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Abstract. Analogue models of gravity have provided a test bed for many classical and
quantum field theory effects in curve spacetime. Here we present a review of some relevant results
towards their extension as toy models of emergent gravity scenarios. From these models we
shall try to draw general lessons about the emergent gravity tackle on the cosmological constant
problem as well as about the characteristic phenomenological signatures they suggest. Finally,
we shall discuss current constraints on these signatures and the field’s future perspectives.

1. Introduction
General Relativity (GR) still stands strong after 100 years from its lay out by Einstein. However,
in spite of its numerous successes we cannot say we fully understand it: many odd features of
the theory still baffle us and suggest that only the tip of the iceberg has been uncovered. In
particular, an incomplete list of puzzling facts may comprise

• The nature of the expected singularities of classical GR.

• Critical phenomena in gravitational collapse

• Horizon thermodynamics and their problems (information loss and transplanckian issues)

• Spacetime thermodynamics: Einstein equations as equations of state.

• Thermodynamics interpretation of Einstein equations (see Padmanabhans talk and papers)

• The dark ingredients of our universe

• Faster than light and Time travel solutions

• AdS/CFT duality, holographic behaviour

• Gravity/fluid duality

These are all features that we struggle to understand nowadays and it is not encouraging to
realise that while new items have been added to this list none of them has been ticked away as
solved. In response to this growing evidence of our lack of a deep understanding of the nature
of gravity, several fundamental approaches have been devised. In particular a new framework
has been suggested which goes under the general name of “emergent gravity” (EG).

The basic idea of EG is that gravity is not a fundamental interaction and that spacetime
is a composite object approximately like a fluid is. In this scenario GR is seen as a sort of
hydrodynamics emerging from a deeper theory of the fundamental constituents which are not
quanta of spacetime but rather abstract mathematical entities. In this sense, all sub-Planckian

http://creativecommons.org/licenses/by/3.0
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physics has to be seen as low energy physics, a phase akin to a Bose–Einstein condensate of the
fundamental constituents [1]. Within such a framework also singularities change interpretation,
from limits of predictability of GR to phase transitions of the fundamental theory where the
hydrodynamic limit comes about (big bang) or ceases to exists (black holes or big rip).

It is obvious that such concepts, as fascinating as they can be, mays sound more as buzz
words rather that a solid proposal for the ultimate nature of gravity. Furthermore, how can we
test them? As usual in physics, in order to move from abstract ideas to more concrete physical
intuition, it is then appropriate to introduce relatively simple systems that can act as tests beds
for our conjectures. In what follows we shall consider a possible route in this direction i.e. the
Analogue Gravity (AG) proposal.

2. Analogue gravity: an example of emergent spacetime
Analogue gravity stemmed from the realisation that within several condensed matter systems
there are regimes in which the effective degrees of freedom are represented by fields propagating
over effective pseudo-Riemannian structures [2].

For instance, in the case of perfect, irrotational and barotropic fluids, it can be proved that
the perturbations in the velocity potential (i.e. the scalar function θ whose gradient gives the

velocity of the fluid, �v ∝ �∇θ) do obey a massless Klein–Gordon equation in a curved effective
spacetime whose metric tensor is given by the so-called acoustic metric,

gμν =
ρ

c2s

⎛⎜⎜⎝ −(c2s − v2)
... vi

· · · · · · ·
vi

... δij

⎞⎟⎟⎠ , (1)

where ρ is the local density of the fluid, cs it the (local) speed of sound and vi is the velocity
field of the fluid flow. Analogue models have been used to understand (and possibly to test
in a laboratory) some peculiar aspects of physics in curved spacetimes, otherwise inaccessible
(e.g. Hawking radiation). For a review of the subject see [2]. For the large majority, these
analogue models for gravity offer the possibility of studying some kinematical aspects of physics
of curved spacetimes, leaving aside the issue of dynamics. But there are some exceptions.

2.1. BEC as a prototype model
Bose–Einstein condensates (BECs) have become the subject of extensive study as possible
analogue models of general relativity (see e.g. [3, 4, 5, 6]).

Let us start by very briefly reviewing the derivation of the acoustic metric for a BEC system,
and show that the equations for the phonons of the condensate closely mimic the dynamics of a
scalar field in a curved spacetime. In the dilute gas approximation, one can describe a Bose gas
by a quantum field Ψ̂ satisfying

i�
∂

∂t
Ψ̂ =

(
− �

2

2m
∇2 + Vext(x) + κ(a) Ψ̂†Ψ̂

)
Ψ̂. (2)

Here κ parameterises the strength of the interactions between the different bosons in the gas. It
can be re-expressed in terms of the scattering length a as κ(a) = (4πa�2)/m.

As usual, the quantum field can be separated into a macroscopic (classical) condensate and

a fluctuation: Ψ̂ = ψ + ϕ̂, with 〈Ψ̂〉 = ψ. Then, by adopting the self-consistent mean field
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approximation ϕ̂†ϕ̂ϕ̂ � 2〈ϕ̂†ϕ̂〉 ϕ̂+ 〈ϕ̂ϕ̂〉 ϕ̂† one can arrive at the set of coupled equations:

i�
∂

∂t
ψ(t,x) =

(
− �

2

2m
∇2 + Vext(x) + κ nc

)
ψ(t,x) + κ {2ñψ(t,x) + m̃ψ∗(t,x)} , (3)

i�
∂

∂t
ϕ̂(t,x) =

(
− �

2

2m
∇2 + Vext(x) + κ 2nT

)
ϕ̂(t,x) + κ mT ϕ̂

†(t,x), (4)

with nc ≡ |ψ(t,x)|2, mc ≡ ψ2(t,x), ñ ≡ 〈ϕ̂† ϕ̂〉, m̃ ≡ 〈ϕ̂ ϕ̂〉, nT = nc+ ñ, and mT = mc+m̃. The
equation for the classical wave function of the condensate is closed only when the back-reaction
effect due to the fluctuations are neglected. (This back-reaction is hiding in the parameters m̃
and ñ.) This is the approximation contemplated by the Gross–Pitaevskii equation. In general
one will have to solve both equations simultaneously. Adopting the Madelung representation
for the wave function of the condensate ψ(t,x) =

√
nc(t,x) exp[−iθ(t,x)/�], and defining an

irrotational “velocity field” by v ≡∇θ/m, the Gross–Pitaevskii equation can be rewritten as a
continuity equation plus an Euler equation:

∂

∂t
nc +∇ · (ncv) = 0, (5)

m
∂

∂t
v +∇

(
mv2

2
+ Vext(t,x) + κnc − �

2

2m

∇2√nc√
nc

)
= 0. (6)

These equations are completely equivalent to those of an irrotational and inviscid fluid apart
from the existence of the so-called quantum potential

Vquantum = − �
2

2m

∇2√nc√
nc

, (7)

which has the dimensions of an energy.
Apart from the wave function of the condensate itself, we also have to account for the

(typically small) quantum perturbations of the system (4). These quantum perturbations
can be described in several different ways, here we are interested in the “quantum acoustic
representation”

ϕ̂(t,x) = e−iθ/�
(

1

2
√
nc

n̂1 − i

√
nc
�

θ̂1

)
, (8)

where n̂1, θ̂1 are real quantum fields. By using this representation Equation (4) can be rewritten
as

∂tn̂1 +
1

m
∇ ·

(
n1 ∇θ + nc ∇θ̂1

)
= 0, (9)

∂tθ̂1 +
1

m
∇θ ·∇θ̂1 + κ(a) n1 − �

2

2m
D2n̂1 = 0. (10)

Here D2 represents a second-order differential operator obtained from linearizing the quantum
potential. Explicitly:

D2 n̂1 ≡ −1

2
n−3/2c [∇2(n+1/2

c )] n̂1 +
1

2
n−1/2c ∇2(n−1/2c n̂1). (11)

The equations we have just written can be obtained easily by linearizing the Gross–Pitaevskii
equation around a classical solution: nc → nc + n̂1, φ→ φ+ φ̂1.
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From the previous equations for the linearised perturbations it is possible to derive a wave
equation for θ̂1 (or alternatively, for n̂1). All we need is to substitute in Equation (9) the n̂1
obtained from Equation (10). This finally leads to a wave equation for θ1 which can be easily
rewritten as

∂μ(f
μν ∂ν θ̂1) = 0. (12)

Where the fμν are differential operators acting on space only.
Now, if we make a spectral decomposition of the field θ̂1 we can see that for wavelengths

larger than �/mcs (the so called “healing length” of the condensate), the terms coming from the
linearization of the quantum potential (the D2) can be neglected in the previous expressions,
in which case the fμν can be approximated by (momentum independent) numbers, instead of
differential operators. (This is the heart of the acoustic approximation.) Then, by identifying

√−g gμν = fμν , (13)

the equation for the field θ̂1 becomes that of a (massless minimally coupled) quantum scalar
field over a curved background

Δθ1 ≡ 1√−g ∂μ
(√−g gμν ∂ν) θ̂1 = 0, (14)

with an effective metric of the form

gμν(t,x) ≡ nc
m cs(a, nc)

⎡⎢⎢⎣−{cs(a, nc)
2 − v2} ... −vj

· · · · · · · · · · · · · · · · · · ·
−vi

... δij

⎤⎥⎥⎦ . (15)

Here the magnitude cs(nc, a) represents the speed of the phonons in the medium c2s (a, nc) =
κ(a) nc/m With this effective metric now in hand, the analogy is fully established, and one is
now in a position to start asking more specific physics questions.

2.2. Lorentz breaking in BEC models
It is interesting to consider the case in which the above “hydrodynamical” approximation for
BECs does not hold. In order to explore a regime where the contribution of the quantum
potential cannot be neglected we can use the so called eikonal approximation, a high-momentum
approximation where the phase fluctuation θ̂1 is itself treated as a slowly-varying amplitude times
a rapidly varying phase. This phase will be taken to be the same for both n̂1 and θ̂1 fluctuations.
In fact, if one discards the unphysical possibility that the respective phases differ by a time
varying quantity, any time-constant difference can be safely reabsorbed in the definition of the
(complex) amplitudes. Specifically, we shall write

θ̂1(t,x) = Re {Aθ exp(−iφ)} , (16)

n̂1(t,x) = Re {Aρ exp(−iφ)} . (17)

As a consequence of our starting assumptions, gradients of the amplitude, and gradients of the
background fields, are systematically ignored relative to gradients of φ. (Warning: What we are
doing here is not quite a “standard” eikonal approximation, in the sense that it is not applied
directly on the fluctuations of the field ψ(t,x) but separately on their amplitudes and phases ρ1
and φ1.) We adopt the notation

ω =
∂φ

∂t
; ki = ∇iφ. (18)
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Then the operator D2 can be approximated by the function D2 → −n−1c k2/2.
As desired, this has the net effect of making fμν a matrix of (explicitly momentum dependent)

numbers, not operators. The physical wave equation (12) now becomes a nonlinear dispersion
relation

f00 ω2 + (f0i + f i0) ω ki + f ij ki kj = 0. (19)

After substituting the approximate D2 into this dispersion relation, rearranging, and introducing
the speed of sound cs one obtains

ω = vi0 ki ±
√
c2sk

2 +

(
�

2m
k2

)2

. (20)

Coming back to considering the form of (20) at this stage some observations are in order:
It is easy to see that (20) actually interpolates between two different regimes depending on
the value of the wavelength λ = 2π/||k|| with respect to the “acoustic Compton wavelength”
λc = h/(mcs). In particular, if we assume v0 = 0 (no background velocity), then for large
wavelengths λ
 λc one gets a standard phonon dispersion relation ω ≈ c||k||. For wavelengths
λ� λc the quasi-particle energy tends to the kinetic energy of an individual gas particle and in
fact ω ≈ �

2k2/(2m).

3. From emergent spacetime analogue to full emergent gravity
In order to see how some sort of gravitational dynamics is encoded in the BEC, a suitable
framework must be set up in order to see how the quasiparticles backreact over the condensate.

This can be achieved by considering an improved version of the Gross–Pitaevski equation
which consistently takes into account the effect of the particles out of the condensate. The Gross–
Pitaevski (GP) equation is replaced by the so-called Bogoliubov–de Gennes (BdG) equation

i�
∂

∂t
ψ = − �

2

2m
∇2ψ − μψ + κ|ψ|2ψ + 2κnψ + κmψ∗, (21)

where n,m are given by the expectation values:

n = 〈Ξ|ϕ̂(x)†ϕ̂(x)|Ξ〉, m = 〈Ξ|ϕ̂(x)2|Ξ〉, (22)

where the state |Ξ〉 is the particular state one is considering. Notice that, if this state were the
Fock vacuum state for particles, these expectation values would be identically zero. Notice also
that one is implicitly taking a normal ordering in the particle operator, so that an unphysical
(divergent) zero point energy is removed automatically.

