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HARMONIC REPRESENTATIVES OF INSTANTONS AND SELF-DUAL MONOPOLES

0.0GIEVETSKY
LEBEDEV PHYSICAL INSTITUTE,MOSCOW
§1l.Introduction
Local solutions to self-dual Yang-Mills and monopole equations
correspond to holomorphic bundles on certain auxiliary manifolds
[1,2,3]. These bundleas have to obey additional conditions (sBuch as
triviality on gome lines, reality, etc) which place
not-easy-to-work-with constraints on their patching functions.
However, there is an unconstrained guantity v*"  which incorporates
all the information about the bundle quite naturally. It was
intreoduced in studying the N=2 supersymmetry [4] and turned out to be
relevant in self-dual problems also [5]. In %2 we recall briefly the
construction for self- dual Yang-Mills equations [51. Global
solutions are given by ADHM construction {6] and in the rest of &2 wé€
give expressions for V'~ corresponding to them. This problem was
discussed also in [7] where V™" for instantons of t’Hooft type were
found. &3 is devoted to the analogous interpretation of self-dual

monorole equation and Nahm general construction [8,9] of solutions.

a0 0

2. 0=1f-dual Yang-Mills egquations

We will use only spinor indices e,4=z1,2, which are raised anc

loweraed with the help of £-tensor. For example, xaa are coordinates:

Let 7 . be the covariant derivatives. Then the curvature is

(7 (1)

F oo o Vg2 anf ap S apf op

where Faﬁ:Fﬁa’Faﬁ:Fﬁa' The self-duality equations are equivalent 0
Faé:O. S0 in this case we have

e 2)
{ vouft ! v(?(’%] _bfit(?Faﬁ (
Let us introduce harmonics u'™: they 1lie in the fmu:lamerltal
representation of SU(2) and are subjected to SU(Z)—invariaﬂt

condition

W =1 (3
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where u—&zu’d. This is the three-dimensional sphere $?. The action of
30(2) on s? commutes with the action of U(i):u*aﬁ el¢u+¢ and so we

have the action of SU(2) on CP*=8%/U(1). We will work with quantities

with definite U(1)-charge (a quantity £°° with the U(1)-charge k
<+k>=’ ei¢f<+k)

transforms as ¢ under the U(1)-transformations). There

. R L. -
are three important operators preserving the condition u u a:l:

D+¢:u+(‘1 a/au—é(

&

D'Pzu"%a 0y - u M9 0u” (4)

D—-:u~da/au-&ét

7

. . . & +
Multiplying equation (2) by u ®u*” and denoting u ‘Va& by 7" we get

[, 510 (5)

To reconstruct the self-duality equation from (5) we mugt only

. N . & .
remember that V'a is linear in u"®. This means that

+ - - .
{bp ,v a3~U (6)
Conversely, one can easily deduce that if (8 holds then e iz
linear in u*a. Thus we see that the set of =quaticns (5),(8) is
equivalent to the original self-duality equation. But now we can
Soive (5). Indeed, (5) means ‘that V*a = hﬁ*an_l, where B’Q =
u‘“O/axaa. The gauge transformation h depends not only on x but on u

dlso. This means that the derivative D™ becomes nontrivial:

D" s D" = h"'Dh = D4V (7)
Where V™" = n™'D""(h). Now the egquation (6) becomes
OV =0 (8)
“hich simply means that V' does not depend on x—asu_axa&. So  we
found the general local solution to the self-duality equation. It is

: -+ . & -
described by the guantity V' depending only on x’a:u’&xad.u u e

Conversely, for almost arbitrary v (V" must satisfy only sone
Conditions of inequality type) we can find a gauge transformation h
8uch that h 'D™h = D" +v'" and then A s(x) from the equation
u‘é‘(a/ax""e"»,Acm)-:ha*mh"1

This is just the interpretation of Ward construction in terms of
We followed closely the treatment in [5].
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Now let us proceed to <the global solutions of self-duality
equation describing instantons. They are given by the ADHM
construction.We restrict ourselves to the case of SU(2) group. ADHM

construction for k-instantons involves matrices Axad'Buad’
i,i=l,...,k, subjected to the following constraints [(6,10]:
(a) Btjaa:B;i.aéz’
o a
(b) Xi(?ﬁay+3m ﬁBqa?‘pueé?’ pge R (we sum over repeated
indices},

