . 122

6.5 Background subtracted invariant mass projections for data . . . . . . 122

6.6 Background subtracted invariant mass projections for data with a

2GeV/c2 cut on the other mass pair applied . . . . . . . . . . . . . . 123
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Introduction

Natural curiosity leads to a wish to explain the universe that surrounds us and

its origin. The Big Bang theory has been widely accepted as a description of the

birth of the universe. The theory tells us that initially the universe consisted solely

of energy which can be transformed into pairs of matter and antimatter particles.

However this cannot be a complete description of events as the universe is known to

consist of matter, which leads to the question “what happened to the anti-matter?”.

Antimatter can be destroyed by annihilation, but this process also requires the mu-

tual destruction of matter. The logical explanation for this puzzle is that there must

be some inherent asymmetry in the physical universe that treats matter differently

from antimatter.

The study of physics has led to the discovery of a wide range of particles. The

Standard Model (SM) of particle physics provides an order and a framework for

describing these particles, and is successful at describing all current measurements.

The SM is not completely satisfactory however, and one of its failings is that it has

yet to provide an explanation for the matter-antimatter asymmetry observed in the

universe. Violation of the combined charge-conjugation parity (CP) transformation

symmetry is one of a set of conditions that could account for the matter-antimatter

asymmetry. CP violation can be incorporated into the Standard Model via the

quark mixing matrix. It is unclear however whether this source of CP violation

could create an effect that is large enough to explain the universe and it is therefore

necessary to study this topic in great detail. If CP violation is found to be small in
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the SM then this leads to the search for new physics beyond the SM.

CP violation was first studied in the 1960’s using kaon decays. After the discovery

of the third quark generation, the B-meson sector offered unexplored potential for

studying CP violation. The PEP-II B Factory and BABAR detector were constructed

in the 1990’s, with the large number of BB pairs produced and the excellent effi-

ciency of the BABAR detector combining to provide the right conditions to make

precision measurements of CP asymmetries using decays of B mesons.
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Chapter 1

CP Violation in the B-meson

system

1.1 Introduction

The action of the charge conjugation operator (C) is to change the sign of all the

quantum numbers of a particle, and hence change the particle into its antiparticle

without modifying its momentum or spin. The parity transformation (P) changes

the space vector ~r into −~r and therefore reverses the sign of the momentum of a

particle while leaving its spin unchanged. The strong and electromagnetic forces are

invariant under the separate C and P transformations whereas the weak interaction

is not, as was discovered in 1957 in studies of β decay [1]. It was further discovered

in 1964 in studies of K0
L
decays to pions [2] that the weak interaction is not invariant

under the combined CP transformation.

CP violation fits naturally into the Standard Model (SM) with three generations of

quarks and has been investigated in both the kaon and more recently the B-meson

sectors. In 2001 BABAR observed CP violation in B-meson decays to final states

such as J/ψ K0
S
[3] and these results were confirmed by the Belle experiment [4].
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In this chapter a description of how CP violation fits into the SM is given, followed by

a discussion of the CKM quark mixing matrix and the Unitarity Triangle. A descrip-

tion of the three possible types of CP violation is then given. The B± → K±π±π∓

mode is introduced with a description of the possible processes contributing to this

decay. This is followed by a brief introduction to the theoretical techniques used

to make predictions for this decay mode and a discussion of previous experimental

measurements. The chapter concludes by describing the Dalitz-plot technique.

1.2 CP Violation in the Standard Model and the

CKM Matrix

The SM Lagrangian is a Lorentz scalar which depends on terms that are bilinear in

fermion fields multiplied by coefficients that represent coupling constants or masses.

Under a CP transformation, the field terms transform into their Hermitian conju-

gates whereas the coefficients are unchanged. A non CP-symmetric Lagrangian can

result if the coefficients in front of CP-related terms are complex, in which case CP-

violating effects may be visible as rate differences between pairs of CP-conjugate

decays in physical processes that depend on these terms. If these complex coeffi-

cients can be made real through a phase redefinition then no CP violation will be

observed.

The weak charged current Lagrangian can be written as:

L = − g√
2

(

u ′
L , c

′
L , t

′
L

)

γµ















d ′
L

s ′
L

b ′
L















W †
µ + h.c. (1.1)

where q′L are the left handed projections of the weak eigenstates of the quark fields,

g is the weak coupling constant, γµ are the Dirac matrices, Wµ are the weak charged
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bosons and h.c. denotes the Hermitian conjugate. The Lagrangian shown in Equa-

tion 1.1 can be rewritten as:

L = − g√
2
( uL , cL , tL ) γµ VCKM















dL

sL

bL















W †
µ + h.c. (1.2)

where qL are now the quark mass eigenstates and VCKM is the mixing matrix intro-

duced to relate the weak eigenstates to the mass eigenstates:

VCKM =















Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb















(1.3)

The Cabibbo matrix [5] describes the mixing in the SM with only two quark genera-

tions present. This matrix has only one parameter, the Cabibbo mixing angle θcabibbo,

which is real so there is no possibility of CP violation. Kobayashi and Maskawa [6]

suggested that a third quark generation may exist as the resulting quark mixing ma-

trix could then accommodate CP violation. The existence of this third generation

of quarks was confirmed in 1977 with the discovery of the Υ resonance, a bound bb

state [7]. With three generations of quarks the mixing matrix VCKM (known as the

CKM matrix) can contain three angles and six phases. It is possible to remove five

of these phases with suitable redefinitions, but one phase remains. It is this phase

which is responsible for CP-violating effects in the SM.

The charged current Lagrangian shown in Equation 1.2 can be expanded to give

terms such as:

L = − g

2
√
2

[

uiγ
µ W+

µ (1− γ5)Vijdj + djγ
µ W−

µ (1− γ5)V ∗
ijui

]

(1.4)

where 1
2
(1− γ5) is the left-handed projection operator. The CP operator transforms

the field terms in Equation 1.4 as:

uiγ
µ W+

µ (1− γ5) dj → djγ
µ W−

µ (1− γ5)ui . (1.5)
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Therefore the field terms in Equation 1.4 would be interchanged but the VCKM

couplings Vij and V ∗
ij would remain the same. The complex element present in

the CKM matrix allows these couplings Vij and V ∗
ij to be different and hence CP

violation is possible.

The standard Particle Data Group (PDG) [8] parameterisation of the CKM matrix

is:

VCKM =















c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e+iδ c12c23 − s12s23s13e+iδ s23c13

s12s23 − c12c23s13e+iδ −c12s23 − s12c23s13e+iδ c23c13















(1.6)

where θij is the mixing angle between the ith and jth generations, cij = cos θij ,

sij = sin θij and δ represents the phase. Experimental results indicate a hierarchy

in the magnitudes of the matrix elements |Vii| (|Vud|, |Vcs|, |Vtb|) ≈ 1 , |V12| = |V21|
(|Vus|, |Vcd|) ≈ λ , |V23| = |V32| (|Vcb|, |Vts|) ≈ λ2 and |V13| = |V31| (|Vub|, |Vtd|) ≈ λ3

where λ ≈ 0.22. The Wolfenstein parameterisation [9] of the CKM matrix expresses

the elements as a power series in λ:

VCKM =















1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1















+O(λ4) (1.7)

where A and ρ are real numbers and the complex component is described by η.

1.3 The Unitarity Triangle

The unitarity of the CKM matrix leads to nine orthonormal relations between its

elements. The most interesting of these relations for current experimental physics

involves the B-meson sector:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.8)
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)η , ρ(

α

Im

Re0 1

| *
cb

V
cd

|V

*
tbVtdV|*

cb
V

cd
|V

*
ubVudV

γ β
0

Figure 1.1: Unitarity Triangle

Each of the three terms in Equation 1.8 is of order λ3. In a complex plane this

relation corresponds to a triangle which has sides of approximately the same length.

This triangle is known as the Unitarity Triangle and can be seen in Figure 1.1. VcdV
∗
cb

is chosen to be real and the sides of the Unitarity Triangle are divided by |VcdV ∗
cb| to

give one with unit length and the apex of the triangle at co-ordinates (ρ, η) where

ρ = (1− λ2

2
)ρ and η = (1− λ2

2
)η.

The angles of the triangle α , β and γ are given by:

α = arg

[

− VtdV
∗
tb

VudV ∗
ub

]

, β = arg

[

−VcdV
∗
cb

VtdV ∗
tb

]

, γ = arg

[

−VudV
∗
ub

VcdV ∗
cb

]

(1.9)

1.4 Different Types of CP Violation

There are three possible types of CP violation in B meson decays. They are:
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• CP violation in decay. This is also commonly known as direct CP violation.

It is the only form of CP violation observable in charged B-meson decays but

can also occur in neutral B-meson decays. In this case the amplitudes for a

decay B → f and its CP conjugate process B → f have different magnitudes.

• CP violation in mixing. This is also known as indirect CP violation and

can only occur in neutral B-meson decays. This asymmetry is solely due to

B0 −B0 mixing. It reveals that B0 → B0 6≡ B0 → B0

• CP violation in the interference between decays with and without

mixing. This process only occurs for neutral B-meson decays to final states

that are accessible to both B0 and B0.

1.4.1 CP Violation in Decay

Consider a decay process B → f which has an amplitude Af and its CP conjugate

process B → f which has an amplitude Af . CP violation in decay occurs if:

∣

∣

∣

∣

∣

Af
Af

∣

∣

∣

∣

∣

6= 1 (1.10)

Each contribution to the decay amplitude can be written in terms of a magnitude, a

strong phase and a weak phase. Weak phases are so called because they occur in the

CKM matrix which forms part of the electroweak sector of the SM. These phases

appear as complex parameters in the Lagrangian and hence have different signs for

the amplitude B → f and its CP conjugate B → f . Strong phases are so called

because the dominant rescattering effect is due to the strong interaction. These

phases can appear in scattering or decay amplitudes even when the Lagrangian is

real and hence these phases have the same sign for the amplitude Af and its CP

conjugate Af .
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If the amplitude Af has a single contribution then it can be written as:

Af = |A| eiφW eiδS (1.11)

where φW is the weak phase and δS is the strong phase. The CP conjugate amplitude

is:

Af = |A| e−iφW eiδS (1.12)

In this case
∣

∣

∣Af/Af
∣

∣

∣ = 1. This illustrates that CP violation cannot be seen as a

difference in rates between CP conjugate processes when there is a single decay

amplitude.

Now consider the case when there are two amplitudes contributing to Af and Af

Af = |A1| eiφ1eiδ1 + |A2| eiφ2eiδ2 (1.13)

Af = |A1| e−iφ1eiδ1 + |A2| e−iφ2eiδ2 (1.14)

Defining φ = φ1 − φ2 and δ = δ1 − δ2 gives:

Γ(B → f) = |A1|2 + |A2|2 + 2 |A1| |A2| cos(φ+ δ) (1.15)

Γ(B → f) = |A1|2 + |A2|2 + 2 |A1| |A2| cos(φ− δ) (1.16)

So considering the rate difference Γ(B → f)− Γ(B → f) gives the result:

Γ(B → f)− Γ(B → f) = −4 |A1| |A2| sinφ sin δ (1.17)

= −4 |A1| |A2| sin(φ1 − φ2) sin(δ1 − δ2) (1.18)

This shows that CP violation can be observed as a difference in rates between CP

conjugate processes when there are two contributing decay amplitudes but only if

these amplitudes have different weak and different strong phases.

1.4.2 CP Violation in Mixing

B0 and B0 mixing proceeds via a second order weak interaction as shown in Fig-

ure 1.2.
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Figure 1.2: B0 - B0 mixing

This type of CP violation occurs when the two neutral mass eigenstates of the B me-

son cannot be chosen to be CP eigenstates. The flavour eigenstates of definite quark

content are B0 = bd and B0 = db. The light BL and heavy BH mass eigenstates are

linear combinations of the flavour eigenstates:

|BL〉 = p|B0〉+ q|B0〉 (1.19)

|BH〉 = p|B0〉 − q|B0〉 (1.20)

where p and q are complex coefficients. When CP is conserved the mass eigenstates

must be CP eigenstates and for CP violation in mixing to occur it is required that:

∣

∣

∣

∣

∣

q

p

∣

∣

∣

∣

∣

6= 1 (1.21)

1.4.3 CP Violation in the Interference Between Decay and

Mixing

Consider neutral B-meson decays to a CP eigenstate fCP that is accessible to both

B0 and B0. A phase independent quantity is:

λ ≡ q

p

AfCP
AfCP

= ηfCP
q

p

AfCP
AfCP

(1.22)

10



where ηfCP is the CP eigenvalue of fCP which has possible values of ±1. If CP

violation occurs then:

λ 6= ± 1 (1.23)

If CP is conserved then |q/p| = 1 (no CP violation in mixing) ,
∣

∣

∣AfCP /AfCP

∣

∣

∣ = 1 (no

CP violation in decay) and there must also be no relative phase between q/p and

AfCP /AfCP . It is this possibility of a relative phase between q/p and AfCP /AfCP

that leads to a third type of CP violation in the absence of the other two types (CP

violation in mixing and decay). In this case:

|λ| = 1 , Im λ 6= 0 (1.24)

The two necessary contributions to the decay amplitude come from the direct decay

B0 → fCP and the mixing of B0 → B0 followed by the decay B0 → fCP . Consider

the time dependent rate asymmetry [10]:

afCP (t) =
Γ(B0 → fCP )− Γ(B0 → fCP )

Γ(B0 → fCP ) + Γ(B0 → fCP )
(1.25)

=
(1− |λ|2) cos(∆mBt)− 2Imλ sin(∆mBt)

1 + |λ|2
(1.26)

where ∆mB is the difference in mass of the neutral B-meson mass eigenstates. This

asymmetry will be non-vanishing if any of the three types of CP violation are present.

However if the only source of CP violation is from the interference between decay

and mixing, then |λ| = 1 and the asymmetry simplifies to become:

afCP (t) = −Im λ sin(∆mBt) (1.27)

1.5 Experimental Measurements of CP Violation

1.5.1 Constraints on the CKM Matrix

There are many constraints on the CKM description of CP violation both from direct

measurements of the individual CKM elements and relations from indirect sources.
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All measurements and diagrams in this Section are taken from [11, 12]. The apex

of the Unitarity Triangle in the (ρ, η) plane can be constrained by εK which is the

measure of CP violation in the K sector and also by the ∆m values measured in Bd

mixing and Bs mixing. The latest measurements for these quantities are:

• |εK | = (2.282± 0.017)× 10−3.

• ∆md = (0.502± 0.006) ps−1.

• A 95% confidence level (CL) lower limit is calculated for ∆ms and is found to

be 14.4 ps−1.

This is illustrated in Figure 1.3. Further constraints are provided by measurements

of the CKM matrix elements |Vud|, |Vub|, |Vus| and |Vcb|:

• |Vud| can be measured in a variety of different β decays. The most precise

measurement comes from superallowed nuclear β-decays which gives a value

|Vud| = 0.9740± 0.0001± 0.0008.

• |Vub| can be measured in exclusive and inclusive b→ ul−ν decays. The average

of these measurements yields a value |Vub| = (3.90± 0.08± 0.68)× 10−3.

• |Vus| can be measured in kaon semi-leptonic decays. The average value is found

to be |Vus| = 0.2228± 0.0039± 0.0018.

• |Vcb| can be measured in exclusive and inclusive b→ cl−ν decays. The results

from the inclusive measurements yield |Vcb| = (42.0± 0.6± 0.8)× 10−3.

1.5.2 Angles of the Unitarity Triangle

The angle β was the first of the Unitarity Triangle angles to be measured experi-

mentally. In 2001 both the BABAR and Belle collaborations measured sin 2β from
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time dependent asymmetries in neutral B decays to final states containing charmo-

nium mesons, such as J/ψ K0
S
[3, 4]. These decays are chosen as their direct CP

asymmetries are expected to be negligible. The time dependent asymmetry is then

related to the imaginary part of λ as shown in Equation 1.27 and for these decays

Imλ is equal to sin 2β. The latest results for sin 2β, reported in summer 2004 using

significantly larger datasets, are sin 2β = 0.722± 0.040± 0.023 [13] from the BABAR

collaboration and sin 2β = 0.728± 0.056± 0.023 [14] from the Belle collaboration.

There has been some progress made in measuring the angle α [15]. Any decay with

a b→ uud quark transition is a possible source of information on α. However these

modes suffer from theoretical uncertainties arising from possible penguin contribu-

tions to the decay amplitude. A penguin diagram has an internal quark loop that

radiates a gluon, photon or Z0 boson. Typically the presence of additional vertices

in the penguin diagram results in their contribution being smaller than the standard

tree diagram. However the CKM matrix terms involved in the decays can enhance

or further suppress these penguin contributions. If the penguin contributions to

these decays are significant then the imaginary part of λ cannot be simply related

to sin 2α and direct CP violation may be present. These problems mean that no

useful α measurements can currently be extracted from the B → ππ and B → ρπ

modes, although these are still of interest for CP violation measurements. Greater

success has been found in the B → ρ+ρ− decay where a powerful constraint on α is

obtained. Choosing the solution closest to the standard CKM fit [12], BABAR quotes

α = (96± 10stat ± 4syst ± 13theory)
◦.

The angle γ is the most difficult to measure experimentally. Work is currently

in progress using the modes B+ → D0
CPK

+ where the D meson decays to a CP

eigenstate and B− → [K+π−]DK
− where the K and π are from the decay of a

neutral D meson. The most promising mode in the study of γ is neutral B-meson

decay to final states D∗∓π± [16]. This yields the constraint |sin(2β + γ)| > 0.58 at

90% confidence level.
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1.5.3 Direct CP Violation in B Meson Decay

The first measurement1 of direct CP violation in B decays was presented by the

BABAR collaboration in 2004 [17]. An asymmetry is found in yields for B0 →
K+π− and B0 → K−π+ decays, where the flavour of the neutral B meson can

be determined from the charge of the K meson. The measured asymmetry is

AKπ = −0.133± 0.030± 0.009. Further evidence for this asymmetry was subse-

quently reported by the Belle collaboration [18] who findAKπ = −0.101± 0.025± 0.005.

The possibility of the non-zero value of AKπ arising purely from CP violation in mix-

ing is discounted as this effect is found experimentally to be small [19].

1.6 B± → K±π±π∓ Decay

1.6.1 Charmless Hadronic Three-Body B Decays

Charmless hadronic B decays are suppressed in the Standard Model due to the

b → u quark transition. As such they have low branching fractions of order 10−5

- 10−7, and many of these decays have yet to be observed experimentally. The

tree diagrams of charmless decays may be of similar magnitude to the penguin loop

diagrams. This gives hope for large direct CP asymmetries in these decays and also

a chance to study these penguin amplitudes. In the SM, the interference between

B mixing, K mixing and b → sss or b → sdd penguin processes yields the angle

β. Penguin dominated channels such as B0 → f0(980)K
0
S
and B0 → φK0 [20] can

be used to further test the SM as new physics may enter in the penguin loop. A

large departure of sin 2β measured in these charmless channels compared to that

measured in the charmonium decays (which are b→ ccs tree dominated processes)

would indicate the contribution of new physics such as supersymmetry (SUSY).

1In all measurements the first error is statistical and the second error is systematic unless

otherwise stated
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1.6.2 Intermediate Resonances

The B-meson decay to the three-body final state K±π±π∓ can proceed via inter-

mediate resonances formed from two of the particles. The π+ and π− can combine

to form resonances such as ρ0(770), f0(980), ρ
0(1450), f2(1270), f0(1370) and other

higher excitations. The K and π can combine to form resonances such as K∗0(892),

K∗0
0 (1430), K∗0

2 (1430) and K∗0(1680). These two-body states can interfere with

each other and with the non-resonant three-body decay.

1.6.3 Decay Diagrams

There are many amplitudes that can contribute to the overall decay amplitude. For

B− → ρ0(770)K− there are eight processes which are thought to contribute to this

decay. They are illustrated in Figure 1.4.

Diagram (a) shows the standard tree diagram with Diagram (b) showing the corre-

sponding colour suppressed tree diagram (the quarks emitted by the gauge boson

must be of the correct colour to join with the quarks from the B meson to form a

colour neutral hadron which has the effect of suppressing the amplitude by a factor

of three). Diagrams (c) and (d) are gluonic penguin diagrams involving a loop and

the presence of two gauge bosons. There are three possibilities for the flavour of the

quark in the loop; u, c or t. Usually the t quark loop is taken to be the dominant

process due to the large value of |Vtb|. Diagrams (e) and (f) are electroweak penguin

diagrams involving a Z0 boson or photon instead of a gluon. Electroweak penguins

have smaller amplitudes than the gluonic penguins due to the relative sizes of the

electroweak and QCD couplings. Diagrams (g) and (h) show annihilation diagrams

which are suppressed compared to the tree diagram.

The presence of both tree and penguin amplitudes in decays where a resonance is

formed from the π+ and π− such as B− → ρ0(770)K− fulfils the requirements for a
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Figure 1.4: Decay diagrams for B− → ρ0(770)K−.
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direct CP asymmetry to be possible in these modes.

Decays where the resonance forms from the K and π, such as B− → K∗0(892)π− ,

have fewer contributions to the overall amplitude. Only the internal gluonic penguin

(d), internal electroweak penguin (f) and internal annihilation (h) diagrams are

possible. As the last two of these are expected to be small there is only a single

amplitude that has a significant contribution to this decay and as such direct CP

asymmetries in these modes are expected to be small.

1.6.4 Theoretical Predictions

An operator product expansion [21] can be used to write the effective Hamiltonian

for the B-meson decay as:

Heff =
GF√
2

∑

q=u,c

Vq

{

C1 (µ)O
q
1 (µ) + C2 (µ)O

q
2 (µ) +

10
∑

k=3

Ck (µ)Ok (µ)

}

+ h.c.

(1.28)

where the calculable short distance contributions are in the Wilson coefficients Ci(µ)

and the long distance parts are in the operators Oi(µ). Vq are the appropriate CKM

matrix elements for a given quark transition and GF is the Fermi constant. Oq
1,2

are the left handed tree current-current operators arising from W boson exchange,

O3,4,5,6 are QCD penguin operators and O7,8,9,10 are electroweak penguin operators.

These operators summarise the effects of interactions below the scale µ and the

Wilson coefficients absorb the effects above µ. This scale is arbitrary and chosen to

be O(mb).

The matrix elements are of the form:

〈h1h2|Oi|B〉 (1.29)

where h1 and h2 are the final state mesons (for B± → K±π±π∓ one of these mesons

is a resonant state and the decay is B → PV with P denoting a pseudoscalar particle

and V a vector particle). Provided that the decay meson containing the spectator
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quark is not heavy then factorisation can be used to evaluate these matrix elements.

Under factorisation the matrix element shown in Equation 1.29 can be written as a

product of a form factor and a decay constant as shown in Equation 1.30:

〈h1|J1i|B〉 × 〈h2|J2i|0〉 (1.30)

where J1i and J2i are currents that can be expressed in terms of known quanti-

ties. The decay constants 〈h2|J2i|0〉 can be calculated from leptonic decays and the

form factors 〈h1|J1i|B〉 can be calculated using Lattice QCD. These decay constants

and form factors are however scale (µ) independent and so there is now an overall

scale dependency contained in the Wilson coefficients Ci(µ). Beneke et al. [22, 23]

proposed an extension to factorisation based on QCD, known as QCD factorisa-

tion (QCDF) which solves this problem of scale dependency. In the limit that

mb À ΛQCD the matrix element now becomes:

〈h1|J1i|B〉〈h2|J2i|0〉
[

1 +
∑

rnα
n
s +O (ΛQCD/mb)

]

(1.31)

Neglecting the radiative corrections in αs and the power corrections in ΛQCD recovers

the conventional factorisation approach.

The theoretical techniques described here can be used to make predictions for the

branching fractions (BFs) of some of the quasi-two-body modes that contribute to

the B± → K±π±π∓ decay. Theoretical predictions for the B+ → ρ0(770)K+ mode2

can be seen in Table 1.1 and for the B+ → K∗0(892)π+ mode in Table 1.2.

1.6.5 Previous Experimental Measurements

The CLEO collaboration, using a sample of 9.7 million BB pairs, has placed upper

limits on the B+ → K∗0(892)π+ and B+ → ρ0(770)K+ branching fractions [30]. The

BELLE collaboration has presented the first observations of B+ → K∗0(892)π+ and

B+ → f0(980)K
+ [31] using a sample of 31.3 million BB pairs. They use a ‘quasi

2Charge conjugate states are implied throughout this and the following section
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Table 1.1: Theoretical Predictions for the B+ → ρ0(770)K+ mode

Authors Model BF Prediction ×10−6

Aleksan et al. 2003 [24] QCDF 1.9

Aleksan et al. 2003 [24] QCDF + Charming Penguins [25] 5.7

Beneke and Neubert 2003 [26] QCDF 2.6

Cottingham et al. 2003 [28] QCDF 2.0

Cottingham et al. 2003 [28] QCDF + Charming Penguins [25] 4.6

Du et al. 2002 [29] Conventional Factorisation 0.45

Du et al. 2002 [29] QCDF 0.43

Du et al. 2002 [29] QCDF + Annihilation 0.53

Table 1.2: Theoretical Predictions for the B+ → K∗0(892)π+ mode

Authors Model BF Prediction ×10−6

Aleksan et al. 2003 [24] QCDF 7.9

Aleksan et al. 2003 [24] QCDF + Charming Penguins [25] 11.1

Beneke and Neubert 2003 [26] QCDF 3.3

Cottingham et al. 2002 [27] QCDF 5.0

Cottingham et al. 2003 [28] QCDF 4.4

Cottingham et al. 2003 [28] QCDF + Charming Penguins [25] 9.1

Du et al. 2002 [29] Conventional Factorisation 2.6

Du et al. 2002 [29] QCDF 3.5

Du et al. 2002 [29] QCDF + Annihilation 3.8

2-body’ approach in which invariant mass selection criteria are applied to treat these

decays in isolation from the other contributions to the B+ → K+π+π−decay. They
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measure (19+4.2+2.1+3.5
−3.9−2.1−6.8)×10−6 for B+ → K∗0(892)π+ and (9.6+2.5+1.5+3.4

−2.3−1.5−0.8)×10−6 for

B+ → f0(980)K
+ (f0(980)→ π+π−) where the first error is statistical, the second

error is systematic and the third error is the model dependent error which represents

the uncertainty due to possible interference between different intermediate states.

They also provide an inclusive BF measurement for B± → K±π±π∓ of (55.6±5.8±
7.7) × 10−6. BABAR has made an inclusive measurement, using a sample of 88.8

million BB pairs, of (59.1± 3.8± 3.2)× 10−6 [32, 33]. BABAR has also presented a

‘quasi 2-body’ study of the resonant contributions to this mode [34], using a sample

of 61.6 million BB pairs, measuring (15.5± 1.8+1.5
−4.0)× 10−6 for B+ → K∗0(892)π+,

(9.2 ± 1.2+2.1
−2.6) × 10−6 for B+ → f0(980)K

+ (f0(980)→ π+π−) and placing upper

limits on the contributions of the non-resonant and ρ0(770)K components. The

analysis does not allow for interference between the contributions but accounts for

the possibility of interference effects in the systematic error. A first attempt at a

Dalitz-plot analysis of the B± → K±π±π∓ decay, using a data set of 152 million

BB pairs, has been reported by the BELLE collaboration in [35]. A preliminary

version of the analysis described in this thesis, based on a smaller data sample of

182 million BB pairs, is documented in [36].

