Published for SISSA by 🖄 Springer

RECEIVED: May 6, 2018 ACCEPTED: May 12, 2018 PUBLISHED: May 22, 2018

Addendum: Scheming in the SMEFT... and a reparameterization invariance!

Ilaria Brivio and Michael Trott

Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

E-mail: ilaria.brivio@nbi.ku.dk, michael.trott@cern.ch

ADDENDUM TO: JHEP07(2017)148

ABSTRACT: We allow two independent flavor contractions for the operator Q_{ll} in the U(3)⁵ flavor symmetric limit and report modified fit results in this limit.

KEYWORDS: Effective Field Theories, Beyond Standard Model

ARXIV EPRINT: 1701.06424

The original paper adopted an overly restrictive form of a $U(3)^5$ limit by not allowing two independent flavor contractions admitted by the operator Q_{ll} in the $U(3)^5$ flavor symmetric limit [2]. Defining

$$\mathcal{L}_{\text{SMEFT}} \supset \left[C_{ll} \,\delta_{mn} \delta_{op} + C_{ll}' \,\delta_{mp} \delta_{no} \right] (\bar{l}_m \gamma_\mu l_n) (\bar{l}_o \gamma^\mu l_p),$$

both C_{ll} and C'_{ll} are allowed to be independent parameters in the U(3)⁵ flavour symmetric limit. The original paper used the same parameter C_{ll} in both terms, which is overly restrictive. This leads to $C_{ll} \to C'_{ll}$ in the expressions:

$$\delta G_F = \frac{1}{\sqrt{2}\,\hat{G}_F} \left(\sqrt{2}C_{H\ell}^{(3)} - \frac{1}{\sqrt{2}}C_{ll}' \right),\tag{4}$$

$$\delta \bar{g}_Z = -\frac{1}{\sqrt{2}} \,\delta G_F - \frac{1}{2} \frac{\delta m_Z^2}{\hat{m}_Z^2} + \frac{s_{\hat{\theta}} c_{\hat{\theta}}}{\sqrt{2} \hat{G}_F} C_{HWB} = -\frac{1}{4\sqrt{2} \hat{G}_F} \left(C_{HD} + 4 \, C_{H\ell}^{(3)} - 2 C_{ll}' \right), \quad (15)$$

$$\delta g_1^{\gamma} = \frac{1}{4\sqrt{2}\hat{G}_F} \left(C_{HD} \frac{\hat{m}_W^2}{\hat{m}_W^2 - \hat{m}_Z^2} - 4C_{H\ell}^{(3)} + 2C_{ll}' - C_{HWB} \frac{4\hat{m}_W}{\sqrt{\hat{m}_Z^2 - \hat{m}_W^2}} \right), \tag{22}$$

$$\delta g_1^Z = \frac{1}{4\sqrt{2}\hat{G}_F} \left(C_{HD} - 4C_{H\ell}^{(3)} + 2C_{ll}' + 4\frac{\hat{m}_Z}{\hat{m}_W} \sqrt{1 - \frac{\hat{m}_W^2}{\hat{m}_Z^2}} C_{HWB} \right),\tag{23}$$

$$\delta\kappa_{\gamma} = \frac{1}{4\sqrt{2}\hat{G}_F} \left(C_{HD} \frac{\hat{m}_W^2}{\hat{m}_W^2 - \hat{m}_Z^2} - 4C_{H\ell}^{(3)} + 2C_{ll}' \right), \tag{24}$$

$$\delta \kappa_Z = \frac{1}{4\sqrt{2}\hat{G}_F} \left(C_{HD} - 4C_{H\ell}^{(3)} + 2C_{ll}' \right), \tag{25}$$

The list in eq. (3.37) should also include C'_{ll} :

$$\tilde{C}_{i} \equiv \frac{\bar{v}_{T}^{2}}{\Lambda^{2}} \{ C_{He}, C_{Hu}, C_{Hd}, C_{Hl}^{(1)}, C_{Hl}^{(3)}, C_{Hq}^{(1)}, C_{Hq}^{(3)}, C_{HWB}, C_{HD}, C_{ll}, C_{ll}', C_{ee}, C_{le} \},$$
(37)

and the number of Wilson coefficients in the text after eq. (3.45) is then 21.

