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Abstract
We study cosmological dynamics of a multi-field system for a general Lagrangian
density having scaling solutions. This allows the possibility that scaling radiation
and matter eras are followed by a late-time cosmic acceleration through an assisted
inflation mechanism. Using the bound coming from Big-Bang-Nucleosynthesis (BBN)
and the condition under which each field cannot drive inflation as a single compo-
nent of the universe, we find the following features: (i) a transient or eternal cosmic
acceleration can be realized after the scaling matter era, (ii) a “thawing” property of
assisting scalar fields is crucial to determine the evolution of the field equation of state
wφ, and (iii) the field equation of state today can be consistent with the observational
bound wφ in the presence of multiple scalar fields.

1 Introduction

The constantly accumulating observational data continue to confirm the existence of dark energy re-
sponsible for cosmic acceleration today. The cosmological constant, whose equation of state is w = −1,
has been favored by the combined data analysis of supernovae Ia, cosmic microwave background, and
baryon acoustic oscillations. Meanwhile, if the cosmological constant originates from a vacuum energy
associated with particle physics, its energy scale is enormously larger than the observed value of dark
energy (ρDE ≈ 10−47 GeV4). Hence it is important to pursue an alternative possibility to construct dark
energy models consistent with particle physics.

Scalar-field models such as quintessence and k-essence have been proposed to alleviate the above
problem. In particular cosmological scaling solutions are attractive to alleviate the energy scale problem
of dark energy because the solutions enter the scaling regime even if the field energy density is initially
comparable to the background fluid density. However the condition required for the existence of scaling
solutions is incompatible with the condition for the existence of a late-time accelerated solution. Hence,
in the single field case, the scaling solution cannot be followed by the scalar-field dominated solution
responsible for dark energy. One of the ways to allow a transition from the scaling regime to the epoch of
a late-time cosmic acceleration is to consider multiple scalar fields. For a general multi-field Lagrangian
density having scaling solutions, we discuss how scaling radiation and matter eras are followed by an
epoch of the late-time cosmic acceleration.

2 Dynamical system

Let us start with the following 4-dimentional action

S =
∫

d4x
√
−g

[
R

2
+ p(φ,X)

]
+ Sf (φ), (1)

where R is a scalar curvature, p is a general function in terms of the field φ and a kinetic term X =
−gµν∂µφ∂νφ/2. Sf is an action for a background fluid which generally couples to the field φ. The
existence of cosmological scaling solutions demands that the field energy density ρφ is proportional to
the background fluid density ρf . Under this condition the Lagrangian density is restricted to take
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the following form with arbitrary function g(Xeλφ) in the flat homogeneous and isotropic cosmological
background [1, 2];

p(X, φ) = Xg(Xeλφ) , (2)

where λ is a constant. If we consider multiple scalar fields φi (i = 1, 2, · · · , n) with the Lagrangian density

p =
n∑

i=1

Xig(Xie
λiφi) , (3)

the scaling solution can be followed by the accelerated scalar-field dominated point through the assisted
inflation mechanism [3]. The multiple scalar fields evolve to give dynamics matching a single-field model
with [3–5]

1
λ2

eff

=
n∑

i=1

1
λ2

i

. (4)

For the Lagrangian density (3) the dynamical field equations can cast into the form of autonomous
equations [6]. In the following we study the case in which one of the fields (φ1) has a large slope λ1 to
satisfy a BBN bound and other fields join the scalar-field dominated attractor at late times to give rise
to cosmic acceleration. We have three fixed points relevant to radiation, matter, and accelerated epochs.

First of all, the field equation of state for the radiation-dominated scaling solution is wφ1 = 1/3. The
constraint on the field density parameter Ωφ1 coming from the BBN is

Ωφ1 = 4p,X1/λ2
1 . 0.045 , (5)

where p,X1 ≡ ∂p/∂X1.
Second, the field equation of state for the matter-dominated scaling solution is wφ1 = 0. The field

density parameter is
Ωφ = 3p,X1/λ2

1 . (6)

and then λ2
1 > 3p,X1 is required [5].

Finally, in the case of the assisted field-dominated point, the field equation of state is

wφ = −1 + λ2
eff/3p,X , (7)

where X = −gµν∂µφ∂νφ/2 is a kinetic energy of the effective single field φ. The fixed point can be
responsible for the late-time acceleration for λ2

eff < 2p,X . Moreover, it is stable under the condition
λ2

eff < 3p,X [5].

