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Abstract: Recently, Verlinde proposed that gravity is an emergent phenomenon which originates from an entropic
force. In this work, we extend Verlinde’s proposal to accommodate generalized uncertainty principles
(GUP), which are suggested by some approaches to quantum gravity such as string theory, black hole
physics and doubly special relativity (DSR). Using Verlinde’s proposal and two known models of GUPs, we
obtain modifications to Newton’s law of gravitation as well as the Friedmann equation. Our modification
to the Friedmann equation includes higher powers of the Hubble parameter which is used to obtain a cor-
responding Raychaudhuri equation. Solving this equation, we obtain a leading Planck-scale correction to
Friedmann-Robertson-Walker (FRW) solutions for the p = ωρ equation of state.
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1. Introduction

One of the intriguing predictions of various frame worksof quantum gravity, such as string theory and blackhole physics, is the existence of a minimum measurablelength. This has given rise to the so-called generalized un-certainty principle (GUP) or equivalently, modified com-
∗E-mail: aawad@zewailcity.edu.eg
†E-mail: ahmed.ali@fsc.bu.edu.eg (Corresponding author)

mutation relations between position coordinates and mo-menta [1–8]. This can be understood in the context of stringtheory since strings can not interact at distances smallerthan their size. The GUP is represented by the followingform [9–11]:
∆xi∆pi ≥ ~2 [1 + β

((∆p)2+ < p >2)
+ 2β (∆p2

i+ < pi >2)] , (1)
where p2 =∑

j
pjpj , β = β0/(Mpc)2 = β0 `2p~2 , Mp = Planck

mass, and Mpc2 = Planck energy. The inequality (1) is
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Planck-scale corrections to Friedmann equation

equivalent to the following modified Heisenberg algebra[9]: [xi, pj ] = i~(δij + βδijp2 + 2βpipj ) . (2)
This form ensures, via the Jacobi identity, that[xi, xj ] = 0 = [pi, pj ] [10].
Recently, a new form of GUP was proposed in [12,13], which predicts maximum observable momenta as wellas the existence of minimal measurable length, and is con-sistent with doubly special relativity theories (DSR) [14–19], string theory and black holes physics [1–7]. It ensures[xi, xj ] = 0 = [pi, pj ], via the Jacobi identity.

[xi, pj ]=i~[δij − α
(
pδij + pipj

p

)
+ α2(p2δij + 3pipj)], (3)

where α = α0/Mpc = α0`p/~, Mp = Planck mass, `p =Planck length, and Mpc2 = Planck energy. In a seriesof papers, various applications of the new model of GUPhave been investigated [20–33].The upper bounds on the GUP parameter α has beenderived in [22]. It was suggested that these bounds canbe measured using quantum optics and gravitational wavetechniques in [34, 35]. Recently, Bekenstein [36, 37] pro-posed that quantum gravitational effects could be testedexperimentally, suggesting“a tabletop experiment which,given state of the art ultrahigh vacuum and cryogenictechnology, could already be sensitive enough to detectPlanck scale signals” [36]. This would enable severalquantum gravity predictions to be tested in the Laboratory[34, 35]. This is considered as a milestone in the field ofquantum gravity phenomenology.Motivated by the above arguments, we investigate pos-sible effects of GUP on the Friedmann equation. We usethe entropic force approach suggested by Verlinde [38] tocalculate corrections to Newton’s law of gravitation andthe Friedmann equations for two models of GUP, whichare mentioned above. We found that Planck-scale cor-rections to the Friedmann equation include higher pow-ers of the Hubble parameter which are suppressed byPlanck length. Using these corrections we construct thecorresponding Raychaudhuri equations, which we thensolve to obtain a leading Planck-scale correction to theFriedmann-Robertson-Walker (FRW) solutions with equa-tion of state p = ωρ. Deriving the effects of GUPs onNewton’s law of gravitation through the entropic forceapproach was initially reported in [39] where a modi-fied Newton’s law of gravitation was calculated. A possi-ble application of these Planck-scale corrections is earlycosmology, in particular inflation models where physical