The fit results in this case are shown in figures 3, 4, 5 and tables 5, 6. The limits obtained minimizing the coefficients one-at-a-time are largely unchanged, while the fit results that marginalize over the larger set of parameters are modified. A significant scheme dependence is found for C'_{ll} in this case. This coefficient enters the considered observables via shift parameters. In the $\{\hat{\alpha}, \hat{m}_Z, \hat{G}_F\}$ -scheme it impacts most LEPI data, and in particular \hat{m}_W . In the $\{\hat{m}_W, \hat{m}_Z, \hat{G}_F\}$ -scheme it affects dominantly bhabha scattering via $\delta \alpha$, that is less constraining. C_{ll} and C_{ee} are poorly constrained and strongly anti-correlated as they both contribute to bhabha scattering only, where they enter in a linear combination of the form¹ $[C_{ee} + (1 + \Delta(s, c_{\theta}))C_{ll}]$ where $0 < \Delta(s, c_{\theta}) < 0.1$ at the LEP2 c.m.s. energy. The direction $C_{ll} - C_{ee}$ is nearly unconstrained and this degeneracy is weakly broken by the kinematic dependence. The correlations are larger in the $\{\hat{m}_W, \hat{m}_Z, G_F\}$ scheme for the observables considered. C'_{ll} is more correlated with C_{ll} , C_{ee} , C_{le} as bhabha scattering provides the dominant constraint on C'_{ll} in this scheme increasing correlations. In the $\{\hat{\alpha}_W, \hat{m}_Z, G_F\}$ scheme, C'_{ll} is primarily bounded by the m_W measurement, and this allows the parameters to split in less correlated blocks, one constrained by LEPI + WW production data and one by bhabha scattering.

¹Here c_{θ} is the cosine of the angle between the incoming e^- and the outgoing e^+ in bhabha scattering.

Figure 3. Best fit values of the Wilson coefficients (scaled by a factor 100) and corresponding $\pm 1\sigma$ confidence regions obtained after profiling away the other parameters. Red (blue) points were obtained in the { $\hat{\alpha}(\hat{m}_W), \hat{m}_Z, \hat{G}_F$ } input parameter scheme. The plot to the left has been obtained assuming $\Delta_{\text{SMEFT}} = 0$, while the one to the right includes a theoretical error $\Delta_{\text{SMEFT}} = 0.01$.

Figure 4. Best fit values of the Wilson coefficients (scaled by a factor 100) and corresponding $\pm 1\sigma$ confidence regions obtained minimizing the $\Delta\chi^2$ with one parameter at a time. Red (blue) points were obtained in the $\{\hat{\alpha}(\hat{m}_W), \hat{m}_Z, \hat{G}_F\}$ input parameter scheme. The plot to the left has been obtained assuming $\Delta_{\text{SMEFT}} = 0$, while the one to the right includes a theoretical error $\Delta_{\text{SMEFT}} = 0.01$. Note that in the right plot the x axis has been scaled by a factor 2 and the coefficient C_{Hd} has been moved to the lower panel: increasing the theoretical error enhances the pull of the $\mathcal{A}_{FB}^{0,b}$ anomaly compared to Z width data, and this relaxes by one order of magnitude the bound on this parameter.

Figure 5. Color map of the correlation matrix among the Wilson coefficients, obtained assuming zero SMEFT error, for the $\{\hat{\alpha}, \hat{m}_Z, \hat{G}_F\}$ input scheme (left) and for the $\{\hat{m}_W, \hat{m}_Z, \hat{G}_F\}$ input scheme (right).

