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Summary: Since the early days of its discovery, when the term was used to characterise the quantum com-
pletion of eleven-dimensional supergravity and to determine the strong-coupling limit of type IIA superstring
theory, the idea of M-theory has developed with time into a unifying framework for all known superstring the-
ories. This evolution in conception has followed the progressive discovery of a large web of dualities relating
seemingly dissimilar string theories, such as theories of closed and oriented strings (type II theories), of closed and
open unoriented strings (type I theory), and theories with built in gauge groups (heterotic theories). In particular
the eleven-dimensional Lorentz invariance of M-theory has been further highlighted by the discovery of how it
descends by an orbifold compactification to the weakly-coupled heterotic E8 ×E8 string theory. Furthermore the
derivation from M-theory of one-loop corrections to type II and heterotic low-energy effective supergravity has
shed new light on our understanding of anomaly cancellation mechanisms which are so crucial for the consistency
of superstring theories and are also of phenomenological importance, since the fermion content of the Standard
Model is chiral.

Despite these successes, M-theory remains somewhat elusive and is still in want of a complete and closed
formulation. In particular, its fundamental degrees of freedom are still unknown, which in principle prevents
us from establishing the full quantum theory. Proposals have been made, advocating D0-branes or M2-branes
as its elementary states. However, even the most fruitful of these proposals, based on a partonic description of
M-theory and known as the BFSS (Bank-Fischler-Seiberg-Susskind) conjecture or M(atrix) theory, has stumbled
on a number of issues, one of the most nagging being its failure to correctly reproduce quantum corrections to
two- and three-graviton tree-level scattering amplitudes known from supergravity one-loop calculations.

In the absence of a closed and definite description, we are bound to adopt a fragmentary approach to M-
theory. This work naturally follows this route. Three facets of M-theory are thus uncovered or further investigated
in the course of the present thesis. The first part deals with the matrix model approach to M-theory and studies
the relevancy of an alternative to the BFSS proposal, defined in purely algebraic terms, which is desirable from
the point of view of a background independent formulation of M-theory. It implements overt eleven-dimensional
Lorentz invariance by resorting to a osp(1|32) realisation of its group of symmetry, thereby incorporating M2-
and M5-branes as fundamental degrees of freedom on the same footing as the original D0-branes of the BFSS
model. This seems more in phase with the concept of M-theory which does not appear to give preference to
strings over more extended objects. Finally, this construction partially solves the puzzle about the absence of
transverse five-brane degrees of freedom in M(atrix) theory and opens the perspective of a description of M-theory
in a curved AdS11 background.

The second part of this thesis focuses on the determination of non-perturbative effects in low-energy effective
heterotic supergravity, investigating some phenomenology related consequences of the Hořava-Witten scenario.
The latter provides the M-theory origin of the strongly-coupled heterotic E8 × E8 superstring theory in terms
of an orbifold compactification on an interval, with twisted sectors given by two copies of E8 super Yang-Mills
multiplets propagating on the ten-dimensional boundary hyperplanes sitting at the orbifold fixed points. This
setups can accomodate, under certain conditions, the insertion of parallel fivebranes, allowing for Euclidean
membranes to stretch between them and the boundary hyperplanes. In this framework, we investigate a Calabi-
Yau compactification of this setup to four dimensions, establishing the effective supergravity and computing the
resulting instanton corrections to the interaction Lagrangian. In the condensed phase, this allows us to derive
the corresponding gauge threshold corrections and determine the resulting non-perturbative superpotential with
the correct dependence in the fivebrane modulus, from a purely supergravity calculation. Confirming results
determined earlier by instanton calculations this works also renders them more accurate and sets them on a
sounder basis, whence the vacuum structure of the effective supergravity can be addressed.

The third and last part of this thesis tackles the issue of how to recover information about M-theory by
studying hidden symmetries of supergravity actions. In particular, we explore the conjecture stating that M-
theory possesses an underlying hyperbolic infinite-dimensional Kac-Moody symmetry encapsulated in the split
form e10|10, which occurs as a natural very-extension of the exceptional U-duality algebra of eleven-dimensional
supergravity compactified on a seven-torus. However, this conjecture is supposed to carry on beyond the toroidal
case and to give clues about uncompactified M-theory. In the present work, we make use of this conjecture to
determine the algebraic structure of Zm orbifold compactifications of M-theory, showing how their untwisted
sectors are encoded in a certain class of Borcherds algebras. Furthermore, concentrating on a certain family of
Z2 orbifolds of M-theory descending to non-supersymmetric but nonetheless stable orientifolds of type 0A string
theory, we establish a dictionary between tilted Dp-/Dp′-brane configurations required in these models by tadpole
cancellation and a certain class of threshold-one roots of e10. This latter result is of some phenomenological
interest insomuch as it gives a deeper algebraic understanding of the magnetised D9-/D9′-brane setup of the
T-dual type 0′ string theories, which have been recently shown to play a rôle in moduli stabilisation.
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2.4.1 Embedding of the 11D super-Poincaré algebra in osp(1|32,R) . . . . . . . 60
2.4.2 The supersymmetry properties of the 11D matrix fields . . . . . . . . . . 61
2.4.3 Eleven-dimensional action for a supersymmetric matrix model . . . . . . 62

2.5 Dynamics of the 11D supermatrix model and its relation to BFSS theory . . . . 63
2.5.1 Compactification and T-duality of the 11D supermatrix action . . . . . . 63
2.5.2 Ten-dimensional limits and IMF . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.3 Dualization of the mass term . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.4 Decomposition of the five-forms . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.5 Computation of the effective action . . . . . . . . . . . . . . . . . . . . . . 67
2.5.6 Analysis of the different contributions to the effective action . . . . . . . . 68
2.5.7 Iterative solution of the constraint equations . . . . . . . . . . . . . . . . 70

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

II Anomaly cancellation in heterotic M-theory and membrane instantons 75

Introduction 76

3 M-theory on an orbifold, anomaly cancellation and membrane instantons 79
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Introduction

The discovery of a large web of dualities relating all superstring theories has led theorists to
believe in a unifying framework, called M-theory, which would appear as the non-perturbative
limit of the five known superstring theories and would contain the 11D supergravity of Cremmer,
Julia and Scherk [81] as its low-energy limit. In particular, this yet unknown theory should be
formulated in eleven dimensions and, by analogy with 11D supergravity, be endowed with a
supersymmetry algebra of 32 supercharges, which corresponds to N = 1 supersymmetry in
eleven dimensions [247, 235].

The known superstring theories appear then as five limits of M-theory, for each of which the
perturbative string expansion is different, and thus correspond to diverse corners of its moduli
space of vacua. The two ten-dimensional string theories that directly descend from M-theory
through compactification of one spatial dimension are the type IIA and the E8 × E8 heterotic
theory, which are both closed string theories, one with N = 2 and the other with N = 1 su-
persymmetry in ten dimensions. Indeed, the original 32 supercharges in eleven dimensions are
preserved in the type IIA theory by compactifying M-theory on a circle, while the reduced su-
persymmetry of the heterotic string is achieved by an orbifold compactification which projects
out half of the original supercharges [145]. In the latter case, anomaly cancellation in the eleven
dimensional low-energy theory requires the presence of (Yang-Mills) gauge supermultiplets on
ten-dimensional hyperplanes at the two orbifold fixed points, where they are allowed to propa-
gate. In ten dimensions, these will reconstitute the gauge sector of the heterotic supergravity
with 1-loop corrections [144].

In both cases, the radius of the compactified dimension is reinterpreted as the dilaton of the
resulting supergravity theory, so that the decompactification limit indeed represents the strong-
coupling regime of the corresponding string theory. In addition, the non-perturbative limit of
the E8×E8 heterotic string theory reveals another feature of M-theory. It entails that M-theory
has the property of generating an E8 current algebra when embedded in a space with boundaries.
This bears a striking resemblance with the anomaly cancellation mechanism in Chern-Simons
gauge theory, which also requires similar ”edge states” to be present. Such a connection has
led to the alternative proposal that M-theory might be described up to the Planck scale by
a non-gravitational effective Chern-Simons gauge theory [143], where the three-form of 11D
supergravity would emerge as a composite field.

These two basic compactification schemes make M-theory the missing link between two,
otherwise separate, groups of string theories related by dualities: the type II theories, on the
one side, with no gauge group, and the heterotic / type I theories, on the other side, with gauge
groups E8 ×E8 or SO(32) [106, 247].

The dualities mapping these superstring theories among themselves are of two types. One
of them is T-duality which relates one theory compactified on a circle to another theory com-
pactified on a circle with inverse radius. Since this transformation constitutes, in string theory,
an exact symetry of the conformal theory, it remains valid at all orders in perturbation theory,
and is thus usually referred to as a perturbative symmetry. Typically, T-duality maps type IIA
to IIB string theory [101, 83], and relates the two heterotic theories when, in addition, a Wilson
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line is turned on in the compactified theories, thereby breaking both the E8 × E8 and SO(32)
gauge groups to their common SO(16) × SO(16) subgroup [196, 197, 128].

On the other hand, string theories may be related by non-perturbative dualities which map
the weakly-coupled sector of one theory to the strongly-coupled sector of the same or of another
theory [219]. Such a transformation relates, for instance, the heterotic theory with gauge group
SO(32) to the type I theory (a theory of closed and open unoriented strings with N = 1
supersymmetry) by identifying the coupling constant of the first theory with the inverse coupling
of the second [212]. The S-duality symmetry of type IIB string theory is another example, which
acts this time as a modular transformation on a complexification of the axion and dilaton fields
[78, 217].

When applied to open strings, one of the major by-products of T-duality has been to reveal
the existence of extended objects defining hyperplanes on which the open strings of the dual
theory are bound to end. These ”defects” which are localised in the compact dimensions in
which T-duality is performed are known as Dp-branes, by reference to the Dirichlet boundary
conditions satisfied by the open strings [142, 83]. It was then realised that these objects could be
identified with certain semi-classical solutions, or solitons, of the type I/II supergravity theories,
the p-branes [211]. The latter are massive, weakly-coupled dynamical objets which naturally
couple electrically or magnetically to the Ramond-Ramond fields of the low-energy type I/II
theories, and thus carry a conserved charge (type II and heterotic supergravities also possess
an NS5-brane, which couples magnetically to the antisymmetric B-field). Since their mass
scales as the inverse of the string coupling constant, these appear as non-perturbative objects.
Furthermore, these p-branes preserve a fraction of the original supersymmetry of the theory, in
other words, they saturate a Bogomolnyi-Prasad-Sommerfeld (BPS) bound, and are therefore
protected against quantum corrections. For this reason, Dp-branes have been extensively used
to test duality conjectures between different regimes of superstring theories.

In particular, a study of the non-perturbative spectrum of supergravity theories has been
crucial in determining the existence of the group of U-duality [149], which is expected to be a
symmetry of both perturbative string theories compactified on tori and their conjectured non-
perturbative extension, and relates certain theories modulo field redefinition. More precisely,
supergravity theories usually exhibit hidden symmetries, such as, for instance, the continuous S-
duality symmetry of type IIB supergravity [217]. In the toroidally reduced theory, these combine
with the continuous T-duality symmetry to form a bigger group, whose discrete subgroup, the
group of U-duality, is conjectured to survive as a symmetry of the full superstring theory. In
particular, 11D supergravity reduced on a torus T n, so as type IIA supergravity on T n−1, possess
a non-compact continuous En|n( � ) hidden symmetry [77, 79] which is broken to En|n( � ) by
quantum effects [149]. This U-duality algebra has been proposed as describing an exact quantum
symmetry of M-theory compactified on T n, and is conjectured to extend to the hyperbolic
E10|10( � ) Kac-Moody algebra in 0+1 dimension [124]. In this case, there has been some evidence
that, in the framework of continuous infinite dimensional U-duality symmetries [154, 156], such
an infinite dimensional Lie algebra can be lifted to eleven dimensions and might constitute an
underlying symmetry of uncompactified M-theory [84, 87].

In any case, the non-perturbative spectrum of supergravity theories has helped identifying the
BPS sector of M-theory. In particular, since M-theory is required to contain 11D supergravity,
the Kaluza-Klein modes of the eleven-dimensional graviton will account for the tower of type IIA
D0-branes as excitations with momenta in the eleventh direction. Likewise, M-theory is expected
to possess membrane (M2-brane) and fivebrane (M5-brane) states which, when wrapped around
the eleventh dimension, reproduce respectively the fundamental string (F1) and the D4-brane
of type IIA theory, and, when unwrapped, the type IIA D2-brane and NS5-brane.

Thus, M-theory does not seem to give preference to strings over membranes or fivebranes.
Actually, the fundamental degrees of freedom of M-theory are still unknown, but there have
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been proposals advocating D0-branes [231] or M2-branes [91] as the elementary states of the
theory.

The first of these two proposals, that the fundamental partonic degrees of freedom of M-
theory are described by D0-branes, is at the core of the M(atrix) model approach to M-theory,
which we shall consider in Part I of this thesis. This approach is based on a conjecture by Banks,
Fischler, Shenker and Susskind [231] and is supposed to give a description of M-theory in (dis-
crete) light-front coordinates. The proposal is that M-theory in the Infinite Momentum Frame
(IMF) is defined as a quantum mechanics for U(N) matrices in the large N limit, which results
from the reduction of 10D super Yang-Mills theory to 0 + 1 dimensions. In this perspective,
M-theory can be regarded as a pregeometrical theory [198], since the target space coordinates
are replaced by matrices, thus implying a kind of non-commutative structure. Furthermore, this
description of M-theory on the light front was shown to be equivalent to a particular limit of
M-theory compactified on a space-like circle [228], so that this matrix model eventually encodes
the low-energy dynamics of type IIA D0-branes, which can then be regarded as the fundamental
degrees of freedom of M-theory in the IMF. The theory is second-quantized with a Fock space
containing multiple supergraviton states [234]. The other states of M-theory such as membranes
and fivebrane appear as particular configurations of D0-branes. However, there is a number of
unsolved problems in the matrix model approach to light-front M-theory which will be detailed
in the next chapter.

This will then lead us to consider, in Chapter 2 of Part I, an alternative to the BFSS theory.
The analysis presented there is based on the publication [14] and investigates a matrix model
defined in purely geometrical terms, with manifest osp(1|32) symmetry. This superalgebra is
the supersymmetric minimal extension of the super-Poincaré algebra and has been put forward
as unifying structure for the M-theory, F-theory and type II supersymmetry algebras [36, 28].
The matrix model thus constructed has certain desirable features, such as being background
independent and respecting Lorentz invariance in eleven dimensions. Furthermore, it naturally
incorporates membranes and transverse fivebranes degrees of freedom and presumably describes
M-theory physics in an AdS11 background.

In Part II, we will consider the strong coupling regime of E8 × E8 heterotic string theory,
which is described, in the low-energy limit, by the Hořava-Witten scenario mentioned above.
We will review the anomaly cancellation argument which requires the insertion of gauge and
gravitational anomaly polynomials supported at the two fixed points of the S 1/ � 2 orbifold of
M-theory. This leads to a modification of the Bianchi identity of the four-form field-strength of
11D supergravity. We will also recall how M5-branes can be accomodated in this framework.

Then, we will move to studying a compactification to four dimensions of such a theory,
preserving four-dimensional N = 1 supersymmetry. In particular, Chapter 4 in Part II is based
on the publication [63], where we have considered the usual Calabi-Yau compactification of M-
theory on S1/ � 2, with the inclusion of space-time filling M5-branes transverse to the orbifold
interval and wrapping a two-cycle in the Calabi-Yau threefold. The presence of M5-branes
aligned along the interval allows for open Euclidean membranes to stretch between a pair of M5-
branes. The effects due to such open membranes in the four-dimensional effective supergravity
are localised in space-time, and can be regarded as instanton-like corrections to the interaction
Lagrangian. In particular, we will see how to determine the gauge threshold corrections induced
by such membrane instanton effects directly from the reduction of the topological Chern-Simons
term, and then derive the resulting non-perturbative effective superpotential with the correct
dependence on the positions of the M5-branes along the interval.

In Part III, we will study the hidden exceptional symmetries of 11D supergravity reduced
on n-dimensional tori. We will be particularly interested in the compactification to 0 + 1 di-
mension, where the continuous U-duality algebra is conjectured to become the hyperbolic Kac-
Moody algebra E10|10( � ), whose discrete subgroup has been suggested to lift to a symmetry of
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uncompactified M-theory. As seen above, the continuous symmetry of the reduced supergravity
theory is broken to its arithmetic subgroup by quantum effects. However, some results which
one can obtain by this algebraic approach depend only on the root system of the algebra, so that
working with the continuous or discrete valued version is in these cases irrelevant. In particular,
such an infinite-dimensional Lie algebra possesses infinitely many roots, which split into three
categories: real, isotropic and imaginary non-isotropic roots, determined by their norm being
positive bounded from above, null, or negative and unbounded from below. If one considers the
moduli space of M-theory on a ten-dimensional torus, certain positive roots of E10 can be related
to M-theory instantons, in the large volume limit. Along this line, Ganor et al. [56] have made
a recent proposal identifying a certain set of prime isotropic roots of E10 with Minkowskian
branes and other objects expected in M-theory.

In Chapter 5 of Part III, we have applied this algebraic approach to the study of � n orbifolds
of 11D supergravity and M-theory. In this chapter, based on the publication [13], we will in
particular derive the real � n-invariant subalgebras describing the residual continuous U-duality
algebras of the untwisted sector of the theory. In 0 + 1, these will be shown to be Borcherds
algebras modded out by their centres and derivations. In addition, one can in this case find
a description of the twisted sectors of � 2 orbifolds of M-theory or of their descendant type II
orientifolds in terms of certain threshold-one roots of E10.

Finally, an appendix collects conventions, and useful formulas and identities used in this
thesis.
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Part I

M-theory, Matrix models and the
osp(1|32,

�
) superalgebra
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Introduction

This first part is separated into two main chapters. The first chapter consists in a presentation
of the matrix model approach to M-theory, and is ment as an introduction to Chapter 2, based
on the publication [14], in which a matrix model defined on the superalgebra osp(1|32, � ) has
been investigated in the context of the infinite momentum frame and large N limit of the BFSS
conjecture.

In Chapter 1, we start by reviewing the connection between early works on quantisation
and regularisation of the membrane theory and M-theory compactified on a light-like circle.
The first results on membrane theory go back to more then twenty years, when it was realised
that eleven was the natural dimension in which a supersymmetric theory of membranes could
be constructed. It was subsequently found [140] how to quantise this theory in the light-cone
gauge. From a methodological and computational point of view, an important consequence is
that the regularised theory is expressed as a simple quantum mechanics for N ×N matrices in
the large N limit. The analysis has then been extended to include supersymmetry in [91]. This
supersymmetric quantum mechanics is usually called matrix-theory, and will also be presented
in the following chapter.

At this stage, a quantised supersymmetric theory of membranes appeared as a natural can-
didate to construct a microscopic description of M-theory, because of the presence in M-theory
of a three-form potential which naturally couples to a membrane (or M2-brane) world-volume.
Moreover, the classical supersymmetric membrane theory enjoys a local symmetry acting on
the fermions called κ-symmetry, which is preserved only when the background fields satisfy the
equations of motions of classical 11D supergravity. Thus, this low-energy limit of M-theory is
somehow latent in supermembrane theory already at the classical level.

However, deWit, Lüscher and Nicolai then showed in [93] that the regularised supermembrane
theory possesses a continuous spectrum of energy, so that there is a priori no simple interpretation
of the states of the matrix model in terms of discrete particle spectrum. The theory was then
believed to be unstable and was abandonned as a candidate for a low-energy description of
quantum gravity. A decade later, interest in membrane theory was revived by Banks, Seiberg,
Suskind and Fischler (or BFSS for short) which showed how it could be rephrased as a low-energy
theory for many D0-branes and thus provide a partonic description of M-theory in light-front
coordinates. In addition, the fact that such a theory is second quantised solves the puzzle of the
existence of a continuous spectrum of energy for the membrane theory. This constitutes in some
sense an advantage of such a matrix model description over the five known superstring theories,
which are first-quantised with respect to the target-space, and where, therefore, there is no
simple description of extended objects such as NS- and D-branes in terms of the string Hilbert
space; these objects appear in fact as solitons in the non-perturbative regime of superstring
theories.

In the following chapter, we will thus be led to consider the relation between the Hamiltonian
description of supermembranes and the conjecture proposed by BFSS, stating that M-theory in
the infinite momentum frame (or IMF) is described by a quantum mechanics for U(N) matrices
encoding the low-energy dynamics of N D0-branes, when N → ∞. To distinguish it from the
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original regularised matrix model for (super)membranes, and to highlight, at the same time,
its relevancy to a light-cone description of M-theory, this proposal is generally referred to as
M(atrix)-theory. For this purpose, we shall first recall the duality between the low-energy effec-
tive action for Dp-branes in IIA theory and the ten-dimensional N = 1 super Yang-Mills reduced
to (p+1) dimensions. The connection to the BFSS matrix model is then realised by considering
a limit where both the number N of D0-brane and the M-theory radius (or alternatively the
type IIA coupling constant) are large, but N grows faster, so that their ratio is also large. In this
limit, all degrees of freedom decouple except for D0-branes, which, in this perspective, appear
as the microscopic degrees of freedom of M-theory in the IMF limit. We will also present the
argument in [228] that the matrix gauge theory provides information on M-theory already for
finite N , giving in this case a Discrete Light-Cone Quantisation (or DLCQ for short) description
of M-theory. An infinite boost then relates this compactification of M-theory on a light-like cir-
cle to a compactification on a vanishing space-like circle, connecting the original matrix model
description to type IIA string theory in the presence of D0-branes [218, 221].

This conjecture has passed a certain number of tests. In particular, matrix model loop
calculation have been shown to correctly reproduce linear and, to a certain extent, non-linear
effects of 11D supergravity at tree-level.

Moreover, besides D0-branes which are naturally related to eleven-dimensional supergravi-
tons with momentum in the eleventh dimension, the other known objects of M-theory (wrapped,
unwrapped and higher genus M2-branes and longitudinal and transverse M5-branes) can be de-
scribed by particular configurations of U(N) matrices associated to the elementary D0-branes.
In this respect, a thorough investigation of the BFSS supersymmetry algebra [230] is very il-
luminating, and we shall see how the spectrum of brane charges of the theory can be deduced
from such an analysis. In this perspective, the brane charges appear as traces over composite
operators of the fundamental matrix degrees of freedom. Nevertheless, a puzzle remains as to the
presence or absence of transverse five-branes in this context. In principle, the light-cone frame
approach to M-theory leads to the existence of both longitudinal and transverse five-branes in
the M(atrix) theory, where longitudinal refers to the direction in which the infinite boost to
the IMF is performed. However, there is no sign of transverse five-brane charge in the brane
spectrum one recovers from the BFSS supersymmetry algebra, so that one might expect such
states to be absent in the IMF limit. This view is contrasted with a proposal made in [123],
which considers M(atrix) theory on T 3. This has a dual description as a (3 + 1)D N = 4 super
Yang-Mills theory on the dual torus, with gauge group U(∞). These authors then find some
evidence that in this setup T-duality on the M(atrix) model side corresponds to S-duality on
the super Yang-Mills side, so that a transverse five-brane wrapped around the original torus
in the M(atrix) model could in principle be given a dual description as an unwrapped mem-
brane on the super Yang-Mills side. However, this requires an explicit realisation of S-duality in
four-dimensional super Yang-Mills theory, which is still an open question. In addition, it is also
unclear how S-duality behaves in the large N limit, which, according to the BFSS prescription,
should be taken before performing S-duality.

In addition to this seeming (and yet unsolved) contradiction, another delicate point in
M(atrix) theory: although such a theory was shown to reproduce correctly in the finite N
limit the two-graviton and three-graviton scattering amplitudes known from 11D supergravity
tree-level calculations, there appears a disagreement between the matrix model calculation of
the R4 correction to this process and the supergravity 1-loop calculation [137, 136], so that
it is doubtful whether M(atrix) theory can actually give an accurate description of quantum
corrections in 11D supergravity without having to deal with the subtleties of the large N limit
(and perhaps it does not even in this limit).

Finally, eleven-dimensional Lorentz invariance of the model is still an open question and
needs to be demonstrated (see [184] for some hints in this direction).
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This has led us to investigate an alternative supersymmetric matrix model to the one pro-
posed by BFSS, which we insist on defining in purely algebraic terms, with no reference to a
particular target space-time. This is in principle desirable from the point of view of a back-
ground independent formulation of M-theory. Since, in addition, we aim at recovering the
eleven-dimensional covariance expected from M-theory, a candidate with the required proper-
ties is a matrix model inspired by [226, 225, 229] with manifest osp(1|32, � ) symmetry, which
can be viewed as the maximal finite-dimensional (non-central) supersymmetric extension of the
AdS11 algebra. In a larger perspective, osp(1|32, � ) has also been shown as the natural struc-
ture to unify the ten-dimensional supersymmetry algebras of type IIA/B string theories and the
eleven- and twelve-dimensional superalgebras, relevant to M- and F-theory. In this framework,
in particular, the T- and S-dualities of these theories appear as redefinitions of the generators
of osp(1|32, � ) [37, 36, 28].

In Chapter 2, we compute explicitely such a matrix model, with a cubic interaction, in eleven-
and twelve-dimensions, and analyse the respective supersymmetry algebras. We concentrate in
particular on the action in eleven-dimensions and study its connection to the BFSS matrix
model. To do so, one has to consider the IMF limit of the T-dual theory, where some original
fields now become auxiliary, and can be eliminated by an iterative computation of the effective
action. At this stage, the resulting theory nicely incorporates membrane and transverse five-
brane degrees of freedom on the same footing as the fundamental D0-branes. The effective action
reproduces the BFSS action with a mass term as leading contribution, along with an infinity
series of higher interaction terms. In particular, it now contains both transverse five-branes as
fundamental degrees of freedom and longitudinal five-branes as the usual configurations of D0-
branes constructed from the BFSS theory. Finally, since the bosonic sector of the superalgebra of
the model is now the conformal algebra, and not the Lorentz one, in contrast to the BFSS matrix
model (this accounts in particular for the appearance of an additional negative definite mass
term in the leading contribution of the osp(1|32, � ) effective action), this opens the possibility
of its relation to M-theory in an AdS11 background, and leaves it for further investigation.
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Chapter 1

M(atrix)-theory, branes and the
BFSS conjecture

1.1 A matrix model for membranes

In this section, we will investigate the close connection between the matrix model description
of M-theory (also called M(atrix) theory) and a theory of supermembranes in 11 dimensions.
It has long been known [140, 141, 120, 91] that a regularised light-cone description of the
supersymmetric membrane action in 11D leads to a quantum mechanical model where the
fundamental degrees of freedom can be described by finite dimensional matrices. Now, it is
believed that when the dimension of these matrices is taken to infinity, this regularised action
gives a microscopic description of a lightlike compactification of M-theory. This second approach
is the purpose of the BFSS conjecture which we will thoroughly discussed in section 1.3.

