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Abstract: Recently, Verlinde proposed that gravity is an emergent phenomenon which originates from an entropic
force. In this work, we extend Verlinde’s proposal to accommodate generalized uncertainty principles
(GUP), which are suggested by some approaches to quantum gravity such as string theory, black hole
physics and doubly special relativity (DSR). Using Verlinde’s proposal and two known models of GUPs, we
obtain modifications to Newton’s law of gravitation as well as the Friedmann equation. Our modification
to the Friedmann equation includes higher powers of the Hubble parameter which is used to obtain a cor-
responding Raychaudhuri equation. Solving this equation, we obtain a leading Planck-scale correction to
Friedmann-Robertson-Walker (FRW) solutions for the p = wp equation of state.
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1. |ntr0ducti0n mutation relations between position coordinates and mo-
menta [1-8]. This can be understood in the context of string
theory since strings can not interact at distances smaller
than their size. The GUP is represented by the following

One of the intriguing predictions of various frame works form [9-11];
of quantum gravity, such as string theory and black 5
hole physics, is the existence of a minimum measurable AxiAp; > 5[1 +B((Ap)2+ <p >2)

length. This has given rise to the so-called generalized un- 2 2
certainty principle (GUP) or equivalently, modified com- + 2B (Bpit < pi > ()

2
where p? = 2_pipj, B= Bol/(Myc)* = Bo7%, M, = Planck
*E-mail: aawad@zewailcity.edu.eq I

tE-mail: ahmed.ali@fsc.bu.edu.eg (Corresponding author) mass, and /\/lpc2 = Planck energy. The inequality (1) is

245

Brought to you by | CERN library
Authenticated
Download Date | 10/4/17 1:58 PM



Planck-scale corrections to Friedmann equation

2468

equivalent to the following modified Heisenberg algebra
[9:
[xi, pj] = ih(3;; + Bo;p* + 2Bpip)) - 2

This form ensures, via the Jacobi identity, that
[xi, xj] = 0 = [pi, p;] [10].

Recently, a new form of GUP was proposed in [12,
13], which predicts maximum observable momenta as well
as the existence of minimal measurable length, and is con-
sistent with doubly special relativity theories (DSR) [14-
19], string theory and black holes physics [1-7]. It ensures
[xi, x]] = 0 =[p;, pj], via the Jacobi identity.

b i3 — a(pé,-,- + p;)pf)
+ az(pzé,-,--‘r:‘)p,-p,-)], (3)

where a = ay/M,c = a¥,/h, M, = Planck mass, ¥, =
Planck length, and M,c? = Planck energy. In a series
of papers, various applications of the new model of GUP
have been investigated [20-33].

The upper bounds on the GUP parameter a has been
derived in [22]. It was suggested that these bounds can
be measured using quantum optics and gravitational wave
techniques in [34, 35]. Recently, Bekenstein [36, 37] pro-
posed that quantum gravitational effects could be tested
experimentally, suggesting“a tabletop experiment which,
given state of the art ultrahigh vacuum and cryogenic
technology, could already be sensitive enough to detect
Planck scale signals” [36] This would enable several
quantum gravity predictions to be tested in the Laboratory
[34, 35] This is considered as a milestone in the field of
quantum gravity phenomenology.

Motivated by the above arguments, we investigate pos-
sible effects of GUP on the Friedmann equation. We use
the entropic force approach suggested by Verlinde [38] to
calculate corrections to Newton's law of gravitation and
the Friedmann equations for two models of GUP, which
are mentioned above. We found that Planck-scale cor-
rections to the Friedmann equation include higher pow-
ers of the Hubble parameter which are suppressed by
Planck length. Using these corrections we construct the
corresponding Raychaudhuri equations, which we then
solve to obtain a leading Planck-scale correction to the
Friedmann-Robertson-Walker (FRW) solutions with equa-
tion of state p = wp. Deriving the effects of GUPs on
Newton's law of gravitation through the entropic force
approach was initially reported in [39] where a modi-
fied Newton's law of gravitation was calculated. A possi-
ble application of these Planck-scale corrections is early
cosmology, in particular inflation models where physical

scales are only a few orders of magnitude less than Planck
scale.

