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Abstract The six-nucleon problem for the bound state is formulated in the
Yakubovsky scheme. Hints for a numerical implementation are provided.

1 Introduction

There is a rich literature on 6He based on an effective α −n−n 3-body problem
(1). Besides pair interactions also ad hoc 3-body forces are used. The Pauli prin-
ciple is approximately incorporated by projecting out “Pauli forbidden states” for
the neutrons inside the α-particle wave function. While that approach catches pre-
sumably the halo structure of the two loosely bound neutrons clearly because of
its strongly restricted ansatz it is not suited to probe modern nucleon–nucleon and
three-nucleon forces, like the ones derived recently through effective field theory
and based on chiral symmetry (2).

Nevertheless some approaches already exist which directly attack the 6-
nucleon problem and beyond with realistic nuclear forces. We mention the No-
Core Shell Model (NCSM) (3; 4; 5), the Greens Function Monte Carlo treatment
(6), the Similarity Renormalisation Group (7), the Renormalisation Group evolu-
tion to low momentum interactions (8) and the coupled cluster (CC) theory (9).
Further, the Nonsymmetrized Hyperspherical Harmonics approach (10) appears
to be quite promising to deal with permutational-symmetry breaking terms in the
Hamiltonian. In (3; 4; 5) chiral two-nucleon and three-nucleon forces were used
and applied to 7Li with some underbinding. In (7) standard nuclear forces as well
as forces based on chiral effective field theory are used and applied to light nuclei
up to 6Li. In (8) the hyperspherical harmonics method is used for the Helium halo
nucleus 6He and the CC approach for 8He both based on chiral nuclear forces. In
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(6) the AV18 nucleon–nucleon interaction and a Urbana three-nucleon force was
used again leading to some underbinding, now for 6He. There is also the stochas-
tic variational Monte Carlo method (11) which, however, still applied simplified
forces.

The exploration of chiral forces goes on, also including explicitly the ∆ -degree
of freedom (E. Epelbaum, Private communication), which calls for an increased
effort to establish rigorous approaches beyond A = 4. The achievements in (3; 4; 5)
and (6) demonstrate that a direct treatment of 6 nucleons is feasible on present
day computers and therefore we felt that another approach, the exact formulation
within the Yakubovsky equations, is timely. About 20 years ago an analogous
step turned out to be very fruitful, namely the exact formulation of the α-particle
within the Yakubovsky scheme (12; 13). This pioneering study opened the way
to a nowadays standard treatment (14; 15; 16; 17) and allows the inclusion of
the most modern two- and three-nucleon forces and even first estimates of four-
nucleon forces (18).

In Sect. 2 we apply the Yakubovsky equations (19) to the six-body problem
using the basic notation for sub clusters (20). In Sect. 3 we add the identity of
the nucleons which leads to a set of 5 coupled Yakubovsky equations related to 5
different sequential sub clusterings of 6 particles. In view of the expectation for
the dominant structure of 6He, namely an α-core and two loosely bound neutrons,
we stop the sequential sub clustering with 3 fragments, though the additional step
with two fragments could be easily performed.

In Sect. 4 and the Appendices we provide technicalities which we consider
useful for a numerical performance. Finally we summarize in Sect. 5.

2 The Yakubovsky Approach to 6 Particles

We use the standard notation an to denote the various members of n fragments
for a total of N particles. Here N = 6 and a2,a3,a4,a5 denote two-, three-, up to
5-body fragmentations. 5-body fragmentations necessarily have one pair left and
thus a5 can be used to point to a specific pair.

a3 ⊂ a2 means that the three-body fragments a3 consist of sub clusters out of
the two fragments in a2 or a3 ⊃ a4 means that the sub clusters a3 when broken up
lead to the sub clusters a4.

The bound state Ψ obeys the homogeneous equation

Ψ = G0 ∑
a5

Va5Ψ (1)

where G0 is the 6-particle free Greens operator and Va5 is a pair force. The first
step is the summation of each pair force to infinite order. Defining

ψa5 ≡ G0Va5Ψ (2)

one obtains like for 3 particles

ψa5 = G0ta5 ∑
b5

δa5b5ψb5 (3)
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where ta5 is a two-body t-operator obeying the Lippmann Schwinger equation

ta5 = Va5 +Va5G0ta5 (4)

and δa5b5 ≡ 1−δa5b5 .
Next one defines new components

ψa5a4 ≡ G0ta5 ∑
b5⊂a4

δa5b5ψb5 (5)

where all pairs a5,b5 are sub clusters of the fragments in a4. Clearly

ψa5 = ∑
a4⊃a5

ψa5a4 (6)

That relation (6) is used to obtain a closed set of equations for ψa5a4 :

ψa5a4 = G0ta5 ∑
b5⊂a4

δa5b5 ∑
b4⊃b5

ψb5b4 (7)

One separates now the components ψa5a4 for a given a4 from the rest:

ψa5a4 −G0ta5 ∑
b5⊂a4

δa5b5ψb5a4 = G0ta5 ∑
b5⊂a4

δa5b5 ∑
b4⊃b5

δa4b4ψb5b4 (8)

Let us define for a fixed a4 the column vectors ψa4 and ψ(a4) with the compo-
nents

(ψa4)a5 ≡ ψa5a4 (9)

and

(ψ(a4))b5 ≡ ∑
b4⊃b5

δa4b4ψb5b4 (10)

Then introducing the matrix Ca4 with the elements Ca4
a5b5

≡ ta5δa5b5 Eq. (8)
reads

(1−G0Ca4)ψa4 = G0Ca4ψ
(a4) (11)

or

ψ
a4 = (1−G0Ca4)−1G0Ca4ψ

(a4) ≡ G0T a4ψ
(a4) (12)

Apparently T a4 obeys

T a4 = Ca4 +Ca4G0T a4 (13)

In explicite notation (12) and (13) read

ψa5a4 = G0 ∑
b5⊂a4

T a4
a5b5

ψ
(a4)
b5

= G0 ∑
b5⊂a4

T a4
a5b5 ∑

b4⊃b5

δa4b4ψb5b4 (14)

T a4
a5b5

= ta5δa5b5 + ∑
c5⊂a4

ta5δa5c5G0T a4
c5b5

(15)
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Note, there are two types of T-matrices. For a4 of the type 123,4,5,6T a4
a5b5

is a
3 × 3 matrix and for
a4 of the type 12,34;5,6T a4

a5b5
is a 2 × 2 matrix.