$C_i \times \frac{\bar{v}_T^2}{\Lambda^2}$	$\{\hat{\alpha}, \hat{m}_Z, \hat{G}_F\}$ scheme		$\{\hat{m}_W, \hat{m}_Z, \hat{G}_F\}$ scheme	
	(0%)	(1%)	(0%)	(1%)
C_{He}	$47. \pm 25.$	$34. \pm 32.$	$44. \pm 24.$	$31. \pm 28.$
C_{Hu}	$-31. \pm 17.$	$-22. \pm 22.$	$-29. \pm 16.$	$-20. \pm 18.$
C_{Hd}	12.8 ± 8.4	8. \pm 11.	$11. \pm 7.9$	6.4 ± 9.4
$C_{Hl}^{(1)}$	$24. \pm 13.$	$17. \pm 16.$	22. \pm 12.	$16. \pm 14.$
$C_{Hl}^{(3)}$	$81. \pm 47.$	71. \pm 50.	$77. \pm 44.$	$68. \pm 45.$
$C_{Hq}^{(1)}$	-7.8 ± 4.2	-5.7 ± 5.4	-7.4 ± 4.0	-5.2 ± 4.6
$C_{Hq}^{(3)}$	$80. \pm 47.$	71. \pm 50.	$77. \pm 44.$	$69. \pm 45.$
C_{HWB}	3.4 ± 6.5	$-5. \pm 13.$	-1.2 ± 7.9	$-10. \pm 12.$
C_{HD}	$-94. \pm 51.$	$-67. \pm 65.$	$-87. \pm 46.$	$-60. \pm 55.$
C_{ll}	$-286. \pm 371.$	$-244. \pm 414.$	$-859. \pm 1190.$	$-1062. \pm 1310.$
C'_{ll}	-0.19 ± 0.18	-0.7 ± 1.0	-0.37 ± 1.2	-0.08 ± 1.4
C_{ee}	$308. \pm 388.$	$264. \pm 434.$	$890. \pm 1240.$	$1114. \pm 1366.$
C_{le}	4.7 ± 5.5	4.6 ± 5.6	6.2 ± 6.6	7.1 ± 7.1
C_W	$120. \pm 72.$	$110. \pm 75.$	$109. \pm 64.$	$101. \pm 65.$

Table 5. Best fit values and corresponding 1σ confidence regions for $\Delta_{\text{SMEFT}} = \{0\%, 1\%\}$ and for the two input parameter schemes considered in this work. The numbers have been obtaining after profiling the χ^2 over the other parameters and they have been multiplied by a factor 100.

$C_i \times \frac{\bar{v}_T^2}{\Lambda^2}$	$\{\hat{\alpha}, \hat{m}_Z, \hat{G}_F\}$ scheme		$\{\hat{m}_W, \hat{m}_Z, \hat{G}_F\}$ scheme	
	(0%)	(1%)	(0%)	(1%)
C_{He}	-0.047 ± 0.036	-0.064 ± 0.079	-0.054 ± 0.037	-0.104 ± 0.092
C_{Hu}	0.06 ± 0.25	0.45 ± 0.87	-0.06 ± 0.25	0.462 ± 1.036
C_{Hd}	-0.35 ± 0.33	-2.1 ± 1.1	-0.152 ± 0.33	-2.4 ± 1.3
$C_{Hl}^{(1)}$	0.016 ± 0.025	-0.07 ± 0.10	0.018 ± 0.026	-0.109 ± 0.11
$C_{Hl}^{(3)}$	-0.013 ± 0.025	0.019 ± 0.054	-0.009 ± 0.039	-0.12 ± 0.11
$C_{Hq}^{(1)}$	0.05 ± 0.10	0.05 ± 0.41	0.01 ± 0.11	0.05 ± 0.42
$C_{Hq}^{(3)}$	0.013 ± 0.037	0.21 ± 0.29	-0.005 ± 0.039	0.21 ± 0.30
C_{HWB}	-0.008 ± 0.020	0.015 ± 0.029	-0.046 ± 0.053	-0.050 ± 0.061
C_{HD}	-0.058 ± 0.051	0.01 ± 0.11	-0.075 ± 0.059	-0.066 ± 0.066
C_{ll}	11.8 ± 4.4	11.4 ± 5.2	11.9 ± 4.4	11.1 ± 5.0
C'_{ll}	0.019 ± 0.044	-0.053 ± 0.074	0.011 ± 0.094	-0.79 ± 0.58
C_{ee}	12.4 ± 4.6	12.0 ± 5.4	11.9 ± 4.4	11.5 ± 5.2
C_{le}	9.8 ± 4.0	8.8 ± 4.2	9.4 ± 3.9	8.5 ± 4.0
C_W	1.8 ± 4.5	1.9 ± 4.5	1.9 ± 4.4	2.0 ± 4.5

Table 6. Best fit values and corresponding 1σ confidence regions for $\Delta_{\text{SMEFT}} = \{0\%, 1\%\}$ and for the two input parameter schemes considered in this work. These numbers have been obtained minimizing the χ^2 with one parameter at a time (despite the non-minimal character of the SMEFT [1]), and they have been multiplied by a factor 100.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

- Y. Jiang and M. Trott, On the non-minimal character of the SMEFT, Phys. Lett. B 108 (2017) 053006 [arXiv:1612.02040].
- [2] V. Cirigliano, J. Jenkins and M. Gonzalez-Alonso, Semileptonic decays of light quarks beyond the standard model, Nucl. Phys B 830 (2010) 95 [arXiv:0908.1754].