When exploring the possibility of casting the equations for the BEC background in a
gravitational form, it is clear that the non-relativistic nature of the latter implies that at most
some form of Newtonian gravity could be expected to emerge. However, in order to construct
some analogue of Newtonian gravity, we need massive particles as sources of the gravitational
field (massless particles do not gravitate in Newtonian gravity). Therefore, the quasiparticles
must not be Goldstone bosons, but instead pseudo-Goldstones: the U(1) symmetry has to be
broken explicitly at the level of the Hamiltonian.

In [7] an extra term was added to the Hamiltonian,

Ĥ0 → Ĥ = Ĥ0 + Ĥλ, Ĥλ = −λ
2

∫
d3x

(
Ψ̂(x)2 + (Ψ̂†(x))2

)
, (23)

where λ is a coupling constant having the dimensions of an energy in these choice of units. The
breaking of the U(1) symmetry has an obvious interpretation: the number of bosons is no longer
a conserved charge (see [7] for concrete examples in which such system could be realized).
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Preliminary analysis of the condensate wavefunction based on the extension of the GP
equation to this case, leads to the homogeneous solution

ψ =
√
nce

−iθ/�, nc =
μ+ λ

2
, θ = 0, (24)

where the phase θ = 0 is fixed by stability of the condensate itself: for different values of θ the
quasiparticles would show a tachyonic instability.

The analysis of the properties of the quasiparticles in the case of homogeneous background
(see [7] for details) leads to the conclusion that the quasiparticles dispersion relation is

E =

(
M2c4s + p2c2s +

p4

4m2

)1/2

, (25)

where

c2s =
μ+ 2λ

m
, M2 = 4

λ(μ+ λ)

(μ+ 2λ)2
m2. (26)

In the case of small momenta, and when the condensate wavefunction is not exactly homogeneous
(i.e. when u(x) = 0), the Hamiltonian for the quasiparticles takes the shape

Ĥq.p. ≈Mc2s −
�
2∇2

2M + 2
(μ+ λ)(μ+ 4λ)

Mc2s
u(x), (27)

which leads to the identification of a “gravitational potential”:

Φgrav(x) =
(μ+ 4λ)(μ+ 2λ)

2λm
u(x). (28)

3.1. The emergent gravitational system
Having presented the main ideas and required tools, we pass to the results. Consider the
Hamiltonian with the U(1) breaking term. In the limit in which the backreaction of the
condensate is small, i.e. in the limit in which there are few quasiparticles, when the condensate
is almost homogeneous, the Bogoliubov–de Gennes equation can be rewritten in terms of the
above mentioned effective Newtonian potential as(

∇2 − 1

L2

)
Φgrav = 4πGNρmatter + CΛ, (29)

where

GN ≡ κ(μ+ 4λ)(μ+ 2λ)2

4π�2mλ3/2(μ+ λ)1/2
, CΛ ≡ 2κ(μ+ 4λ)(μ+ 2λ)

�2λ

(
nΩ +

1

2
mΩ

)
, (30)

L2 ≡ �
2

4m(μ+ λ)
. (31)

Notice the peculiar splitting of the source term. A detailed analysis [7] shows that the expectation
values (22) always split into two contributions, one nonlocal term due to the quasiparticles
(ρmatter), and an unavoidable vacuum contribution, CΛ, due to the inequivalence between the
Fock vacuum for particles and the Fock vacuum for quasiparticles.

The reader will immediately realise that the would-be Poisson equation includes a term which
makes the interaction short ranged. In particular, this range is set by the healing length L, which
is an UV scale for the physics of the BEC (very much like the Planck scale in quantum gravity).
This might have been guessed from the beginning, since that the healing length represents the
typical scale for the dynamics of the condensate. Henceforth, this system is not an analogue for
a realistic form of gravitational interaction, however it does offer some intriguing hints which we
further develop in what follows.
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3.2. A lesson for the cosmological constant in emergent gravity?
Note that the source term in the correct weak field approximation of Einstein equations is
4πGN (ρ + 3p/c2). For standard non-relativistic matter, p/c2 is usually negligible with respect
to ρ. However, it cannot be neglected for the cosmological constant, since pΛ/c

2 = −ρΛ. As a
consequence CΛ = −2c2sΛ, where Λ would be the GR cosmological constant.

Indeed it can be shown via an explicit computation in an homogeneous background, no
external potential, and with the condensate is at rest it equals [8]

Λ = −20mgρ0 (gρ0 + 3λ)

3
√
π�2λ

√
ρ0a3 FΛ

(
λ

gρ0

)
, (32)

where we used that in the above regime μ = gρ0−λ and FΛ(λ/gρ0) is a monotonically decreasing
function ranging from F (0) = 1 to F (1) = 0.

It is important to stress that if one compares the value of Λ either with the ground-state
grand-canonical energy density h or to the ground-state energy density ε of of the BEC, Λ does
not correspond to either of them [8]. Actually, since Λ is proportional to

√
ρ0a3, it can even be

arbitrarily smaller both than h and than ε, if the condensate is very dilute. Furthermore, Λ is
proportional only to the subdominant second order correction of h or ε, which is strictly related
to the depletion factor of the condensate.

Indeed, several scales show up in this system, in addition to the naive Planck scale computed
by combining � and the emergent constants GN and cs:

LP =

√
�c5s
GN

∝
(
λ

gρ0

)−3/4
(ρ0a

3)−1/4a. (33)

For instance, the Lorentz-violation scale LLV = ξ ∝ (ρ0a
3)−1/2a differs from LP, suggesting

that the breaking of the Lorentz symmetry might be expected at scale much longer than
the Planck length (energy much smaller than the Planck energy), since the ratio LLV/LP ∝
(ρ0a

3)−1/4 increases with the diluteness of the condensate.1

It is also instructive to compare the energy density corresponding to Λ to the Planck energy
density:

EΛ =
Λc4s
4πGN

, EP =
c7s

�G2
N

,
EΛ
EP ∝ ρ0a

3

(
λ

gρ0

)−5/2
. (34)

The energy density associated with the analogue cosmological constant is much smaller than the
values computed from zero-point-energy calculations with a cut off at the Planck scale. Indeed,
the ratio between these two quantities is controlled by the diluteness parameter ρ0a

3.
Taken at face value, this relatively simple model displays too many crucial differences with

any realistic theory of gravity to provide conclusive evidences. However, it displays an alternative
path to the cosmological constant from the perspective of a microscopic model. The analogue
cosmological constant that we have discussed cannot be computed as the total zero-point energy
of the condensed matter system, even when taking into account the natural cut-off coming from
the knowledge of the microphysics [10]. Indeed, the value of Λ is related only to the (subleading)
part of the zero-point energy proportional to the quantum depletion of the condensate.