Next we further decompose the right-hand side of (14) according to 3-body
fragments a3:

ψ
a3
a5a4

≡ ∑
b5⊂a4

G0T a4
a5b5 ∑

b4⊃b5,b4⊂a3

δa4b4ψb5b4 (16)

and again

ψa5a4 = ∑
a3⊃a4

ψ
a3
a5a4

(17)

is an obvious consequence.
Using again (17) Eq. (16) can be rewritten as

ψ
a3
a5a4

= ∑
b5⊂a4

G0T a4
a5b5 ∑

b4⊃b5,b4⊂a3

δa4b4 ∑
b3⊃b4

ψ
b3
b5b4

(18)

Analogous to (8) one separates b3 = a3 from b3 6= a3 and gets

ψ
a3
a5a4

−G0 ∑
b5⊂a4

T a4
a5b5 ∑

b4⊃b5,b4⊂a3

δa4b4ψ
a3
b5b4

= G0 ∑
b5⊂a4

T a4
a5b5 ∑

b4⊃b5,b4⊂a3

δa4b4ψ
(a3)
b5b4
(19)

where we defined

ψ
(a3)
b5b4

≡ ∑
b3⊃b4

δa3b3ψ
b3
b5b4

(20)

Using a matrix notation it is easily seen that (19) leads to

ψ
a3
a5a4

= G0 ∑
b4⊂a3

∑
b5⊂b4

Da3
a5,a4;b5b4

ψ
(a3)
b5b4

(21)

where Da3
a5,a4;b5b4

obeys

Da3
a5,a4;b5b4

= T a4
a5b5

δa4b4 + ∑
c4⊂a3

∑
c5⊂a4

T a4
a5c5

δa4c4G0Da3
c5,c4;b5b4

(22)

Note for a3 = 1234,5,6 there are 18 pairs of a5,a4, for a3 = 123,45,6 there
are 9 pairs of a5,a4 and for a3 = 12,34,56 there are 6 pairs of a5,a4. This defines
the dimensions of the different D-matrices. In the following the single nucleons in
an will no longer be displayed.
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3 Implementation of the Identity of the Nucleons

We start from (14) choosing the case a5 = 12 and a4 = 12,34 and obtain

ψ12;12,34 = G0T 12,34
12,12 ψ

(12,34)
12 +G0T 12,34

12,34 ψ
(12,34)
34 (23)

which according to (10) is

ψ12;12,34 = G0T 12,34
12,12 (ψ12,123 +ψ12,124 +ψ12,125 +ψ12,126

+ψ12;12,35 +ψ12;12,36 +ψ12;12,45 +ψ12;12,46 +ψ12;12,56)

+G0T 12,34
12,34 (ψ34,134 +ψ34,234 +ψ34,345 +ψ34,346

+ψ34;34,15 +ψ34;34,16 +ψ34;34,25 +ψ34;34,26 +ψ34;34,56) (24)

It is easily seen, going back to the definitions (2) and (5) together with the
antisymmetry requirement for the total state Ψ that

ψ34,134 +ψ34,234 +ψ34,345 +ψ34,346 +ψ34;34,15 +ψ34;34,16 +ψ34;34,25

+ψ34;34,26 +ψ34;34,56 = P13P24(ψ12,123 +ψ12,124 +ψ12,125 +ψ12,126

+ψ12;12,35 +ψ12;12,36 +ψ12;12,45 +ψ12;12,46 +ψ12;12,56) (25)

Therefore (24) turns into

ψ12;12,34 = G0(T
12,34

12,12 +T 12,34
12,34 P13P24)(ψ12,123 +ψ12,124 +ψ12,125 +ψ12,126

+ψ12;12,35 +ψ12;12,36 +ψ12;12,45 +ψ12;12,46 +ψ12;12,56) (26)

The coupled equations (15) written out for a4 = 12,34 and a5 or b5 equal to
12 or 34 yield when acting with P̃ ≡ P13P24 from both sides

P̃T 12,34
12,12 P̃ = T 12,34

34,34

P̃T 12,34
12,34 P̃ = T 12,34

34,12

(27)

Then defining

T 12,34 ≡ T 12,34
12,12 +T 12,34

12,34 P̃ (28)

it follows that T 12,34 obeys

T 12,34 = t12P̃+ t12G0P̃T 12,34 (29)

Therefore (26) simplifies to

ψ12;12,34 = G0T 12,34 (ψ12,123 +ψ12,124 +ψ12,125 +ψ12,126 +ψ12;12,35

+ψ12;12,36 +ψ12;12,45 +ψ12;12,46 +ψ12;12,56) (30)
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Starting again from (14) but now for a5 = 12 and a4 = 123 one obtains

ψ12,123 = G0T 123
12,12ψ

(123)
12 +G0T 123

12,23ψ
(123)
23 +G0T 123

12,31ψ
(123)
31

= G0T 123
12,12(ψ12,124 +ψ12,125 +ψ12,126

+ψ12;12,34 +ψ12;12,35 +ψ12;12,36 +ψ12;12,45 +ψ12;12,46 +ψ12;12,56)

+G0T 123
12,23(ψ23,234 +ψ23,235 +ψ23,236

+ψ23;23,14 +ψ23;23,15 +ψ23;23,16 +ψ23;23,45 +ψ23;23,46 +ψ23;23,56)

+G0T 123
12,31(ψ31,314 +ψ31,315 +ψ31,316

+ψ31;31,24 +ψ31;31,25 +ψ31;31,26 +ψ31;31,45 +ψ31;31,46 +ψ31;31,56)

= G0(T 123
12,12 +T 123

12,23P12P23 +T 123
12,31P13P23)(ψ12,124 +ψ12,125 +ψ12,126

+ψ12;12,34 +ψ12;12,35 +ψ12;12,36 +ψ12;12,45 +ψ12;12,46 +ψ12;12,56)

(31)

where we used permutation properties similar as in (25).
The corresponding coupled sets (15) for a4 = 123 and using relations like

P13P23t23P23P13 = t12

reveals that

T 123 ≡ T 123
12,12 +T 123

12,23P12P23 +T 123
12,31P13P23 (32)

obeys the equation

T 123 = t12P+ t12PG0T 123 (33)

where P ≡ P12P23 +P13P23.
Then (31) simplifies to

ψ12,123 = G0T 123 (ψ12,124 +ψ12,125 +ψ12,126 +ψ12;12,34 +ψ12;12,35 +ψ12;12,36

+ψ12;12,45 +ψ12;12,46 +ψ12;12,56) (34)

The next step is to decompose ψ12,123 according to (16). For a5 = 12,a4 = 123
the possible a3’s are: 1234−1235−1236−123,45−123,46−123,56.

