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The original paper adopted an overly restrictive form of a U(3)5 limit by not allowing two

independent flavor contractions admitted by the operator Qll in the U(3)5 flavor symmetric

limit [2]. Defining

LSMEFT ⊃
[
Cll δmnδop + C ′

ll δmpδno
]

(l̄mγµln)(l̄oγ
µlp),

both Cll and C ′
ll are allowed to be independent parameters in the U(3)5 flavour symmetric

limit. The original paper used the same parameter Cll in both terms, which is overly

restrictive. This leads to Cll → C ′
ll in the expressions:

δGF =
1√

2 ĜF

(√
2C

(3)
H` −

1√
2
C ′
ll

)
, (4)

δḡZ = − 1√
2
δGF −

1

2

δm2
Z

m̂2
Z

+
sθ̂cθ̂√
2ĜF

CHWB = − 1

4
√

2ĜF

(
CHD + 4C

(3)
H` − 2C ′

ll

)
, (15)

δgγ1 =
1

4
√

2ĜF

CHD m̂2
W

m̂2
W − m̂2

Z

− 4C
(3)
H` + 2C ′

ll − CHWB
4m̂W√
m̂2
Z − m̂2

W

 , (22)

δgZ1 =
1

4
√

2ĜF

(
CHD − 4C

(3)
H` + 2C ′

ll + 4
m̂Z

m̂W

√
1− m̂2

W

m̂2
Z

CHWB

)
, (23)

δκγ =
1

4
√

2ĜF

(
CHD

m̂2
W

m̂2
W − m̂2

Z

− 4C
(3)
H` + 2C ′

ll

)
, (24)

δκZ =
1

4
√

2ĜF

(
CHD − 4C

(3)
H` + 2C ′

ll

)
, (25)

The list in eq. (3.37) should also include C ′
ll:

C̃i ≡
v̄2T
Λ2
{CHe, CHu, CHd, C(1)

Hl , C
(3)
Hl , C

(1)
Hq, C

(3)
Hq, CHWB, CHD, Cll, C

′
ll, Cee, Cle}, (37)

and the number of Wilson coefficients in the text after eq. (3.45) is then 21.

The fit results in this case are shown in figures 3, 4, 5 and tables 5, 6. The limits

obtained minimizing the coefficients one-at-a-time are largely unchanged, while the fit re-

sults that marginalize over the larger set of parameters are modified. A significant scheme

dependence is found for C ′
ll in this case. This coefficient enters the considered observables

via shift parameters. In the {α̂, m̂Z , ĜF }-scheme it impacts most LEPI data, and in par-

ticular m̂W . In the {m̂W , m̂Z , ĜF }-scheme it affects dominantly bhabha scattering via δα,

that is less constraining. Cll and Cee are poorly constrained and strongly anti-correlated

as they both contribute to bhabha scattering only, where they enter in a linear combina-

tion of the form1 [Cee + (1 + ∆(s, cθ))Cll] where 0 < ∆(s, cθ) < 0.1 at the LEP2 c.m.s.

energy. The direction Cll − Cee is nearly unconstrained and this degeneracy is weakly

broken by the kinematic dependence. The correlations are larger in the {m̂W , m̂Z , ĜF }
scheme for the observables considered. C ′

ll is more correlated with Cll, Cee, Cle as bhabha

scattering provides the dominant constraint on C ′
ll in this scheme increasing correlations.

In the {α̂W , m̂Z , ĜF } scheme, C ′
ll is primarily bounded by the mW measurement, and this

allows the parameters to split in less correlated blocks, one constrained by LEPI + WW

production data and one by bhabha scattering.

1Here cθ is the cosine of the angle between the incoming e− and the outgoing e+ in bhabha scattering.
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Figure 3. Best fit values of the Wilson coefficients (scaled by a factor 100) and corresponding

±1σ confidence regions obtained after profiling away the other parameters. Red (blue) points were

obtained in the {α̂ (m̂W ), m̂Z , ĜF } input parameter scheme. The plot to the left has been obtained

assuming ∆SMEFT = 0, while the one to the right includes a theoretical error ∆SMEFT = 0.01.
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Figure 4. Best fit values of the Wilson coefficients (scaled by a factor 100) and corresponding

±1σ confidence regions obtained minimizing the ∆χ2 with one parameter at a time. Red (blue)

points were obtained in the {α̂ (m̂W ), m̂Z , ĜF } input parameter scheme. The plot to the left

has been obtained assuming ∆SMEFT = 0, while the one to the right includes a theoretical error

∆SMEFT = 0.01. Note that in the right plot the x axis has been scaled by a factor 2 and the

coefficient CHd has been moved to the lower panel: increasing the theoretical error enhances the

pull of the A0,b
FB anomaly compared to Z width data, and this relaxes by one order of magnitude

the bound on this parameter.
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Figure 5. Color map of the correlation matrix among the Wilson coefficients, obtained assuming

zero SMEFT error, for the {α̂, m̂Z , ĜF } input scheme (left) and for the {m̂W , m̂Z , ĜF } input

scheme (right).