The implications for gravity are twofold. First, there could be no a priori reason why the
cosmological constant should be computed as the zero-point energy of the system. More properly,
its computation must inevitably pass through the derivation of Einstein equations emerging

1 Note also that LLV scales with ρ0a
3 exactly as the range of the gravitational force, signalling that this model is

too simple to correctly grasp all the desired features. However, in more complicated systems [9], this pathology
can be cured, in the presence of suitable symmetries, leading to long range potentials.
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from the underlying microscopic system. Second, the energy scale of Λ can be several orders
of magnitude smaller than all the other energy scales for the presence of a very small number,
nonperturbative in origin, which cannot be computed within the framework of an EFT dealing
only with the emergent degrees of freedom (e.g. semiclassical gravity).

4. Quasi-particles and locality
An aspect of the physics of quasiparticles which is not often stressed concerns the issue of
locality, i.e. whether the effective Lagrangian of the quasiparticles does obey the axioms of local
quantum field theory.

In BEC, the particles φ and quasiparticles ω field operators are related by a Bogoliubov
transformation, which have the following general structure:

ωA(k) =MA
B (k)φB(k), (35)

when working in momentum space this relation is always linear. However, it is nonlocal in
coordinate space as

ωA(x) =

∫
d3y KA

B(x, y)φ
B(y), (36)

where the kernel K is determined by the Bogoliubov coefficients:

KA
B(x, y) =

∫
d3kMA

B (k)e−ik·(x−y). (37)

This is the mathematical statement of the fact that quasi-particles are collective degrees of
freedom. The structure of the transformation immediately implies that there is a mismatch
between the notion of locality of the quasi-particle with respect to the notion of locality of the
atoms. As one easily realizes, the two classes of operators φ, ω, separately, do obey canonical
equal time commutation relations:

[φA(x), (φB)†(y)] = δABδ3(x− y), [ωA(x), (ωB)†(y)] = δABδ3(x− y), (38)

which are a direct consequence of the fact that Bogoliubov transformations are preserving the
algebra of the creation-annihilation operators. Therefore, as long as we use only one of the two
families, there is no way in which a deviation from standard local quantum field theory can be
manifest. However, the mixed commutators are nontrivial and it is straightforward to see that

[φA(x), (ωB)†(y)] = (KAB)∗(x, y), (39)

Of course, this fact becomes crucial when the effective Lagrangian describing the physics of the
quasi-particles involves terms mixing particle and quasi-particle operators.

In the case of the BEC it is pretty clear how the underlying dynamics induces in the action
for the quasi-particles an interaction term of the form

Lint = −κ
4

(
(φA)†φA

)2
(40)

which explicitly involves the particle fields, rather than the quasi-particles. Hence, when
computing the effects of the interaction terms, e.g. scattering processes between the quasi-
particles, the nonlocality encoded in the kernelK will necessarily enter in the physical quantities.
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5. Analogue gravity in Relativistic BEC
Bose–Einstein condensation can occur not only for non-relativistic bosons but for relativistic ones
as well. The main differences between the thermodynamical properties of these condensates
at finite temperature are due both to the different energy spectra and also to the presence,
for relativistic bosons, of anti-bosons. These differences result in different conditions for the
occurrence of Bose–Einstein condensation, which is possible, e.g., in two spatial dimensions for
a homogeneous relativistic Bose gas, but not for its non-relativistic counterpart – and also, more
importantly for our purposes, in the different structure of their excitation spectra.

In reference [11] an analogue model based on a relativistic BEC was studied. We summarize
here the main results. The Lagrangian density for an interacting relativistic scalar Bose field
φ̂(x, t) may be written as

L̂ =
1

c2
∂Ψ̂†

∂t

∂Ψ̂

∂t
−∇Ψ̂† · ∇Ψ̂−

(
m2c2

�2
+ V (t,x)

)
Ψ̂†Ψ̂− U(Ψ̂†Ψ̂;λi) , (41)

where V (t,x) is an external potential depending both on time t and position x, m is the mass of
the bosons and c is the light velocity. U is an interaction term and the coupling constant λi(t,x)
can depend on time and position too (this is possible, for example, by changing the scattering
length via a Feshbach resonance [12]). U can be expanded as

U(Ψ̂†Ψ̂;λi) =
λ2
2
ρ̂2 +

λ3
6
ρ̂3 + · · · (42)

where ρ̂ = Ψ̂†Ψ̂. The usual two-particle λ2Ψ̂
4-interaction corresponds to the first term (λ2/2)ρ̂

2,
while the second term represents the three-particle interaction and so on.

In this case it is convenient to use the representation

Ψ̂ = ψ (1 + χ̂) . (43)

It is worth noticing now that the expansion in Eq. (43) can be linked straightforwardly to the

previously discussed expansion in phase and density perturbations θ̂1, ρ̂1, by noting that

ρ̂1
ρ

=
χ̂+ χ̂†

2
, θ̂1 =

χ̂− χ̂†
2i

.

Setting χ ∝ exp[i (k · x− ωt)] one then gets from the equation of motion [11](
− �

m
q · k+

u0

c
ω − �

2mc2
ω2 +

�

2m
k2

)(
�

m
q · k− u0

c
ω − �

2mc2
ω2 +

�

2m
k2

)
−

(c0
c

)2
ω2 + c20k

2 = 0 ,

where, for convenience we have defined the following quantities

uμ ≡ �

m
ημν∂νθ , c20 ≡

�
2

2m2
U ′′(ρ;λi)ρ , q ≡ mu/� . (44)

Here q is the speed of the condensate flow, c is the speed of light. For a condensate at rest
(q = 0) one then obtains the following dispersion relation

ω2
± = c2

⎧⎨⎩k2 + 2

(
mu0

�

)2 [
1 +

( c0
u0

)2
]
± 2

(
mu0

�

)√
k2 +

(
mu0

�

)2 [
1 +

( c0
u0

)2
]2⎫⎬⎭ . (45)
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The dispersion relation (45) is sufficiently complicated to prevent any obvious understanding of
the regimes allowed for the excitation of the system. It is much richer than the non-relativistic
case. For example, it allows for both a massless/gapless (phononic) and massive/gapped mode,
respectively for the ω− and ω+ branches of (45). Nonetheless, it should be evident that different
regimes are determined by the relative strength of the the first two terms on the right hand side
of (45) (note that the same terms enter in the square root). This can be summarized, in low
and high momentum limits respectively, for k much less or much greater than

mu0

�

[
1 +

( c0
u0

)2
]
≡ mu0

�
(1 + b), (46)

where b basically encodes the relativistic nature of the condensate (the larger b the more the
condensate is relativistic).