Lets begin with

ψ
1234
12,123 ≡ G0T 123

12,12(ψ12,124 +ψ12;12,34)+G0T 123
12,23(ψ23,234 +ψ23;23,14)

+G0T 123
12,31(ψ31,134 +ψ31;31,24) (35)

Since

ψ23,234 +ψ23;23,14 = P12P23(ψ12,124 +ψ12;12,34)
ψ31,134 +ψ31;31,24 = P13P23(ψ12,124 +ψ12;12,34)

(36)

(35) simplifies according to (33) to

ψ
1234
12,123 = G0T 123(ψ12,124 +ψ12;12,34) (37)
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Similarly

ψ
1235
12,123 = G0T 123(ψ12,125 +ψ12;12,35)

ψ
1236
12,123 = G0T 123(ψ12,126 +ψ12;12,36)

(38)

Again using symmetry properties one gets

ψ
123,45
12,123 = G0T 123

ψ12;12,45 (39)

ψ
123,46
12,123 = G0T 123

ψ12;12,46 (40)

ψ
123,56
12,123 = G0T 123

ψ12;12,56 (41)

All summed up

ψ12,123 = ψ
1234
12,123 +ψ

1235
12,123 +ψ

1236
12,123 +ψ

123,45
12,123 +ψ

123,46
12,123 +ψ

123,56
12,123 (42)

agrees with (34).
Next we decompose (14) according to (16) for a5 = 12,a4 = 12,34. The pos-

sible a3’s are: 1234−125,34−126,34−12,345−12,346−12,34,56, which are
now regarded in turn.

ψ
1234
12;12,34 = G0T 12,34

12,12 (ψ12,123 +ψ12,124)+G0T 12,34
12,34 (ψ34,234 +ψ34,134) (43)

Since

P13P24(ψ12,123 +ψ12,124) = ψ34,234 +ψ34,134 (44)

one can use (28) and gets

ψ
1234
12;12,34 = G0(T

12,34
12,12 +T 12,34

12,34 P13P24)(ψ12,123 +ψ12,124)

= G0T 12,34(ψ12,123 +ψ12,124)
(45)

Next

ψ
125,34
12;12,34 = G0T 12,34

12,12 ψ12,125 +G0T 12,34
12,34 (ψ34;15,34 +ψ34;25,34)

ψ
345,12
12;12,34 = G0T 12,34

12,12 (ψ12;12,35 +ψ12;12,45)+G0T 12,34
12,34 ψ34,345

(46)

The two amplitudes ψ
125,34
12;12,34 and ψ

345,12
12;12,34 cannot be related by permutations,

but their sum can be used

ψ
125,34
12;12,34 +ψ

345,12
12;12,34 = G0T 12,34

12,12 (ψ12,125 +ψ12;12,35 +ψ12;12,45)

+G0T 12,34
12,34 (ψ34;15,34 +ψ34;25,34 +ψ34,345) (47)

in the sense

P13P24(ψ12,125 +ψ12;12,35 +ψ12;12,45) = ψ34;15,34 +ψ34;25,34 +ψ34,345 (48)

This leads to

ψ
125,34
12;12,34 +ψ

345,12
12;12,34 = G0T 12,34(ψ12,125 +ψ12;12,35 +ψ12;12,45) (49)
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Similarly

ψ
126,34
12;12,34 +ψ

346,12
12;12,34 = G0T 12,34(ψ12,126 +ψ12;12,36 +ψ12;12,46) (50)

and finally

ψ
12,34,56
12;12,34 = G0T 12,34

12,12 ψ12;12,56 +G0T 12,34
12,34 ψ34;34,56 = G0T 12,34

ψ12;12,56 (51)

Thus, Eqs. (45), (49)–(51), summarizes to

ψ12;12,34 = ψ
1234
12;12,34 +ψ

125,34
12;12,34 +ψ

345,12
12;12,34 +ψ

126,34
12;12,34 +ψ

346,12
12;12,34 +ψ

12,34,56
12;12,34(52)

which when written out agrees with (30).
The two amplitudes ψ1234

12,123 and ψ1234
12;12,34 expressed in (37) and (45) are con-

nected to each other as shown now. The expression (42) can easily be converted
to ψ12,124 and using in addition (52) one finds

ψ
1234
12,123−G0T 123(ψ1234

12,124 +ψ
1234
12;12,34) = G0T 123

(
ψ

1245
12,124 +ψ

1246
12,124 +ψ

124,35
12,124 +ψ

124,36
12,124 +ψ

124,56
12,124

+ψ
125,34
12;12,34 +ψ

345,12
12;12,34 +ψ

126,34
12;12,34 +ψ

346,12
12;12,34 +ψ

12,34,56
12;12,34

)
(53)

Correspondingly (45) yields

ψ
1234
12;12,34−G0T 12,34 (

ψ
1234
12,123 +ψ

1234
12,124

)
= G0T 12,34

(
ψ

1235
12,123 +ψ

123,45
12,123 +ψ

1236
12,123 +ψ

123,46
12,123 +ψ

123,56
12,123

+ψ
1245
12,124 +ψ

124,35
12,124 +ψ

1246
12,124 +ψ

124,36
12,124 +ψ

124,56
12,124

)
(54)

With ψ1234
12,124 =−P34ψ1234

12,123 we can put (53) and (54) into a matrix form:

(
ψ1234

12,123
ψ1234

12;12,34

)
−G0

(
−T 123P34 T 123

T 12,34(1−P34) 0

)(
ψ1234

12,123
ψ1234

12;12,34

)

= G0


T 123

(
ψ1245

12,124 +ψ1246
12,124 +ψ

124,35
12,124 +ψ

124,36
12,124 +ψ

124,56
12,124 +ψ

125,34
12;12,34

+ψ
345,12
12;12,34 +ψ

126,34
12;12,34 +ψ

346,12
12;12,34 +ψ

12,34,56
12;12,34

)
T 12,34

(
ψ1235

12,123 +ψ
123,45
12,123 +ψ1236

12,123 +ψ
123,46
12,123 +ψ

123,56
12,123 +ψ1245

12,124

+ψ
124,35
12,124 +ψ1246

12,124 +ψ
124,36
12,124 +ψ

124,56
12,124

)

(55)

Since

ψ
1245
12,124 = −P34ψ

1235
12,123

ψ
124,35
12,124 = −P34ψ

123,45
12,123 (56)
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the right-hand side of (55) can be factored and (55) achieves the form(
ψ1234

12,123
ψ1234

12;12,34

)
−G0

(
−T 123P34 T 123

T 12,34(1−P34) 0

)(
ψ1234

12,123
ψ1234

12;12,34

)

= G0

(
T 123(−P34) T 123

T 12,34(1−P34) 0

)
ψ1235

12,123 +ψ
123,45
12,123 +ψ1236

12,123

+ψ
123,46
12,123 +ψ

123,56
12,123

ψ
125,34
12;12,34 +ψ

345,12
12;12,34 +ψ

126,34
12;12,34

+ψ
346,12
12;12,34 +ψ

12,34,56
12;12,34

 (57)