1.1.1 The bosonic membrane in the light-cone frame

Membrane theory comes as a natural candidate for a microscopic description of M-theory, since
membranes couple electrically to the antisymmetric three-form field of the 11D supergravity
multiplet (for a detailled description of the low-energy limit of M-theory, see section 1.3), in
the same guise as strings are electrically charged under the two-form field B(2). One might
then expect a quantised theory of supermembranes to produce an acceptable, even though not
always very handy, microscopic description of M-theory. The fact that the classical action for
supermembranes is consistent in 11 dimensions and its quantum regularised version anomaly
free (which is not the case for any other dimensions) also seems to point in this direction.

A relativistic bosonic membrane theory in D flat Minkowskian dimensions can be described
by a Nambu-Goto type action [129, 195] for fields Xµ = Xµ(~σ), µ ∈ {0, .., D − 1}, representing
the embedding into the membrane target space:

SM,NG = −TM
∫
d3σ
√
−h , hαβ = ηµν∂αX

µ ∂βX
ν , (1.1)

where we denote the world-volume coordinates by ~σ ∈ � 3 with ~σ = (τ, σ1, σ2), distinguishing
between two sets of indices: α, β ∈ {0, 1, 2} and a, b ∈ {1, 2}. Then hαβ is the pullback of flat
Minkowskian metric to the three-dimensional membrane world-volume, and TM = 1/(2π)2l3P
the membrane tension in units of the Planck scale.

Similarly to string theory, one may introduce a fiducial world-volume metric gαβ and the
related Polyakov action

SM,P = −TM
2

∫
d3σ
√−g

(
gαβ ∂αXµ ∂βX

µ − 1
)
.
=

∫
d3σLM,P . (1.2)
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This action yields the following equations of motion for the fields Xµ

∂α

(√−ggαβ ∂βXµ
)

= 0

together with the energy momentum tensor

Tαβ = −2(2π)2√−g
δLM,P

δgαβ
= − 1

l3P

(
∂αXµ ∂

βXµ − 1

2
gαβ (∂γXµ ∂γX

µ − 1)

)
. (1.3)

where use has been made of δg = ggαβ δgαβ and δgαβ = −gαγgβδδgγδ , which can be deduced
from the identity δ(gαβgβδ) = δ(δαβ) = 0.

The equation of motion for the metric gαβ corresponds to setting the energy momentum
tensor (1.3) to zero:

Tαβ = 0 . (1.4)

Lowering the indices in equation (1.4) yields

hαβ =
1

2
(Trh− 1)gαβ (1.5)

with Trh = gγδhγδ . Finally tracing both sides of eqn.(1.5) gives: Trh = 3. Plugging this result
back in eq. (1.5) sets hαβ = gαβ , which proves the equivalence:

SM,P = −TM
2

∫
d3σ
√−g (Trh− 1) = SM,NG .

Since the action (1.2) enjoys both three diffeomorphism symetries, we can use them to gauge-fix
as many components of the fiducial metric

gαβ =

(
− 4
n2 h̃ 01×2

02×1 hab

)
, n ∈ � (1.6)

where h̃
.
= dethab is the reduced determinant. Using (1.4) to set hab = gab, and the obvious

relation ∂aXµ ∂aX
µ =Trhab = 2, action (1.2) can be gauge-fixed by the choice (1.6) to

SM = −TMn

∫
d3σ
√−g

(
1

4
∂τXµ ∂τX

µ − h̃

n2

)
. (1.7)

The three-dimensional membrane world-volume is now constrained to be of the form Σ2 × � ,
where Σ2 is a two-dimensional Riemann surface of fixed topology and volume

∫
d2σ = 4π, this

being a necessary condition for choosing the gauge (1.6).
Since our final aim is to find a proper way of quantising the membrane action (1.7), we find

it convenient to reformulate it in terms of Poisson bracket, which we denote by PB

{A,B}PB = εab∂aA∂bB , ε12 = 1 .

It is straightforward to show that the reduce determinant can be rewritten in terms of PB as

h̃ =
1

2
(εab∂aX

µ ∂bX
ν)2 =

1

2
{Xµ, Xν}PB{Xµ, Xν}PB . (1.8)

Then taking advantage of the simple form assumed by the inverse of the block diagonal metric
(1.6)

g00 = (g00)
−1 , hab

.
= (h−1)ab =

1

h̃

(
h22 −h12

−h12 h11

)
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one easily shows that

∂a(h̃ ∂
aXµ) ≡ ∂a(h̃ h

ab∂bX
µ) = ∂1(h22∂1X

µ − h12∂2X
µ) + ∂2(h11∂2X

µ − h12∂1X
µ)(1.9)

= {Xρ, {Xρ, Xµ}PB}PB

where additional use has been made of the equality

∂aX
µ ∂bXν (∂a∂bX

ν) =
1

2
∂aX

µ ∂ahbb , no sum on a or b .

Along the same line, one can also prove

h̃hab∂aX
µ ∂bX

ν = h11∂2X
µ ∂2X

ν + h22∂1X
µ ∂1X

ν − h12 (∂1X
µ ∂2X

ν + ∂2X
µ ∂1X

ν)

= {Xµ, Xρ}PB{Xν , Xρ}PB . (1.10)

A little check shows that by contracting expression (1.10) on both sides with the flat metric ηµν
and using habhab = 2 one comes up with 2h̃ = {Xµ, Xρ}PB{Xµ, Xρ}PB, which is, as expected,
formula (1.8).

By means of equality (1.8), the action (1.7) can be recast into

SM =
TMn

4

∫
d3σ

(
∂τXµ ∂τX

µ − 2

n2
{Xµ, Xν}PB{Xµ, Xν}PB

)
(1.11)

yielding the equation of motion for Xµ

∂τ
(√−gg00 ∂τX

µ
)

+ ∂a

(√−ggab ∂bXµ
)

= −n
2
∂2
τX

µ +
2

n
∂a(h̃ h

ab∂bX
µ ) = 0

−→ ∂2
τX

µ =
4

n2
{Xρ, {Xρ, Xµ}PB}PB (1.12)

where, in the last line, use has been made of relation (1.9).
These equations of motion have to be complemented by the equations for the metric (1.4)

which act as a Virasoro constraint. Detailling the latter system, we have to impose the additional
constraints

T00 = 0 −→ ∂τXµ ∂τX
µ +

2h̃

n2
(hαα − 1) = 0

−→ ∂τXµ ∂τX
µ = − 4

n2
h̃ , (1.13)

T0a = 0 −→ ∂τXµ (∂aX
µ) = 0 , (1.14)

Tab = 0 −→ hab −
1

2
hab(h

α
α − 1)

!
= 0 .

The last equation is trivially satisfied for a three-dimensional world-volume.
One can again reformulate the two remaining constraints (1.13) and (1.14) in terms of the

Poisson bracket:

∂τXµ ∂τX
µ = − 2

n2
{Xµ, Xν}PB{Xµ, Xν}PB , {∂τXρ, X

ρ}PB = 0 (1.15)

Actually, the second equation of system (1.15) is not exactly a reformulation of constraint (1.14),
but is rather inferred from the latter, as one can check from:

{∂τXρ, X
ρ}PB = ∂1(∂τXρ ∂2X

ρ)− ∂2(∂τXρ ∂1X
ρ)

(1.14)
= 0 .

At this point, we have reformulated the classical bosonic membrane theory as a constrained but
still covariant Hamiltonian system, where the Hamiltonian itself can be trivially extracted from
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the action (1.11) by switching the sign in front of the potential term ({Xµ, Xν}PB)2. Due to
the presence of constraints and to the non-linearity of the equations of motion, the system is
not easily quantised. It turns out to be more convient to tackle the question of quantisation in
the light-cone frame, where, as we will see, one can deal with the constraints without too much
effort.

We start by shifting to coordinates

X0 =
X+ +X−
√

2
, XD−1 =

X+ −X−
√

2
,

then, expressions such as the LHS of the first constraint in system (1.15) will be recast into

∂αXµ ∂βX
µ = −2∂(αX

+ ∂β)X
− + ∂αXi ∂βX

i ,

and the whole system of constraints (1.15) can be solved by gauge-fixing the sytem to the
light-front gauge

X+(~σ) = τ .

The gauged-fixed action (1.11) reads

SM[Xi; ∂τX
−, ∂τX

i] = −TMn

2

∫
d3σ

(
∂τX

− − 1

2
∂τXi ∂τX

i +
1

n2
{Xi, Xj}PB{Xi, Xj}PB

)

.
=

∫
d3σLM,lc ,

and the constraints (1.15) turn into a sytem linear in X−

∂τX
− =

1

2
∂τXi ∂τX

i +
1

n2
{Xi, Xj}PB{Xi, Xj}PB ,

∂aX
− = ∂τXi (∂aX

i) −→ {∂τXi, X
i}PB = 0 .

(1.16)

Going to the Hamiltonian formalism is straightforward, but for the way to treat the conjugate
momentum density P−. The latter being non-dynamical, it should not appear in the Legendre
transform HM,lc = −P+∂τX

− + P i∂τXi −LM,lc. Then

HM,lc =

∫
d2σ

(
1

2

PiP
i

P+
+
P+

n2
{Xi, Xj}PB{Xi, Xj}PB

)
.
=

∫
d2σHM,lc (1.17)

with light-cone momentum P+ =
δLM,lc

δ(∂τX+) = − δLM,lc

δ(∂τX+) . Since the light-front gauge induces

∂τX
+ = 1, P+ is the generator of time (τ) translations, which implies P+ = −P− = −HM,lc,

where the minus sign is due to the time translation being a passive one.
From the conditions on the Legendre transformation, one easily finds

P+ =
TMn

2
, P i = P+∂τX

i, P− = HM,lc

with total transverse momentum and light-cone Hamiltonian given by

P+ =

∫
d2σ P+ = 2πTMn, HM,lc =

∫
d2σ P− .

The Hamilton equations for the dynamical variables read

∂τP
i = −δHM,lc

δXi
= 4

P+

n2
{Xj , {Xj , Xi}PB}PB, ∂τX

i =
δHM,lc

δPi
=

P i

P+
. (1.18)
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Combining both of them, we recover, as expected, equation (1.12). At this stage, the gauge-fixed
Hamiltonian (1.17) still enjoys an overall invariance under reparametrisations which are both
time independent and separately preserve the area. Since these diffeomorphisms preserve the
symplectic form, they obviously leave the equations (1.18) invariant.

The only remaining constraint among (1.16) is the second one, whose canonical version is

{Pi, Xi}PB = 0 , (1.19)

while the first of the two constraints is nothing else but the Hamilton equation1 forX−. Although
gauge-fixing to the light-cone gauge helps us solve explicitely the Gauss constraints, the equations
of motion (1.18) remain highly nonlinear. A additional simplifying choice has to be made to
quantise Hamiltonian (1.17), which results, as we will see in the next section, in picking a
adequate regularisation scheme for the quantisation procedure.

1.1.2 Regularising the membrane Matrix theory

The regularisation we choose to present in this section is the one initial introduced by [140]
which has been shown to lead to a simple but powerful quantisation procedure for the membrane
Hamiltonian in light-cone gauge. The Riemann surface Σ2 included in the three-dimensional
world-sheet is taken to be a two-sphere S2, but can in principle be generalised to membranes of
arbitrary topology. The membrane world-sheet becomes S2× � , and can be described by a unit
two-sphere at fixed time τ , endowed with a canonical symplectic form invariant under rotations.

The sphere S2 can be parametrised by a set of coordinates ~l = (l1, l2, l3) satisfying

3∑

I=1

(lI)2 = 1. (1.20)

By choosing the following parametrisation with respect to the original variables σa of Σ

l1(~σ) =
√

1− (σ1)2 cos(σ2) , l2(~σ) =
√

1− (σ1)2 sin(σ2) , l3(~σ) = −σ1 ,

the coordinates on the unit two-sphere have the following Poisson bracket

{lI , lJ}PB = εab∂al
I ∂bl

J = εIJK lK (1.21)

with εIJK being the three-dimensional Levi-Civita tensor. The algebraic version of equation
(1.21) is satisfied by the commutation relations of the su(2) Lie algebra. Then a natural reg-
ularisation of the theory consists in interpreting the Cartesian coordinates lI as elements of
an N-dimensional representation of su(2), ie as the N × N generating matrices thereof. This
corresponds precisely to the case where the arbitrary normalisation parameter n in the gauge
choice is equal to n = N ∈ � ∗.

The prescription is then

lI → 2

N
LI , {•, •}PB → −

iN

2
[•, •] (1.22)

with the usual commutation relations for generators LI of an N -dimensional representation of
su(2):

[LI , LJ ] = iεIJKLK . (1.23)

Since any function on the membrane world-volume S2 × � can be expanded on spherical har-
monics: A(~l; τ) =

∑
l,m clm(τ)Ylm(~l), with Ylm(~l) =

∑
I1,..,Il

yI1,..,Illm lI1 · ... · lIl (the coefficients

1Note that the system still possesses an overall invariance under time-independent area-preserving diffeomor-
phisms, which preserves the symplectic form, and hence the Hamilton equations.
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yI1,..,Illm have to be taken symmetric and traceless because of condition (1.20)). Replacing the lI

by the prescription (1.22) provides us with a matrix approximation Ylm to the original spherical
harmonics, which can be regarded as the spherical harmonics on a fuzzy sphere. In the algebraic
case, the range of the l index is constrained to be smaller than N , since in an N -dimensional
rep. of a Lie algebra only products of less than N generators are linearly independent:

A(~l; τ)→ A(~L; τ) =
∑

l<N,m

dlm(τ)Ylm(~L) , Ylm(~L) =

(
2

N

)l ∑

I1,..,Il

yI1,..,Illm LI1 · ... ·LIl . (1.24)

The dimension of the representation equals in fact the number of independent combinations of
spherical harmonics: N 2 =

∑N−1
l=0 (2l + 1).

Since spherical harmonics are closed under the action of the Poisson bracket, this feature
carries over to their ”fuzzy” equivalent Ylm:

{Ylm(~l), Ypq(~l)}PB = f rslm,pqYrs(
~l) −→ [Ylm(~L),Ypq(~L)] = F rslm,pqYrs(~L)

where the relation prescription (1.22) dictates the relation

−i lim
N→∞

N

2
F rslm,pq → f rslm,pq

Finally, since the classical Hamiltonian (1.17) is defined by an integral over the two-dimensional
Riemann surface Σ at fixed σ0 = τ , this will now be replaced by a trace over N × N matrices
(1.24), in the large N limit:

1

4π

∫
d2σ A(~l; τ) = lim

N→∞
1

N
TrA(~L; τ) (1.25)

Likewise, one can show that if the classical Poisson bracket of any two functions A and B yields

{A(~l; τ), B(~l; τ)}PB = C(~l; τ) ,

then for some fuzzy matrix approximation of some smooth test function Φ, one has the following
limit

lim
N→∞

1

N
Tr

((
−iN

2
[A(~L; τ),B(~L; τ)]− C(~L; τ)

)
Φ(~L; τ)

)
= 0 .

In summary, we can now use the dictionary

{•, •}PB → −
iN

2
[•, •], 1

4π

∫
d2σ = lim

N→∞
1

N
Tr (1.26)

to convert the classical Hamiltonian (1.17) over continuous functions into its regularised form.
Taking implicitely the large N limit:

HM,reg =
1

2πl3P
Tr

(
1

2
∂τXi ∂τX i −

1

4
[Xi,Xj ][X i,X j ]

)

≡ Tr

(
2πl3P

PiPi
2
− (2πl3P )−1 1

4
[Xi,Xj ][X i,X j ]

)
, (1.27)

for X i and P i now N × N matrices. When converting time derivatives into momenta, one
should be careful to use the regularised Hamiltonian, ie Pi =

δHM,reg

δ(∂τX i)
= (2πl3P )−1∂τX i, and not

start from the continuum version of the theory, Legendre transform and then regularise: in this
procedure the Pi inherit an extra unabsorbable factor of N−2.
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The equations of motion and the Gauss constraint lift naturally to their regularised form

∂2
τX i = −[Xj , [X j ,X i]] , [∂τX i,Xi] = 0 . (1.28)

Once regularised, the Hamiltonian HM,reg can be readily quantised, even though solving the
quantum theory may turn out to involve subtleties. Nevertheless, this regularisation procedure
provides us with well-defined quantum theory for membranes in the light-cone gauge. Further-
more, the invariance of the classical Hamiltonian (1.17) under time-independent area-preserving
diffeomorphisms translates, in the large N regularised version of the theory, into the U(N) sym-
metry of HM,reg (1.27). In short, the diffeomorphism group becomes, for the regularised N →∞
limit, the U(N) matrix group.

1.1.3 The supermembrane on a curved background

How to supersymmetrise the bosonic membrane action is more readily understood if one starts
from a theory where the membrane is allowed to evolve in a general (curved) backround. The flat
Minkowskian metric ηµν in the pullback (1.1) is now replaced by a general symmetric two-tensor
Gµν(X) depending on the embedding Xµ:

hαβ = Gµν(X)∂αX
µ∂βX

ν . (1.29)

Furthermore, just as strings couple electrically to a the antisymmetric field Bµν(X), in a gen-
eral background, membranes are also allowed an electric coupling, but to a three-form potential
Aµνλ(X). Now such a field is intrinsic to eleven-dimensional supergravity, so we expect super-
space methods in use on the supergravity side to be applicable to a theory of supermembranes
in 11D. It will also be pointed out later on that 11 is the natural dimension for a super-
symmetric theory of membranes to be well-behaved. We can understand the connection to
eleven-dimensional supergravity as a first insight into the conjectured correspondance between
M(atrix) theory and a sector (IMF limit) of M-theory.

Thus, the membrane action for a general background is the Nambu-Goto action (1.1) for the
generalised pullback (1.29) complemented with an electrical coupling to the threeform potential
A(3):

SM,curv = SM,NG − TM
∫
d3σ Aµνλ(X)∂αX

µ∂βX
ν∂γX

λ εαβγ . (1.30)

As before, one can introduce a fiducial metric gαβ, shifting to the Polyakov formalism by replac-
ing

SM,NG −→ SM,P : SM,curv = −TM
2

∫
d3σ

[√−g
(
gαβ ∂αX

µ∂βX
νGµν(X)− 1

)

+2Aµνλ(X)∂αX
µ∂βX

ν∂γX
λ εαβγ

]
. (1.31)

in expression (1.30). Similarly to the flat case, one can pick the light-cone gauge, and apply a
regularisation and quantisation procedure close to what has been outlined in Section 1.1.2.

1.1.4 Supersymmmetrisation in eleven dimensions

As for bosonic strings, the way to stabilise the bosonic membrane theory consists in adding
supersymmetry. But supersymmetry is also required when approaching M-theory from the reg-
ularised membrane theory. As we briefly mentioned before, supersymmetrisation of the classical
membrane theory can only be carried out in dimensions 3+1, 4+1, 6+1 and 10+1 (we do not
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take into account dimensions with multiple times), which are the dimensionalities where a cer-
tain Fierz identity needed for the invariance of the supermembrane Lagrangian holds true. The
existence of this Fierz identity is also responsible for the invariance of the Lagrangian under a
novel kind of symmetry called κ-symmetry. However, one can be even more restrictive, since
among these four possible dimensionalities, 11D appears as the one preferred by the quantum
theory: all other cases indeed seem to be plagued by anomalies in the Lorentz algebra.

Supersymmetrisation of the membrane action in a general background has been originally
carried out by [29], who have found the proper way of adapting the Green-Schwarz formal-
ism [131] to three-dimensional objects. Thus, the supersymmetric theory automatically enjoys
target-space supersymmetry and κ-symmetry. Contrary to superstrings, supermembranes have
no NSR description, and it is not yet clear wether a world-volume supersymmetric formulation
of membranes is workable (see [105]).

An eleven-dimensional superspace formulation of the theory consists in the original 11 bosonic
fields Xµ (describing membrane fluctuations in the transverse directions) and 32 Grassmanian
coordinates θᾱ. These 43 fields are now handily collected into a bunch of supercoordinates

ZM = (Xµ, θᾱ)

with M = (µ, ᾱ) taking 43 different values (we distinguish between the spinor index ᾱ = 1, .., 32
and the index α = 0, 1, 2 which still denotes the world-volume coordinates of section 1.1)

The field content of the classical bosonic supermembrane theory in arbitrary background
is the same as for 11D supergravity: thus, the metric Gµν(X), or alternatively the elfbein eaµ,
a = 0, .., 10, and the three-form field Aµνλ(X) of section 1.1.3 are now complemented with a
background gravitino field ψµ(X). All these fields can be recast in 11D superspace formalism,
and appear as the lowest order components in θ of the super-vielbein EA

M and super-threeform
BMNP , where now A = (a, ω) is the superspace equivalent of the tangent space index of the
elfbein (note that the gaugino spinor index runs from ω = 1, .., 32). Thus

EAM → EAµ = (Ea
µ, E

ω
µ ) = (eaµ +O(θ), ψωµ +O(θ)) , (1.32)

BMNP → Bµνρ = Aµνρ +O(θ) . (1.33)

The identification of higher order contributions to the superfields (1.32-1.33) has been carried
out only up to O(θ2) explicitely [94].

Supersymmetrising action (1.31) in the Green-Schwarz formalism is a quite involved and
technical issue. We will therefore not attempt to present the whole superspace derivation, but
rather highlight some conceptual keypoints of the calculation.

From B(3), one can define a four-form field strength HMNPQ such that H(4) = dB(3). Next,
defining the pullback of the super 43-bein and the ABC components of B(3) by

ΠA
α = ZM,αE

A
M , BACD = EMA E

N
C E

P
DBMNP (1.34)

with EM
A the inverse 43-bein, supersymetrising the curved space Polyakov action (1.31) simply

consists in replacing the pullback of the metric and the electric coupling to the threeform by
their supersymmetric extension, written in terms of (1.34):

SM,susy = −TM
2

∫
d3σ

(√−g
(
gαβ Πa

αΠb
βηab − 1

)
+ 2εαβγΠA

αΠC
βΠD

γ BACD

)
. (1.35)

Compared to the action for superstrings in the Green-Schwarz formalism, expression (1.35)
containts an extra cosmological constant (the (-1) in the firts part of the RHS) and an electric
coupling to a three-form instead of a two-form.
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Apart from supersymmetry, the action (1.35) boasts a certain number of symmetries, namely:
super-diffeomorphism invariance, world-volume diffeomorphism invariance, super-gauge symme-
try, a discrete � 2 symmetry sending BMNP → −BMNP and inverting the sign of one of the
space-time coordinates and, last but not least, κ-symmetry . We will not spend time discussing
these symmetries in detail, and we refer the reader to the account reviewed in [234].

Let us however abide a bit on the κ-symmetry of the supermembrane theory. The transfor-
mation rule is given by

δκZ
MEAM =

(
0a,

1

2
(1 + Γ\)

ω
ρκ

ρ

)
, Γ\ =

1

3!
√
|det g|

εαβγΠa
αΠ

b
βΠ

c
γΓabc ,

for a transformation parameter κ which is actually an anti-commuting world-volume scalar
behaving as constant spinor with 32 components.

There are two key features to κ-symmetry in supermembrane theory: first, it is realised as
a symmetry of the theory provided the background valued super-43-bein and the super-B-field
satisfy the equations of motions of eleven-dimensional supergravity. Then, 11D supergravity
somehow appears already in classical supersymmetric membrane theory [29]. Second, since
Γ2
\ = 1, the combination (1 + Γ\)/2 is a projector that can be used to gauge away half of

the target-space fermions θᾱ, thus reducing dynamical fermionic degrees of freedom to 8. This
closely matches the 8 propagating bosonic fields X i, i = 3, .., 10, left once we choose the static
gauge Xα = σα. However, this type of gauge-fixing clearly breaks Lorentz invariance, so that
no fully covariant quantisation of the theory has yet been found. An attempt has been made
by [121, 122] to fix κ-symmetry by breaking the 32-components spinors of SO(1, 10) into a 16L
and a 16R, leaving a residual SO(1, 9) symmetry intact. But the initial 11D Lorentz symmetry
is in this case still incomplete, however minimally reduced.

To conclude this section, we want to show that, in the flat case, the regularised version of
the supermembrane action (1.35) can be approximated by supersymmetric quantum mechanics
for 8 transverse bosons X i and 16-components Majorana-Weyl spinor of SO(1, 9).

We start by specialising to Minkowski space Gµν(X) = ηµν and setting the background
three-form Aµνλ(X) = 0. In flat space, the 43-bein becomes

EAM = (Ea
M , E

λ
M ) = ((δaµ, (Γ

aθ)ᾱ), (0, δ
λ
ᾱ)) .

The background we have chosen selects and sets as only non-vanishing components of H(4):

Hµνᾱβ̄ = (1/3)(Γab)ᾱβ̄E
a
µE

b
ν . With this in hand and the definition H(4) = dB(3), one can deduce

the rest of the components of BMNP in terms of polynomials of (Γµ1..µmθ)ᾱ, for m < 3. The
details of the derivation are irrelevant to our purpose and can be found in the original paper
[29].

Then, the supersymmetric membrane action (1.35) becomes

SM,susy = −TM
2

∫
d3σ

(√−g
(
gαβ Πµ

αΠν
βηµν − 1

)

−1

2
εαβγ θ̄Γµν∂γθ

[
∂αX

µΠν
β +

1

3
(θ̄Γµ∂αθ)(θ̄Γ

ν∂βθ)
])
.

(1.36)

Similarly to κ-gauged GS superstring, we notice the appearance of Wess-Zumino type terms in
the second part of action (1.36), which follows naturally from the superspace formalism. The
pullback of the 43-bein (1.34) now simplifies to

Πµ
α = ∂αX

µ + θ̄Γµ∂αθ . (1.37)

One can show that expression (1.36) is invariant under the target-space supersymmetry trans-
formations

δεX
µ = θ̄Γµε , δεθ = ε ,
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Obviously δεΠ
µ
α = 0, since, for Majorana spinors: θ̄Γµε = −ε̄Γµθ, according to eqn.(A.18).