Let us review Verlinde's proposal [38] on the origin of grav-
ity, where he suggested that a gravitational force might
be of an entropic nature. This assumption is based on the
relation between gravity and thermodynamics [40-42]. Ac-
cording to thermodynamics and the holographic principle,
Verlinde's approach results in Newton’s law of gravitation,
the Einstein Equations [38] and the Friedmann Equations
[43]. The theory can be summarized as

at the temperature T, the entropic force F of a gravita-
tional system is given as:

FAx = TAS, (4)

where AS is the change in the entropy such that, at a
displacement Ax, each particle carries its own portion of
entropy change. From the correspondence between the
entropy change AS and the information about the bound-
ary of the system and using Bekenstein's argument [40—
42], it is assumed that AS = 2skg, where Ax = h/m and
kg is the Boltzmann constant.

AS = 2nk3%m, (5)

where m is the mass of the elementary component, c is
speed of light and 7 is the Planck constant.

The holographic principle assumes that for a region en-
closed by some surface gravity can be represented by the
degrees of freedom on the surface itself and independent
of the its bulk geometry. This implies that the quantum
gravity can be described by a topological quantum field
theory, for which all physical degrees of freedom can be
projected onto the boundary [44]. The information about
the holographic system is given by N bits forming an ideal
gas. It is conjectured that N is proportional to the entropy
of the holographic screen,

N=—> (6)

then according to Bekenstein's entropy-area relation [40—
42]
kBC3
= . 7
4Gh )

S

Therefore, one gets

Acl 4123
Ch = Gh ®)

where r is the radius of the gravitational system and A =
47r? is area of the holographic screen. It is assumed that
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each bit emerges out of the holographic screen i.e. in one
dimension. Therefore each bit carries an energy equal
to kgT/2. Using the equipartition rule to calculate the
energy of the system, one gets

1 2ncir?
E = -NkgT =
20 Gh

kT = Mc?. 9)

By substituting Eq. (4) and Eq. (5) into Eq. (9), we get

Mm

making it clear that Newton’s law of gravitation can be
derived .

Recently, a modified Newton's law of gravity due to
Planck-scale effects through the entropic force approach
was derived by one of the authors [39]. Derivation of
Planck scale effects on the Newton's law of gravity are
based on the following procedure: modified theory of grav-
ity — modified black hole entropy— modified holographic
surface entropy — Newton’s law corrections. This proce-
dure has been followed with other approaches like non-
commutative geometry in [45-48]. In this paper, we take
into account the quantum gravity corrections due to GUP
in the entropic-force approach, following the same proce-
dure as [39], and extend our study to calculate the modified
Friedmann and Raychaudhuri equations. To calculate the
quantum gravity corrections to the Friedmann equations,
we use the procedure that has been followed in [49, 50]. It
is worth mentioning that recently, there have been some
considerable interest in entropic force approach and its
applications [51-55].

An outline of this paper is as follows. In Sec .2, We
investigate entropic force if the GUP of Eq. (1), which
was proposed earlier by [1-11], is taken into considera-
tion. First we calculate the modified thermodynamics of
the black hole which yields a modified entropy. By the
holographic principle, we calculate the modified number of
bits N. Based on the modified number of bits, we estimate
the Planck scale correction to Newton's law of gravitation
and the Friedmann equations. We solve Raychaudhuri
equations to obtain Planck scale corrections to FRW cos-
mological solutions.

In Sec. 3, we repeat the analysis for the newly pro-
posed model of GUP in Eq. (3). We calculate different
corrections to Newton’s law of gravity and the Friedman
equations. We compare our results with previous stud-
ies of quantum gravity corrections to gravity laws. We
then solve the modified Raychaudhuri equations. Further
implications are discussed.

2. GUP-quadratic in Ap and BH
thermodynamics

In this section, we review the modified thermodynamics
of the black hole which yields a modified entropy due to
GUP [56-62]. Using the holographic principle, we get a
modified number of bits N which yields quantum gravity
corrections to Newton's law of gravitation and the Fried-
mann equations.