The right-hand side can be reduced applying permutations and one obtains(
ψ1234

12,123
ψ1234

12;12,34

)
−G0

(
−T 123P34 T 123

T 12,34(1−P34) 0

)(
ψ1234

12,123
ψ1234

12;12,34

)
= G0(

T 123(−P34) T 123

T 12,34(1−P34) 0

)(
−(P45 +P46)ψ1234

12,123 +(1−P56−P46)ψ
123,45
12,123

(1−P56)(ψ
125,34
12;12,34 +ψ

345,12
12;12,34)+ψ

12,34,56
12;12,34

)
(58)

which can be put into the form
(

ψ1234
12,123

ψ1234
12;12,34

)
with the result

(
ψ1234

12,123
ψ1234

12;12,34

)
≡ G0

(
D11 D12
D21 D22

)(−(P45 +P46)ψ1234
12,123 +(1−P56−P46)ψ

123,45
12,123

(1−P56)
(

ψ
125,34
12;12,34 +ψ

345,12
12;12,34

)
+ψ

12,34,56
12;12,34

)
(59)

where the matrix D obeys(
D11 D12
D21 D22

)
=
(

−T 123P34 T 123

T 12,34(1−P34) 0

)
+
(

−T 123P34 T 123

T 12,34(1−P34) 0

)
G0

(
D11 D12
D21 D22

)
(60)

For the numerical treatment, however, we consider the structure (58) to be
more advantageous.

The right-hand side of (58) contains new amplitudes. After adequate permuta-
tion of (52) one obtains
from (39)

ψ
123,45
12,123 = G0T 123

(
ψ

1245
12;12,45 +ψ

123,45
12;12,45 +ψ

345,12
12;12,45 +ψ

456,12
12;12,45 +ψ

126,45
12;12,45 +ψ

12,45,36
12;12,45

)
(61)

or

ψ
123,45
12,123 −G0T 123

(
−(1−P36)P53

(
ψ

125,34
12;12,34 +ψ

345,12
12;12,34

))
= G0T 123

(
−P35ψ

1234
12;12,34 +ψ

12,45,36
12;12,45

)
(62)

Further (49) yields inserting the decomposition of the right-hand side related
to (42) and (52) yields

ψ
125,34
12;12,34 +ψ

345,12
12,12,34 = G0T 12,34

(
ψ

1235
12,125 +ψ

1245
12,125 +ψ

125,34
12,125

+ψ
1256
12,125 +ψ

125,36
12,125 +ψ

125,46
12,125 +ψ

1235
12;12,35 +ψ

124,35
12;12,35 +ψ

345,12
12;12,35

+ψ
356,12
12;12,35 +ψ

126,35
12;12,35 +ψ

12,56,34
12;12,35 +ψ

1245
12;12,45 +ψ

123,45
12;12,45 +ψ

345,12
12;12,45

+ψ
456,12
12;12,45 +ψ

126,45
12;12,45 +ψ

12,34,56
12;12,45

)
(63)
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Here quite a few amplitudes can be related to previous ones by permutations
leading to:

ψ
125,34
12;12,34 +ψ

345,12
12,12,34−G0T 12,34(P35P56−P35−P46−P45)

(
ψ

125,34
12;12,34 +ψ

345,12
12;12,34

)
= G0T 12,34

(
(1−P36−P34−P46)P34P35ψ

1234
12,123 +(1−P34)P46P35ψ

123,45
12,123

−(P45 +P35)ψ1234
12;12,34−P35ψ

12,34,56
12;12,34

)
(64)

Finally we regard ψ
12,34,56
12;12,34 , which after (51) and suitable permutations of (52)

turns into

ψ
12,34,56
12;12,34 −G0T 12,34P35P46ψ

12,34,56
12;12,34

= G0T 12,34
(

P35P46ψ
1234
12;12,34 +(1−P34)P35P46

(
ψ

125,34
12;12,34 +ψ

345,12
12;12,34

))
(65)

where we used

ψ
12,56,34
12;12,56 = G0T 12,56

ψ12;12,34 = P35P46G0T 12,34
ψ12;12,56 = P35P46ψ

12,34,56
12;12,34 (66)

Thus we end up with 5 independent amplitudes: ψ1234
12,123, ψ1234

12;12,34, ψ
123,45
12,123 , ψ

125,34
12;12,34 +

ψ
345,12
12,12,34, and ψ

12,34,56
12;12,34 , coupled in the equations

(
ψ1234

12,123
ψ1234

12;12,34

)
−G0

(
−T 123P34 T 123

T 12,34(1−P34) 0

)(
ψ1234

12,123
ψ1234

12;12,34

)
= G0(

T 123(−P34) T 123

T 12,34(1−P34) 0

)(−(P45 +P46)ψ1234
12,123 +(1−P56−P46)ψ

123,45
12,123

(1−P56)
(

ψ
125,34
12;12,34 +ψ

345,12
12;12,34

)
+ψ

12,34,56
12;12,34

)
(67)

ψ
123,45
12,123 −G0T 123

(
−(1−P36)P53

(
ψ

125,34
12;12,34 +ψ

345,12
12;12,34

))
=−G0T 123P35

(
ψ

1234
12;12,34 +ψ

12,34,56
12;12,34

)
(68)

ψ
125,34
12;12,34 +ψ

345,12
12,12,34−G0T 12,34 (P35P56−P35−P46−P45)

(
ψ

125,34
12;12,34 +ψ

345,12
12;12,34

)
= G0T 12,34

(
(1−P36−P34−P46)P34P35ψ

1234
12,123 +(1−P34)P46P35ψ

123,45
12,123

−(P45 +P35)ψ1234
12;12,34−P35ψ

12,34,56
12;12,34

)
(69)

ψ
12,34,56
12;12,34 −G0T 12,34P35P46ψ

12,34,56
12;12,34 = G0T 12,34

(
P35P46ψ

1234
12;12,34 +(1−P34)

P35P46

(
ψ

125,34
12;12,34 +ψ

345,12
12;12,34

))
(70)

It remains to establish the expression for the total state Ψ . We use (1), (5), (42),
(52) together with
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permutations and obtain

Ψ = [1−P23−P24−P13−P14 +P13P24]
[
(1−P34)ψ1234

12,123 +ψ
1234
12;12,34

]
− [1−P23−P24−P13−P14 +P13P24]

×
[
((1−P34)(P45 +P46 +P35 +P36)− (P35P46 +P36P45))ψ1234

12,123

+(P45 +P46 +P35 +P36−P35P46)ψ1234
12;12,34

]
− [P25 +P26 +P15 +P16−P13P25−P13P26−P14P25−P14P26−P15P26]

×
[
(1−P34)ψ1234

12,123 +ψ
1234
12;12,34− ((1−P34)(P45 +P46 +P35 +P36)