Invariance of Πµ
α combined with the following Fierz identity in 11D for a quadruplet of

spinors θn:
εmnop(θ̄mΓµθn)(θ̄oΓµνθp) = 0

(εmnop is the Levi-Civita tensor in 4D) leaves the action (1.36) invariant. This last identity
holds true, as mentioned at the beginning of this section, in D = 4, 5, 7, 11, and also ensures
κ-symmetry of the action. However, the theory in 11D is suspected to be the only one to posses
an anomaly-free quantum conterpart. Eleven dimensions is thus a privileged dimensionality for
supermembranes, just as 10D is for superstrings. As will appear later on, another Fierz identity
valid in 10D and involving this time an antisymmetrised triplet of spinors is responsible for the
supersymmetry invariance of SYM in 10D and of the BFSS matrix model.

Finally, the equations of motion for the fiducial metric defines the latter to be the pullback
of the flat Minkowskian one:

gαβ = ηµνΠ
µ
αΠν

β .

Repeating the procedure exposed in Section 1.1, we gauge-fix the theory by going to the
light-cone gauge:

X+(~σ) = τ .

Moreover, we still have the liberty of using κ-symmetry to set Γ+θ = 0. This implies that the
following spinor bilinear vanish: θ̄Γi∂αθ = 0, for i = 2, .., 10, θ̄Γij∂αθ = 0 and θ̄Γ+µ∂αθ = 0, so
that the momentum (1.37) now becomes:

Πi
α = ∂αX

i .

Similar to what has been done for the bosonic membrane theory in Section 1.1.1, one computes
the constraints analogous to eqns.(1.15) for the action (1.36), which is now simplified by the
choice of light-cone gauge and by fixing κ-symmetry. These constraints lead to:

∂τX
− =

1

2
(∂τX

i)2 +
1

N2
({X i, Xj})2 − iθ̄Γ−∂τ θ ,

∂σkX− = ∂σkXi∂τX
i − iθ̄Γ−∂σkθ for k = 1, 2 ,

where the normalisation constant N is brought into play for the same reasons as the parameter
n earlier in bosonic membrane theory.

Eventually, using these constraints the action (1.36) simplifies even further, yielding the
following expression:

SM,susy =
TMN

4

∫
d3σ

(
DτXiDτXi − 2

N2
{Xi, Xj}PB{Xi, Xj}PB

−iθ̄Γ−∂τθ +
2

N
iθ̄Γi{Xi, θ}PB

)
.

Since now half of the components of θ are fixed by κ-symmetry, we are left with 16-dimensional

SO(9, 1) Majorana spinors. One can then replace the 32×32 Dirac matrices Γi = γi⊗
(

0 1
1 0

)

by their 16× 16-dimensional SO(9) Dirac submatrices γ i.
After performing a Legendre transform of the Lagrangian density and integrating it over the

spatial world-volume coordinates, we arrive at the Hamitonian:

HM,susy =

∫
d2σ

(
1

TMN
Pi P

i +
TM
2N
{Xi, Xj}PB{Xi, Xj}PB −

TM
2
iθ̄γi{Xi, θ}PB

)
(1.38)

with momenta Pi = NTM
2 ∂τX

i and Πθ = −NTM
4 iθ̄Γ− for the fermions.
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Finally, the regularisation procedure already outlined in Section 1.1.2 now tells us how to
convert the fields X i, ∂τX

i and θ into N ×N matrices in the adjoint representation of U(N), by
means of the correspondence (1.26). If, in addition, we wish to start from a gauge-covariant ac-
tion, one replaces ∂τ → Dτ = ∂τ + iA0. After Legendre transforming to the Hamiltonian formal-
ism, this generates a term −2A0

(
{Pi, Xi}PB − {{Πθ, θ}}PB

)
where {{ , }}PB denotes symetrised

Poisson brackets.
Denoting the regularised fields X i, Pi = (2πl3P )−1[Dτ ,Xi], ϑ andA0, one obtains the quantum

supermembrane Hamiltonian in Planck units (as T −1
M = 4π2l3P ):

HM,reg = 2πl3PTr

(
1

2
Pi Pi −

1

4(2πl3P )2
[Xi,Xj ][X i,X j ]−

1

2(2πl3P )2
ϑ†Γ0i[Xi, ϑ]

+
i

2πl3P
A0

(
[Pi,X i] +

1

2(2πl3P )
{iϑ̄Γ−, ϑ}

))
.

(1.39)

The term on the second line is the supersymmetric version of the Gauss constraint (1.19), and
the gauge field A0 can be regarded as a Lagrange multiplier implementing the constraint directly
in the Hamiltonian formalism.

The Hamiltonian (1.39) plays a central rôle in the M(atrix) approach to M-theory. In Sec-
tion 1.2.1 indeed, the same Hamiltonian will be derived from 10D super Yang-Mills theory
toroidally compactified to 9D, which is a first order approximation to a quantum theory N
D0-branes and appears at the basis of the BFSS conjecure.

1.1.5 Instabilities and continuous spectrum of states in the supermembrane
model

At the classical level, the classical bosonic membrane theory exhibits instabilities. This phe-
nomenon can best be illustrated by considering, for instance, the simplest membrane configura-
tion, with energy proportional to the area of the membrane times its tension. Such a configura-
tion can start growing long but very narrow ”spikes” at a very low energy cost. This would not
be possible for a classical string, where such an excrescence would have energy proportional to
the string length. In membrane theory, instead, a cylindrical spike of legth l has energy 2πTMRl,
with R the radius of the cylinder, so that the energy can stay small if l is big but R � 1

2πTMl .
The fluctuations the growing of these spikes generates prevents us to see the membrane as a
pointlike object.

In the regularised theory, these instabilities can be cured, since they now appear as flat
directions in the bosonic potential part of quantum Hamiltonian (1.39). They can arise from
potential terms such as (x1x2)

21I, if the only non-zero bosonic matrix fields are for instance

X 1 =

(
0 x1

−x1 0

)
and X 2 =

(
0 0
0 x2

)
. Then, for either x1 = 0 or x1 = 0 there arises

flat directions in the space of solutions of the theory since the other variable is unconstrained,
producing marginal instabilities in the classical theory for N > 1. These can be cured in the
regularised quantum theory. There, the off-diagonal component x1 now becomes a harmonic
oscillator with big mass when x2 is unconstrained, and its zero-point energy gets large when
x2 increases, giving rise to an effective confining potential which lifts the flat direction. The
quantum bosonic membrane theory thus has a discrete spectrum of energy for any N .

In the supersymmetric regularised theory however, deWit, Lüscher and Nicolai have shown
in [93] that the matrix theory exhibits a continuous spectrum, since now the zero-point energies
of the additional fermions exactly cancel those of the bosons, which were used earlier to remove
the flat directions. The absence of mass gap separating the massless from the massive states
apparently prevents an interpretation of the states of the theory as particle-like objects described
by a discrete spectrum of states in the Hilbert space of a first-quantised theory, like string theory.
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At the time, this seemed to compromise the validity of membrane theory as a likely candidate
for a microscopic description of M-theory, until the new perspective which the BFSS conjecture
[231] opened for this model.

1.2 D-branes and Dirac-Born-Infeld theory

In this section, we will comment on the string origin of the dynamical degrees of freedom of a Dp-
brane in a fixed Dp-brane background in 10D. When attached to a D-brane, the massless open
string vector field Aµ can be described as a low-energy theory on the D-brane world-volume. The
vector field Aµ then splits into (p+1) components parallel to the D-brane world-volume, giving
rise to U(1)-gauge fields Aα (α = 0, .., p) on the latter, and leaves (9−p) transverse components
Xa (a = p+ 1, .., 9), describing the D-brane fluctuations in the transverse directions, which are
identified with the (9 − p) components of the brane embedding Xµ (µ = 0, .., 9) in the 10D
target space.

In a purely bosonic theory, it was shown by [180] that the D-brane equations of mo-
tion compatible with the open string theory in the D-brane background being conformally
invariant is given by the Dirac-Born-Infeld action. Introducing coordinates yα (α = 0, .., p)
on the brane, and defining the pull-back to the brane of a n-form field C as Cα1..αn =
∂yα1Xµ1(y) · · · ∂yαnXµn(y)Cµ1 ..µn , this action reads

SDBI = −Tp
∫
dp+1y e−φ

√
−det(gαβ +Bαβ + 2πα′Fαβ) , (1.40)

where gαβ , Bαβ, φ are the induced space-time metric, antisymmetric tensor and dilaton pulled
back to the Dp-brane world-volume, and Fαβ is field-strength of the U(1)-gauge field Aα(y). A
cross check from string theory (actually a disk diagram computation) gives the precise value for
the brane tension Tp in terms of string units

τp = g−1
s Tp = (2π)−pα′−

p+1
2 g−1

s , (1.41)

where gs = exp〈φ〉 is the string coupling and α′ is given in terms of the string tension as
T−1
s = 2πα′.

To make contact with the full superstring theory, one should of course complement the above
action (1.40) by additional fermionic and Chern-Simons terms. Fore instance, since Dp-branes
are carriers for R-R charges, their world-volume couples to the corresponding R-R potential
through the leading Wess-Zumino term µp

∫
Σp+1

A(p+1), where Σp+1 is the Dp-brane world-

volume. A more general coupling will be considered below.
In general, for a collection of N D-branes, the gauge group carried by Aα becomes non-

abelian, so that both Aα and Xa are now matrices. An extension of expression (1.40) will then
involve traces of products of these fields and their derivatives. How to order the traces in order
to obtain a gauge invariant quantity is still kind of an open question beyond the fifth order, even
though comparaison with various scattering amplitudes from supergravity and the nature of the
solutions for some BPS non-abelian solitons seems to point at a trace which is symmetrised over
gauge indices [33, 30, 42, 31, 32]. In the next section we will need only the leading order of such
an expansion, which is well established.

In any case, the non-abelian version of the DBI action (1.40) will receive extra corrections
from the following topological term, integrated over the world-volume of the Dp-brane Wp+1

Tp

∫

Wp+1

∑

q

A(q+1) ∧ Tre2πα
′F+B (1.42)
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which, at lower order, gives the Wess-Zumino term we mentioned above. In string language,
these terms will be dictated by anomaly cancellation in the effective field theory description of
the theory, as we will see in Section 3.

The abelian action (1.40) can be cast into a simplified version under the following assump-
tions:

a) The background 10D space-time is flat, with metric gµν = ηµν
.
= (−,+, ..,+).

b) The Dp-brane is approximately flat, and we assume static gauge: namely that we can iden-
tify the world-volume coordinates on the Dp-brane with the (p+1) space-time coordinates:
yα = xα, α = 0, .., p.

c) The antisymmetric tensor is neglected: B(2) = 0.

d) We have the following order of magnitude: O(∂αX
a) ≈ O(2πα′Fαβ) both small.

The induced metric to fourth order in ∂X is then

gαβ = ηαβ + ∂αX
a∂βXa +O((∂X)4) ,

leading to the following simplified version for the determinant in expression (1.40)

∣∣gαβ + 2πα′Fαβ
∣∣ = −

(
1 + ∂αX

a∂αXa +
(2πα′)2

2
FαβF

αβ

)
+
∑

q

∆q . (1.43)

where the higher order terms ∆q in expression (1.43) start atO((∂X)4, (∂X)2, (2πα′F )2, (2πα′F )4).
A straightforward but tedious computation shows that:

∆0 = 0 ,

∆1 =
1

2!

(
(∂αX

a∂βXa)(∂
αXb∂βXb)− (∂αX

a∂αXa)
2
)
,

∆2 = ∆1 +
1

3!

(
3(∂αX

a∂αXa)(∂βX
b∂γXb)(∂

βXc∂γXc) + 2(∂αX
a∂βXa)(∂

βXb∂γXb)(∂γX
c∂αXc)

−(∂αX
a∂αXa)

3
)
− (2πα′)2

2
∂αX

a∂βXa (ηαβFγδF
γδ + 2FαδF

δβ) ,

and so on.
Dropping however these fourth order corrections, the low-energy Dp-brane world-volume

action becomes

S = −τpVp +
1

g2
p

∫
dp+1y

(
−1

4
FαβF

αβ − 1

2(2πα′)2
∂αX

a∂αXa +O((∂X)4, (∂X)2F 2, F 4)

)
,

(1.44)
where Vp is the Dp-brane world-volume, and the coupling constant gp can be given either in
terms of the Dp-brane tension or solely in string units:

g2
p =

1

(2πα′)2τp
= gs(α

′)−
1
2 (2π
√
α′)p−2 . (1.45)

Focusing on the second part of expression (1.44), we notice it to be a U(1) gauge theory in
(p + 1) dimensions along with 9 − p scalars. Pushing a bit further by adding fermions and
rendering the gauge connection non-abelian, we arrive naturally at non-abelian supersymmetric
Yang-Mills theory (SYM), obtained by reduction to (p + 1) dimensions of a 10D SYM theory,
which is essentially unique.
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1.2.1 Ten-dimensional super Yang-Mills theory and its toroidal reduction

The abelian Yang-Mills theory (1.44) appearing as the low-energy limit of a single D-brane
action carrying U(1) gauge field can be promoted to N parallel D-branes, giving rise to a total
U(1)N gauge group. So much for the diagonal part. However, the possibility now arises of
having fields stretching between two different D-branes and carrying Chan-Paton indices (I, J)
(I, J = 1, .., N) labelling each one of them. Since such strings are oriented, they build up
N(N − 1) configurations. As the branes stack themselves together and the strings stretching
inbetween become massless, it has been shown in [248] that the gauge group is enhanced to
U(N).

Non-abelian SYM has the following action in 10D, resulting as the low-energy version of a
supersymmetric D9-brane theory:

S =
1

g2
YM

∫
d10yTr

(
−1

4
FµνF

µν +
i

2
ψΓµ[Dµ, ψ]

)
. (1.46)

The field strength is defined by
Fµν = −i[Dµ, Dν ]

with Dµ
.
= ∂µ + iAµ being the connection for non-abelian massless U(N) gauge vector field Aµ.

The fermionic part of the action is composed of massless 16-component Majorana-Weyl spinors
ψ of SO(9, 1) (the gaugino). In the following, we take advantage of the Majorana condition being
satisfied to choose the spinors and the Dirac matrices all real. See in particular Appendix A.1
for our conventions of SO(9, 1) and SO(10, 1) Dirac matrices.

In addition both the bosonic gauge fields and the gaugino are in the adjoint representation
of U(N) and carry therefore matrix indices a, b = 1, .., N .

It can be shown that the action (1.46) is supersymmetric under the following transformations

δεAµ =
i

2
ε̄Γµψ , δεψ = −1

4
FµνΓ

µνε , (1.47)

where ε is also a Majorana-Weyl constant spinor: in (1+9)D this again endows the model with
16 independent supercharges.

The equations of motion are

[Dµ, F
µν ] =

i

2
(Γν) β

α {ψ
α
, ψβ}, [/D,ψ] = 0 (1.48)

where /D
.
= ΓµDµ. Hence, there are 8 on-shell bosonic degrees of freedom, and 8 fermionic ones

after imposing the second equation in (1.48). Note that we can absorb the gauge coupling gYM

by a field redefinition gYMAµ and gYMψ and thence by Dµ
.
= ∂µ + igYMAµ.

Finally, the supersymmetry of (1.46) can be proven by using properties of bilinears of Majo-
rana fermions in 10D, which can be found in Appendix A.5, together with the Bianchi identity
[D[µ, Fνρ]] = 0 and and the Fierz identity valid in 10D (which actually also holds in D = 3, 4, 6):

(ψ
[a

Γµψb)(Γµψ
c])α = 0 . (1.49)

The proof of this identity can be found in Appendix A.6.
After this brief review on 10-dimensional SYM, we are now able to show that the non-abelian

version of the low-energy action for Dp-branes (1.44) is related to the reduction to (p + 1)
dimensions of the original 10D SYM theory (1.46). First, we assume that all fields in expression
(1.46) are independent of the compact coordinates xa, a = p + 1, .., 9, depending only on the
brane world-volume coordinates yα, α = 0, .., p. Then, the action of iDa reduces to −Aa, which
we write (after rescaling) as Xa/(2πα

′). These are precisely the expected (p + 1) transverse
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scalars of the theory (1.44). Moreover, the field strength now splits into purely transverse
components: Fab = i[Xa, Xb]/(2πα

′)2 at the origin of the scalar potential, into mixed ones:
Fαa = −[Dα, Xa]/(2πα

′), giving rise to kinetic terms for the transverse scalars. In addition,
the components Fαβ now constitute the gauge curvature on the brane (note that we now use
D to denote the gauge connection on the D-brane world-volume). We will see later on how
this correspondence is related to a T -duality of the theory performed on (p+ 1) of the original
dimensions.

Dimensional reduction of the action (1.46) then yields

S =
1

g2
p

∫
dp+1yTr

(
−1

4
FαβF

αβ − 1

2(2πα′)2
[Dα, Xa][Dα, Xa] +

1

4(2πα′)4
([Xa, Xb])

2

+
i

2
ψΓα[Dα, ψ] +

1

2(2πα′)
ψΓa[Xa, ψ]

)
,

(1.50)

where we recongnise the non-abelian version of expression (1.44), whose coupling can both be
expressed in terms of the original 10D SYM gauge constant divided by the volume of the compact
space Vcpct

9−p
.
= (2π)9−p

∏9
i=p+1Ri or in string units as in equation (1.45)

g2
p = g2

YM(Vcpct
9−p )−1 = gs(α

′)−
1
2 (2π
√
α′)p−2 .

Moreover, it is worth noting that the potential ([Xa, Xb])
2 is indeed negative definite, since

[Xa, Xb]
† = −[Xa, Xb]. So both the kinetic and potential terms in expression (1.50) come out

with the expected sign.
Finally, finding a classical vacuum of the theory amounts to looking for a static solution of

the equations of motion where the the potential energy of the system is minimized. This is the
case when Fαβ = 0 and ψ = 0 and all transverse fields are covariantly constant and commute
with one another: [Dα, Xb(y)] = 0 = [Xa(y), Xb(y)] ∀y ∈ Σp+1. This occurs for a solution of the
type

Xa = diag(xa1, .., x
a
N ) , xai ∈ � ∀i = 1, .., N

and defines the moduli space of classical vacua

� (9−p)N/SN ,

where we have to quotient by the permutation group of N objects, since the branes are regarded
as indistinguishable.

1.2.2 D-branes and T-duality

Type II string theories are endowed with two remarkable duality symmetries, T - and S-duality
(the latter peculiar to type IIB), which carry through the low-energy limit, down to the effective
SYM theory. T -duality essentially sends type IIA theory compactified on a circle of radius say
R9 to IIB on the dual circle, of radius R̂9 = α′/R9. Since this procedure exchanges Neumann
with Dirichlet boundary conditions on the compactified target-space field X 9, this will turn
Dp-branes in the original theory to D(p∓ 1)-branes in the dual theory, depending on wether the
original brane is wrapped or not along the compact direction (T -duality wrapping in the dual
theory what was unwrapped in the original one, and vice-versa).

This feature can be proven in a precise fashion using the properties of the low-energy descrip-
tion of the Dp-brane action, to wit, the corresponding super Yang-Mills theory. We will start,
for simplicity, with the action for N D0-branes in flat space, which is encoded in the following
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matrix quantum dynamic:

SD0 =
1

2gs
√
α′

∫
dtTr

( 9∑

a=1

[Dt, Xa][Dt, Xa] +
1

(2πα′)2

9∑

a<b=1

([Xa, Xb])2

−i(2πα′)2ψ†[Dt, ψ] + 2πα′ψ
9∑

a=1

Γa[Xa, ψ]
)
,

(1.51)

and will compactify it along theX9 direction. In order to implement periodicity ofX 9(t) without
increasing the number of degrees of freedom of the system, a cunning way of doing has been
resorted to by [104] along the line of orbifold compactifications. In general, if one wishes to
describe the dynamics of N objects on � 9/Γ, where Γ is the discrete group of the orbifold, one
may simply take |Γ| ×N copy of the original object and impose that all configurations thereof
be invariant under Γ. In our case, it amounts to identifing the compact direction S 1 = � / �
and considering the dynamics of � × N D0-branes on the convering space � . This translates
into a U(∞) quantum mechanics where the original N ×N (X a) ji matrices now take m, n ∈ �
additional indices referring to the mth and nth copy of the i and j branes between which a string
is stretching in the ath direction. We write the matrix elements of X a as Xa

mi,nj ≡ (Xa
mn)

j
i in

order to treat Xa
mn as N ×N matrices. Now, translational invariance under Γ = � implies, for

X9 periodic, the following set of conditions:

(Xa
mn)

j
i = (Xa

(m−1)(n−1))
j
i , a = 0, .., 8 (1.52)

(X9
mn)

j
i = (X9

(m−1)(n−1))
j
i , m 6= n , (X9

nn)
j
i = 2πR9δ

j
i + (X9

(n−1)(n−1))
j
i .

A solution to this system of constraints is given by

X9
00 = X0 , X9

nn = X0 + 2πnR91I , X9
nm = Xn−m , (1.53)

for N ×N matrices.
Going to the Fourier space on the dual circle, where a scalar field f is decomposes as f(ŷ9) =∑∞
n=−∞ f̃ne

inŷ9/R̂9 , we notice that the action of X9 on such a state is reproduced by the operator

X9(ŷ9) = 2πα′iD̂9 = 2πα′(i∂̂9 −A9(ŷ9)) .

In fact, 2πα′i∂9̂ acts as 2πnR9δnm for n,m ∈ � , yielding the second half of the diagonal part of
(1.53), on the Fourier components of

f(ŷ9) =

∞∑

n=−∞
f̃n ên =




...

f̃2

f̃1

f̃0

f̃−1

f̃−2

...




, (1.54)

(writing ên
.
= einŷ9/RR̂9 as a base such that ên · êm = ên+m). Since −2πα′A9(ŷ9) =

−2πα′∑∞
n=−∞ Ãn ên, the expression −2πα′A9(ŷ9)f(ŷ9) produces the action of the remaining

part of matrix (1.53) on vector (1.54), after setting An + Xn. As an illustration, the ê1 compo-
nent of (1.54) becomes

−2πα′
∞∑

n=−∞
(Xn+1f̃−n +Xnf̃1−n) ,
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as expected.
Pushing the demonstration a bit further, one can now precisely show the duality between

the low-energy description of N D0-branes on � 8×S1 and the low-energy description of N D1-
branes on � 8 × Ŝ1 in the static gauge, since terms subject to T -duality in the D0-brane action
are mapped as follows to corresponding terms in the D1-brane matrix model, whose Fourier
modes are the winding modes of the original D0-branes

∫
dtTr([Xa, Xb]

2) −→ 1

2πR̂9

∫
dt dŷ9 Tr([Xa, Xb]

2) ,

∫
dtTr([X9, Xb]

2) −→ −(2πα′)2

R̂9

∫
dt dŷ9 Tr([D̂9, Xb]

2) , (1.55)

∫
dtTr([Dt, X9]

2) −→ (2πα′)2

R̂9

∫
dt dŷ9 Tr(F 2

09) .

The process in (1.55) is the reverse of the compactification procedure in (1.50). In this respect,
the 2πR̂9 factors in (1.55) exactly cancels the corresponding factor of 2πR9 in (1.50) after
applying T -duality: R9 −→ α′/R9, and thus the coupling constant g2

0 −→ ĝ2
1 as expected.

This correspondance can now easily be extended to a system of unwrapped N Dp-branes
on � 9−(p+d) × T d which become dual to N D(p + d)-branes wrapped on � 9−(p+d) × T̂ d, after
sending Ri −→ α′/Ri, i = 9− (d− 1), .., 9. In this case, the only additional term complementing
the list (1.55) is

∫
dp+1 yTr([Xa, Xb]

2) −→ − (α′)4

(2π)d−4
∏9
i=9−(d−1) Ri

∫
dp+1 y dd ŷTr(F 2

ab) .

Finally, one can generalise the above orbifold construction (1.52) to dual field configurations
with non-trivial boundary conditions. These new sectors can actually be viewed as connections
on bundles with twisted boundary conditions. Going back to the D0/D1-brane duality example,
one can implement such non-trivial boundary conditions by requiring that the formal translation
operator U = exp[2πiR9ŷ

9] producing the conditions (1.52) when conjugating the X a states,
generates these conditions up to a gauge transformation Ω ∈ U(N). Then, condition (1.52)
becomes

U ·Xa(ŷ 9) · U−1 = Ω · (Xa(ŷ 9) + 2πR9δ
a,91I) · Ω−1,

which is solved for X9(ŷ 9) = 2πα′iD̂9 and U = Ω · exp[2πiR9ŷ
9]. Concretely, the operator

Ω could act as an element of the permutation group switching the D-branes indices, or, when
compactifying several dimensions, as a parameter rendering the gauge theory on the dual torus
non-commutative.

1.3 The BFSS Conjecture

Before stating the BFSS conjecture, we will start by reviewing some basic facts about the
reduction of M-theory to IIA string theory, which should put into a clearer perspective some
arguments of the conjecture itself.

1.3.1 M-theory and IIA string theory

Before being extended to the evasive non-perturbative limit of all known string theories, M-
theory was in the beginning defined by Witten [247] as a theory in 11D possessing eleven-
dimensional supergravity as its-low energy limit, which can then be defined as the strong-
coupling limit of type IIA string theory when compactified on a circle (which will be taken
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in the eleventh dimension x10). The radius of this circle is given by RIIA =
√
α′gs in string units

so that when RIIA → 0 we recover a 10D weakly-coupled string theory.
Let us now turn for a moment to 11D supergravity, interpreted as the strongly-coupled low-

energy classical limit of M-theory. The eleven-dimensional supergravity multiplet [81] contains
the following massless fields, labelled by indices A,B = 0, .., 10: the symetric traceless tensor
gAB , or alternatively an elevenbein eAa (with tangent-space index a = 0, .., 10), a three form field
C(3) and a Majorana gravitino ψA. Retaining only the physical degrees of freedom of the theory
amounts to computing the rank of tensors in D − 2 dimensions, which yields the counting: for
gAB , 9× 10/2− 1 = 44 dof, for C(3), 9× 8× 7/3! = 84 dof, and for ψA, 2[11/2]/2× (9− 1) = 128
dof (projecting out spin 1/2 components). This builds up a supermultiplet of 256 components.

Besides, the low-energy limit of type IIA string theory consists of the following bosonic
massless sectors:

• an NS-NS sector with: a 10-dimensional metric gµν , a dilaton φ and a two-form B(2). The

latter can be related, by Hodge-duality of their respective field strength, to a 6-form B̃(6),
which couples electrically to the world-volume of the NS5-brane, the magnetic dual of the
fundamental string.