The discrepancy between the theoretical predictions of the B+ → K∗0(892)π+ BF

and the experimentally measured values has been noted by many theorists [24, 28].

However the models that include Charming Penguins have higher predicted BFs

that are in closer agreement with experimental measurements.

1.7 Dalitz Plot Theory

1.7.1 Dalitz Kinematics

Consider the decay of a spin-zero B-meson with massmB to three daughter particles

labelled 1,2,3 with masses m1,2,3, momenta p1,2,3 and energy E1,2,3 respectively. The
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Lorentz invariant phase space is given by:

dN ∝ d3p1d
3p2d

3p3
E1E2E3

δ(pB − p1 − p2 − p3) δ(EB − E1 − E2 − E3) (1.32)

=
p21dp1p

2
2dp2dΩ1dΩ2

E1E2E3

δ(EB − E1 − E2 − E3) (1.33)

where the momentum δ-function has been used to remove the integration of particle

3 and spherical polar coordinates are used. The B decay is isotropic so choosing to

fix the direction of particle 1 gives
∫

dΩ1 = 4π and
∫

dΩ2 = 2π d cos θ12 where θ12 is

the angle between particles 1 and 2, so:

dN ∝ 8π2
p21dp1p

2
2dp2d cos θ12
E1E2E3

δ(EB − E1 − E2 − E3) (1.34)

Using conservation of momentum:

E2
3 = p23 +m2

3 = p21 + p22 + 2p1p2 cos θ12 +m2
3 (1.35)

It can be shown that E3dE3 = p1p2d cos θ12, so:

dN ∝ p1dp1p2dp2dE3

E1E2

δ(EB − E1 − E2 − E3) (1.36)

Also EidEi = pidpi so:

dN ∝ dE1dE2dE3 δ(EB − E1 − E2 − E3) (1.37)

∝ dE1dE2 (1.38)

The invariant mass combinations of the daughter particles i and j can be written

as:

m2
ij = m2

B − 2mBEk +m2
k (k 6= i, j) (1.39)

So:

dN ∝ dm2
23dm

2
13 (1.40)

A plot of m2
23 vs m

2
13 is known as a Dalitz plot [37]. The decay rate Γ is proportional

to this Lorentz invariant phase space multiplied by the modulus squared of the
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appropriate matrix element. Decays that have unity for the matrix element (i.e.

non-resonant decay which proceeds through phase space alone) will have a uniform

population across the Dalitz plot. Any non-uniformities in the Dalitz plot indicate

a matrix element that differs from unity and the presence of resonances. Only two

of the possible invariant mass combinations are independent as the third can be

constructed using energy and momentum conservation:

m2
12 +m2

23 +m2
13 = m2

B +m2
1 +m2

2 +m2
3 (1.41)

This describes the boundary of the kinematically allowed region of the Dalitz plot.

The helicity angle, θHij
, is defined as the angle between particles j and k in the ij

rest frame, so θH13
is the angle between particles 2 and 3 in the 13 rest frame. The

m2
23 variable can be written as:

m2
23 = m2

2 +m2
3 + 2E∗

2E
∗
3 − 2 |p∗2| |p∗3| cos θH13

(1.42)

where E∗
2,3 and p∗2,3 are calculated in the m13 rest frame and cos θH13

is the angle

between particles 2 and 3 in the 13 rest frame. Rearranging gives:

cos θH13
= −m

2
23 −m2

2 −m2
3 − 2E∗

2E
∗
3

2 |p∗2| |p∗3|
(1.43)

For a given value of m2
13 then the maximum and minimum possible values of m2

23

occur when ~p2 and ~p3 are anti-parallel and parallel respectively.

(m2
23)max = (E∗

2 + E∗
3)

2 − (p∗2 − p∗3)2 (1.44)

(m2
23)min = (E∗

2 + E∗
3)

2 − (p∗2 + p∗3)
2 (1.45)

The cos θH13
helicity angle can also be written as:

cos θH13
= 1− 2

(

m2
23 − (m2

23)min
(m2

23)max − (m2
23)min

)

(1.46)

This equation shows that the cos θH13
helicity angle can be written in terms of the

m2
23 invariant mass pair. The cos θH13

helicity angle distribution depends on the spin

of the resonance and hence them2
23 distribution will be different for spin 0, spin 1 and
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Figure 1.5: Simulated Dalitz plots for the B± → K±π±π∓ decay. The top left plot

shows the vector K∗0(892) resonance, the top right plot shows the scalar f0(980)

resonance, the bottom left plot shows the vector ρ0(770) resonance and the bottom

right plot shows the scalar χc0 resonance.

spin 2 resonances. Simulated Dalitz plots for four possible resonant contributions

to the B+ → K+π+π− decay are shown in Figure 1.5.

The resonant and non-resonant amplitudes in the Dalitz plot will undergo quantum

mechanical interference as they all result in the same final state K±π±π∓. Consider

the case of two amplitudes MA and MB with relative phase ψ. The total matrix

element can be written as:

|M|2 = |MA +MBe
iψ|2 (1.47)

= |MA|2 + |MB|2 + 2Re(MAM∗
Be

iψ) (1.48)

The resonant matrix elements are the product of two parts, a dynamical amplitude

and an angular amplitude. The angular distribution is modelled by a Legendre
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polynomial, PS where S is the spin of the resonance. The orthogonality of the

Legendre polynomials:
∫ +1

−1
Pl(x)Pm(x)dx = 0 (1.49)

for l 6= m shows that there will be no overall interference between two neighbour-

ing resonances of different spins when the whole helicity region is considered. This

highlights the deficiency of the ‘quasi 2-body method’. A full Dalitz-plot analy-

sis is necessary to correctly model the interference between the different amplitudes

contributing to the B± → K±π±π∓ decay.

The Dalitz-plot analysis described in this thesis will measure the magnitudes and

phases of the different amplitudes that contribute to the B− → K−π−π+ and

B+ → K+π+π− decays. As can be seen from Equations 1.11 and 1.12 a difference

in the overall phases measured for a given resonance, say B− → ρ0(770)K− and

B+ → ρ0(770)K+, is to be expected as the amplitudes have opposite weak phases

(φW ), however any difference in magnitude (|A|) is an indication for the presence of

direct CP violation.
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Chapter 2

The BABAR Experiment

2.1 Introduction

The PEP-II B Factory and BABAR detector were built to study CP violating asym-

metries in the decays of B mesons.

In this chapter a description of the PEP-II B Factory is given with a discussion

of accelerator backgrounds that affect the BABAR detector and subsequent physics

analysis. A summary of the current performance of PEP-II is provided. A general

introduction to the BABAR detector is followed by a detailed discussion of the five

main sub-detectors and trigger. A more in-depth discussion of the BABAR detector

can be found in [38] which is the principal source of information for this chapter.

The coordinate system used to describe the BABAR detector is oriented such that z

is the direction of the Lorentz boost (which coincides with the direction of the high

energy electron beam), the x axis points toward the centre of the rings and the y

axis points vertically upward. The azimuthal angle about the z axis is labelled φ

and the polar angle is labelled θ. This coordinate system can be seen in Figure 2.3.
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2.2 PEP-II B Factory

2.2.1 The Injection System and Interaction Region

The PEP-II B Factory is an asymmetric energy e+e− collider operating at a centre

of mass energy of 10.58GeV which corresponds to the mass of the Υ (4S) resonance.

The cross-section for production of the Υ (4S) is 1.05 nb while that for qq production

(where q corresponds to a u,d,s or c quark) is 3.39 nb. The Υ (4S) resonance lies just

above the production threshold for BB pairs and so decays to a pair of B mesons

(charged or neutral) almost 100% of the time. The resultant BB pairs are produced

almost at rest in the centre-of-mass (CM) frame but have significant momenta in

the laboratory frame as the asymmetric energies of the beams result in a Lorentz

boost of βγ = 0.56. This allows measurements of the B-meson decay vertices which

are needed for studies of time dependent CP asymmetries.

The layout of the B Factory showing the SLAC linac and PEP-II storage rings can

be seen in Figure 2.1.

North Damping 
Ring [1.15 GeV]

Ring [1.15 GeV]
South Damping 

PEPII

Ring (LER)
[3.1 GeV]

Low Energy

PEPII
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High Energy
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injector
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Figure 2.1: The SLAC linac and PEP-II storage rings

Electron bunches are produced by the electron gun and accelerated by the linac.

They are then stored in the high energy ring (HER) at an energy of 9GeV. The

electron gun produces a second set of electrons which are accelerated to high energy
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and fired onto a tungsten-rhenium target to produce positrons. These positrons are

accelerated by the linac and injected into the low energy ring (LER) with an energy

of 3.1GeV.

The electrons and positrons are collided head on. Dipole magnets (B1) are used to

bring the HER and LER beams to collision and separate them again in a short dis-

tance in order to avoid secondary interactions of the bunches. A series of quadrupole

magnets (Q1, Q2, Q4 and Q5) are used to focus the beams. The interaction region

(IR) and surrounding area is shown in Figure 2.2. The IR has typical dimensions of

120µm in the x direction, 5.6µm in the y direction and 9mm in the z direction.
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Figure 2.2: The PEP-II interaction region

2.2.2 Machine Backgrounds

There are three main sources of backgrounds coming from the beams which are

collectively known as machine backgrounds. They are synchrotron radiation, beam
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gas interactions and luminosity backgrounds. Machine backgrounds must be min-

imised as they lead to high occupancies in the detector which adversely affect physics

measurements and can result in radiation damage to the detector.

The main sources of synchrotron radiation are the focusing quadrupole and separat-

ing dipole magnets. The interaction region is designed so that most of this radiation

is diverted away from the detector. The dominant source of machine background

arises from bremsstrahlung or coulombic interactions of beam particles with residual

gas molecules. This results in the beam particles being lost from the acceptance of

the storage ring. This background is reduced by maintaining a tight vacuum around

the IR. The final source of machine background is from radiative Bhabha scatter-

ing which results in energy-degraded electrons and positrons hitting the beam pipe

which surrounds the IR or other PEP-II components and consequently spraying the

BABAR detector with electromagnetic shower debris. This background is directly

proportional to the instantaneous luminosity, hence its designation as luminosity

background.

2.2.3 PEP-II Performance

PEP-II has performed exceptionally well with a peak luminosity of 9.213×1033 cm−2s−1

achieved in May 2004 with 1588 bunches, and a current of 2450 mA in the HER and

1550 mA in the LER.

2.3 The BABAR Detector

The BABAR detector is an asymmetric detector, offset in z from the beam-beam in-

teraction point by 0.37m in order to provide the best coverage of the boosted Υ (4S)

decays. The detector, shown in Figure 2.3, consists of five sub-detectors and a mag-

net. The silicon vertex tracker (SVT) is closest to the beam pipe and is designed to
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Figure 2.3: The BABAR detector: longitudinal and end view
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measure positions of charged particles accurately, which allows precise determina-

tion of decay vertices. The drift chamber (DCH) provides momentum measurements

for charged particles as well as a measurement of the energy loss dE/dx which aids

in particle identification. The detector of internally reflected Cerenkov light (DIRC)

surrounds the DCH and is a particle identification device designed to distinguish

charged hadrons such as kaons, pions and protons. The electromagnetic calorime-

ter (EMC) is designed to detect and measure electromagnetic showers which aid

in electron identification and also identify photons from decays of neutral particles

such as π0. These four sub-detectors are surrounded by a superconducting solenoid

providing a field of 1.5T. The steel flux return of the magnet is segmented into layers

and is instrumented for muon and neutral hadron detection. This system is known

as the instrumented flux return (IFR) sub-detector.

2.4 Silicon Vertex Tracker

The silicon vertex tracker (SVT) measures the angles and positions of charged par-

ticles just outside the beam pipe. Tracks that have a sufficiently low momentum

will not reach the DCH and hence the SVT must provide standalone tracking for

particles with transverse momentum, pt, less than 120MeV/c. The SVT is solely

responsible for measuring decay vertices near the interaction region, with a required

resolution of less than 80µm in the z direction and around 100µm in the plane

perpendicular to the beam line. The SVT must cover as much of the solid angle

as possible (the presence of the PEP-II magnets prevents total coverage) and also

contain as little material as possible to minimise multiple scatterings (that will affect

subsequent measurements by the other subdetectors).

The SVT is designed with five layers of double sided silicon strip sensors. The three

inner layers perform the impact parameter measurements while the outer layers

perform low pT tracking and form the link between the SVT and DCH information.
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The SVT design can be seen in Figures 2.4 and 2.5. Layers 4 and 5 are arch

shaped, as seen in Figure 2.5, in order to minimize the amount of silicon required

to cover the solid angle. The five layers are organized in 6, 6, 6, 16 and 18 modules

respectively, with the inner layers’ modules tilted slightly to give overlap between

adjacent modules. The outer modules cannot be tilted due to the arch geometry

and as such the outer two layers are divided into two sublayers as can be seen in

Figure 2.4. The strips on each side of the sensor are oriented orthogonally with the
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Figure 2.5: The SVT detector: longitudinal view showing the arch structure
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φ measuring strips running parallel to the beam and the z measuring strips oriented

transversely to the beam axis. There are a total of 340 silicon detectors present in

the SVT and the material traversed by particles is about 4% of a radiation length.

The signals from the strips are amplified, shaped and compared to a threshold that

has been predetermined. The time interval (TOT) during which they exceed the

threshold is approximately logarithmically related to the charge induced on the

strips. These TOT measurements are converted to pulse height measurements and

hence ionization measurements, dE/dx, are obtained.

Local alignment determines the relative positions of the 340 silicon sensors and is

achieved using di-muon and cosmic ray events. Global alignment is needed to align

the SVT as a complete system within the detector coordinate system defined by the

DCH. This is achieved using tracks that leave a sufficient number of hits in both the

SVT and DCH. Two fits are performed using first DCH and then SVT information

only and then the difference between these two fits is minimised.

The achieved spatial resolution of the SVT is about 10-15µm for the inner layers

and around 40µm for the two outer layers. The SVT efficiency can be calculated

for each half module by comparing the number of associated hits to the number of

tracks crossing the active area of the module. A combined hardware and software

efficiency of 97% is measured. Generally defects that have occurred during running

(rather than installation) do not contribute to the inefficiency as most tracks deposit

charge in two or more strips due to the track crossing angle and charge distribution.

2.5 Drift Chamber

The drift chamber (DCH) is designed for the detection of charged particles with

measurement of their momenta and angles with high precision. It is solely responsi-

ble for the reconstruction of decay vertices such as K0
S
decays that occur outside the

SVT volume and hence needs to measure longitudinal positions with a resolution of
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about 1mm. The DCH contributes to particle identification with measurements of

dE/dx and is the sole provider of particle identification in the extreme forward and

backward directions.

The DCH, shown in Figure 2.6, is a long cylindrical device with wires strung almost

horizontally between the end plates and filled with a low mass 80:20 mixture of

helium:isobutane gas.
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Figure 2.6: The DCH detector: longitudinal view

This gas mixture and choice of wires restricts multiple scattering and results in

less than 0.3% of a radiation length in material at normal incidence. The inner

cylindrical wall of the DCH is kept thin to facilitate the matching of the SVT and

DCH tracks as well as to minimise the background from photon conversions and

interactions. The drift chamber consists of wires arranged into 40 circular layers

of small hexagonal cells which have approximate dimensions of 1.2cm by 1.9cm.

These 40 layers are further divided into 10 superlayers and the longitudinal position

information is obtained by placing the wires in 6 of the 10 superlayers at small

stereo angles with respect to the z-axis. Each hexagonal cell consists of one sense

wire surrounded by six field wires. This arrangement can be seen in Figure 2.7.
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Figure 2.7: The first four superlayers of the DCH detector with the stereo angles of

the wires in mrad shown

The field wires are maintained at ground potential and a positive high voltage is

applied to the sense wires with a resultant electric field that is almost circularly

symmetric over a large portion of the cell. Charged particles ionize the gas and

the electrons created are accelerated in the field towards the sense wire creating an
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avalanche of charge which is detected. The typical gain is 5× 104 for an operating

voltage of 1960V. The drift time is extracted from the leading edge of the amplified

signal produced from these drifting electrons arriving at the sense wire.

The precise relation between the measured drift time and drift distance is determined

from e+e− and µ+µ− events. Values of dE/dx for the charged tracks are derived

from measurements obtained from the sum of pulse heights for each drift cell after

calibration corrections have been applied.

The measured dE/dx resolution for Bhabha events is typically 7.5%. The resolution

on the drift time is about 1ns and the average single cell resolution in the DCH is

125µm.

2.6 Detector of Internally Reflected Cerenkov Light

Charged hadron identification in the BABAR detector is primarily provided by the

Detector of Internally Reflected Cerenkov Light (DIRC). The DIRC is designed

to give a 4σ separation of pions and kaons over the wide momentum range 0.7-

4.2GeV/c. The DIRC should have a small, uniform radiation length to provide the

best conditions for the calorimeter.

Cerenkov light is produced when particles with velocity β > 1/n traverse a material

of refractive index n. The radiation produced has a characteristic Cerenkov angle

given by cos θc = 1/nβ. A portion of this radiation is trapped in the DIRC due

to total internal reflection. The radiator material of the DIRC is synthetic fused

silica. This material was chosen for many reasons including its long attenuation

length and large index of refraction. This silica is in the form of bars that have

dimensions 17mm by 35mm by 4.9m long. These bars are grouped into sets of

12 and are contained in bar boxes. An air gap is maintained between the bars in

these boxes to ensure optical isolation. There are 12 bar boxes giving a total of 144
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silica bars. A mirror is placed at the forward end of the bars to reflect the forward

travelling photons to the backwards end of the bars where the instrumentation is

situated. A fused silica wedge is placed at the end of the bars to reflect photons at

large angles to reduce the size of the detection system needed. The DIRC detection

system consists of a standoff box (SOB) filled with 6000 litres of purified water and

instrumented with photomultiplier tubes (PMTs). Purified water is chosen as it is

inexpensive and has a refractive index almost equal to that of the silica and hence

reduces the internal reflection at the bar/box interface. A diagram of the DIRC is

shown in Figure 2.8.
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Figure 2.8: The DIRC detector: Schematic of a silica bar and the photon detection

equipment

There are in total 10752 PMTs in the detection system. Each PMT has a diameter

of 28.2mm and is surrounded by a light catcher which detects photons that would

otherwise miss the active area of the PMTs. The PMTs are situated 1.2m from the

silica bars and the light pattern at the PMTs is a conic section with the cone angle

related to the Cerenkov angle. The DIRC detector comprises 17% of a radiation
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length and covers 83% of the CM polar angle.

The propagation angle is calculated from a vector which points from the centre of

the PMT to the centre of the bar. This information is combined with information

from the tracking system to determine the Cerenkov angle. About 80% of the light

is maintained after multiple bounces along the bars. The dominant contributor to

the overall detection efficiency is the quantum efficiency of the PMT which is about

25%. The number of Cerenkov photons detected varies between 20 for small polar

angles at the centre of the barrel and 65 at large polar angles. Timing information is

used to suppress background hits from the beam or other tracks in the same event.

The time resolution is about 1.7ns (which is close to the 1.5ns spread of the PMT’s)

and the Cerenkov angle resolution is 2.5mrad.

2.7 Electromagnetic Calorimeter

The electromagnetic calorimeter (EMC) is designed to measure showers with excel-

lent efficiency, energy resolution and angular resolution over a wide energy range

from 20MeV to 9GeV. The lower limit is set by beam and event related back-

grounds. The upper limit derives from the need to measure accurately high energy

photons from QED processes.

The EMC is a total-absorption calorimeter consisting of a finely segmented array

of thallium doped caesium iodide (CsI(Tl)) crystals. This material is chosen for

its high light yield, small Molière radius and short radiation length. This provides

the necessary energy and angular resolution while allowing shower containment in

a short distance. The EMC is arranged into a cylindrical barrel containing 5760

crystals and a conical forward endcap which contains 820 crystals. There is full

coverage in azimuth and 90% solid angle coverage in the CM frame. A schematic

view of the EMC can be seen in Figure 2.9.
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Figure 2.9: The EMC detector: longitudinal view - top half only. All distances

shown are in mm.

The crystals are trapezoidal with their axes pointing towards the IR. In order to

minimise the amount of CsI(Tl) needed the crystals vary in radiation length from

16.0 X0 to 17.5 X0. The crystals are read out with silicon photodiodes. Feature

extraction algorithms are run to determine the energy and time of the signal peak

in the crystal. In order to reduce the stored data volume only crystals with energy

greater than 1MeV are included. Typical electromagnetic showers spread over many

adjacent crystals forming a cluster of energy deposits. If it is not possible to associate

a cluster with a track projected to the EMC from the DCH then the cluster is

assumed to originate from a neutral particle. Electrons are separated from charged

hadrons on the basis of shower energy, lateral shower moments and track momentum.

There are two important calibrations needed for the EMC. The first relates the

measured pulse height to the actual energy deposited. The light yield is non-uniform

in energy, can vary between the individual crystals and may change over time. At

low energies this calibration is done using a 6.13MeV radioactive source. At high

energies Bhabha scattering events are used as their energies can be predicted from
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polar angles. The second calibration infers the energy of the incoming particle from

the energy in the cluster. π0 decays are used to provide a correction for absorption

and shower leakage. This correction is applied as a function of cluster energy and

polar angle.

The energy resolution is measured at low energies using the 6.13MeV radioactive

source and at high energies is derived from Bhabha events. Figure 2.10 shows the

energy resolution extracted from a variety of processes as a function of energy, from

which the empirical parameterisation is found to be:

σE
E

=
(2.32± 0.30)%

4

√

E(GeV)
⊕ (1.85± 0.12)% (2.1)

γγ→0π
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3-2001
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Figure 2.10: The energy resolution of the EMC. The points are data taken from

various physical processes. The solid line is a fit to the data points of the expected

resolution function σE
E

= a
4
√
E(GeV)

⊕ b and the shaded area denotes the RMS error

of the fit.

The energy dependent term primarily arises from fluctuations in photon statistics

but has contributions from electronics noise and beam backgrounds. This term

dominates at low energies. The constant term arises from non-uniformity in light
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collection, leakage or absorption in the material between and in front of the crystals,

and uncertainties in the calibrations. Angular resolution is determined empirically

to be:

σθ = σφ =





3.87± 0.07
√

E(GeV)
+ 0.00± 0.04



mrad (2.2)

The parameterisation is based on the analysis of π0 and η decays to two photons.

2.8 Instrumented Flux Return

The instrumented flux return (IFR) is designed to detect muons with high efficiency

and purity and also to detect neutral hadrons such as K0
L
over a wide range of angles

and momenta.

The steel flux return for the magnet is segmented into layers which vary in thickness

from 2cm at the inner side to 10cm at the outer side. Resistive plate chambers

(RPC) of different geometries are installed between these layers to detect streamers

from ionizing particles. There are 19 RPC layers in the barrel, 18 layers in the

endcap and 2 additional layers of cylindrical RPCs placed between the EMC and

the magnet to provide the necessary information to link tracks from the EMC to

the IFR. A schematic view of the IFR can be seen in Figure 2.11. The RPCs consist

of two bakelite sheets 2mm thick separated by a gap of 2mm which is filled with

a gas mixture. This gas mixture is 57% argon, 39% freon and 4% isobutane and

is chosen for its non flammable and environmentally safe properties. The bakelite

sheets are coated in graphite with one side at a potential of 8kV and the other side

maintained at ground potential. Orthogonal aluminium readout strips are placed

on the modules to measure both z and φ for the barrel modules and x and y for

the endcap modules. A diagram of an RPC can be seen in Figure 2.12. A number

of factors are used to determine the particle type such as the number of interaction

lengths passed through by the particle, the matching of tracks to RPC clusters and

the distribution of RPCs hit in the IFR layers.
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Figure 2.11: The IFR detector: Diagram showing the barrel and forward and back-

ward endcaps. All dimensions shown are in mm
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Figure 2.12: The IFR detector: Cross section of an RPC

An RPC is considered efficient if a signal is detected within 10cm of a track that

has been extrapolated into the IFR. This efficiency can be calculated using collision

data and cosmic ray events. The time resolution is of order 1ns.
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2.9 Trigger

The trigger system is designed to select interesting physics events, with a high

and well-understood efficiency, while rejecting background events. The basic back-

grounds are Bhabha events (which have a huge rate compared to other physics

rates), radiative Bhabha events (which have a smaller rate but look like interesting

physics), beam backgrounds (such as those described in Section 2.2.2) and low mass

two-photon events.

The BABAR trigger system is implemented in two stages. The Level-1 (L1) trigger

is hardware based and is followed by the Level-3 (L3) trigger which is software

based. The PEP-II bunch crossing rate is around 238MHz (4.2ns bunch spacing).

The L1 trigger reduces the event rate to less than 2kHz which is the maximum rate

allowed by the data acquisition system (DAQ). The L3 trigger further reduces the

rate to around 100Hz which is the upper limit set by storage and reconstruction

considerations.

2.9.1 L1 Trigger

The L1 trigger decision is based on a drift chamber trigger (DCT) and an electro-

magnetic trigger (EMT).

The DCT and EMT form trigger primitives which are summaries of the position

and energy of particles present. There are 3 DCT primitives which correspond to

short tracks, long tracks and high pt tracks. The EMT primitives consist of towers,

which are the summed energy of groups of calorimeter crystals. Different energy

thresholds are applied to these towers to form 5 EMT primitives. These trigger

primitives are sent to the Global trigger (GLT) where the information is combined

into trigger lines. If trigger criteria are satisfied then a Level 1 accept is issued and

event readout is initiated. The typical L1 rate is about 1kHz. The DCT and EMT
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provide orthogonal triggers with an individual efficiency for BB events greater than

99% and a combined efficiency greater than 99.9%. L1 is effective at reducing beam

backgrounds by looking at tracks which come from the IP in r and φ and also looking

at EMT towers. Future improvements to the L1 DCT trigger will make greater use of

the z information, which will then enable the trigger to reject a substantial amount

of beam background which originates from beam optics at ±20 cm in z.

2.9.2 L3 Trigger

The L3 trigger receives the L1 trigger output and has access to the complete event

data including timing information. It further reduces the rate while flagging in-

teresting categories of events for physics analysis or alternatively diagnostic and

calibration purposes. L3 implements improved tracking and clustering procedures

which allow for greater rejection of backgrounds. Certain physics processes, such as

Bhabha scattering, have high cross-sections. In order to keep the recorded data at a

manageable level prescaling factors are applied to such processes. If the L3 trigger

is passed then the event is stored for full reconstruction and processing.

For a luminosity of 2.6× 1033 cm−2s−1, desired physics events (hadrons, ττ and µµ)

contribute about 16Hz which is approximately 13% of the L3 output. QED and

two-photon events contribute around 11% while calibration and diagnostic samples

contribute around 40%.

2.10 Data Acquisition

The BABAR data acquisition system (DAQ) is responsible for the transport of event

data from the detector to mass storage with a minimum of dead time. A schematic

of the DAQ system is shown in Figure 2.13.
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Figure 2.13: Schematic diagram of the data acquisition

Data are passed from the sub-detector front-end electronics (FEE) via optical fibres

to the data flow readout modules (ROMs). The ROMs perform feature extraction to

extract signals and minimise backgrounds and noise. If an L1 accept is received the

data are passed on to the L3 trigger. If the L3 trigger criteria are passed the data

are written to disk and enter the Online Prompt Reconstruction (OPR) system.