−(P35P46 +P36P45))ψ1234
12,123− (P45 +P46 +P35 +P36−P35P46)ψ1234

12;12,34

]
+[1−P23−P24−P13−P14 +P13P24]

[
(1−P34−P35−P36)

×(1−P56−P46)ψ
123,45
12,123 +(1−P45−P46−P35−P36 +P35P46)

×
(
(1−P56)

(
ψ

125,34
12;12,34 +ψ

345,12
12;12,34

)
+ψ

12,34,56
12;12,34

)]
−[P25 +P26 +P15 +P16−P13P25−P13P26−P14P25−P14P26−P15P26]

×
[
(1−P34−P35−P36)(1−P56−P46)ψ

123,45
12,123

+(1−P45−P46−P35−P36 +P35P46)

×
(
(1−P56)

(
ψ

125,34
12;12,34 +ψ

345,12
12;12,34

)
+ψ

12,34,56
12;12,34

)]
(71)

The first piece

Ψ4 ≡ [1−P23−P24−P13−P14 +P13P24]
[
(1−P34)ψ1234

12,123 +ψ
1234
12;12,34

]
(72)

has exactly the form for a 4-nucleon bound state (12; 14) based on the two
Yakubovsky components ψ1234

12,123 and ψ1234
12;12,34. Now for 6 nucleons these two am-

plitudes depend not only on the momenta of nucleons 1 to 4 but also on the mo-
menta of nucleons 5 and 6. In the spirit of the effective 3-body model α−n−nΨ4
factorizes into a product of the α-state and the wave function for the two neu-
trons. The next two pieces, still related to the same two Yakubovsky compo-
nents, antisymmetrize the nucleons 5 and 6 in relation to the nucleons 1 to 4. The
remaining two pieces, going with the additional three Yakubovsky components
ψ

123,45
12,123 , ψ

125,34
12;12,34 +ψ

345,12
12;12,34 and ψ

12,34,56
12;12,34 , go clearly beyond the effective 3-body

model and allow for additional sub clusterings of different types. In addition one
has to keep in mind that the most general form (71) allows many more distribu-
tions of neutrons and protons in the sub clusters than restricted in the effective
α −n−n picture.
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4 Technicalities for a Numerical Implementation

The 5 independent amplitudes require 5 different Jacobi momenta. For ψ123
12,34 we

choose

a1 =
1
2
(k1−k2)

a2 =
1
3
(2k3−k1−k2)

a3 =
1
4
(3k4−k1−k2−k3) (73)

a4 =
1
2
(k5−k6)

a5 =
1
3
(2(k5 +k6)−k1−k2−k3−k4)

Then the individual momenta (under the condition ∑i ki = 0) in terms of those
Jacobi momenta are

k1 = a1−
1
2

a2−
1
3

a3−
1
4

a5

k2 = −a1−
1
2

a2−
1
3

a3−
1
4

a5

k3 = a2−
1
3

a3−
1
4

a5 (74)

k4 = a3−
1
4

a5

k5 = a4 +
1
2

a5

The kinetic energy is

6

∑
i=1

k2
i

2m
=

1
m

(
a2

1 +
3
4

a2
2 +

2
3

a2
3 +a2

4 +
3
8

a2
5

)
(75)

The remaining choices of Jacobi momenta are given in Appendix A.
In a partial wave decomposition the basis states suitable for ψ123

12,34 are

|a1a2a3a4a5α1〉 ≡
∣∣∣a1a2a3a4a5,(l1s12) j1

(
l2

1
2

)
j2( j1 j2)I3

(
l3

1
2

)
j4(I3 j4)I4(l5s56) j5

(l4 j5)I5(I4I5)JM
〉∣∣∣(t12

1
2

)
t3

(
t3

1
2

)
t4(t4t56)T MT

〉
(76)

Here the orbital angular momenta li go with the ai, si j are two-body spins for
particles i j, ji are total 1- and 2-body angular momenta coupled out of orbital and
spin angular momenta, I3 and I4 are total 3- and 4-body angular momenta, I5 the
total angular momentum of particles 5 and 6 relative to particles 1–4 and finally
I4 and I5 are coupled to J, the conserved total 6-body angular momentum. The
second state in (76) refers to isospin in an obvious manner.
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Using (76) the amplitude ψ1234
123 has the representation

|ψ1234
123 〉= ∑

α1

∫
Π

5
i=1daia2

i |a1a2a3a4a5α1〉
〈
a1a2a3a4a5α1|ψ1234

123
〉

(77)

where the discrete set of quantum numbers α1 runs over all values for a given J
and T .

Thereby antisymmetry requires that l1 + s12 + t12 and l4 + s56 + t56 have to be
odd.

Analogous basis states for the other 4 amplitudes and related Jacobi momenta
should be obvious. One other example is given below.

If one projects the coupled equations (67)–(70) from the left onto the adequate
basis states and expands the 5 amplitudes on the right-hand side like in (77) one
faces the task to evaluate the various kernels. As an example out of (67) we take

〈a1a2a3a4a5α1|ψ1234
12,123〉=−G0

〈
a1a2a3a4a5α1|T 123P34 ∑

α ′
1

∫
Π

5
i=1da′ia

′2
i |a′1a′2a′3a′4a′5α

′
1

〉
×
〈

a′1a′2a′3a′4a′5α
′
1|ψ1234

12,123

〉
+G0

〈
a1a2a3a4a5α1|T 123

∣∣∣∑
α ′

2

∫
Π

5
i=1db′ib

′2
i

∣∣∣b′1b′2b′3b′4b′5α
′
2

〉
×
〈

b′1b′2b′3b′4b′5α
′
2|ψ1234

12;12,34

〉
+ · · · (78)

where the · · · refer to the remaining operators and amplitudes and the b-states are
related to ψ1234

12;12,34.
Using techniques like the ones presented in (12; 20; 17; 21) it is straightfor-

ward, though tedious, to generate the kernels like 〈a1a2a3a4a5α1|T 123P34|a′1a′2a′3a′4a′5α ′
1〉

or 〈b1b2b3b4b5α2|T 12,34(1 − P34)
(P45 +P46)|a′1a′2a′3a′4a′5α ′

1〉.
In the course of the required recoupling among the different Jacobi momenta

the variables for the 5 amplitudes on the right-hand sides are in general linear
combinations of intermediate integration variables which include angles besides
momentum magnitudes. An example illustrates that situation:

H ≡ P45ψ
1234
12,123 (79)

We project onto the basis states for Jacobi momenta of type b given in Ap-
pendix A:

|b〉 ≡ |b1b2b3b4b5;(l1s12) j1(l2s34) j2( j1 j2)S(LS)I(l4s56) j5(l5 j5)I5(II5)JM〉
×|(t12t34)t1−4(t1−4t56)T MT 〉 (80)

where the orbital angular momenta li, i 6= 3 go with bi and L goes with b3. The
2-body spins are s12,s34 and s56, I is the total angular momentum for particles 1–4
and I5 the total angular momentum of the pair 56 against the subsystem 1–4. They
are coupled to the total angular momentum J, which is conserved. The isospin
coupling should be obvious.

