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ABSTRACT 

We give an S-matrix theoretic demonstration that if the Higgs boson 

mass exceeds M c = (8n fi/ 3GF+ partial-wave unitarity is not respected 

by the tree diagrams for two-body scattering of gauge bosons, and the weak 

interactions must become strong at high energies. We exhibit the relation 

of this bound to the structure of the Higgs-Goldstone Lagrangian, and 

speculate on the consequences of strongly-coupled Higgs-Goldstone systems. 

Prospects for the observation of massive Higgs scalars are noted. 
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I. INTRODUCTION 

Unified gauge theories of weak and electromagnetic interactions 

provide an attractive framework for the interpretation of weak interaction 

phenomena. 
1 Such theories are universal in the prediction that existing 

data explore only the low-energy tail of a spectrum of yet-to-be-discovered 

particles. The most familiar of the hypothetical particles are the massive 

vector bosons d and Z” associated with the observed charged and neutral 

weak currents. Somewhat more obscure are the massive scalar Higgs 

bosons which are connected with the spontaneous breakdown of gauge 

symmetry. Although the Higgs bosons serve important technical functions 

in field-theoretic calculations, their existence and properties are less 

clearly indicated by low-energy phenomenology. Thus, for example, the 

mass M H of the Higgs boson is the only parameter in the Weinberg-Salam 

model‘ that is entirely unconstrained by present experimental evidence. 

Theoretical considerations3 suggest that the Higgs boson mass must 

exceed about 4GeV/c2, and we have recently derived a conditional upper 

bound4 

MHs M = (8n&/3GF)’ = 1 TeV/c2 , 
c 

where G F is the Fermi constant. The precise meaning of the upper bound 

is that if MH exceeds the critical value M, , weak interactions will become 

strong in the TeV energy regime in the sense that perturbation theory 

will cease to be a faithful representation of physics. 

Because the Higgs self-interaction is proportional to GFMH 2 , it frequently 
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has been remarked that a large Higgs boson mass implies a strong interaction 

among Higgs bosons. Weinberg’ has championed the view that GF -s is 

a natural mass scale of nature and that, in the event of strong Higgs 

self-couplings, the effective ultraviolet cutoff would be at this energy. 

More recently Veltman’ considered Higgs boson contributions to certain 

radiative corrections. He concluded that for Higgs boson masses exceeding 

: approximately G -- F the perturbation expansion of weak interactions could 

well break down. Our result (1.1) is in accord with these expectations. 

The condition (1.11 suggests that new phenomena are to be found in 

the weak interactions in addition to the charged and neutral intermediate 

vector bosons. Either a light scalar boson (of mass well below 1 TeV) will 

exist, or the weak interactions above about 1 TeV will exhibit attributes of 

a strongly-coupled theory: resonances of intermediate vector bosons, 

multiple production of intermediate vector bosons, etc. 

If the Higgs boson is not very massive, say with a mass between 

4.5 GeV/c2 (the Linde-Weinberg lower bound3) and 2MW, we expect 

it to have the properties outlined by Ellis, Gaillard, and Nanopoulos. ’ 

We shall explore in this paper the possibility that the Higgs boson mass 

lies above the thresholds for decay into intermediate boson pairs. In 

this regime the decays H + W+W- and H - z”zo are the dominant modes, 

with longitudinally polarized intermediate bosons increasingly favored as 

MH increases. As MH approaches the critical mass MC, the Higgs boson 

width approaches its mass,signalling a strongly-coupled theory. 
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Because we wish to explore a regime in which the weak interactions 

can become strong it is natural to approach the problem from an S-matrix 

point of view* with a particular concern for unitarity. 
9 

Our treatment 

provides a systematic investigation of the minimal Weinberg-Salam theory 

from this point of view. In Section II we discuss and calculate in tree 

approximation the Weinberg-Salam model amplitudes for all two-body 

reactions of gauge bosons with zero total electric charge in the s-channel. 

We display only those terms that are potentially relevant to the question 

of unitarity, omitting, for example, terms which are of ordinary electromagnet’ 

strength at all energies. Logarithmic violations of unitarity that occur 

at exponentially high energies NMWe i/a will be of no concern to us here. 

By focusing only on those amplitudes that constitute a potential 

threat to unitarity one finds a remarkable simplification of the problem. 

The relevant amplitudes are those which involve only longitudinal gauge 

bosons and the Higgs boson. The system of these particles is the subject 

of Section III. There it is shown that at energies large compared with 

the intermediate boson mass, this system.is a clear reflection of the 

underlying Higgs-Goldstone system of the Weinberg-Salam model, with 

the longitudinal W+, W- and Z” behaving much like the Goldstone bosons 

from which they sprang. Up to terms of order MW/&, the S-matrix 

for WL*, ZL, and H (the subscript L denotes longitudinal polarization) 

is identical to that for the self-interactions of a complex doublet of scalar 

particles, as we show in detail in an Appendix. Consequently exploration 
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of the issue of unitarity and of the strength of high-energy weak interactions 

reduces to the study of a set of strongly-coupled self-interacting scalar 

fields. In Section IV we pursue this issue using the N/D method. Section V 

contains some aspects of the phenomenology of heavy Higgs particles together 

with a discussion of our results. 