3 Quintessence with multiple exponential potentials

We study multi-field cosmological dynamics for a quintessence model with exponential potentials [3]. This
corresponds to the Lagrangian density pi = Xi − cie

−λiφi , i.e. the choice g(Xie
−λiφi) = 1− ci/(Xie

λiφi).
Since p,Xi = 1 in this model, the BBN bound and the condition for cosmic acceleration give

λ1 > 9.42 , and λeff <
√

2 , (8)

respectively.
Let us consider two fields φ1 and φ2. In Fig. 1 we plot the evolution of the background fluid density

ρf = ρr + ρm (radiation + non-relativistic matter) and the field densities ρφ1 , ρφ2 versus the redshift
z for λ1 = 10 and λ2 = 1.5. The cases (i), (ii), (iii) correspond to the simulations for three different
initial conditions of φ1. Figure 1 shows that the field φ1 joins the scaling regime irrespective of initial
conditions of φ1. Finally the system enters the epoch in which the energy density ρφ2 of the second
field φ2 dominates the dynamics. Note that the second field density ρφ2 is almost frozen after the initial
transient period.
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Figure 1: Example for the evolution of ρf , ρφ1 , ρφ2

for the qunitessence with two exponential potentials.
We choose three different initial conditions for φ1.
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Figure 2: Example for the evolution of wφ, wφ1 , wφ2 ,
and weff for the qunitessence with two exponential
potentials.

Figure 3: The equation of state wφ today versus λi (i 6= 1) for λ1 = 9.43 in the multi-field quintessence
with exponential potentials.

Figure 2 illustrates the variation of the equation of state with the same initial condition as in the case
(i) of Fig. 1. Here wφ and weff are defined by

wφ =
wφ1Ωφ1 + wφ2Ωφ2

Ωφ1 + Ωφ2

, weff = −1 − 2Ḣ

3H2
, (9)

where H is the Hubble expansion rate. Since wφ = −0.27 (attractor) and wφ = −0.62 (z = 0) in this
case, the transient acceleration occurs at the present epoch.

In Fig. 3 we show wφ(z = 0) versus λi (i ≥ 2) for λ1 = 9.43 in the presence of multiple scalar fields.
This shows that, as we add more fields, we obtain smaller values of wφ(z = 0). The observational bound
wφ(z = 0) < −0.8 can be satisfied in the presence of more than two fields.

4 Multi-field dilatonic ghost condensate model

Next we proceed to the multi-field dilatonic ghost condensate model [1] with the Lagrangian density
pi = −Xi + cie

λiφiX2
i . This corresponds to the choice g(Xie

λiφi) = −1 + ci(Xie
λiφi). In this model the

BBN bound and the condition for cosmic acceleration translate into

λ1 > 9.42
√

2Ỹ1 − 1 , λeff <
√

6/3 , (10)
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Figure 4: Example for the evolution of wφ, wφ1 , wφ2 ,
and weff for λ1 = 40 and λ2 = 1 in the two-field
dilatonic ghost condensate model.
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Figure 5: The equations of state versus the number
n of scalar fields for λ1 = 40 and λi = 0.817 (i ≥ 2)
in the multi-field dilatonic ghost condensate model.

respectively (where Ỹ1 = c1e
λ1φ1X1).

Figure 4 shows the evolution of the equations of state. In this model the scaling solution is absent
during the radiation era (exists only in the limit Ỹ1 → ∞), while it is present during the matter dominance.
It takes some time for the solution to reach the scaling matter point characterized by Ỹ1 = 1. Hence, the
period of the scaling matter era is very short. As in the case of multi-field quintessence with exponential
potentials, wφ first reaches a minimum and then starts to grow toward the assisted attractor. In Fig. 5
we plot wφ(z = 0), weff(z = 0), and wφ at the late-time attractor for λ1 = 40 and λi = 0.817 (i ≥ 2).
This shows that we require at least 10 scalar fields to realize the observational bound wφ(z = 0) < −0.8.

5 Conclusion

We have studied cosmological dynamics of assisted dark energy for the Lagrangian density (3) that
possesses scaling solutions. In the presence of multiple scalar fields the scaling matter era can be followed
by the phase of a late-time cosmic acceleration as long as more than one field join the assisted attractor.
Since the effective slope λeff is smaller than the slope λi of each field, the presence of multiple scalar
fields can give rise to cosmic acceleration even if none is able to do so individually. This is a nice feature
from the viewpoint of particle physics because there are in general many scalar fields (dilaton, modulus,
etc) with the slopes λi larger than the order of unity. For quintessence with exponential potentials and
the multi-field dilatonic ghost condensate model, we have shown that a thawing property of assisting
multiple scalar fields allows the field equation of state wφ smaller than −0.8 today.
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