{c) The equations Vaaé(x)}ﬁay + v, ﬁ(x)(BNGY . ar) =0 for

v, :(vo,vi) has only one everywhere nonzero solution up to
multiplication of vaﬁ(x) by qfﬁ(x). (Multiplication by 94
corresponds to gauge transformations),

Now, if v is a normalized solution of the equationes (c),

a“”’vaa?.,:é"}? and (B,,) 4 =v “p0/0x"%(v F) then v, z0/0x"+a

self-dual connection.

is a
on 18

Actually, the gauge transformation h for this connection chl was
found in [11] (though in different notations). Adjusting the reaults
cf {11} to our ?otaflons; put (% )aﬁ-x s+ F a“ ﬁ’ €4 }xﬂ_xaﬁ+G u
with arbitrary F a’G . Then the following identity holds [11]:

o

o

“ae v T G0v o0 e (5w S5 v e (). (9)

o3t aot

+* +
i oz . 3 ; {ons
Introduce t(c)aﬁ X u ﬁ+c ﬁ‘ where ¢ iz an arbitrary functio

depending on harmonic variables u only. Put

Lim
(after some computations) to the following statement:

h(x,u,0) g zv Zs00v_ F(2(e)) (10)
Using (9) one can show that h—‘(x,u,c)ﬁyzv ;(f(c))v o x) and
V‘q:ha*ahut 80 we conclude that h is the needed gausg®
transformation.
Now we have to compute V' '=h 'D'"(h). Again using (9) we c3f
rewrite it in the form
Vi, c)ﬁ =v, 4z (e)D™ v, Tz (e (11
Using the arbitrariness of ¢ we can further simplify this expressiot
Namely, let c-azdéa uué, where d is a constant. Surprisingly, it
turns out that there exists the limit 2
Vi (X WEEAR v(E () (1
where (xﬂ)aﬁ=x+au~ﬁ. Inserting v in the expression for V' we con?
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Theoren.

- 3 at -2 +{3
v [~ )‘t a(C }‘u‘)‘j

.
+* + R . -— -
Where A =u A ., C.. is the matrix inverse to B.. -x &
v o ¥=Te] i A ij vy,
1]

Bu'_:u’ﬁu’aBu&é, x’uzu’uu_ﬁxé&.(Note that we vreplaced the undotted

index of X with the dotted one.)
£3. Self-dual monopoles

Self-dual monopoles alsc have an interpretation in terms of
holomorphic bundles subjected to some constraints [(2,3]. In this
Section we find, as in the case of instantons, +the general local
solution in terms of the unconstrained quantity V'~ (which now
depenas on variables specitic to three dimensional space. Then we
describe V' corresponding to Nahm global solutions for the case of
80(2) group.

In three dimensions there ie only one type of spincr indices,
Say «, and vector xaﬁ xmﬁzxﬁa
Condition is ?Zgzxaﬁ). The monopole configuration consists of gauge
fielg A, (Aaﬂ in spinor indices) and Higgs field &. The self-dual
monopole equaticn reads

is symmetric in them, (the reality

292 =& F.. (13)
Vhere Fﬁ is the field strength of the potential A . 1In spinor
indices we have

1
2"7a E=(V a,‘?

3 21 (14)

wh = o =a/0x°0 ' i iplyin
ere Vo'{3 0aﬁ+Aaﬁ’ o /K Introducing harmonics and multiplying

{14) by 2 we get

v*'kéz{v-l--r’v#-—'}’ (15)
e +* 3 + = + hatt N : .
Yhere ¥ “:zu “u*fvaﬁ, v =% f? ar3s We used the easily verifiesd

ldentity A®B_=A"B"-A"B" for A"zAu'®. Now put 9V =V""-2. Then (15)
bECOmes
[v7",9_1=0. (16)
48 before, we have to supply this eguation with the information about
the dependence of ?H}V; on harmonics. The corresponding equations
are
(p”",9"1 = o, [D",Vo] = v, (17)
The equation (16) implies the existence of such gauge transformation

a -

h that v*zha""n™", v =hsh™", where 8" =u"%"Pa x>,
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0=u"%""3/2x*" . Then we have
a D7 = h7D™h = D4V (18)

and equations (17) become

e ++

v =0, & =0 (1%
_ra -3 -—_ a3 .

s xaﬁ, x:i u xaﬁ, X =u u xaﬁthls means

aimply that V  depends only on x . Thus we have found the general

local solution of self-dual monopole equation in terms of

. - L2+ S 3
In coordinates x =u u 5

V**:V*’(x+ﬂu). Conversely, almost any v gives rise to local
solution.