2.11 Online Prompt Reconstruction

Online Prompt Reconstruction (OPR) forms the link between the online and offline

systems. The OPR system performs complete reconstruction on the stored data,

creating all physics quantities necessary for analysis from the information provided

by the sub-detectors. OPR also provides extensive information on important physics

quantities that are used to monitor the data quality.

2.12 Monte Carlo Simulation

Monte Carlo simulated data are used for many purposes by the BABAR experiment.

The simulation reproduces in detail the generation of the event at the interaction
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point, the propagation of the resulting particles through the detector and the re-

sponse of the detector to these particles. Detector response quantities are then used

to construct candidate events which may be analysed as if they were real data.

There are two event generator programs used to create these MC events. EvtGen [39]

is used for B decays and JETSET [40] is used for qq events (where q = u, d, s, c). The

level of detail in the generators is high and allows effects such as polarisation, inter-

ference and CP violation to be included. The output of these generator programs

is a set of four vectors and vertices for the decay products. The generator also

simulates the spread in beam energies and positions allowed in the PEP-II beam

collisions.

The next stage in the Monte Carlo production process is the detector simulation

program which is based on Geant4 [41]. This is designed to account for the passage of

the particles through the material of the detector and subsequent interactions such as

energy loss, production of secondaries and multiple scattering. As the particles pass

through sensitive regions of the detector, information on energy, charge and angle is

used to calculate positions and idealised energy deposits in the detector. Radiative

Bhabha scattering events can be used to validate the electromagnetic processes

used in this part of the simulation by examining the results for ionisation energy

loss and calorimeter shower shapes, and looking for differences between real data

and simulated data. Hadronic interactions are simulated using parameterisations

and then validated using a variety of physics processes such as decays of τ leptons

to pions. The output at this stage includes generator level information as well

as the individual signals the particles produce when traversing the detector. This

allows “truth matching” to be performed as the signals have associated with them

information about the particle that produced them.

The next step in producing Monte Carlo data is to take the idealised detector hits

and transform them into realistic signals which mimic those collected from detector

electronics. Real background events are stored in a database and are mixed with
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simulated events in order to reproduce the data more closely. The output at this

stage is an event containing raw subdetector information and hence is like that of

the real data recorded by the BABAR detector.

The final stage in the Monte Carlo production process is to pass the simulated events

through the same reconstruction procedure that is used for real data.

This analysis uses the B+ → D0π+ decay as a calibration channel to identify any

possible differences between data and MC events. This decay is chosen as it has a

branching fraction in excess of the inclusive charmless B+ → K+π+π− decay and

can be easily isolated using invariant mass cuts.
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Chapter 3

Data Reconstruction and Event

Selection

3.1 Analysis Method

The aim of this analysis is to measure simultaneously the branching fractions of the

resonant and non-resonant (NR) intermediate states of the B± → K±π±π∓ decay.

This is achieved in two stages. Firstly selection criteria are applied to the complete

BABAR dataset to obtain a final data sample for the analysis, which consists of signal

B± → K±π±π∓ events and background events. The background events arise from

two main sources. The first and dominant contribution to the background is from

light quark and charm continuum production events where three random tracks from

the jets happen to mimic the K±π±π∓ final state and are reconstructed as signal.

These events are labelled qq background (q = u, d, s, c). The second source of back-

ground is B decay to final states that are not K±π±π∓ and these events are labelled

BB background. The selection procedure is described in detail in this chapter. A

subsequent Dalitz-plot analysis is performed to study the different contributions to

the B± → K±π±π∓ decay. This procedure is described in Chapter 4.
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3.2 Data Sample

The data used in this analysis were collected with the BABAR detector during its four

data-taking runs between 1999 and 2004. The data taken at the Υ (4S) resonance

correspond to 231.8 million BB pairs, which is equivalent to a total integrated lu-

minosity of 210.6 fb−1. This is termed on-resonance data. An additional integrated

luminosity of 21.6 fb−1 was recorded at a centre of mass energy 40 MeV below the

Υ (4S) resonance, and is termed off-resonance data. This off-resonance data is used

to study the qq background.

3.3 Discriminating Variables

3.3.1 Kinematic Variables

The kinematics of the B-Factory operating at the Υ (4S) resonance provide con-

straints that can be used to distinguish signal from background decays. The two

kinematic constraints commonly used by the BABAR experiment [42] are:

∆E = E∗
B − E∗

beam (3.1)

mES =
√

E∗2
beam − p∗2B (3.2)

where:

• E∗
beam =

√
s/2, and s is the square of the energy in the centre of mass frame

(CM) of the e+e− system,

• E∗
B and p∗B are the reconstructed energy and momentum of the B meson in

the CM frame.

49



mES can alternatively be written as:

mES =

√

√

√

√

(

1
2
s+ pi · pB

Ei

)2

− p2
i (3.3)

where:

• Ei and pi are the energy and momentum of the e+e− system measured in the

laboratory frame,

• pB is the momentum of the B meson measured in the laboratory frame.

For signal B decays ∆E is peaked around zero and mES is peaked around the B

mass of 5.279 GeV/c2. As can be seen from Equation 3.2, mES cannot be greater

than Ebeam which has a value of 5.29 GeV/c2. qq background events populate the

entire allowed mES - ∆E region and they are the dominant contribution in the area

where mES is much less than the B mass. BB background events lie in different

regions of the mES - ∆E plane depending on their final states. BB background

decays to a two-body final state combined with a track from the rest of the event,

tend to populate the region with positive ∆E values. BB background decays to

four-body final states with one track missing populate the region with negative ∆E

values. BB background events to a three-body final state will have a signal like

mES-∆E distribution.

The kinematic variable mES is calculated using the B-meson momentum and the

beam energy and momentum. The independence of mES from the B-meson energy

leads to accurate calculations of this quantity and independence from the mass

hypotheses used for the final state particles. ∆E uses the B-meson energy so this

quantity has a dependence on the final state mass assignments.

A signal strip, sideband and signal box are defined in Table 3.1 and illustrated in

Figure 3.1. The value of ∆E must be between −0.0349 and 0.0551GeV. These

numbers derive from a selection of the magnitude of ∆E to be less than 0.06 GeV,
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Figure 3.1: ∆E–mES plane, showing signal strip, sideband and signal box. The area

populated by events (these are on-resonance data events) is the signal strip, the

sideband is defined by the dashed, red lines, and the signal box by the solid, blue

lines.

which is approximately 3σ of the signal distribution, as determined from Monte

Carlo events in a previous study of this decay [32, 33]. However, the mean of the

signal ∆E distribution in B+ → D0π+ data is found to be shifted by −4.9 MeV

relative to zero, so the selection window is shifted by the same amount. Finally the

lower edge of the ∆E window is tightened by 30 MeV in order to reduce the amount

of BB background.

The signal strip is used to determine the fractions of qq and BB events in the signal

box. The sideband is used to characterise the shape of the qq background in the

Dalitz plot. The signal box is used to select the events for which the Dalitz-plot fit

is performed.
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Table 3.1: Definitions of the signal strip, sideband and signal box, with −0.0349 <
∆E < 0.0551 GeV.

Region mES Selection Criteria

(GeV/c2)

Signal Strip 5.200 < mES < 5.290

Signal Box 5.271 < mES < 5.287

Sideband 5.200 < mES < 5.260

3.3.2 Event Shape Variables

Signal and qq background events have very different characteristic topologies. In a

true signal event, the primary e+e− annihilation produces a BB pair via the Υ (4S)

resonance. In the Υ (4S) rest frame the B mesons have low momenta, and so the

decay of each B meson is fairly isotropic. In contrast a qq event has a pronounced

two jet structure, and this results in a strongly preferred direction characterising the

whole event. In a qq event the three hadrons which form the B candidate are usually

found to be in one or other of the two jets which are roughly back-to-back. The

B candidates will therefore have non-isotropic decay shapes in the CM frame, and

there will be correlations between the directions of the candidate decay products of

the two B mesons.

The thrust axis of a collection of particles is the direction which maximises their

longitudinal momenta. If the B-candidate decay products are excluded from the

event data then the remaining particles are collectively labelled “rest of the event”.

The event shape variable cos θT is defined as the cosine of the angle between the

thrust axis of the B candidate and the thrust axis of the rest of the event. The

distribution of cos θT is flat for signal events (as these B candidates are isotropic)

and highly peaked at ±1 for qq events (as these B candidates lie in the jets which

correspond to the thrust axes of the rest of the event). The |cos θT | distributions for
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Figure 3.2: |cos θT | distributions for non-resonant B± → K±π±π∓ MC events (solid

black) and off-resonance events (dashed red). A cut of |cos θT | < 0.95 is applied in

the event pre-analysis described in Section 3.6.2.

non-resonant signal MC events and off-resonance events (which are qq events) are

shown in Figure 3.2.

In order to further reduce the background a Fisher discriminant [43] is constructed.

The Fisher discriminant, F , can be defined as:

F = Σaixi = ~aT~x, (3.4)

where xi are some discriminating variables and ai are chosen to maximise the sep-

aration of the signal and background distributions. F is constructed using five

variables: L0, L2, | cos θBmom|, | cos θBthr| and |TF lv|:

• L0 and L2 are defined as L0 =
∑roe
i pi and L2 =

∑roe
i pi × 1

2
(3 cos2 (θi)− 1)

where the sum is over tracks and clusters in the rest of the event (roe) and pi

and θi are the momentum and polar angle respectively, of the track or cluster.
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Figure 3.3: F distributions for non-resonantB± → K±π±π∓ MC events (solid black)

and off-resonance events (dashed red).

• θBmom is defined as the angle between the B-candidate momentum and the

beam direction.

• θBthr is the angle between the B candidate thrust axis and the beam direction.

• TF lv is the tagging [44] variable used to distinguish B0 and B0. It uses

information on high momentum leptons and kaons in the rest of the event.

The output of TF lv is a number, with values towards 1 indicating that a good

tag was obtained and values towards 0 indicating no tag was possible. Even

though this analysis uses charged B mesons, this tagging algorithm output is

useful in discriminating signal from background as continuum events do not

contain the types of processes looked for by the algorithm and so will be more

likely to return a value of 0 than B decays.

The F distributions for non-resonant signal MC events and off-resonance events are

shown in Figure 3.3.
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3.4 Tracking

Track reconstruction [38] uses information from the SVT and DCH sub-detectors.

Tracks are defined by five parameters that are measured at the point of closest

approach to the z-axis; d0 is the distance from the origin in the x-y plane, z0 is the

distance along the z-axis, φ0 is the azimuthal angle, λ is the dip angle and w is the

track curvature with w = 1/pt where pt is the transverse momentum.

The offline charged particle track reconstruction builds on information available from

the L3 trigger. A track is selected by performing a helix fit to the hits found by the

L3 track finding algorithm, with a subsequent search being made for additional hits

in the DCH that may belong to the track. Two more sophisticated tracking programs

are applied which are designed to find tracks that either do not pass through the

entire DCH or do not originate from the interaction point. The resulting tracks are

then extrapolated into the SVT, and SVT track segments are added. Finally a SVT

only track finder is run on the remaining SVT hits to identify low momentum tracks

that did not reach the DCH.

This analysis uses tracks that satisfy the requirements of the GoodTracksLoose list:

• A minimum transverse momentum of 0.1 GeV/c,

• A maximum momentum of 10.0 GeV/c,

• At least 12 drift chamber hits,

• A maximum d0 of 1.5 cm,

• A maximum z0 of 10.0 cm.

The track reconstruction efficiency and pT resolution are dominated by the DCH.

The absolute DCH tracking efficiency is determined as the ratio of the number

of reconstructed DCH tracks to the number of tracks detected in the SVT (that
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fall within the acceptance of the DCH). The tracking efficiency of the DCH as a

function of pT and polar angle is shown in Figure 3.4. At the design voltage of
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Figure 3.4: Track reconstruction efficiency as functions of pT and polar angle for

DCH operating voltages 1900V and 1960V

1960V, the tracking efficiency is 98± 1% per track above 200MeV/c and polar angle

θ greater than 500mrad. The pT resolution is obtained using cosmic ray events

where the upper and lower halves of the tracks traversing the DCH and SVT are

fitted separately. It is found to be:

σpT
pT

= (0.13± 0.01)% pT + (0.45± 0.03)% (3.5)

where pT is measured in GeV/c.
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3.4.1 Tracking Efficiency Corrections

Discrepancies exist between the tracking efficiencies for data and MC events and

therefore corrections must be applied to efficiencies measured using MC events.

These corrections are calculated using a variety of methods [45, 46] and are stored

in tables which are binned in momentum, θ and φ. The overall efficiency correction

for an event is taken as the product of the efficiency corrections for the three tracks.

The average tracking efficiency correction is found to be 0.984.

3.5 Particle Identification

After tracks have been reconstructed in the detector, particle identification (PID)

selectors are run. Standard PID selectors have been developed by the BABAR col-

laboration and this analysis uses the kaon selector to discriminate between pions

and kaons. The electron selector is also used to veto electrons in the final state.

3.5.1 Kaon Identification

The standard BABAR kaon selector is called SMSKaonSelector [47] and has 5 dif-

ferent modes (known as very tight, tight, notApion, loose and very loose)

which vary in efficiency and purity.

The SVT and DCH provide ionization-energy loss, dE/dx, information which has a

momentum dependence described by Bethe-Bloch functions [48]. The DCH dE/dx

distributions for different particles are shown in Figure 3.5.

The parameterisations of these Bethe-Bloch functions are taken from calibration fits

to data. Measurements of dE/dx are used only in momentum ranges where there

is a 2σ separation between kaons and pions. This corresponds to momenta below
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Figure 3.5: DCH dE/dx distributions for data as a function of momentum, showing

the regions occupied by different charged particle types

0.6 GeV/c for the SVT and below 0.7 GeV/c for the DCH. 2σ separation is also

achieved in the DCH for momenta greater than 1.5 GeV/c (the relativistic rise part

of the Bethe-Bloch function) but this region is used only in the loose and very

loose modes of the selector.

The DIRC provides information on the Cerenkov angle and number of photons.

Cerenkov photons are emitted by particles in the DIRC for momenta p above the

threshold m/
√
n2 − 1 where m is the particle mass and n is the refractive index

of the DIRC silica bars, which is 1.473. For kaons this threshold corresponds to

approximately 0.45 GeV/c, so the DIRC information is used only in the momentum

range > 0.6GeV/c for all modes of the selector. The central value of the Cerenkov

emission angle, θC with respect to the track is given by cos θC = E/pn where E is

the particle energy. The number of photons produced for a fixed particle path in

the silica follows Poissonian statistics with a central value dependent on the particle

mass, charge, momentum, polar angle and bar number (position).

The SMSKaonSelector uses this information from the SVT, DCH and DIRC sub-
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detectors to form three probability density functions (PDFs), the product of which

is used to form a track likelihood for each particle type; kaon, pion and proton (lK , lπ

and lp). In this analysis the SMSKaonSelector is used in tight mode. This requires

that:

lK > rπlπ and lK > lp (3.6)

where:

rπ = 15 for 0.5 < p < 0.7GeV/c (3.7)

rπ = 1 for 0.7 < p < 2.7GeV/c (3.8)

rπ = 80 for p > 2.7GeV/c (3.9)

Particles are said to be kaons (pions) if they pass (fail) this tight selector.

There are a number of reasons why this kaon selection process is not 100% efficient

or pure. There are instances where the DIRC information is not available due to

the small number of photons produced or due to the kaons not reaching the DIRC,

which has limited solid angle coverage. It is also possible that the kaons decayed or

interacted with the material of the detector before reaching the DIRC. In these cases

a single track often results that has very little deviation from that of the original

kaon and hence can be misidentified as that of the original kaon. The resolution in

track-momentum, direction and Cerenkov light measurement also lead to imperfect

kaon identification.

The imperfect particle identification, where a K gets misidentified as a π and

vice versa has been studied in the inclusive branching fraction analysis of the

B± → K±π±π∓ decay [33] using a D∗± control sample. The decay D∗+ → D0π+,

D0 → K−π+ gives a very pure sample of kaons and pions to find the PID efficien-

cies; the kaon (pion) has the opposite (same) charge as the D∗± meson. For the

SMSKaonSelector operating in tight mode, the probability of correctly identifying

a K is 80%, which includes the geometrical acceptance, and the corresponding rate
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of mis-identification of a K as a π is 20%. For π’s the identification is 98% efficient

with the corresponding probability of mis-identifying a π as a K being 2%.

3.5.2 Particle Identification Efficiency Corrections

The particle identification efficiencies and misidentification rates are different in

MC and data. PID corrections [49] must therefore be applied to the MC. Data

control samples are used to form tables of efficiencies, εdata, which can be compared

to the efficiencies, εMC , found when using MC events for the same decay modes.

These efficiency tables are binned in momentum, θ and φ. This analysis uses a PID

correction procedure which has two stages. The first stage ensures that a given track

passes the PID selection criteria. The second stage rejects tracks with a probability

1 − (εdata/εMC) if the requirement εMC > εdata is satisfied. This reduces the MC

efficiency to match that of the data whilst doing nothing in the limit εMC = εdata.

The effect of this PID correcting procedure can be quantified by looking at the

number of non-resonant MC events obtained with and witout this correction applied.

This shows that the PID corrections reduce the data sample by a factor of 0.977.

3.5.3 Electron Identification

The standard BABAR electron selector [50] is also a likelihood based selector which

combines information from the EMC, DIRC and DCH sub-detectors. Electrons en-

tering the EMC produce an electromagnetic shower. The EMC provides information

on the energy of this shower together with its lateral and longitudinal shape. The

DIRC provides information on the Cerenkov angle but this information is used only

for particle momenta < 1.5GeV/c. The DCH provides information on dE/dx.
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3.6 Event Selection

3.6.1 Event Pre-Selection

The first level of selection on the full sample of events is a three-body filter that

selects candidate B decays to final states that contain three “stable” charged par-

ticles. The three particles used must have passed the selection criteria for the

GoodTracksLoose list. The B candidates are selected according to the following

criteria:

• The total charge of the B is required to be ±1,

• The total number of tracks in the event is required to be ≥ 4,

• The total energy of the event is required to be < 20 GeV,

• mES of the B candidate is required to be within 0.1 GeV/c2 of the beam energy,

• The final state tracks can be assigned as either pions or kaons. All possible

combinations and assignments are tested and the event accepted if any com-

bination passes the requirement that ∆E has an absolute value less than 0.45

GeV.

3.6.2 Batch Level Pre-Analysis

The output from the preselection is further refined by applying additional selection

criteria. The output is then stored in Root ntuples [51]. An initial vertex for the B

candidate is found using both kinematic and geometric fits, which use an iterative χ2

minimisation procedure [52]. The kinematic fit requires momentum conservation and

the geometric fit requires the three tracks to originate from the same point in space.

After the vertex is formed, mES and ∆E are recalculated. Event shape variables
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are also calculated and a cut |cos θT | < 0.95 applied. At this stage PID selectors

are run and all the results are stored in the ntuple. All possible combinations of

pions and kaons in the final state are formed. The only effect of different final state

mass hypotheses on the B candidate is to change its energy. A second vertexing

of the B candidate is then performed but this time with the resultant B-candidate

mass constrained to be the correct B-meson mass. The vertexing algorithm varies

the tracks within their errors and the event is retained if a B-mass-constrained

vertex is successfully obtained. The mES variable is recalculated and a further cut

|∆E| < 0.35GeV is applied.

3.6.3 Final Selection

After the preselection and batch level selection further criteria are applied in order

to isolate the B± → K±π±π∓ final state and further suppress backgrounds. The

cut optimisation procedure follows that detailed in the previous analysis of the

B± → h±h∓h± modes [33] where h is a π or a K. The |cos θT | and Fisher cuts are

chosen to give the best value for S/
√
S +B where S and B are the expected number

of signal and background events respectively.

• Candidates must have a successful kinematic fit to theB vertex for theK±π±π∓

final state,

• The kaon candidate track must pass the SMSKaonSelector in tight mode,

• Pion candidate tracks must fail the SMSKaonSelector in tight mode,

• All tracks must fail the electron selector,

• The two pion candidate tracks must have opposite charges, qπ1
× qπ2

= −1,

• |cos θT | < 0.70,

• The value of the Fisher discriminant must be < 0.21,
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• The mES and ∆E signal strip cuts are applied: −0.0349 < ∆E < 0.0551GeV

and 5.20 < mES < 5.29GeV/c2,

• Invariant mass vetoes are applied to eliminate decays containing charm quarks

(see Section 4.4 for more details).

• ThemES signal box and sideband cuts are applied: 5.271 < mES < 5.287GeV/c2

and 5.20 < mES < 5.26GeV/c2,

The requirement of a single candidate per event is then imposed. Multiple candidates

occur in less than 3% of events, and in these cases the final candidate is chosen at

random. The final output is stored in a Root ntuple with a much reduced number of

events and only the necessary variables for the analysis retained. The efficiency for

these cuts is calculated using a sample of 1.299× 106 B± → K±π±π∓ non-resonant

MC events and can be seen in Table 3.2.
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Table 3.2: Summary of average efficiencies in the analysis of B± → K±π±π∓. Each

of the cut efficiencies is measured relative to the previous cut. Also shown is the

total efficiency for the signal strip, signal box and sideband. These total efficiencies

are the total number of events passing the selection criteria divided by the total

number of input/generated events. The uncertainties shown are statistical only.

Cut Efficiency for

B± → K±π±π∓

non-resonant MC

Reconstruction and preselection 0.698

Valid K±π±π∓ vertex fit hypothesis 0.980

Kaon PID requirements 0.746

Electron veto 1.000

qπ1
× qπ2

= −1 0.974

|cos θT | < 0.70 0.706

Fisher < 0.21 0.727

5.20 < mES < 5.29 GeV/c2 0.994

−0.0349 < ∆E < 0.0551 GeV 0.813

Veto D0, J/ψ and ψ(2S) 0.831

Signal Strip: 0.17137

± uncertainty 3.6× 10−4

Signal Box: 5.271 < mES < 5.287 GeV/c2 0.16664

± uncertainty 3.6× 10−4

Sideband: 5.20 < mES < 5.26 GeV/c2 3.013× 10−3

± uncertainty 4.8× 10−5
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Chapter 4

Dalitz-Plot Analysis

4.1 Introduction

In order to perform this Dalitz-plot fit, a C++ / Root based package called Laura++ [53]

was developed. Laura++ is a maximum likelihood based fitting program designed

specifically for the Dalitz-plot analysis ofB-meson decays to three charmless hadronic

particles.

Probability Density Functions (PDFs) are constructed to describe the signal and

backgrounds in terms of the Dalitz-plot variables. These PDFs are then combined

to form a per-event likelihood L. The total likelihood for NTot events in the data

sample is given by:

LTot =
NTot
∏

n=1

Ln (4.1)

The aim of the Laura++ software in this analysis is to obtain the magnitudes and

phases of the signal components contributing to the B± → K±π±π∓ decay. This is

achieved by floating certain parameters of the PDFs to maximise this total likeli-

hood, or equivalently, minimise the negative natural logarithm of the total likelihood:

− lnLTot = − ln





NTot
∏

n=1

Ln


 = −
NTot
∑

n=1

lnLn. (4.2)
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In this chapter a full description of the per-event likelihood is given. This is followed

by an in-depth discussion of the Dalitz-plot modelling of the signal, qq background

and BB background components. The chapter concludes with a discussion of effi-

ciency considerations.

4.2 Dalitz Fitting

4.2.1 Per Event Likelihood

The Dalitz-plot fit uses the invariant mass-squared pairs m2
13 and m2

23 as input

measurements. For the decay B± → K±π±π∓ the K±, π± and π∓ are labelled as 1,

2 and 3 respectively.

The unbinned per event likelihood function used to fit the data in the signal box is

shown in Equation 4.3:

L(m2
13,m

2
23) = (1− fqq̄ − fBB̄)

|∑N
i=1 cie

iθiFi(m
2
13,m

2
23)|2ε(m2

13,m
2
23)

∫ ∫

DP |
∑N
i=1 cie

iθiFi(m2
13,m

2
23)|2ε(m2

13,m
2
23) dm

2
13dm

2
23

+ fqq̄
Q(m2

13,m
2
23)

∫ ∫

DP Q(m2
13,m

2
23) dm

2
13dm

2
23

+ fBB̄
B(m2

13,m
2
23)

∫ ∫

DP B(m2
13,m

2
23) dm

2
13dm

2
23

(4.3)

where

• N is the number of signal resonant and non-resonant contributions to the plot,

• Fi is the dynamical part of the signal amplitude of the resonant or non-resonant

contribution i,

• cieiθi are complex coefficients, where ci are the signal magnitudes and θi are

the signal phases,
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• ε(m2
13,m

2
23) is the reconstruction efficiency, including vetoes, defined for all

points in the Dalitz plot,

• Q(m2
13,m

2
23) is the distribution of qq background,

• B(m2
13,m

2
23) is the distribution of BB background,

• fqq and fBB are the fractions of qq and BB background events, respectively.

The background fractions fqq and fBB are calculated (Section 4.6) and then fixed

in the Dalitz-plot fit. All parameters of the Q(m2
13,m

2
23) and B(m2

13,m
2
23) distri-

butions are also fixed in the Dalitz-plot fit. The only floating parameters are the

complex coefficients cie
iθi that describe the signal amplitudes. One amplitude is

used as a reference, and has a fixed magnitude of 1.0 and a fixed phase of 0.0. All

other components are defined relative to this. The overall phase measured will have

contributions from all the possible tree and penguin decay amplitudes (as described

in Section 1.6) and will be a combination of strong δS and weak φW phases. As

such a measurement of this phase is difficult to interpret in terms of CKM matrix

elements.

4.2.2 Normalisation

There are many normalisation quantities that need to be calculated for this analysis.

The lineshapes Fi(m
2
13,m

2
23) are each normalised such that, over the whole Dalitz

plot
∫ ∫

DP
Fi(m

2
13,m

2
23)dm

2
13dm

2
23 = 1. (4.4)

There are also normalisation integrals that need to be calculated for the overall signal

and background amplitudes. These can be seen as the denominators of the three

terms in Equation 4.3. These integrals are calculated using numerical integration

that follows a Gauss-Legendre method [54]. The accuracy of this integration method

can be checked using other Monte Carlo integration methods.
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4.2.3 Fit Fractions

The measured magnitudes depend critically on the normalisation convention used,

which makes the results difficult to interpret. The results of this analysis will instead

be given in terms of fit fractions. The fit fraction is a convention used to quantify

the amount of a given resonant or non-resonant contribution to the Dalitz plot. It

is defined as shown in Equation 4.5:

(Fit Fraction)i =

∫ |cieiθiFi(m2
13,m

2
23)|2dm2

13dm
2
23

∫ |∑j cje
iθjFj(m2

13,m
2
23)|2dm2

13dm
2
23

. (4.5)

The sum over the resonant and non-resonant fit fractions is not necessarily unity

due to the potential presence of net constructive or destructive interference.

The error on the fit fraction of a particular component has two contributions. The

first is related to the error on the magnitude of that component, and the second is

related to the magnitudes and phases of all the components. In the Dalitz-plot fit

the reference component has a fixed magnitude of 1.0. This will artificially lower

the error on the fit fraction of that component. To correct for this the fit is repeated

using a different fixed signal component to get the true error on the fit fraction of the

original fixed component. The calculation of the fit fraction error will be discussed

further in Section 6.8.3.