Finally, it is also possible to recover an acoustic metric for the massless (phononic)
perturbations of the condensate in the low momentum limit (k � mu0(1 + b)/�) [11]

gμν =
ρ√

1− uσuσ/c2o

[
ημν

(
1− uσu

σ

c20

)
+
uμuν
c20

]
. (47)

5.1. Emergent scalar gravity in Relativistic BEC
The above discussed relativistic BEC system albeit still unrealised in laboratory is an obvious
candidate for further exploring the dynamics of the emergent spacetime this time in a fully
relativistic context (see [13] for a complete derivation). In order to do so let us go back to the
equation of motion of the BEC (

�−m2
)
Ψ− 2λ|Ψ|2Ψ = 0. (48)

This was the starting equation in ref. [11] where the acoustic metric was first derived.

Let us again decompose Ψ̂ as Ψ̂ = ψ(1 + χ̂), where ψ is the condensed part of the field
(〈Ψ〉 = ψ), which we now take to be real, and χ̂ is the fractional fluctuation.2 Note that χ̂
is instead complex and 〈χ̂〉 = 0. It can be written in terms of its real and imaginary parts
χ = χ1 + iχ2 (and from now on we drop the hat notation). Substituting this decomposition in
eq. (48) and taking the expectation value we get the equation of motion for the condensate

(�−m2)ψ − 2λψ3 − 2λψ3
[
3 〈χ2

1〉+ 〈χ2
2〉

]
= 0, (49)

where we have assumed that the cross-correlation of the fluctuations vanish, i.e., 〈χ1χ2〉 = 0.
This is justified a posteriori by equations (53), which show that χ1 and χ2 do not interact with
each other at the order of approximation we are working. Eq. (49) determines the dynamics
of the condensate taking into account the backreaction of the fluctuations. It is the relativistic
generalization of the Gross–Pitævskii equation.

5.2. Dynamics of perturbations: acoustic metric
Having determined the dynamics of the condensate we now want to calculate the equations of
motion for the perturbations themselves. To this end, we insert Ψ = ψ(1+χ1 + iχ2) in eq. (48)
and expand it to linear order in ψ’s. Using the Gross–Pitævskii equation to that order and
separating the real and imaginary parts we get the equation of motion for χ1 and χ2,

�χ1 + 2ημν∂μ(lnψ)∂νχ1 − 4λψ2χ1 = 0, (50a)

�χ2 + 2ημν∂μ(lnψ)∂νχ2 = 0. (50b)

2 The reality of the condensate order parameter is the crucial assumption here. See the relevant discussion in [13].
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We therefore see that χ2 is the massless mode, which is the Goldstone boson of the broken U(1)
symmetry, while χ1 is the massive mode with mass 2ψ

√
λ. We now define a “acoustic” metric,

which is conformal to the background Minkowski,

gμν = ψ2 ημν . (51)

The relation between the d’Alembertian operators for gμν and ημν is given by,

�g =
1

ψ2
�+

2

ψ2
ημν ∂μ(lnψ) ∂ν . (52)

Equations (50) can be written in terms of the d’Alembertian of gμν as

�gχ1 − 4λχ1 = 0, (53a)

�gχ2 = 0. (53b)

We see from eqs. (53) that the fluctuations propagate on a curved metric, called the acoustic
metric, which in this case is conformal to the background Minkowski space eq. (51). Note that
in this derivation there was no low-momentum approximation needed in order to derive the
acoustic metric. On the other hand, they back-react on the condensate through the relativistic
generalization of the Gross-Pitaevskii equation (49). It is natural to ask if it is possible to have
a geometric description of the dynamics of the condensate too.

The Ricci tensor of the acoustic metric (51) can be calculated to be

Rg = −6 �ψ

ψ3
(54)

Dividing the relativistic Gross-Pitaevskii equation by ψ3, eq. (49) can be written as

Rg + 6
m2

ϕ2
0

+ 12λ = 〈Tqp〉, (55)

where we have defined 〈Tqp〉 := −12λ [
3 〈χ2

1〉+ 〈χ2
2〉

]
and the subscript “qp” reminds us that

this quantity is determined by the quasi-particle excitations of the condensate.
Eq. (55) is evidently reminiscent of the Einstein–Fokker equation describing Nordström

gravity [14, 15],

R+ Λ = 24π
GN

c4
T, (56)

where R and T are, respectively, the Ricci scalar and the trace of the stress-energy tensor of
matter. Unfortunately, the gravitational analogy of our equation is spoiled by the mass term.
Therefore we will consider our system in the zero mass limit, something doable in the presence
of a suitable chemical potential (see discussion in [13]). otice that this limit does not spoil the
presence of a condensate or the uniqueness of the Lorentz group for constituents and excitations
found in sec.

The striking resemblance of equations (55) with zero mass term and (56) is still not enough
to draw conclusions. Indeed, the dimensions of the various quantities appearing in eq. (55) are
not canonical and need to be fixed for such comparison to be meaningful. This is due to the
fact that, as is usual in the analogue gravity literature, our acoustic metric is a dimensional
quantity because ψ is dimensional. The fractional perturbations χ1 and χ2, on the other hand,
are dimensionless.