• a R-R-sector with: a 1-form A(1) and a threeform A(3). Such R-R potentials couple
electrically to the D0- and D2-branes, and magnetically to the D4- and D6-branes (since
Dp-branes are BPS objects, they necessarily carry a conserved quantity, which is the R-R
charge). On should also include a 9-form potential, even though it is not associated with
a propagating state, since a D8-brane appears in the vertex operator analysis of type IIA
theory.

The correspondence between M-theory objects and the field content of type IIA supergravity
relates the zero modes of the Fourier expansion of gAB , C(3) and ψA on the M-theory circle

S1 to the NS-NS and R-R sectors mentioned above: the zero mode of the metric g
(0)
10 10 is thus

associated to the type IIA dilaton φ, whereas the components g
(0)
µν yield the ten-dimensional

metric, and the C
(0)
µν 10 are related to the IIA B-field B(2). So much for the NS-NS sector. As for

the R-R form-fields: the Kaluza-Klein photon g
(0)
µ 10 gives the type IIA one-form Aµ, while the

C
(0)
µνρ components correspond to the type IIA three-form A(3).

As the R-R potentials of type II theories couple to the world-volume of Dp-branes, one
expects the eleven-dimensional three-form potential C(3) and its dual C̃(6) to be sourced by an
(electric) M2-brane and a (magnetic) M5-brane respectively. Such BPS objects have indeed
been shown to represent vacua of the eleven dimensional theory.

One can then rephrase the correspondence given above as follows: the 11D supergraviton
with momentum p10 = R−1

IIA is related to the type IIA D0-brane, an M2-brane wrapped around
the compact dimension to the type IIA F1-brane (or fundamental string), the unwrapped M2-
brane to the type IIA D2-brane, while the M5-brane, wrapped and unwrapped, is associated
respectively to the D4-brane and the NS5-brane. Obtaining the D6- and D8-brane is slightly
more complicated: since the D6-brane is the magnetic dual of the D0-brane, it is expected
to descend from a Kaluza-Klein monopole in M-theory. As for the D8-brane, it seems to be
somehow related to the ten-dimensional boundary hyperplanes (”M9”-branes) appearing, for
instance E8 × E8 heterotic supergravity, but the M-theory origine of the D8-brane is still an
open problem.

Regarding the fermionic sector, the 32-component gravitino ψA of M-theory splits, in type
IIA theory, into a pair 16-components Majorana-Weyl gravitinos ψaµ, a = 1, 2, of opposite
chirality and, when A = 10, a pair of 16-components Majorana-Weyl spinors ψa10, a = 1, 2.
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Now, besides the supergraviton with momentum P10 = 1/RIIA yielding the IIA D0-brane,
there are, in M-theory, Kaluza-Klein modes with momenta: P10 = N/R, N ∈ � . Each each
of these states forms, as the fundamental supergraviton, a (short) supermultiplet of 28 = 256
states. However, for N 6= ±1, such KK modes are massive, being the only contribution to the
11-dimensional mass, and can be interpreted as bound states at threshold of N D0-branes or
of N D0-branes. Since the compactification radius is given by RIIA = gs

√
α′, when gs is large

(non-perturbative regime), these Kaluza-Klein modes become light BPS objects, and are thus
low-energy states of strongly coupled type IIA string theory, which are precisely described by
U(N) super Yang-Mills theory reduced to 0 + 1 dimensions, in other words a supersymmetric
quantum mechanics for N×N hermitian matrix . Moreover, as gs →∞, RIIA is decompactified,
and we obtain 11-dimensional supergravity as the expected low-energy limit of strongly-coupled
type IIA theory.

For simplicity, and when there is no ambiguity, we will denote the radius RIIA as R in the
following.

1.3.2 The BFSS matrix model

We have recalled in the preceding section how an eleventh non-compact dimension appears in the
strong-coupling limit of type IIA string theory and how the Kaluza-Klein modes of the eleven-
dimensional graviton reproduces in this case N D0-branes states bound at threshold, described
by supersymmetric quantum mechanics for N × N hermitian matrix. With this in hand, we
can now discuss the BFSS conjecture [231], which states that in the limit where N → ∞,
M-theory expressed in the Infinite Momentum frame (or IMF) is exactly described by such a
non-relativistic theory for a system of many D0-branes in type IIA string theory.

The particular Lorentz frame in which one has to consider M-theory in this case, the IMF,
makes it possible to relate a quantum mechanics for nine-dimensional target space (matrix) fields
(the X i, i=1,..,9 in the action (1.51)) to a eleven-dimensional low-energy theory such as 11D
supergravity. Indeed, if one consider such a matrix model as living in 9 dimensions transverse to
the eleventh dimension of M-theory in the IMF, or in the light-cone frame (we will see later that
there is an equivalent formulation of this conjecture on the light front), this matrix model still
knows of the 11-dimensional Lorentz invariance of the full system, as long as we can interpret
it in terms of a transverse Hamiltonian H⊥ related to the eleven-dimensional hamiltonian by
H(11) = (P+)−1H⊥ (cf. the Hamiltonian (1.17))

The conjecture can then be stated as:

Conjecture 1.3.1 The N →∞ limit of the D0-branes quantum mechanics

SBFSS =
1

2R

∫
dt

9∑

i=1

Tr


[Dt, Xi]2 +

9∑

j=i+1

([Xi, Xj ])
2 − iθ>[Dt, θ] + θ̄Γi[Xi, θ]


 , (1.56)

where the bosonic fields X i, i = 1, .., 9, and 16-components SO(1, 9) Majorana-Weyl spinors θ
are N ×N hermitian matrices in the adjoint representation of U(N), exactly describes M-theory
in the IMF, when both R→∞ and N/R→∞, where P10 = N/R is the longitudinal momentum
for a bound state of N D0-branes.

In expression (1.56), we have taken advantage of the Majorana condition to work with
real Weyl spinors, and replace θ† → θ>. Moreover, we have this time chosen a convention
where 2πα′ = 1. Since the compactification radius R = gs

√
α′ in string units, the relation

to expression (1.51) is then obvious. In addition, since the Planck length is lP =
√
α′g1/3

s

in string units, we can compare with the regularised supermembrane Hamiltonian (1.39). To
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relate it to expression (1.56), we consider its corresponding Lagrangian, which goes as LM =
1

4πl3P

(
([Dτ , Xi])2 + 1

2([X i, Xj ])2 . . .
)
. Since:

1

4πl3P
=

1

(2πα′)(2gs
√
α′)

=
1

(2πα′)(2R)
,

the supersymmetric membrane action is then a (2πα′)−1 rescaled version of the BFSS action,
and they are the same precisely when (2πα′) = 1.

Varying expression (1.56), we get the following equations of motion:

[Dt, [Dt, Xi]] = −[Xk, [Xk, X
i]]− 1

2
(Γi) β

α {θ
α
, θβ} ,

[Dt, θ] = −iΓ0k[Xk, θ] .
(1.57)

Finally, extremising with respect to the gauge field A0 yields the constraint

R = [Xk, [Dt, Xk]] +
i

2
{θ†, θ} = 0 . (1.58)

Thus, the supersymmetric extention of the Gauss Law constraint (1.28) now naturally appears
upon covariantisation of the time derivative, the gauge field acting in this perspective as a
Lagrange multiplier which implements the constraint. This mirrors exactly the end of the
discussion on the regularised supermembrane Hamiltonian (1.39)

From Legendre transforming the Lagrangian (1.56) according to H = Tr(PiẊi − Πθ̇) − L,
one obtains the BFSS Hamiltonian

HBFSS = R

9∑

i=1

Tr
(1

2
PiP

i +
i

R
ΠΓ0i[Xi, θ]−

1

2R2

9∑

j=i+1

[Xi, Xj ][X
i, Xj ]

+
i

R
A0

(
[Pi, X

i]− {Π, θ})
))

(1.59)

with canonical bosonic and fermionic momenta given by

Pi =
1

R
[Dt, Xi] , Π =

i

2R
θ† .

The last term in expression (1.59) is proportional to the Hamiltonian equivalent of the Gauss
constraint R (1.58).

Preliminary discussion of the conjecture

We will be going into the details of this conjecture in the coming sections, where we will discuss
the Infinite Momentum Frame, the fact that the BFSS model is a second quantised theory, the
finite N interpretation of the model, etc. . But before, we can already point out a few important
arguments in favour of this conjecture.

First, the IMF is a frame where we have performed an infinite boost in particular direction.
In our case we choose this longitudinal direction to be x10. As a consequence, all states with
P10 negative or vanishing have infinite energy and decouple from the theory (see Section 1.3.3
for details). In type IIA theory, states that can carry non-vanishing momentum P10 are branes
charged under the Ramond-Ramond potential A(1), in other words D0- or D0-branes. All other
states of the theory such as the F1 and the NS5-brane, which carry no R-R charge, and the
D2-brane, which couples to the higher rank A(3) potential, thus have zero P10 momentum, and
can be integrated out. We are thus left with bound states of N D0-branes carrying momentum
P10 = N/R > 0. In contrast, D0-brane states carry negative momentum P10 = −N/R and are
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boosted to infinity in the IMF. However the system still nows somehow of their existence, since
eleven-dimensional Lorentz invariance is latent in the resulting light-cone theory. To summarise,
at large momentum string theory can be described in terms of elementary partonic degrees of
freedom, i.e. D0-branes with one unit of positive transverse momentum P10 = 1/R.

Second, we now have a non-relativistic low-energy theory with super-Galilean invariance in
the dimensions transverse to x10.

Third, the BFSS action (1.56) reproduces the regularised supermembrane action (1.39),
even though from a different approach. Thus the quantum light-front supermembrane naturally
emerges as a coherent state in the BFSS theory.

Finally, the leading long range interaction between two quanta of D0-branes can computed
from the BFSS matrix model [103] and exactly reproduces the two-graviton scattering amplitude

known from light-front 11D supergravity V (r) = − 15
16
v4

r7 , where v is the relative velocity of the
gravitons.

1.3.3 The Infinite Momentum Frame

In this section, we will come back on the details of how a physical system behaves in the Infinite
Momentum Frame, extending it to correspondence stated in the Conjecture 1.3.1. The IMF is a
frame in which the physics has been heavily boosted in a preferred direction. It was introduced
long ago by [243] to simplify perturbation theory, since resorting to the IMF highly supresses
all diagrams where vertices are created out of the vacuum.

We start with a reference frame where the total momentum ~Ptot is very large. Then the
individual momenta of the particles read:

~Pn = ζn ~Ptot + ~P⊥
n ,

with the following poperties: ~P⊥
n · ~Ptot = 0,

∑
n
~P⊥
n = 0 and

∑
n ζn = 1, the first of these

three conditions holding only when n > 2. Now, if the system is sufficiently boosted in the ~Ptot

direction, all ζn become positive, and further boosting will only increase momenta in the ~Ptot

direction without affecting the signs of the ζn.
Such a system can be compared to the corresponding 11-dimensional system in the light-cone

frame, for

x± =
1√
2
(x0 ± x10)

by identifying: ~P⊥
n + (0, P 1

n , .., P
9
n , 0) and ζn ~Ptot + (0, .., 0, P 10

n ).
Hence,

P±
n = c−1En ± ζn|~Ptot|

and since the conservation law for the energy-momentum tensor becomes: M 2
n = P+

n P
−
n −|~P⊥

n |2,
the energy of each particle reads in the light-cone frame:

c−1En = P 10
n +

|~P⊥
n |2 +M2

n

P+
n

. (1.60)

Returning, for comparaison to the IMF, we can expand the energy as

c−1En =
[
|~Pn|2 +M2

n

]1/2
= P 10

n +
|~P⊥
n |2 +M2

n

2P 10
n

+O((P 10
n )−2) . (1.61)

Noticing that for P 10
n → ∞, we have c−1En ' P 10

n , and hence P+
n ' 2P 10

n , we come to the
conclusion that, in this limit, expressions (1.60) and (1.61) match. Furthermore, going back to
QFT, we now have a clearer insight into the triviality of the IMF vacuum: in a theory with
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energy denominators, diagrams which carry a large internal momentum ~Ptot with ζn negative, or
alternatively, with large negative P 10

n , will be suppressed by a factor of 1/P 10
n . These diagrams

precisely correspond to particles created from the vacuum.
Considering the eleven-dimensional theory on a circle: x10 ∈ S1, this involves the transverse

momentum P10 to quantised:

x10 ∼ x10 + 2πR −→ P10 =
N

R
.

Implementing the IMF implies boosting the system to P10 → ∞, but since taking the decom-
pactification limit forces R → ∞, N has to tend to infinity quicker than R, in order to satisfy
N/R → ∞. This is the origin of the peculiar limit appearing in the Conjecture 1.3.1. Now,
boosting a theory with a compact direction is delicate, since a boost in the compactified direction
is not a symmetry of the previously Lorentz invariant theory. This should however not affect
the calculation at hand, which deal with the IMF as a way of calculating interaction between
states with large longitudinal momenta.

Since there are no 11-dimensional masses coming into play, the energy (1.60) and (1.61),
which coincide in the decompactification limit, becomes

c−1Etot = P 10
tot +

∑

n

|~P n⊥|2
2P 10

n

≡ P+
tot

2
+
∑

n

|~P n⊥|2
P+
n

where Galilean invariance is now manifest. Note that after introducing the supercharges required
by the supersymmetry of (1.56), this is enhanced to super-Galilean invariance.

1.3.4 M(atrix) theory: a proposal for DLCQ M-theory

The original formulation of the BFSS conjecture requires taking the limit N → ∞ on the
matrix model side of the correpondence. However, this limit can be very delicate to compute
concretely. In particular, there is often no clear prescription of how to take it when doing
perturbative loop calculations in M(atrix) theory. Furthermore, most of the checks of the validity
of the BFSS conjecture have shown that the correspondence between M-theory in the IMF and a
supersymmetric matrix model forN D0-branes holds true already at finiteN . This has prompted
Susskind to investigate the finite N matrix model theory, arguing that such a supersymmetric
quantum mechanis gives in fact a description of the discrete light-front quantised sector of M-
theory, or DLCQ M-theory, containing states of momentum P + = N/R [228]. This relation was
made more precise by Seiberg and Sen in [218, 221], where they showed in particular how DLCQ
M-theory is related to perturbative type IIA string theory and gave evidence that a low-energy
action for D0-branes is the appropriate description for M-theory in the IMF, thereby giving
credit to the BFSS conjecture.

Concretely, this finite N correspondence can be established by showing that DLCQ M-theory
is the natural framework yielding spacelike compactifications of type IIA string theory where
both the string coupling and the string length vanish. Thus, type IIA string theory is in this
limit perturbative since weakly coupled; and second, the massive string modes decouple, leaving
only D0-branes as fundamental partonic objects of the theory.

The starting point of the DLCQ approach takes advantage of the fact that one can view a
theory compactified on a lightlike circle as a theory compatified on a spacelike circle in the limit
where the latter vanishes. In the following, we will show how the light-front compactification of
M-theory can be described by such a limiting process, in the form of a matrix theory encoding
the low-energy behaviour of many D0-branes, as shown in [218, 221].

Starting from a lightlike compactification in two dimensions with radius R, we can deform
it to a family of spacelike (near lightlike) compactifications by introducing a new radius R̂ with
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identification:

(
y
ct

)
∼
(

y −
√

2πR

ct+
√

2πR

)
bR→0←−

(
y
ct

)
∼
(
y − 2π

√
R2/2 + R̂2

ct+
√

2πR

)
. (1.62)

Defining the boost parameter

β−1 =

√
1 + 2(R̂/R)2 ,

it can be shown that the family of space-like compactifications on the left of expression (1.62)
can be obtained through the boost

(
ŷ

ct̂

)
=

1√
1− β2

(
1 β
β 1

)(
y
ct

)
,

from a compactification with identification

(
ŷ

ct̂

)
∼
(
ŷ − 2πR̂

ct̂

)
, (1.63)

since we have the (exact) relation:

√
1− β2

β
=
√

2
R̂

R
.

Now identification (1.63) being a mere longitudinal compactification, it in turn relates to a
regular type IIA compactification of M-theory with dictionary:

gs =

(
R̂

lP

)3/2

, ls =

(
l3P

R̂

)1/2

, (1.64)

where lP is the 11D Planck length. So, to summarise, every spacelike compactification of M-
theory of the kind (1.62) is related through a boost to type IIA string theory with relationships
(1.64). Now taking the R̂→ 0 limit to recover the original lightlike compactification, the string
coupling gs vanishes as desired, however the string scale l−1

s = (α′)−1/2 vanishes as well; in
this limit, the massive states of string theory will not decouple and the higher order corrections
from the DBI action (1.40) cannot be neglect, ruling out the SYM approximation for D0-brane
dynamics.

The way out, however, is to concentrate on the energy of the particles of interest in this limit.
A theory with lightlike compactification scheme (1.62) has quantised momentum in the compact
direction P+ = N/R and light-front Hamiltonian H = P−. Then for a spatial compactification
(1.63), the mass energy of the D0-brane quanta is P̂+ = N/R̂ and the total energy:

Ê = cP̂+ + ∆E .

Transforming back to the near lightlike compactification variables of (1.62)

(
P

c−1E

)
=

1√
1− β2

(
1 −β
−β 1

)(
P̂

c−1Ê

)
,

we see that the energy of interest is given by

∆E ' R̂

R
cP− , (1.65)
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since P− = (c−1E − P )/
√

2 and then

P− =

√
1 + β

2(1− β)

∆E

c
' R

R̂

∆E

c
,

and obviously ∆E → 0 in the limit R̂→ 0. Comparing to how fast the string scale l−1
s vanishes

in this limit, we notice, using (1.65) and (1.64), that

∆E

l−1
s
'
√
l3P R̂

cP−

R
→ 0 .

Thus, the lightlike compactification limit of a family of spacelike compactifications leads to an
energy scale of interest for D0-branes which is much smaller than the string scale, although the
latter vanishes still. Then, one may hope to find new units where both the new string coupling
and the new string length go to zero, meeting all the required conditions for the correspondence
to hold.

To do so, we define a new Planck length l̃P for which the new energy of interest ∆Ẽ becomes
independent of R̂. This can be achieved by setting

l̃2P ∆Ẽ = l2P ∆E −→ ∆Ẽ =

(
lP

l̃P

)2 R̂

R
cP− ∼ finite −→ l̃−2

P R̂ ∼ fixed .

Since R̂→ 0, this requires l̃P →
√

0, leading to the new M-theory / IIA dictionary:

g̃s =

(
R̂

l̃P

)3/2

→ 0, l̃s =

(
l̃3P

R̂

)1/2

→ 0, for R̂→ 0

Going back to the DBI for D0-branes, we see that the limiting process at work relies on the
fact that even though the compactification lengths R and R̂ now scale like R̂/R = (l̃P /lP )2, the
transverse coordinate fields behave normally as X i/lP = X̃i/l̃P , then, the approximation to the
DBI non-abelian action for D0-branes becomes

− V0

g̃s l̃s
+

1

2g̃s l̃s

∫
dt Tr

(
[Dt, X̃i]2 +O

(
(∂tX̃

i)4
))

=⇒ −V0

R̂
+

1

2R

∫
dt Tr

(
[Dt, Xi]2 +O(R̂/R)

)
, for R̂→ 0 .

The first contribution is proportional to the D0-brane energy, which we substract to compare
our result with the energy P− of light-cone compactified M-theory. We also expect higher order
corrections from the nonabelian DBI action, collected indiscriminately in O(R̂/R), to become
negligible in the limit R̂ → 0. The non-relativistic suprsymmetric matrix model (2.63) then
gives a complete description of DLCQ M-theory, provided, of course, there exists such a theory
endowed with necessary the properties of M-theory, and a well-defined type IIA theory which
can be interpreted as its small radius compactification limit, so that that the arguments given
above depend on these issues.

Furthermore, whether such a matrix theory really describes DLCQ supergravity in 11D in
the low-energy limit is, a priori, far from being obvious, pertaining, in particular, to the delicate
large N limit one has to perform on the matrix side.

Perturbative and non-perturbative evidence in favour of the well-definedness of this large N
limit in connection with (almost) light-like compactifications of type IIA string theory can be
found in [40, 41].
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A note on interactions in M(atrix) theory

To conclude this section, we outline the comparaison between higher order loop corrections in
M(atrix) theory and interactions in 11D supergravity.

Interactions in matrix theory involve block matrices which represent general time-dependent
configurations combining gravitons, membranes and fivebranes. One can then use perturbative
SYM theory in background field gauge to compute loop contributions in the matrix model and
compare them to 11D supergravity interactions. For a finite N formulation of M(atrix) theory,
the one loop results have been shown to generate an effective potential with an infinite series of
terms which exactly reproduce, at tree level, supergravity interactions involving the exchange
of a one graviton, a quantum of three-form field or a gravitino. One-loop calculations involving
a pair of D0-branes can be found in [103], and for a pair of general membrane backgrounds see
[157]

The two-loop results are more mixed. On the one hand, the leading two-loop contribution
to three particle interaction in M(atrix) theory have been shown to correctly reproduce three-
graviton scattering amplitudes in 11D supergravity, at tree-level [137]. This is based on the
approach by Yoneya and Okawa [207, 206] Other results at two-loops can be found in [19, 20].
Beyond this, however, it is unclear whether higher loop results can still be used to recover more
involved nonlinear effects in supergravity. One the other hand, already at the two-loop level in
M(atrix) theory, one can try to compare next-to-leading order terms in the two-loop effective
action, with the first quantum corrections to three graviton scattering amplitudes induced by
R4 corrections to classical supergravity. In this case, [137] has shown that there is a clear
disagrement between the tensorial structure of the M(atrix) theory two-loop computations and
the M-theory corrections on the supergravity side. Other works [167, 21] seem to point at the
fact that quantum effects in supergravity cannot be accurately recovered from M(atrix) theory
loop calculations.

This discrepancy can however be accounted for by first noting that finite N M(atrix) theory
describes M-theory on a lightlike circle, which is Lorentz equivalent to M-theory on a vanishing
spacelike circle [218], and is perturbative in gs, while 11D supergravity is a good description
of M-theory in the large radius / large gs limit. One then only expects an agreement between
amplitudes which are protected when one goes from one regime to the other. This is the case for
tree-level amplitudes involving two and three particles [208, 209], while the terms appearing in
R4 corrections to three graviton scattering amplitudes are not subject to a non-renormalisation
theorem. More on supersymmetric non-renormalisation theorems in M(atrix) theory can be
found in [165, 166]. Thus, a matching between M(atrix) theory calculations and quantum
corrections to supergravity can only be hoped to be reached (if it can) in the large N limit, and
how to handle this limit is still an open question.

1.3.5 Continuous energy spectrum and second-quantisation in M(atrix) the-
ory

As we have seen in the Section 1.3.2, the supermembrane emerges naturally from the BFSS
theory, and appears as a coherent state in the supersymmetric matrix model (1.56). The fact
that this matrix model gives rise to a second quantised theory solves in addition the problem of
the continuous spectrum of supermembrane theory pointed out in Section 1.1.5.

Classical longitudinal gravitons can be constructed from DLCQ M(atrix) theory by finding
a solution which minimises the potential in the action (1.56) and solves the classical equation
of motion (1.57). A simple class of solution corresponding to an N -graviton state is given by
commuting matrices with linear time dependence:

(Xi(t)) b
a = (xia + viat)δ

b
a , i = 1, ..9 , and a, b = 1, .., N . (1.66)
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Each of the N gravitons composing this state carries a total longitudinal momentum P + = 1/R
and is massless. Making the gauge choice A0 = 0 in the action (1.56), its light-front kinetic
energy reads:

H =
1

2R

∑

i

Tr(Ẋi)2 =
1

2R

∑

i,a

(via)
2 =

1

2P+

∑

i

(pi)2

One can likewise construct a single classical graviton state with P + = N/R by setting xia = xi

and via = vi, ∀a = 1, .., N , in eqn.(1.66).
Including supersymmetry brings about some subtleties, so that when considering what we

will call an N -supergraviton state, on now has to separate the matrix target space fields X i(t)
into centre of mass and relative coordinates. This corresponds to factoring out the U(1) in the
matrices (1.66) according to U(N) = SU(N)× U(1):

Xi(t) = X i
rel(t) + 〈xi(t)〉1IN×N , 〈xi(t)〉 =

1

N
TrX i(t) (1.67)

with TrX i
rel = TrẊi

rel = 0. The Hamiltonian separates this time in two parts

H = Hrel +
1

2P+

∑

i

〈pi〉2 (1.68)

with 〈pi〉 = R−1〈ẋi〉 and P+ = N/R. Hrel is the BFSS Hamiltonian (1.59) restricted to SU(N)
matrices and can be shown to have zero-energy threshold bound states, [248, 222, 213], for which
the energy is just the centre of mass energy 1

2RN

∑
i〈ẋi〉2.

We now consider the fermionic sector of the theory. The 16 fermionic variables θα have
anticommutation relations given by the following Dirac brackets:

{θα, θβ}DB = −iR(P+) β
α 1IN×N ,

(see eqn.(1.83) below). One can then combine them into 8 pairs of lowering an raising operators:

θ±α =
i√
2R

(θα ± θα)

which generates the costumary fermion Fock space of dimension 28 = 256. This is exactly the
number of states required to form a supermultiplet, of 11D supergravity, as seen in Section
(1.3.1). To sum up, for N = 1, we have a single D0-brane with P + = 1/R, described by a
U(1) matrix Hamiltonian with a spectrum of 256 states, which corresponds to a supergravity
multiplet. This is precisely what is usually called a supergraviton. For N > 1, only states in
the SU(N) quantum mechanics theory are relevant, and each of them describes a supergravity
multiplet of 256 states. These then correspond to a bound state at threshold.

Besides single supergraviton states, one can show that the Hamiltonian of M(atrix) theory
has a Hilbert which actually contains multiple particle states. To see this, consider now the
N ×N (or infinite) matrices X i to be block-diagonal:

Xi = . . .⊕X i
(k−2) ⊕Xi

(k−1) ⊕Xi
(k) ⊕Xi

(k+1) ⊕Xi
(k+2) ⊕ . . . . (1.69)

Each of these matrices will satisfy the equation of motion (1.57) separately (neglecting the
fermions):

[Dt, [Dt, Xi
(k)]] = −[X l

(k), [X(k)l, X
i
(k)]] .