4.3 Signal Resonance Modelling

The amplitude for a given decay mode is:

Ai = cie
iθiFi(m

2
13,m

2
23) (4.6)

where ci and θi are the unknown magnitude and phase of each partial decay mode,

while Fi describes the dynamics of the amplitude. This Fi consists of a product of
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the invariant mass and angular distribution probabilities:

Fi = Ri(m)× Ti(cos θH) (4.7)

where Ri(m) is the resonance mass distribution and Ti(cos θH) is the angular prob-

ability distribution, where θH is the helicity angle. The angular distribution terms

are just Legendre polynomials:

• Spin 0 particle: Ti(cos θH) = 1

• Spin 1 particle: Ti(cos θH) = cos θH

• Spin 2 particle: Ti(cos θH) = 3 cos2 θH − 1

The default resonance mass distribution used in Laura++ is a Relativistic Breit-

Wigner lineshape:

Ri(m) =
(m2

0 −m2) + im0Γ(m)

(m2
0 −m2)2 +m2

0Γ
2(m)

(4.8)

where m0 is the pole mass and Γ is the decay width of the resonance which depends

on the invariant mass of the two-daughter combination:

Γ(m) = Γ0

(

q

q0

)2j+1 (
m0

m

) W 2
j (q)

W 2
j (q0)

, (4.9)

Γ0 is the decay width when the invariant mass of the daughter combination is equal

to m0 and q is the momentum of either daughter in the rest frame of the resonance:

q =
√

[m2 − (ma +mb)2][m2 − (ma −mb)2]/2m (4.10)

where ma and mb are the masses of the two daughter particles, respectively. q0

denotes the value of q when m = m0. Wj(q) represents the Blatt-Weisskopf barrier

form factor [55], which depends on the momentum q and the spin of the resonance

j:

W0 = 1 (4.11)

W1 =
√

1/(1 + z2) (4.12)

W2 =
√

1/(z4 + 3z2 + 9) (4.13)
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Figure 4.1: Simulated Dalitz plot forB+ → K+π+π−. This plot is generated with six

signal contributions K∗0(892), K∗0
0 (1430), ρ0(770), f0(980), χc0 and non-resonant.

Interference effects are not included.

where z = Rq, and R is the radius of the barrier, which is taken to be 4.0 GeV−1 ≈
0.8 fm.

This Relativistic Breit-Wigner lineshape is used to describe all contributions to the

Dalitz-plot except for the non-resonant amplitude which is generated flat in phase-

space and the f0(980) and K
∗0
0 (1430) components.

A simulated Dalitz plot for B+ → K+π+π− containing six possible signal contribu-

tions is shown in Figure 4.1
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4.3.1 f0(980) modelling

The f0(980) component is modelled using a Flatté [56] lineshape which is a coupled-

channel Breit-Wigner distribution. This is used for resonances that are above the

KK threshold and hence can decay to both ππ or KK.

Ri(m) =
(m2

0 −m2) + im0(Γππ + ΓKK)

(m2
0 −m2)2 +m2

0(Γππ + ΓKK)2
(4.14)

The decay widths of the resonance in the ππ and KK systems are given by:

Γππ = gπ
√

(m2 − 4m2
π), (4.15)

ΓKK = gK
√

(m2 − 4m2
K), (4.16)

where mπ and mK are the masses of π and K, and gπ and gK are coupling constants.

To ensure continuity below theK-K threshold, the width ΓKK is set to be imaginary

ΓKK = igK
√

(4m2
K −m2) (4.17)

when m < 2mK . For the case when m < 2mπ, the widths for the ππ and KK

systems are both set to zero. There are three alternative sets of results for gπ and

gK to choose from:

• gπ = 0.145 and gK/gπ = 4.35 – BES experiment1 [57]

• gπ = 0.09± 0.04± 0.01 and gK = 0.02± 0.01± 0.03 – E791 experiment [59]

• gπ = 0.28± 0.04 and gK = 0.56± 0.18 – WA76 experiment [60]

4.3.2 The Kπ S-wave

Previous studies of the B± → K±π±π∓ mode have suggested that there is a large

contribution to the Dalitz-plot in the region around 1400 MeV/c2 in the Kπ spec-

trum. Experiments have disagreed on the details of the resonances involved, however

1These values were provided through private communication. A subsequent publication by the

BES collaboration [58] uses values of gπ = 0.138± 0.010 and gK/gπ = 4.45± 0.25
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there is a consensus that resonant behaviour occurs at around 1430 MeV/c2 and this

is labelled the K∗0
0 (1430) resonance. The dynamics of the Kπ S-wave are not very

well known. The LASS experiment studied Kπ scattering and produced a descrip-

tion of the S-wave that consists of a resonant part, the K∗0
0 (1430), and an effective

range term [61,62]. The matrix elementM, modified for a production environment

is shown in Equation 4.18,

M =
mKπ

q cot δB − iq
+ e2iδB

m0Γ0
m0

q0

(m2
0 −m2

Kπ)− im0Γ0
q

mKπ

m0

q0

(4.18)

where m0 and Γ0 are the mass and width of the K∗0
0 (1430) resonance, q is defined

in Equation 4.19, q0 is the value of q when mKπ = m0, and cot δB is defined in

Equation 4.20.

q =
√

(m2
Kπ − (mK +mπ)2)(m2

Kπ − (mK −mπ)2)/2mKπ (4.19)

cot δB =
1

aq
+ 1

2
rq (4.20)

where r is the effective range, and a is the scattering length. This amplitude is only

tested up to around 2 GeV/c2, and so the effective range term is cut off at the lower

edge of the D0 veto.

4.3.3 Excited ππ resonances

There are many possibilities for resonances that may exist in the range 1200-1600

MeV/c2 in the ππ spectrum. These higher resonances have many uncertainties

associated with their properties. The f0(1370) and ρ0(1450) resonances have large

errors on their masses and widths. All of the higher f resonances have possible

decays to ππ and KK, though the partial widths are poorly constrained. These

excited ππ resonances are implemented in Laura++ as Relativistic Breit-Wigners

with masses and widths as shown in Table 4.1.
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Table 4.1: Possible resonances in the ππ spectrum.

Resonance Mass (MeV/c2) Width (MeV)

f2(1270) 1275.4 185.1

f0(1370) 1370 350

ρ0(1450) 1465 310

f0(1500) 1507 109

f2(1525) 1525 76

4.4 BB Background Modelling

There is a significant source of background arising from B-meson decays to final

states other than K±π±π∓. In order to identify the specific BB background decays

that contaminate the signal data, a high statistics MC sample of generic B+B−

and B0B0 decays is studied. These generic events are subject to the same selection

process as the on-resonance data and decays that pass the selection criteria are

studied further and accounted for in the likelihood.

These BB backgrounds can be characterised into four main categories. The first

is pure combinatorics, where the BB event contains three unrelated tracks which

are subsequently reconstructed as signal. This combinatorial situation is the same

as that of qq backgrounds and hence these BB events have a Dalitz-plot and mES

distribution that looks almost identical to that for qq decays. The second category

is particle mis-identifications, where the BB event is incorrectly identified due to a

pion being reconstructed as a kaon or vice versa. The tight PID requirements reduce

the feed-through from B± → π±π±π∓ decays. The feed-through in the opposite

direction from B± → K±K∓π± by misidentifying a kaon as a pion is very small

due to the small branching fraction of this mode [32]. Alternatively there is the

possibility of misidentifying a muon or electron as a pion. The largest sources of these

backgrounds are from the modes B± → J/ψK± , J/ψ → µ+µ−and B± → ψ(2S)K±
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, ψ(2S)→ µ+µ−. These modes are vetoed from the Dalitz-plot (see Section 4.4.1).

The third category is specific B → D decays. Due to the relative sizes of the CKM

matrix elements B → D decays have high branching fractions compared to the

charmless decays. This means that decays with D mesons in the final state will be

a significant contributor to the total BB background. The majority of these decays

are incorrectly reconstructed, with either misidentification of one of the final state

particles or a low momentum π0 or γ being lost. This leads to the ∆E distribution

of these modes being peaked at negative values. Tightening the lower ∆E edge

of the signal box region (see Section 3.3.1) greatly reduces the presence of these

background modes. The final category is 4-body charmless decays. Contributions

exist from 4-body final states where one of the final state particles is lost. Modes

with large contributions are B± → η′K±, η′ → ρ0γ, ρ0 → π+π− where the γ is not

reconstructed and B0 → K∗0K∗0 with K∗0 → K+π− and K∗0 → K−π+ where a

kaon is lost.

Specific MC samples are made for any modes that are identified as contributing to

the BB background. These specific MC samples are used to determine the recon-

struction efficiency which is combined with branching fraction information taken

from the PDG [8] to calculate the number of expected events of the BB background

mode in the signal box. For those modes that are not yet measured, the branching

fraction is taken to be half the measured upper limit, with an error that is also half

the upper limit. A total of 73 modes are studied and 54 of these are found to be

significant. The reconstruction efficiency and number of expected signal box events

for all BB backgrounds found to be significant can be seen in Table 4.2 and Ta-

ble 4.3 for charged B-meson decays and Table 4.4 and Table 4.5 for neutral B-meson

decays.
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Table 4.2: Charm B+B− background modes. The table shows the branching fraction for each mode along with the recon-

struction efficiency and number of events expected in the signal box.

Mode + Charge Conjugate BF Signal Box Efficiency Number of Expected Events in Signal Box

(10−6) All B+ B− All B+ B−

B+ → D0K+; D0 → K+π− 14.1 ± 2.3 0.545 ± 0.012 0.2762 ± 0.0087 0.2691 ± 0.0086 17.8 ± 3.0 9.0 ± 1.5 8.8 ± 1.5

B+ → D0K+; D0 → K+π−π0 48.1 ± 8.3 0.0149 ± 0.0033 0.0060 ± 0.0021 0.0090 ± 0.0026 1.66 ± 0.47 0.66 ± 0.26 1.00 ± 0.34

B+ → D0π+; D0 → K+K− 19.4 ± 1.3 0.530 ± 0.051 0.260 ± 0.036 0.270 ± 0.037 23.8 ± 2.8 11.7 ± 1.8 12.1 ± 1.9

B+ → D0π+; D0 → K+π− 189.2 ± 11.9 0.238 ± 0.010 0.1259 ± 0.0076 0.1116 ± 0.0072 104.2 ± 8.1 55.2± 4.9 48.9± 4.4

B+ → D0π+; D0 → K+π−π0 647.4 ± 54.8 0.035 ± 0.0037 0.0169 ± 0.0026 0.0181 ± 0.0027 52.4 ± 7.2 25.3 ± 4.5 27.1 ± 4.7

B+ → D0ρ+; D0 → K+π− 509.2 ± 69.5 0.0253 ± 0.0025 0.0128 ± 0.0018 0.0125 ± 0.0017 29.9 ± 5.0 15.1 ± 2.9 14.8 ± 2.9

B+ → D0ρ+; D0 → K+π−π0 1742 ± 257 0.0048 ± 0.0013 0.00238 ± 0.00090 0.00238 ± 0.00090 19.2 ± 5.9 9.6 ± 3.9 9.6 ± 3.9

B+ → D∗0π+; D∗0 → D0γ; D0 → K+π− 66.6 ± 7.9 0.0913 ± 0.0083 0.0377 ± 0.0053 0.0536 ± 0.0064 14.1 ± 2.1 5.8 ± 1.1 8.3 ± 1.4

B+ → D∗0π+; D∗0 → D0γ; D0 → K+π−π0 227.8 ± 29.8 0.0076 ± 0.0025 0.0059 ± 0.0022 0.0017 ± 0.0012 4.0 ± 1.4 3.1 ± 1.2 0.89 ± 0.64

B+ → D∗0π+; D∗0 → D0π0; D0 → K+π− 108.2 ± 11.0 0.0785 ± 0.0068 0.0471 ± 0.0052 0.0314 ± 0.0043 19.7 ± 2.6 11.8 ± 1.8 7.9 ± 1.3

B+ → D∗0π+; D∗0 → D0π0; D0 → K+π−π0 370.2 ± 43.1 0.0060 ± 0.0016 0.0034 ± 0.0012 0.0026 ± 0.0011 5.2 ± 1.5 3.0 ± 1.1 2.22 ± 0.94

B+ → D0e+νe; D
0 → K+π− 817.0 ± 85.8 0.00272 ± 0.00096 0.00136 ± 0.00068 0.00136 ± 0.00068 5.2 ± 1.9 2.6 ± 1.3 2.6 ± 1.3

B+ → D0e+νe; D
0 → K+π−π0 2795 ± 334 0.00136 ± 0.00068 0.00 ± 0.00 0.00136 ± 0.00068 8.8 ± 4.5 0.0 ± 0.0 8.8 ± 4.5

B+ → D0µ+νµ; D
0 → K+π− 817.0 ± 85.8 0.0044 ± 0.0012 0.00170 ± 0.00076 0.00272 ± 0.00096 8.4 ± 2.5 3.2 ± 1.5 5.2 ± 1.9

B+ → D0µ+νµ; D
0 → K+π−π0 2795 ± 334 0.00206 ± 0.00084 0.00069 ± 0.00048 0.00137 ± 0.00069 13.3 ± 5.7 4.4 ± 3.2 8.9 ± 4.6

B+ → D∗0e+νe; D
∗0 → D0γ; D0 → K+π− 941.1 ± 104.2 0.00138 ± 0.00069 0.00138 ± 0.00069 0.00 ± 0.00 3.0 ± 1.5 3.0 ± 1.5 0.0 ± 0.0

B+ → D∗0e+νe; D
∗0 → D0γ; D0 → K+π−π0 3219 ± 401 0.00282 ± 0.00010 0.00247 ± 0.00094 0.00035 ± 0.00035 21.1 ± 7.9 18.4 ± 7.3 2.6 ± 2.7

B+ → D∗0µ+νµ; D
∗0 → D0γ; D0 → K+π− 941.1 ± 104.2 0.0031 ± 0.0010 0.00139 ± 0.00069 0.00174 ± 0.00078 6.8 ± 2.4 3.0 ± 1.6 3.8 ± 1.7

B+ → D∗0µ+νµ; D
∗0 → D0γ; D0 → K+π−π0 3219 ± 401 0.00068 ± 0.00048 0.00 ± 0.00 0.00068 ± 0.00048 5.1 ± 3.6 0.0 ± 0.0 5.1 ± 3.6

B+ → D∗0e+νe; D
∗0 → D0π0; D0 → K+π− 1529 ± 142 0.00102 ± 0.00059 0.00068 ± 0.00048 0.00034 ± 0.00034 3.6 ± 2.1 2.4 ± 1.7 1.2 ± 1.2

B+ → D∗0e+νe; D
∗0 → D0π0; D0 → K+π−π0 5231 ± 571 0.00206 ± 0.00084 0.00103 ± 0.00059 0.00103 ± 0.00059 24.9 ± 10.5 12.5 ± 7.3 12.5 ± 7.3

B+ → D∗0µ+νµ; D
∗0 → D0π0; D0 → K+π− 1529 ± 142 0.00204 ± 0.00083 0.00034 ± 0.00034 0.00170 ± 0.00076 7.2 ± 3.0 1.2 ± 1.2 6.0 ± 2.8

B+ → D∗0µ+νµ; D
∗0 → D0π0; D0 → K+π−π0 5231 ± 571 0.00068 ± 0.00048 0.00034 ± 0.00034 0.00034 ± 0.00034 8.3 ± 5.9 4.1 ± 4.1 4.1 ± 4.1

Total Charm Charged B backgrounds 407 ± 23 205 ± 15 202 ± 15
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Table 4.3: Charmless B+B− background modes. The table shows the branching fraction for each mode along with the

reconstruction efficiency and number of events expected in the signal box.

Mode + Charge Conjugate BF Signal Box Efficiency Number of Expected Events in Signal Box

(10−6) All B+ B− All B+ B−

B+ → K+K−K+ 30.1 ± 1.9 0.0339 ± 0.0016 0.0177 ± 0.0012 0.0162 ± 0.0011 2.36 ± 0.19 1.23 ± 0.11 1.13 ± 0.11

B+ → K+K−π+ < 6.3 0.7813 ± 0.0077 0.3880 ± 0.0055 0.3834 ± 0.0054 5.7 ± 5.7 2.9 ± 2.9 2.8 ± 2.8

B+ → π+π−π+ 16.2 ± 2.5 0.4859 ± 0.0047 0.2437 ± 0.0033 0.2422 ± 0.0033 18.2 ± 2.8 9.2 ± 1.2 9.1 ± 1.4

B+ → K∗+γ 40.3 ± 2.6 0.00275 ± 0.00080 0.00115 ± 0.00051 0.00161 ± 0.00061 0.257 ± 0.076 0.107 ± 0.048 0.150 ± 0.058

B+ → K∗+K∗0; K∗+ → K0π+; K∗0 → K+π− - Longa < 15.8 0.0172 ± 0.0038 0.0090 ± 0.0027 0.0082 ± 0.0026 0.31 ± 0.32 0.16 ± 0.17 0.15 ± 0.15

B+ → K∗+K∗0; K∗+ → K+π0; K∗0 → K+π− - Long < 7.9 0.0397 ± 0.0056 0.0206 ± 0.0040 0.0290 ± 0.0039 0.36 ± 0.37 0.19 ± 0.19 0.17 ± 0.18

B+ → ρ+K∗0; K∗0 → K+π− - Long 3.07 ± 0.67 0.0905 ± 0.0034 0.0458 ± 0.0024 0.0448 ± 0.0024 0.64 ± 0.14 0.325 ± 0.073 0.318 ± 0.071

B+ → ρ0K∗+; K∗+ → K+π0 - Long 1.8 ± 0.6 0.1811 ± 0.0095 0.0856 ± 0.0065 0.0955 ± 0.0069 0.74 ± 0.26 0.35 ± 0.12 0.39 ± 0.14

B+ → ρ+ρ0 26.4 ± 6.2 0.0588 ± 0.0041 0.0341 ± 0.0031 0.0247 ± 0.0026 3.60 ± 0.88 2.09 ± 0.53 1.51 ± 0.39

B+ → η′K+; η′ → π+π−γ 22.9 ± 1.6 0.710 ± 0.022 0.371 ± 0.016 0.339 ± 0.015 37.7 ± 2.9 19.7± 1.6 18.0± 1.5

B+ → η′π+; η′ → π+π−γ 1.24 ± 0.33 0.1158 ± 0.0089 0.0603 ± 0.0064 0.0555 ± 0.0062 0.332± 0.092 0.173 ± 0.049 0.159 ± 0.046

B+ → K0
S
K+; 0.14 ± 0.14 6.175 ± 0.0056 3.134 ± 0.0041 3.141 ± 0.0040 5.9 ± 5.9 3.0 ± 3.0 2.9 ± 2.9

B+ → K0
S
π+; 8.31 ± 0.45 0.228 ± 0.010 0.1160 ± 0.0072 0.1132 ± 0.0072 4.40 ± 0.31 2.23 ± 0.19 2.16 ± 0.18

Total Charmless Charged B backgrounds 81 ± 9 42 ± 5 39 ± 5

aLong refers to the longitudinal part of the vector-vector decay
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Table 4.4: Charm B0B0 background modes. The table shows the branching fraction for each mode along with the reconstruc-

tion efficiency and number of events expected in the signal box.

Mode + Charge Conjugate BF Signal Box Efficiency (%) Number of Expected Events in Signal Box

(10−6) All B+ B− All B+ B−

B0 → D−K+; D− → π−π0 0.52 ± 0.21 0.1417 ± 0.0069 0.0664 ± 0.0047 0.0753 ± 0.0050 0.171 ± 0.069 0.080 ± 0.033 0.091 ± 0.038

B0 → D0ρ0; D0 → K+π− 11.0 ± 4.2 0.0300 ± 0.0065 0.0214 ± 0.0055 0.0086 ± 0.0035 0.77 ± 0.34 0.55 ± 0.25 0.22 ± 0.12

B0 → D∗−π+; D∗− → D0π−; D0 → X 1870 ± 143 0.00431 ± 0.00032 0.00232 ± 0.00023 0.00199 ± 0.00022 18.7 ± 2.0 10.0 ± 1.3 8.6 ± 1.2

B0 → D∗−ρ+; D∗− → D0π−; D0 → X 4600 ± 610 0.00019 ± 0.00013 0.00 ± 0.00 0.00019 ± 0.00013 2.0 ± 1.5 0.00 ± 0.00 2.0 ± 1.5

B0 → D∗0ρ0; D∗0 → D0γ or D0π0; D0 → K+π− 9.69 ± 9.69 0.0021 ± 0.0012 0.00 ± 0.00 0.0021 ± 0.0012 0.048 ± 0.056 0.00 ± 0.00 0.048 ± 0.056

Total Charm Neutral B backgrounds 22 ± 2 11 ± 1 11 ± 2
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Table 4.5: Charmless B0B0 background modes. The table shows the branching fraction for each mode along with the

reconstruction efficiency and number of events expected in the signal box.

Mode + Charge Conjugate BF Signal Box Efficiency (%) Number of Expected Events in Signal Box

(10−6) All B+ B− All B+ B−

B0 → K+K−π0 < 19 0.0373 ± 0.0054 0.0222 ± 0.0042 0.0151 ± 0.0035 0.82 ± 0.83 0.49 ± 0.49 0.33 ± 0.34

B0 → K+π−π0 35.6 ± 3.4 0.0905 ± 0.0020 0.0446 ± 0.0014 0.0459 ± 0.0014 7.47 ± 0.74 3.68 ± 0.37 3.79 ± 0.38

B0 → π+π−π0 < 72 0.0261 ± 0.0011 0.01324 ± 0.00079 0.01282 ± 0.00078 2.2 ± 2.2 1.1 ± 1.1 1.1 ± 1.1

B0 → K∗0
2 (1430)γ 12.4 ± 2.4 0.0092 ± 0.0022 0.0049 ± 0.0016 0.0044 ± 0.0015 0.266 ± 0.083 0.141 ± 0.054 0.125 ± 0.050

B0 → K∗0(1410)γ < 130 0.00208 ± 0.00085 0.00139 ± 0.00069 0.00069 ± 0.00049 0.32 ± 0.34 0.21 ± 0.23 0.10 ± 0.13

B0 → K∗0γ 40.1 ± 2.1 0.0099 ± 0.0016 0.0059 ± 0.0012 0.0041 ± 0.0010 0.92 ± 0.16 0.55 ± 0.12 0.379± 0.097

B0 → K∗0K∗0; K∗0 → K+π−; K∗0 → K−π+ - Longa < 4.9 0.0475 ± 0.0062 0.0189 ± 0.0039 0.0287 ± 0.0048 0.27 ± 0.27 0.11 ± 0.11 0.16 ± 0.16

B0 → K+π− 18.2 ± 0.8 0.0646 ± 0.0019 0.0335 ± 0.0013 0.0311 ± 0.0013 2.72 ± 0.15 1.414 ± 0.085 1.311 ± 0.081

B0 → ρ+K− 9.9 ± 1.6 0.766 ± 0.011 0.3978 ± 0.0078 0.3686 ± 0.0075 17.6 ± 2.9 9.1 ± 1.5 8.5 ± 1.4

B0 → ρ+K∗−; K∗+ → K+π0 - Long < 8 0.125 ± 0.032 0.083 ± 0.026 0.042 ± 0.019 1.2 ± 1.2 0.77 ± 0.81 0.39 ± 0.42

B0 → ρ0K∗0; K∗0 → K+π− - Long < 0.86 0.1708 ± 0.0092 0.0842 ± 0.0065 0.0866 ± 0.0065 0.17 ± 0.17 0.085 ± 0.085 0.087 ± 0.087

B0 → ρ+ρ− 30.0 ± 6.0 0.0486 ± 0.0010 0.02553 ± 0.00076 0.02307 ± 0.00073 3.38 ± 0.68 1.78 ± 0.36 1.60 ± 0.33

B0 → ρ0ρ0 < 1.1 0.0970 ± 0.0069 0.0434 ± 0.0046 0.0537 ± 0.0051 0.12 ± 0.12 0.055 ± 0.056 0.069 ± 0.069

Total Charmless Neutral B backgrounds 37 ± 4 19 ± 2 18 ± 2

aLong refers to the longitudinal part of the vector-vector decay
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The BB background Dalitz plot shape is modelled using a 2-dimensional histogram.

For a given contributing mode, the available MC events are plotted on the Dalitz-plot

and then scaled to the calculated expected number of events. A comparison of the

B− and B+ invariant mass distributions is shown in Figure 4.2. The statistics used
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Figure 4.2: BB background invariant mass squared distributions for B− and B+.

The left histogram is for the Kπ pair and the right histogram is for the ππ pair.

to construct these distributions are quite low but it is possible that differences exist

between the B− and B+ samples. Therefore separate BB background histograms are

constructed for B− and B+ decays. These BB histograms can be seen in Figure 4.3.

In order to reduce the effect of statistical fluctuations linear interpolation is applied

between the histogram bins.
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Figure 4.3: BB background histograms constructed using MC events. The left plot

is for B− events and the right plot is for B+ events.

4.4.1 Charm Vetoes

Decays containing D mesons have large branching fractions compared to the charm-

less decays. D mesons are extremely narrow and subsequently do not interfere with

the charmless contributions to the Dalitz plot. These decays are removed from the

Dalitz plot by applying the invariant mass vetoes shown in Table 4.6. Charmonium

states such as J/ψ and ψ(2S) can also have large contributions to the Dalitz plot

due to the mis-reconstruction of their lepton decay products as pions. These states

are also vetoed.

Table 4.6: The invariant mass veto ranges (in GeV/c2) for intermediate resonances

for K±π±π∓. The leptons, l, in the J/ψ and ψ(2S) decays are misidentified as pions.

Resonance Veto Region GeV/c2

D0 → K±π∓ 1.80 < mKπ < 1.90

D0 → π±π∓ 1.80 < mππ < 1.90

J/ψ → l+l− 2.97 < mππ < 3.17

ψ(2S)→ l+l− 3.56 < mππ < 3.76
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4.4.2 χc0

The χc0 is a charmonium state with JPC = 0++. It has a mass of 3.415 GeV/c2

and a width of 14.9 MeV [8]. It can interfere with the charmless resonant and

non-resonant decay amplitudes. It is therefore included in the Dalitz Plot analysis.

4.5 Continuum Background Modelling

The distribution of qq background events in the Dalitz plot is determined using a

sample of data events from an mES sideband. This region is illustrated in Figure 3.1

in Section 3.3.1.

The possibility of correlations between mES and Dalitz distribution variables has

been studied and found to be negligible. This can be seen in Figure 4.4 where the

invariant mass mKπ and mππ distributions are shown for two different mES regions.

No significant differences in shape are observed and so it is safe to take the qq

background Dalitz-plot distribution from this sideband.

4.5.1 Analytical Model

An analytical model for describing the qq background Dalitz-plot distribution was

developed for Laura++. This model uses a parameterisation which is the sum of

three functions of the form:

B(mij, cosθHij
) = A

(

mij −m0
ij

)b/c
e−(mij−m

0
ij)/c (4.21)

×(1 + dkcosθHij
+ ekcos

2θHij
),

where B is the intensity of the background for a side in the Dalitz plot, mij is

the invariant mass combination of the two daughters i and j, m0
ij is the kinematic

threshold for mij, A is the normalisation factor, b is the position of the peak with
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Figure 4.4: Invariant mass distributions for on-resonance events in different sideband

mES regions. The solid black histogram corresponds to 5.20 < mES < 5.23 GeV/c2

and the dashed red histogram corresponds to 5.23 < mES < 5.26 GeV/c2.

respect to m0
ij and c is the decay scale. This equation also assumes a possible

quadratic dependence on the cosine of the helicity angle, cosθHij
, where dk and ek

are coefficients for the linear and quadratic terms, however in the current analysis

the helicity angle dependence is not used and dk = ek = 0.