II. GAUGE BOSON SCATTERING IN THE WEINBERG-SALAM MODEL 

Our presentation will center on the helicity amplitudes for two-body 

reactions of gauge bosons with zero total electric charge in the direct 

channel. In this Section we shall discuss all such amplitudes, retaining 

those terms which are potentially relevant to the issue of unitarity. For 

our purposes, contributions which are manifestly of order (Y or less at 

all energies can safely be disregarded. A non-exceptional value of the weak 

interaction angle BW is inferred from experiment. 10 
Thus all gauge coupling 

1 
constants are assumed to be of order a’. It will be seen that neglect 

of the innocuous terms dramatically reduces the number of amplitudes 

which must be considered, so that a complete treatment becomes quite 

manageable. 

The particle content of the Weinberg-Salam model includes three 

massive intermediate bosons {VI 5 (W+, W-, Z’), a neutral Higgs particle (H), 

the photon (y) and a lepton doublet (e, v). We include the last only to dismiss 

it from our considerations. Counting all helicity states, there are 39 

neutral two-particle channels: W+W-(9 1, ZZ(9 1, HH(1 ), 
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HZ(3), yy(4), yZ(6), yH(2), e-d(4), and v5(1). We will find that, within 

the approximations outlined, all but four of these channels decouple in the 

sense that the partial wave amplitudes are small at all energies (except 

very near the particle poles or at exponentially large energies ) for any 

value of the Higgs boson mass. Of the surviving channels, one (HZL) 

is isolated and three (WL +w=-, ZLZL’ HH) are coupled. We will first 

describe the 3 x 3 t-matrix for the latter system. Then we demonstrate 

that all other channels decouple. In keeping with our S-matrix approach, 

all calculations in this Section are done in the unitary gauge. 

1. WLfWL- -w +wL- 
L 

For this case alone we shall detail the interplay of the several 

Feynman graphs that make up the tree approximation to the scattering 

amplitude. 
8 

It is convenient to classify the cancellations among the tree graphs 

according to the power of (q/MW) which enters, where q is the c.m. 

momentum of the gauge bosons. The high-energy behavior of the individual 

graphs in Fig. 1 is at worst N(~/M~)~. Consequently the contribution of 

each graph to the J-th partial wave may be written as 

aJ = Nql MJ4 + B(q/ Mw)2 + C , 

where the partial-wave amplitude a J is defined through 

T(s, t) = 16~ (25 + l)aJ(s)PJ(cos 0) . 

(2.1 

(2. 2 
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We will refer to the coefficients in (2. 1) as A-, B-, and C-forces, and 

refer to a force as attractive or repulsive if the coefficient is positive or 

negative. It will be convenient to define the dimensionless weak coupling 

analogous to the fine structure constant 

“w 
= GF~,2.fi/, = a/sin2 BW . (2.3) 

All the divergent high-energy behavior of the graphs in Fig. i is 

confined to the J = 0, 1, and 2 partial waves. In each case the vanishing 

of A-forces results from a gauge cancellation among the contact graph and 

the s- and t-channel (y + Z)-exchanges. In the J = 2 partial wave the 

cancellation of B-forces is also pure gauge. For the J = 0 and i partial 

waves the B-force cancellations involve the Higgs boson in an essential 

way. 

Having noted the disappearance of all high-energy divergences, 

we are led to consider the surviving C-force terms which have acceptable 

asymptotic behavior but are not necessarily small. It will be convenient 

for us to present here the invariant amplitudes, deferring the partial-wave 
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projections to Section III. The C-forces contributed by the contact graph 

and by the y- and Z-exchanges are of order (Y W at (almost) all energies 

and hence zero in our approximation. In contrast, the Higgs-exchange 

graphs produce C-forces which can be of order unity for large enough 

Higgs mass. Thus for our purposes the full amplitude is given by the 

C-force terms of the s- and t-channel Higgs exchange graphs, 

T(WL+WL- - WL+WL- ) = -fiG M 2 ’ 
F H 

a-M 
2+ 

t 

H t - MB2 1 (2.4) 
’ 

2. 22 +zz 
LL LL 

Having traced the pattern of cancellations of divergences in the graphs 

for wL+wL- - wL+wL-, we would serve no useful function by describing 

in similar detail the cancellations for other processes. We focus instead 

on the heart of the matter, namely the convergent C-force terms. For 

the reaction ZLZL - ZL L 2 there are three graphs shown in Fig. 2, 
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the s-, t-, and u-channel Higgs boson exchanges. The resulting amplitude 

is 

T(Z. Z -ZLZL) = -aG M 2 f t 
LL F H 

t - MHZ 
+ U 

2 * 1 (2. 5) 
u-M H 

3. HH*HH 

The four graphs in Fig. 3 oontribute to Higgs ,boson elastic scattering. 

In this case the evaluation of the amplitude involves no cancellations. 

The result is 

T(HH - HH) = -3fiG M 
3MH2 

F H 2+ 
t-MHZ 

+ (2.6) 

4. zz LL 
-w 

L+WL- 

The four graphs contributing to this process are shown in Fig. 4. 

