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ABSTRACT 
 
 
Analysis Strategy of Powder Diffraction Data with 2-D Detector.  ABHIK KUMAR (Austin 

College, Sherman, TX 75090) SAMUEL WEBB (Stanford Linear Accelerator Center, Stanford, 

CA 94305) APURVA MEHTA (Stanford Linear Accelerator Center, Stanford, CA 94305). 

 
To gain a clearer understanding of orientation and grain deformation of crystalline 

materials, x-ray powder diffraction has played an integral role in extracting three-dimensional 

structural information from one-dimensional diffraction patterns.  Powder diffraction models 

identical geometry to the intersection of a normal right cone with a plane.  The purpose of this 

paper is to develop a general expression defining the conic sections based on the geometry of a 

powder diffraction experiment.  Applying the derived formulation of a diffraction arc to 

experimental data will give insight to the molecular and structural properties of the sample in 

question.  Instead of using complex three-dimensional Euclidian geometry, we define the 

problem solving technique with a simpler two-dimensional transformation approach to arrive at 

the final equation describing the conic sections.  Using the diffraction geometry parameters, we 

can use this equation to calibrate the diffractometer from the diffraction pattern of a known 

reference material, or to determine the crystalline lattice structure of the compound. 

 
 
 
 
 
 
 
 



 
INTRODUCTION 

 
When an X-ray beam falls upon an atom, one of two processes may occur: (1) the beam 

is absorbed by the atom with the ejection of irradiated electrons, or (2) the beam will scatter [1].  

For the purposes of this paper, we will consider the effects of the second case.  Experimentally, 

this process of X-ray scattering, known as diffraction, has been routinely applied towards the 

understanding of lattice structure.  It is capable of quantifying variations in orientation, and grain 

deformations of a compound [1].  Understanding such phenomena is critical in defining various 

mechanical properties, such as strength or fatigue resistance, characteristics usually tied to grain 

microstructure [1]. Once bombarded by the beam, atoms of a crystal channel the electromagnetic 

waves of the beam onto a 2-D detector plane, capturing a unique and well defined interference 

curve known as an X-ray diffraction pattern [2] (figure 1).   

X-ray powder diffraction has established numerous applications in recent years such as 

phase identifications, the determination of accurate unit-cell dimensions, and the analysis of 

structural imperfections.  Because of the ability to identify crystal structures from powder data, 

powder diffraction has served an important role in extracting three-dimensional structural 

information from one-dimensional patterns to study crystalline materials [2].  Due to a 

characteristic arrangement of atoms in a crystalline solid, there exists a distinctive X-ray powder 

diffraction pattern.  A normal right cone emerges in powder experiments, centered at the sample. 

A two-dimensional detector plane intersects the cone at some distance d from the sample.  We 

assign a coordinate grid to the system by which the cone and plane will be defined using 

traditional Cartesian coordinates (figure 2).  We shall refer to the vertical axis on the face of the 

cone as the x axis, and a horizontal axis, which we will refer to as y, bisects this line at a single 

point we will call the center.  A straight line travels through the apex of the cone through the path 



of the unscattered beam to the face of the cone, precisely where the x and y axes intersect at the 

center.  We will call this third axis the cone’s central axis, and assign it the variable z.  

Spatially, the orientation of the intersecting plane can assume any position in three 

dimensions.  Depending on the orientation of the plane, a cone may yield one of four curves 

defined by previous literature: a circle, ellipse, parabola, or hyperbola [4].  We will frequently 

refer to these curves as ‘conic sections’.  The purpose of this paper is to develop a completely 

general expression defining the conic sections based on the geometry of a powder diffraction 

experiment.  Applying the derived formulation of a diffraction arc to actual experimental data 

will give insight to the molecular and structural properties of the sample in question. 

 

METHOD 

The Method of Transformation 

In lieu of approaching this problem with complex three-dimensional Euclidian 

geometrics, we define the problem-solving technique in much different terms, using what we 

will refer to as the method of transformation.   

The method of transformation can be simply looked at as the general optical principle of 

mapping an object’s shadow onto a plane.  In more analytic terms, we describe a mathematical 

transform mapping each point on the set of loci of the curve that defines a two-dimensional 

object from its respective plane, onto an arbitrary plane in space by a dependence relation.  This 

method changes the entire dynamic of the original problem and creates a much easier two-

dimensional perspective, versus the highly sophisticated (and uneasily visualized) three-

dimensional approach.   