The background is parameterised in mij - cos θHij
space as shown in Equation 4.21,

rather than m2
ij - m2

ik. Hence the B term must be divided by the appropriate

Jacobean (J) in order to get the background term Q in Equation 4.3:

Q(m2
13,m

2
23) =

3
∑

1

B(mij, cosθHij
)/J (4.22)

where the sum is over the three possible invariant mass pairs. This background
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function has an analytical integral (ignoring the cosine helicity terms):

∫ ∞

0

(

mij −m0
ij

)b/c
e−(mij−m

0
ij)/cdmij = Γ(1 + b/c)c1+b/c (4.23)

where Γ is the mathematical Gamma function2. A slight numerical correction is

made to the integral (using Simpson’s rule) to account for the fact that the function

does not extend to infinity, nor is it zero at mij ≈ 5.279 GeV/c2, the mass of the B

meson. A small quantity Iδ is therefore subtracted from the integral where Iδ is the

area under the B(mij) function for mij between the maximum kinematic limit and

20 GeV where the function has dropped to zero. The normalisation integral is also

modified by a weighting technique to account for the regions of the Dalitz plot that

are vetoed.

There is also the possibility of resonance peaks in the continuum background. These

are modelled by adding terms representing appropriate non-relativistic Breit-Wigner

amplitudes to Q(m2
13,m

2
23). These resonances take into account the efficiency varia-

tion across the Dalitz plot. It is assumed that different background resonances will

not interfere with each other.

The result of fitting this analytical model plus K∗0(892) and ρ0(770) resonances to

sideband data is shown in Figure 4.5. This shows that the analytical function does

not provide a satisfactory description of the qq background.

4.5.2 Histogram Model

An alternative to the analytical model for the qq background is to use a 2-dimensional

histogram. There is some contamination of the sideband from BB background

decays. The level of this contamination is studied using the MC samples described

in Section 4.4. It is found that 1554 BB events (758 for B− and 796 for B+) are

expected to pollute the on-resonance sideband, which is 10.7% of the reconstructed

2The Γ function is defined for x > 0 as Γ(x) =
∫∞

0
tx−1e−tdt
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Figure 4.5: Plot showing the invariant mass spectra of on-resonance sideband events

for B− and B+ (black points) and the results of the best fit to this data using the

analytical continuum model (blue histogram). The left histogram is for the Kπ pair

and the right histogram is for the ππ pair. A cut of > 2GeV/c2 on the other mass

pair is applied.

sideband events. The BB background contamination is histogrammed and a bin-

by-bin subtraction from the qq background histogram is then performed.

It is possible to increase the number of events available for modelling the qq back-

ground by using off-resonance data events from across the whole available mES - ∆E

plane. There are 1646 off-resonance events in this sample (818 for B− and 828 for

B+). The invariant mass squared distributions for this sample of events can be seen

in Figure 4.6 together with the original distribution of sideband on-resonance events

(with BB background subtracted) for comparison. The two distributions are con-

sistent so the higher statistics combined sample of off-resonance and on-resonance
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sideband events is used in the construction of the qq histogram.
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Figure 4.6: qq background invariant mass squared distributions. The left plot shows

the Kπ pair and the right plot is for the ππ pair. The solid black histogram is for

off-resonance events. The dashed red histogram is for sideband on-resonance events.

A comparison of the B− and B+ invariant mass squared distributions is shown

in Figure 4.7. The distributions are consistent which allows the combined sample

of B− and B+ decays to be used in the construction of the qq histogram. The

resulting histogram for the combined B− and B+ sample can be seen in Figure 4.8.

This histogram shows regions of high population near the edges of the Dalitz plot

which coincide with the regions containing signal resonances. It is therefore essential

to model the qq background events in these regions accurately. The histogram also

shows a region of negligible population in the centre of the Dalitz plot. A fine binning

for the qq histogram is chosen because the accurate modelling of the populated

regions is found to be more important than the effect of statistical fluctuations in
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the central region induced by this fine binning.
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Figure 4.7: qq background invariant mass squared distributions for B− and B+. The

left histogram is for the Kπ pair and the right histogram is for the ππ pair.
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4.6 Background Normalisations

The reconstructed data sample consists of signal B± → K±π±π∓ decays together

with backgrounds from qq events and other non-signal BB decays. The total number

of expected BB background events is calculated using MC reconstruction efficien-

cies and PDG [8] branching fractions for the specific decays listed in Section 4.4.

The qq background fraction however remains to be calculated. This is achieved by

performing an extended maximum likelihood fit [63] to the kinematical variable mES

in the signal strip (see Section 3.3.1).

The signal mES distribution is modelled using a Double Gaussian function. The

parameters of this function are obtained by fitting a sample of “truth matched”

(see Section 4.7) B± → K±π±π∓ non-resonant MC events. These parameters are

then fixed in the mES fit apart from the mean of the core Gaussian which is allowed

to float. The qq mES distribution is modelled using the experimentally motivated

Argus function [64]. The endpoint for this Argus function is fixed to the beam

energy but the parameter describing the shape is left floating. The BB background

mES distribution is modelled as an Argus + Gaussian function. The parameters of

the Argus shape and the Gaussian are obtained from the BB MC samples and are

fixed in the fit.

The fractions of signal and qq events are allowed to float whereas the fraction of BB

events is fixed. The result of the fit is illustrated in Figure 4.9 for B− events and

Figure 4.10 for B+ events.

The fitted Argus function shape is used to evaluate the number of qq events expected

in the signal box region. The number of BB events in this region is known, as is

the total number of events reconstructed. This allows the calculation of the number

of signal events expected in the signal box. These expected fractions are shown in

Table 4.7.
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Figure 4.9: The mES fit to B− data events. The black points are data, the solid blue

curve is the total model, the red histogram is continuum, and the green histogram

is the total background
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Figure 4.10: ThemES fit to B
+ data events. The black points are data, the solid blue

curve is the total model, the red histogram is continuum, and the green histogram

is the total background
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Table 4.7: The event yields from the fit to mES. The statistical errors are from the

fit for signal and qq background, whilst the statistical error for BB background is

from the uncertainty on the various branching fractions and efficiencies.

Hypothesis Fraction of Events

in Signal Box

Both Charges

Signal 0.446± 0.011

qq background 0.438± 0.010

BB background 0.116± 0.006

B− Events

Signal 0.445± 0.016

qq background 0.440± 0.014

BB background 0.115± 0.007

B+ Events

Signal 0.447± 0.016

qq background 0.435± 0.014

BB background 0.117± 0.007
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4.7 Efficiency Modelling

Only a fraction of B± → K±π±π∓ signal events in the full 210.6 fb−1 data sample

will be reconstructed and pass the selection criteria. This fraction is known as the

reconstruction efficiency. The average reconstruction efficiency for B± → K±π±π∓

events is shown in Table 3.2. This reconstruction efficiency has a dependency on

the final state daughter particle momenta as well as their angular distribution in

the detector. Hence the efficiency will vary across the Dalitz Plot. This is included

in the likelihood in order to ensure the correct modelling of signal events.

This variation of efficiency across the Dalitz Plot is studied using a sample of

1.299×106 B± → K±π±π∓ non-resonant MC events. These events are reconstructed

and all selection criteria are applied except for those corresponding to the Charm

Vetoes (to ensure that the whole Dalitz plot is populated). This reduces the non-

resonant MC sample to 267991 events. A further selection is then applied to select

only true B± → K±π±π∓ decays, i.e. the three daughters must originate from the

same B meson and be the only daughters of that B. These events are labelled

“truth matched events”. There are 258945 truth matched decays. A 2-dimensional

efficiency histogram is constructed according to the following procedure. Firstly a

denominator histogram is constructed showing the true Dalitz-plot distribution of

the MC events as determined from the MC truth information. The event recon-

struction process shifts these events away from their true positions and a numerator

histogram is constructed by binning the reconstructed MC events. This numerator

histogram also has efficiency corrections for PID and tracking applied. The quo-

tient of these two histograms is the 2-dimensional efficiency histogram used in the

Dalitz-plot likelihood.

A comparison of the B− and B+ reconstruction efficiency Dalitz-plot distributions

is shown in Figure 4.11. The Dalitz-plot distributions for the B+ and B− decays are

consistent and so the two samples are combined and a single efficiency histogram is
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Figure 4.11: Reconstruction efficiency Dalitz plot histograms. The left plot is for

B− events and the right plot is for B+ events.

produced for use in the Dalitz-plot fit. This histogram is shown in Figure 4.12. The
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Figure 4.12: Efficiency variation across the Dalitz plot.

efficiency shows very little variation across the majority of the Dalitz plot but there

are decreases towards the corners. The corner regions of the Dalitz plot contain
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events that have one very low energy particle. There are also some edge effects

present which are caused by bins that have very low content in both the numerator

and denominator histograms and hence give a large statistical error on that bin.

This effect is corrected for by merging low content bins with a neighbouring bin

for both the numerator and denominator histogram and recalculating the efficiency

for this larger sized bin. Linear interpolation is again applied to smooth out any

statistical fluctuations.

4.7.1 Self Cross Feed Decays

Self Cross Feed (SCF) decays occur when the signal events have been misrecon-

structed by switching one or more particles from the decay of the signal B meson

with particles from the other B meson in the event. After reconstruction there are

9046 SCF decays in the MC sample (the remaining events correspond to the truth

matched MC sample). For the signal strip the SCF fraction is 3.4% and for the

signal box it is 1.3%. A comparison of the B− and B+ invariant mass distributions

of SCF shows that they are the same. The SCF Dalitz-plot distribution for the

combined B− and B+ sample can be seen in Figure 4.13. The SCF fraction is very

small with the largest values (greater than 0.05) occurring in the extreme corners of

the Dalitz plot. This effect is neglected and no additional term is implemented in

the fit for these decays.
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Figure 4.13: SCF variation across the Dalitz plot
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Chapter 5

Fitting Procedures

5.1 Introduction

In this chapter the technicalities of the fitting programs are discussed. Some of the

problems encountered using the Laura++ fitting routine are described together with

possible improvements. Validation tests of the Laura++ fitting procedure are shown

using both MC and toy MC events. The chapter concludes with a discussion of an

alternative fitting procedure which uses a Genetic Algorithm.

5.2 Multiple Solutions

It is found that there is no single unique solution for the Dalitz-plot likelihood fit.

The Laura++ package uses Minuit [65,66] to perform the likelihood fit. Minuit is a

function minimization and error analysis package written at CERN, which takes the

Dalitz-plot likelihood, shown in Equation 4.3, and returns the values of its parame-

ters (the signal magnitudes and phases) which correspond to the minimum negative

log likelihood (NLL), shown in Equation 4.1. The solution found by Laura++ de-
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pends critically on the initial values of the floating parameters provided to Minuit.

This problem is known as multiple solutions or local minima in the likelihood. To

study the fitting performance toy Monte Carlo events are used. Toy MC events

are those that have been generated from the Laura++ PDF using an accept-reject

algorithm [67]. The invariant mass-squared variables are generated randomly and

the total signal likelihood at that point is calculated. A likelihood value is then gen-

erated randomly between zero and the maximum possible signal likelihood. If this

random likelihood is less than the signal likelihood at that point then the invariant

mass variables are accepted into the toy MC dataset. Toy MC tests are useful as

the generated parameters are known.

A toy MC dataset consisting of 2350 signal and background events is generated.

This dataset consists of six signal components that are expected to contribute to

the B− → K−π−π+ Dalitz plot. The background fractions are fixed in the fits to

the values shown in Table 4.7 and the signal magnitudes and phases allowed to float

(except for the K∗0(892) resonance which is used as the reference signal component).

500 fits are performed, with Minuit being initialised using random values for the

magnitudes (between 0 and 2) and phases (between −π and π). The resulting

distribution of NLL’s can be seen in Figure 5.1.

This NLL distribution shows two clear peaks, separated by 10 units. The fitted

values for the signal magnitudes and phases of the two solutions are shown in Ta-

ble 5.1. The greatest difference occurs for the χc0 component, which shows two

distinct values for the phase.

This multiple solution behaviour can depend on many features of the Dalitz-plot

fit. Higher background levels, greater numbers of signal resonances included in the

fit and lower total statistics can all lead to a more complicated NLL distribution.

At current statistics the multiple-solution behaviour can also depend on the exact

sample of toy MC events generated. This effect is illustrated in Figure 5.2. Five

additional toy MC samples are generated with the same magnitudes and phases as
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Figure 5.1: Negative log likelihood distributions for the toy MC experiment. 500 fits

are performed using different randomised starting values for the floating parameters.

the original sample. The exact value of the NLL varies with the sample, but it is

the distributions of the fitted NLL values that are of interest. Figure 5.2 shows the

Table 5.1: Fitted parameters of the two solutions in the negative log-likelihood

distribution.

Component Generated Value Fitted Values of Solution 1 Fitted Values of Solution 2

NLL — 11927.0 11937.3

K∗0
0 (1430) Magnitude 1.950 2.326± 0.200 2.269± 0.197

K∗0
0 (1430) Phase 2.860 2.845± 0.137 2.857± 0.143

ρ0(770) Magnitude 0.790 1.046± 0.119 1.038± 0.119

ρ0(770) Phase 0.210 0.228± 0.378 0.278± 0.396

f0(980) Magnitude 1.110 1.324± 0.127 1.316± 0.127

f0(980) Phase -0.920 −0.936± 0.367 −0.887± 0.382

χc0 Magnitude 0.316 0.378± 0.067 0.542± 0.071

χc0 Phase -0.450 −0.385± 0.374 2.531± 0.462

NR Magnitude 0.690 0.747± 0.137 0.770± 0.144

NR Phase 0.280 0.792± 0.347 0.766± 0.402

97



multiple solution behaviour of the six toy MC samples to be very different.
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Figure 5.2: Negative log-likelihood distributions for different toy MC samples gen-

erated with identical values for the signal magnitudes and phases.

5.3 Minuit

Minuit uses the MIGRAD routine to find the parameters (signal magnitudes and

phases) that correspond to the minimum negative log likelihood and then subse-

quently uses the HESSE routine to calculate the errors on those parameters.

In order to solve the multiple solution problem, two possibilities for improving the

Minuit fitting procedure are considered. The first involves changing the initial

step size of the floating parameters. This step size corresponds to the expected

uncertainty on that parameter. The default step size in Laura++ is 0.01, but values

of 0.1 and 0.001 are also tested. The resultant NLL distributions of 500 fits to

the original data sample discussed in Section 5.2 are shown in Figure 5.3. No

improvement in the multiple solution behaviour is seen when using a different initial

step size. The second possibility for improving the performance of Minuit comes

from the compromise to be made in the fitting procedure between accuracy and
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Figure 5.3: Negative log likelihood distributions for the toy MC experiment using

different initial step sizes. 500 fits are performed using different randomised starting

values for the floating parameters. The left distribution corresponds to a step size

of 0.001, the middle distribution corresponds to a step size of 0.01 and the right

distribution corresponds to a step size 0.1.

computational speed. Minuit has a strategy parameter (0, 1, or 2) that can be set

by the user (the default value is 1). A strategy of 0 indicates that Minuit should

use the fewest possible number of function calls, and is used in the case where the

parameter errors do not have to be precise or where the function to be minimised

is difficult to calculate. A strategy of 2 indicates that Minuit is allowed to make

numerous function calls in order ensure precise values, and is used when accurate

parameter errors are required or where the function is easily calculated. The results

of using these different strategies can be seen in Figure 5.4. Using a strategy of 0 or

2 gives a significantly worse performance as there are only 381 and 169 successful

fits out of 500 respectively. No improvement on the multiple solution behaviour is

seen either. As can be seen from the above tests, Minuit is performing optimally,

and the multiple solution behaviour cannot be solved in this way.

5.4 Toy MC Tests

The problem of multiple solutions cannot be solved by improvements to the fitting

routine and so it is necessary to determine what useful information can be extracted
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Figure 5.4: Negative log likelihood distributions for the toy MC experiment using

different Minuit strategies. 500 fits are performed using different randomised start-

ing values for the floating parameters. The left distribution corresponds to a strategy

of 0, the middle distribution corresponds to a strategy 1 and the right distribution

corresponds to a strategy of 2.

in the presence of these multiple minima. To study this problem 500 toy MC datasets

are created using the same resonance composition and parameters as those in Sec-

tion 5.2. Each of these datasets is then fitted 500 times with Minuit initialised each

time with random values for the magnitudes and phases. As a measure of how well

the fit results correspond to the generated parameters the pull on each parameter

is calculated as:

pull =
(fitted value− generated value)

error on fitted value
(5.1)

If the fit is performing well then a histogram of these pulls for a set of toy experiments

should be a Gaussian distribution with a mean of zero and a width (σ) of one.

For each toy experiment the solution with the lowest NLL out of the 500 fits is

extracted. These best solutions are then histogrammed for the 500 toy MC samples.

The pull plots for the magnitudes and phases can be seen in Figure 5.5 and Fig-

ure 5.6. The mean and width for each of these plots are tabulated in Table 5.2. The

Table shows that the fitting routine is working well and is capable of recovering the

true signal magnitudes and phases. A systematic error will be calculated to account

for any small biases introduced in those cases where the magnitude or phase pull

plot has a mean that deviates from zero. The procedure of running multiple Minuit
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fits with randomised starting points and choosing the solution with the lowest NLL

is adopted in this analysis as the standard method for the Dalitz-plot fit.
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Figure 5.5: Magnitude pull distributions for the 500 toy MC samples. Top left shows

the K∗0
0 (1430), top middle the ρ0(770), top right the f0(980), bottom left the χc0

and bottom middle the non-resonant.
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Figure 5.6: Phase pull distributions for the 500 toy MC samples. Top left shows the

K∗0
0 (1430), top middle the ρ0(770), top right the f0(980), bottom left the χc0 and

bottom middle the non-resonant.
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Table 5.2: Magnitude and phase pulls in fit with 6 components. The lowest solution

of the 500 fits is extracted for each of the 500 toy MC samples.

Pull Mean Pull Width

K∗0
0 (1430) Magnitude 0.053± 0.044 0.945± 0.034

K∗0
0 (1430) Phase 0.023± 0.045 0.981± 0.034

ρ0(770) Magnitude 0.135± 0.044 0.981± 0.032

ρ0(770) Phase 0.012± 0.049 1.093± 0.035

f0(980) Magnitude 0.173± 0.042 0.942± 0.031

f0(980) Phase 0.057± 0.049 1.098± 0.035

χc0 Magnitude 0.063± 0.047 1.049± 0.034

χc0 Phase 0.121± 0.051 1.140± 0.036

NR Magnitude 0.107± 0.047 1.031± 0.035

NR Phase 0.142± 0.045 0.999± 0.032
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5.5 Full MC Tests

In this case MC events are used for the signal sample instead of toy MC events.

B± → K±π±π∓ non-resonant MC events are reweighted using the Laura++ ampli-

tude model in order to correctly account for interference effects. The reweighting

procedure begins by examining the “truth information” for a given MC event. The

m2
13 and m2

23 values are found and the total signal amplitude at this point is cal-

culated. A random number is then generated and the event is accepted into the

reweighted sample if this random number is less than the total signal amplitude.

A further check is applied to ensure that this event also appears in the final MC

sample which has undergone detector simulation and reconstruction.

The same signal parameters given in Section 5.2 are used to generate a reweighted

MC dataset. Toy MC events are then added for qq and BB background events.

This sample is fitted 500 times using Minuit initialised with random magnitudes

and phases. The lowest NLL is chosen as the best solution. The results can be seen

in Table 5.3. These results are another validation of the fitting routine, in addition

to the toy MC tests, as they show that the fitting program can correctly recover

the signal magnitudes and phases from MC events that have been through the

reconstruction process. The success of the reweighting test shows that neglecting the

small SCF term is acceptable as the fit is still able to recover the correct magnitudes

and phases.
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Table 5.3: Magnitude and phase results of fit to reweighted MC dataset with six

signal components.

Generated Fitted

K∗0
0 (1430) Magnitude 1.950 2.027 ± 0.147

K∗0
0 (1430) Phase 2.860 2.771 ± 0.128

ρ0(770) Magnitude 0.790 0.946 ± 0.095

ρ0(770) Phase 0.210 0.232 ± 0.440

f0(980) Magnitude 1.110 1.224 ± 0.102

f0(980) Phase -0.920 -1.064 ± 0.455

χc0 Magnitude 0.316 0.350 ± 0.055

χc0 Phase -0.450 -0.313 ± 0.325

NR Magnitude 0.690 0.477 ± 0.121

NR Phase 0.280 0.732 ± 0.434
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5.6 Genetic Algorithms

A possible alternative to the Minuit fitting routine is to use a Genetic Algorithm

(GA) [68, 69]. The GA is based on a Darwinian process of selection of the fittest

in a population. The GA differs from the Minuit fitting routine in that it does not

require initial starting values for the parameters of the likelihood.

The first step in the Genetic Algorithm is the creation of an initial population,

which consists of a number of individuals. Each individual has a number of phe-

notypes which correspond to the unknown signal magnitudes or phases. The initial

population’s phenotypes are created using random numbers, hence a wide range of

points on the likelihood space is used rather than the single initial point provided to

Minuit. A random number seed can be specified to the GA so that different initial

populations can be created. The magnitudes and phases are transformed in order

to ensure that the phenotypes can only have values between 0 and 1. Each of the

digits after the decimal place in the phenotype is called a genotype. The number

of digits used in each phenotype and hence the overall number of genotypes can be

chosen.

The NLL is used as a measure of each individual’s fitness. The population is ranked

according to this fitness such that the individual with the lowest NLL is considered

the fittest. The population then “breeds” to make a new population. Two individ-

uals are crossed to make two new daughter individuals. The parent individuals can

be selected at random or those with a greater fitness can be preferentially selected,

using the fitness differential parameter.

Breeding occurs as follows. There is a probability for successful breeding, known

as the crossover probability, that can be set. If the breeding is successful then a

random number is generated which is used as the cutting point. This number varies

between one and the total number of genotypes in the individual. All the genotypes

that appear after the chosen cutting point are swapped between the two parents to
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produce the daughters - in this way the daughters retain some of the characteristics

of their parents.

Consider a daughter that has six phenotypes, three magnitudes (M) and three phases

(P). Each phenotype is encoded with three genotypes:

M1 P1 M2 P2 M3 P3

parent 1 0.567 0.890 0.974 0.945 0.337 0.112

parent 2 0.102 0.578 0.394 0.682 0.559 0.888

If the cutting point is chosen to be say eleven then the resultant daughters would

be:

M1 P1 M2 P2 M3 P3

daughter 1 0.567 0.890 0.974 0.982 0.559 0.888

daughter 2 0.102 0.578 0.394 0.645 0.337 0.112

There are then two possible methods for inserting the daughters into the population.

The first method is to replace the entire parent population with the daughters.

This is known as full generational replacement. The second method is to insert

the daughters into the parent population if their fitness is greater than the least

fit member of the parent generation. This is known as steady state reproduction.

The parent to be replaced can either be chosen at random or chosen to be the

least fit parent of the population. The GA can retain information about the fittest

individuals throughout the generations by always retaining the most fit individual.

This is achieved by setting the elitism flag to one.

In order to allow the phenotypes to have more variability and to avoid the population

becoming too homogeneous then it is also possible for mutation to occur. The
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probability for mutation to occur can be set and is known as the global mutation rate.

There are two types of mutation. In the case of one point mutation the genotype is

changed to be a random integer between 0 and 9. In the case of creep mutation the

value of the genotype is incremented or decremented by one. The mutation rate can

be further altered in two ways. The first is such that the mutation rate depends on

the fitness of the individual. The second is such that the mutation rate is based on

the numerical differences between the phenotypes of the individual concerned and

the phenotypes of the fittest individual.

The GA continues to evolve and produce new generations of individuals. Evolu-

tion continues until a chosen number of generations have been produced where no

daughter is fitter than the current fittest individual, or until a maximum number

of generations has been reached. The GA cannot be used as a standalone fitting

procedure as it has no error analysis capability. It can however be used to provide

the correct initial starting point for a Minuit fit.

5.6.1 Default Genetic Algorithm Setup

The default internal parameters for the Genetic Algorithm (as taken from [69]) are

as follows:

• 100 individuals are used in every generation

• A maximum of 200 generations is produced

• The GA stops if the best solution doesn’t change in 10 generations

• The phenotypes are coded to 5 decimal places

• The probability of a successful breeding occurring is 0.85

• The mutation rate is chosen to vary according to the individual’s fitness with

a minimum rate of 0.05 and a maximum rate of 0.55
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• The fitness differential parameter is set to 1.0 so that the fittest individuals

breed with the greatest probability

• The parent population is replaced by the daughter population

• The elitism flag is set so that the fittest individual of each generation is retained

Five initial populations are created to fit to the same original toy dataset used in

Section 5.2 of this chapter. The NLL results can be seen in Table 5.4. This table

shows a large difference between the best NLL value obtained by the GA and the

output of the subsequent Minuit fit. This suggests that the GA is not performing

optimally.

Table 5.4: Fitted parameters of the solutions found by five GA fits with the default

setup.

Component Output of GA Output of subsequent Minuit fit

GA Fit 1 11968.1 11927.0

GA Fit 2 11970.0 11927.0

GA Fit 3 11982.6 11927.0

GA Fit 4 11969.0 11927.0

GA Fit 5 11981.4 11927.0

5.6.2 Initial Optimisation

An initial optimisation is performed. The first GA parameter that is altered is the

fitness differential. In the default setup this parameter is set to 1.0 which means

that the parents with the best NLL values are more likely to breed. In the initial

population this best NLL value may not correspond well to the true best NLL value

and there may be a danger of focusing on a local minimum solution by using this
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preferential breeding. The fitness differential is changed to 0.0 and all parents in

the population breed with equal probability. The fits described in Section 5.6.1 are

repeated and the results are shown in Table 5.5. Changing the fitness differential

has no effect on the performance of the GA and hence this parameter is set to be

0.0.

Table 5.5: Fitted parameters of the solutions found by the five GA fits after initial

optimisation.

Component Output of GA Output of subsequent Minuit fit

GA Fit 1 11980.4 11927.0

GA Fit 2 11968.1 11927.0

GA Fit 3 11963.4 11927.0

GA Fit 4 11981.3 11927.0

GA Fit 5 11989.5 11927.0

5.6.3 Steady State Reproduction

One of the most influential choices in the performance of the GA is the method for

inserting the daughters into the population. The default is to use full generational

replacement which means that the daughter population replaces the entire parent

population (except for the fittest parent if the elitism flag is set). This has the

advantage of scanning a wide range of parameter space, as a large number of different

combinations of magnitudes and phases are used. It also has the advantage of

keeping the population varied. However it may not be the smartest way of using

the GA. The GA is designed to mimic the biological process of natural selection.

Instead it may be better to use steady state reproduction where the daughter only

enters the population if it has a better NLL value than the least fit parent. In this

way the GA evolves in a more intelligent way, selecting daughters that are better
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than their parents.