The only non-negligible C-force arises from the s-channel Biggs exchange, 

which gives 

T(ZLZL - WL +WL-) = -fi GFMHZ ’ 2 . 
s-M H 

(2.7) 

5. HH-W L+w - 
L 

Each of the four graphs in Fig. 5 contributes a non-vanishing C-force. 

The Feynman amplitude is 

3M 2 
MH 

2 

‘Urn-w L+wL- I= -flG,M,2 B2+ 
s-M 

2+ , (2.8) 

H t-MW 
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where the four terms emerge from the contact graph, the s-, t-, and 

u-channel Higgs exchanges, respectively. 

6. HH - ZLZL 

The Feynman graphs and the results are identical in form to those 

for HH - W L+wL-: 

3M 2 
MH 

2 
+ MH 

2 

T(HH - Z,Z,) = -G GFMH2 B 2 + (2.9 ! 
s-M 

H t - M~z2 u-M I 
2 * 

Z 

7. Decoupled Channels 

We shall first dispose of all channels which involve one or more 

transversely polarized intermediate bosons. Processes involving HZL 

and leptons will be dealt with separately, The channels with transversely 

polarized vector particles are unimportant for unitarity considerations 

because the corresponding tree graphs have softer high-energy behavior, 

graph by graph, than those for longitudinal polarization. By the nature 

of the gauge cancellations, this translates into the absence of any residual 

C-forces which are potentially strong (i.e. of order unity). The values 

of the energy and Higgs mass for which unitarity bounds may be approached 

or surpassed in longitudinal amplitudes are such that MV 2/S, 

Mv 2/MH2 ,< ~(cY,). In this regime the transverse amplitudes are of 

nl2 relative order cyw , where n is the number of transversely polarized 

particles involved in the reaction. All such amplitudes are therefore 

negligible under the conditions of interest to US. These assertions can 
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easily be verified by direct calculation, but the conclusion that transverse 

channels decouple also follows as a corollary to the discussion in 

Section III. There it will be argued that our approximations are leading 

us back to the underlying Biggs-Goldstone system of the Weinberg-Salam 

model. 

Turning to the HZL channel we observe that the elastic amplitude for 

HZL 
- HZ L’ 

which is obtained by crossing from (2.9), does have non-vanishin 

C-force terms. However, the off-diagonal amplitudes are negligible. 

The HZL channel is thus isolated from the other channels of interest 

discussed earlier. To see that HZL decouples, note first that the reactions 

HZ - ZZ and HZ, - HH do not occur at tree level. Evaluation of the amplitude 

for HZL * WL +WL- involves some intricate but by now familiar cancellations 

among s-channel (y + Z)-exchange and crossed-channel W-exchanges, 

and leads to an amplitude which is negligible in our approximation. A 

group theoretic argument for the isolation of HZL will be presented in 

Section III. 

Concerning the leptonic channels eE and VT, the only processes of 

conceivable relevance to the present discussion are of the general type 

eT-v v 
L L’ We shall describe the calculation of e’e- - WLiW 

L 
- in 

full; other reactions of the class are also inconsequential for similar 

reasons. For leptons of opposite h&city, the t-channel v-exchange 

graph,generates B-force terms which are confined to the J = 1 partial 

wave. These terms are exactly cancelled by the s-channel (y + Z)-exchange. 
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By now it is evident that in order to obtain a potentially interesting amplitude 

we must produce a factor of M 
H 

‘. Since the Higgs boson in the direct channel 

can play no role at all in the J = 1 partial wave, no such 

factor is forthcoming and the amplitude is negligible. The Biggs boson 

does become involved if the leptons have the same helicity. In this case 

the v-exchange graph produces a divergent high-energy behavior in the 

J = 0 partial wave which must be cancelled by s-channel Higgs exchange. 

However the lepton mass factors in the Higgs-fermion-fermion coupling 

make the resulting amplitude utterly negligible. 

We have now shown that the question of unitarity in the tree graph 

approximation to the Weinberg-Salam model reduces to the study of a 

3 x 3 matrix of amplitudes for the channels WL +q, ZLZL’ and HLHL 

(along with the isolated HzL channel). In the following Section we discuss 

the relevant amplitudes further, derive a high-energy unitarity bound 

which sets a conditional upper limit on the mass of the Higgs boson, and 

relate the results to the Higgs-Goldstone system of the Weinberg-Salam 

model. 
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III. PARTIAL-WAVE UNITARITY, THE HIGGS BOSON 
MASS, AND THE HIGGS-GOLDSTONE SYSTEM 

By taking partial-wave projections of the Feynman amplitudes (2.4) - 

(2.9). we can construct the elements of the coupled-channel t-matrix for 

the J = 0 partial wave. Assuming S, MHz >> M ’ M2 
W’ z 

we have 

ao(WL 
+wL- - wL+wL-) = 

a (Z Z 
0 LL 

-Z,Z,) = 

a (HH-HH) = 
0 

a (Z Z 0 LL 
-wL +wL-) = 

aO(HH - W L+wL-) = 

-GFMH 
2 

= 7mz- 

MH 
2 

2+s-MH2 
(3. la! 