One therefore needs to suitably rescale fields in order to have a dimensionless metric
and (mass) dimension one scalar fields propagating on the curved metric. The upshot of
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this dimensional analysis is that we need to scale the field ψ → μ√
c�
ψ and perturbation

χ →
√
c�

μ
χ [13]. Finally, using these rescaled quantities we can rewrite eq. (55) (with m = 0)

in the form of eq. (56) as
R+ Λeff = 〈Tqp〉, (57)

and Tqp here and in the following is the same expression as in (55) but with the mass dimension
one fields. Equations of motion of the quasi-particles (50) can also be rewritten in terms of the
rescaled fields as

�gχ1 − 4λμ2

�c
χ1 = 0, (58a)

�gχ2 = 0, (58b)

where all quantities, including the �g operator, now pertain to those of the rescaled fields.
Remarkably, by defining the actual SET of the quasiparticle as the usual variation of their

quadratic action w.r.t. the emergent metric one one finds [13] that this basically coincides with
Tqp modulo a proportionality factor. Indeed one finds,

〈T 〉 = −2λμ
2

c�

[
3〈χ2

1〉+ 〈χ2
2〉
]
=

1

6

μ2

c�
〈Tqp〉. (59)

Due to this last expression one sees that the RHS of eq. (57) is actually given by 6c�
μ2 〈T 〉

and hence our emergent Nordström gravity equation will be exactly of the form (56) with the
identification Geff = �c5/(4πμ2). This value corresponds to an emergent analogue Planck scale
MPl = μ

√
4π/c2.

We have thus succeeded in expressing the dynamics of the background for our rBEC analogue
model in a geometric language

R+ Λeff = 24π
Geff

c4
〈T 〉. (60)

The acoustic metric itself is sourced by the expectation value of the trace of the stress-energy
tensor of the perturbations of the condensate playing the role of the matter. These matter fields
in turns propagate relativistically on a conformally flat acoustic metric (51) with equations (58).

A final comment is deserved by the emergent, positive, cosmological constant term Λeff .
The quantity of interest for what concern the usual cosmological constant problem is the ratio

between the energy density associated to the (emergent) cosmological constant εΛeff
∼

(
Λeffc

4

Geff

)
and the emergent Planck energy density εpl ∼ c7

�G2
eff

. In our case this ratio is given by

εΛeff

εpl
� 3λ�c

4π2
. (61)

As one can see the ratio is proportional to λ� and so is clearly pretty small due to the presence
of Planck constant and of the natural assumption of a weakly interacting system. Of course
in principle this term can be “renormalised” by the vacuum contribution of the matter fields
(basically the vacuum expectation value 〈T 〉).
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6. Going beyond: the issue of background independence
The result presented in Eq. (60) is at the same time striking and disappoint. While we succeeded
in obtaining a dynamical equation for the analogue metric which reproduce a well known theory
of gravity, such a theory is just a scalar theory of gravity (obviously as our fundamental fields
are scalar in nature) which admits only conformally flat metrics.

Indeed, Nordström gravity is not fully background independent as the the Minkowski metric
can be see then as a background structure, what one may call a prior geometry. One may hence
say that diffeomorphism invariance is somewhat of a weaker form in Nordström gravity with
respect the one present in general relativity. In particular, while the essence of diffeomorphism
invariance in GR is encoded in the associated Hamiltonian constraints, these are not defined in
the present formulation of Nordström gravity.

Another way to see this point is to resort to the famous derivation of Einstein equations from
the Clausius equation (dS = δQ/T ) presented by Jacobson in his 1995 seminal paper [16]. In
that work, one uses the equivalence principle to construct around an arbitrary point of spacetime
a Rindler wedge as observed for some accelerated observer. The wedge provides a natural notion
of entropy as the entanglement entropy of the vacuum (which will be locally the Minkowski one)
and of temperature through the Unruh effect. Heat fluxes can be associated to matter fluxes
through the wedge. The entanglement entropy is proportional to the area which can in turn be
written in terms of the expansion of the null congruence associated to the wedge. The variation
of the entropy due to some flux is then associated to the variation of the expansion which is
determined by the Raychaudhuri equation. The latter contains the Ricci tensor. In the end by
equating the integrands on both sides of the Clausius equation and by using the conservation
of the stress energy tensor (SET) one gets the Einstein equation with a cosmological constant
(which come about as an integration constant) [16].

Now, it is interesting to note that if one takes an ideal system such as a perfect fluid (inviscid
and irrotational), then perturbations propagate on the acoustic metric at all scales (there is
no scale to provide for Lorentz breaking in the equations). In such system, all of the above
argument can be reproduced: the metric is locally flat and all of the effects of quantum field
theory leading to entanglement entropy and Unruh temperature still holds for phonons of the
fluid. So, should we conclude that the Einstein equation can be recovered even in an (albeit
ideal) analogue system? Of course this would not be compatible with that fact that the real
equations, governing the fluid dynamics, are the hydrodynamic ones!

After some thinking one can realize that there is a step that even in our idealised fluid
system is not granted, that is the assumption that the null congruence bounding the Rindler
wedge reacts to phonon fluxes as in the true gravitational setting, i.e. ultimately, we cannot
assume that phonons gravitate (affect the background geometry) via their SET. Indeed we saw
explicitly in BEC systems that phonons “gravitate” in rather different ways: at best with their
energy density or with the trace of their SET. So in the end the impossibility of recovering the
full Einstein equations in analogue models seems to be linked to the fact that phonons will not
gravitate through the right object i.e. a conserved SET, which in turns is directly linked to the
background independence issue.

This point seems also strictly connected to a theorem recently demonstrated in [17]. The
starting point is that background independent gravitational theories, with universal coupling to
energy, are characterised by Hamiltonians that are pure boundary terms on shell. Then it is
shown that in order for this to be the low energy effective description of a field theory with local
kinematics, all bulk dynamics must be frozen and thus irrelevant to the construction.

The result indeed implies that gravitational theories emergent along the analogue gravity
framework, could be truly diffeomorphism invariant only if a different notion of micro-causality
for the fundamental and emergent fields is present (something not realised e.g. in BEC).

In conclusion it seems that emergent theories of gravity would be characterised either by
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extra fields possibly leading to Lorentz breaking in the UV or by some degree of non-locality
(which can appear or at the kinematical level or at the level of the interactions). In the last part
of this contribution we shall discuss possible phenomenological consequences of these departures
from standard physics and what constraints we can cast on them.

7. From analogue models to phenomenology
In closing this brief explorations on toy models of emergent gravity it is interesting to consider
what we can say about the phenomenological consequences of the framework they seem to
suggest. In this sense we have two main streams of investigation offered by analogue gravity
ideas, i.e. we could generically expect or UV deviations from Lorentz invariance and/or intrinsic
non-locality to appear both in interactions (as suggested by the phonon-atom duality in BEC)
as well as in free propagation (if some for of fundamental non-locality has to be implemented as
suggested by Marolf’s theorem discussed above).