Black holes are considered as a good laboratories for the
clear connection between thermodynamics and gravity, so
black hole thermodynamics will be analyzed in this sec-
tion. We then make an analysis of BH thermodynamics
if the GUP-quadratic in Ap that was proposed in [1-11]
is taken into consideration. With Hawking radiation, the
emitted particles are mostly photons and standard model
(SM) particles. Using the Hawking-Uncertainty Relation,
the characteristic energy of the emitted particle can be
identified [56-60]. It has been found [25, 26], assuming
some symmetry conditions from the propagation of Hawk-
ing radiation, that the inequality that would correspond
to Eq. (1) can be written as follows:

K[, 5 L Ap?
zMAp2§[1+§U4¢0&47E7 NCED
where = (%)2,

By solving the inequality (11) as a quadratic equation in
Ap, we obtain

M 1_\/1_2(14‘#)30&2
WSS Bl A
(12)
Using Taylor expansion, Eq. (12) reads
1 5 (14 u)Bol?
Ap>—— |14+ —F 2 1
p =2 2AX|: +12 Ax2 +O(BO) ’ ( 3)

where we used natural units as i = 1. According to [61,
62] a photon is used to ascertain the position of a quantum
particle of energy E and according to the argument in
[63, 64] which states that the uncertainty principle Ap >
1/Ax can be translated to the lower bound E > 1/Ax, one
can write for the GUP case

14 02
E2L1+3( 1) Bo¥;

2Ax 12 Ax? +O(Bs) (4

For a black hole absorbing a quantum particle with energy
E and size R, the area of the black hole should increase
by [65, 66].

AA> 810 ER, (15)
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The quantum particle itself implies the existence of finite
bound given by

AApin > 87 EAx. (16)
Using the Eq. (14) in the inequality (16), we get

(1+ u)Boé’,?

5
> 2 =
AAyin > 48, P Ax?

+0(B)|. (17)

The value of Ax is taken to be inverse of surface gravity

T = 2r, where r, is the Schwarzschild radius.

Ax = k™
Where this is probably the most sensible choice of length
scale is in the context of near-horizon geometry [61, 62].

This implies that

Ax? =

A
2, (18)

Substituting Eq. (18) into Eq. (19), we get

52
Ay g2 |14 27 LER Boly

T+ 0B | (19

where the parameter A will be defined later. According to
[40-42], the black hole’s entropy is conjectured to depend
on the horizon’s area. From information theory [67], it has
been found that the smallest increase in entropy should be
independent of the area. It is just one bit of information,
which is b = In(2).

é _ A\Smin — b ) (20)

dA AAmin )\g [1 + 5 7r (1+l’) Bol3 QHm) Po%h O(BO)]

where b is a parameter. By expanding the last expression
in orders of By and then integrating, we get the entropy

[bA sA(+p
i) o

Using the Hawking-Bekenstein assumption [40-42], which
relates entropy with the area, the value of b/A is fixed to
be = 1/4, so that

[ A _Sa(+p) A
5‘(4@3) 48 B"l”(eg)' (22)

It is concluded that the entropy is directly related to
the area and gets a logarithmic correction when apply-
ing GUP approach[61, 62].

The temperature of the black hole is

Kk dA
"= %xds
K 52 (1+u) Bols )
= & 1+ﬁ ﬁ—i—()(ﬁo) . (23)

So far, it is concluded that the temperature is not only
proportional to the surface gravity but also it depends on
the black hole’s area [61, 62].

2.1. Modified Newton’s law of gravity

In this section we study the implications of the correc-
tions for the entropy in Eq. (59) and calculate how the
number of bits of Eq. (6) would be modified leading to
a new correction to Newton’s law of gravitation. Using
the corrected entropy given in Eq. (22), we find that the
number of bits should be corrected as follows:

, 45 [A) sa(+p) A
N_ks_(fﬁ) 17 Boln(gpz)- (24)

We can substitute for the Planck length with ¢, = %
then we get the modified number of bits as follows

, 45 [AS) 5a(1+up) Ac
N—E—Hf%“ﬁT*&wfﬂ*m

We define the constant § = Wﬁo, then we have

. 4S Acd Ac
N_k—B_(ﬁ)—él(hG) (26)

By substituting Eq. (26) into Eq. (9) and using Eq. (4), we
get

E=Mc =

2 2 l 4xc3 2
Fric (1_5n(ﬁﬁr)), (27)

mG

27 3 2
nG T

This implies a modified Newton’s Law of gravity given as

ln 47rr2)
GMm 2
F = 1 — 2
r? 4ﬂr2/€5 (28)

Which means that the Newtonian gravitational potential
would be:

GMm 2. 1 1 (%)
_ < _ P
V=== " %% * 3032

(29)
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We note that these logarithmic corrections to the Newto-
nian gravitational potential have been obtained using an
independent approach studying the brane world correc-
tions to Newton’s law of gravity [68] which suggest that
brane world and GUP would predict similar physics. In
the next subsection, we discuss modification of the Fried-
mann equation due to the corrections of quantum gravity.