scales are only a few orders of magnitude less than Planckscale.Let us review Verlinde’s proposal [38] on the origin of grav-ity, where he suggested that a gravitational force mightbe of an entropic nature. This assumption is based on therelation between gravity and thermodynamics [40–42]. Ac-cording to thermodynamics and the holographic principle,Verlinde’s approach results in Newton’s law of gravitation,the Einstein Equations [38] and the Friedmann Equations[43]. The theory can be summarized asat the temperature T , the entropic force F of a gravita-tional system is given as:
F∆x = T∆S, (4)

where ∆S is the change in the entropy such that, at adisplacement ∆x , each particle carries its own portion ofentropy change. From the correspondence between theentropy change ∆S and the information about the bound-ary of the system and using Bekenstein’s argument [40–42], it is assumed that ∆S = 2πkB , where ∆x = ~/m and
kB is the Boltzmann constant.

∆S = 2πkBmc~ ∆x, (5)
where m is the mass of the elementary component, c isspeed of light and ~ is the Planck constant.The holographic principle assumes that for a region en-closed by some surface gravity can be represented by thedegrees of freedom on the surface itself and independentof the its bulk geometry. This implies that the quantumgravity can be described by a topological quantum fieldtheory, for which all physical degrees of freedom can beprojected onto the boundary [44]. The information aboutthe holographic system is given by N bits forming an idealgas. It is conjectured that N is proportional to the entropyof the holographic screen,

N = 4S
kB
, (6)

then according to Bekenstein’s entropy-area relation [40–42]
S = kBc34G~A. (7)

Therefore, one gets
N = Ac3

G~ = 4πr2c3
G~ , (8)

where r is the radius of the gravitational system and A =4πr2 is area of the holographic screen. It is assumed that
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each bit emerges out of the holographic screen i.e. in onedimension. Therefore each bit carries an energy equalto kBT /2. Using the equipartition rule to calculate theenergy of the system, one gets
E = 12NkBT = 2πc3r2

G~ kBT = Mc2. (9)
By substituting Eq. (4) and Eq. (5) into Eq. (9), we get

F = GMmr2 , (10)
making it clear that Newton’s law of gravitation can bederived .
Recently, a modified Newton’s law of gravity due toPlanck-scale effects through the entropic force approachwas derived by one of the authors [39]. Derivation ofPlanck scale effects on the Newton’s law of gravity arebased on the following procedure: modified theory of grav-
ity→ modified black hole entropy→ modified holographic
surface entropy → Newton’s law corrections. This proce-dure has been followed with other approaches like non-commutative geometry in [45–48]. In this paper, we takeinto account the quantum gravity corrections due to GUPin the entropic-force approach, following the same proce-dure as [39], and extend our study to calculate the modifiedFriedmann and Raychaudhuri equations. To calculate thequantum gravity corrections to the Friedmann equations,we use the procedure that has been followed in [49, 50]. Itis worth mentioning that recently, there have been someconsiderable interest in entropic force approach and itsapplications [51–55].An outline of this paper is as follows. In Sec .2, Weinvestigate entropic force if the GUP of Eq. (1), whichwas proposed earlier by [1–11], is taken into considera-tion. First we calculate the modified thermodynamics ofthe black hole which yields a modified entropy. By theholographic principle, we calculate the modified number ofbits N . Based on the modified number of bits, we estimatethe Planck scale correction to Newton’s law of gravitationand the Friedmann equations. We solve Raychaudhuriequations to obtain Planck scale corrections to FRW cos-mological solutions.In Sec. 3, we repeat the analysis for the newly pro-posed model of GUP in Eq. (3). We calculate differentcorrections to Newton’s law of gravity and the Friedmanequations. We compare our results with previous stud-ies of quantum gravity corrections to gravity laws. Wethen solve the modified Raychaudhuri equations. Furtherimplications are discussed.