For the sake of simplicity we choose s-waves which simplifies (80) to

|b〉 ≡ δSIδs12 j1δs34 j2δ j5I5δs56 j5

×|b1b2b3b4b5〉|(s12s34)S(Ss56)JM〉|(t12t34)t1−4(t1−4t56)T MT 〉 (81)
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The basis states (76) related to the Jacobi momenta of type a and restricted to
s-waves are

|a〉 = δs12 j1δ j2 1
2
δ j4 1

2
δ j5s56δ j5I5 |a1a2a3a4a5〉

×
∣∣∣∣(s12

1
2

)
I3

(
I3

1
2

)
I4(I4s56)JM

〉∣∣∣∣(t12
1
2

)
t3

(
t3

1
2

)
t4(t4t56)T MT

〉
(82)

Then ψ1234
12,123 has the representation

∣∣ψ1234
12,123

〉
≡∑

α1

δ · · ·
∫

Π
5
i=1daia2

i |a1a2a3a4a5〉|spin〉a|isospin〉a
〈
a
∣∣ψ1234

12,123
〉
(83)

and H projected from the left is

〈b|H〉= δSIδs12 j1δs34 j2δ j5I5δs56 j5

×
〈
(t12t34)t1−4(t1−4t56)T MT |

〈
(s12s34)S(Ss56)JM|〈b1b2b3b4b5|P45

×∑
α ′

1

δ · · ·
∫

Π
5
i=1daia2

i |a1a2a3a4a5〉

∣∣∣∣∣
(

s′12
1
2

)
I′3

(
I′3

1
2

)
I′4
(
I′4s′56

)
JM

〉

×

∣∣∣∣∣
(

t ′12
1
2

)
t ′3

(
t ′3

1
2

)
t ′4(t

′
4t ′56)T MT

〉〈
a|ψ1234

12,123
〉

≡ δ · · ·∑
α1

δ · · ·
∫

Π
5
i=1daia2

i b

〈
isospin

∣∣∣Pisospin
45

∣∣∣ isospin
〉

a

×b 〈spin|Pspin
45 |spin〉a〈b1b2b3b4b5|Pmom

45 |a1a2a3a4a5〉
〈
a|ψ1234

12,123
〉

(84)

The permutation is separated into the 3 spaces: isospin, spin, and momentum, and
the δ ′s · · · are the strings of Kronecker symbols.
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The isospin- and spin-matrix elements can be calculated in a standard manner:

b〈isospin|Pisospin
45 |isospin〉a = δT T ′δMT m′

T
δt12t ′12

(−)t12+t1−4+1

√
t̂ ′3t̂34t̂1−4t̂56t̂ ′4t̂ ′56

{
t12

1
2 t ′3

1
2 t1−4 t34

}
t ′3

1
2 t1−4

1
2

1
2 t56

t ′4 t ′56 T

 (85)

b〈spin|Pspin
45 |spin〉a = δs12s′12

(−)s12+S+1
√

Î′3ŝ34Ŝŝ56Î′4ŝ′56{
s12

1
2 I′3

1
2 S s34

} I′3
1
2 S

1
2

1
2 s56

I′4 s′56 J

 (86)

For the momentum space part we insert a complete basis and obtain

〈b1b2b3b4b5|Pmom
45 =

∫
d3b′1 · · ·d3b′5〈b1b2b3b4b5|b′1b′2b′3b′4b′5〉〈b′1b′2b′3b′4b′5|P45

=
(

1√
4π

)5 ∫
db̂′1 · · ·db̂′5〈b1b̂′1b2b̂′2b3b̂′3b4b̂′4b5b̂′5|Pmom

45

(87)

The transposition Pmom
45 acting to the left leads to a state with the same quan-

tum numbers but different meaning. Particles 4 and 5 are interchanged. That state
can be reexpressed again in terms of the old b-state using the relation between the
Jacobi momenta b1, . . . ,b5 and the Jacobi momenta with particles 4 and 5 inter-
changed. It results

〈b1b2b3b4b5|P45 =
〈

b1,
1
2

(
b2−

1
2

b3−b4−
3
4

b5

)
,

1
2

(
−b2 +

3
2

b3−b4−
3
4

b5

)
,

1
2

(
−b2−

1
2

b3 +b4−
3
4

b5

)
,−
(

b2 +
1
2

b3 +b4−
1
4

b5

)∣∣∣ (88)

Consequently

〈b1b2b3b4b5|Pmom
45 =

(
1√
4π

)5 ∫
db̂′1 · · ·db̂′5〈

b1b̂′1,
1
2

(
b2b̂′2−

1
2

b3b̂′3−b4b̂′4−
3
4

b5b̂′5

)
,

1
2

(
−b2b̂′2 +

3
2

b3b̂′3−b4b̂′4−
3
4

b5b̂′5

)
,

1
2

(
−b2b̂′2−

1
2

b3b̂′3 +b4b̂′4−
3
4

b5b̂′5

)
,−
(

b2b̂′2 +
1
2

b3b̂′3 +b4b̂′4−
1
4

b5b̂′5

)∣∣∣ (89)

The state |b1 · · ·b5〉 can be reexpressed in terms of the state |a1 · · ·a5〉 as

|b1b2b3b4b5〉= |b1,
2
3
(b2−b3),−

1
2
(2b2 +b3),b4,b5〉 (90)
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Consequently using (89) and ( 90) one obtains

〈b1b2b3b4b5|Pmom
45

∫
Π

5
i=1daia2

i |a1a2a3a4a5〉
〈

a1a2a3a4a5|ψ1234
12,123

〉
=
∫

db̂′1 · · ·db̂′5
〈

b1,
1
3

∣∣∣2b2b̂′2−2b3b̂′3
∣∣∣, 1

2

∣∣∣1
2

b2b̂′2 +
1
4

b3b̂′3−
3
4

b4b̂′4−
9
8

b5b̂′5
∣∣∣,

1
2

∣∣∣− 1
2

b2b̂′2−
1
2

b3b̂′3 +b4b̂′4−
3
4

b5b̂′5
∣∣∣,∣∣∣b−2b̂′2 +

1
2

b3b̂′3 +b4b̂′4−
1
4

b5b̂′5
∣∣∣∣∣∣ψ1234

12,123

〉( 1√
4π

)5

(91)

The angular integration over b̂′1 yields directly 4π . Further one can put b̂′2 into
the z-direction and b̂′3 into the x–z plane. Therefore