2.2. Modified Friedmann and Raychaudhuri
Equations

In this section, we use the analysis of [43, 49, 50, 69]
which derived the Friedmann equations using an entropic
force approach. We investigate the effect of the quantum
gravity arising from the GUP proposed in Eq. (1) on the
form of the Friedmann equations using the method of [43].
The Friedmann-Robertson-Walker (FRW) universe is de-
scribed by the following metric:

S = hgdx dx” +r ,
ds® = hgpdx®dx® + F2dQ? 30

where F = a(t)r, x® = (t,r),hepy = (=1,0%/(1 —
kr?)),d0? = d6? + sin’Od¢? and a,b = 0,1. k is
the spatial curvature and it takes the values 0,1, —1
for a flat, closed and open universe, respectively. The
dynamic apparent horizon is determined by the relation
htd,Fd,F = 0, which yields its radius[69]:

. 1
PEarE e S

where H = da/a is the Hubble parameter. By assuming
that the matter which occupies the FRW universe forms a
perfect fluid, the energy-momentum tensor would be:

T = (p+ plupuy + pguy. (32)

The energy conservation law then leads to the continuity
equation
p+3H(p+p)=0, (33)

To calculate the quantum gravity corrections to the Fried-
mann equations, we consider a compact spatial region with
volume V' and radius 7 = a(t)r [43]. By combining New-
ton’s second law for the test particle m near the surface
with the modified gravitational force of Eq. (28), we get

S GMm tn 425;2)
F=mF=ma(t) :—7_72 W
p

(34)

Equation (34) can be written in terms of the matter density
p=M|[V,V = (4/3)nF as:

ln 471?2)
a 4nG o2
a_ M oy %
a 3 P + 4717'2/23 ' (35)

The last equation is considered to be the modified Newto-
nian cosmology. To derive the modified Friedmann equa-
tions, it was assumed as in [43], that the active gravita-
tional mass M, where

M = z/ dv (T,,v - %Tgw) u'u, (36)
1

generates the acceleration rather than the total mass M
in the volume V.

So for the FRW universe, the active gravitational mass
would be

4
M=(p+ 3p)§a3r3. (37)
By replacing M with M, Eq. (35) can be rewritten as:

-1

2 In (422)
__Ga’ %
M= O Inrjer (38)
By Equating Eq. (37) with Eq. (38), we get

. ln (471?2
a 4nG 2
— = 3 140 —2— 39
a 3 PN TH0 omp (39)

Using the continuity equation of Eq. (33) in Eq. (39), mul-
tiplying both sides with (o @and integrating, we obtain
the following equations:

47G p In 47412?2)

- _ 7 _r_ 1 %

aa 3 da (p 0 3p) +0 In2 |22
(40)

2 2 tn 47;2)
— (¢ - | = P
gt =3 (dt (pa )) "o | W)

Integrating both sides for each term of the last equation
yields

d (pa*)

(42)

47a?r?
SR R Ay
3 ° pa? J 4ma’r?|e:
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We can take r outside the integration because it does not
depend on a from the definition of 7 = ra(t) after Eq. (30),
we get

@ +k = 87T3(Jpaz[1

o0 4ma’r? \ d(pa?)
P
+ anpalr? /ln( 2 2 | (43)

Suppose that the equation of state parameter w = p/p

J

is a constant of time, so the continuity equation (33) is
integrated to give

p= poa—3(1+w)’ (44)

By substituting Eq. (44) into Eq. (43) and solving the in-
tegration, we get

k 8rG 20 poly(—1 = 3w) 2y/7r 43w
o= 50 14 S E2 = [ \ef")(””)d” | .