Three possible reproduction plans are tested. The first is full generational replace-

ment with the elitism flag set so the fittest parent is always retained. The second

is to use steady state reproduction with the elitism flag set where the daughters

replace parents at random (except the fittest parent which is again retained). The

third possibility is to use steady state reproduction in the mode where the daughters

replace the least fit of the parent generation. The results are shown in Table 5.6

which clearly indicates that using steady state reproduction with the daughters re-

placing the least fit parent consistently gives the best results for the output of the

GA.

Table 5.6: Fitted parameters of the solutions found by the five GA fits using different

reproduction plans.

Component Reproduction Plan 1 Reproduction Plan 2 Reproduction Plan 3

Output of GA Final output Output of GA Final output Output of GA Final output

GA Fit 1 11980.4 11927.0 11994.1 11937.3 11965.8 11937.3

GA Fit 2 11968.1 11927.0 11986.9 11937.3 11963.7 11927.0

GA Fit 3 11963.4 11927.0 11990.0 11927.0 11968.2 11927.0

GA Fit 4 11981.3 11927.0 12000.4 11927.0 11957.8 11927.0

GA Fit 5 11989.5 11927.0 11991.9 11927.0 11972.3 11927.0

At this point it is also possible to set a few of the remaining parameters of the GA.

The crossover probability is now set to 1.0 so that breeding is always successful

and daughters are always produced. There is no need for unsuccessful breeding

in order to retain parents in the steady state reproduction case, as daughters only

replace unfit parents and some parents will therefore survive between generations.

The number of possible generations is kept at 200 (in the present configuration the

GA does not evolve for anywhere near this amount) but the number of generations

checked for a new best solution is raised to 20. The results for five GA fits with

theses changes can be seen in Table 5.7 which shows that altering these parameters
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has no detrimental effects on the performance of the GA.

Table 5.7: Fitted parameters of the solutions found by five GA fits with the new

reproduction plan and subsequent settings.

Component Output of GA Output of subsequent Minuit fit

GA Fit 1 11953.1 11937.3

GA Fit 2 11964.6 11937.3

GA Fit 3 11964.0 11927.0

GA Fit 4 11958.4 11927.0

GA Fit 5 11961.9 11927.0

5.6.4 Mutation Rate

In its current form the GA does not evolve for many generations. This suggests that

there is not enough variability in the daughters, as very few new best solutions are

being found. Changing the way mutation occurs in the GA may solve this problem.

In the default setup the mutation rate is chosen to vary depending on an individual’s

fitness. It may be more correct to mutate all individuals at the same rate. The

default setup for mutation changes the genotype being mutated to a random integer

between 0 and 1. A more intelligent form of mutation is additionally to use creep

mutation which increments or decrements the genotype. This type of mutation may

be more successful at finding new best solutions. The results for using a constant

mutation plus creep mutation strategy can be seen in Table 5.8 for three different

mutation rates. Table 5.8 shows that using this new mutation strategy leads to a

greatly improved performance for the GA, with the best results corresponding to a

mutation rate of 0.05.
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Table 5.8: Fitted parameters of the solutions found by five GA fits with a new

mutation plan and three different mutation rates.

Component Mutation Rate 0.01 Mutation Rate 0.05 Mutation Rate 0.10

Output of GA Final output Output of GA Final output Output of GA Final output

GA Fit 1 11932.2 11927.0 11931.6 11927.0 11929.0 11927.0

GA Fit 2 11943.6 11927.0 11929.2 11927.0 11932.3 11927.0

GA Fit 3 11956.7 11937.3 11930.0 11927.0 11942.8 11927.0

GA Fit 4 11929.8 11927.0 11928.8 11927.0 11928.9 11927.0

GA Fit 5 11929.2 11927.0 11930.2 11927.0 11933.4 11927.0

5.6.5 Final Optimisation

There are two remaining internal GA parameters that can be optimised. The first

is the number of individuals in a generation and the second is the number of digits

used to encode the phenotypes (magnitudes and phases). The results from varying

the number of individuals is shown in Table 5.9 which indicates that increasing this

number generally improves the performance of the GA. Increasing the number of

individuals used decreases the computational speed of the GA so a compromise of

140 individuals is chosen. The default set-up is to use 5 decimal places to encode

the phenotypes. The errors on the magnitudes and phases are large and so this

level of accuracy may not be required. Using a large number of decimal places can

also reduce the speed of the algorithm as small changes in these parameters will

lead to small changes in the NLL value which will keep the algorithm evolving. The

results for using different numbers of digits in the phenotype encoding are shown in

Table 5.10. This shows that lowering the number of digits leads to an observable

decrease in the performance of the GA and so this parameter is left unchanged.

The number of generations can now be optimised. To aid in this procedure it is

instructive to look at the evolution of the algorithm in more detail. To do this

the details of the population are recorded every 10 generations. This allows the
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magnitudes and phases of the individuals making up the population to be studied.

An example evolution plot corresponding to the first column of Table 5.10 can be

seen in Figure 5.7. This shows that the population becomes homogenous after a very

small number of generations. This allows the total number of generations produced

to be reduced to 120 which will speed up the GA.
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Figure 5.7: Evolution of the GA for the ρ0(770) component The histograms show the

distribution of the ρ0(770) magnitude against the ρ0(770) phase for the individuals

in the population every 10 generations.

The corresponding histograms for the other parameters in this test can be seen in

Appendix A

5.6.6 Results

The final internal parameters for the Genetic Algorithm are as follows:
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• 140 individuals are used in every generation

• A maximum of 120 generations is produced

• The GA stops if the best solution does not change in 20 generations

• The phenotypes are coded to 5 decimal places

• The probability of a successful breeding occurring is 1.00

• The mutation strategy is chosen to be a constant mutation rate plus creep

mutation at the same rate. The mutation rate is 0.05

• The fitness differential parameter is set to 0.0 so that all individuals breed

with equal probability

• If the daughter is fitter than the least fit member of the parent population

then the daughter replaces the least fit parent

The same toy distributions described in Section 5.2 are fitted using the GA with

25 different initial populations. The output is shown in Figure 5.8 and can be

compared to Figure 5.2. Figure 5.8 shows that the multiple solution problem still

remains although the proportion of solutions in the lowest peak has increased.

5.6.7 Conclusion

The GA is a powerful technique that can be used to provide correct starting values for

the Minuit Dalitz-plot fit. However it is a time-consuming process and the multiple

solution issue is not solved completely. The GA has many internal parameters that

can be optimised for different situations. For instance, increasing the number of

individuals and mutation rate while lowering the number of digits can lead to an

algorithm that can scan a very large region of likelihood space. This may be helpful

in situations where the multiple solution phenomenon is problematic. In the current
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Figure 5.8: Negative log-likelihood distributions for different toy MC samples gen-

erated with identical values for the signal magnitudes and phases and fitted with

the GA.

B± → K±π±π∓ analysis it may not be optimal to use the GA as there are very

few multiple minima and the toy experiments described in Section 5.4 show that

running multiple Minuit fits with random starting points, and then selecting the

lowest NLL value, can recover the true values. The GA may be more useful in other

Dalitz-plot analyses where the multiple minima are worse, perhaps in the case of

lower statistics or higher backgrounds.
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Table 5.9: Fitted parameters of the solutions found by five GA fits with different numbers of individuals.

Component 80 Individuals 100 Individuals 120 Individuals 140 Individuals 160 Individuals 180 Individuals

GA Final GA Final GA Final GA Final GA Final GA Final

GA Fit 1 11938.8 11927.0 11931.6 11927.0 11929.6 11927.0 11928.8 11927.0 11929.2 11927.0 11929.7 11927.0

GA Fit 2 11929.3 11927.0 11929.2 11927.0 11928.8 11927.0 11929.9 11927.0 11929.5 11927.0 11929.3 11927.0

GA Fit 3 11930.1 11927.0 11930.0 11927.0 11956.3 11937.3 11929.2 11927.0 11956.3 11937.3 11928.8 11927.0

GA Fit 4 11929.9 11927.0 11928.8 11927.0 11929.5 11927.0 11929.8 11927.0 11929.2 11927.0 11929.1 11927.0

GA Fit 5 11929.3 11927.0 11930.2 11927.0 11929.0 11927.0 11929.3 11927.0 11931.6 11927.0 11931.6 11927.0
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Table 5.10: Fitted parameters of the solutions found by five GA fits with different numbers of digits encoding the phenotypes.

Component 5 Digits 4 Digits 3 Digits 2 Digits

GA Final GA Final GA Final GA Final

GA Fit 1 11928.8 11927.0 11929.3 11927.0 11932.4 11927.0 11931.9 11927.0

GA Fit 2 11929.9 11927.0 11932.1 11927.0 11929.4 11927.0 11941.4 11927.0

GA Fit 3 11929.2 11927.0 11929.0 11927.0 11931.7 11927.0 11934.5 11927.0

GA Fit 4 11929.8 11927.0 11928.8 11927.0 11929.2 11927.0 11936.6 11927.0

GA Fit 5 11929.3 11927.0 11929.3 11927.0 11930.3 11937.3 11957.3 11937.3
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Chapter 6

B± → K±π±π∓ Dalitz Analysis -

Final Results

6.1 Introduction

In this chapter the results of the Dalitz-plot fits to the B− and B+ data samples

are presented. Lineshape issues are discussed followed by a detailed investigation of

the composition of the signal model. Results are given for fit fractions and phases

of the components that provide the major contributions to the Dalitz plot, with

a subsequent description of the systematic errors associated with these measure-

ments. Upper limits are then calculated for those components in the Dalitz plot

that are found to be small. This chapter concludes with a description of the inclu-

sive B± → K±π±π∓ rate measurement and its associated systematic errors.
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6.2 Data Projection Plots

After the selection cuts (Section 3.6) have been applied there are 2344 B− and 2360

B+ events in the signal box. The fractions quoted in Table 4.7 can be used to

determine the expected numbers of signal and background events. The 2344 event

B− sample consists of 1043± 57 signal events, 1031± 25 qq background events and

270 ± 16 BB background events. The 2360 event B+ sample consists of 1056 ± 57

signal events, 1027± 25 qq background events and 277± 16 BB background events.

The resultant Dalitz plots can be seen in Figure 6.1. Invariant mass projection plots

for the B− data sample can be seen in Figure 6.2 and for the B+ data sample in

Figure 6.3.
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Figure 6.1: Data Dalitz plots. The left plot is for B− data and the right plot is for

B+ data.

A bin-by-bin subtraction can be performed on these projection plots to isolate the

signal invariant mass distributions. The resultant Dalitz plots can be seen in Fig-

ure 6.4. The background-subtracted invariant mass distributions are compared for

B− and B+ in Figure 6.5. The same distributions can be seen in Figure 6.6 where

the invariant mass distribution is plotted only for events that have a value greater

than 2GeV/c2 in the other invariant mass pair. In the high mass range of each mass

pair there are substantial contributions from resonances in the other mass pair. Ap-

plying the 2GeV/c2 cut is therefore a useful tool in order to illustrate the resonant
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Figure 6.2: The left histogram is for the K−π+ invariant mass pair and the right

histogram is for the π+π− invariant mass pair. The black points are for the data

events in the signal box. The bottom red histogram shows the expected distribu-

tion of qq background events and the middle green histogram shows the expected

distribution of BB background events.

contributions to a particular mass pair spectrum. The Kπ projections for both B−

and B+ data show evidence for the K∗0(892) resonance and an excited resonance

which from previous measurements is known to be K∗0
0 (1430). The ππ projections

for B− and B+ data show evidence of the f0(980) and χc0 resonances. There is little

sign of the expected ρ0(770) resonance below the f0(980) but the region above the

f0(980) shows structure which could arise from many possible resonances as listed

in Table 4.1 in Section 4.3.
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Figure 6.3: The left histogram is for the K+π− invariant mass pair and the right

histogram is for the π+π− invariant mass pair. The black points are for the data

events in the signal box. The bottom red histogram shows the expected distribu-

tion of qq background events and the middle green histogram shows the expected

distribution of BB background events.

6.2.1 Nominal Model

The fitting routine needs a model for which resonances to try to fit, but the resonance

composition of the Dalitz plot is unknown. Information from previous studies of

the B± → K±π±π∓ decay and the projection plots of the data samples shown in

Figure 6.2 and Figure 6.3 can be used to decide which resonances are likely to provide

the dominant contributions. A six component model is chosen to be the nominal

model and consists of components for K∗0(892), K∗0
0 (1430), ρ0(770), f0(980), χc0

and non-resonant components.
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Figure 6.4: Background subtracted data Dalitz plots. The left plot is for B− data

and the right plot is for B+ data.
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Figure 6.5: Background subtracted invariant mass projections for data. The left

histogram is for the Kπ pair and the right histogram is for the ππ pair.

6.3 Lineshapes

There are several possible lineshapes that can be used to model the resonant com-

ponents. Relativistic Breit-Wigner lineshapes are chosen for all components apart
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Figure 6.6: Background subtracted invariant mass projections for data with a

2GeV/c2 cut on the other mass pair applied. The left histogram is for the Kπ

pair and the right histogram is for the ππ pair.

from the f0(980) resonance and theK∗0
0 (1430) resonance. The alternative lineshapes

used for these two components have a number of parameters which have not been

studied extensively and hence are not known with confidence. A study of these

parameters is presented in this section. The aim of this study is to provide working

models of the f0(980) and K
∗0
0 (1430) resonances that enable a reasonable fit to the

data to be obtained. The resultant values for the LASS parameters a, r and the

Flatté parameters gπ, gK and mass, are not to be taken as accurate measurements

of these quantities.
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6.3.1 f0(980)

The Flatté lineshape has two parameters gπ and gK for which there are different

experimental measurements as shown in Section 4.3.1. These three sets of values

produce different lineshapes as shown in Figure 6.7. Changing the mass of the
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Figure 6.7: Toy MC events showing the Flatté lineshape for the f0(980) resonance

with different values for the parameters gπ and gK .

f0(980) resonance also has an effect on this lineshape. This is illustrated in Figure 6.8

where the Flatté lineshape for the f0(980) resonance is shown with the parameters gπ

and gK fixed to BES values but with different values of the mass. The six component

fit to the B− data sample is run with the three sets of values for the parameters gπ

and gK . The BES values are found to give the best negative log likelihood (NLL)

but the π+π− invariant mass projection, shown in Figure 6.9, indicates that the fit

is a poor representation of the data.
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Figure 6.8: Toy MC events showing the Flatté lineshape for the f0(980) resonance:

the parameters gπ and gK are fixed to the BES values but with different values for

the mass.

A range of values for the parameters gπ and gK are then tested. The exact values

used can be seen in Figure 6.10. This shows that there are two possibilities for the

minimum NLL value. These correspond to the situations with gπ = 0.12, gK =

0.41 and gπ = 0.11, gK = 0.36. A range of masses between 0.960 and 0.980 GeV/c2

are then tested for these cases. The results are shown in Figure 6.11. This shows

that the best NLL occurs for gπ = 0.11, gK = 0.36 and a mass of 0.965 GeV/c2.

An estimate of the errors on these parameters can be obtained by calculating the

difference between the best parameter value and the parameter value that results

in an increase in NLL of 1
2
a unit. This gives errors of 0.02 for gπ, 0.10 for gK

and 10.0 MeV/c2 for the mass. The fit now shows better agreement with the data

as illustrated in Figure 6.12. The improved Flatté lineshape is also used in a six

125



)
2

(GeV/cππm
0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

N
u

m
b

er
 o

f 
ev

en
ts

0

2

4

6

8

10

12

14

16

18

20

22

24
-B

Figure 6.9: Invariant mass projection for the B− data in the f0(980) region. The

black points are the data events in the signal box. The blue histogram is the fit

result.

component fit to the B+ data, and the resulting π+π− invariant mass spectrum is

shown in Figure 6.12. This new Flatté lineshape is found be in good agreement with

the B+ data.
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Figure 6.10: Negative log-likelihood results for fits using different Flatté lineshapes.

The gπ values tested are shown in the legend. The mass is fixed to be 0.980 GeV/c2.

The bottom plot is an enlargement of the region around the minimum.
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f0(980) mass. The gπ and gK values tested are shown in the legend.
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Figure 6.12: Invariant mass projection for the B− and B+ data in the f0(980) region

with an improved Flatté lineshape. The black points are the data events in the signal

box. The blue histogram is the fit result.
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6.3.2 Kπ S Wave

Section 4.3.2 gives details of the lineshape that can be used for the K∗0
0 (1430) reso-

nance. The initial six component fit is run on the B− data sample using the LASS

lineshape with the parameters a and r set to 2.0 (GeV/c)−1 and 1.5 (GeV/c)−1

respectively, which are the values used in the preliminary version of this analysis

documented in [36]. These can be compared to the values obtained from the LASS

data of a = 2.07±0.10 (GeV/c)−1 and r = 3.32±0.34 (GeV/c)−1 [62]. The resulting

K−π+ invariant mass spectrum for the fit is shown together with the data in Fig-

ure 6.13. The projection shows that the modelling of the K∗0
0 (1430) resonance could
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Figure 6.13: Invariant mass projection for the B− data in the K∗0
0 (1430) region.

The black points are the data events in the signal box. The blue histogram is the

fit result.

be improved. A wide range of values for the a and r parameters are studied and the
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minimum is found to occur for a = 2.5 (GeV/c)−1 and r = 5.25 (GeV/c)−1. The

estimated errors on these parameters are calculated in the same way as described

in Section 6.3.1, and are found to be 0.3 (GeV/c)−1 for a and 0.95 (GeV/c)−1 for

r. The fit result shown in Figure 6.14 is now in better agreement with the data.

The improved LASS lineshape is also used in a six component fit to the B+ data,

and the resulting K+π− invariant mass spectrum is shown in Figure 6.14. This new

LASS parameterisation is found to agree well with the B+ data.
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Figure 6.14: Invariant mass projection for the B− and B+ data in the K∗0
0 (1430)

region with an improved LASS lineshape. The black points are the data events in

the signal box. The blue histogram is the fit result.
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6.4 Results - Six Component Nominal Model

The results of the fit using the nominal six component model are shown in Table 6.1

separately for B− and B+ data. The ρ0(770) resonance shows the greatest difference

in fit fractions between the two samples. The full projection plots can be seen in

Figure 6.15. These projection plots show that the fit is a good representation of the

data in all regions apart from the 1.2 - 1.6 GeV/c2 region of the ππ spectrum. This

is easily explained as the nominal model does not contain a resonant contribution in

that area. The same projections can be seen in Figure 6.16 where the invariant mass

distribution is plotted only for events that have a value greater than 2GeV/c2 in the

other invariant mass pair. These plots show a much better agreement between the

fit result and data in the very high Kπ mass region. This result is not surprising

as the high Kπ mass region is populated almost entirely by events in the low ππ

mass region due to the shape of the Dalitz plot, and applying the 2GeV/c2 cut will

therefore dramatically depopulate the high Kπ mass region.

As an indication of goodness of fit, and to aid comparisons between fits that use

different models, a χ2 value is calculated as:

χ2 =
NBins
∑

i=1

[yi − f(xi)]2
f(xi)

(6.1)

where yi is the number of events found in bin i and f(xi) is the number of events in

that bin as predicted by the fit results. The associated number of degrees of freedom

(ndof) is calculated as NBins−k−1, where k is the number of free parameters in the

Dalitz-plot fit. A minimum of 10 entries in each bin is required; if this requirement

is not met then neighbouring bins are combined. These χ2/ndof values are shown

in Table 6.1.
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Table 6.1: Results of fits to B− and B+ data with nominal 6 component model

Component B− Fit B+ Fit

Dalitz-plot χ2/ndof 205/121 193/117

mKπ projection χ2/ndof 57/30 66/30

mππ projection χ2/ndof 86/27 73/27

K∗0(892) Mag 1.0 = FIXED 1.0 = FIXED

K∗0(892) Fraction (%) 14.0 ± 2.1 12.5 ± 2.3

K∗0(892) Phase 0.0 = FIXED 0.0 = FIXED

K∗0
0 (1430) Mag 1.90 ± 0.13 2.14 ± 0.16

K∗0
0 (1430) Fraction (%) 50.4 ± 4.0 57.4 ± 4.4

K∗0
0 (1430) Phase 2.73 ± 0.13 3.08 ± 0.12

ρ0(770) Mag 0.870 ± 0.083 0.663 ± 0.094

ρ0(770) Fraction (%) 10.6 ± 2.0 5.5 ± 1.6

ρ0(770) Phase −0.49 ± 0.36 1.12 ± 0.49

f0(980) Mag 1.064 ± 0.083 1.027 ± 0.092

f0(980) Fraction (%) 15.9 ± 2.4 13.2 ± 2.4

f0(980) Phase −1.90 ± 0.35 -0.87 ± 0.45

χc0 Mag 0.254 ± 0.050 0.321 ± 0.054

χc0 Fraction (%) 0.90 ± 0.36 1.29 ± 0.44

χc0 Phase −0.81 ± 0.39 0.45 ± 0.37

NR Mag 0.501 ± 0.079 0.56 ± 0.10

NR Fraction (%) 3.5 ± 1.1 4.0 ± 1.4

NR Phase 0.87 ± 0.38 1.33 ± 0.32
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Figure 6.15: Invariant mass projections for the data. The left histograms are for

the Kπ pair and the right histograms are for the ππ pair. The black points are the

data events in the signal box. The blue histogram is the fit result.
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Figure 6.16: Invariant mass projections for the data with a 2GeV/c2 cut on the other

mass pair applied. The left histograms are for the Kπ pair and the right histograms

are for the ππ pair. The black points are the data events in the signal box. The

blue histogram is the fit result.
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6.5 Omission Tests

The actual resonance composition of the Dalitz plot is unknown. The fit may be

looking for a component that is not present or incorrectly modelled. The Dalitz-plot

fit is repeated omitting each of the six components in turn. A comparison of the NLL

values, χ2 values, fit fractions and phases are shown in Table 6.2 for B− data and

Table 6.3 for B+ data. As can be seen from these tables, omitting any component

results in a significantly worse NLL value. The fitted fractions and phases of the

remaining components vary wildly from their nominal fit values. This leads to the

conclusion that all six nominal components are present in the Dalitz plot and must

be included in the fit.

137



Table 6.2: Results of fit to B− data with a different component omitted in turn from the nominal fit.

Nominal No K∗0(892) No K∗0
0 (1430) No ρ0(770) No f0(980) No χc0 No non-resonant

(NLL) − (NLL(nominal)) — 130.1 185.2 45.0 134.5 16.4 22.5

Dalitz-plot χ2/ndof 205/121 255/123 444/123 297/123 328/123 208/123 225/123

mK−π+ projection χ2/ndof 57/30 100/32 298/32 109/32 69/32 57/32 61/32

mπ+π− projection χ2/ndof 86/27 111/29 100/29 105/29 255/29 88/29 99/29

K∗0(892) Fraction (%) 14.0± 2.1 — 24.6± 2.7 14.8± 2.2 15.2± 1.9 13.8± 2.2 14.5± 2.0

K∗0(892) Phase 0.0 FIXED — 0.0 FIXED 0.0 FIXED 0.0 FIXED 0.0 FIXED 0.0 FIXED

K∗0
0 (1430) Fraction (%) 50.4± 4.0 64.2± 3.5 — 55.0± 4.2 53.5± 4.1 50.6± 4.0 53.3± 3.2

K∗0
0 (1430) Phase 2.73± 0.13 2.25± 0.27 — 2.73± 0.13 2.76± 0.15 2.74± 0.13 2.66± 0.12

ρ0(770) Fraction (%) 10.6± 2.0 11.0± 1.6 15.7± 2.4 — 15.7± 2.5 10.5± 2.0 11.5± 2.2

ρ0(770) Phase −0.49± 0.36 −0.45± 0.20 1.32± 0.25 — 0.93± 0.89 −0.37± 0.36 −0.96± 0.33

f0(980) Fraction (%) 15.9± 2.4 15.9± 1.7 24.5± 2.7 17.3± 2.5 — 15.6± 2.4 19.2± 2.6

f0(980) Phase −1.90± 0.35 −1.90 FIXED 0.21± 0.22 −0.92± 0.37 — −1.80± 0.35 −2.28± 0.29

χc0 Fraction (%) 0.90± 0.36 0.87± 0.35 0.98± 0.39 0.87± 0.36 0.72± 0.33 — 1.51± 0.46

χc0 Phase −0.81± 0.39 −0.96± 0.47 2.86± 0.42 −0.72± 0.40 −0.67± 0.46 — −1.04± 0.34

Non Resonant Fraction (%) 3.5± 1.1 5.8± 1.7 32.6± 3.2 6.0± 1.6 10.1± 2.1 4.8± 1.3 —

Non Resonant Phase 0.87± 0.38 1.23± 0.33 −2.27± 0.19 0.83± 0.35 0.74± 0.55 1.01± 0.35 —
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Table 6.3: Results of fit to B+ data with a different component omitted in turn from the nominal fit.

Nominal No K∗0(892) No K∗0
0 (1430) No ρ0(770) No f0(980) No χc0 No non-resonant

(NLL) − (NLL(nominal)) — 101.2 250.4 19.7 106.3 21.9 20.3

Dalitz-plot χ2/ndof 193/117 226/119 495/119 234/119 275/119 197/119 216/119

mK+π− projection χ2/ndof 66/30 122/32 399/32 100/32 75/32 66/32 73/32

mπ+π− projection χ2/ndof 73/27 102/29 101/29 76/29 225/29 75/29 82/29

K∗0(892) Fraction (%) 12.5± 2.3 — 26.3± 2.7 12.8± 2.2 13.4± 1.7 12.6± 2.3 12.7± 1.9

K∗0(892) Phase 0.0 FIXED — 0.0 FIXED 0.0 FIXED 0.0 FIXED 0.0 FIXED 0.0 FIXED

K∗0
0 (1430) Fraction (%) 57.4± 4.4 71.1± 12.6 — 61.1± 4.4 63.8± 4.0 57.5± 4.3 59.8± 3.1

K∗0
0 (1430) Phase 3.08± 0.12 2.78± 0.39 — 3.08± 0.13 −3.12± 0.12 3.12± 0.12 2.98± 0.12

ρ0(770) Fraction (%) 5.5± 1.6 5.7± 1.4 9.0± 2.0 — 10.2± 2.2 5.3± 1.5 6.4± 1.6

ρ0(770) Phase 1.12± 0.49 1.01± 0.23 1.71± 0.24 — 2.73± 0.36 1.38± 0.46 0.04± 0.37

f0(980) Fraction (%) 13.2± 2.4 13.1± 1.6 27.3± 3.0 14.0± 2.4 — 12.3± 2.2 17.8± 2.7

f0(980) Phase −0.87± 0.45 −0.87 FIXED 0.01± 0.19 −0.36± 0.38 — −0.61± 0.42 −1.85± 0.31

χc0 Fraction (%) 1.29± 0.44 1.28± 0.40 1.30± 0.46 1.30± 0.45 1.07± 0.41 — 2.01± 0.54

χc0 Phase 0.45± 0.37 0.44± 0.50 −2.67± 0.35 0.51± 0.38 0.90± 0.40 — 0.20± 0.34

Non Resonant Fraction (%) 4.0± 1.4 5.2± 1.6 44.4± 3.7 5.5± 1.7 12.8± 2.8 6.0± 1.7 —

Non Resonant Phase 1.33± 0.32 1.69± 0.47 −1.82± 0.15 1.35± 0.30 1.92± 0.23 1.40± 0.29 —
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6.6 Addition Tests

It is also possible that the fit is neglecting to look for a component that contributes

to the Dalitz plot. In the ππ spectrum there are possible higher resonances including

f2(1270), f0(1370), ρ
0(1450), f0(1500) and f2(1525). In the Kπ spectrum there are

possible K∗0
2 (1430) and K∗0(1680) resonances. Each of these resonances is added in

turn to the signal model and the Dalitz-plot fit is repeated. A comparison of the

NLL values, χ2 values, fit fractions and phases are shown in Table 6.4 for B− data

and Table 6.5 for B+ data.