2. GUP-quadratic in ∆p and BH
thermodynamics
In this section, we review the modified thermodynamicsof the black hole which yields a modified entropy due toGUP [56–62]. Using the holographic principle, we get amodified number of bits N which yields quantum gravitycorrections to Newton’s law of gravitation and the Fried-mann equations.Black holes are considered as a good laboratories for theclear connection between thermodynamics and gravity, soblack hole thermodynamics will be analyzed in this sec-tion. We then make an analysis of BH thermodynamicsif the GUP-quadratic in ∆p that was proposed in [1–11]is taken into consideration. With Hawking radiation, theemitted particles are mostly photons and standard model(SM) particles. Using the Hawking-Uncertainty Relation,the characteristic energy of the emitted particle can beidentified [56–60]. It has been found [25, 26], assumingsome symmetry conditions from the propagation of Hawk-ing radiation, that the inequality that would correspondto Eq. (1) can be written as follows:

∆x∆p ≥ ~2
[1 + 53 (1 + µ) β0 `2

p
∆p2
~2
]
. (11)

where µ = ( 2.821
π
)2.By solving the inequality (11) as a quadratic equation in∆p, we obtain

∆p
~
≥ ∆x53 (1 + µ) β0`2

p

1−√1− 53 (1 + µ) β0`2
p∆x2
 .
(12)Using Taylor expansion, Eq. (12) reads

∆p ≥ 12∆x
[1 + 512 (1 + µ)β0`2

p∆x2 +O(β20 )] , (13)
where we used natural units as ~ = 1. According to [61,62] a photon is used to ascertain the position of a quantumparticle of energy E and according to the argument in[63, 64] which states that the uncertainty principle ∆p ≥1/∆x can be translated to the lower bound E ≥ 1/∆x , onecan write for the GUP case

E ≥ 12∆x
[1 + 512 (1 + µ)β0`2

p∆x2 +O(β20 )] (14)
For a black hole absorbing a quantum particle with energy
E and size R , the area of the black hole should increaseby [65, 66]. ∆A ≥ 8π `2

p E R, (15)
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The quantum particle itself implies the existence of finitebound given by
∆Amin ≥ 8π `2

p E ∆ x. (16)
Using the Eq. (14) in the inequality (16), we get

∆Amin ≥ 4π `2
p

[1 + 512 (1 + µ)β0`2
p∆x2 +O(β20 )] . (17)

The value of ∆x is taken to be inverse of surface gravity∆x = κ−1 = 2rs where rs is the Schwarzschild radius.Where this is probably the most sensible choice of lengthscale is in the context of near-horizon geometry [61, 62].This implies that ∆x2 = A
π . (18)

Substituting Eq. (18) into Eq. (19), we get
∆Amin ' λ`2

p

[1 + 5 π12 (1 + µ) β0`2
p

A +O(β20 )] . (19)
where the parameter λ will be defined later. According to[40–42], the black hole’s entropy is conjectured to dependon the horizon’s area. From information theory [67], it hasbeen found that the smallest increase in entropy should beindependent of the area. It is just one bit of information,which is b = ln(2).
dS
dA = ∆Smin∆Amin = b

λ`2
p

[1 + 5 π12 (1+µ) β0`2p
A +O(β20 )] , (20)

where b is a parameter. By expanding the last expressionin orders of β0 and then integrating, we get the entropy
S = [bλ A`2

p
− 5 π (1 + µ)12 β0 bλ ln( A

`2
p

)]
. (21)

Using the Hawking-Bekenstein assumption [40–42], whichrelates entropy with the area, the value of b/λ is fixed tobe = 1/4, so that
S = ( A4 `2

p

)
− 5 π (1 + µ)48 β0 ln( A

`2
p

)
. (22)

It is concluded that the entropy is directly related tothe area and gets a logarithmic correction when apply-ing GUP approach[61, 62].The temperature of the black hole is

T = κ8π dAdS
= κ8π

[1 + 5 π48 (1 + µ) β0`2
p

A +O(β20 )] . (23)
So far, it is concluded that the temperature is not onlyproportional to the surface gravity but also it depends onthe black hole’s area [61, 62].
2.1. Modified Newton’s law of gravity
In this section we study the implications of the correc-tions for the entropy in Eq. (59) and calculate how thenumber of bits of Eq. (6) would be modified leading toa new correction to Newton’s law of gravitation. Usingthe corrected entropy given in Eq. (22), we find that thenumber of bits should be corrected as follows:

N ′ = 4S
kB

= ( A
`2
p

)
− 5 π (1 + µ)12 β0 ln( A

`2
p

)
. (24)

We can substitute for the Planck length with `p = √
~ G
c3/2 ,then we get the modified number of bits as follows

N ′ = 4S
kB

= (A c3
~ G

)
− 5 π (1 + µ)12 β0 ln(A c3

~ G

)
. (25)

We define the constant δ = 5 π (1+µ)12 β0, then we have
N ′ = 4S

kB
= (A c3

~ G

)
− δ ln(A c3

~ G

)
. (26)

By substituting Eq. (26) into Eq. (9) and using Eq. (4), weget
E = Mc2 = F r2 c2

m G

(1− δ ln ( 4πc3
~G r

2)2π c3
~G r2

)
. (27)

This implies a modified Newton’s Law of gravity given as
F = GMm

r2
1 + δ

ln ( 4πr2
`2p )4πr2/`2

p

 . (28)
Which means that the Newtonian gravitational potentialwould be:
V (r) = −GMmr

1 + 29δ 14πr2/`2
p

+ 13δ ln ( 4πr2
`2p )4πr2/`2

p

 .

(29)
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We note that these logarithmic corrections to the Newto-nian gravitational potential have been obtained using anindependent approach studying the brane world correc-tions to Newton’s law of gravity [68] which suggest thatbrane world and GUP would predict similar physics. Inthe next subsection, we discuss modification of the Fried-mann equation due to the corrections of quantum gravity.
2.2. Modified Friedmann and Raychaudhuri
Equations
In this section, we use the analysis of [43, 49, 50, 69]which derived the Friedmann equations using an entropicforce approach. We investigate the effect of the quantumgravity arising from the GUP proposed in Eq. (1) on theform of the Friedmann equations using the method of [43].The Friedmann-Robertson-Walker (FRW) universe is de-scribed by the following metric:

ds2 = habdxadxb + r̃2dΩ2, (30)
where r̃ = a(t)r, xa = (t, r), hab = (−1, a2/(1 −
kr2)), dΩ2 = dθ2 + sin2 θdφ2 and a, b = 0, 1. k isthe spatial curvature and it takes the values 0, 1,−1for a flat, closed and open universe, respectively. Thedynamic apparent horizon is determined by the relation
hab∂ar̃∂br̃ = 0, which yields its radius[69]:

r̃ = a r = 1√
H2 + k/a2 , (31)

where H = ȧ/a is the Hubble parameter. By assumingthat the matter which occupies the FRW universe forms aperfect fluid, the energy-momentum tensor would be:
Tµν = (ρ + p)uµuν + pgµν . (32)

The energy conservation law then leads to the continuityequation
ρ̇ + 3H(ρ + p) = 0, (33)

To calculate the quantum gravity corrections to the Fried-mann equations, we consider a compact spatial region withvolume V and radius r̃ = a(t)r [43]. By combining New-ton’s second law for the test particle m near the surfacewith the modified gravitational force of Eq. (28), we get
F = m ¨̃r = m ä(t) r = −GMmr̃2

1 + δ
ln ( 4πr̃2

`2p )4πr̃2/`2
p

 .

(34)

Equation (34) can be written in terms of the matter density
ρ = M/V , V = (4/3)πr̃3 as:

ä
a = −4πG3 ρ

1 + δ
ln ( 4πr̃2

`2p )4πr̃2/`2
p

 , (35)
The last equation is considered to be the modified Newto-nian cosmology. To derive the modified Friedmann equa-tions, it was assumed as in [43], that the active gravita-tional mass M, where

M = 2∫
V
dV
(
Tµν −

12Tgµν
)
uµuν , (36)

generates the acceleration rather than the total mass Min the volume V .So for the FRW universe, the active gravitational masswould be
M = (ρ + 3p) 4π3 a3r3. (37)

By replacing M with M, Eq. (35) can be rewritten as:
M = − äa2

G r3
1 + δ

ln ( 4πr̃2
`2p )4πr̃2/`2

p

−1
. (38)

By Equating Eq. (37) with Eq. (38), we get
ä
a = −4πG3 (ρ + 3p)1 + δ

ln ( 4πr̃2
`2p )4πr̃2/`2

p

 . (39)
Using the continuity equation of Eq. (33) in Eq. (39), mul-tiplying both sides with (a ȧand integrating, we obtainthe following equations:
ȧä = −4πG3 ȧa

(
ρ − ρ̇

H − 3ρ)1 + δ
ln ( 4πr̃2

`2p )4πr̃2/`2
p

 .