As in eqn.(1.67), the submatrices X i
(k) can then be related to separate objects with center of

mass 〈xi(k)〉 = 1
Nk

TrX i
(k), so that the classical theory encodes, even for N finite, configurations
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with multiple independent objects. Repeating the analysis above, the Hamiltonian of such a
configuration splits into a sum of uncoupled Hamiltonians

∑N
k=1H(k), where each separate H(k)

has a supergraviton in its spectrum. The quantum theory can then be constructed by replacing
the classical matrix configuration dsecribing multiple independent supergravitons (1.69) by a
wave function which approximates the tensor product of as many bound state wavefunctions, in
the limit where the garvitons are taken to be far apart. Finally, letting N tend to infinity, we
conclude that M(atrix) theory contains the full Fock space of supergravitons, and can then be
viewed as a second-quantised theory with respect to its target space.

Since M(atrix) theory is endowed with a Fock-space allowing multi-supergraviton states,
one can build in particular a two-body state by combining two localised (H ≈ 0) graviton
states, which are far apart and have small relative velocities. This configuration can be chosen
to have arbitrary small total energy. In the type IIA picture, where gravitons with one unit
of longitudinal momentum P 10 = 1/R are associated to D0-branes, we may have in this case
a continuous spectrum of energy, ∀N > 1. This gives an answer to the problem raised in
Section 1.1.5.

Note that multiple objects states can also be seen directly in the continuous membrane theory
by mapping a classical smooth membrane to a configuration in the target-space representing
sphere-like objects connected by tubes. Taking the tubes to be long and thin makes their energy
negligible, and we are left with a collection of independent spherical membranes.

1.3.6 The BFSS matrix model and its supersymmetry algebra

In this section we will discuss and verify the supersymmetry of the model (1.56). When going
from M-theory to the BFSS M(atrix) model, we start in eleven dimensions with the 32 super-
charges QA, A = 1, .., 32, that transform as a Majorana spinors of SO(10, 1). Then, in the IMF
limit, the QA decompose into two groups of 16 supercharges, each transforming as a Majorana-
Weyl spinor of SO(1, 9): call them Q̃α and Qα, α = 1, .., 16. For reasons exposed in the next
section, the first ones are called kinematical and the second dynamical. The infinitesimal su-
persymmetry transformations acting on a field F are then generated by these charges in the
following fashion:

δεF = i[εαQα, F ] , δ̃ηF = i[ηαQ̃α, F ] .

To be more specific, the dynamical susy transformation laws derive from 10D SYM theory,
provided the required decomposition Aµ → (A0, Xi) as in eqn.(1.47)

δεX
i =

i

2
ε̄Γiθ , δεA0 = − i

2
ε†θ ,

δεθ =

(
1

2
Γ0k[Dt, Xk]−

i

4
[Xi, Xj ]Γ

ij

)
ε .

The kinematical ones, on the other hand, are peculiar to the BFSS matrix model, and affect
only the fermions of the theory, shifting them by a constant valued spinor

δηX
i = δηA0 = 0 , δηθ = η1I .
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Commutators of two such transformations yield constant spinor bilinears:

[δε1 , δε2 ]X
i = −1

2
ε̄2Γµε1[δ 0

µ iDt + δ k
µ Xk, X

i] ,

[δε1 , δε2 ]A0 = − i
2
ε̄2Γkε1[Dt, Xk] ,

[δε1 , δε2 ]θ = −1

2
[δ 0
µ iDt + δ j

µ Xj, θ̄] Γkε
[1Γµkε2] (1.70)

[δε, δ̃η ]X
i = − i

2
ε̄Γiη , [δε, δ̃η]A0 =

i

2
ε†η , [δε, δ̃η ]θ = 0 ,

[δ̃η, δ̃η′ ](any field) = 0

In order to show invariance of expression (1.56) under dynamical susy transformation, we start
by listing each separate term of δεSBFSS

δεTr
(
[Dt, Xi]2

)
= Tr

(
ε†[θ,X i][Dt, Xi]

)
+ iTr

(
ε̄Γi[Dt, θ][Dt, Xi]

)
= A1 +B1 ,

δεTr
(
θ†[Dt, θ]

)
= Tr

(
[Dt, Xi][Dt, ε̄Γiθ]

)
+
i

2
Tr
(
[Dt, ε†Γijθ][Xi, Xj ]

)
+

1

2
Tr
(
θ†[ε†θ, θ]

)

−∂t
(1

2
Tr
(
ε̄Γiθ[Dt, Xi]

)
+
i

4
Tr
(
ε̄Γijθ[Xi, Xj ]

))

= B2 +A2 + C1 + ∂tG , (1.71)

δεTr
(
θΓi[Xi, θ]

)
=

1

2
Tr
(
[Dt, Xi][Xj , ε

†ΓiΓjθ]
)
− 1

2
Tr
(
[Dt, Xj ][Xi, θ

†ΓiΓjε]
)

+
i

4
Tr
(
[Xi, Xj ][Xk, ε̄Γ

ijΓkθ]
)

+
i

4
Tr
(
[Xi, Xj ][Xk, θ̄Γ

kΓijε]
)

+
i

2
Tr
(
θ̄Γk[ε̄Γ

kθ, θ]
)

= A3 +A4 +D1 +D2 + C2 ,

δεTr
(
[Xi, Xj ]2

)
= 2iTr

(
[ε̄Γiθ,Xj ][Xi, Xj ]

)
= D3 .

Notice that in the list (1.71), we have explicitely integrated by part certain terms in the la-
grangian, assuming the fermionic parameters ε are constant, and keeping for future purpose the
total derivative produced thereby. We first notice the cancellation of expression

A1 − iA2 +A3 +A4 = Tr([Dt, Xi][ε
†Γijθ,Xj]− ε†Γijθ[Xj , [Dt, Xi]) = 0

by using ΓiΓj = Γij + δij1I, and the following properties for Majorana spinors in 10D: ε†Γijθ =
θ†Γijε and ε†θ = −θ†ε according to eqn.(A.19). The next terms that cancel after restoring the
coefficients of the action are:

B1 − iB2 = 0 .

Moreover, we also have

−iC1 + C2 = − i
2
Tr(−θ̄Γ0[θ, ε̄Γ0θ] + θ̄Γi[θ, ε̄Γ

iθ]) =
1

2
fabc(θ̄

aΓµθb)(ε̄Γµθ
c) = 0 (1.72)

which vanishes thanks to Fierz identity in 10D for any triplet of right-handed Majorana spinors:
εabc(ψ

a
Γµψb)(Γµψ

c)α = 0 (A.21).
Finally, their remains

D1 +D2 +
1

2
D3 = − i

2
Tr(ε̄Γijkθ[X

i, [Xj , Xk]]) = 0

where we have been using the relations ΓijΓk = Γijk +2δi[kΓj] and ΓiΓjk = Γijk +2δi[jΓk]. This
expression vanishes because of the Jacobi identity applying on εijk[X

i, [Xj , Xk]].
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The left-over term is a total derivative

−i∂tG =
i

2
∂tTr(ε̄Γiθ[Dt, Xi])−

1

4
∂tTr(ε̄Γijθ[Xi, Xj ]) (1.73)

from which one can extract Noether charges. Restoring the overall coupling constant from the
action and keeping ε local, it can be shown that the Noether charges associated to dynamical
supersymmetry can be obtained from G by removing the ε parameter and multiplying by g−2

0 .
Invariance of (1.56) under kinematical supersymmetry follows from varying

δ̃η

∫
dtTr

(
− iθ†[Dt, θ] + θ̄Γi[Xi, θ]

)

=

∫
dtTr

(
− iη†[Dt, θ]− iθ†[Dt, η] + η̄Γi[Xi, θ] + θ̄Γi[Xi, η]

)
(1.74)

= −
∫
dt i
(
∂tTr(η†θ)− 2Tr

(
(∂tη

†)θ)
)

= 0

where we used η̄Γiθ = −θ̄Γiη and
∫
dtTr(η†[Dt, θ]) = −

∫
dtTr(∂tη

†θ)+total derivative =∫
dtTr(θ†∂tη)+total derivative.

From first term of second line of (1.74) one can again extract the Noether charge for kine-
matical supersymmetry, by defining

G̃ = −Tr(η†θ) , (1.75)

removing the η parameter and normalizing the resulting expression by g−2
0 .

1.4 Brane charges and the BFSS supersymetry algebra

In this section, we want to address the issue of the appearance in M(atrix) theory of states
consisting of D0-branes bound at threshold. These states behave like BPS Dp-brane and can
be systematically studied by starting from the supersymmetry algebra in 11 dimensions, as first
advocated in [230].

The eleven-dimensional supersymmetry algebra reads

{Qα,Q
β} = i(CΓM) β

α PM +
i

2!
(CΓMN ) β

α ZMN +
i

5!
(CΓMNOPQ) β

α ZMNOPQ (1.76)

and includes on the right-hand side a rank two and rank five tensors which act as central charges
for membranes (M2) and fivebranes (M5). Indices run from M = 0, .., 10 and the supercharges
Qα, α = 1, .., 32, form an SO(1, 10) spinor of 32 components. The occurence of central charges
that are both Lorentz tensors seem to contradict the Coleman Mandula theorem. However, it
can be shown (the detailled calculation in matrix theory will eventually shed light on this issue)
that such charges either vanish or are infinite, since they are associated with branes with infinite
volume, whose charge per unit volume remains finite. But we can avoid dealing with infinite
charges by compactifying space on a large but finite-dimensional torus.

Now, it is easy to see that central charges with a timelike index will vanish, since they
originate from space integral of conserved currents, which are themselves antisymmetric tensors:
ZM1..Mn =

∫
d10xJ0M1..Mn, then Z0M1..Mn−1 = 0. This argument can be reinterpreted in the

language of the above paragraph by noting that the time direction being kept non-compact, the
time components of central charges necessarily vanish.

In order to make contact with the DLCQ M(atrix) theory formalism, one need rewrite the
algebra (1.76) in the light-cone frame. According to the conventions for SO(1,9) Dirac matrices
in Appendix A.1, we have C = Γ0, and P+ = (1/2)(1I + Γ10) and, as mentioned in Section
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1.3.6, the former supercharges Qα split into 16 kinematical supercharges Q̃α and 16 dynamical
supercharges Qα, which form a Majorana-Weyl spinor representation of SO(1, 9):

{Q̃α, Q̃
β} = i(P+) β

α TrP+ , (1.77)

{Q̃α,Q
β} = i(P±Γ0Γi) β

α TrPi +
i

2!
(P+Γij) β

α Zij +
i

5!
(P+Γijklm) β

α Zijklm , (1.78)

{Qα,Q
β} = i(P+) β

α TrP− + i(P+Γ0Γi) β
α Zi +

i

4!
(P+Γijkl) β

α Zijkl , (1.79)

with TrP− = H, and since we eventually take the IMF limit: TrP + = N/R = p+ (note that, to
avoid confusion, P+ is now an operator, and p+ the longitudinal momentum, which called P+

previously).
Lastly, going to the IMF selects only those charges carrying a covariant (-) index, namely:

Zi
.
= Z−i and Z ijkl

.
= Z−ijkl, which turn up in the algebra (1.79). The latter are precisely

switched on by the presence of M2 and M5 brane wrapped around the longitudinal direction,
that appear as D4-branes and fundamental (F1) strings in type IIA string theory. As will be
checked later on, to keep those tensors finite, one should take the longitudinal direction to be
compact. As a consequence, the correponding charges will scale as 1/R in our normalisation.

From the IMF supersymmetric algebra (1.77)-(1.79), on can read off the BPS brane-like
objects which appear as central charges, namely:

a) 1
2 -BPS objects: they consist of transverse M2- and M5-branes with charges given by the
RHS of commutator (1.79), and preserve the biggest portion of the initial supersymmetry,
since they are linear combination of both kinematical and dynamical generators. In type
IIA language, they turn out to be D2- and NS5-branes. Their energy is proportional to the
square of the norm of the related tensor: ZijZ

ij and Zi1..i5Z
i1..i5 , since these excited states

behave like particles propagating in a space with a compact transverse direction. In the

IMF variables, the energy scales as E =
e2T
2p+

, with eT = TpA =
√
−TrPAPA the surface

tension energy for a p-brane, which has first been verified by [91, 93] for the transverse
membrane. We will see how to construct these objects form M(atrix) theory in the next
two sections.

b) 1
4 -BPS objects: these are the longitudinal M2- and M5-branes with charges appearing in
commutator (1.78), corresponding to the fundamantal string (F1) and the D4-brane of
type IIA theory. Since in expression (1.78) all kinematical commutators are broken and
only half of the dynamical ones are preserved, we are indeed dealing with 1

4 -BPS states.
In this case, they energy is proportional to the central charge. This is due to the fact that
a longitudinal object with momentum in the compact direction will develop an internal
excitation breaking translational invariance in the compact direction. This, in turn, is the
source for the breaking of the extra half of the remaining supersymmetry generators. In
addition, since the energy of the internal excitations increases as p+ → ∞, the energy
scales like a constant in the IMF limit [230]

c) more 1
2 -BPS objects: longitudinal M5-branes with charge given in commutator (1.79) can

break only half of the supersymmetries, if they become carriers for membrane charges.
This requires activating tranverse M2-branes in the commutator (1.78). Such a state will
then combine non-zero values for both (type IIA) D2- and D4-brane charges. Turning
on, for instance, the D4-brane charge in directions [1;2;3;4] by choosing Z 1234 to be non-
vanishing, one may embed in the D4 two stacks of infinite D2-branes by activating their
respective charges Z12 and Z34, and by requiring that TrP+Z1234 = Z12Z34. From the
longitudinal brane condition on the D4, implying that its energy is proportional to Zijkl
and hence to a constant, one infers that Z12Z34 ∝ TrP+.
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1.4.1 The BFSS supercharge density algebra

We will now turn to constructing the equivalent of the supersymmetry algebra (1.77)-(1.79) by
starting from a canonical quantisation procedure applied to the matrix model (1.56). We inter-
prete untraced products of matrices as supercharge densities, since the analog of the integration
is, in the matrix language, the trace.

We define anticommutators of supercharges by means of Dirac brackets defined on the canon-
ical variables of BFSS Hamiltonian (1.59):

Pi =
1

R
[Dt, Xi] , Π =

i

2R
θ† . (1.80)

As we argued in the preceding section, the Noether charges associated to the kinematical and
dynamical susy can be inferred from G and 1.73) and G̃ (1.75), and, in components, read

Q̃α = − 1

R
Trθα ,

Qα = − 1

2R

(
θ̄(Γi[Dt, Xi]−

1

2
Γij[Xi, Xj ])

)
α
.

(1.81)

We implement the non-commutative structure on the canonical variables (1.80) by defining the
Dirac brackets:

{(X i)ba, (Pj)
d
c}DB = δijδ

d
aδ
b
c , (1.82)

{(θα)ba, (θ
β)dc}DB = −iR(P+) β

α δdaδ
b
c , (1.83)

which will be specified by DB, so as not to mistake them for matrix commutators acting on the
adjoint of SU(N). Since there is no operator ordering prescription, the algebra (1.82)-(1.83)
conveys the full quantum structure of the theory.

Now, if we start by computing the algebra directly from traced operators such as (1.81), we
will be faced with subtleties related to the N →∞ limit of the matrix model. So following [230],
we will instead used supercharge densities as a starting point, which are simply the untraced
version of (1.81). Furthermore, we improve the dynamical supercharge density by symmetrising
it, thus ensuring the operator to be hermitian; this minimal improvement does not affect the
traced operator in the finite N limit, and, as argued in [230], vanishes in the smooth membrane
approximation to the theory, when N →∞.

Defining the supercharge densities to be

(q̃α)ba = − 1

R
(θα)

b
a ,

(qα)ba = −1

4

{
(Γ0iPi +

i

2R
Γij[Xi, Xj ])

β
α , θβ

} b

DB a
,

we have indeed Qα =Trqα and Q̃α =Trq̃α.
In the following, we take advantage of the Majorana condition applying to SO(1, 9) spinors

to restrict to a real representation thereof:

qα
.
= q†α = q>α , q̃α

.
= q̃†α = q̃>α .

In particular, using anticommutation relations for Γ−matrices and antisymmetry of Γij : (qα)ba =

(q̃†α)ba = −1
4{(Γ0iPi − i

2RΓij [Xi, Xj ])
α

β , θβ}ba.
We are now in a position to compute Dirac brackets of supercharges which still encode

the index structure of the gauge group (and thus remain sensitive to the tracing procedure).
However, this will in turn produce terms antisymmetric in both matrix and spinorial indices,
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which are similar to Schwinger terms with odd derivative of delta functions. Provided all charges
are regularised in the same way in the large N limit, these unwanted terms will disappear when
tracing on one of the supercharges, which is what we will eventually do.

The first Dirac brackets including kinematical supercharges only are easy to derive, yielding

{(q̃α)ba, Q̃
β}DB = − i

R
(P+) β

α δba . (1.84)

Next, the commutator mixing kinematical with dynamical supercharges reads

{(q̃α)ba,Q
β}DB =

i

R
{(θα)ba, (θ

γ)cd}DB

(
(Γ0i) β

γ (Pi)
d
c −

i

2R
(Γij) β

γ [Xi, Xj ]
d
c

)

= −1

2
(P+Γ0i) β

α (Pi)
b
a −

i

4R
(P+Γij) β

α [Xi, Xj ]
b
a .

Finally, computing the Dirac bracket between two dynamical supercharges is a little more in-
volved. For the sake of clarity, we split the Dirac bracket

{(qα)ba,Q
β}DB =

1

8

{{
(Γ0iPi+

i

2R
Γij [Xi, Xj ])

α′
α , θα′

} b

DB a
, θβ

′(
Γ0kPk−

i

2R
Γkl[Xk, Xl])

β
β′
)c
c

}
DB

(1.85)
into two parts: a part where we compute the Dirac bracket of the two fermionic variables:

({θα′ , θβ
′}DB × (...))

β b)
α (a (which will be denoted by a 0 subscript), and a part where only the

bosonic variables Pi and Xj are involved in the DB (denoted by a 1 subscript). Since all these
expressions should be symmetric in the U(N) indices, this will often be abbreviated (•)(ab)

.
=

1
2 [(•)ab + (•)ba]. Thus subscript (0) of expression (1.85) reads

{(qα)ba,Q
β}DB

∣∣∣
(0)

= − iR
4

(
P+

(
Γ0iPi +

i

2R
Γij[Xi, Xj ]

)(
Γ0kPk +

i

2R
Γkl[Xk, Xl]

)) β b)

α (a

= − iR
4

(
(PiP

i)ba(P+) β
α +

1

2R2
([Xi, Xj ]

2)ba(P+) β
α

+
i

R

{
[Xi, X

k], Pk
} b

DB a
(P+Γ0i) β

α +
1

4R2
([Xi, Xj ][Xk, Xl])

b
a(P+Γijkl) β

α

)

where getting from the first to the second line requires using such identities as [Γij ,Γ0k] =
−2Γ0(δkiΓj − δkjΓi) and {Γij,Γkl} = Γijkl + δilδjk − δikδjl. Clearly, in the final result, we have
not added extra symetrisation to expressions overtly symmetric in matrix indices.

The subscript (1) part of (1.85) reads, after factorising the left-over fermions

{(q(α)ba,Q
β)}DB

∣∣∣
(1)

= − i

4R

(
(Xm)d(a(θγ)

b)
c (θδ)cd − (Xm)dc(θ

δ)c(a(θγ)
b)
d

)(
(P+Γ0Γl)

γ
(α (P+Γlm)

β)
δ

−(P+Γ0Γl)
(β

δ (P+Γlm) γ
α)

)

=
i

4R

(
θγθδXm − θδXmθγ

)b)
(a

(
(P+Γ0Γl)

|γ|
(α (P+Γlm)β)δ (1.86)

+(P+Γ0Γl)
|δ|

(α (P+Γlm)β)γ
)

=
i

4R

(
(θᵀ[θ,Xk])

b)
(a (P+Γ0k) β

α − (θᵀP+Γ0k[θ,Xk])
b)
(a(P+) β

α

)
.

Let us briefly comment on the details of the calculation. To compute the first line of expression
(1.86), use

{(Pi)ba, [Xj , Xk]dc}DB = 2
(
δbcδ

[j
i (Xk])da − δdaδ[ji (Xk])bc

)
.
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Next, going from the first to the second line takes advantage of the Majorana representation
where all Dirac matrices can be chosen real (see Appendix A.4). In this basis, the matrices Γ0Γl
are symmetric, while Γlm are antisymmetric under interchange of spinor indices. The resulting
expression turns out to be symmetric for γ ↔ δ, which has been emphasized by this same
symbol. Finally, last line of expression (1.86) has been cast in this condensed form thanks to
the 10 dimensional Fierz identity in its component form (see Appendix A.6)

(P±Γ0Γl)
|γ|

(α (P±Γlm)β)δ + (P±Γ0Γl)
|δ|

(α (P±Γlm)β)γ

= −(P±Γ0Γm) β
α (P±)γδ + (P±Γ0Γm)γδ(P±) β

α .
(1.87)

To summarise, expressions (1.84), (1.85) and (1.86) generate the algebra

{(q̃α)ba, Q̃
β}DB = − i

R
(P+) β

α δba ,

{(q̃α)ba,Q
β}DB = −1

2
(P+) γ

α

(
i(Γ0i) β

γ Pi +
1

2R
(Γij) β

γ [Xi, Xj ]

)b

a

,

{(q(α)ba,Q
β)}DB = − iR

4

(
(PiP

i)ba(P+) β
α −

1

2R2
([Xi, Xj ]

2)ba(P+) β
α (1.88)

+
i

R
{[Xi, X

k], Pk}ba(P+Γ0i) β
α +

1

4R2
([Xi, Xj ][Xk, Xl])

b
a(P+Γijkl) β

α

− 1

R2
(θᵀ[θ,Xk])

b)
(a (P+Γ0k) β

α +
1

R2
(θᵀΓ0k[θ,Xk])

b)
(a (P+) β

α

)
.

By tracing on supercharge densities, we notice that the coefficient on the RHS of the first PB
of the algebra (1.88) can be rewritten as Trδba/R = N/R =TrP+. As for the the last PB of the
algebra (1.88), the first, second and sixth terms can be collected in the Hamiltonian (1.59) (with
Gauss constraint set to zero), thus yielding the familiar expression

{Q̃α, Q̃
β}DB = −i(P+) β

α TrP+,

{Q̃α,Q
β}DB = −1

2

(
i(P+Γ0i) β

α TrPi +
1

2R
(P+Γij) β

α Tr[Xi, Xj ]

)
(1.89)

{Q(α,Q
β)}DB = − i

2
H(P+) β

α +
1

2
Tr
(
P k[Xk, Xi] + Π[θ,Xi]

)
(P+Γ0i) β

α

− i

16R
Tr([Xi, Xj ][Xk, Xl](P+Γijkl) β

α ,

which reminds us of the IMF superalgebra (1.77)-(1.79). By identify the central charges on the
LHS of expressions (1.77)-(1.79) with the corresponding objects in the superalgebra (1.89), we
obtain the M(atrix) theory formulation of some of the branes of M-theory mentioned at the
beginning.

Thus we recognise in

Zi = − 1

4R
Tr
(
2i[Dt, X

k][Xk, Xi]− θ>[θ,Xi]
)
≡ − i

2
Tr
(
P k[Xk, Xi] + Π[θ,Xi]

)
,

Zij =
i

2R
Tr[Xi, Xj ] , Zijkl = − 6

R
Tr(X[iXjXkXl])

(1.90)

the (type IIA) fundamental string (longitudinal M2-brane) along with the (type IIA) D2-brane
(transverse M2) and the (type IIA) D4-brane (longitudinal M5).

We now restore the originial normalisation of [230], which is appropriate for discriminating
wrapped from unwrapped branes. This can be done by rescaling fields and derivative appearing
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in the brane charges (1.90) adequately: Xi →
√
RXi, iDt →

√
RiDt and θ → R3/4θ, leading to:

Zi ∝ RTr
(
2i[Dt, Xk][Xk, Xi]− θ>[θ,Xi]

)
, (1.91)

Zij ∝ iTr[Xi, Xj ] , (1.92)

Zijkl ∝ RTr(X[iXjXkXl]) , (1.93)

and we are happy to notice that objects wrapped along the eleventh dimension such as Zi and
Zijkl indeed scale as R, as pointed out earlier, while Zij does not exhibit any R dependence.

Since the first charge is proportional to the Gauss constraint and the last two are traces of
commutators, they obviously vanish for N finite. However, when taking the large N limit, these
expressions can be non-zero, as a consequence of matrices becoming infinite dimensional. In the
low energy supergravity description of the theory, these central charges would indeed appear
as integrals over total derivatives, and therefore would be non-vanishing only on topologically
non-trivial configuration of fields. This interpretation of central charges as topological objects
is advocated in [231].

The algebric method used throughout this section seems to give a systematic analysis of the
brane configurations in M(atrix) theory. Still, if we go through the brane scan given at the
beginning of this section, we notice a striking anomaly in the list (1.90): among the transverse
1
2 -BPS states only the transverse M2-brane Zij appears, whereas the transverse five-brane is
absent. We will came back to this puzzle below.

The construction of brane charges from traces over products of matrix commutators can be
extended to include couplings of extended objects of matrix theory to supergravity fields. These
new object resulting from tracing over such configurations correspond to multipole moments.
More details can be found in [157, 194].

One can for example construct the multipole moments of the membrane

Iij(a1...al) =

∫
d2σ {X i, Xj}Xa1 · . . . ·Xal

in terms of matrix moments by tracing the charge density defined from (1.92)

Zij(a1...al) = −2πiSTr
(
[Xi, Xj ]Xa1 · . . . ·Xal

)
. (1.94)

The choice of symmetrised trace STr is a prescription dictated by explicite calculations of inter-
actions in matrix theory.

1.5 M-theory branes from M(atrix) theory

In this section, we will show how the central charges (1.90) are related to extended objects in
M(atrix) theory and how one can construct the various 1

2 - or 1
4 -BPS branes given in the list at

the end of Section 1.4. A more thorough analysis can be found in [233, 234], where matrix model
prediction for the energy and charges of various configurations of branes are put in perspective
with the results of the DBI theory.