7.1. Lorentz breaking phenomenology
With regard of UV Lorentz breaking, both in the form of higher mass dimension dispersive or
dissipative operators to be included the EFT for elementary particles, there is plenty we can
say. A systematic investigation has been carried out mainly in the last 15 years based on the
so called Standard Model Extension (i.e. an extension of the standard model of particle physics
with Lorentz breaking operators added order by order in mass dimension and catalogues by
their even or odd nature under CPT) which lead to a wealth of constraints (see e.g. [18, 19]).
In particular, this approach leads to modified dispersion relations of the form

E2 = p2 +m2
i +

∞∑
n=1

ηi(n)
pn

Mn−2
Pl

, (62)

where we have put the low energy speed of light c = 1 and labelled the particle types by
the i index and MPl = 1.22 × 1019 GeV. In this parametrisation casting a strong constraints
corresponds to show that the dimensionless coefficient ηi has to be much smaller than one. Most
commonly the values of n considered are 3 and 4 (linear and quadratic Planck suppressed terms
respectively).

It should not come as a surprise that constraints on this ansatz came mostly from high energy
astrophysics and cosmology. Indeed the color dependence of the group velocity of photons can
lead to observable differences of time of arrival for light emitted from very distance sources (e.g.
gamma ray bursts). Putting an upper bound on color dependent delays can cast bounds on the
size of the Lorentz breaking terms.

Similarly, modified dispersion relations can lead to depolarisation (vacuum birefringence),
anomalous threshold reactions (e.g. vacuum Cherenkov or photon decay) as well as modify
standard threshold reactions by shifting the standard threshold energy as well as by introducing
“upper thresholds” (a maximum energy for which the reaction can happen). See [20, 21] for an
overview.

All this new physics led to severe constraints on different particle species illustrated
schematically in Table 1 (taken from [19] so updated to 2013). These seem indeed very
tight constraints, but a caveat is in order: everywhere you see a (CR) label the constraints is
performed using observations of Ultra High Energy Cosmic Rays (UHECR). The status of these
observations and in particular the actual observation of the so called GZK cutoff is subject of
intense debate nowadays and recent evidence from the leading experiment in the field, AUGER,
seems to strongly hint in disfavour of this claim. This in particular makes the reliability of the
constraints on the n = 4 Lorentz breaking corrections very weak and in strong need of further
investigations.
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Order photon e−/e+ Protrons Neutrinosa

n=2 N.A. O(10−16) O(10−20) (CR) O(10−8 ÷ 10−10)
n=3 O(10−16) (GRB) O(10−16) (CR) O(10−14) (CR) O(40)
n=4 O(10−8) (CR) O(10−8) (CR) O(10−6) (CR) O(10−7)∗ (CR)

Table 1. Summary of typical strengths of the available constrains on the SME at different n orders for
rotational invariant, neutrino flavour independent LIV operators. GRB=gamma rays burst, CR=cosmic rays.
a From neutrino oscillations we have overwhelming constraints on the difference of LIV coefficients of different
flavors. ∗ Expected constraint from future experiments.

Even the possibility of dissipative dispersion relations has been considered (inspired by
analogue gravity investigations for viscous fluids, see e.g. [22]). For example, we can conjecture
a dispersion relation for photons of the form [23]

ω2 = c2k2 − iσ2c2 k3

MPl
, (63)

where σ2 = (4ν2MPl)/3c is the dimensionless coefficient controlling the magnitude of the
Lorentz violation (LV) and ν is the “viscosity” coefficient of the spacetime fluid. Using the
observed 80 TeV photons from the Crab nebula which is at a distance DCrab � 1.9 Kpc one
obtainsσ2 ≈ 1.3×10−26. similar strengths constrains can be obtained for neutrinos. If spacetime
emergent as a fluid, it better has to be a superfluid.

It is worth stressing that higher order dissipative terms can and in principle should be
considered. For example, nothing forbids such terms in superfluids (which have zero viscosity)
to be non-zero. Similarly, if some fundamental, custodial, symmetry of the underlying, quantum
gravitational system would forbid the above mentioned “spacetime viscosity” term still one could
expect non-zero dispersive O(k4) and dissipative O(k5) terms to appear. These are sufficiently
high energy modifications for which we do have relatively weak constraints on dispersion and
basically no constraints on dissipation [23]. Casting strong constraints on this higher order
dissipative terms would be very informative as some sort of dissipative effect should be expected
at higher order even for superfluids.

7.2. Non-locality phenomenology
As said, an alternative element that seems to be required for a consistent emergent gravity
scenario “ a’ la analogue gravity” appears to be some form of non-locality and indeed there
are QG scenarios resorting to different forms of emergence where Lorentz invariance is held
as a guiding principle, while spacetime is seen as emergent from more fundamental, planckian
structures. Typical scenarios in this sense are those of String Field Theory (SFT) [24] and
Causal Set Theory (CST) [25]. But what kind of equations of motions one should expect in this
case?

A general approach to the problem could consist in considering for example the dynamics of a
free scalar field in flat spacetime, i.e. the standard Klein-Gordon (KG) equation (�+m2)φ(x) =
0. The simplest modification to this equation, which preserves Lorentz invariance, is one which
generalises the KG operator to some function thereof: (�+m2)→ f(�+m2). Furthermore, in
order to avoid Ostrogradsky-like [26] instabilities, which arise in general whenever the dynamics
contains more than two time derivatives, such an equation must be non-local in both space
and time, in the sense of possessing an infinite number of spatial and temporal derivatives.
Generically, the definition of f will contain a characteristic, covariantly defined non-locality
length scale lk, which allows for a suitable power law expansion characterising the deviation
from the standard local field equations.
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Not surprisingly, the above expectations are fulfilled at least by two QG models which
implements Lorentz invariance at the fundamental level, namely String Field and Causal Set
theories. Indeed, in String Field theory one finds that the KG equation in four dimensions is
modified to [27]

f(�+m2) = (�+m2) exp
[
l2k(�+m2)

]
, (64)

with f therefore an analytic function. On the other hand, in Causal Set Theory one finds that
f(�+m2) is generally non-analytic, and in four dimensions can be expanded as [28, 29]

f(�+m2) = (�+m2)− 3l2k
2π
√
6
(�+m2)2

[
3γ − 2 + ln

(
3l4k(�+m2)2

2π

)]
+ . . . (65)

where γ is Euler-Mascheroni’s constant.
It is important to note that the non-locality length scale lk, in both models needs not

to be related to the quantum/discreteness scale normally associated to QG, i.e. the Planck
scale. In fact, this scale is a mesoscopic one possibly lying somewhere between the TeV scale
and the Planck scale; a fact which is of particular relevance within the context of casting
phenomenological constraints.

