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HARMONIC REPRESENTATIVES OF INSTANTONS AND SELF-DUAL MONOPOLES 

O.OGIEVETSKY 

LEBEDEV PHYSICAL INSTITUTE,MOSC0W 

§[.Introduction 

Local solutions to self-dual Yang-Mills and monopole equations 

correspond to holomorphic bundles on certain auxiliary manifolds 

[1,2,3]. These bundles have to obey additional conditions (such as 

triviality on some lines, reality, etc) which place 

not-easy-to-work-with constraints on their patching functions. 

However, there is an unconstrained quantity V ÷+ which incorporates 

all the information about the bundle quite naturally. It was 

introduced in studying the N=2 supersymmetry [4] and turned out to be 

relevant in self-dual problems also [5]. In §2 we recall briefly the 

construction for self- dual Yang-Mills equations [5]. Global 

solutions are given by ADHM construction [6] and in the rest Of §2 we 

give expressions for V ÷÷ corresponding to them. This problem was 

discussed also in [7] where V ÷÷ for instantons of t'Hooft type were 

found. @3 is devoted to the analogous interpretation of self-dual 

monopole equation and Nahm general construction [8,9] of solutions. 

§2.Z~if-dual Yang-Mills equations 

~4e will use only spinor indices a,~=l,2, which are raised add 

lowered with the help of G-tensor. For example, x are coordinateS' 

Let '7 d ' be the covariant derivatives. Then the curvature is 

where F ~=F(~,F&~=F~&. The self-duality equations are 

F~=O. So in this case we have 

Let us introduce harmonics u : they lie 

representation of SU(2) and are subjected 

condition 

(z) 

equivalent %0 

in the fundament~1 

to SU(2)-invari a~ 

u u a=l (S) 
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,,, ........ ~, 

where u &=u*a. This is the three-dimensional sphere S 3. The action of 

S ~ ei~u * and so we SU(2) on commutes with the action of U(1):u÷m~ 

have the action of SU(2) on CP*=SS/U(1). We will work with quantities 

With definite U(!)-charge (a quantity f(+~ with the U(1)-charge k 

transforms as i~÷k~ ei@f(÷k> under the U(1)-transformations). There 

are three important operators preserving the condition u u a=l: 

D+*=u ÷~ a/~u -~% 

D~°~=u÷~/au+a- u-a~/au-~ ( 4 ) 

D--=u-aa/au ÷a 

Multiplying equation (2) by u÷~u ÷~ and denoting u vCa& by we get 

[v+Ca,v*~]=O (5) 

To r e c o n s t r u c t  t h e  s e l f - d u a l i t y  e q u a t i o n  f rom (5)  we must  o n l y  

remember that V* is linear in u . This means that 

[D~*,V* ]=0 (6) 

Conversely, one can easily deduce that if (6) holds then V *~ is 

+,u~ 

linear in u Thus we see that the set of equations (5), (6) is 

equivalent to the original self-duality equation. Bu~ now we can 

~olve (5) Indeed, (5) means that ~+ = h~ ÷ n-i where 9 ÷ = 
• Ca d~ ~ c~ 

U~'~O/ax c~&. The gauge transformation h depends not only on x but on u 

also. This means that the derivative D *+ becomes nontrivial: 

D ÷÷ ~ = h-*D+÷h = D÷*+V ÷ (7) 

Where V** : h-'D*÷(h). Now the equation (6) becomes 

a ÷ V = 0 (8) 
C~ 

- -a So we Which simply means that V ÷÷ does not depend on x =u xaa. 

found the general local solution to the self-duality equation. It is 

~eacribed by the quantity V** depending only on x =u x~a,u ,u 

COnversely, for almost arbitrary V ÷÷ (V ÷* must satisfy only some 

aonditions of inequality type) we can find a gauge transformation h 

~Ueh that h-ID ÷÷h = D*÷+V÷÷ and then Aam(x) from the equation 

~*~(~/~x~+A~)=h~+ h -*. 