1.5.1 Transverse membranes

Consider a membrane in compact space, wrapped on a torus T 2 and described by the appropriate
reduction of the U(N) SYM theory (1.50). It can carry in general k ∈ � units of magnetic flux,
given by the first Chern number of the U(N) bundle over T 2:

C1 =

∫
c1(F ) =

1

2π

∫
F = k ∈ � .
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This Chern number is non-zero for a non-trivial bundle. Indeed, decomposing U(N) according
to its normal subgroup U(1):

U(N) =
U(1) × SU(N)

� N

the gauge curvature F has its trace determined from the U(1) part of this decomposition, and
the total field strength with C1 = k is given by F = k

N 1IN×N .
T-duality teaches us that we can construct a D(p + 2n)-branes from a sytem of lower-

dimensional interacting Dp-branes by representing the transverse coordinates by non-commutative
matrices. In particular, we are interested here in constructing the D2-brane of type IIA string
theory appearing in BFSS theory, from N D0-branes on T 2. We start from a 1-brane (a string)
wrapping the torus diagonally along (N, k), with N and k relatively prime. Taking the surface
of the torus to by given by AT 2 = (2πRm) × (2πRn). Then, working in the BFSS coordinates
where 2πα′ = 1, the diagonal 1-brane configuration satisfies [133]:

[iDm, X
n] =

iRnk

RmN
1IN×N .

T-dualising along xn, sending Rn → R̂n = α′
Rn

= 1
2πRn

, we obtain in the dual picture a configu-
ration of N D2-branes with k units of flux:

[iDm, iDn] = −iFjk =
ik

2πRmR̂nN
1IN×N

On the other hand, one can instead T-dualise along xm:

[Xm, Xn] =
2πiR̂mRnk

N
1IN×N

which gives us a sytem of N D0-branes carrying an overall D2 charge k.
Then, a membrane wrapped on a two-torus can be constructed from M(atrix) theory by

choosing a system of N D0-branes described by two matrices statisfying:

Tr[Xm, Xn] =
iAT 2k

2π
(1.95)

with AT 2 = 4π2R̂mRn the area of the torus. The expression (1.95) gives the surface charge Zmn
(1.92) of the longitudinal membrane on T 2.

Fixing the two directions of the T 2 to be (m,n) = (1, 2), one can use the BFSS Hamiltonian
(1.59) to calculate the potential energy for such a (stationary) configuration:

H = − 1

2R
Tr([X1, X2])2 =

A2
T 2k

2

8π2RN
. (1.96)

We may now compare this result with the energy predicted from the DBI theory (1.40).
The energy for a bound state of Np p-branes and Np+2 (p + 2)-branes is given by EDBI =√

(NpEp)2 + (Np+2Ep+2)2 (see [233] for instance), so that, in our case, we have:

EDBI =

√
(Nτ0)

2 + (AT 2kτ2)2 = Nτ0 +
(AT 2kτ2)

2

2Nτ0
+O(N−3) .

The second term in this expansion exactly reproduces the static D2-brane energy (1.96) ( re-
member that we work in the conventions 2πα′ = 1 where R = gs

√
α′):

ED2 =
(AT 2k)2

2(2π)4NR(α′)2
=

A2
T 2k

2

8π2RN
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Setting k = 1 and using the relation R = 2πl3P , which can be obtained by matching the co-
efficients of the Lagrangian version of the regularised supermembrane Hamiltonian (1.39) with
those of the BFSS Lagrangian (1.56), one can recast expression (1.96) into the form:

ED2 =
(T2AT 2)2R

2N
≡ e2T

2TrP+

with T−1
2 = (2π)2l3P the membrane tension and eT the surface tension energy (1.41). This is the

scaling law for the energy of a 1
2 -BPS transverse membrane, as explained in paragraph a) at the

end of Section 1.4.

1.5.2 Spherical membranes

Another illustration of 1
2 -BPS transverse membrane with light-front energy E =

e2T
2TrP+ is the

spherical membrane [158]. The matrix approximation to a membrane in 11D embedded in the
sphere:

∑3
i=1(x

i)2 = RS2 , is given, according to eqn.(1.22), by the identification

Xi =
2RS2

N
Li , i = 1, 2, 3 , (1.97)

where the Li are the generators SU(2) for its N -dimensional representation, and satisfy the
equation:

3∑

i=1

(Xi)2 =

(
2RS2

N

)2

C2(N)1I = R2
S2

(
1− 1

N2

)
1I . (1.98)

Here, C2(N) = N2−1
4 is the quadratic Casimir of the N -dimensional representation of SU(2).

We see in particular from the above equation that the D0-branes forming the membrane bound
state can be seen as somehow localised on a (fuzzy) sphere of radius RS2 +O(N−2).

The tension energy of the stationary membrane is given this time by:

eT = T2AS2 =
4πR2

S2

(2π)2l3P
=
R2
S2

πl3P
=

2R2
S2

R
. (1.99)

We work again in string units where R = 2πl3P . Then, the light-front energy E =
e2T

2TrP+ perfectly
matches the leading term in Hamiltonian for the (stationary) bosonic membrane (1.27):

H = − 1

4R

∑

i,j

Tr
(
[Xi, Xj ][X

i, Xj ]
)

= +
2R4

S2

NR

(
1− 1

N2

)
.

To compute this last expression, we have used the SU(2) commutation relations (1.23) and the
equation for the fuzzy sphere (1.98).

Finally, to illustrate formula (1.94), let us compute the first dipole moment for the spherical
membrane:

Z12(3) =
4π(RS2)3

3

(
1− 1

N

)
, cyclicly on the indices 1,2,3 .

This matches the smooth spherical membrane dipole moment up to O(N−2).

1.5.3 Longitudinal fivebranes

Proceeding as for the transverse membrane, we can construct a D4-brane of type IIA theory
on a T 4 by choosing a configuration of D0-branes in the matrix model which satisfy the charge
volume relation:
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Tr
(
εijklX

iXjXkX l
)

=
VT 4

2π2

where εijkl is Levi-Civita tensor on the D4-brane world-volume, with ε1234 = −1. This corre-
sponds to a longitudinal fivebrane in M(atrix) theory with charge Zijkl (1.93)

As mentioned in paragraph b) at the end of Section (1.4), some of these longitudinal five-
branes preserve only one fourth of the supersymmetry. These objects can be directly constructed
from the supersymmetry variation for a static solution of the matrix model:

δεθ = − i
4
[Xi, Xj ]Γ

ijε , δ̃ηθ = 0 .

Since we are looking for a 1
4 -BPS state, we require half of the dynamical variation δεθ to vanish.

This is achieved for a self-dual solution of the form

[Xi, Xj ] =
1

2!
εijkl[X

k, X l] . (1.100)

Contracting both sides with [X i, Xj ] and using [X i, Xj ][Xi, Xj ] = 4X[iXjXkXl], we obtain the
longitudinal fivebrane charge Zijkl (1.93). Clearly, when the system is compactified on a T 4,
such an object becomes, after T-duality (1.55), an instanton solution of a (4 + 1)-dimensional
gauge theory on the dual torus.

We now consider the 1
2 -BPS longitudinal fivebranes mentioned in paragraph c) at the end

of Section (1.4). We start by considering solutions carrying no membrane charge. In order to
preserve one half of the supersymmetry, a static solution should cancel its kinematical variation
against its dynamical one. Since the kinematical supersymmetry variation is now non zero

δ̃ηθ = η1I ,

a static solution with the same dynamical variation as in expression (1.100) will compensate it
for

[Xi, Xj ] = −iFij1I (1.101)

where the gauge curvature Fij satisfies FijΓ
ijε = 4η.

Both these solutions can indeed be shown to solve the static classical equations of the matrix
model, and exist only in the large N limit, as expected from their central charge (1.90).

Finally, 1
2 -BPS longitudinal fivebranes carrying membrane charge can be constructed classi-

cally by two orthogonal transverse two-planes embedded in the D4-brane world-volume. In fact,
this configuration is not limited to wrapped five-banes (transverse D4 in type IIA theory), but
also extends to transverse D6 and D8-branes (which are difficult to interpret in M-theory, since
there are no *M7 and *M8-branes and ”M9”-branes are the rigid hyperplanes used for anomaly
cancellation in E8 × E8 heterotic string theory), where three and four orthogonal transverse
two-planes can be embedded. Returning now to our longitudinal fivebrane, the construction
with two embedded orthogonal transverse two-planes requires four fields Xi which, according to
a uniqueness theorem for irreducible reps of the canonical algebra, must be elements of H1⊗H2

and satisfy
X2i−1 = qi , X2i = pi , for i = 1, 2 ,

[pi , qj ] = −iF iδij , for i, j = 1, 2 ,
(1.102)

with Fi ∝ (
√
N)−1. As a consequence, the D4-brane now carries two charges Z12 and Z34

which must fulfill the condition TrP+Z1234 = Z12Z34. Our transverse D4-brane may thus
be interpreted as a wrapped M5-brane, ie a longitudinal five-brane with stacks of membranes
embedded in it.
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Finally, we will briefly discuss the fate of the transverse five-brane in M(atrix) theory, since its
absence seems incompatible with Lorentz invariance of the light-cone version of the theory (this
discussion will be more detailed in the next section). Two seemingly incompatible interpretations
have been put forward:

I) Relying on a construction where the initial transverse five-brane is wrapped around a
transverse T 3, reference [123] proposes that these states can be described by the S-dual of
unwrapped membrane states in the four-dimensional N = 4 super Yang-Mills theory on
the dual T̂ 3. This construction will be made more precise in the following subsection.

II) On the other hand, reference [230] rather interprets this absence as an artefact of the
light-cone description of the matrix model. Since transverse D-branes are not translational
invariant in the longitudinal direction, they cannot be static objects when boosted to IMF.
They should therefore disappear from the IMF algebra (1.89) too. One may wonder from
this argument why then membranes should be allowed as transverse objects. A tentative
answer could be that, as has been pointed out in section 1.1.3, membranes are elementary
degrees of freedom of the matrix theory, while five-branes appear as D-brane objects 2.

Obviously, the two arguments above clash, and a solution should be found to reconcile the
evidence that dynamical transverse five-branes might appear in the large N limit of M(atrix)
theory and restore full Lorentz invariance (this covariant generalisation of the matrix model
having yet to be found). In the next section, a tentative solution to this conendrum due to
[123, 232] will be proposed.

1.5.4 Transverse fivebranes

To conclude this discussion on p-brane states in M(atrix) theory, we review in a condensed form
the argument outlined in I) above. As seen in the last section, there are two ways in which an M-
theory five-brane can appear in M(atrix) theory. If it is wrapped along the longitudinal direction
in which the infinite boost is performed, it gives rise to a D4-brane, while if unwrapped in this
direction, it appears as a transverse five-brane in M(atrix) theory. In the preceding section we
have seen how to construct longitudinal five-branes concretely in terms of matrix variables. For
transverse five-branes unfortunately, we only have indirect evidence of their existence.

Ref.[123] gives a proposal which uses the duality between M-theory compactified on T 3 in
directions {x8;x9;x10} and M-theory on the dual torus T̂ 3, summarised by:

M-theory

{gAB ;R7, R8, R9}
=

M-theory

{M2
PV

2/3
3 gAB ; M−2

P V
−2/3
3 R8 ; M−2

P V
−2/3
3 R7 ; M−2

P V
−2/3
3 R9}

, (1.103)

with V3 = R7R8R9 the volume of the original T 3. Since M-theory on T 3 descends to type IIA
string theory on T 2, the duality transformation above corresponds to a double T-duality in type
IIA theory, and thus to an automorphism of the latter. The longitudinal direction is taken to
be x10.

The construction above can be generalised to include non-vanishing vacuum expection value
of the three-form in the torus directions, leading to the transformation:

τ = iM3
PV3 + C789

T789−→ −1

τ
. (1.104)

2In this respect, a parallel can be drawn with string theory, where large transverse strings are allowed in
light-cone formalism, contrary to D-branes. Technically, the impossibility of D-branes in the light-cone frame
stems from the Virasoro condition ∂σX

− = ∂τXi ∂σX
i, which always induces Neumann boundary conditions

for transverse variable, whatever (Neumann or Dirichlet) boundary conditions we choose for the longitudinal
coordinate.
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Following the arguments of the previous sections, the LHS of eqn.(1.103) can be described by
a regular M(atrix) model on T 3, while the RHS can be captured by N = 4 super-Yang-Mills
theory with gauge group U(∞) on the dual torus T̂ 3. Its dynamics is given by the Hamiltonian
version of expression (1.50), with the convention 2πα′ = 1. The coupling constant is g2

3 = 2πgs
and we have rescaled the covariant time derivatives as Dt → g2

3Dt:

H =
1

2

∫
d3x̂Tr

(
g2
3

−→
E 2 +

1

g2
3

−→
B 2 +

θ

8π2

−→
E · −→B + g2

3

6∑

a=1

[Dt, Xa]2

+
1

g2
3

6∑

a=1

[Di, Xa]2 +
1

2g2
3

6∑

a,b=1

[Xa, Xb]2+ fermions
) (1.105)

with coupling constant:

τ =
4πi

g2
3

+
θ

8π2
= iM3

PV3 + C789 .

Then, the (generalised) T-duality of M-theory (1.104) corresponds to an S-duality: τ
S−→ − 1

τ

on the SYM side. The sides of the dual torus T̂ 3 are then rescaled by (Im τ)2/3 without change
of shape, according to eqn.(1.103), so that one can use conformal invariance of the SYM theory

to fix the volume of T 3 to 1, with appropriate rescaling of the scalars Xa →M−1
P (V3)

− 1
3Xa.

In particular the authors of [123] have shown that configurations with one unit of magnetic
or electric flux in the N = 4 super-Yang-Mills theory

1

2π

∫

bT 3

TrBij = 1 ,
1

2π

∫

bT 3

TrEi = 1 , (1.106)

can be reproduced by matrices acting on the twisted U(N) bundle. For instance:

[Xi, Xj ] = iBij =
2π

N
i1IN×N

so that the magnetic field in the super-Yang-Mills theory is dual to the BFSS membrane when
N →∞, according to eqn.(1.95). Likewise, the electric flux in (1.106) is reproduced by D0-brane
momentum in the BFSS theory. To sum up, the correspondence is:

Tr[X i, Xj ] = i

∫

bT 3

TrBij , Tr[Dt, X i] = g2
3TrPi =

∫

bT 3

TrEi .

Then, the electric-magnetic duality in the super Yang-Mills theory corresponds to a T-duality
transformation on the M(atrix) theory side, exchanging Kaluza-Klein momentum modes with
membrane winding modes.

Finally, one can get the complete U-duality group of M-theory on T 3 by combining the
SL(2, � ) S-duality group of SYM theory with the modular group of the dual torus T̂ 3, namely
SL(3, � ).

Consider now an infinite M2-brane extending along the non-compact directions {x5;x6} on
the LHS of eqn.(1.103), the triple T-duality in directions {x7;x8;x9} will turn it into a M5-brane
extending along {x5;x6} and wrapped around {x̂7; x̂8; x̂9}, which corresponds to a transverse
five-brane (T5) in M(atrix) theory. In the small radius limit MPR9 → 0, the M2-brane descends
to an infinite D2-brane of type IIA theory along {x5;x6}, while the transverse M5-brane gives
a D4-brane of type IIA theory wrapped around {x̂7; x̂8}. This is summarised in the following
commuting diagram:

M-theory: M2 [5, 6]
T789−−−−→ M-theory: M5 [5, 6, 7̃, 8̃, 9̃]

yMPR9→0

yMPR9→0

type IIA: D2 [5, 6]
T78−−−−→ M-theory: D4 [5, 6, 7̃, 8̃]

(1.107)
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Now, the unwrapped M2-brane in the diagram (1.107) corresponds to a configuration in the
N = 4 U(∞) super-Yang-Mills theory (1.105) given by expression (1.101):

[X5, X6] = −iF561I

where the scalars X5 and X6 have condensed in the form X5 = p+(oscillators) and X6 =
q+(oscillators), with p and q being∞×∞ canonical matrices (1.102). Then, the wave-function
|M2; 5, 6〉 corresponding to this configuration is related by S-duality to the wave-function for
the transverse T5-brane wrapped on T 3 (1.107):

|T5; 5, 6, 7̂, 8̂, 9̂〉 = S |M2; 5, 6〉

where S is the S-duality operator.
As a first remark, this construction is subject to finding an explicit representation of S-duality

in 4D super-Yang-Mills theory and its generalisation to U(∞) gauge group, which are still open
problems. Only then can one hope to have a concrete realisation of the transverse five-brane
state, and decompactify it to 11D M-theory. Note that in the decompactification limit, we take
N → ∞ before sending V3 → ∞ or alternatively g2

3 → 0 (1.104), so that the effective coupling
Ng2

3 is never perturbative.
This limiting process calls for another remark, namely that we must take N → ∞ before

performing S-duality. However, as mentioned before, it is unclear how S-duality in super-Yang-
Mills theory behaves in this large N limit, so that this whole construction must be considered
with great caution.

With this in mind, it can be shown [232] that the object thus constructed couples correctly
to the supergravity fields even in the absence of a transverse fivebrane charge. This would in
principle give a solution to the puzzle mentioned at the end of the last section. But it also tend
to suggest that transverse fivebranes appear more like solitons in M(atrix) theory, and thus are
local objects which do not carry any independent conserved quantum number.

1.6 Outlook

In this chapter, we have shown how a regularisation of the supermembrane Hamiltonian could
be achieved in the light-cone gauge, by replacing the target-space fields by N ×N matrices and
letting N → ∞. This theory is automatically second-quantised, and we have pointed out that
the resulting quantum membrane supersymmetric action was similar to the low-energy action for
infinitely many D0-branes. We have then shown how this supersymmetric quantum mechanics
for U(N) matrices has been related to M-theory on the (discrete) light-front for N finite, and
thus describes a low-energy limit of type IIA string theory where all degrees of freedom except
D0-branes have decoupled.

In the large N limit, this M(atrix) theory is conjectured to describe all of M-theory in the
Infinite Momentum Frame. Thus the single matrix degrees of freedom, describing D0-branes or
bound states at threshold of N D0-branes, have many of the expected properties of the physical
supergraviton with longitudinal momentum P10 = N/R. Since the theory is second quantized,
the Fock space of M(atrix) theory contains, in addition, multiple supergraviton.states in its
spectrum.

Moreover, the elementary matrix degrees of freedom can be chosen appropriately to build
configuration of D0-branes which describe extended objects, such as transverse and longitudinal
supermembrane and longitudinal fivebrane of M-theory. However, longitudinal fivebranes are
known only for very special geometries, and no complete description for these objects exists yet,
even at the classical level. In this perspective, progress in the field of fuzzy geometry (including
fuzzy spheres, fuzzy projective spaces etc.) and its implementation in matrix theory, along the
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line of [170, 214, 2, 12, 15] could be a lead for future work. Moreover, the puzzle remains as to the
existence in M(atrix) theory of the transverse fivebrane, which would reproduce the NS5-brane
of type IIA string theory by the Seiberg-Sen limiting argument. If it can be shown that there is
no good reason why the transverse fivebrane should disappear when taking the IMF limit, while
transverse membranes survive, one might question whether D0-branes are truely fundamental
degrees of freedom in this case, and whether the BFSS theory really gives a complete description
of this sector of M-theory.

We have also mentioned that, for finite N , perturbative loop calculations in M(atrix) theory
are in perfect agreement with tree-level graviton scattering amplitudes in DLCQ 11D supergrav-
ity, up to a reasonable loop order. However, they do not seem to correctly reproduce M-theory
quantum corrections to these amplitudes. So, until one is able to take the large N limit in
such amplitudes and deal with all the subtleties attached to this procedure, it remains unclear
whether M(atrix) theory is correct. For finite N , the BFSS matrix model thus seems incom-
plete, and it would be desirable to find an alternative matrix model which exactly reproduces
the extra terms one needs to add to the dimensionally reduced SYM theory to find agreement
with M-theory. This might even prove to be necessary if the large N limits fails to reproduce
quantum corrected DLCQ 11D supergravity.

Finally, up to now, M(atrix) theory has only been formulated on simple backgrounds, such
as the flat background and the pp-wave [26] and deSitter [181, 134] background, which gives but
a glimpse of what the (presumably) very rich and complicated vacuum structure of M-theory
can be. An extension of the matrix model description to more involved backgrounds is a path
that must be further investigated if this theory is to claim relevancy to M-theory. In addition,
how to compactify M(atrix) theory on arbitrary compact spaces is still an open question, mainly
due to the fact that a simple toroidal compactification of the theory is much more complex than
for ordinary field or string theory, since, already for the basic T d compactification, the quantum
mechanics for U(N) matrices becomes, in the large N limit, a supersymmetric nonabelain gauge
theory in d+ 1 dimensions.

In any case, until more evidence is found in favour of M(atrix) theory, we still can say that
the M(atrix) model approach gives a well-defined and practical framework in which to access
at least some portion of M-theory on the light-front, giving a concrete and closed mathematical
formulation of the theory from which one can carry out ab intio computations, even though these
perturbative loop calculations still remain short of being able to tackle the fundamental issues
of M-theory. In this perspective, M(atrix) theory should be considered one more step toward
a background independent and microscopic formulation of M-theory and, more generally, of
a quantum theory of gravity, and give us some hints of how to think about the fundamental
degrees of freedom of M-theory.

In the next chapter, we will turn to a more constructive approach to M-theory based on a
matrix theory defined in purely algebraic terms. When reduced to eleven dimensions, this matrix
model will be shown to reproduce, in the IMF limit, the BFSS theory with extra corrective terms,
and give possible answers to some of the questions raised above.
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Chapter 2

Supermatrix models for M-theory
based on osp(1|32, R)

This chapter is the reproduction of the article with identical title published in:

Nucl. Phys. B 641 (2002) 61.

2.1 Introduction

In the absence of a microscopic description of M-theory, some of its expected features can be
obtained by looking at the eleven-dimensional superalgebra [238], whose central charges corre-
spond to the extended objects, i.e. membranes and five-branes present in M-theory. Relations
with the hidden symmetries of eleven-dimensional supergravity [81] and its compactifications
and associated BPS configurations (see e.g. [92, 246] and references therein) underlined further
the importance of the algebraic aspects. It has been conjectured [37] that the large superalgebra
osp(1|32) may play an important and maybe unifying rôle in M and F theory [240].

In this chapter, we will explore further this possible unifying rôle and study its implications
for matrix models. One of the main motivations is to investigate the dynamics of extended
objects such as membranes and five-branes, when they are treated on the same footing as the
“elementary” degrees of freedom. In order to see eleven and twelve-dimensional structures
emerge, we have to embed the SO(10, 2) Lorentz algebra and the SO(10, 1) Poincaré algebra
into the large osp(1|32) superalgebra. This will yield certain deformations and extensions of
these algebras which nicely include new symmetry generators related to the charges of the
extended objects appearing in the eleven and twelve-dimensional theories. The supersymmetry
transformations of the associated fields also appear naturally.

Besides these algebraic aspects, we are interested in the dynamics arising from matrix models
derived from such algebras. Following ideas initially advocated by Smolin [226], we start with
matrices M ∈ osp(1|32) as basic dynamical objects, write down a very simple action for them
and then decompose the result according to the different representations of the eleven and
twelve-dimensional algebras. In the eleven-dimensional case, we expect this action to contain
the scalars Xi of the BFSS matrix model and the associated fermions together with five-branes.
In ten dimensions, cubic supermatrix models have already been studied by Azuma, Iso, Kawai
and Ohwashi [229] (more details can be found in Azuma’s master thesis [11]) in an attempt to
compare it with the IIB matrix model of Ishibashi, Kawai, Kitazawa and Tsuchiya [151].

To test the relevance of our model, we try to exhibit its relations with the BFSS matrix model.
For this purpose, we perform a boost to the infinite momentum frame (IMF), thus reducing the
explicit symmetry of the action to SO(9). Then, we integrate out conjugate momenta and
auxiliary fields and calculate an effective action for the scalars Xi, the associated fermions, and
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higher form fields. What we obtain in the end is the BFSS matrix model with additional terms.
In particular, our effective action explicitly contains couplings to 5-brane degrees of freedom,
which are thus naturally incorporated in our model as fully dynamical entities. Moreover, we
also get additional interactions and masslike terms. This should not be too surprising since
we started with a larger theory. The interaction terms we obtain are somewhat similar to the
higher-dimensional operators one expects when integrating out (massive) fields in quantum field
theory. This can be viewed as an extension of the BFSS theory describing M-theoretical physics
in certain non-Minkowskian backgrounds.

The outline of this paper is the following: in the next section we begin by recalling the
form of the osp(1|32) algebra and the decomposition of its matrices. In section 3 and 4, we
study the embedding of the twelve-, resp. eleven-dimensional superalgebras into osp(1|32), and
obtain the corresponding algebraic structure including the extended objects described by a six-
resp. five-form. We establish the supersymmetry transformations of the fields, and write down
a cubic matrix model which yields an action for the various twelve- resp. eleven-dimensional
fields. Finally, in section 5, we study further the eleven-dimensional matrix model, compute an
effective action and do the comparison with the BFSS model.

2.2 The osp(1|32, R) superalgebra

We first recall some definitions and properties of the unifying superalgebra osp(1|32,R) which
will be useful in the following chapters. The superalgebra is defined by the following three
equations:

[ZAB , ZCD] = ΩADZCB + ΩACZDB + ΩBDZCA + ΩBCZDA ,

[ZAB , QC ] = ΩACQB + ΩBCQA , (2.1)

{QA, QB} = ZAB ,

where ΩAB is the antisymmetric matrix defining the sp(32,R) symplectic Lie algebra. Let us
now give an equivalent description of elements of osp(1|32,R). Following Cornwell [70], we call
RBL the real Grassmann algebra with L generators, and RBL0 and RBL1 its even and odd
subspace respectively. Similarly, we define a (p|q) supermatrix to be even (degree 0) if it can be
written as:

M =

(
A B
F D

)
.

where A and D are p× p, resp. q × q matrices with entries in RBL0, while B and F are p× q
(resp. q × p) matrices, with entries in RBL1. On the other hand, odd supermatrices (degree 1)
are characterized by 4 blocks with the opposite parities.

We define the supertranspose of a supermatrix M as1:

MST =

(
A> (−1)deg(M)F>

−(−1)deg(M)B> D>

)
.

If one chooses the orthosymplectic metric to be the following 33× 33 matrix:

G =




0 −1I16 0
1I16 0 0
0 0 i


 ,

1We warn the reader that this is not the same convention as in [11].
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(where the i is chosen for later convenience to yield a hermitian action), we can define the
osp(1|32,R) superalgebra as the algebra of (32|1) supermatrices M satisfying the equation:

MST ·G+ (−1)deg(M)G ·M = 0 .