; (3. Ib 

9MH2 

3+s-M2- 

18MH2 

H 
s - 4M 

H 

(3. ic 

ao(HH * Z,Z,) 

+&-log 
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ao(HZ L 
-HZL) = 

r 

-GFMH2 

i 

M ’ 3MH2s 
H -iIf-- 

8wJ2 S (s --MH2) 

aoWZL -HH) =o , 

ao(HZL -w Z,Z,) = 0 , 

aO(HZL - WL+WL- 1 = 0 . 

We first consider the effect of the elastic unitarity condition for the 

reaction W L+wL- - WL +WL- > 

t aotWL +wL- - w,+w,) 1 5 i . 

(3. igj 

(3. 2) 

At energies far above the Higgs pole the amplitude (3. la) approaches a 

constant, 

ao(WL +wL- - wLfwL-) -2 
-GFMH 

2 

4wJ2 
(3.3) 

s >> M 
H 

Consequently, in order for the tree approximation to respect the unitarity 

bound at high energies the Higgs boson mass must satisfy 

2 < 4wJz 
MH - . 

GF 
(3.4) 
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The nature of this upper bound is to delimit the class of weak interaction 

theories in which low orders of perturbation theory are expected to be a 

reliable guide to physical phenomena. 

The behavior of 1 ao(WL +WL- - wL+wL- )I is shown in Fig. 6 for 

Higgs boson masses well below and at the critical value (3.4). If MH 

is substantially less than the critical value, the magnitude of the amplitude 

is well within the bound (3.2) everywhere except near the Higgs 

boson resonance pole, where finite-width corrections are 

sufficient to rescue the bound. In contrast, if MH attains or exceeds the 

critical value, the unitarity bound will be violated by the tree approximation 

at all energies above the Higgs boson pole. Higher order effects will 

necessarily become important at high energies, and high energy weak 

interactions take on considerable added richness. 

It is possible to refine the bound (3.4) somewhat by considering the 

requirements of partial-wave unitarity on the four-channel system consisting 

of w L+WL-’ &ZLzL> +Ht and HZL. with amplitudes given by (3. 1). For 

s >’ M 2 
H 

each amplitude approaches a constant, so the 4 x 4 t-matrix 

takes the form 

-‘F”H 
2 

t0 -2-mT 
s >> M 

H 

1 Lb $0 
&$ +o. (3.5: 

-&a io 

_ 0 0 0 1 
T- 
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The matrix to has eigenvalues 2, z, 2,~ 3 ’ ’ ’ in units of 
-GF!$$‘ 

4x42 ’ correspondin! 

to the (unnormalized) eigenchannels 2WL +WL- + ZLZL + HH, 

2WL+WL- - ZLZL - HH, ZLZL - J$L and HZL. It is striking that we arrive 

at a t-matrix with such a simple eigenchannel structure, and we will 

expose the reason for this simplicity later in this Section. The most 

stringent unitarity bound on (3. 5) is derived from the requirement that 

the magnitude of the largest eigenvalue not exceed unity. This is ensured 

by the restriction on the Higgs boson mass, 

lVIH 
2 < 8rrfi 

3GF = Mc 
2 

= (1 TeV/c’)’ 

Further assessment of the meaning of this result and the various 

possibilities that follow from it will take up the succeeding sections. At 

this point we want to clarify the reason that the four channels WL +WL-. 

1 1 
J=2=ZLZL’ z HH, and HZL stand so clearly apart from other neutral 

two-body channels for s >> M ’ M2 W’ Z’ The basic point can be made by 

direct computation. Consider the Lagrangian for the Higgs sector of the 

Weinberg-Salam model before the gauge couplings are turned on, 

L?= (8%)+(8p+p2$+$- q$+b)Z , 

where $ represents a complex scalar doublet 

(3. 6 

(3. 7 

(3.8 
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Shifting the origin of fields in the usual way, we find that (3.7) describes 

+ 
a theory with three massless Goldstone bosons (w , w-, so) and one 

massive neutral particle (h) which interact according to 

yI = -hvh(Zw+w- + z2 + h2) - +h(Zw*w- + z2 + h2)’ , (3.9 I 

where v2 = p2/X. In the language of the full Weinberg-Salam theory, v 

and A are related to the Fermi constant and the Higgs boson mass by 

(3. 10,) 

i/V2 = GF& , 

2 , 
‘F”H A =-J!f--. 