(40)
d
dt (ȧ2) = 8πG3

(
d
dt
(
ρa2))1 + δ

ln ( 4πr̃2
`2p )4πr̃2/`2

p

 . (41)
Integrating both sides for each term of the last equationyields
ȧ2 + k = 8πG3 ρa2

1 + δ
ρa2

∫ ln ( 4πa2r2
`2p )4πa2r2/`2

p
d
(
ρa2) .

(42)
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We can take r outside the integration because it does notdepend on a from the definition of r̃ = ra(t) after Eq. (30),we get
ȧ2 + k = 8πG3 ρa2[1

+ δ `2
p4πρa2r2

∫ ln(4πa2r2
`2
p

)
d(ρa2)
a2

]
. (43)

Suppose that the equation of state parameter w = p/ρ

is a constant of time, so the continuity equation (33) isintegrated to give

ρ = ρ0a−3(1+w), (44)

By substituting Eq. (44) into Eq. (43) and solving the in-tegration, we get

H2 + k
a2 = 8πG3 ρ

(1 + 2δ ρ0`2
p (−1− 3ω)4πρa2r2

∫ ln(2√πr
`p

a
)(

a−4−3ω)da) . (45)
The integration in the last equation can be solved to yield

H2 + k
a2 = 8πG3 ρ

[1 + δ `2
p (1 + 3ω)18πr̃2(1 + ω)2

(1 + 3(1 + ω) ln 2√π r a
`p

)]
. (46)

Using the relation r̃ = a r = 1√
H2+k/a2 , we get

(
H2 + k

a2
)[1− δ`2

p (1 + 3ω)18π(1 + ω)2 (H2 + k
a2 )(1− 3(1 + ω)2 ln(H2 + k

a2
) `2

p4π
)] = 8πG3 ρ, (47)

or it can be written as(
H2 + k

a2
)[1− δ `2

p (1 + 3ω)18π(1 + ω)2 (H2 + k
a2 ) + δ `2

p (1 + 3ω)12π(1 + ω) (H2 + k
a2 ) ln((H2 + k

a2 ) `2
p4π
)] = 8πG3 ρ. (48)

The last equation gives the entropy-corrected Friedmannequation of the FRW universe by considering gravity asan entropic force. Notice that the Planck-scale correc-tion terms include higher powers of H suppressed by thePlanck scale, the only physical scale we have.We then derive the Raychaudhuri equation which corre-sponds to Eq. (48). We need to find the relation between

Ḣ and H . Since we have H = ȧ/a, then
Ḣ = −H2 + ä

a . (49)
Substituting Eq. (39) and Eq. (48) into Eq. (49) and using
ω = p/ρ, we get:

Ḣ = −3(1 + ω)2 H2 − 1 + 3ω2 k
a2 + δ`2

p18π (1 + 3ω)22(1 + ω)
(
H2 + k

a2
)2

+ δ`2
p4π 1 + 3ω3(1 + ω)

(
H2 + k

a2
)2 ln( `2

p4π
(
H2 + k

a2
))

. (50)
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2.3. Solutions of the modified Raychaudhuri
equation
In this section we solve the modified Raychaudhuri equa-tion (50) for the flat case (k = 0), using a perturbationmethod. For k = 0, equation (50) has the form

Ḣ = −3(1 + ω)2 H2 + δ`2
p36π (1 + 3ω)2(1 + ω) H4

×
[1 + 61 + 3ω ln( `pH√4π

)]
. (51)