This is just the interpretation of Ward construction in terms of 

V'* We followed closely the treatment in [5]. 
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Now let us proceed to the global solutions of 

equation describing instantons. They are given by 

construction.We restrict ourselves to the case of SU(2) 

construction for k-instantons involves matrices 

~,]:I ..... k, subjected to the following constraints [6,10]: 

(a) B~j~&:B~, 

(b) k ~X +B. ~B .=p. ~ B (we sum over 

(c) 

self-dualitY 

the ADHM 

group. ADHM 

repeated 

indices), 
The equations v ° ~(x)kj~? + v ~(x)(B j~-6 jx~)=0 for 

= v~) has only one everywhere nonzero solution up to V (Vo, 

multiplication of vm~(x) by q4~(x). (Multiplication by q 

corresponds to gauge transformations). 

Now, if v is a normalized solution of the equations (c), 

a~_6~y ~_ ~ ~a " v~C~v .>- . and (A~)~ -v a ~/ax (va z ) then V ~=a/Ox~+A a is a 

self-dual connection. 

Actually, the gauge transformation h for this connection v a was 

found in [II] (though in different notations). Adjusting the results 

of [ii] to our notations~ put ([t)c~=xc~+F ~u ~, (~z)~=xc~+G u 

with arbitrary F-~,G- . Then the following identity holds [Ii]: 

v ~ ( ~ ) v  ~'(x x)vb{~(~z)=v ~ ~(~,)v ~÷(~2 ). (9) 

In t roduce  ~ ( c ) ~ : x "  u-/~+c- u+~, where c is  an a r b i t r a r y  funct ion~ 
depending on harmonic variables u only. Put 

h(x,u,c)~:v~(x)v= ~(~(c)) (I0) 

Using (9) one can show that h-i(x,u,c)~Z:va~f}(~(c))va~F(x) and 

V+~=h@+~h -I . So we conclude that h is the needed gaug e 

transformation. 

Now we have to compute V*':h-ID**(h). Again using (9) we ca~ 

rewrite it in the form 

x ,u,c)~ ~([(c))D'+v " ([(c)) (11) 

Using the arbitrariness of c we can further simplify this expression' 

Namely, let c- =d6~'u-~, where d is a constant. Surprisingly, £¢ 

turns out that there exists the limit 

Vt~m(XH,U):~im v(~(c)) (I~) 

where (XH)o~=X÷~U-~. Inserting vtL m in the expression for V** we c°~e 
(after some computations) to the following statement: 
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Theorem. 
V +* P : -x+c,(C -z)  X *~ 

c~ ~.j j 

where x" =u C~] is the matrix inverse to B~ -x÷-~, 

÷-_ . &  . a .  Btj -u u ~j&?, x+-=u (Note that we replaced the 

index of xm& with the dotted one. ) 

undotted 

§3.  Self-dual monopoies 

Self-dual monopoles also have an interpretation in terms of 

holomorphic bundles subjected to some constraints [2,3]. In this 

section we find, as in the case of instantons, the general local 

aolution in terms of the unconstrained quantity V +~ (which now 

~epena~ on variables speciZzc to three dimensional space. Then we 

describe V ÷÷ corresponding to Nahm global solutions for the case of 

SU(2) group. 

In three dimensions there is only one type of spinor indices, 

~ay ~, and vector x ~f~ is symmetric in them, x~[3=x ~m (the reality 

is ~=xa~). The monopole configuration consists of Condition gauge 

field A~ (A~ in spinor indices) and Higgs field ~. The self-dual 

monopole equation reads 

, ~jk" ~ '  (13) 

~here Fjk is the field strength of the potential A . In spinor 

indices we have 

2v p~:[v~" ,vr~], (14) 

Where v ~=oo4~+A~8, ac~=a/ax ~8. Introducing harmonics and multiplying 

(14) by u*~u *~ we get 

V+÷~=[V*÷,V~-], (15) 

acre v =u u v ~, v =u u vc~f~; we used the easily verified 

identity A B =A B -A B for A =A u . Now put Vo=V÷--~. Then (15) 

becomes 

[V*',Vo]=O. (16) 

As before, we have to supply this equation with the information about 

the dependence of v*~,v o on harmonics. The corresponding equations 

~re 

[D÷',v "÷] : O, [D*',Vo] : v**. (17) 

The equation (16) implies the existence of such gauge transformation 

h that V++=h~+~h-i, V =hah -~ . where ~'+=~+~u'~O/~x ~, 
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~=u+~u-/~a/~X ~9. Then we have 

D ÷* ~÷÷ = = .+ h-ID÷+h D÷++V +÷ (18) 

and equations (17) become 

a+÷V +÷ = O, aV +÷ = O (19) 

In coordinates x÷~=u÷~u÷Ox /9, x=u÷~u-/~xcqg, x--=u-~u-Ox~/gthis means 

simply that V ÷* depends only on x *÷. Thus we have found the general 

local solution of self-dual monopole equation in terms of 

. V *+ V+÷=V +* ( x+÷.u ) Conversely, almost any gives rise to local 

solution. 