 It is important to recognize the non-linear relation between object and its transformation 

in certain cases.  For example, the transformation of a closed curve will not always resemble a 

closed transform.  This is true simply because when the intersecting plane is rotated a certain 

magnitude in any direction, the real image on the new plane is distorted in some direction.    

Inherent elegance exists in this approach simply because the problem can be broken into 

two much more transparent two-dimensional problems: a) transformation of the x coordinate, 

and b) its corresponding y.  The new points of transformation shall be marked  and  

respectively.  This method is useful because transformation of a point can occur for any given 

object of any shape or size.  Consider an amorphous object as shown by figure 3. 

'x 'y

By defining an x and y coordinate grid to the object, its complementary point (  and ) 

can be seen on the new plane of interest.  A common analogy of this is seen when the sunlight 

casts the shadow of any shape onto the planar ground. 

'x 'y

 

Pitch, Tilt, & Roll 

In any three dimensional system, rotation of a plane can occur about the orthogonal x, y, 

and z axes.  Similarly, we must devise a way to define the orientation of a plane in space as 

rotation about these three principle axes.  We shall use the terms tilt, pitch, and roll frequently 

throughout this text to identify rotations of the plane about the x, y, and z-axes respectively.  As 

an effect of the planar orientation, we will develop a scheme to define the resulting conic 

sections with simple geometric manipulation. 

 

Pitch 

Pitching  x 



First let’s consider manipulations of the x case.  Figure 3 illustrates the transformation of 

a locus of points defining any object onto an arbitrary plane.  We will call the angle of rotation 

between them β .  The plane is being rotated about the fixed y axis, which would be coming out 

of the plane of the paper where x and x’ intersect.  Consider the following: 

By looking at the problem in two dimensions as figure 4 illustrates, we should solve for x 

as a function of x’. We see  
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Pitching  y 
 

Once the x axis undergoes a pitch at some angle β , a new change in the y component 

occurs.  Figure 5 shows the cross section of y undergoing a pitch.  

As mentioned before, we hope to derive the relationship for y in terms of β .  In doing so, 

we will have a valid expression for the y component of the curve after the pitch.  Because of the 

common sides w (the length from the source to the object) and v (the length from the object to 

the plane) shown in both of the previous figures, we can solve for y with respect toβ  (and ) as 

shown below.  
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From figure 3 we see again that a common ratio exists. 
 

)(
'

vw
Cosx

w
x

+
=

β  

 

βCosx
x

vw
w

')(
=

+
 

(1.5) 
 

Substituting this back in for y, we get a new expression in terms of x, , and . 'x 'y
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(1.6) 
Already creating an expression for x as a function of  we substitute equation 1.2, and 
cancelling out terms, we show 
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Tilt 
 
Tilting  x 

After defining the object by a pitch, we must now add a tilt in the plane’s orientation.  

Tilting the plane about the x axis has an effect on the x and y component of a point on the curve 

and its transformation map.  We shall first consider the x case.  In order to derive a valid 

expression for x undergoing both a pitch and tilt simultaneously, we must look each as a separate 

process, one occurring after the other.  Thus, we can create an equation for a tilted x, and 

substitute it into the initial expression where x has only been pitched (equation 1.2).  Let the 

variableγ  be the angle of rotation about the x axis, and we will call the new variable for a tilted x 



axis .  Therefore, the variable  expressed before will be written as a function of .  This 

will give us the expression for x undergoing both pitch and tilt simultaneously as a function with 

respect to

''x 'x ''x

β  andγ ;  as discussed before, once the x component has already experienced a pitch 

rotation in the β  direction, x and  are slanted as shown in figure 6. 'x

 

Using proportion properties of similar triangles, we see 
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By algebraic manipulation, we solve for x. 
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Based on figure 7, we see that a common relation exists, yet again, with variables w, v during a 
tilt. 
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(2.3) 
Thus, we see a new relation for  in terms of , , and .  Substituting expression 2.3, we 

can create an expression for  in terms of only and . 
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In order to solve a final expression for , we must also solve for  as equation 2.4 

dictates.  Refer to figure 7. 