The phenomenology associated to this kind of theories is in general different depending on the
form of the function f . For non-analytic forms, like the one emergent from studies in CAUSET
theory, one gets in 4d Green functions for a massless scalar field with non-zero support inside
the light cone, i.e. the theory fails to satisfy Huygens’ principle, i.e. there is a “leakage” inside
the light cone of the field emitted from a delta function source [28]. This could prove fruitful in
testing the theory, since one can envisage performing high precision tests of radiation emitted
by very localised sources to check if such afterglow is present.

Alternative the case of analytical f functions can be studied by looking at the non-relativistic
limit of the Klein-Gordon equation. This provides a non-local Schrödinger evolution which can
be solved in a perturbative way. In particular, it was shown in [30, 31] that the corresponding
non-local evolution of opto-mechanical quantum oscillators is characterised by a spontaneous
periodic squeezing that cannot be generated by environmental effects. Quite surprisingly future
experiments (already under construction) will either see such effects or otherwise cast severe
bounds on the non-locality scale of order lk � 10−26m (well beyond the current limits set by the
Large Hadron Collider lk � 10−19m).

8. Conclusions
In summary, we think that this brief explorations serves to show the rich landscape of scenarios
and phenomenological implications offered by emergent gravity ideas. Analogue gravity models
are probably not going to give us a definite answer about the actual viability of an emergent
gravity framework for recovering general relativity. However, we have seen that they do provide a
set of toy models that may serve as test beds for our conjectures and suggest testable predictions
of emergent gravity scenarios. While the route to a consistent picture is still long, we do hope
that the results presented here will encourage more researchers to explore this largely unbeaten
path.

Acknowledgments
The author acknowledge the John Templeton Foundation for the supporting grant #51876.

References
[1] Hu B L 2005 Int. J. Theor. Phys. 44 1785–1806 (Preprint gr-qc/0503067)
[2] Barcelo C, Liberati S and Visser M 2005 Living Rev. Rel. 8 12 [Living Rev. Rel.14,3(2011)] (Preprint

gr-qc/0505065)



17

1234567890

8th International Workshop DICE2016: Spacetime - Matter - Quantum Mechanics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 880 (2017) 012009  doi :10.1088/1742-6596/880/1/012009

[3] Garay L J, Anglin J R, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 85 4643–4647 (Preprint gr-qc/0002015)
[4] Garay L J, Anglin J R, Cirac J I and Zoller P 2001 Phys. Rev. A63 023611 (Preprint gr-qc/0005131)
[5] Barcelo C, Liberati S and Visser M 2001 Class. Quant. Grav. 18 1137 (Preprint gr-qc/0011026)
[6] Fedichev P O and Fischer U R 2004 Phys. Rev. A69 033602 (Preprint cond-mat/0303063)
[7] Girelli F, Liberati S and Sindoni L 2008 Phys. Rev. D78 084013 (Preprint 0807.4910)
[8] Finazzi S, Liberati S and Sindoni L 2012 Phys. Rev. Lett. 108 071101 (Preprint 1103.4841)
[9] Liberati S, Visser M and Weinfurtner S 2006 Phys. Rev. Lett. 96 151301 (Preprint gr-qc/0512139)

[10] Volovik G E 2006 AIP Conf. Proc. 850 26–33 (Preprint cond-mat/0507454)
[11] Fagnocchi S, Finazzi S, Liberati S, Kormos M and Trombettoni A 2010 New J. Phys. 12 095012 (Preprint

1001.1044)
[12] Cornish S L, Claussen N R, Roberts J L, Cornell E A and Wieman C E 2000 Phys. Rev. Lett. 85 1795–1798
[13] Belenchia A, Liberati S and Mohd A 2014 Phys. Rev. D90 104015 (Preprint 1407.7896)
[14] Deruelle N 2011 Gen. Rel. Grav. 43 3337–3354 (Preprint 1104.4608)
[15] Giulini D 2008 Stud. Hist. Phil. Sci. B39 154–180 (Preprint gr-qc/0611100)
[16] Jacobson T 1995 Phys. Rev. Lett. 75 1260–1263 (Preprint gr-qc/9504004)
[17] Marolf D 2015 Phys. Rev. Lett. 114 031104 (Preprint 1409.2509)
[18] Mattingly D 2005 Living Rev. Rel. 8 5 (Preprint gr-qc/0502097)
[19] Liberati S 2013 Class. Quant. Grav. 30 133001 (Preprint 1304.5795)
[20] Mattingly D, Jacobson T and Liberati S 2003 Phys. Rev. D67 124012 (Preprint hep-ph/0211466)
[21] Baccetti V, Tate K and Visser M 2012 JHEP 03 087 (Preprint 1111.6340)
[22] Visser M 1998 Class. Quant. Grav. 15 1767–1791 (Preprint gr-qc/9712010)
[23] Liberati S and Maccione L 2014 Phys. Rev. Lett. 112 151301 (Preprint 1309.7296)
[24] Siegel W 1988 Adv. Ser. Math. Phys. 8 1–244
[25] Surya S 2011 (Preprint 1103.6272)
[26] Woodard R P 2015 Scholarpedia 10 32243 (Preprint 1506.02210)
[27] Koshelev A S 2012 Rom. J. Phys. 57 894–900 (Preprint 1112.6410)
[28] Belenchia A, Benincasa D M T and Liberati S 2015 JHEP 03 036 (Preprint 1411.6513)
[29] Johnston S 2015 Class. Quant. Grav. 32 195020 (Preprint 1411.2614)
[30] Belenchia A, Benincasa D M T, Liberati S, Marin F, Marino F and Ortolan A 2016 Phys. Rev. Lett. 116

161303 (Preprint 1512.02083)
[31] Belenchia A, Benincasa D M T, Liberati S, Marin F, Marino F and Ortolan A 2017 Phys. Rev. D95 026012

(Preprint 1611.07959)