The integration in the last equation can be solved to yield

k  8nG 002 (1+3w) 2Vrra
H + = = £ 1431 lh—1|. 46
a3 [ 1871?2(1-1-0))2( T3+ wln = ) (10)
; oo s _ 1
Using the relation F = a r = o Ve get

k 002(1 + 3w) k 3(1 + w) k\ € 871G
H+ = |1-2—aH+ =) [1-—— H+=|-2]=5= 47
( +02)[ 187r(1+w)2( az) 2 ln( +02)47r 3 P “7)

or it can be written as
0021 +3
(H2+k2)[1— (1 +30)
a

—_ P T2
B rwp 0 ) T

The last equation gives the entropy-corrected Friedmann
equation of the FRW universe by considering gravity as
an entropic force. Notice that the Planck-scale correc-
tion terms include higher powers of H suppressed by the
Planck scale, the only physical scale we have.

We then derive the Raychaudhuri equation which corre-
sponds to Eq. (48). We need to find the relation between

|

k. 001 +3w) ,  k , k. & 871G
T e @M HE R ) T

T (48)

(

H and H. Since we have H = a/a, then
H=—H+ g (49)

Substituting Eq. (39) and Eq. (48) into Eq. (49) and using
w = p/p, we get:

. 31+w),, 1+3wk %(1—1—3(0} k)?
H > M 2 187 201+ w) H: a?
002 1+ 3w 2
_Pr_ 77 - L 2, =
> 30+ ) (H + ) Py (H + ) (50)
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2.3. Solutions of the modified Raychaudhuri
equation

In this section we solve the modified Raychaudhuri equa-
tion (50) for the flat case (k = 0), using a perturbation
method. For k = 0, equation (50) has the form

oo S0+, 06 (14307,

2 367 (1+ w)
6 o,H
x [1+1+3wln(\/”ﬂ)]. (51)

It is interesting to observe that this equation has a fixed

J

H(t) =

Ho B Ho’&

point at H ~ £ (see for example [70)), ie. a de Sit-
ter space, which smoothes the big bang sinqularity. As
one might expect, the approximation used so far, H¢, < 1,
breaks down around the fixed point and we need an exact
treatment to describe the solution near this point. There-
fore, one can only trust a perturbative solution where
Hé, < 1 which we write as

H(t) = Hy + AH, (52)
where A = (Wg and Hy(t) = 1/(y t + G3) is the solution of
Eqg. (49) when A = 0.

Solving Eq. (49) up to a leading order in A and imposing
initial conditions we get

(018) In (yHo(t — to) + 1) — 1

(YHo(t —to) + 1)

where Hp is the initial Hubble parameter at time t,, y =
321 + w), B = (14 3w)?/[3671(1 + w)], 0 = 6/(1 + 3w)
and & = ln (¢,Ho/Var) +1—0.

y (YHo(t — to) +1)°

B Hn

Wl —t) +1) | (3)

(

The scale factor can be calculated using the relation
H(t) = ala, and it is given to the first order of A as
follows:

a(t) = ag (yHo(t — to) + 1) [1 —A

where n = an (6,HoVax) +1-3/20.

Although, it is not clear from the approximation we have
here if these corrections are going to resolve big bang
singularities or not, a possible application of these cor-
rections is early cosmology, in particular inflation models
where physical scales are only a few orders of magnitude
less than Planck scale.

3. GUP linear and quadratic in Ap
and BH thermodynamics

In this section, we will repeat the same analysis that was
done in section 2, but with GUP linear and quadratic in

2y2 (yHo(t — to) + 1)

a/ntn(yHo(t —to) +1) =1 )] (54)

(YHo(t — 1) + 1)

(

Ap. It has been found in [25, 26], that the inequality which
would correspond to Eq. (3) can be written as follows:

h 4 A
AxAp > 2|:1_O’0 2 (5) Vi ?p
2 g2 Ap?

Solving it as a quadratic equation in Ap results in
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Ap _ 2Dx+ g ¥, (%\/ﬁ)

h = 41 +u) a2

The negatively-signed solution is considered as the
one that refers to the standard uncertainty relation as
4,/Ax — 0. Using the Taylor expansion, we find that

1 2 1

We repeat the same analysis of Sec. (2), and we get

2
Ay = A2 [1 — 506 %] , (58)

Which leads to the modified entropy as

A 2 A
5—4—%—%?0(01/11;14—@3. (59)

We find that the entropy is directly related to the area
and is modified when applying GUP-approach. The tem-
perature of the black hole is

k dA K 2 [

We find that the temperature is not only proportional to
the surface gravity but also it depends on the black hole’s
area.