It is interesting to observe that this equation has a fixed

point at H ∼ `−1
p (see for example [70]), i.e. a de Sit-ter space, which smoothes the big bang singularity. Asone might expect, the approximation used so far, H`p < 1,breaks down around the fixed point and we need an exacttreatment to describe the solution near this point. There-fore, one can only trust a perturbative solution where

H`p < 1 which we write as
H(t) = H0 + λH1 (52)

where λ = δ`2
p and H0(t) = 1/(γ t + C1) is the solution ofEq. (49) when λ = 0.Solving Eq. (49) up to a leading order in λ and imposinginitial conditions we get

H(t) = H0(γH0(t − t0) + 1) + λ β H03ξ
γ (γH0(t − t0) + 1)2

[1 + (σ/ξ) ln (γH0(t − t0) + 1)− 1(γH0(t − t0) + 1)
]
, (53)

where H0 is the initial Hubble parameter at time t0, γ =3/2(1 + ω), β = (1 + 3ω)2/[36π(1 + ω)], σ = 6/(1 + 3ω)and ξ = σ ln(`pH0/√4π)+ 1− σ .
The scale factor can be calculated using the relation
H(t) = ȧ/a, and it is given to the first order of λ asfollows:

a(t) = a0 (γH0(t − t0) + 1)1/γ [1− λ β H20η2γ2 (γH0(t − t0) + 1)
(1 + σ/η ln (γH0(t − t0) + 1)− 1(γH0(t − t0) + 1)

)]
, (54)

where η = σ ln(`pH0/√4π)+ 1− 3/2 σ .Although, it is not clear from the approximation we havehere if these corrections are going to resolve big bangsingularities or not, a possible application of these cor-rections is early cosmology, in particular inflation modelswhere physical scales are only a few orders of magnitudeless than Planck scale.
3. GUP linear and quadratic in ∆p
and BH thermodynamics
In this section, we will repeat the same analysis that wasdone in section 2, but with GUP linear and quadratic in

∆p. It has been found in [25, 26], that the inequality whichwould correspond to Eq. (3) can be written as follows:

∆x∆p ≥ ~2
[1− α0 `p

(43
)
√µ ∆p

~

+ 2 (1 + µ) α20 `2
p

∆p2
~2
]
. (55)

Solving it as a quadratic equation in ∆p results in
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∆p
~
≥

2∆x + α0 `p ( 43 √µ )4 (1 + µ) α20 `2
p

1−√√√√1− 8 (1 + µ) α20 `2
p(2∆x + α0`p ( 43) √µ )2

 . (56)

The negatively-signed solution is considered as theone that refers to the standard uncertainty relation as
`p/∆x → 0. Using the Taylor expansion, we find that

∆p ≥ 1∆x
(1− 23α0`p√µ 1∆x

)
. (57)

We repeat the same analysis of Sec. (2), and we get
∆Amin = λ`2

p

[1− 23 α0 `p
√
µ π
A

]
, (58)

Which leads to the modified entropy as
S = A4 `2

p
+ 23 α0

√
π µ A4 `2

p
. (59)

We find that the entropy is directly related to the areaand is modified when applying GUP-approach. The tem-perature of the black hole is
T = κ8π dAdS = κ8π

[1− 23 α0 `p
√
µ πA

]
. (60)

We find that the temperature is not only proportional tothe surface gravity but also it depends on the black hole’sarea.
3.1. Modified Newton’s law of gravity
In this section we study the implications of the correctionscalculated for the entropy in Eq. (59) and calculate howthe number of bits of Eq. (6) would be modified to identifynew corrections to Newton’s law of gravitation. Usingthe corrected entropy given in Eq. (59), we find that thenumber of bits should also be corrected as follows.