Generally, adding another component does not significantly affect the measured fit

fractions and phases of the six nominal components. For B− data, the f2(1270)

and f0(1370) components cause the greatest change in NLL. The f2(1270) has a

significant fit fraction of 8.3 ± 2.3. For B+ data the ρ0(1450) and f2(1270) cause

the greatest change in NLL. The f2(1270) fit fraction is 4.8 ± 1.7 which is smaller

than that measured for B− data. The ρ0(1450) component has a large fit fraction

of 10.1± 2.5, which is very different to that measured in B− data, and the addition

of this resonance leads to a large change in value for the f0(980) phase.

The possible additional contributions to the ππ spectrum, and the differences be-

tween B− and B+ data, are investigated further in the next section.
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Table 6.4: Results of fit to B− data with a different resonance added in turn to the nominal fit

Nominal With f2(1270) With f0(1370) With ρ0(1450) With f0(1500) With f2(1525) With K∗0
2 (1430) With K∗0(1680)

(NLL) − (NLL(nominal)) — −7.935 −7.865 −2.486 −4.658 −0.363 −4.891 −0.997
Dalitz-plot χ2/ndof 205/121 204/119 202/119 203/119 203/119 205/119 200/119 206/119

mK−π+ projection χ2/ndof 57/30 43/28 58/28 54/28 58/28 56/28 58/28 56/28

mπ+π− projection χ2/ndof 86/27 63/25 64/25 82/25 70/25 86/25 82/25 86/25

K∗0(892) Fraction (%) 14.0 ± 2.1 12.7 ± 2.1 13.8 ± 2.8 13.6 ± 2.1 14.0 ± 2.3 14.0 ± 2.2 13.6 ± 2.1 14.3 ± 2.3

K∗0
0 (1430) Fraction (%) 50.4 ± 4.0 47.8 ± 4.2 48.9 ± 4.2 48.7 ± 4.2 49.6 ± 4.0 50.6 ± 4.0 47.3 ± 4.1 50.4 ± 4.1

K∗0
0 (1430) Phase 2.73 ± 0.13 2.83 ± 0.13 2.73 ± 0.13 2.76 ± 0.13 2.73 ± 0.13 2.73 ± 0.13 2.77 ± 0.13 2.78 ± 0.13

ρ0(770) Fraction (%) 10.6 ± 2.0 8.0 ± 1.8 10.6 ± 2.0 9.5 ± 1.9 10.8 ± 2.0 10.6 ± 2.0 10.5 ± 2.0 10.4 ± 2.0

ρ0(770) Phase −0.49± 0.36 0.09 ± 0.37 −0.45± 0.38 0.63± 0.41 −0.48± 0.36 −0.49± 0.37 −0.45± 0.31 −0.45± 0.36

f0(980) Fraction (%) 15.9 ± 2.4 14.6 ± 2.3 13.9 ± 2.6 16.0 ± 2.5 15.5 ± 2.5 15.8 ± 2.4 16.0 ± 2.4 15.7 ± 2.4

f0(980) Phase −1.90± 0.35 −1.21± 0.35 −2.04± 0.40 −2.15± 0.38 −1.95± 0.35 −1.90± 0.35 −1.91± 0.33 −1.94± 0.35

χc0 Fraction (%) 0.90 ± 0.36 0.94 ± 0.37 0.96 ± 0.37 0.94 ± 0.37 0.92 ± 0.36 0.90 ± 0.36 0.89 ± 0.36 0.93 ± 0.36

χc0 Phase −0.81± 0.39 −0.79± 0.38 −0.85± 0.38 −0.82± 0.38 −0.82± 0.39 −0.81± 0.39 −0.56± 0.41 −0.81± 0.39

Non-resonant Fraction (%) 3.5 ± 1.1 3.2 ± 1.1 3.6 ± 1.2 3.0 ± 1.0 3.8 ± 1.1 3.5 ± 1.1 4.0 ± 1.4 3.4 ± 1.1

Non-resonant Phase 0.87 ± 0.38 0.79 ± 0.39 0.63 ± 0.40 0.87 ± 0.39 0.79 ± 0.39 0.87 ± 0.39 1.25 ± 0.38 0.82 ± 0.40

Additional Fraction(%) — 8.3 ± 2.3 2.3 ± 1.2 1.6 ± 1.2 1.7 ± 1.7 0.12 ± 0.29 4.9 ± 2.0 0.52 ± 0.77

Additional Phase — −0.68± 0.28 0.22 ± 0.41 0.57 ± 0.44 1.11 ± 0.63 −1.7± 1.2 2.63 ± 0.17 −2.22± 0.62
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Table 6.5: Results of fit to B+ data with a different resonance added in turn to the nominal fit

Nominal With f2(1270) With f0(1370) With ρ0(1450) With f0(1500) With f2(1525) With K∗0
2 (1430) With K∗0(1680)

(NLL) − (NLL(nominal)) — −14.9721 −4.209 −18.219 −4.943 −3.947 −1.83 −0.487
Dalitz-plot χ2/ndof 193/117 168/115 188/115 181/115 190/115 180/115 193/115 195/115

mK+π− projection χ2/ndof 66/30 49/28 67/28 58/28 67/28 57/28 65/28 66/28

mπ+π− projection χ2/ndof 73/27 67/25 62/25 60/25 61/25 67/25 74/25 74/25

K∗0(892) Fraction (%) 12.5 ± 2.3 11.5 ± 2.1 12.3 ± 2.5 11.4 ± 2.0 12.5 ± 2.3 11.9 ± 2.1 13.0 ± 2.3 12.8 ± 2.4

K∗0
0 (1430) Fraction (%) 57.4 ± 4.4 55.4 ± 4.5 56.6 ± 4.8 56.3 ± 4.4 56.6± 4.5 56.4 ± 4.4 54.8 ± 4.6 57.6 ± 4.4

K∗0
0 (1430) Phase 3.08 ± 0.12 3.11 ± 0.12 3.07 ± 0.12 3.12 ± 0.13 3.10 ± 0.13 3.10 ± 0.13 3.09 ± 0.12 3.10 ± 0.13

ρ0(770) Fraction (%) 5.5 ± 1.6 4.3 ± 1.4 4.8 ± 1.5 5.5 ± 1.9 5.2 ± 1.5 5.1 ± 1.5 5.3 ± 1.5 5.5 ± 1.5

ρ0(770) Phase 1.12 ± 0.49 1.17 ± 0.41 1.29 ± 0.43 1.94 ± 0.38 1.34 ± 0.45 1.36 ± 0.46 1.70 ± 0.50 1.22 ± 0.46

f0(980) Fraction (%) 13.2 ± 2.4 13.4 ± 2.4 10.7 ± 2.1 11.8 ± 2.1 11.5 ± 2.1 12.9 ± 2.3 12.6 ± 2.2 12.8 ± 2.4

f0(980) Phase −0.87 ± 0.45 −0.77 ± 0.37 −0.53 ± 0.41 0.47 ± 0.37 −0.60 ± 0.43 −0.58 ± 0.44 −0.36 ± 0.46 −0.78 ± 0.42

χc0 Fraction (%) 1.29 ± 0.44 1.27 ± 0.44 1.35 ± 0.46 1.28 ± 0.44 1.31 ± 0.45 1.29 ± 0.44 1.25 ± 0.43 1.29 ± 0.44

χc0 Phase 0.45 ± 0.37 0.41 ± 0.37 0.40 ± 0.37 0.53 ± 0.39 0.44 ± 0.37 0.47 ± 0.38 0.52 ± 0.38 0.43 ± 0.37

Non-resonant Fraction (%) 4.0 ± 1.4 3.7 ± 1.2 3.6 ± 1.4 5.0 ± 1.7 4.4 ± 1.5 3.9 ± 1.4 5.4 ± 1.8 4.1 ± 1.4

Non-resonant Phase 1.33 ± 0.32 1.25 ± 0.32 1.14 ± 0.33 1.53 ± 0.29 1.21 ± 0.32 1.39 ± 0.32 1.57 ± 0.31 1.30 ± 0.31

Additional Fraction (%) — 4.8 ± 1.7 1.18 ± 0.77 10.1 ± 2.5 0.97 ± 0.59 2.8 ± 1.1 2.3 ± 1.6 0.27 ± 0.54

Additional Phase — −0.11 ± 0.26 −0.25 ± 0.50 −0.32 ± 0.29 0.83 ± 0.50 0.19 ± 0.38 −0.20 ± 0.21 −1.11 ± 0.80
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6.7 Results - Seven Component Model

6.7.1 Projection Plots

In order to try to define the resonance composition and to get an accurate idea of

how well the Dalitz-plot fit is performing in the 1.2 - 1.8 GeV/c2 region of the ππ

spectrum the signal parts of the data and fit result are compared. For the data a

bin-by-bin subtraction is performed to get background-subtracted data plots. For

the fit result, a toy MC sample is generated using the fitted parameters, and the

signal part of this sample is extracted. This comparison can be seen in Figure 6.17

for B− events. The top left plot of this figure is the background-subtracted data,

and its shape can be compared to the other five plots in the figure, which represent

the results of fits using different additional components. The same plots can be seen

in Figure 6.18 for B+ events.

Figure 6.17 shows that the f2(1270) resonance or f0(1370) resonance appear to im-

prove the model’s description of the B− data. Figure 6.18 shows that the B+ signal

distribution in this region has a different shape to B−, and can best be described by

the ρ0(1450) resonance although the f2(1270) resonance is also a reasonable model.

Both of these plots show that the signal distribution in this region is affected by

low statistics. As the f2(1270) resonance is a possible component for both B− and

B+, the results of fits including the f2(1270) are used to make full projection plots

which are shown in Figure 6.19 for B− and B+. The projections are an improve-

ment on the nominal model in the 1.2 - 1.8 GeV/c2 region of the ππ spectrum (see

Figure 6.15), however the plots suggest that there may be more than one resonance

contribution in this area.
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Figure 6.17: Signal data and fit results in the 1.2 - 1.8 GeV/c2 region of the mππ

spectrum for B−. The top left plot shows the background subtracted data. The

top middle plot shows the fit results with the f2(1270) resonance included, the top

right plot includes the f0(1370) resonance, the bottom left plot includes the ρ0(1450)

resonance, the bottom middle plot the f0(1500) resonance and the bottom right plot

the f2(1525) resonance.

6.7.2 Addition Tests

The hypothesis of the presence of the f2(1270) resonance is tested by further fitting

experiments, where an additional resonance is added in turn to the 7 component

nominal+f2(1270) model. These results can be seen in Table 6.6 for B− and Ta-

ble 6.7 for B+. Table 6.6 shows that the f2(1270) fit fraction is not stable for B−

data, and can decrease significantly when another resonance is present in the same

invariant mass region. Table 6.7 shows that the ρ0(1450) fit fraction for B+ data

has decreased from its value in the nominal+ρ0(1450) model (see Table 6.5) and

the f2(1270) fit fraction is generally stable when another resonance is added in this

invariant mass region.

Given the low statistics, the high level of uncertainty about the precise nature of

the resonant contribution to the 1.2 - 1.8 GeV/c2 region of the ππ spectrum, and
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Figure 6.18: Signal data and fit results in the 1.2 - 1.8 GeV/c2 region of the mππ

spectrum for B+. The top left plot shows the background subtracted data. The

top middle plot shows the fit results with the f2(1270) resonance included, the top

right plot includes the f0(1370) resonance, the bottom left plot includes the ρ0(1450)

resonance, the bottom middle plot the f0(1500) resonance and the bottom right plot

the f2(1525) resonance.

possible differences between B− and B+ data, this analysis will use the nominal

model (which has no resonance model for this region) to make measurements of the

fit fractions and phases of the six nominal fit components. Upper limits for the fit

fractions of possible higher resonances will be calculated separately.
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Figure 6.19: Invariant mass projections for the data. The left histograms are for

the Kπ pair and the right histograms are for the ππ pair. The black points are the

data events in the signal box. The blue histogram is the fit result using the seven

component model, including an additional f2(1270) component.
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Table 6.6: Results of fit to B− data with a different resonance added in turn to the nominal + f2(1270) fit

Nominal + f2(1270) With f0(1370) With ρ0(1450) With f0(1500) With f2(1525)

(NLL) − (NLL(nominal + f2(1270))) — −6.091 −0.827 −2.857 −1.313

Dalitz-plot χ2/ndof 204/119 196/117 202/117 198/117 201/117

mK−π+ projection χ2/ndof 43/28 46/26 43/26 46/26 43/26

mπ+π− projection χ2/ndof 63/25 60/23 62/23 63/23 63/23

K∗0(892) Fraction (%) 12.7 ± 2.1 13.1 ± 3.0 12.5 ± 2.1 13.4 ± 2.3 12.8± 2.1

K∗0
0 (1430) Fraction (%) 47.8 ± 4.2 47.4 ± 4.5 47.0 ± 4.2 48.9 ± 4.2 48.5 ± 4.3

K∗0
0 (1430) Phase 2.83 ± 0.13 2.79 ± 0.13 2.86 ± 0.13 2.77 ± 0.13 2.81 ± 0.133

ρ0(770) Fraction (%) 8.0 ± 1.8 9.4 ± 2.0 8.0 ± 1.8 9.7 ± 1.9 8.0 ± 1.8

ρ0(770) Phase 0.09 ± 0.37 −0.28 ± 0.42 0.23 ± 0.38 −0.22 ± 0.36 0.04 ± 0.37

f0(980) Fraction (%) 14.6 ± 2.3 13.5 ± 2.9 14.6 ± 2.3 15.6 ± 2.6 14.5 ± 2.4

f0(980) Phase −1.21 ± 0.35 −1.87 ± 0.44 −1.19 ± 0.36 −1.64 ± 0.36 −1.25 ± 0.36

χc0 Fraction (%) 0.94 ± 0.37 0.95 ± 0.37 0.94 ± 0.37 0.92 ± 0.37 0.94 ± 0.37

χc0 Phase −0.79 ± 0.38 −0.81 ± 0.38 −0.77 ± 0.38 −0.80 ± 0.39 −0.81 ± 0.38

Non-resonant Fraction (%) 3.2 ± 1.1 3.7 ± 1.2 3.2 ± 1.1 3.6 ± 1.2 3.2 ± 1.1

Non-resonant Phase 0.79 ± 0.39 0.68 ± 0.41 0.82 ± 0.37 0.92 ± 0.38 0.78 ± 0.40

f2(1270) Fraction(%) 8.3 ± 2.3 1.40 ± 0.82 8.5 ± 2.4 3.6 ± 2.1 9.3 ± 2.6

f2(1270) Phase −0.68 ± 0.28 −0.60 ± 0.53 −0.67 ± 0.29 −1.13 ± 0.34 −0.69 ± 0.31

f0(1370) Fraction(%) — 3.6 ± 1.6 — — —

f0(1370) Phase — 0.25 ± 0.35 — — —

ρ0(1450) Fraction(%) — — 0.34 ± 0.52 — —

ρ0(1450) Phase — — 0.13 ± 0.95 — —

f0(1500) Fraction(%) — — — 3.7 ± 1.6 —

f0(1500) Phase — — — 1.73 ± 0.42 —

f2(1525) Fraction(%) — — — — 0.57 ± 0.71

f2(1525) Phase — — — — −2.69 ± 0.70
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Table 6.7: Results of fit to B+ data with a different resonance added in turn to the nominal + f2(1270) fit

Nominal + f2(1270) With f0(1370) With ρ0(1450) With f0(1500) With f2(1525)

(NLL) − (NLL(nominal + f2(1270))) — −5.241 −9.859 −6.241 −0.349

Dalitz-plot χ2/ndof 168/115 164/113 168/113 163/113 169/113

mK+π− projection χ2/ndof 49/28 50/26 51/26 50/26 50/26

mπ+π− projection χ2/ndof 67/25 60/23 59/23 57/23 65/23

K∗0(892) Fraction (%) 11.5 ± 2.1 11.3 ± 2.4 11.4 ± 2.0 11.4 ± 2.2 11.6 ± 2.1

K∗0
0 (1430) Fraction (%) 55.4 ± 4.5 54.6 ± 4.9 55.8 ± 4.6 54.6 ± 4.6 55.5 ± 4.5

K∗0
0 (1430) Phase 3.11 ± 0.12 3.11 ± 0.13 3.09 ± 0.13 3.13 ± 0.13 3.11 ± 0.13

ρ0(770) Fraction (%) 4.3 ± 1.4 3.6 ± 1.3 4.2 ± 1.7 4.0 ± 1.4 4.4 ± 1.4

ρ0(770) Phase 1.17 ± 0.41 1.28 ± 0.38 1.58 ± 0.41 1.30 ± 0.39 1.16 ± 0.44

f0(980) Fraction (%) 13.4 ± 2.4 10.6 ± 2.2 12.5 ± 2.2 11.6 ± 2.2 13.3 ± 2.4

f0(980) Phase −0.77 ± 0.37 −0.40 ± 0.37 0.16 ± 0.41 −0.54 ± 0.38 −0.77 ± 0.40

χc0 Fraction (%) 1.27 ± 0.44 1.32 ± 0.45 1.31 ± 0.45 1.29 ± 0.45 1.29 ± 0.44

χc0 Phase 0.41 ± 0.37 0.39 ± 0.36 0.40 ± 0.38 0.42 ± 0.36 0.41 ± 0.37

Non-resonant Fraction (%) 3.7 ± 1.2 3.5 ± 1.3 4.2 ± 1.4 4.2 ± 1.4 3.6 ± 1.3

Non-resonant Phase 1.25 ± 0.32 1.10 ± 0.32 1.28 ± 0.32 1.16 ± 0.31 1.23 ± 0.32

f2(1270) Fraction(%) 4.8 ± 1.7 3.8 ± 1.5 2.9 ± 1.6 4.1 ± 1.6 5.0 ± 1.8

f2(1270) Phase −0.11 ± 0.26 −0.20 ± 0.28 0.55 ± 0.37 −0.15 ± 0.27 −0.19 ± 0.28

f0(1370) Fraction(%) — 2.0 ± 1.1 — — —

f0(1370) Phase — −0.23 ± 0.41 — — —

ρ0(1450) Fraction(%) — — 6.9 ± 2.6 — —

ρ0(1450) Phase — — −0.81 ± 0.38 — —

f0(1500) Fraction(%) — — — 1.38 ± 0.74 —

f0(1500) Phase — — — 0.73 ± 0.44 —

f2(1525) Fraction(%) — — — — 0.16 ± 0.41

f2(1525) Phase — — — — 2.9 ± 2.1
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6.8 Systematic Errors on Fit Fractions and Phases

The systematic errors that affect the measurement of the fit fractions and phases are

evaluated separately for B− and B+. There are six contributions that are added to

give the final systematic error. Three of these contributions arise from uncertainties

of the histogram shapes used to model qq background, BB background and efficiency

in this analysis. Two of the contributions arise from the uncertainty in the qq and

BB background fractions. The final contribution to the systematic error accounts

for any possible fit bias.

6.8.1 Histogram Fluctuations

Each bin of the efficiency histogram has an associated error. To estimate the overall

systematic error, the contents of the bins are fluctuated independently in accordance

with their errors, so that 300 new histograms are made that differ slightly in shape

from the original histogram. The nominal fit is then repeated, the fit fraction and

phase results for the 300 different histograms are plotted and the root-mean-square

(RMS) of the distribution is taken as the absolute systematic error. This procedure

is then repeated for the qq and BB background histograms. The resultant RMS

values can be seen in Table 6.8 for the efficiency histogram, Table 6.9 for the qq

background histogram and Table 6.10 for the BB background histogram.

6.8.2 Background Fraction Fluctuations

The background fractions have associated uncertainties arising from the mES fit in

the case of qq background and the MC study in the case of the BB background. To

estimate the uncertainty, the qq background fraction is fluctuated according to its

error so that 300 experiments are produced with different values for this background

fraction. The nominal fit is then repeated, the fit fraction and phase results for the
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Table 6.8: Absolute systematic errors on the fit fractions and phases of the

B− → K−π−π+ and B+ → K+π+π− nominal six component models, due to the

efficiency histogram fluctuation.

Component B− → K−π−π+ B+ → K+π+π−

K∗0(892) Fraction (%) RMS 0.305 0.357

K∗0(892) Phase RMS 0.0 = FIXED 0.0 = FIXED

K∗0
0 (1430) Fraction (%) RMS 0.276 0.333

K∗0
0 (1430) Phase RMS 0.017 0.018

ρ0(770) Fraction (%) RMS 0.180 0.117

ρ0(770) Phase RMS 0.028 0.040

f0(980) Fraction (%) RMS 0.165 0.157

f0(980) Phase RMS 0.027 0.035

χc0 Fraction (%) RMS 0.017 0.020

χc0 Phase RMS 0.027 0.026

NR Fraction (%) RMS 0.054 0.080

NR Phase RMS 0.030 0.024

300 different histograms are plotted and the RMS of the distribution is taken as the

absolute systematic error. This procedure is repeated for the BB background. The

resultant RMS values can be seen in Table 6.11 for the qq background fraction and

Table 6.12 for the BB background fraction.
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Table 6.9: Absolute systematic errors on the fit fractions and phases of the

B− → K−π−π+ and B+ → K+π+π− nominal six component models, due to the

qq background histogram fluctuation.

Component B− → K−π−π+ B+ → K+π+π−

K∗0(892) Fraction (%) RMS 0.122 0.116

K∗0(892) Phase RMS 0.0 = FIXED 0.0 = FIXED

K∗0
0 (1430) Fraction (%) RMS 0.370 0.348

K∗0
0 (1430) Phase RMS 0.021 0.016

ρ0(770) Fraction (%) RMS 0.258 0.227

ρ0(770) Phase RMS 0.055 0.065

f0(980) Fraction (%) RMS 0.244 0.259

f0(980) Phase RMS 0.049 0.065

χc0 Fraction (%) RMS 0.029 0.051

χc0 Phase RMS 0.062 0.050

NR Fraction (%) RMS 0.210 0.286

NR Phase RMS 0.058 0.041
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Table 6.10: Absolute systematic errors on the fit fractions and phases of the

B− → K−π−π+ and B+ → K+π+π− nominal six component models, due to the

BB background histogram fluctuation.

Component B− → K−π−π+ B+ → K+π+π−

K∗0(892) Fraction (%) RMS 0.143 0.068

K∗0(892) Phase RMS 0.0 = FIXED 0.0 = FIXED

K∗0
0 (1430) Fraction (%) RMS 0.280 0.328

K∗0
0 (1430) Phase RMS 0.020 0.011

ρ0(770) Fraction (%) RMS 0.168 0.320

ρ0(770) Phase RMS 0.035 0.089

f0(980) Fraction (%) RMS 0.175 0.212

f0(980) Phase RMS 0.035 0.061

χc0 Fraction (%) RMS 0.013 0.021

χc0 Phase RMS 0.032 0.028

NR Fraction (%) RMS 0.140 0.186

NR Phase RMS 0.050 0.039
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Table 6.11: Absolute systematic errors on the fit fractions and phases of the

B− → K−π−π+ and B+ → K+π+π− nominal six component models, due to the

qq background fraction fluctuation.

Component B− → K−π−π+ B+ → K+π+π−

K∗0(892) Fraction RMS (%) 0.361 0.295

K∗0(892) Phase RMS 0.0 = FIXED 0.0 = FIXED

K∗0
0 (1430) Fraction RMS (%) 0.022 0.197

K∗0
0 (1430) Phase RMS 0.000 0.001

ρ0(770) Fraction RMS (%) 0.184 0.234

ρ0(770) Phase RMS 0.030 0.045

f0(980) Fraction RMS (%) 0.118 0.120

f0(980) Phase RMS 0.014 0.027

χc0 Fraction RMS (%) 0.041 0.045

χc0 Phase RMS 0.016 0.015

NR Fraction RMS (%) 0.235 0.303

NR Phase RMS 0.017 0.012
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Table 6.12: Absolute systematic errors on the fit fractions and phases of the

B− → K−π−π+ and B+ → K+π+π− nominal six component models, due to the

BB background fraction fluctuation.

Component B− → K−π−π+ B+ → K+π+π−

K∗0(892) Fraction RMS (%) 0.188 0.168

K∗0(892) Phase RMS 0.0 = FIXED 0.0 = FIXED

K∗0
0 (1430) Fraction RMS (%) 0.032 0.101

K∗0
0 (1430) Phase RMS 0.000 0.001

ρ0(770) Fraction RMS (%) 0.069 0.096

ρ0(770) Phase RMS 0.001 0.012

f0(980) Fraction RMS (%) 0.047 0.046

f0(980) Phase RMS 0.003 0.007

χc0 Fraction RMS (%) 0.025 0.029

χc0 Phase RMS 0.010 0.005

NR Fraction RMS (%) 0.159 0.175

NR Phase RMS 0.020 0.007
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6.8.3 Fit Bias Tests

To search for possible biases in the fitting procedure, toy MC tests as described in

Section 5.4 are run. 500 toy MC samples are generated for B− and B+ using the

nominal magnitudes and phases shown in Table 6.1. Each of these toy MC samples

is then fitted 200 times using randomised initial starting points. The fit with the

lowest NLL solution is extracted and used to make pull plots. The magnitude, fit

fraction and phase pull plots can be seen in Appendix B in Figure B.1, Figure B.2

and Figure B.3 respectively, for B−, and in Figure B.4, Figure B.5 and Figure B.6

respectively, for B+. The means and widths for each of these plots are tabulated in

Table 6.13. The pull means are used to give an indication of possible fit biases but

are not subsequently used to evaluate the associated systematic error.

Table 6.13 shows that the widths of the fit fraction pull plots have significant de-

viations from a value of one, for all components excluding the χc0. This indicates

that there is a problem with the calculation of the fit fraction statistical error using

Equation 4.5 in Section 4.2.3. A pull plot with a width less than one implies that

the statistical error on this fit fraction is being over-estimated. The problem with

the statistical error is probably due to the fact that possible correlations between

the fitted parameters are neglected. The calculation of the true statistical error

would involve utilising the full error matrix reported by Minuit. For this analy-

sis the statistical error can be found by looking at the widths of the fit fraction

distributions in the toy experiments (this is also the procedure used by the Belle

collaboration in [35]). These distributions can be seen in Figure 6.20 for B− events

and Figure 6.21 for B+ events. The means and widths for these distributions are

shown in Table 6.14. The new statistical errors on the fit fractions are the widths

shown in Table 6.14 and they can be compared to the old statistical errors shown

in Table 6.1. The greatest change occurs for the K∗0
0 (1430) component.

The systematic error on the components that show a possible bias are calculated as

the difference between the mean fit fraction shown in Table 6.14 and the nominal
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Table 6.13: Magnitude, fit fraction and phase pulls in toy MC tests using the nominal

fit results.