When the gauge couplings are turned on, the Goldstone bosons mix with the 

longitudinal components of the vector bosons. The masses acquired by the 

Goldstone bosons in the course of this mixing are gauge-dependent. We 

find it expedient to adopt the ‘t Hooft-Feynman gauge, 
ii 

in which the masses 

ofw*andzareM 
W 

and M z, respectively, 

The S-matrix for the scalar theory of (3.9) is easily calculated in 

tree approximation. Feynman graphs for the neutral two-body channels 

are shown in Figs, 7 - ii. The resulting amplitudes are 

T(w+w- -w+w-) = -v? G M 2 S 
F H 

s-M 
2 + 

t 
2 ; 

H 
s-M 

H 1 (3. ila) 

T(zz -zz) = -d?-G M 
2 S 

2+ 
t 

F H t-M 
2+ 

U 
2 ; (3. lib) 

s-M H H 
u-M 

H I 

3M 
2 

T(hh e hh) = -3fiG M 
2 

3MB2 
H 3MH2 

F H *+s- 2*t-M 2+ 2 ; (3. iicl 

MH H u-M 
H 
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T(zz -v&v-, = -v’ZG XJ 
2 s 

F H s-M 
2 ; 

H 

(3. Iid 

T(hh - w+w-) = -&- GFMH2 
3MH2 

MH 
2 

t s-M 
2+ 

H 
t 2+ 2 - lM 

W u-M W 

2 1 3MH2 MHZ MH2 
T(hh*zz) = -fiGFMH iI+.s- 2+ 

L MH t -MZ 2 + 2 
u-M Z I ; , 

(3. lie 

(3. itf) 

2 
T(hz -hz) = -fiGFMH 

2 

I 

1 +t 
3MH2 

2 
+ 

MH2 
i MH 

2 2 

I 

: (3. -M 
H s-M 

iig) 

Z u-M Z 

T(hz -w*w-, =o ; (3. iih) 

T(hz-zz) = 0 ; (3.. iii) 

T(hz - hh) = 0 l (3. fij) 

Comparing these amplitudes with those calculated in Section II for physical 

gauge boson scattering we observe that the amplitudes (2.41-(2.9) which 

describe the high-energy limit of the full theory are identical to the 

corresponding amplitudes for the scalar theory. We are led to the following 

Theorem: If T!WLt Wi- ZL! 7) is an amplitude for 

scattering of longitudinal intermediate bosons and physical Higgs particles 
+- -. 

in the Weinberg-Salam model and if T(w ; w ; z:.,h) is the analogous 

amplitude for the scalar field theory described by (3.9). in the It Hooft- 

Feynman gauge, then for s >> MW2, Mz2, 
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RWL’; WL-; ZL; H)- T(w+; w-; z; h) + o(MWjfi) . (3.12) 

The theorem stated in (3.12) is a lemma used in showing that spontaneously 

broken gauge theories comprise essentially all renormalizable massive 

vector boson theories, 
12 apart from electrodynamics with massive photons. 

We supply a formal demonstration in the Appendix. 

The identification of the physical Weinberg-Salam model amplitudes 

which are dominant at high energies with the amplitudes of the underlying 

Hlggs-Goldstone system enables us to understand the simple eigenchannel 

structure of the high-energy t-matrix. This structure is a manifestation 

of the symmetries of the Hlggs-Goldstone interaction Lagrangian (3.9) 

which controls the high-energy limit. (In this limit the mass terms are 

irrelevant. ) Consider first the exact O(3) symmetry of the interaction 

Lagrangian (3.9) in the space labelled by wi, w2, and z, where 

i 
W = ;Z(wi l iw2) . (3.13) 

m isospin langauge, h is isoscalar and w+. w-, and z are isovector. 

The O(3) symmetry emerges in the structure of the 2 x 2 t-matrix for the 

channels w’w- and -& zz or, equivalently, WL+WL- and -& ZLZL. 

For the J = 0 partial wave, we read off from eqs. (3. la, b, d) the form 

A(s) + B(s) -&A(S) 

to = (3. i4) 

&A(s) tA(s) + B(s) 
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where 

-GFMH 
2 

B(s) =r 
MHZ 

i-y-- log 

(3.15) 

(3. 16) 

The eigenvectors of the matrix (3.14) correspond to the channels 

2w+w- + zz (I = 0) and w+w- - zz (I = 2 1, with eigenvalues $ A + B and B, 

respectively. The isovector state is excluded by statistics from the J = 0 

partial wave. The exact isospin symmetry of the interaction Lagrangian 

also explains the absence of off-diagonal processes involving hz. We 

assign even charge conjugation parity to all the Biggs -Goldstone particles 

+ - 
and define a G-parity which is even for h and odd for w , w , and a. 

The ha channel is the only neutral two-body channel with odd G-parity 

and is thus isolated. 

At energies very large compared with the Higgs boson mass the 

trilinear term in the interaction Lagrangian (3.9) becomes ineffectual 

(contact terms dominate pole graphs at the tree level), so the theory displays 

an asymptotic O(4) symmetry. The fields wl, w2, z, and h form a l-vector 

in O(4) space. The Clebsch-Gordan reduction appropriate to two-particle 

states is 

&@I& = 9@3a0?_ a (3.17) 
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corresponding to a symmetric traceless tensor, an antisVnmetric tensor, 

and a scalar in the O(4) space. The antisymmetric 5 representation does 

not occur m the J = 0 partial wave because of statistics. Adopting the 

not ation 

wi 
4 = 

0 
w2 > 
Z 

h 

(3. 18) 

we may write the singlet representation in the two-particle basis as 

cl) = i mimi = wi2 + w22 + z2 + h2 

i=l 
(3. 19) 

= zw+w- + zz + l-h 9 

and the nonet as 

(91ij 
= “CT 

- bij(l) . (3.20) 

The singlet corresponds to the eigenvector of the t-matrix with the 

largest eigenvalue sx (-W) . Of the elements of the nonet, three 

denote channels that are electrically neutral. It is convenient to choose 

the combinations 

(PI,, + Q),, = - W+W- + +zz + $hh , 

(9),, - (9_)44 = zz -hh , 

@I,, = hz 

(3.21a) 

(3. Zlb 1 

(3. 2lc ) 
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which correspond to the three eigenvectors of the t-matrix (3. 5) with common 

eigenvalue ix (-:Fy$). This completes the demonstration that the 

structure of the physically interesting t-matrix is a reflection of the 

asymptotic symmetry of the underlying Higgs-Goldstone theory. 