From this defining relation, it is easy to see that an even orthosymplectic matrix should be of
the form:

M =




A B Φ1

F −A> Φ2

−iΦ>
2 iΦ>

1 0


 =

(
m Ψ

−iΨ>C 0

)
, (2.2)

where A,B and F are 16×16 matrices with entries in RBL0 and Ψ = (Φ1,Φ2)
> is a 32-components

Majorana spinors with entries in RBL1. Furthermore, B = B>, F = F> so that m ∈ sp(32,R)
and C is the following 32× 32 matrix:

C =

(
0 −1I16

1I16 0

)
, (2.3)

and will turn out to act as the charge conjugation matrix later on.
Such a matrix in the Lie superalgebra osp(1|32,R) can also be regarded as a linear combi-

nation of the generators thereof, which we decompose in a bosonic and a fermionic part as:

H =

(
h 0
0 0

)
+

(
0 χ

−iχ>C 0

)
= hABZAB + χAQA (2.4)

where ZAB and QA are the same as in (2.1). An orthosymplectic transformation will then act
as:

δ
(1)
H = [H, •] = hAB[ZAB , •] + χA[QA, •] = δ

(1)
h + δ(1)χ . (2.5)

This notation allows us to compute the commutation relations of two orthosymplectic trans-
formations characterized by H = (h, χ) and E = (e, ε). Recalling that for Majorana fermions

χ>Cε = ε>Cχ, we can extract from [δ
(1)
H , δ

(1)
E ] the commutation relation of two symplectic

transformations:

[δ
(1)
h , δ(1)e ] B

A =

(
[h, e] B

A 0
0 0

)
, (2.6)

the commutation relation between a symplectic transformation and a supersymmetry:

[δ
(1)
h , δ(1)χ ] B

A =

(
0 h D

A χD
i(χ>C)Dh B

D 0

)
, (2.7)

and the commutator of two supersymmetries:

[δ(1)ε , δ(1)χ ] B
A =

(
−i(χA(ε>C)B − εA(χ>C)B) 0

0 0

)
. (2.8)

2.3 The twelve-dimensional case

In order to be embedded into osp(1|32,R), a Lorentz algebra must have a fermionic representa-
tion of 32 real components at most. The biggest number of dimensions in which this is the case
is 12, where Dirac matrices are 64 × 64. As this dimension is even, there exists a Weyl repre-
sentation of 32 complex components. We need furthermore a Majorana condition to make them
real. This depends of course on the signature of space-time and is possible only for signatures
(10, 2), (6, 6) and (2, 10), when (s, t) are such that s− t = 0 mod 8. Let us concentrate in this
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paper on the most physical case (possibly relevant for F-theory) where the number of timelike
dimensions is 2. However, since we choose to concentrate on the next section’s M-theoretical
case, we will not push this analysis too far and will thus restrict ourselves to the computation
of the algebra and the cubic action.

To express the osp(1|32,R) superalgebra in terms of 12-dimensional objects, we have to
embed the SO(10, 2) Dirac matrices into sp(32,R) and replace the fundamental representation
of sp(32,R) by SO(10, 2) Majorana-Weyl spinors. A convenient choice of 64 × 64 Gamma
matrices is the following:

Γ0 =

(
0 −1I32

1I32 0

)
, Γ11 =

(
0 Γ̃0

Γ̃0 0

)
, Γi =

(
0 Γ̃i

Γ̃i 0

)
∀ i = 1, . . . , 10, (2.9)

where Γ̃0 is the 32 × 32 symplectic form:

Γ̃0 =

(
0 −1I16

1I16 0

)

which, with the Γ̃i’s, builds a Majorana representation of the 10+1-dimensional Clifford algebra
{Γ̃µ, Γ̃ν} = 2ηµν1I32 for the mostly + metric . Of course, Γ̃10 = Γ̃0Γ̃1 . . . Γ̃9. This choice
has (Γ0)2 = (Γ11)2 = −1I64, while (Γi)2 = 1I64, ∀i = 1 . . . 10, and gives a representation of
{ΓM ,ΓN} = 2ηMN1I64 for a metric of the type (−,+, . . . ,+,−). As we have chosen all Γ’s to be
real, this allows to take B = 1I in Ψ∗ = BΨ, which implies that the charge conjugation matrix
C = Γ0Γ11, i.e.

C =

(
−Γ̃0 0

0 Γ̃0

)
.

This will then automatically satisfy:

CΓMC−1 = (ΓM )> , CΓMNC−1 = −(ΓMN )> (2.10)

and more generally:
CΓM1...MnC−1 = (−1)n(n−1)/2(ΓM1...Mn)> . (2.11)

The chirality matrix for this choice will be:

Γ∗ = Γ0 . . .Γ11 =

(
−1I32 0

0 1I32

)
.

We will identify the fundamental representation of sp(32,R) with positive chirality Majorana-
Weyl spinors of SO(10, 2), i.e. those satisfying: P+Ψ = Ψ, for:

P+ =
1

2
(1 + Γ∗) =

(
0 0
0 1I32

)
.

Decomposing the 64 real components of the positive chirality spinor Ψ into 32+32 or 16+16+
16 + 16, we can write: Ψ> = (0,Φ>) = (0, 0,Φ>

1 ,Φ
>
2 ). Because Ψ = Ψ†Γ0Γ11 = Ψ>C, this

choice for the charge conjugation matrix C is convenient since it will act as C in equation (2.3)
(though with a slight abuse of notation), and thus:

(0, 0,−iΦ>
2 , iΦ

>
1 ) = (0,−iΦ>Γ̃0) = −iΨ>C = −iΨ.
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2.3.1 Embedding of SO(10, 2) in OSp(1|32, R)

We would now like to study how the Lie superalgebra of OSp(1|32,R) can be expressed in
terms of generators of the super-Lorentz algebra in 10+2 dimensions with additional symmetry
generators. In other words, if we separate the sp(32,R) transformations h into a part sitting
in the Lorentz algebra and a residual sp(32,R) part, we can give an explicit description of
the orthosymplectic algebra (2.1) in the form of an enhanced super-Lorentz algebra, where
the central charges of the super-Lorentz algebra appear as new generators of the enhanced
superalgebra.

To do so, we need to expand a symplectic matrix in irreducible tensors of SO(10, 2). This
can be done as follows:

h B
A =

1

2!
(P+ΓMN ) B

A hMN +
1

6!
(P+ΓM1...M6) B

A h+
M1...M6

(2.12)

where the + on hM1...M6 recalls its self-duality, and the components of h in the decomposition
in irreducible tensors of SO(10, 2) are given by hMN = − 1

32Trsp(32,R)(hΓMN ) and h+
M1...M6

=

= − 1
32Trsp(32,R)(hΓM1...M6). Indeed, a real symplectic 32 × 32 matrix satisfies mΓ̃0 = −Γ̃0m>,

and C acts like Γ̃0 on P+ΓM1...Mn . Furthermore, (2.11) indicates that:

C(1 + Γ∗)Γ
M1...Mn = (−1)n(n−1)/2((1 + (−1)nΓ∗)Γ

M1...Mn)TC . (2.13)

Thus, P+ΓM1...Mn is symplectic iff n is even and (−1)n(n−1)/2 = −1. For 0 ≤ n ≤ 6, this is only
the case if n = 2 or 6. As a matter of fact, the numbers of independent components match since:
12 · 11/2 + 1/2 · 12!/(6!)2 = 528 = 16 · 33.

The symplectic transformation δh may then be decomposed into irreducible 12-dimensional
tensors of symmetry generators, namely the so(10, 2) Lorentz algebra generator JMN and a new
6-form symmetry generator JM1...M6 . To calculate the commutation relations of this enhanced
Lorentz algebra, we will choose the following representation of the symmetry generators:

JMN =
1

2!
P+ ΓMN , JM1...M6 =

1

6!
P+ ΓM1...M6 .

so that a symplectic transformation will be given in this base by:

h = hMN J
MN + hM1...M6 J

M1...M6 .

We will now turn to computing the superalgebra induced by the above bosonic generators
and the supercharges for D = 10+2. The bosonic commutators may readily be computed using:

[ΓM1...Mk
,ΓN1...Nl

] =





b(min(k,l)−1)/2c∑

j=0

(−1)k−j−1 2 · (2j + 1)!

(
k

2j + 1

)(
l

2j + 1

)
×

×η[M1[N1
. . . ηM2j+1N2j+1ΓM2j+2...Mk]N2j+2...Nl] if k · l is even and,

(min(k,l)−1)/2∑

j=0

(−1)j 2 · (2j)!
(
k

2j

)(
l

2j

)
×

×η[M1[N1
. . . ηM2jN2j ΓM2j+1...Mk]N2j+1...Nl] if k · l is odd.

(2.14)
On the other hand, for the commutation relations involving fermionic generators, we proceed as
follows. We expand equation (2.7) of the preceding chapter in irreducible tensors of SO(10, 2):

[δχ, δh] = − 1

2!
χA hMN (P+ ΓMN )BAQB −

1

6!
χA hM1...M6(P+ ΓM1...M6)BAQB ,
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which is also given by:

[δχ, δh] = χA hMN [QA, J
MN ] + χA hM1...M6 [QA, J

M1...M6 ] . (2.15)

Comparing terms pairwise, we see that the supercharges transform as:

[JMN , QA] =
1

2!
(P+ ΓMN )BAQB , [JM1...M6 , QA] =

1

6!
(P+ J

M1...M6)BAQB .

Finally, in order to obtain the anti-commutator of two supercharges, we expand the RHS of
(2.8) in the bosonic generators JMN and JM1...M6 :

−χAεB{QA, QB} ≡ [δχ, δε] =
i

16
(χ>CΓMNε)J

MN +
i

16
(χ>CΓM1...M6ε)J

M1...M6 , (2.16)

and match the first and the last term of the equation.
Summarizing the results of this section, we get the following 12-dimensional realization of

the superalgebra osp(1|32,R)2:

[JMN , JOP ] = −4η[M [OJN ]P ]

[JMN , JM1...M6 ] = −12 η[M [M1 JN ]M2...M6]

[JN1...N6 , JM1...M6 ] = −4! 6! η[N1 [M1 ηN2M2 ηN3 M3 ηN4 M4 ηN5 M5 JN6]M6]

+ 2 · 62 η[N1[M1 ε
N2...N6]M2...M6]

AB J
AB

+ 4

(
6!

4!

)3

η[N1[M1 ηN2 M2 ηN3 M3 JN4...N6]M4...M6] (2.17)

[JMN , QA] =
1

2
(P+ ΓMN )BAQB

[JM1...M6 , QA] =
1

6!
(P+ ΓM1...M6)BAQB

{QA, QB} = − i

16
(CΓMN ) B

A JMN − i

16
(CΓM1...M6)

B
A JM1...M6 ,

where antisymmetrization brackets on the RHS are meant to match the anti-symmetry of indices
on the LHS.

2.3.2 Supersymmetry transformations of 12D matrix fields

In the following, we will construct a dynamical matrix model based on the symmetry group
osp(1|32,R) using elements in the adjoint representation of this superalgebra, i.e. matrices in
this superalgebra. We can write such a matrix as:

M =

(
m Ψ

−iΨ>C 0

)
, (2.18)

2Notice that the second term appearing on the right-hand side of the third commutator is in fact proportional
to ΓM1...M10 , which, in turn, can be reexpressed as ΓM1...M10 = −(1/2)εAB M1...M10 ΓABΓ∗. Indeed, in 10 + 2
dimensions, we always have:

ΓM1...Mk =
(−1)

(k−1)k
2

(12 − k)!
εM1...MkMk+1...M12 ΓMk+1...M12Γ∗
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where m is in the adjoint representation of sp(32,R) and Ψ is in the fundamental one. Since M
belongs to the adjoint representation, a SUSY will act on it in the following way:

δ(1)χ M B
A = χD[QD,M ] B

A =

(
−i(χA(Ψ>C)B −ΨA(χ>C)B) −m D

A χD
−i(χ>C)Dm B

D 0

)
(2.19)

In our particular 12D setting, m gives rise to a 2-form field C (with SO(10, 2) indices, not to be
confused with the charge conjugation matrix with sp(32,R) indices) and a self-dual 6-form field
Z+, as follows:

m B
A =

1

2!
(P+ΓMN ) B

A CMN +
1

6!
(P+ΓM1...M6) B

A Z+
M1...M6

. (2.20)

We can extract the supersymmetry transformations of C, Z+ and Ψ from (2.19) and we obtain:

δ(1)χ CMN =
i

16
χΓMNΨ ,

δ(1)χ Z+
M1...M6

=
i

16
χΓM1...M6Ψ , (2.21)

δ(1)χ Ψ = −1

2
ΓMNχCMN −

1

6!
ΓM1...M6χZ+

M1...M6
.

These formulæ allow us to compute the effect of two successive supersymmetry transformations
using (2.11) and (2.14):

[δ(1)χ , δ(1)ε ]Ψ =
i

16

{
(εΨ)χ− (χΨ) ε

}
,

[δ(1)χ , δ(1)ε ]CMN =
i

4
χ
{

Γ
P

[M CN ]P +
1

5!
Γ

M1...M5

[M Z+
N ]M1...M5

}
P+ ε , (2.22)

[δ(1)χ , δ(1)ε ]Z+
M1...M6

= χ
{3i

4
Γ

N
[M1...M5

CM6]N +
3i

2
Γ

N
[M1

Z+
M2...M6]N−

− 5i

12
Γ

N1N2N3

[M1M2M3
Z+
M4M5M6]N1N2N3

}
P+ ε ,

where we used the self-duality3 of Z+. At this stage, we can mention that the above results

are in perfect agreement with the adjoint representation of [δ
(1)
χ , δ

(1)
ε ] (viz. (2.8) ) on the matrix

fields.

2.3.3 sp(32, R) transformations of the fields and their commutation relation
with supersymmetries

To see under which transformations an osp(1|32,R)-based matrix model should be invariant, one
should look at the full transformation properties including the bosonic sp(32,R) transformations.
In close analogy with equation (2.19), we have the following full transformation law of M :

δ
(1)
H M B

A =

[(
h χ
−iχ 0

)
,

(
m Ψ

−iΨ 0

)] B

A

, (2.23)

implying the following transformation rules:

δ
(1)
H m B

A = [h,m] B
A − i(χAΨ

B −ΨAχ
B) , (2.24)

δ
(1)
H ΨA = h C

A ΨC −m C
A χC . (2.25)

3Z+ satisfies Z+
M1...M6

= 1
6!
ε N1...N6

M1...M6
Z+

N1...N6
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We then want to extract from the first of the above equations the full transformation properties
of CMN and Z+

M1...M6
. From (2.17) and (2.22) or directly using (2.14) and the cyclicity of the

trace, the bosonic transformations are:

δ
(1)
h CMN = 4hP [NCM ]P +

4

5!
hN1...N5

[NZ
+
M ]N1...N5

,

δ
(1)
h Z+

M1...M6
= 12h

P
[M1 ...M5

CM6]P − 24hN [M1
Z+
M2...M6]N

− (2.26)

+
20

3
hN1N2N3

[M1M2M3
Z+
M4M5M6]N1N2N3

,

while the fermionic part is as in (2.21). If one uses (2.26) to compute the commutator of a
supersymmetry and an sp(32,R) transformation, the results will look very complicated. On the
other hand, the commutator of two symmetry transformations may be cast in a compact form
using the graded Jacobi identity of the osp(1|32,R) superalgebra, which comes into the game
since matrix fields are in the adjoint representations of osp(1|32,R).

Such a commutator acting on the fermionic field Ψ yields:

[δ(1)χ , δ
(1)
h ] Ψ = −hmχ + [h,m]χ = −mhχ =

= − 1

2!
(P+ΓMNhχ)CMN −

1

6!
(P+ΓM1...M6hχ)Z+

M1...M6
. (2.27)

The same transformation on m leads to:

[δ(1)χ , δ
(1)
h ]m B

A = i
(
ΨA(χ>h>C)B − (hχ)A(Ψ>C)B

)
, (2.28)

which in components reads:

[δ(1)χ , δ
(1)
h ]CMN =

i

16
χ>ChΓMNΨ , (2.29)

[δ(1)χ , δ
(1)
h ]Z+

M1...M6
=

i

16
χ>ChΓM1...M6Ψ . (2.30)

In eqns. (2.27), (2.29) and (2.30), one could write h in components as in (2.12) and use:

ΓM1...Mk
ΓN1...Nl

=

min(k,l)∑

j=0

(−1)j/2(2k−j−1) j!

(
k

j

)(
l

j

)
η[M1[N1

. . . ηMjNj ΓMj+1...Mk]Nj+1...Nl] (2.31)

to develop the products of Gamma matrices in irreducible tensors of SO(10, 2) and obtain a
more explicit result. The final expression for (2.27) and (2.30) will contain Gamma matrices
with an even number of indices ranging from 0 to 12, while in (2.29) the number of indices will
stop at 8. Since we won’t use this result as such in the following, we won’t give it here explicitly.

2.3.4 A note on translational invariance and kinematical supersymmetries

At this point, we want to make a comment on the so-called kinematical supersymmetries that
have been discussed in the literature on matrix models ( [151], [229]). Indeed, in the IIB matrix
model, commutation relations of dynamical supersymmetries do not close to give space-time
translations, i.e. they do not shift the target space-time fields XM by a constant vector.

However, as was pointed out in [151] and [229], if one introduces so-called kinematical su-
persymmetry transformations, their commutator with dynamical supersymmetries yields the
expected translations by a constant vector, as we explained in subsection 4.2.2. By kinematical
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supersymmetries, one simply means translations of fermions by a constant Grassmannian odd
parameter. In our case, this assumes the form:

δ
(2)
ξ CMN = δ

(2)
ξ Z+

M1...M6
= 0 , δ

(2)
ξ Ψ = ξ , (2.32)

=⇒ [δ
(2)
ξ , δ

(2)
ζ ]M = 0

Since there is no vector field to be interpreted as space-time coordinates in this 12-dimensional
setting, it is interesting to look at the interplay between dynamical and kinematical supersym-
metries (which we denote respectively by δ(1) and δ(2)) when acting on higher-rank tensors. In
our case:

[δ(1)χ , δ
(2)
ξ ]CMN = − i

16
(χ>CΓMNξ) , [δ(1)χ , δ

(2)
ξ ]Z+

M1...M6
= − i

16
(χ>CΓM1...M6ξ) . (2.33)

Thus, [δ
(1)
χ , δ

(2)
ξ ] applied to p–forms closes to translations by a constant p-form, generalizing the

vector case mentioned above.
For fermions, we have as expected:

[δ(1)χ , δ
(2)
ξ ]Ψ = 0 . (2.34)

It is however more natural to consider dynamical and kinematical symmetries to be inde-
pendent. We would thus expect them to commute. With this in mind, we suggest a generalized
version of the translational symmetries introduced in (2.32):

δ
(2)
K Ψ = ξ, δ

(2)
K CMN = kMN , δ

(2)
K Z+

M1...M6
= k+

M1...M6
. (2.35)

It is then natural that the matrix

K =

(
k ξ

−iξ>C 0

)
(2.36)

should transform in the adjoint of osp(1|32,R), which means that:

δ
(1)
H k B

A = [h, k] B
A − i(χA(ξ>C)B − ξA(χ>C)B) (2.37)

δ
(1)
H ξA = h C

A ξC − k C
A χC . (2.38)

We can now compute the general commutation relations between translational symmetries M →
M + K and osp(1|32,R) transformations and conclude that these operations actually commute:

[δ
(1)
H , δ

(2)
K ]M = 0 . (2.39)

2.3.5 Twelve-dimensional action for supersymmetric cubic matrix model

We will now build the simplest gauge- and translational-invariant osp(1|32,R) supermatrix model
with U(N) gauge group. For this purpose, we promote each entry of the matrix M to a hermitian
matrix in the Lie algebra of u(N) for some value of N . We choose the generators {ta}a=1,...,N2

of u(N) so that: [ta, tb] = ifabctc and Tru(N)(t
a · tb) = δab.

In order to preserve both orthosymplectic and gauge invariance of the model, it suffices
to write its action as a supertrace over osp(1|32,R) and a trace over u(N) of a polynomial of
osp(1|32,R)⊗u(N) matrices. Following [226], we consider the simplest model containing interac-
tions, namely:
STrosp(1|32,R)Tru(N)(M [M,M ]u(N)). For hermiticity’s sake one has to multiply such an action
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by a factor of i. We also introduce a coupling constant g2. This cubic action takes the following
form:

I =
i

g2
STrosp(1|32,R)Tru(N)(M [M,M ]u(N)) = − 1

g2
fabcSTrosp(1|32,R)(M

aM bM c) = (2.40)

= − 1

g2
fabc

(
Trsp(32,R)(m

ambmc) + 3iΨa>CmbΨc
)

which we can now express in terms of 12-dimensional representations, where the symplectic
matrix m is given by (2.20).

Let us give a short overview of the steps involved in the computation of the trace in (2.40). It
amounts to performing traces of triple products of ma’s over sp(32,R), i.e. traces of products of
Dirac matrices. We proceed by decomposing such products into their irreducible representations
using (2.31). The only contributions surviving the trace are those proportional to the unit
matrix. Thus, the only terms left in (2.40) will be those containing traces over triple products of
2-forms, over products of a 2-form and two 6-forms, and over triple products of 6-forms, while
terms proportional to products of two 2-forms and a 6-form will yield zero contributions.

The two terms involving Z+’s (to wit CZ+Z+ and Z+Z+Z+) require some care, since
ΓA1...A12 is proportional to Γ? in 12D, and hence Tr(P+ ΓA1...A12) ∝ Tr(Γ2

?) 6= 0. Since double
products of six-indices Dirac matrices decompose into 1I and Dirac matrices with 2, 4 up to 12
indices, their trace with ΓMN will keep terms with 2, 10 or 12 indices (the last two containing
Levi-Civita tensors) while their trace with ΓM1...M6 will only keep those terms with 6, 8, 10 and
12 indices.

Finally, putting all contributions together, exploiting the self-duality of Z+ and rewriting
cubic products of fields contracted by f abc as a trace over u(N), we get:

I =
32i

g2
Tru(N)

(
C N
M [C O

N , C M
O ]u(N) −

1

20
C B
A [Z+M1...M5

B , Z+ A
M1...M5

]u(N) +

+
61

2(3!)3
Z+ DEF
ABC [Z+ GHI

DEF , Z+ ABC
GHI ]u(N) +

+
3i

64
Ψ>CP+ΓMN [CMN ,Ψ]u(N) +

3i

32 · 6!Ψ
>CP+ΓM1...M6 [Z+

M1...M6
,Ψ]u(N)

)

where we have chosen: ε0...11 = ε0...11 = +1, since the metric contains two time-like in-
dices. Similarly, one can decompose invariant terms such as STrosp(1|32,R)Tru(N)(M

2) and
STrosp(1|32,R)Tru(N)([M,M ]u(N)[M,M ]u(N)), etc. While it might be interesting to investigate
further the 12D physics obtained from such models and compare it to F-theory dynamics, we
will not do so here. We will instead move to a detailed study of the better known 11D case,
possibly relevant for M-theory.

2.4 Study of the 11D M-theory case

We now want to study the 11D matrix model more thoroughly. Similarly to the 12 dimensional
case, we embed the SO(10, 1) Clifford algebra into sp(32,R) and replace the fundamental rep-
resentation of sp(32,R) by SO(10, 1) Majorana spinors. A convenient choice of 32× 32 Gamma
matrices are the Γ̃’s we used in the 12D case. We choose them as follows:

Γ̃0 =

(
0 −1I16

1I16 0

)
, Γ̃10 =

(
0 1I16

1I16 0

)
, Γ̃i =

(
γi 0

0 −γi
)
∀i = 1, . . . , 9, (2.41)

where the γi’s build a Majorana representation of the Clifford algebra of SO(9), {γ i, γj} =
2δij1I16. As before, we have Γ̃10 = Γ̃0Γ̃1 · · · Γ̃9 provided γ1 · · · γ9 = 1I16, since we can define γ9 to
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be γ9 = γ1 · · · γ8. This choice has (Γ̃0)2 = −1I32, while (Γ̃M )2 = 1I32, ∀M = 1 . . . 10 and gives a
representation of {Γ̃M , Γ̃N} = 2ηMN1I32 for the choice (−,+, . . . ,+) of the metric. As we have
again chosen all Γ̃’s to be real, this allows to take B̃ = 1I in Ψ∗ = B̃Ψ, which implies that the
charge conjugation matrix is C̃ = Γ̃0. Moreover, we have the following transposition rules for
the Γ̃ matrices:

C̃Γ̃M1...MnC̃−1 = (−1)n(n+1)/2(Γ̃M1...Mn)> (2.42)

We will identify the fundamental representation of sp(32,R) with a 32-component Majorana
spinor of SO(10, 1). Splitting the 32 real components of the Ψ into 16+16 as in: Ψ> = (Φ>

1 ,Φ
>
2 ),

we can use the following identity:

(−iΦ>
2 , iΦ

>
1 ) = −iΨ>Γ̃0 = −iΨ>C̃ = −iΨ

to write orthosymplectic matrices again as in (2.2).

2.4.1 Embedding of the 11D super-Poincaré algebra in osp(1|32, R)

In 11D, we can also express the sp(32,R) transformations in terms of translations, Lorentz
transformations and new 5-form symmetries, by defining:

h = hMP
M + hMNJ

MN + hM1...M5J
M1...M5 . (2.43)

With the help of (2.14), we can compute this enhanced super-Poincaré algebra as in dimension
12, using the following explicit representation of the generators:

PM = Γ̃M , JMN =
1

2
Γ̃MN , JM1...M5 =

1

5!
Γ̃M1...M5 (2.44)

In order to express everything in terms of the above generators, we need to dualize forms using

the formula: (−1)
k(k−1)

2 εM1...M11 Γ̃Mk+1...M11 = −(11 − k)!Γ̃M1...Mk . This leads to the following
superalgebra:

[PM , PN ] = 4JMN

[PM , JOP ] = 2ηM [OPP ]

[JMN , JOP ] = −4η[M [OJN ]P ]

[PM , JM1...M5 ] = − 2

5!
εMM1...M5

N1...N5
JN1...N5

[JMN , JM1...M5 ] = −10 η[M [M1 JN ]M2...M5]

[JM1...M5 , JN1...N5 ] = − 2

(5!)2
εM1...M5N1...N5

AP
A +

1

(3!)2
η[M1[N1 ηM2N2ε

M3...M5]N3...N5]
O1...O5

JO1...O5+

+
1

3!
η[M1[N1 ηM2 N2 ηM3 N3 ηM4N4 JM5]N5] (2.45)

[PM , QA] = (Γ̃M )BAQB

[JMN , QA] =
1

2
(Γ̃MN )BAQB

[JM1...M5 , QA] =
1

5!
(Γ̃M1...M5)BAQB

{QA, QB} =
i

16
(C̃Γ̃M ) B

A PM − i

16
(C̃Γ̃MN) B

A JMN +
i

16
(C̃Γ̃M1...M5)

B
A JM1...M5 .