Remarks. (I) The coordinates x*+.u * parametrize the tangent 

bundle to CP i which is the basic manifold in Hitchin treatment of 

monopoles [3]. 

(2) In principle, we could deduce all this from four dimensional 

self-duality equations by dimensional reduction (three dimensional 

spinor group SU ( 2 ) corresponds to the diagonal SU( 2 ) in four 

dimensional spinor group SU(2)×SU(2)). However, it is nice to do 

everything in purely three dimensional way. 

Example. The most simple expression for V ÷+ for the SU(2) group 

is V ++ f~ (x÷+ 2 - corresponds to a = ) u ~u -f~. One can check that this V *÷ 

one-monopole solution found by Prasad and Sommerfield [12], 

I"o get u~ed to this technique let us explain how to extract th e, 

information about the solution out of V *÷, for example, how to find 

the energy of the solution. We have another harmonic derivative 

-- -~a +~ D '°', D =u /au • Its commutator with D ÷+ equals to 

[D++,D--]: . Under the action of h the derivative D transform~ 

to 

~D-- = h-ID--h = D--+V-- (20) 

The commutation relation with D ÷÷ becomes [ ~)'~,~D-- ] = h- ~D<°)h = 

D(°'0 or 

D÷÷V -D V+÷+[V+÷,V --] = O (21) 

and this is the equation to express V-- in terms of V+*, with out 

finding the gauge transformation h [13]. 

The energy of solution is proportional to - ~ ~ tr(FeqgFa~)dSx ' 

(where F n=[V ~,V/9~,] ), which, in turn, equals to 2~ ~ tr(F÷'F -- 

F+-F +- ) d~" Using the commutation relations [ D--, v++] =2 v°'' 

[D--,Vo]=V--, [D ,V ]=O one finds 
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F*+ ~÷ZV- - =- , F~-=-aa**V --, F--=-aZV -- (22) 
So 

E ~ .~tr(a**2V--a~V -- - (~a÷*V--)Z)d'x (23) 

This is obviously the full derivative (as it should be: the energy is 

Proportional to the topological charge for self-dual solutions). 

Finally let us describe V ÷÷ arising in Nahm construction [8]• 

Recall that Nahm solutions are expressed in terms of v/~F(z), which is 

a solution of the equation 

(~6clgd/dz - xj~ + L/~)~ z = 0 (24) 

on an interval [-a/2,a/2]. Here T f~=(T /9)LJ are matrices in indices 

~,j, v/92"zv~/9~are vectors, £,J:l .... ,k, where k is the topological 

charge of the monopole to be constructed. Matrices T/3 must satisfy 

Nahm equations dT (9/dz=[T ~',T/gz] with appropriate boundary 

Conditions (they must have simple poles at the endpoints of the 

interval [-a/2.a/2], Tc~/9~ t x(~/(z-zo), zo= a/2 with the residues toy ? 

constituting some irreducible representation of the Lie algebra 

~'~(2)) Chose a ~ormalized solution ~ v ~(~v dz = 6/~ Then A (~ 
• ~ t ~ ;~ " 

and ~ satisfying self-dual monopole equation are given by the 

formulae 

(A D)r p = ~ v~rO /gv P dz 

- , ~ / 2  ( 25 ) 

P = ; v ~ P dz ~T r z vc. 

It turns out that g'auge transformation h and V ~* are also easily 

expre.ssed in terms of v. 

Theorem. Let (>',)~=x÷÷U-c~U-/~. Then 

hw 'p(x'u) = S vC~ z P(x ~(x,z)e TM vc, ,z)dz 
--~/2 

and 

V~÷(x ÷*,. u)~ p = ~ v ~T(~: , z)(Lx**z+D~*>v P(xH,z)dz 
-- CL." 2 

In conclusion we note that ~hese methods can be applied to 

mUpersymmetric monopoles and self-dual monopoles as well. The results 

Will be presented elsewhere. 
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