IV. PROPERTIES OF STRONGLY-COUPLED 
HIGGS-GOLDSTONE SYSTEMS 

We have demonstrated that the Higgs boson mass is the gauge theory 

parameter which governs the strength of weak interactions at high energies. 

If MH is small compared with the critical mass given by (3. b), partial-wave 

unitarity will be respected by the tree diagrams for gauge boson scattering 

at (almost ) all energies. Weak interactions may therefore remain weak 

at all but a few exceptional energies, in that higher order corrections 

to scattering amplitudes will be negligible. On the other hand, if MH is 

2 
comparable to or greater than the critical value of 1 TeV/c , weak interactions 

among gauge bosons necessarily become strong in the TeV regime. The 

proved unitarity and renormalizability of gauge theories ensure that when 

partial-wave unitarity is violated by tree graphs, higher-order diagrams 

will come to the rescue. However, the problem of sorting out the consequences 

of a strongly-coupled theory by field theory techniques is not one we can 

solve at present. 

We have relied so far upon S-matrix techniques, with partial-wave 

unitarity playing a central role. It is therefore natural to investigate the 

strong-coupling situation by means of a venerable device from the S-matrix 
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theory of strong interactions, the N/D method. 
13 

This technique provides 

a prescription according to which analytic partial-wave amplitudes which 

satisfy unitarity constraints can be constructed. We shall apply it to the 

Higgs-Goldstone theory specified by (3.9 ), the behavior of which should 

give a reliable indication of corresponding phenomena in the Weinberg-Salam 

model. Our rudimentary calculations are exploratory rather than definitive, 

but they suggest a possible viewpoint regarding the heavy Higgs alternative. 

Our concern is the behavior of the theory when the Higgs boson h 

becomes very massive while the Goldstone particles wf, w-, z remain 

massless. In terms of the parameters of the interaction Lagrangian (3.9), 

this is the regime A 2 1 with v fixed. Under these conditions the particle 

h is an ephemeron, being highly unstable against decays into channels with 

two or more Goldstone bosons. It is therefore appropriate to consider only 

the two coupled neutral channels w’w- and zz. The O(3) symmetry of the 

interaction Lagrangian (3.9) then separates the coupled-channel problem 

into two single-channel problems for I = 0 (Zw+w- +zz)and I = 2 (w’w- - zz). 

In the tree approximation the J = 0 partial-wave amplitudes are given 

by (3. 14) as 

aO 
(1 =o)ts) = +(s) +B(s) > 

aO 
(I = 2) 

(s) = B(s) , 

(4. 1) 

(4. 2) 

where A(s) and B(s) are defined by (3.15) and (3.16). At low energies 

s -C-C M ,” the isoscalar interaction 
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so(o)(s) m 2 GFst8rrhjZ 
s << M 

H 

is attractive, while the isotensor interaction 

so(2)(s) k* 2 -GFs/16&Z 
s << M 

H 

(4. 3) 

(4.4) 

is repulsive and half as strong. Both amplitudes grow linearly with s 

until energies comparable with MH are reached. This brings to mind 

the possibility that if MH is chosen very large there may appear a scalar, 

isoscalar bound state which would serve as a low mass Higgs boson for 

phenomenological purposes. This intriguing possibility is not excluded 

by the crude calculations we are about to discuss, but we have no arguments 

for its inevitability. Indeed, our investigations suggest that unitarity 

forces a very massive Higgs particle pole to migrate into the complex 

s-plane far from the physical sheet, so the I = 0, J = 0 channel becomes 

nonresonant. 

A number of important caveats are in order before we pursue this 

discussion any further. As we have applied it, the N/D technique is an 

implementation of elastic unitarity which should be limited in validity 

to the region 4MW2 -c s < 16Mw2. Furthermore the solution we shall 

describe is the first-order determinantal approximation 13, 14 
which is 

likely to be inadequate for very strong couplings. While both of these 

approximations could be improved, our very rough computation has 
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revealed nothing which motivates us to undertake a more thorough exploration 

of the strongly-coupled system. 

We display in Fig. 12 the motion in the complex s-plane of the 

second-sheet pole of the unitarized amplitude as a function of the input 

mass of the Higgs boson, with M w = 60 GeV. AS the input mass is increased, 

the output resonance migrates into the complex plane, acquiring a width 

comparable to its mass. 