'x 'y

 

 



Tilting the y axis of the plane allows us to follow the same mathematical procedure as seen 

earlier for the pitch in x.  Thus, following the same procedure, our method in solving for the final 

equation for (when y has only been pitched) in terms of  (undergoing pitch and tilt) can be 

described similarly by x in equations 1.1 and 1.2.  This results as 
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whereγ  is the angle of rotation about the x axis (the x axis is pointing out of the plane of the 

page).  By substitution,  
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This gives us 
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With this expression, we will substitute it back into the equation 1.2 to show x  after rotation of x 

and y axes both.  We see that 
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which simplifies to give us 
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Tilting  y  

Refer to figure 8.  To arrive at the equation for y after pitch and tilt, we follow the method 

of transformation further to get the resulting equation for y as a function of ' and ' . To do this 

the process is simple and follows the same logic as performed with x.  We must now substitute 

equations 2.5 and 2.7 into our equation 3.1.  Thus, the resulting equation for y should be a 

function both , , 

'x 'y

''x ''y γ , and β  as desired. 
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By substitution, 
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Similarly, cancelling out common denominator terms and d coefficients like before, we arrive at  
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Roll 

Adding the roll to x and y together 

 As the final step in arriving at the most general expression for the transformation of 

points from the object plane to the image plane, we must consider a rotation of the plane about 

the z axis, or a roll.  This simply is the rotation of the x-y coordinate system of the plane some 



angle which we will call ρ  (let positive ρ  occur in the clockwise direction).  The substitution is 

fairly straight forward.  We must redefine  and  identifying the new components as 

and .  From previous literature we see that the equation for the rotation of the x-y 

coordinate system by the following expression  

''x ''y
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      (3.1) 
where  and  are coordinate axes of the new, rotated plane [2].  Instituting this into the 

expression is straight forward and involves a simple substitution of the expression of these values 

into the 2.9 and 3.3 where both tilt and pitch have occurred in x  and y., incorporating the final 

rotation of the planar axes in space.    From this we see our final expressions for the 

transformation for the x and y components of any two dimensional object onto a plane which 

assumes any orientation in three dimensions: 
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Conics 
 

We have successfully derived a general expression for the transformation map of any 

given object by taking a complex three dimensional problem and transforming it into two much 



more transparent two dimensional problems.  As discussed before, this is analogous to mapping 

an objects shadow onto a plane.  To apply this to the problem of intersecting a cone and a plane, 

we shall take the case where the object being transformed was a disk.  A circular disk can be 

expressed by the equation x2+ y2= r2.  This is relevant because it models the geometry of X-ray 

powder diffraction.  After substitution, the equation of the conic in terms of the camera length d, 

and the three planar orientation angles is:  
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Referring back to figure 4, we can now define the radius of the base of the cone, r.  We see the 

radius is a length x ( x = r), which for the purposes of clarity, we can redefine as a function using 

the variable α , which is typically used to describe the half angle of the cone.  Before, we 

defined the half-angle with some variable angle η.  Thus, it when x = r, η =  α.  Because 

Tanα = d
r

, αdTanr = .  Our final resulting equation in the most general of terms is:

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−+

+
βρργρρ

βρρ
SinSinyCosxSinSinxCosyd

CosSinyCosxd
)''''''()''''''(

)''''''( 2   +   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−+

−
βρργρρ

γρρ
SinSinyCosxSinSinxCosyd

CosSinxCosyd
)''''''()''''''(

)''''''( 2   =    ( αdTan )2 

(4.3) 
 



 The next step is to test the equation’s consistency and accuracy.  For the purposes of this 

description, we will only consider two variables; the orientation of the plane some angleβ , and 

the camera length d (a constant).   Because of the lateral symmetry of the cone (and for 

simplicity), we will assignγ  to equal 0, and we will also assume no rotation of the coordinate 

system in which case ρ  is equal to 0.  In doing so, we will explore if the equation does indeed 

represent the conic sections. 

  As described before, conic sections take on four forms: a circle, ellipse, parabola, and 

hyperbola.  When a plane intersects a cone, these curves form on the face of the cone as a result 

depending on the planes angle of intersection relative to the cone.  When there is no angle of 

intersection ( β = 0), a circle results.  This is one of two special cases that we will call critical 

points.  The parabola is the other special case and can only occur under a given condition; the 

angle of the intersecting plane is complementary to the half angle of the cone, that is, β = 90 - 

α .  When this is true, the plane is parallel to the nappe of the cone.  It is considered a critical 

point because it is the first angle where the resulting conic section changes from a closed curve 

to and open curve.  In between these two critical points, (0< β <90-α ) the curve developed is an 

ellipse.  As a result, if we substitute this angle into the equation, it should create the curve of an 

ellipse.  Also, when the angle of intersection is greater than 90-α , the resulting conic should be a 

hyperbolic curve (Table 1). 