N ′′ = 4S
kB

= A
`2
p

+ 43 α0
√
µ π A

`2
p
. (61)

By substituting Eq. (61) into Eq. (9) and using Eq. (4), weget
E = F c2 ( r2

mG + α√µ r3mG
)
. (62)

It is apparent, that Eq. (62) implies a modification to New-ton’s law of gravitation [39];
F = GMmr2

(1− α√µ3 r
)
. (63)

This equation states that the modification in Newton’slaw of gravity seems to agree with the predictions of theRandall-Sundrum II model [71] which contains one un-compactified extra dimension and length scale ΛR . Theonly difference is the sign. The modification in Newton’sgravitational potential on the brane [72] is given as
VRS =


−G mM

r

(1 + 4ΛR3πr
)
, r � ΛR

−G mM
r

(1 + 2ΛR3r2
)
, r � ΛR , (64)

where r and ΛR are the radius and the characteristiclength scale respectively. The result, Eq. (63), agreeswith Eq. (64), albeit with the opposite sign when r � ΛR .This result says that α ∼ ΛR which helps to set a newupper bound on the value of the parameter α . This meansthat the proposed GUP-approach [12, 13] is apparentlyable to predict the same physics as Randall-Sundrum IImodel. In recent gravitational experiments, it is found thatthe Newtonian gravitational force, the 1/r2-law, seems tobe maintained up to ∼ 0.13 − 0.16 mm [73, 74]. How-ever, it is unknown whether this law is violated or not atsub-µm range. Further implications of these modificationshave been discussed in [75] which could be the same forthe GUP modification. This similarity between the GUPand the extra dimensions of the Randall-Sundrum II modelwould lead to new bounds on the GUP parameter α withrespect to the extra dimension length scale ΛR . Furtherinvestigations are needed.
3.2. Modified Friedmann and Raychaudhuri
equations
In this subsection, we calculate the quantum gravity cor-rections predicted by the GUP of Eq. (3). we repeat thesame analysis that was done in subsection (2.2), but thistime using the modified Newton’s law of gravity of Eq. (63).After making the same analysis of subsection (2.2), weget the modified acceleration equation for the dynamic
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evolution of the FRW universe as follows:
ä
a = −4 πG3 (ρ + 3p) [1− α √µ3 r̃

]
. (65)

Using the continuity equation of Eq. (33) in Eq. (39) andmultiplying both sides with (a ȧ), we get after makingintegration the following equation:
ȧ2 + k = 8πG3 ρa2 [1− α√µ3 1

ρ a r̃

∫ d(ρ a2)
a

]
. (66)

By substituting Eq. (44) into Eq. (43) and integrating, weget
H2 + k

a2 = 8 π G3 ρ
[1− α√µ3 1 + 3ω2 + 3ω 1̃

r

]
. (67)

Using the relation r̃ = a r = 1√
H2+k/a2 , we get:

H2 + k
a2 = 8 π G3 ρ

[1− α√µ3
(1 + 3ω2 + 3ω

)√
H2 + k

a2
]
,

(68)which can be written as:(
H2 + k

a2
)[1 + α√µ3

(1 + 3ω2 + 3ω
)√

H2 + k
a2
]

= 8 π G3 ρ. (69)
We then derive the Raychaudhuri equation which corre-sponds to Eq. (69) in which we find the relation between
Ḣ and H .

Ḣ = −H2 + ä
a . (70)

Substituting Eq. (65) and Eq. (69) into Eq. (70), and using
ω = p/ρ, we get:

Ḣ = −3(1 + ω)2 H2 − 1 + 3ω2 k
a2

+ α√µ3 1 + 3ω2(2 + 3ω)
(
H2 + k

a2
)3/2

. (71)
3.3. Solutions of modified Raychaudhuri
equation
Here we discuss solutions of the modified Raychaudhuriequation (72) for the flat case, k = 0. In this case, equa-tion (71) has the form

Ḣ = −3(1 + ω)2 H2 + α√µ3 1 + 3ω2(2 + 3ω)H3. (72)

Similar to the quadratic GUP case, the above equation hasa fixed point at H ∼ `−1
p . The above equation was studiedby Murphy [76], where an exact solution was presented.Recently, the above equation was studied in [70] as anexample to show that pressure properties, such as asymp-totic behavior and fixed points can be used to qualitativelydescribe the entire behavior of a FLRW solution. Similarto the quadratic case, the approximation i.e., H`p < 1,breaks down around the fixed point and one should havean exact treatment to describe the solution near this point.Here we are interested in a perturbative solution, whichcan written as
H(t) = H0 + εH1 (73)

where ε = α√µ6 and H0(t) = 1/(γ t + C1) is the solution ofEq. (49) as we set ε = 0.
Solving Eq. (49) up to a leading order in ε and imposinginitial conditions we get