The solution to the N/D equations gives no signal that a light, scalar 

bound state will be generated by unitarity. However, because the approximate 

solution becomes untrustworthy in the regime of very large input masses 

(hence very large couplings and very many coupled channels ), the bound-state 

possibility has not been excluded. It goes without saying that the problem 

of a very strongly coupled Higgs-Goldstone system remains open. 
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V. DISCUSSION 

Even within the restrictive framework of a minimal SU(2) @U(1) 

gauge theory there is a broad range of possibilities for the behavior of 

weak interactions at ver’y high energies. In the Weinberg-&lam model, 

in addition to the gauge couplings and the weak interaction angle eTz, which are 
“\ 

fixed by low-energy phenomenology, there enters as a free parameter the 

mass of the Higgs boson. It is natural to classify the possibilities for 

high-energy behavior in unified theories as light Higgs theories, with 

MH < ZMW,and heavy Higgs theories, with MH > 2Mw. 

In a light Higgs theory, the Higgs boson will deca~y into ordinary 

fermion pairs, with heavy lepton pairs and heavy quark pairs the preferred 

decay modes. The partial widths (well above threshold) are given by 

I- (H -fT) = GFmf2MH/4nfi ~ (5. 1) 

Decays H -. qq are expected to be observed as back-to-back jets of hadrons 

in the Higgs boson rest frame. The discovery of a light Higgs particle 

will be an indication that weak interactions remain weak at nearly all 

energies. In that case a perturbative treatment of interactions among leptons, 

intermediate bosons, and the Higgs boson is adequate to develop the 

consequences of the theory. An exhaustive phenomenological portrait of 

a light Higgs boson has been given by Ellis, Gaillard, and Nanopoulos. ’ 

The conditional upper bound (1.1) on the Higgs boson mass leads 

us to contemplate the heavy Higgs alternative, MH > 2M w A Higgs 
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boson in this mass range has the striking property that it decays almost 

exclusively into pairs of intermediate bosons. If the mass of the Higgs 

boson is substantially less than the critical mass, say 2,M < M < 600 
W HN 

GeV/c’, we expect that perturbative estimates of the production and decay 

rates should be reliable. For the intermediate boson decay modes, we 

find 

I-(H - W’W-) 

MH 

GF”W2 (1 - xj, C3x2 _ 4x +4) 
=-7zT- x > (5.2) 

I-(H - 2’2’) 
GM2 1 

F W (i -xl)’ 

MH 
= m x (3x12 - 4x’ +4), (5.3) 

where x = 4Mw2/MH2 and XI = 4MZ2/MH2 = X/COS’ qV. The resulting 

partial decay widths are shown in Fig. 13. It is amusing to note that 

because of its peculiar decay properties, a heavy Higgs boson may have a 

more distinctive experimental signature than a light one. The chain 

H - Z”Zo 

i 

L. P +i? - 

+ - 
P e 

would be rather unmistakable. 

A variety of production processes for the heavy Higgs boson may be 

considered. We have found none which promise copious production, so 
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our discussion will be brief. The rate for Higgs formation in e+e- collisions 

is 

+- 

opeak (e e -H) = 
4v r(H -. e+e-1 5 x *O-27 cm2 

2 T(H+all) = 
MH 

(MB/ 1GeV/c2)’ 

a discouraging prospect (because of (5. 1)) even for relatively light Higgs 

bosons. For colliding pp or fjp beams, in which an analog of the Drell-Yan 

process may operate, we estimate that 

u(p 
* 

p -t H + anything) 

e(p*p -t W + anything) 
(5.5) 

where the cross section for W-production is to be evaluated at “MW” = MH, 

and mq is the quark mass. This too is likely to be a feeble rate, since 

the cross section for W-production is now expected 
15 

to be less than 

10 
-32 

cm2 even for M W21 
s c-c 1. 

More promising is the production of H in association with an intermediate 

boson. A simple example is the reaction 

+- 
ee -2 virtual 

+ZH , 

which occurs with a cross section 
16 

(5. 6) 

t- ! 1 -4xWf8xW “) 
u(e e - HZ) 

xw2(i - xwf 
) (5.7) 
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where xTr. = sin2 0 v, and K is the c. m. momentum of the emerging particles. 

At very high energies, for which 2K L* qF, the ratio 

t- 
r = 

u(e e -HZ) 
- (1 - 4xw t 8xw2) 

- +- 
u(e e - p+p-) i28xW2(i - yrJ2 

from below. For 0. 3 < xW < 0.4, the ratio is asymptotically about 9%. 

This result can be carried over to hadronic collisions as a rough guide. 

We then have, as an order-of-magnitude estimate, 

u(p 
f 

p -c HZ + anything) 

NP’P - p’~- + anything) 
rr , 

(5.8) 

(5.9 ) 

+- 
where HZ and TV p production are compared at the same invariant mass. 