3.1. Modified Newton’s law of gravity

In this section we study the implications of the corrections
calculated for the entropy in Eq. (59) and calculate how
the number of bits of Eq. (6) would be modified to identify
new corrections to Newton's law of gravitation. Using
the corrected entropy given in Eq. (59), we find that the
number of bits should also be corrected as follows.

4S A 4 A
N'=2==2 4 o\ Juns. 1
PR +3 uﬂ% (61)

By substituting Eq. (61) into Eq. (9) and using Eq. (4), we

get

r? a ur)

mG  3mG

E=F¢ ( (62)

8(1+ 202
1- A+ n b . (56)

(28 + ety (3) Vi )’

It is apparent, that Eq. (62) implies a modification to New-
ton’s law of gravitation [39];

_ Mm av/u
F_67(1— 3, ) (63)

This equation states that the modification in Newton’s
law of gravity seems to agree with the predictions of the
Randall-Sundrum 1l model [71] which contains one un-
compactified extra dimension and length scale Ag. The
only difference is the sign. The modification in Newton's
gravitational potential on the brane [72] is given as

3nr

Vis = , (64)
—G#(1+2"—R), r> Ag

—G#(1+4"—R), r < Ag

3r2

where r and Ar are the radius and the characteristic
length scale respectively. The result, Eq. (63), agrees
with Eq. (64), albeit with the opposite sign when r « Ag.
This result says that o ~ Ag which helps to set a new
upper bound on the value of the parameter a. This means
that the proposed GUP-approach [12, 13] is apparently
able to predict the same physics as Randall-Sundrum Il
model. In recent gravitational experiments, it is found that
the Newtonian gravitational force, the 1/r?-law, seems to
be maintained up to ~ 0.13 — 0.16 mm [73, 74] How-
ever, it is unknown whether this law is violated or not at
sub-pm range. Further implications of these modifications
have been discussed in [75] which could be the same for
the GUP modification. This similarity between the GUP
and the extra dimensions of the Randall-Sundrum Il model
would lead to new bounds on the GUP parameter o with
respect to the extra dimension length scale Ag. Further
investigations are needed.

3.2. Modified Friedmann and Raychaudhuri
equations

In this subsection, we calculate the quantum gravity cor-
rections predicted by the GUP of Eq. (3). we repeat the
same analysis that was done in subsection (2.2), but this
time using the modified Newton's law of gravity of Eq. (63).
After making the same analysis of subsection (2.2), we
get the modified acceleration equation for the dynamic
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evolution of the FRW universe as follows:

a 4G a1
—==—(p+3p) [1 —7]. (65)

Using the continuity equation of Eq. (33) in Eq. (39) and
multiplying both sides with (a a), we get after making
integration the following equation:

o+ k=

8xG a1 d(p a®)

—_— 1— . (66
3 e [ 3 pa F/ a (66)

By substituting Eq. (44) into Eq. (43) and integrating, we

get

k 81 G ay/pl1+3w1
H>+ = = 1— —1. 7
+02 3 [ 3 2+3w?] (67)

1

VH2+kla?'

Using the relation F = a r = we get:

a?

a? 3 B 2+ 3w

pp k871G [1 ag/ﬁ(1+3w) H2+k]’

(68)

which can be written as:

k av/p (143w k
2, v 24
(H—Faz)[1 * 3 (2+3w) H+az]
87 G
= —5 P (69)

We then derive the Raychaudhuri equation which corre-
sponds to Eq. (69) in which we find the relation between
H and H.

H=—H+ g (70)

Substituting Eq. (65) and Eq. (69) into Eq. (70), and using
w = p/p, we get:

o 304w, 143wk

2 2 a?
ayi 143w [, k)"
VE T (H =) 71
3 2(2+3w)( +az) 1)

3.3. Solutions of modified Raychaudhuri
equation

Here we discuss solutions of the modified Raychaudhurt
equation (72) for the flat case, k = 0. In this case, equa-
tion (71) has the form

30 +w)H2+ av/p 1+ 3w B 72)

H= 2 3 22+ 3w)

Similar to the quadratic GUP case, the above equation has
a fixed point at H ~ ?;1. The above equation was studied
by Murphy [76], where an exact solution was presented.
Recently, the above equation was studied in [70] as an
example to show that pressure properties, such as asymp-
totic behavior and fixed points can be used to qualitatively
describe the entire behavior of a FLRW solution. Similar
to the quadratic case, the approximation i.e., pr <1,
breaks down around the fixed point and one should have
an exact treatment to describe the solution near this point.
Here we are interested in a perturbative solution, which
can written as

H(t) = Ho + eH, (73)

where € = GTW and Hy(t) = 1/(y t + G4) is the solution of

Eq. (49) as we set e = 0.