〈b1b2b3b4b5|Pmom
45

∫
Π

5
i=1daia2

i |a1a2a3a4a5〉〈a1a2a3a4a5|ψ1234
12,123〉

=
√

π

∫
dcosθ

′
3db̂′4db̂′5

〈
b1,

1
3

∣∣∣2b2b̂′2−2b3b̂′3
∣∣∣, 1

2

∣∣∣1
2

b2b̂′2 +
1
4

b3b̂′3−
3
4

b4b̂′4−
9
8

b5b̂′5
∣∣∣,

1
2

∣∣∣− 1
2

b2b̂′2−
1
2

b3b̂′3 +b4b̂′4−
3
4

b5b̂′5
∣∣∣, ∣∣∣b2b̂′2 +

1
2

b3b̂′3 +b4b̂′4−
1
4

b5b̂′5
∣∣∣∣∣∣ψ1234

12,123

〉 (92)

This is an example where a 4-dimensional interpolation appears necessary.
Therefore if the momentum magnitudes are discretized choosing for each one a
certain grid, interpolations are inevitable.

In the 3- and 4-nucleon problems cubic Hermitean spline interpolation turned
out to be very efficient (22). Thus a 5-dimensional interpolation, for instance, has
the form

fi jklm(a1a2a3a4a5) =
3

∑
r=0

3

∑
s=0

3

∑
t=0

3

∑
u=0

3

∑
v=0

Sr(a1)Ss(a2)St(a3)Su(a4)Sv(a5) f (a1ra2sa3ta4ua5v)(93)

where i jklm denotes the 5-dimensional cubus around the point a1a2a3a4a5 and aik
denotes the grid points for the variable ai.

For a1, for instance, the 4 grid points related to ai are a10 < a11 ≤ a1 ≤ a12 <
a13 and similar for the other variables. Here for the sake of a simpler notation we
renumbered the grid points in that context.

Further f is the function to be interpolated and fi jklm the interpolating one.
The spline functions are given in Appendix B and the conditions underlying that
form (93) can be found in (22).

The coupled set (67)–(70) in a matrix notation has the schematic structure

η(E)ψ = K(E)ψ (94)

where E is the searched for energy eigenvalue at which the auxiliary kernel eigen-
value η(E) = 1. For
3- and 4-nucleon bound states a Lanczos type algorithm turned out to be very
efficient (17; 23). Starting from an arbitrary initial ψ = ψ0 one generates by con-
secutive applications of K a sequence of amplitudes ψn, which after orthogonali-
sation form a basis into which ψ is expanded. It turn out that a reasonably small
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number of K-applications (of the order of 10–20) is sufficient, which leads to an
algebraic eigenvalue problem of rather low dimension. Then the energy is varied
such that one reaches η(E) = 1.

If one regards the sub clustering underlying the 5 amplitudes only two of them,
ψ1234

12,123 and ψ1234
12;12,34, are related to the very approximative effective 3-body model

of an inert α-core and two neutrons. The total isospin quantum numbers of the 6He
ground state are T = 1 and MT =−1 (if we define the magnetic isospin quantum
number of the neutron as − 1

2 ).
Now even these two amplitudes depending on the Jacobi momenta of type

a and b, (73) and (95), respectively, are not restricted to t4 = 0 and t56 = 1 in
case of ψ1234

12,123 but also allow t4 = 1 and t56 = 1, t4 = 2 and t56 = 1 and t4 = 1
and t56 = 0. Similarly the “deuteron-deuteron” like substructures of ψ1234

12;12,34 are
not restricted to t12 = t34 = 0 and t56 = 1 but also other two-body isospins are
allowed which do not built up a t = 0α-core. The amplitudes ψ

123,45
12,123 going with

Jacobi momenta of type c, (98), refer to a 3-body together with a two-body sub
clustering, which is also not present in the effective 3-body model. The linear
combinations ψ

125,34
12;12,34 + ψ

345,12
12;12,34 refer again to a 3-body together with a 2-body

sub clustering, where the underlying fragmentation related to 2-body fragments
differs from ψ

123,45
12,123 . And again this is beyond the effective 3-body model. Finally

ψ
12,34,56
12;12,34 allows for several additional 2-body sub clusters which are not contained

in the effective 3-body model, either.
If one would add another step in the Yakubovsky scheme, namely to 2-body

fragmentations a2, the resulting amplitudes ψ
a2
a5,a4,a3 would point to 5-body sub-

clusters together with a single nucleon or to two 3-body subclusters (like 3H−3 H)
in addition to 4-body and 2-body subclusters. Now all those additional structures
are of course also generated by the coupled system (67)–(70) ending with a3 frag-
mentation, which we presented. In other words that Yakubovsky scheme is com-
plete and delivers an exact description of the 6-nucleon problem.

5 Summary

The Yakubovsky equations have been derived long time ago by Yakubovsky (19).
Therefore the application presented here could have been given also long time ago.
It is, however, only now after the experiences with 3- and 4-nucleon problems in
the Faddeev–Yakubovsky schemes that the technical expertise has been developed
in the last decades and the very strong increase of computer power just recently
achieved allows to attack the 6-body problem in that exact formulation. Therefore
we felt it is timely to work out that scheme for that system. Another argument is
the development of nuclear forces in a systematic manner in the realm of effective
field theory and based on chiral symmetry. Two-, three-, and four-nucleon forces
have been derived consistently to each other and they are waiting to be applied
in light nuclear systems and checked against nature. Several tests in that spirit
already appeared (3; 4; 5; 6; 17; 24; 25) but for the purpose of benchmarking the
exact approach in the Yakubovsky scheme is strongly recommended.

Here we restricted the formulation to two-nucleon forces only but the inclusion
of three-nucleon forces can easily be done like pioneered in (13).
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In Sect. 2 we used the general basic and standard formulation, where an points
to n-body fragmentations for a system of N > n particles.

We worked out that scheme ending with a3 in the spirit of the usually applied
though approximate effective α −n−n 3-body model.

Though the step to a2 could be easily done, ending with a3 still includes ex-
actly the whole dynamics.

The Pauli principle is then exactly incorporated in Sect. 3 leading to a set of 5
coupled equations for 5 independent Yakubovsky components, which built up the
total state.

The technical performance in a partial wave decomposition is only touched in
Sect. 4. The 5 different Jacobi momenta as well as a necessary multi-dimensional
interpolation scheme, like modified cubic Hermitean splines, are given. For solv-
ing the high dimensional energy eigenvalue problem of the 5 coupled equations
we point to the Lanczos type algorithm, which turned out to be very efficient in
the 3- and 4-nucleon problem. It remains to work out the partial wave projected
kernels, which is straightforward and can be carried through along the lines cited
above. An example for that is presented.