Adopting a somewhat broader view than we have taken earlier in this 

article, we may envision three major possibilities for the evolution of 

weak interactions at very high energies. 
17 

The first option is that no 

intermediate bosons exist, in which case weak interactions among leptons 

or among quarks are expected to become strong at c. m. energies exceeding 

about 300 GeV. A second is that intermediate bosons exist, but are not 

described by a renormalizable theory with gauge couplings. Weak interactions 

among leptons or among quarks would never become strong (except at 

resonance poles or exponentially high energies) but unitarity at very high 

energies would have to be salvaged by strong interactions among the 

intermediate bosons. 
18 The final option is the one most attractive to us, 
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namely that weak (and electromagnetic ) interactions are described by a 

renormalizable gauge theory. Apart from exceptional energies, the weak 

interactions among leptons or quarks would always remain weak. We 

have showed by explicit calculation of gauge boson scattering amplitudes 

in the Weinberg-Salam model that if the Higgs boson mass exceeds a critical 

value of about 1 TeV/c’, weak interactions among w’, Z, and H must 

become strong in the TeV energy regime. It is then likely that familiar 

features of the strong interaction at GeV energies such as resonance 

formation and multiple production would come to characterize the interactions 

of gauge bosons. If instead the Higgs boson mass is small compared to 

i TeV/c’, tweak interactions among all particles may remain weak at all 

unexceptional energies. 

We interpret the bound (1.1) in much the same way as Veltman’ 

has interpreted the results of his related investigation: We find it appealing 

to believe that new phenomena are to be found in the weak interactions at 

energies not much larger than 1 TeV, in addition to the anticipated discovery 

of the intermediate bosons. Either a light Higgs boson will exist or weak 

interactions will approach the richness and complexity of low-energy 

strong interactions. 
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APPENDIX 

The substance of this Appendix is implicit in Eq. (19) of reference 12. 

However, for completeness we present the argument in the framework of 

gauge field theory. 

We consider the generating functional of Green’s functions 

z JL 
[ ] = - i legl bV>$- ..] exp{i(Seff[Vp, 6, . . .j + / d4xJLVLj/ 

xn 6 (a’frp + iM$) (A. 1) 

from which connected Green’s functions with external longitudinally polarized 

vector bosons are obtained by functional differentiations with respect 

to the source JL. Here we suppress the group index, so that VP and $ 

stand collectively for W 
l 

, and Z 
II P’ 

and for W* and z, respectively, with 

appropriate mass M. The constraints 
11 

8’Vll+iMb = 0 (A. 2) 

define the ‘t Hooft-Feynman gauge, and the effective action Seff [v$ A..] 

includes the Fadde’ev-Popov term. 
19 

The longitudinal vector field VL is defined as 

TL(k) = c;?pk) I E; = $1~1, koh a 

where kp is the four-momentum carried by the vector boson, and ?p(k) 

is the Fourier transform of VP(x). Es. (A. 2) states that 
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k’ N G VW(k) = T(k) , 

while Eq. (A. 3) implies 

$k) = k;?p(k) + 0 

tA.4) 

(A. 5) 

Thus, Eq. (A. 1) may be cast in the form 

..]expli (seffpir. 4, . ..] i/d4k~Li-k)[~(k)+~(~~ 

I 

XII 6(8’Vp +iMe) . (A. 6) 

In vector-boson scattering, all kO’s are of order ~6, and we obtain the 

result of Cornwall, Levin and Tiktopoulos, 12 that 

T(Vds) = T(e’s) + oOI/&r) 

2 
for large s, s>>M . 

Inclusion of the physical Higgs mesons as external lines in the 

T-matrix does not alter the above discussion. 

(A. 7) 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

1 for the reaction 

FIGURE CAPTIONS 

Feynman graphs (in the unitary gauge 

w+w- - w’w-. 

Feynman graphs (in the unitary gauge 

zz - zz. 

1 for the reaction 

Feynman graphs (in the unitary gauge) for the reaction 

HH - HH. 

Feynman graphs (in the unitary gauge) for the reaction 

zz + w+w-. 

Feynman graphs (in the unitary gauge) for the reactions 

I-HI - W’W- and HH - ZZ. Here the symbol V denotes a 

generic intermediate boson. 

Sketch of the energy dependence of the J = 0 partial-wave 

amplitude for elastic scattering of longitudinally polarized 

W-bosons for two choices of the Higgs boson mass. For 
1 

MH > (4rfi/GF)’ the partial-wave unitarity bound 

1 a0 1 5 1 is violated for s > MH2. 

Feynman graphs for the reaction w’w- 
+ - 

-ww. 

Feynman graphs for the reaction zz + zz. 

Feynman graphs for the reaction hh - hh. 

Feynmsn graphs for the reaction zz - w’w-. 

Feynman graphs for the reactions hh -w’w- and hh - zz. 

Here the symbol v denotes a generic Goldstone boson. 

Fig. 10: 

Fig. 11: 



-37- FERMILAB-Pub-77/ 30-THY 

Fig. 12: 

Fig. 13: 

Trajectory in the complex s-plane of the second-sheet pole 

of the unitarized I = 0, J = 0 amplitude as a function of the 

input mass of the Higgs boson. The intermediate boson 

mass is fixed at 60 GeV/c’. Tick marks along the trajectory 

denote the input Higgs boson mass in units of GeV/c’; s is 

expressed in units of TeV’. 

Partial decay widths of the Higgs boson into intermediate 

vector boson pairs versus the Higgs boson mass. For this 

illustration we have taken M w = 60 GeV/c2 and MZ = 77 GeVlc’. 
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