B− B+

Pull Mean Pull Width Pull Mean Pull Width

K∗0
0 (1430) Magnitude −0.015± 0.044 0.985± 0.032 0.051± 0.045 0.985± 0.034

K∗0
0 (1430) Fit Fraction −0.139± 0.026 0.579± 0.018 −0.125± 0.025 0.551± 0.018

K∗0
0 (1430) Phase −0.054± 0.047 1.052± 0.034 0.021± 0.048 1.076± 0.034

ρ0(770) Fit Magnitude 0.091± 0.043 0.963± 0.031 0.215± 0.041 0.921± 0.030

ρ0(770) Fit Fraction −0.007± 0.036 0.810± 0.026 0.081± 0.039 0.854± 0.028

ρ0(770) Phase 0.012± 0.049 1.104± 0.035 −0.070± 0.053 1.189± 0.037

f0(980) Magnitude 0.069± 0.046 1.035± 0.033 0.183± 0.043 0.956± 0.032

f0(980) Fit Fraction −0.025± 0.038 0.838± 0.027 0.044± 0.031 0.739± 0.024

f0(980) Phase 0.042± 0.053 1.177± 0.039 0.001± 0.0057 1.281± 0.041

χc0 Magnitude 0.148± 0.048 1.069± 0.034 0.183± 0.049 1.096± 0.035

χc0 Fit Fraction −0.021± 0.049 1.098± 0.035 0.016± 0.049 1.077± 0.036

χc0 Phase 0.224± 0.072 1.607± 0.052 0.219± 0.052 1.160± 0.038

NR Magnitude 0.524± 0.042 0.930± 0.031 0.407± 0.042 0.931± 0.030

NR Fit Fraction 0.432± 0.038 0.837± 0.029 0.292± 0.039 0.868± 0.028

NR Phase 0.131± 0.052 1.154± 0.037 0.153± 0.055 1.221± 0.039

measured fit fraction in Table 6.1. The means of the phase distributions are tabu-

lated in Table 6.15. The systematic error is again taken as the difference between

the mean in toy MC samples and the value measured in the nominal fit.
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Figure 6.20: Fit fraction distributions for the 500 B− toy MC samples. Top left

shows the K∗0(892), top middle the K∗0
0 (1430), top right the ρ0(770), bottom left

the f0(980), bottom middle the χc0 and bottom right the non-resonant.
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Figure 6.21: Fit fraction distributions for the 500 B+ toy MC samples. Top left

shows the K∗0(892), top middle the K∗0
0 (1430), top right the ρ0(770), bottom left

the f0(980), bottom middle the χc0 and bottom right the non-resonant.
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Table 6.14: Fit fraction distribution means and widths from toy MC samples using

the nominal fit results.

B− B+

Mean Width Mean Width

K∗0(892) Fit Fraction (%) 13.810± 0.069 1.538± 0.049 12.250± 0.065 1.441± 0.049

K∗0
0 (1430) Fit Fraction (%) 49.84± 0.11 2.480± 0.079 56.90± 0.11 2.504± 0.081

ρ0(770) Fit Fraction (%) 10.699± 0.074 1.644± 0.053 5.767± 0.062 1.373± 0.045

f0(980) Fit Fraction (%) 15.982± 0.096 2.145± 0.069 13.513± 0.086 1.899± 0.063

χc0 Fit Fraction (%) 0.970± 0.020 0.429± 0.016 1.390± 0.023 0.512± 0.017

NR Fit Fraction (%) 4.332± 0.058 1.292± 0.043 4.713± 0.073 1.607± 0.054
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Table 6.15: Phase distribution means from toy MC samples using the nominal fit

results.

B− Mean B+ Mean

K∗0
0 (1430) Phase 2.732± 0.006 3.081± 0.006

ρ0(770) Phase −0.475± 0.021 1.070± 0.026

f0(980) Phase −1.876± 0.020 −0.871± 0.025

χc0 Phase −0.732± 0.028 0.534± 0.020

NR Phase 0.879± 0.021 1.340± 0.022

6.8.4 Conclusions

A summary of all the systematic errors affecting the fit fractions and phases is shown

in Table 6.16 for the fit fractions and Table 6.17 for the phases. Table 6.16 shows

that one of the largest systematic errors for the K∗0(892) fit fraction arises from the

efficiency histogram fluctuation tests, which is to be expected as the greatest vari-

ations in this histogram occur in the far corners of the Dalitz-plot. The K∗0
0 (1430)

and f0(980) fit fraction and phase total systematic errors have large contributions

from the background histogram fluctuations. The ρ0(770) fit fraction and phase to-

tal systematic errors have significant contributions from all of the possible sources.

For the χc0 and non-resonant fit fractions, the fit bias provides the dominant con-

tribution to the total systematic error. The χc0 phase also has the fit bias as the

greatest contribution to the systematic error whilst the non-resonant phase is most

affected by the background histogram variation.
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Table 6.16: Percentage systematic errors on the fit fractions of the nominal six component model

Component BB Fraction BB Hist qq Fraction qq Hist Efficiency Hist Fit Bias Total Error

B−

K∗0(892) Fraction 1.34 1.02 2.58 0.87 2.18 1.43 4.13

K∗0
0 (1430) Fraction 0.06 0.56 0.04 0.73 0.55 1.19 1.60

ρ0(770) Fraction 0.65 1.57 1.74 2.43 1.70 0.94 3.95

f0(980) Fraction 0.30 1.10 0.74 1.54 1.04 0.63 2.39

χc0 Fraction 2.78 1.44 4.56 3.22 1.89 7.78 10.25

Non-resonant Fraction 4.52 3.98 6.68 5.97 1.53 22.86 22.33

B+

K∗0(892) Fraction 1.34 0.54 2.35 0.93 2.85 1.60 4.38

K∗0
0 (1430) Fraction 0.18 0.57 0.34 0.61 0.58 0.87 1.39

ρ0(770) Fraction 1.74 5.81 4.25 4.12 2.12 5.45 10.30

f0(980) Fraction 0.35 1.60 0.91 1.96 1.19 2.27 3.73

χc0 Fraction 2.25 1.63 3.49 3.95 1.55 7.75 9.90

Non-resonant Fraction 4.41 4.69 7.63 7.20 2.02 17.50 21.49
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Table 6.17: Absolute systematic errors on the phases of the nominal six component model

Component BB Fraction BB Hist qq Fraction qq Hist Efficiency Hist Fit Bias Total Error

B−

K∗0
0 (1430) Phase 0.000 0.020 0.000 0.021 0.017 0.005 0.034

ρ0(770) Phase 0.001 0.035 0.030 0.055 0.028 0.011 0.079

f0(980) Phase 0.003 0.035 0.014 0.049 0.027 0.022 0.072

χc0 Phase 0.010 0.032 0.016 0.062 0.027 0.075 0.110

Non-resonant Phase 0.020 0.050 0.017 0.058 0.030 0.012 0.087

B+

K∗0
0 (1430) Phase 0.001 0.011 0.001 0.016 0.018 0.001 0.027

ρ0(770) Phase 0.012 0.089 0.045 0.065 0.040 0.047 0.136

f0(980) Phase 0.007 0.061 0.027 0.065 0.035 0.005 0.100

χc0 Phase 0.005 0.028 0.015 0.050 0.026 0.086 0.106

Non-resonant Phase 0.007 0.039 0.012 0.041 0.024 0.011 0.064

161



6.9 Model Dependence

The systematic errors described in the previous section all relate to the specific

model chosen in terms of the components included in the fits and the lineshapes

used. Variation of this model could lead to different results being obtained for the

nominal fit fractions and phases. To account for this a third “model-dependent”

error is calculated. There are three contributions to this error:

• There is a possibility of additional resonances being present in the Dalitz plot.

This error is calculated using Table 6.4 and Table 6.5 in Section 6.6. The

change that occurs in the value for a measured nominal fit fraction and phase

in the presence of each additional resonance is examined and the maximum

deviation in each direction is taken as the error.

• The modelling of the f0(980) component has an associated error due to the un-

certainty in its lineshape parameters. This error is quantified as the difference

between the nominal fit fractions and phases shown in Table 6.1 in Section 6.4

and those obtained in a fit using the BES parameters for the Flatté lineshape

as given in Section 4.3.1. The results for the fit using the BES parameters are

shown in Table 6.18.

• The modelling of theK∗0
0 (1430) component also has an associated error with its

lineshape parameters. This error is taken as the difference between the nominal

fit fractions and phases shown in Table 6.1 in Section 6.4 and those obtained

using the parameters obtained from LASS data as given in Section 6.3.2. The

results for the fit using the LASS parameters are shown in Table 6.18.

These three sources of error are then added in quadrature.
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Table 6.18: Results of fits to B− and B+ data with different lineshape models

Component B− Fit B+ Fit

Nominal BES f0(980) LASS K∗0
0 (1430) Nominal BES f0(980) LASS K∗0

0 (1430)

K∗0(892) Fraction(%) 14.003 14.039 14.424 12.537 12.490 12.902

K∗0
0 (1430) Fraction(%) 50.411 49.904 50.011 57.449 56.996 56.854

K∗0
0 (1430) Phase 2.727 2.705 2.738 3.080 3.072 3.096

ρ0(770) Fraction (%) 10.596 10.011 10.936 5.509 4.867 5.403

ρ0(770) Phase -0.486 -0.426 -0.616 1.117 1.317 1.095

f0(980) Fraction (%) 15.861 16.982 15.933 13.226 13.744 13.218

f0(980) Phase -1.898 -1.618 -1.953 -0.866 -0.410 -0.886

χc0 Fraction (%) 0.904 0.968 0.905 1.289 1.320 1.273

χc0 Phase -0.807 -0.872 -0.817 0.448 0.411 0.447

NR Fraction (%) 3.521 2.395 4.064 3.970 3.862 4.410

NR Phase 0.867 0.717 0.749 1.329 1.156 1.206

6.10 Final Results for the Six Component Nomi-

nal Model

The final results for the fit fractions and phases of the six components that are

included in the nominal model with full statistical, systematic and model dependent

errors, can be seen in Table 6.19. Since the LASS amplitude contains both a resonant

and non-resonant part, the results for the K∗0
0 (1430) are not purely due to this

resonance but to the Kπ S-wave as a whole. The results for the non-resonant

component refer to the uniform part of this amplitude.
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Table 6.19: Final results of fits with statistical, systematic and model dependent

errors, to B− and B+ data with 6 component model.

Component B− Fit B+ Fit

K∗0(892) Fraction (%) 14.0 ± 1.5 ± 0.6 +0.5
−1.4 12.5 ± 1.4 ± 0.6 +0.6

−1.2

K∗0
0 (1430) Fraction (%) 50.4 ± 2.5 ± 0.8 +0.7

−3.2 57.5 ± 2.5 ± 0.8 +0.8
−2.8

K∗0
0 (1430) Phase 2.73 ± 0.13 ± 0.03 +0.11

−0.02 3.08 ± 0.12 ± 0.03 +0.04
−0.02

ρ0(770) Fraction (%) 10.6 ± 1.6 ± 0.4 +0.7
−2.7 5.5 ± 1.4 ± 0.6 +0.7

−1.4

ρ0(770) Phase −0.49 ± 0.36 ± 0.08 +1.13
−0.14 1.12 ± 0.49 ± 0.14 +0.85

−0.20

f0(980) Fraction (%) 15.9 ± 2.1 ± 0.4 +1.1
−2.3 13.2 ± 1.9 ± 0.5 +0.6

−2.6

f0(980) Phase −1.90 ± 0.35 ± 0.07 +0.74
−0.38 −0.87 ± 0.45 ± 0.10 +1.41

−0.46

χc0 Fraction (%) 0.90 ± 0.43 ± 0.09 +0.09
−0.07 1.29 ± 0.51 ± 0.13 +0.07

−0.05

χc0 Phase −0.81 ± 0.39 ± 0.11 +0.26
−0.08 0.45 ± 0.37 ± 0.11 +0.09

−0.06

Non-resonant Fraction (%) 3.5 ± 1.3 ± 0.9 +1.3
−1.4 4.0 ± 1.6 ± 0.9 +1.5

−0.6

Non-resonant Phase 0.87 ± 0.38 ± 0.09 +0.43
−0.30 1.33 ± 0.32 ± 0.06 +0.32

−0.28

6.11 Upper Limits

For those components that do not have a significant fit fraction a 90% confidence

level upper limit (UL) is calculated using:

∫ xmax

0 L dx
∫∞
0 L dx

= 0.90 (6.2)

where L is the likelihood and xmax is the maximum magnitude for the component,

such that the integral of the total likelihood function L is 90% of the total area.

For this maximum magnitude xmax, Equation 4.5 in Section 4.2 is used to calculate

the upper limit on the fit fraction (all other magnitudes and phases are fixed to

the results from the nominal six component fit). The results for the statistical 90%

confidence level upper limits can be seen in Table 6.20.
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The calculated upper limits do not incorporate the uncertainties due to the back-

ground fractions and histogram shapes. To account for this systematic uncertainty,

150 fits are run where the qq background fraction, BB background fraction, efficiency

histogram shape, qq histogram shape and BB histogram shape are fluctuated simul-

taneously. This will give a range of measured upper limits. Table 6.16 in Section 6.8

shows that the χc0 and non-resonant fit fractions have large fit bias systematic er-

rors. The toy tests show that these components have a tendency to be over-fitted,

hence no additional error is incorporated into the upper limit to account for fit bias.

Table 6.20: Upper limits for the χc0 and non-resonant components.

B− B+

Upper Limit (%) 90% CL UL Systematic Mean Systematic RMS 90% CL UL Systematic Mean Systematic RMS

χc0 Fit Fraction 2.8 2.8 0.1 3.2 3.1 0.1

NR Fit Fraction 8.5 10.6 1.0 7.9 9.9 0.9

The same procedure is then applied to the resonances that are used in the addition

tests. Each upper limit is calculated in turn using the appropriate values from

Table 6.4 and Table 6.5 for the other components. The results for the upper limits

can be seen in Table 6.21.

Table 6.21: Upper limits for the components used in the addition tests.

B− B+

Upper Limit (%) 90% CL UL Systematic Mean Systematic RMS 90% CL UL Systematic Mean Systematic RMS

K∗0
2 (1430) Fit Fraction 7.1 7.0 0.7 3.9 3.8 0.5

K∗0(1680) Fit Fraction 1.6 1.4 0.5 1.3 1.1 0.4

f2(1270) Fit Fraction 10.4 10.0 0.7 6.7 6.7 0.5

f0(1370) Fit Fraction 8.5 7.0 2.4 2.0 3.0 0.4

ρ0(1450) Fit Fraction 3.1 2.9 0.5 10.8 10.6 0.3

f0(1500) Fit Fraction 6.3 6.5 0.5 6.0 5.9 0.8

f2(1525) Fit Fraction 0.9 0.9 0.2 4.0 4.0 0.4

The final statistical 90% confidence level upper limits is chosen conservatively to be

the largest out of that found for B− and B+. A table of the final results for upper
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limits can be found in the conclusion of this thesis.

6.12 Total Rate Measurement

In order to convert the fit fractions for the resonant and non-resonant components

into branching fractions a measurement of the inclusive B± → K±π±π∓ branching

fraction is needed. The branching fraction can be calculated using:

Branching Fraction =
NSignal

NBB × Efficiency
(6.3)

where NSignal is the number of signal events observed and NBB is the number of BB

pairs1. The efficiency is the average reconstruction efficiency for the B± → K±π±π∓

decay.

The efficiency in the Dalitz-plot is weighted by the |signal amplitude|2 at that point
and the average efficiency is calculated from:

∫ ∫

DP |Total Signal Amplitude|2 × Efficiency dm2
13dm

2
23

∫ ∫

DP |Total Signal Amplitude|2 dm2
13dm

2
23

The average efficiency is found to be 15.92% for B− and 15.96% for B+. This average

efficiency needs to be corrected to account for differences between data and MC in

the selection procedure. The |cos θT |, Fisher, mES and ∆E cuts are studied using

B+ → D0π+ (+ C.C) data and MC. The efficiency of each cut can be determined

for MC and for data can be calculated using repeated mES fits (as described in

Section 4.6) to determine the number of signal events in data before and after each

cut is applied. The correction factor applied is:

Correction Factor =
Efficiency for data

Efficiency for MC
(6.4)

These correction factors for the |cos θT |, Fisher, mES and ∆E cuts are shown in

Table 6.22.
1The Υ (4S) → BB decay produces two B mesons and it is assumed that 50% of these will be

B+B−.
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Table 6.22: Efficiency correction factors.

Cut Correction Factor

|cos θT | 0.979

Fisher 0.988

mES 0.996

∆E 0.916

Total 0.882

The inclusive branching fractions are measured to be (64.1±3.5)×10−6 forB− → K−π−π+

and (64.7 ± 3.5) × 10−6 for B+ → K+π+π−, where the errors shown are statistical

only.

6.12.1 Systematics on Total Rate Measurement

There are several contributions to the systematic uncertainty on the inclusive branch-

ing fraction measurement.

• There is an uncertainty on the number of BB background events used in the

mES fit described in Section 4.6. This number is varied by the value of its

error to calculate the change in the number of signal events measured. This

feeds through to be a systematic uncertainty of 0.4% for B− → K−π−π+ and

B+ → K+π+π−.

• The statistical errors on the average efficiencies are calculated by looking at the

width of the efficiency distributions in the toy MC experiments described in

Section 6.8.3. These distributions are shown in Figure 6.22, and the absolute

statistical errors are calculated to be 0.06% for B− and 0.05% for B+. There

is also a systematic uncertainty associated with this average efficiency which
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is due to the uncertainty in the signal model. The histogram and fraction fluc-

tuation tests described in Section 6.8 are used to evaluate this error, which is

found to be 0.08% (absolute) for both B− and B+. The corresponding percent-

age statistical and systematic uncertainties are 0.38% and 0.50% respectively

for B− → K−π−π+ and 0.31% and 0.50% respectively for B+ → K+π+π−.

• There is an error associated with the measured number of BB pairs that enter

into the denominator of Equation 6.3. This uncertainty is measured from

B-counting studies [70] and is found to be 1.1%.

• There is a systematic uncertainty associated with the tracking efficiency cor-

rection described in Section 3.4. This is evaluated to be 0.8% per track giving

a total systematic error of 2.4%.

• There is also a systematic uncertainty associated with the PID corrections.

This has been studied in the previous analysis of the B± → K±π±π∓ inclusive

branching fraction [33] and is found to be 1.0% per track per selector (kaon

and electron). This gives a total per track error of 1.4% and a total systematic

error of 4.2%.
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Figure 6.22: Average efficiency distributions for the 500 toy MC samples, with B−

on the left and B+ on the right.

There are also systematic errors arising from the efficiency corrections that need to

be made to account for differences between data and MC. These uncertainties are
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found to be:

• Systematic error due to |cos θT | cut efficiency correction is 2.7%

• Systematic error due to Fisher cut efficiency correction is 3.0%

• Systematic error due to mES cut efficiency correction is 1.6%

• Systematic error due to ∆E cut efficiency correction is 2.5%

All of these sources of systematic error are added in quadrature to give the total

systematic on the inclusive branching fraction measurement. The final measurement

of the inclusive branching fraction for B− → K−π−π+ is (64.1 ± 3.5 ± 4.5) × 10−6

and for B+ → K+π+π− is (64.7± 3.5± 4.6)× 10−6.
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Chapter 7

Conclusion and Discussion

The final measurements of the fit fractions and phases of the nominal components,

with full statistical and systematic errors, are shown in Table 6.19 in Section 6.10.

The fit fraction measurements can be converted into branching fractions by multiply-

ing them by the appropriate inclusive branching fraction. These results can be seen

in Table 7.1. These measurements all refer to the B± → K±π±π∓ Dalitz-plot and

so include the subsequent decay of the resonance to K±π∓ or π±π∓. The measure-

ment of the K∗0(892) branching fraction can be compared to previous experimental

measurements and theoretical predictions from factorisation. The theoretical pre-

dictions are for the final stateK∗0(892)π with no information on theK∗0(892) decay,

and so the measured branching fraction is multiplied by the isospin factor 3
2
in or-

der to make direct comparisons. This yields a measurement of B− → K∗0(892)π−=

(13.5± 1.7± 1.1 +0.5
−1.4)× 10−6 and B+ → K∗0(892)π+= (12.2± 1.5± 1.1 +0.6

−1.2)× 10−6.

These measurements are higher than the majority of the theoretical predictions

detailed in Section 1.6.4.

These measurements all correspond to a particular model of the components in-

cluded, the lineshapes used to describe them and the resonance parameters (masses

and widths). Changes to this model would lead to different results. An investigation
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Table 7.1: Final branching fraction results with statistical and systematic errors.

Branching Fraction ×10−6 B− B+

B± → K∗0(892)π±, K∗0(892)→ K±π∓ 9.0 ± 1.1 ± 0.7 +0.3
−0.9 8.1 ± 1.0 ± 0.7 +0.4

−0.8

B± → K∗0
0 (1430)π±, K∗0

0 (1430)→ K±π∓ 32.3 ± 2.4 ± 2.3 +0.4
−2.1 37.1 ± 2.6 ± 2.7 +0.5

−1.8

B± → ρ0(770)K±, ρ0(770)→ π+π− 6.8 ± 1.1 ± 0.5 +0.4
−1.7 3.56 ± 0.93 ± 0.45 +0.45

−1.68

B± → f0(980)K
±, f0(980)→ π+π− 10.2 ± 1.5 ± 0.8 +0.7

−1.5 8.5 ± 1.3 ± 0.7 +0.4
−1.7

into the model composition is described in Sections 6.6 and 6.7. With the present

statistics it is not possible to identify the precise resonance contributions in the

1.2 - 1.8 GeV/c2 region of the ππ spectrum. The PDG values for the masses and

widths of some of the possible resonances in this region have large uncertainties. In

the future, with a greater number of events it may be possible to analyse helicity

angle distributions in order to identify the spin of the resonant contributions to this

region. A scan of possible masses and widths for the resonances could then be per-

formed. A preliminary investigation of lineshapes is described in Section 6.3, with

new lineshape parameters describing the f0(980) and K
∗0
0 (1430) components being

found. Higher statistics would allow further study of these lineshapes and also of

the non-resonant component, which has attracted recent interest [35, 71]. Future

versions of this analysis should be able to provide a quantitative measure of this

model dependence, which could then be reported as a third error on the fit fractions

and phases.

Upper limits are calculated for resonances that are not found to be statistically

significant. The final upper limits can be seen in Table 7.2. These values can be

compared to previous results which are summarised in [72]. The upper limits for

the f2(1270), f2(1525) and K
∗0
2 (1430) components are all slightly larger than those

presented by the BELLE collaboration. There are no previous upper limits for the

f0(1500), ρ
0(1450) and f0(1370) components.
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Table 7.2: Final upper limits.

Branching Fraction 90% Statistical UL Systematic RMS

χc0 2.1 ×10−6 0.1 ×10−6

NR 5.5 ×10−6 0.6 ×10−6

K∗0
2 (1430) 4.6 ×10−6 0.5 ×10−6

K∗0(1680) 1.0 ×10−6 0.3 ×10−6

f2(1270) 6.7 ×10−6 0.5 ×10−6

f0(1370) 5.5 ×10−6 1.6 ×10−6

ρ0(1450) 7.0 ×10−6 0.2 ×10−6

f0(1500) 4.1 ×10−6 0.3 ×10−6

f2(1525) 2.6 ×10−6 0.3 ×10−6

The final measurement of the inclusive branching fraction for B− → K−π−π+is

(64.1±3.5±4.5)×10−6 and for B+ → K+π+π− is found to be (64.7±3.5±4.6)×10−6.

These measurements are consistent with the previous experimental measurements

discussed in Section 1.6.5.

A further iteration of this analysis would involve changes to the Laura++ code so

that the B− and B+ data samples could be fitted simultaneously. This would allow

the calculation of interesting CP quantities [73] and also the possible extraction of

the strong and weak phases for the various amplitudes.

The Dalitz-plot analysis of B-meson decay is a relatively new area of study. As

such there are many possible three-body decays for which the Dalitz plot has never

been studied in great detail. Many of these modes will require more data than are

currently available, particularly in the case of neutral B decays where the identity

of the decaying meson has to be determined through flavour-tagging of the other

B in the event. The BABAR experiment and the PEP-II B Factory have provided

excellent conditions for the study of B physics, and are expected to continue to do
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so for a number of years to come. With improvements to accelerator luminosity,

this should provide a larger sample of BB pairs which will greatly aid in the further

study of charmless three-body B-meson decays.
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Appendix A

GA Evolution Histograms
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Figure A.1: Evolution of the GA. The histograms show the distribution of the

K∗0
0 (1430) magnitude against the K∗0

0 (1430) phase for the individuals in the popu-

lation every 10 generations.
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Figure A.2: Evolution of the GA. The histograms show the distribution of the

f0(980) magnitude against the f0(980) phase for the individuals in the population

every 10 generations.
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Figure A.3: Evolution of the GA. The histograms show the distribution of the χc0

magnitude against the χc0 phase for the individuals in the population every 10

generations.
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Figure A.4: Evolution of the GA. The histograms show the distribution of the NR

magnitude against the NR phase for the individuals in the population every 10

generations.
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Appendix B

Pull Plots
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Figure B.1: Magnitude pull distributions for the 500 B− toy MC samples. Top left

shows the K∗0
0 (1430), top middle the ρ0(770), top right the f0(980), bottom left the

χc0 and bottom middle the non-resonant.
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Figure B.2: Fit fraction pull distributions for the 500 B− toy MC samples. Top left

shows the K∗0
0 (1430), top middle the ρ0(770), top right the f0(980), bottom left the

χc0 and bottom middle the non-resonant.

Pull
-3 -2 -1 0 1 2 3

N
u

m
b

er
 o

f 
to

y 
ex

p
er

im
en

ts

0

2

4

6

8

10

12

14

16

18

20

(1430) Phase Pull0
*0K

Pull
-4 -2 0 2 4

N
u

m
b

er
 o

f 
to

y 
ex

p
er

im
en

ts

0

5

10

15

20

25

(770) Phase Pull0ρ

Pull
-3 -2 -1 0 1 2 3

N
u

m
b

er
 o

f 
to

y 
ex

p
er

im
en

ts

0

2

4

6

8

10

12

14

16

18

20

(980) Phase Pull0f

Pull
-4 -2 0 2 4 6 8 10

N
u

m
b

er
 o

f 
to

y 
ex

p
er

im
en

ts

0

10

20

30

40

50

 Phase Pullc0χ

Pull
-4 -3 -2 -1 0 1 2 3 4 5

N
u

m
b

er
 o

f 
to

y 
ex

p
er

im
en

ts

0

5

10

15

20

25

NR Phase Pull

Figure B.3: Phase pull distributions for the 500 B− toy MC samples. Top left shows

the K∗0
0 (1430), top middle the ρ0(770), top right the f0(980), bottom left the χc0

and bottom middle the non-resonant.
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Figure B.4: Magnitude pull distributions for the 500 B+ toy MC samples. Top left

shows the K∗0
0 (1430), top middle the ρ0(770), top right the f0(980), bottom left the

χc0 and bottom middle the non-resonant.
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Figure B.5: Fit fraction pull distributions for the 500 B+ toy MC samples. Top left

shows the K∗0
0 (1430), top middle the ρ0(770), top right the f0(980), bottom left the

χc0 and bottom middle the non-resonant.
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Figure B.6: Phase pull distributions for the 500 B+ toy MC samples. Top left shows

the K∗0
0 (1430), top middle the ρ0(770), top right the f0(980), bottom left the χc0

and bottom middle the non-resonant.
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