Solving Eq. (49) up to a leading order in € and imposing
initial conditions we get

I T

(YHo(t — 1) + 1)

Loe B’ Ho® In (yHo(t — to) ‘ZF 1)
y (vHo(t — to) + 1)

H(t) =

(74)

where Hp is the Hubble parameter at initial time t,, y =
3121 + w), B = (1 +3w)/(2+ 3w).

The scale factor can be calculated using the relation
H(t) = ala, and it is given to the first order of € as
follows:

a(t) = ap (vHo(t — to) + 1)

B, HO ln (YHo(t — tQ) + 1)

L bt — )+ )

(73)

4. Conclusions

Verlinde has extended the validity of the holographic prin-
ciple to assume a new origin of gravity as an entropic
force. We have used this extension to calculate correc-
tions to Newton's law of gravitation as well as the Fried-
mann equations arising from the generalized uncertainty
principle suggested by different approaches to quantum
gravity such as string theory and black hole physics. We
followed the following procedure: modified theory of grav-
ity — modified black hole entropy— modified holographic
surface entropy — Newton’s law corrections— modified
Friedmann equations.

We found that the corrections for Newton’s law of grav-
ity agree with the brane world corrections. This suggests
that GUP and brane world may have very similar gravity
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at low-energy. Besides, we note that the derived cor-
rection terms for the Friedmann equation vanishes rapidly
with increasing apparent horizon radius, as expected. This
means that the corrections become relevant at the early
universe, in particular, with the inflationary models where
the physical scales are few orders of magnitude less than
the Planck scale. When the universe becomes large, these
corrections can be ignored and the modified Friedmann
equation reduces to the standard Friedman equation. We
can understand that when a(t) is large, it is difficult to ex-
cite these modes and hence, the low-energy modes domi-
nates the entropy. But at the early universe, a large num-
ber of excited modes can contribute causing a modification
to the area law leading to the modified Friedmann equa-
tions.

But could we observe the impact of these corrections on
the early universe? Since these corrections modify the
standard FRW cosmology, especially in early times, it is
expected that they have some consequences on inflation.
One of the interesting results reported in the Planck 2013
data [77] is that exact scale-invariance of the scalar power
spectrum has been ruled out by more than 50. Meaning
that, the early universe tiny quantum fluctuations, which
eventually cause the formation of galaxies, not only de-
pend on the mode wave number k, but also on some phys-
ical scale. This shows that scalar power spectrum and
other inflation parameters could depend on physical scale.
The energy scale of inflation models has to be around
Grand Unified Theories (GUT) scale or larger, therefore,
this cutoff could be the Planck scale.

There are two distinct possibilities to introduce the Planck
scale to modify the standard inflation scenario. The first
possibility is to use it as a momentum-cutoff in the quan-
tum field theory of the inflaton field (see for example [79]
and references there in). The second possibility is to mod-
ify general relativity, which will lead to a modified Fried-
mann equation. The latter framework is considered in sev-
eral interesting inflationary models, such as Brane-world,
and f(R) inflationary models. Consequences of modifying
Friedmann’s equation on inflation have been discussed in
literature, for example see [78] and references there in.

Our framework lies in the second class which modifies
the Hubble parameter H as a function of time compared
to that of the standard FRW cosmology, as expressed in
equations (53) and (74). Since the slow-rolling parame-
ters € and n depend on H, changes in H will affect them
and the scalar spectral index ns, which will have an im-
pact on observations. The coming generations of CMB
precise observations will be able to measure the inflation
parameters with high accuracy, therefore enabling differ-
ent inflationary models to be distinguished. In the future,
it would be interesting to apply our approach to investiga-

tions of these modified Friedmann’s equations on specific
inflationary models as well as the reheating phase of the
universe. We hope to report on these issues soon.
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