Ci × v̄2
T

Λ2

{α̂, m̂Z , ĜF } scheme {m̂W , m̂Z , ĜF } scheme

(0%) (1%) (0%) (1%)

CHe 47. ± 25. 34. ± 32. 44. ± 24. 31. ± 28.

CHu −31. ± 17. −22. ± 22. −29. ± 16. −20. ± 18.

CHd 12.8 ± 8.4 8. ± 11. 11. ± 7.9 6.4 ± 9.4

C
(1)
Hl 24. ± 13. 17. ± 16. 22. ± 12. 16. ± 14.

C
(3)
Hl 81. ± 47. 71. ± 50. 77. ± 44. 68. ± 45.

C
(1)
Hq −7.8 ± 4.2 −5.7 ± 5.4 −7.4 ± 4.0 −5.2 ± 4.6

C
(3)
Hq 80. ± 47. 71. ± 50. 77. ± 44. 69. ± 45.

CHWB 3.4 ± 6.5 −5. ± 13. −1.2 ± 7.9 −10. ± 12.

CHD −94. ± 51. −67. ± 65. −87. ± 46. −60. ± 55.

Cll −286. ± 371. −244. ± 414. −859. ± 1190. −1062. ± 1310.

C ′
ll −0.19 ± 0.18 −0.7 ± 1.0 −0.37 ± 1.2 −0.08 ± 1.4

Cee 308. ± 388. 264. ± 434. 890. ± 1240. 1114. ± 1366.

Cle 4.7 ± 5.5 4.6 ± 5.6 6.2 ± 6.6 7.1 ± 7.1

CW 120. ± 72. 110. ± 75. 109. ± 64. 101. ± 65.

Table 5. Best fit values and corresponding 1σ confidence regions for ∆SMEFT = {0%, 1%} and for

the two input parameter schemes considered in this work. The numbers have been obtaining after

profiling the χ2 over the other parameters and they have been multiplied by a factor 100.
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Ci × v̄2
T

Λ2

{α̂, m̂Z , ĜF } scheme {m̂W , m̂Z , ĜF } scheme

(0%) (1%) (0%) (1%)

CHe −0.047 ± 0.036 −0.064 ± 0.079 −0.054 ± 0.037 −0.104 ± 0.092

CHu 0.06 ± 0.25 0.45 ± 0.87 −0.06 ± 0.25 0.462 ± 1.036

CHd −0.35 ± 0.33 −2.1 ± 1.1 −0.152 ± 0.33 −2.4 ± 1.3

C
(1)
Hl 0.016 ± 0.025 −0.07 ± 0.10 0.018 ± 0.026 −0.109 ± 0.11

C
(3)
Hl −0.013 ± 0.025 0.019 ± 0.054 −0.009 ± 0.039 −0.12 ± 0.11

C
(1)
Hq 0.05 ± 0.10 0.05 ± 0.41 0.01 ± 0.11 0.05 ± 0.42

C
(3)
Hq 0.013 ± 0.037 0.21 ± 0.29 −0.005 ± 0.039 0.21 ± 0.30

CHWB −0.008 ± 0.020 0.015 ± 0.029 −0.046 ± 0.053 −0.050 ± 0.061

CHD −0.058 ± 0.051 0.01 ± 0.11 −0.075 ± 0.059 −0.066 ± 0.066

Cll 11.8 ± 4.4 11.4 ± 5.2 11.9 ± 4.4 11.1 ± 5.0

C ′
ll 0.019 ± 0.044 −0.053 ± 0.074 0.011 ± 0.094 −0.79 ± 0.58

Cee 12.4 ± 4.6 12.0 ± 5.4 11.9 ± 4.4 11.5 ± 5.2

Cle 9.8 ± 4.0 8.8 ± 4.2 9.4 ± 3.9 8.5 ± 4.0

CW 1.8 ± 4.5 1.9 ± 4.5 1.9 ± 4.4 2.0 ± 4.5

Table 6. Best fit values and corresponding 1σ confidence regions for ∆SMEFT = {0%, 1%} and for

the two input parameter schemes considered in this work. These numbers have been obtained mini-

mizing the χ2 with one parameter at a time (despite the non-minimal character of the SMEFT [1]),

and they have been multiplied by a factor 100.
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