Remarks. (1) The coordinates x .u° parametrize the tangent
bundle to CP' which is the basic manifold in Hitchin treatment of
monopoles [3].

(2) In principle, we could deduce all this from four dimensicnal
self-duality equations by dimensional reduction (three dimensional
gpinor greoup 30(2) corresponds to the diagonal ©SU(2) in four
dimenzional spinor group SU(2)xS8U(2)). However, it is nice to do
everything in purely three dimensional way.

Example. The most simple expression for V'™ for the 50(2) group
is V*‘aﬁ = (x‘*)zu—au‘ﬁ. One can check that this V'~ corresponds to
one-monopole solution found by Prasad and Sommerfield [12].

To get used to this technigue let us explain how to extract the

information about the solution out of V™', for example, how to find

the energy of the solution. We have another harmonic derivative
-- - - L !
D™ "=u “aseu"?. Its commutator with D equals to D
[D*’,D—_]:Dmh Under the action of h the derivative D transformé
to
D7 = h'D h = D4V (20)
The commutation relation with D becomes (2071 = h™'Dn =
D, or
D*."V’-”‘D-—v**i’{V**,v_-} = 0 (21)
and this is the equation to express V  in terms of A without
finding the gauge transformation h [13].
The energy of solution is proportional to tr(FaﬁFaB)dsx ¢
(where F_;=[9.7,V, 1), which, in turn, equals to 2 tr(rFT T
F'F"7)d%. Using the commutation relations (D~",v " )=29v

[D-_,V°]=V— , ID77,9771=0 one finds
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X F™=-a""%y" ", F T=-09""V" ", F T=z-d°v 7 (22)
> E ~ jtr(a”zv“a"v“ - (337 % a%x (23)
This is obviocusly the full derivative (as it should be: the energy is
proportional to the topological charge for self-dual solutions).
Finally let us describe V'’ arising in Nahm construction [8].
Recall that Nahm solutions are expressed in terms of vnr(z), which is

A solution of the equation

(6, Pasdz - x, ”)\;ﬂ = 0 (24)
on an interval (-a/2, a/g]. Here T =(T ﬁ) are matrices in indices
LFER Vﬁr 0 Yare vectors, tu—l,...,k, where k is the ‘topological

charge of the monopole to be constructed. Matrices ’I‘Cf3 must satisfy
Rahm equations deﬁfdzziTay,Tﬁy} with appropriate boundary

tonditions (they must have simple poles at the endpoints of the

interval [-a/2.a/2], Tan’v tdﬁ/(z-z ), 2, a/2 with the residues taﬁ
Constituting some irreducible repres entatlon of the Lie algebra
s f 7 e . af3 I ?

vw(2)). Chose a normalized solution, S VY sy dz = & e Then Aaﬁ

and ¥ satisfying self-dual monopole equation are given by the
formulae

= 2/ 2 o o
Aa{?) r B 1§ 2 Vioy doef?vo dz
(259
o agz o
2, = S v, z v, dz

~ars 2

It turns out that gauge transformation h and V' are also easily
txpressed in terms of v,
- - -
Theorem. Let (LH)aﬁ—x u u ez Then

a2 o > —_
. ) x Tz .
hTH(x,u) = S v (x,z)e 2 v P(x ,z)dz

—ars2

a2

LR & 2 0 _ o , R e [P .
V' (x ,u)a = S v ?(m",z)(ux z+D W {kﬂ,z)dﬂ
a2

In conclusion we note that these methods can be applied to
fupersymmetric monopoles and self-dual monopoles as well, The results
Will be presented elsewhere.
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