H(t) = H0(γH0(t − t0) + 1)
+ ε β

′H02 ln (γH0(t − t0) + 1)
γ (γH0(t − t0) + 1)2 (74)

where H0 is the Hubble parameter at initial time t0, γ =3/2(1 + ω), β ′ = (1 + 3ω)/(2 + 3ω).The scale factor can be calculated using the relation
H(t) = ȧ/a, and it is given to the first order of ε asfollows:

a(t) = a0 (γH0(t − t0) + 1)1/γ[1− ε β ′H0
γ2 ln (γH0(t − t0) + 1)(γH0(t − t0) + 1)

] (75)
4. Conclusions
Verlinde has extended the validity of the holographic prin-ciple to assume a new origin of gravity as an entropicforce. We have used this extension to calculate correc-tions to Newton’s law of gravitation as well as the Fried-mann equations arising from the generalized uncertaintyprinciple suggested by different approaches to quantumgravity such as string theory and black hole physics. Wefollowed the following procedure: modified theory of grav-
ity→ modified black hole entropy→ modified holographic
surface entropy → Newton’s law corrections→ modified
Friedmann equations.We found that the corrections for Newton’s law of grav-ity agree with the brane world corrections. This suggeststhat GUP and brane world may have very similar gravity
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at low-energy. Besides, we note that the derived cor-rection terms for the Friedmann equation vanishes rapidlywith increasing apparent horizon radius, as expected. Thismeans that the corrections become relevant at the earlyuniverse, in particular, with the inflationary models wherethe physical scales are few orders of magnitude less thanthe Planck scale. When the universe becomes large, thesecorrections can be ignored and the modified Friedmannequation reduces to the standard Friedman equation. Wecan understand that when a(t) is large, it is difficult to ex-cite these modes and hence, the low-energy modes domi-nates the entropy. But at the early universe, a large num-ber of excited modes can contribute causing a modificationto the area law leading to the modified Friedmann equa-tions.But could we observe the impact of these corrections onthe early universe? Since these corrections modify thestandard FRW cosmology, especially in early times, it isexpected that they have some consequences on inflation.One of the interesting results reported in the Planck 2013data [77] is that exact scale-invariance of the scalar powerspectrum has been ruled out by more than 5σ . Meaningthat, the early universe tiny quantum fluctuations, whicheventually cause the formation of galaxies, not only de-pend on the mode wave number k, but also on some phys-ical scale. This shows that scalar power spectrum andother inflation parameters could depend on physical scale.The energy scale of inflation models has to be aroundGrand Unified Theories (GUT) scale or larger, therefore,this cutoff could be the Planck scale.There are two distinct possibilities to introduce the Planckscale to modify the standard inflation scenario. The firstpossibility is to use it as a momentum-cutoff in the quan-tum field theory of the inflaton field (see for example [79]and references there in). The second possibility is to mod-ify general relativity, which will lead to a modified Fried-mann equation. The latter framework is considered in sev-eral interesting inflationary models, such as Brane-world,and f (R ) inflationary models. Consequences of modifyingFriedmann’s equation on inflation have been discussed inliterature, for example see [78] and references there in.Our framework lies in the second class which modifiesthe Hubble parameter H as a function of time comparedto that of the standard FRW cosmology, as expressed inequations (53) and (74). Since the slow-rolling parame-ters ε and η depend on H , changes in H will affect themand the scalar spectral index ns, which will have an im-pact on observations. The coming generations of CMBprecise observations will be able to measure the inflationparameters with high accuracy, therefore enabling differ-ent inflationary models to be distinguished. In the future,it would be interesting to apply our approach to investiga-

tions of these modified Friedmann’s equations on specificinflationary models as well as the reheating phase of theuniverse. We hope to report on these issues soon.
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