We expect that on the most modern supercomputers with parallel architec-
ture this formulation can be numerically mastered. Then the step to six-nucleon
scattering like d−α or quite interesting the continuum nn−α revealing the res-
onances in 6He appears also to be feasible. Recently it was shown (26) that the
moving logarithmic singularities in three-nucleon scattering, which in the past was
a stumbling block, though meanwhile very well under control, can nowadays be
totally avoided leading to a very simple pole structure in the Faddeev kernel. The
corresponding trick can also be applied to the 4N Yakubovsky kernel in the con-
tinuum (A. Nogga, Private communication) and it remains to be seen whether this
is also true beyond A = 4. In such a case continuum calculations are hardly more
difficult than bound state calculations.
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A Jacobi Momenta Related to the Independent Yakubovsky Components

Here we display various Jacobi momenta related to the independent Yakubovsky components.
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To ψ1234
12;12,34 belongs

b1 =
1
2
(k1 −k2) = a1

b2 =
1
2
(k3 −k4)

b3 =
1
2
(k1 +k2 −k3 −k4) (95)

b4 =
1
2
(k5 −k6) = a4

b5 =
1
3
(2(k5 +k6)−k1 −k2 −k3 −k4) = a5

The individual momenta are expressed in terms of those Jacobi momenta:

k1 = b1 +
1
2

b3 −
1
4

b5

k2 = −b1 +
1
2

b3 −
1
4

b5

k3 = b2 −
1
2

b3 −
1
4

b5 (96)

k4 = −b2 −
1
2

b3 −
1
4

b5

k5 = b4 +
1
2

b5

The kinetic energy is

6

∑
i=1

k2
i

2m
=

1
2m

(
2b2

1 +2b2
2 +b2

3 +2b2
4 +

3
4

b2
5

)
(97)

To ψ
123,45
12,123 belongs

c1 =
1
2
(k1 −k2) = a1

c2 =
1
3
(2k3 −k1 −k2) = a2

c3 =
1
2
(k4 −k5) (98)

c4 =
1
3
(k4 +k5 −2k6)

c5 =
1
2
(k4 +k5 +k6 −k1 −k2 −k3)
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or

k1 = c1 −
1
2

c2 −
1
3

c5

k2 = −c1 −
1
2

c2 −
1
3

c5

k3 = c2 −
1
3

c5
(99)

k4 = c3 +
1
2

c4 +
1
3

c5

k5 = −c3 +
1
2

c4 +
1
3

c5

k6 = −c4 +
1
3

c5

and the kinetic energy is

6

∑
i=1

k2
i

2m
=

1
m

c2
1 +

3
4m

c2
2 +

1
m

c2
3 +

3
4m

c2
4 +

1
3m

c2
5 (100)

To ψ
125,34
12;12,34 belongs

d1 =
1
2
(k1 −k2) = a1

d2 =
1
3
(2k5 −k1 −k2)

d3 =
1
2
(k3 −k4) = b2

(101)
d4 =

1
3
(k3 +k4 −2k6)

d5 =
1
3
(k3 +k4 +k6 −k1 −k2 −k5)

or

k1 = d1 −
1
2

d2 −
1
3

d5

k2 = −d1 −
1
2

d2 −
1
3

d5

k3 = d3 +
1
2

d4 +
1
3

d5
(102)

k4 = −d3 +
1
2

d4 +
1
3

d5

k5 = d2 −
1
3

d5

k6 = −d4 +
1
3

d5

and the kinetic energy is

6

∑
i=1

k2
i

2m
=

1
m

d2
1 +

3
4m

d2
2 +

1
m

d2
3 +

3
4m

d2
4 +

1
3m

d2
5 (103)
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To ψ
345,12
12;12,34 belongs

e1 =
1
2
(k3 −k4) = b2

e2 =
1
3
(2k5 −k3 −k4)

e3 =
1
2
(k1 −k2) = a1 (104)

e4 =
1
3
(k1 +k2 −2k6)

e5 =
1
3
(k1 +k2 +k6 −k3 −k4 −k5)

or

k1 = e3 +
1
2

e4 +
1
3

e5

k2 = −e3 +
1
2

e4 +
1
3

e5

k3 = e1 −
1
2

e2 −
1
3

e5
(105)

k4 = −e1 −
1
2

e2 −
1
3

e5

k5 = e2 −
1
3

e5

k6 = −e4 +
1
3

e5

and the kinetic energy is

6

∑
i=1

k2
i

2m
=

1
m

e2
1 +

3
4m

e2
2 +

1
m

e2
3 +

3
4m

e2
4 +

1
3m

e2
5 (106)

To ψ
12,34,56
12;12,34 belongs

f1 =
1
2
(k1 −k2) = a1

f2 =
1
2
(k3 −k4) = b2

f3 =
1
2
(k5 −k6) = a4 (107)

f4 =
1
2
(k1 +k2 −k3 −k4)

f5 =
1
3
(2(k5 +k6)−k1 −k2 −k3 −k4) = b5
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or

k1 = f1 +
1
2

f4 −
1
4

f5

k2 = −f1 +
1
2

f4 −
1
4

f5

k3 = f2 −
1
2

f4 −
1
4

f5
(108)

k4 = −f2 −
1
2

f4 −
1
4

f5

k5 = f3 +
1
2

f5

k6 = −f3 +
1
2

f5

and the kinetic energy is

6

∑
i=1

k2
i

2m
=

1
m

f 2
1 +

1
m

f 2
2 +

1
m

f 2
3 +

1
4m

f 2
4 +

3
8m

f 2
5 (109)

B Modified Spline Functions

Choosing four grid points x0, x1, x2, and x3 such that x1 ≤ x ≤ x2 the modified spline functions
(22) are

S0(x) = −φ3(x)
x2 − x1

x1 − x0

1
x2 − x0

S1(x) = φ1(x)+φ3(x)
(

x2 − x1

x1 − x0
− x1 − x0

x2 − x1

)
1

x2 − x0
−φ4(x)

x3 − x2

x2 − x1

1
x3 − x1 (110)

S2(x) = φ2(x)+φ3(x)
x1 − x0

x2 − x1

1
x2 − x0

+φ4(x)
(

x3 − x2

x2 − x1
− x2 − x1

x3 − x2

)
1

x3 − x1

S3(x) = φ4(x)
x2 − x1

x3 − x2

1
x3 − x1

with

φ1(x) =
(x2 − x)2

(x2 − x1)3 ((x2 − x1)+2(x− x1))

φ2(x) =
(x1 − x)2

(x2 − x1)3 ((x2 − x1)+2(x2 − x))
(111)

φ3(x) =
(x− x1)(x− x2)2

(x2 − x1)2

φ4(x) =
(x− x1)2(x− x2)

(x2 − x1)2
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