 

RESULTS 

Table 1 displays the angular limits and the resulting conic sections.  Figure 9a shows the 

result of the equation in graphical form given defined geometric parameters.  The half-angle for 

scatteringα  = 30, and the values for ρ  and γ  = 0.  The variable angle of intersection was β  



which is shown ranging from 0 to 80 degrees in increments of 10 degrees.  As the figure shows, 

the resulting conic is a circle for all angular values of 0, and a parabola when β  = 60 (or 90-α ).  

In between these limits, the plot shows variations of ellipses. Above β  = 60, a hyperbola occurs.  

Figure 9b shows the resulting curves when a tilt component is added to the plane in the form of 

angleγ .  The values for α = 30 degrees and β  = 40 degrees were constant.  The variable 

parameter wasγ , ranging from 0 to 80 degrees in increments of 10.  The plot shows the resulting 

conic section, but with a new orientation as opposed to figure 9a.  The final plot (figure 9c) 

illustrates the implementation of ρ .  With constant values forα , β , and γ , we see that a change 

in ρ  simply rotates the curve about the original origin, as the figure shows. 

 

DISCUSSION AND CONCLUSION 

Using a nontraditional method, the results suggest an accurate and consistent equation 

satisfying our purpose.  Based on the resulting figures referred to in the results, we see that the 

equation defines general expression for the four conic sections, as a result of the intersection of a 

cone and a plane which is relevant to understanding diffraction patterns for powder data.  This 

shows that the method of transformation was in fact an effect strategy in tackling the problem, 

and we were able to limit the expression to defined system parameters. 

 While approaching this problem geometrically, it is fundamental to notice a few trends.  

As the angles increase (from 0:90-α ) the semi-major axis defining the length of the ellipse (and 

the location if its foci) becomes larger.  From this we can deduce how the conic sections are 

actually formed geometrically.  Because the foci of a circle are the same point, the center is the 

foci.  As the angle of pitch or tilt increases, the foci move apart, essentially skewing the center of 

the closed curve.  This was evident when mapping the shadow of the disk onto the plane as 



shown in the plots.  The center finally moves enough to open the curve and make the center go to 

infinity as seen with the open curves of the parabola and hyperbolic curves.  We see that when 

substituting in values that satisfy a respective conic section, the general equation should reduce 

to the form of a general equation of such a curve in two dimensions.  For example, when 

substituting in 0 for all angular values, the plotted curve should be a circle.  The equation reduces 

to the form of x2 + y 2 = r2, which is clearly the equation of the circle.  This is consistent for all 

the conic sections.   

As shown in the plots, the variations of the tilt and pitch define which of a circle, ellipse, 

parabola, hyperbola appear.  It is important to note that symmetry of the problem.  Both angles 

β  and γ  are interchangeable.   

The logic applied suggested an unconventional approach at the problem.   However, with 

such an equation, the analysis of microdiffraction data becomes much more easily understood.  

We now hope to fit existing diffraction pattern data to the equation.  Knowing the diffraction 

geometry parameters, we can calculate the scatter angle value forα  which is vital to understand 

the lattice structure of the sample and its grain structure.  The equation can also be applied in the 

reverse.  Based on the shape of the conic Sections from a diffraction pattern of a known 

reference material, diffraction geometry parameters can be desired, and therefore the 

diffractometer calibrated. 
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Table 1.  Conditions for conic sections with angular limits. 
 
 
 
 
 
Figures 

 
 
Figure 1.  X-Ray diffraction scattering from 3-D sample to 2-D detector 
 

 
Figure 2.  Intersection of a cone and a plane. 
 



 

 
Figure 3.  Transformation of a point on any object (point b is the resulting transform of point a).  
The brown curve represents an arbitrary plane. 
 
 



 
Figure 4.  A cross section of the pitch transformation of x onto .  Note the red and blue lines 
are extrapolations of the figure geometry. Let η be the scatter angle.  The camera length distance 
from the sample to the plane is denoted by the variable d. 

'x

 



 
Figure 5.  The cross-section of y after pitched. 
 

 
Figure 6.  Cross-section of x after pitch and tilt.  The triangles are similar. 
 



 
Figure 7.  Cross-section of the tilt transformation of y onto .  Note the red and blue lines are 
extrapolations of the figure geometry. 

'y

 



 
Figure 8.  Cross-section of y after tilt and pitch. 
 
 

 

Figure 9a.  Plot of resulting conic sections.  α  = 30, β  = 40, γ  = 0, ρ  = 0. 



 

Figure 9b.  Plot of resulting conic with the addition of γ = 40. 

 

Figure 9c.  Plot of an ellipse with progressive variation of the axes some angle ρ . 
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