Note that this algebra is the dimensional reduction from 12D to 11D of (2.17). In particular, the
first three lines build the so(10, 2) Lie algebra, but appear in this new 11-dimensional context as
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the Lie algebra of symmetries of AdS11 space (it is of course also the conformal algebra in 9+1
dimensions). We may wonder whether this superalgebra is a minimal supersymmetric extension
of the AdS11 Lie algebra or not. If we try to construct an algebra without the five-form symmetry
generators, the graded Jacobi identity forbids the appearance of a five-form central charge on
the RHS of the {QA, Q

B} anti-commutator. The number of independent components in this
last line of the superalgebra will thus be bigger on the LHS than on the RHS. This is not strictly
forbidden, but it has implications on the representation theory of the superalgebra. The absence
of central charges will for example forbid the existence of shortened representations with a non-
minimal eigenvalue of the quadratic Casimir operator C = −1/4PMP

M + JMNJ
MN (“spin”) of

the AdS11 symmetry group (see [199]). More generally, in 11D, either all objects in the RHS
of the last line are central charges (this case corresponds simply to the 11D Super-Poincaré
algebra) or they should all be symmetry generators. Thus, although it is not strictly-speaking
the minimal supersymmetric extension of the AdS11 Lie algebra, it is certainly the most natural
one. That’s why some authors [37] call osp(1|32,R) the super-AdS algebra in 11D. Here, we
will stick to the more neutral osp(1|32,R) terminology. Furthermore, osp(1|32,R) is also the
maximal finite-dimensional (non-central) N = 1 extension of the AdS11 algebra. In principle,
one could consider even bigger superalgebras, but we will not investigate them in this article.

It is also worth remarking that similar algebras have been studied in [35] where they are called
topological extensions of the supersymmetry algebras for supermembranes and super-5-branes.

2.4.2 The supersymmetry properties of the 11D matrix fields

Let us now look at the action of supersymmetries on the fields of an osp(1|32,R) eleven-
dimensional matrix model. We expand once again the bosonic part of our former matrix M
on the irreducible representations of SO(10, 1) in terms of 32-dimensional Γ matrices:

m = XM Γ̃M +
1

2!
CMN Γ̃MN +

1

5!
ZM1...M5 Γ̃M1...M5 ,

where the vector, the 2- and 5-form are given by:

XM =
1

32
Trsp(32,R)(m Γ̃M ) , CMN = − 1

32
Trsp(32,R)(m Γ̃MN ) , ZM1...M5 =

1

32
Trsp(32,R)(m Γ̃M1...M5) .

Let us give the whole δ
(1)
H transformation acting on the fields (using the cyclic property of

the trace, for instance: Tr([h,m]Γ̃M ) = Tr(h[m, Γ̃M ])):

δ
(1)
H XM = 2

(
hMQXQ + hQC M

Q − 1

(5!)2
εMM1...M5

N1...N5
hN1...N5 ZM1...M5

)
− i

16
χ>Γ̃0Γ̃MΨ ,

δ
(1)
H CMN = −4

(
h[MXN ] − h

[M
QC

N ]Q +
1

4!
h

[M
M1...M4

ZN ]M1...M4

)
+

i

16
χ>Γ̃0Γ̃MNΨ ,

δ
(1)
H ZM1...M5 = 2

(
1

5!
εM1...M5

N1...N5Q
hN1...N5 XQ + 5h

[M1...M4

Q CM5]Q − 5h
[M1

Q ZM2...M5]Q +

+
1

5!
εM1...M5

ON1...N5
hO ZN1...N5 − 1

3 · 4!h
O1...O5 ε

[M1M2M3

O1...O5N1N2N3
ZM4M5]N1N2N3

)
−

− i

16
χ>Γ̃0Γ̃M1...M5Ψ ,

δ
(1)
H Ψ =

(
hM Γ̃M + hMN Γ̃MN + hM1...M5 Γ̃M1...M5

)
Ψ−

− Γ̃MχXM −
1

2
Γ̃MNχCMN −

1

5!
Γ̃M1...M5χZM1...M5 ,
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where the part between parentheses describes the symplectic transformations, while the remain-

der represents the supersymmetry variations. Note that we used (−1)
k(k−1)

2 εM1...M11 Γ̃Mk+1...M11 =

−(11− k)!Γ̃M1...Mk in δ
(1)
H ZM1...M5 to dualize the Dirac matrices when needed.

2.4.3 Eleven-dimensional action for a supersymmetric matrix model

As in the 12D case, we will now consider a specific model, invariant under U(N) gauge and
osp(1|32,R) transformations. The simplest such model containing interactions and “propaga-
tors” is a cubic action along with a quadratic term. Hence, we choose:

I = STrosp(1|32,R)⊗u(N)

(
−µM2 +

i

g2
M [M,M ]u(N)

)
. (2.46)

Contrary to a purely cubic model, one loses invariance underM →M+K for a constant diagonal
matrix K, which contains the space-time translations of the BFSS model. In contrast with the
BFSS theory, our model doesn’t exhibit the symmetries of flat 11D Minkowski space-time, so we
don’t really expect this sort of invariance. However, the symmetries generated by PM remain
unbroken, as well as all other osp(1|32,R) transformations. Indeed, the related bosonic part of
the algebra (2.45) contains the symmetries of AdS11 as a subalgebra, and as was pointed out
in [125] and [65], massive matrix models with a tachyonic mass-term for the coordinate X’s
fields appear in attempts to describe gravity in de Sitter spaces (an alternative approach can
be found in [181]). Note that we take the opposite sign for the quadratic term of (2.46), this
choice being motivated by the belief that AdS vacua are more stable than dS ones, so that the
potential energy for physical bosonic fields should be positive definite in our setting.

The computation of the 11-dimensional action for this supermatrix model is analogous to
the one performed in 12 dimensions. We remind the reader that each entry of the matrix M
now becomes a hermitian matrix in the Lie algebra of u(N) for some large value of N whose
generators are defined as in the 12D case.

After performing in (2.46) the traces on products of Gamma matrices, it comes out that the
terms of the form XXX, XXZ, XCC, CCZ and XCZ have vanishing trace (since products of
Gamma matrices related to these terms have decomposition in irreducible tensors that do not
contain a term proportional to 1I32) so that only terms of the form XXC, XZZ, CZZ, CCC,
ZZZ will remain from the cubic bosonic terms. As for terms containing fermions and the mass
terms, they are trivial to compute. Using (2.31) and the usual duality relation for Dirac matrices
in 11D, one finally obtains the following result:

I = − 32µTru(N)

{
XMX

M − 1

2!
CMNC

MN +
1

5!
ZM1...M5Z

M1...M5 +
i

16
ΨΨ

}
+

+
32i

g2
Tru(N)

(
3CNM [XM , XN ]u(N) − εM1...M11

{
3

(5!)2
ZM1...M5 [XM6 , ZM7...M11 ]u(N)−

− 23 52

(5!)3
Z AB
M1 M2M3

[ZABM4M5M6 , ZM7...M11 ]u(N)

}
+

3

4!
CMN [Z N

A1...A4
, ZA1...A4M ]u(N) +

+ CMN [CNO, C
OM ]u(N) +

3i

32

{
Ψ Γ̃M [XM ,Ψ]u(N) +

1

2!
Ψ Γ̃MN [CMN ,Ψ]u(N) + (2.47)

+
1

5!
Ψ Γ̃M1...M5 [ZM1...M5 ,Ψ]u(N)

})
.

62



2.5 Dynamics of the 11D supermatrix model and its relation to

BFSS theory

Now, we will try to see to what extent our model may describe at least part of the dynamics of
M-theory. Since the physics of the BFSS matrix model and its relationships to 11D supergravity
and superstring theory are relatively well understood, if our model is to be relevant to M-theory,
we expect it to be related to BFSS theory at least in some régime. To see such a relationship, we
should reduce our model to one of its ten-dimensional sectors and turn it into a matrix quantum
mechanics.

2.5.1 Compactification and T-duality of the 11D supermatrix action

If we want to link (2.47) to BFSS, which is basically a quantum mechanical supersymmetric
matrix model, we should reduce the eleven-dimensional target-space spanned by the XM ’s to
10 dimensions, and, at the same time, let a “time” parameter t appear. At this stage, the
world-volume of the theory is reduced to one point. We start by decompactifying it along
two directions, following the standard procedure outlined in [233]. Namely, we compactify the
target-space coordinates X0 and X10 on circles of respective radii R0 = R and R10 = ωR. We
introduce the rescaled field X ′

10 ≡ X10/ω which has the same 2πR periodicity as X0. We can

then perform T-dualities on X0 and X ′
10 to circles of dual radii R̂ ≡ l211/R (parametrized by τ

and y), where l11 is some scale, typically the 11-dimensional Planck length. The fields of our
theory, for simplicity denoted here by Y , now depend on the world-sheet coordinates τ and y as
follows:

Y (τ, y) =
∑

m,n

Ymn e
i(mτ+ny)/ bR . (2.48)

As a consequence, we now need to average the action over τ and y with the measure dτdy/(2πR̂)2.
Finally, one should identify under T-duality:

X0 ∼ 2πl211

(
i∂τ −Aτ (τ, y)

)
, iD̂τ , X10 ≡ ωX ′

10 ∼ 2πωl211

(
i∂y −Ay(τ, y)

)
, iωD̂y , (2.49)

where Aτ and Ay are the connections on the U(N) gauge bundle over the world-sheet. For

notational convenience, we rewrite φ , C0 10, Fτy , −i [D̂τ , D̂y] and Γ̃∗ , Γ̃10 and encode the
possible values of the indices in the following notation:

A, B = 0, . . . , 10 , i, j, k = 1, . . . , 9 ,

α = 1, . . . , 10 , β = 0, . . . , 9 .
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Then, the compactified version of (2.47) reads:

Ic =
32i

g2

∫
dτdy

(2πR̂)2
Tru(N)

(
− 6Ci0 i[D̂τ , Xi] + 6ω Ci10 i[D̂y, Xi] +

3

32
Ψ Γ̃0 [D̂τ ,Ψ]−

− 3ω

32
Ψ Γ̃∗ [D̂y,Ψ] − 3

(5!)2
εα1···α100 Zα1···α5 i[D̂τ , Zα6···α10 ] +

3ω

(5!)2
εβ1···β1010 Zβ1···β5 i[D̂y, Zβ6···β10 ] +

+ 6iω φFτy + 3Cij [Xj , Xi] +
3

(5!)2
εA1···A10

j ZA1···A5 [Xj , ZA6···A10 ]−

− 2352

(5!)3
εA1···A11 Z B1B2

A1A2A3
[ZB1B2A4A5A6 , ZA7···A11 ] +

3

4!

{
Cij [Zj A1···A4 , Z

A1···A4
i ]−

− 2Ci0 [Z0α1···α4 , Zi α1···α4 ] + 2Ci10 [Z10 β1···β4 , Z
β1···β4

i ] − 2φ [Z10 i1···i4 , Z0 i1···i4 ]
}

+

+ Cij [Cjk, Cki] + 3Ci0 [Ck0, Cki] − 3Ci10 [Ck10, Cki] + 6φ [Ck10, Ck0] + (2.50)

+
3i

32

{
ΨΓ̃i [Xi,Ψ] +

1

2!
Ψ Γ̃ij[Cij ,Ψ] − ΨΓ̃iΓ̃0 [Ci0,Ψ] + Ψ Γ̃iΓ̃∗ [Ci10,Ψ] − Ψ Γ̃0Γ̃∗ [φ,Ψ]+

+
1

5!
Ψ Γ̃A1···A5 [ZA1···A5 ,Ψ]

}
+ iµg2

(
D̂τ D̂τ − ω2 D̂yD̂y + XiXi +

i

16
ΨΨ + φ2−

− 1

2!
CijCij + Ci0Ci0 − Ci10Ci10 +

1

5!
ZA1···A5Z

A1···A5

))
.

Repeated indices are contracted, and when they appear alternately up and down, minkowskian
signature applies, whereas euclidian signature is in force when both are down.

2.5.2 Ten-dimensional limits and IMF

Since the BFSS matrix model is conjectured to describe M-theory in the infinite momentum
frame, we shall investigate our model in this particular limit. For this purpose, let’s define
the light-cone coordinates t+ ≡ (τ + y)/

√
2 and t− ≡ (τ − y)/

√
2 and perform a boost in the

y direction. In the limit where the boost parameter u is large, the boost acts as (t+, t−)
∼−→

(ut+, u
−1t−), or as (τ, y)

∼−→
√

2(ut+, ut+) on the original coordinates. In particular, when
u → ∞, the t− dependence disappears from the action and we can perform the trivial t−
integration. The dynamics is now solely described by the parameter t ≡

√
2ut+, which is

decompactified through this procedure. In particular, both D̂τ and D̂y are mapped into D̂t.
So far, the ratio of the compactification radii ω is left undetermined and it parametrizes a

continuous family of frames. It affects the kinetic terms as:

Ic =
32i

g2
lim
u→∞

∫ π bRu

−π bRu

dt

2
√

2πR̂u
Tru(N)

(
− 6

(
Ci0 − ωCi10

)
i[D̂t, Xi] +

3

32
Ψ
(
Γ̃0 − ω Γ̃∗

)
[D̂t,Ψ]−

− 3

(5!)2
εα1···α100 Zα1···α5 i[D̂t, Zα6 ···α10 ] +

3ω

(5!)2
εβ1···β1010 Zβ1···β5 i[D̂t, Zβ6···β10 ] + ...

)
(2.51)

In order to have a non-trivial action, as in the BFSS case, we must take the limit u → ∞
together with N →∞ in such a way that N/(R̂u)→∞. In the following, we will write R ≡ R̂u,
implicitly take the limit (R,N)→∞ and let t run from −∞ to ∞.

In the usual IMF limit, one starts from an uncompactified X0. In our notation, this corre-
sponds to R→∞, i.e. to the particular choice ω = R10/R→ 0. So, in the IMF limit, all terms
proportional to ω drop out of (2.51). In the following chapters, we will restrict ourselves to this
case, since we are especially interested in the physics of our model in the infinite momentum
frame.
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2.5.3 Dualization of the mass term

Let us comment on the meaning of the D̂2
t term arising from the T-dualization of the mass term

Tr((X0)
2), which naively breaks gauge invariance. To understand how it works, we should recall

that the trace is defined by the following sum:

Tru(N)(−D̂2
t ) = −

∑

a

〈ua(t)|D̂2
t |ua(t)〉 =

∑

a

‖iD̂t|ua(t)〉‖2 . (2.52)

for a set of basis elements {|ua(t)〉}a of u(N), which might have some t-dependence or not. If the
|ua(t)〉 are covariantly constant, the expression (2.52) is obviously zero. Choosing the |ua(t)〉 to
be covariantly constant seems to be the only coherent possibility. Such a covariantly constant
basis is:

|ua(t)〉 , e
−i

R t
t0
A0(t′) dt′ |ua〉 ,

(where the |ua〉’s form a constant basis, for instance, the generators of u(N) in the adjoint
representation). Now, t lives on a circle and the function exp(

∫ t
t0
A0(t

′) dt′) is well-defined only

if the zero-mode A
(0)
0 = 2πn, n ∈ � . But we can always set A

(0)
0 to zero, since it doesn’t affect

the behaviour of the system, as it amounts to a mere constant shift in ”energy”. With this
choice, we can integrate D̂t by part without worrying about the trace.

2.5.4 Decomposition of the five-forms

In (2.50), the only fields to be dynamical are the Xi, the Zα1···α5 and the Ψ. The remaining
ones are either the conjugate momentum-like fields when they multiply derivatives of dynamical
fields, or constraint -like when they only appear algebraically.

Thus, the Ci0 and Ψ have a straightforward interpretation as momenta conjugate respectively
to the Xi and to Ψ. For the 5-form fields ZA1···A5 however, the matter is a bit more subtle, due
to the presence of the 11D ε tensor in the kinetic term for the 5-form fields. Actually, the real
degrees of freedom contained in ZA1···A5 decompose as follows, when going down from (10 + 1)
to 9 dimensions:

Ω5(M10,1,R) −→ 3× Ω4(M9,R)⊕ Ω3(M9,R) . (2.53)

To be more specific (as in our previous convention, ik = 1, . . . , 9 are purely spacelike indices
in 9D), the 3-form fields on the RHS of (2.53) are Zi1i2i30,10 , Bi1i2i3 , while the 4-form
fields are Zi1i2i3i410 , Zi1i2i3i4 , Zi1i2i3i40 , Hi1i2i3i4 and4 Πi1···i4 , 1/5! εj1 ···j5i1···i40,10Zj1···j5 ;
these conventions allow us to cast the kinetic term for the 5-form fields into the expression
6/4!Πi1 ···i4 [D̂t, Zi1···i4 ], while B and H turn out to be constraint -like fields, the whole topic
being summarized in Table 1.

4Using

εj1···jN iN+1···i90,10 εk1···kN iN+1···i90,10 = −(9 −N)!
X

π

σ(π)

NY

n=1

δjn

kπ(n)
,

where π is any permutation of (1, 2, .., N) and σ(π) is the signature thereof, this relation can be inverted: Zi1···i5 =
1
4!
εi1···i5j6···j9 Πj6···j9 ,
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dynamical var. number of real comp. conjugate momenta constraint-like number of real comp.

Xi 9 Ci0 Cij 36
Ci10 9
φ 1

Zi1···i4 126 Πi1···i4 Hi1···i4 126
Bi1i2i3 84

Ψ 32 Ψ

Table 1: Momentum-like and constraint -like auxiliary fields

We see that longitudinal 5-brane degrees of freedom are described by the 4-form Zi1···i4 , while
transverse 5-brane fields Zi1···i5 appear in the definition of the conjugate momenta. As they
are dual to one another, we could also have exchanged their respective rôles. Both choices
describe the same physics. We can thus interpret these degrees of freedom as transverse 5-
branes, completing the BFSS theory, which already contains longitudinal 5-branes as bound
states of D0-branes.

Choosing the εi1···i9 tensor in 9 spatial dimensions to be:

εi1···i9 , ε 0,10
i1···i9 = −εi1···i90,10 ,

we can express the action Ic in terms of the degrees of freedom appearing in Table 1 (note that
from now on all indices will be down, the signature for squared expressions is Euclidean and we
write Dt instead of D̂t ):

Ic =
8
√

2i

πg2R

∫
dt Tru(N)

(
− 6i Ci0 [Dt, Xi] −

i

4
Πi1···i4 [Dt, Zi1···i4 ] +

3

32
Ψ Γ̃0 [Dt,Ψ] + 3Cij [Xj , Xi]−

+

(
Πi1i2i3 j [Xj , Bi1i2i3 ] −

1

4 · 4! εi1···i8 jZi1···i4 [Xj ,Hi5···i8 ]

)
+

1

3! · 4! W (Z,Π,H,B)+

+
1

2

{
CijKij(Z,Π,H,B) − 2Ci0

(
1

4 · 4!εi j1···j4k1···k4 [Hj1···j4 ,Πk1···k4 ] + [Zi j1j2j3 , Bj1j2j3 ]

)
+

+ 2Ci10

(
1

4 · 4!εi j1···j4k1···k4 [Zj1···j4 ,Πk1···k4 ] − [Hi j1j2j3 , Bj1j2j3 ]

)
− 1

2
φ [Zi1···i4 ,Hi1···i4 ]

}
+

+ Cij [Cjk, Cki] + 3Ci0 [Ck0, Cki] − 3Ci10 [Ck10, Cki] + 6φ [Ck10, Ck0]+

+
3i

32

{
Ψ Γ̃i [Xi,Ψ] +

1

2!
Ψ Γ̃ij[Cij ,Ψ] − Ψ Γ̃iΓ̃0 [Ci0,Ψ] + Ψ Γ̃iΓ̃∗ [Ci10,Ψ]− (2.54)

− Ψ Γ̃0Γ̃∗ [φ,Ψ] +
1

4!
Ψ Γ̃i1···i4Γ̃∗[Zi1···i4 ,Ψ] +

1

4!
Ψ Γ̃i1···i4 Γ̃0Γ̃∗[Πi1···i4 ,Ψ]+

− 1

4!
Ψ Γ̃i1···i4 Γ̃0[Hi1···i4 ,Ψ] − 1

3!
Ψ Γ̃i1i2i3 Γ̃0Γ̃∗[Bi1i2i3 ,Ψ]

}
+ µg2i

{
(Xi)

2 +
i

16
ΨΨ + φ2−

− 1

2!
(Cij)

2 + (Ci0)
2 − (Ci10)

2 +
1

4!

(
(Zi1···i4)

2 + (Πi1···i4)
2 − (Hi1···i4)

2 − 4 (Bi1i2i3)
2
)})

.

We have abbreviated two lengthy expressions in the result above to make it shorter: on one
hand, the term coupling the various 5-form components to the Cij:

Kij(Z,Π,H,B) , [Zj k1k2k3 , Zi k1k2k3 ] + [Πj k1k2k3 ,Πi k1k2k3 ]− 3[Bj k1k2 , Bi k1k2 ]− [Hj k1k2k3 ,Hi k1k2k3 ] ,
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on the other hand, the trilinear couplings amongst the 5-form components:

W (Z,Π,H,B) , εi1···i9

{
Bi1i2 j (2 [Πj i3i4i5 ,Πi6···i9 ] − [Zj i3i4i5 , Zi6···i9 ] − [Hj i3i4i5 ,Hi6···i9 ]) +

+
2

3
Bi1i2i3 ( [Bi4i5i6 , Bi7i8i9 ] + [Zi4i5i6 j, Zj i7i8i9 ] − [Hi4i5i6 j,Hj i7i8i9 ] )

}

+(3!)2 Πi1i2j1j2 [Zj1j2k1k2 ,Hk1k2i1i2 ] .

2.5.5 Computation of the effective action

We now intend to study the effective dynamics of the Xi and Ψ fields, in order to compare it
to the physics of D0-branes as it is described by the BFSS matrix model. For this purpose, we
start by integrating out the 2-form momentum-like and constraint-like fields, which will yield
an action containing the BFSS matrix model as its leading term with, in addition, an infinite
series of couplings between the fields. Similarly, one would like to integrate out the Z-type
momenta and constraints Π, H and B, to get an effective action for the 5-brane (described by
Zijkl) coupled to the D0-branes. We will however not do so in the present paper, but leave this
for further investigation.

To simplify our expressions, we set:5

β , µg2 , γ ,
8
√

2

πg2R
,

and write (2.54) as (after taking the trace over u(N)):

Ic = γ

∫
dt
(
β(Ca

i )
ᵀ(J abij + ∆ab

ij )C
b
j + Ca

i · Fai + LC + Lφ + L̂
)

. (2.55)

For convenience, we have resorted to a very compact notation, where:

Ca
i ,

(
Cai0
Cai10

)
, J abij ,

(
−δabδij 0

0 δabδij

)
, ∆ab

ij ,
3fabc

β

(
Ccij φcδij
−φcδij −Ccij

)
,

and where the components of the vector Fa
i =

(
F ai
Gai

)
, are given by the following expressions:

Fi , 6 [Dt, Xi] −
i

4 · 4!εi j1···j4k1···k4 [Hj1···j4 ,Πk1···k4 ] − i [Zi j1j2j3 , Bj1j2j3 ] −
3

32
{Ψ, Γ̃iΓ̃0Ψ} ,

Gi ,
i

4 · 4!εi j1···j4k1···k4 [Zj1···j4 ,Πk1···k4 ] − i [Hi j1j2j3 , Bj1j2j3 ] +
3

32
{Ψ, Γ̃iΓ̃∗Ψ} .

Note that we have written if abcΨ
b
Γ̃...Ψ

c as {Ψ, Γ̃...Ψ}a with a slight abuse of notation. The
remaining terms in the action (2.55) depending on Cij and φ are contained in

LC ,
β

2
(Caij)

2 + EaijC
a
ij − fabcCaijC

b
jkC

c
ki ,

Lφ , −β(φa)2 + Jaφa ,

with the following definitions

Eij ,
i

2
Kij + 3i [Xi, Xj ] +

3

64
{Ψ, Γ̃ijΨ} ,

J ,
−i
4

[Zi1···i4 ,Hi1···i4 ] −
3

32
{Ψ, Γ̃0Γ̃∗Ψ} ,

5If we consider X and hence C, Z and Ψ to have the engineering dimension of a length, then so has β, while
γ has dimension (length)−4.
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and finally L̂ is the part of Ic in (2.54) independent of Cij , Ci10, Ci0 and φ. in other words
the part containing only dynamical fields (fermions Ψ and coordinates Xi) as well as all fields
related to the 5-brane (the dynamical ones: Z and Π, as well as the constrained ones: B and
H).

Now, (2.55) is obviously bilinear in the Ca
i (note that ∆ab

ij is symmetric, since Cij is actually
antisymmetric in i and j). So one may safely integrate them out, after performing a Wick
rotation such as

t→ τ = it , Ci10 → Ci10 = ±iCi10 .

The indeterminacy in the choice of the direction in which to perform the Wick rotation will turn
out to be irrelevant after the integration of Ci10 (indeed, this ± sign appears in each factor of φ
and each factor of G, which always come in pairs).

We then get the Euclidean version of (2.55):

IE = γ

∫
dτ
(
β(C

a
i )

ᵀ(1Iabij + ∆
ab
ij )C

b
j + (C

a
i )

ᵀF
a
i − LC − Lφ − L̂

)
,

where the new rotated fields assume the following form:

C
a
i ,

(
Cai0
C
a
i10

)
, F

a
i ,

(
−F ai
±iGai

)
,

1Iabij ,

(
δabδij 0

0 δabδij

)
, ∆

ab
ij ,

3fabc

β

(
−Ccij ±iφcδij
∓iφcδij Ccij

)
.

The gaussian integration is straightforward, and yields, after exponentiation of the non trivial
part of the determinant:

∫
DCi10DCi0 exp

{
− IE

}

∝ exp

{
− 1

2
Tr
(
ln(1Iabij + ∆

ab
ij )
)
− γ

∫
dτ

(
− 1

4β
(F

a
i )

ᵀ(1Iabij + ∆
ab
ij )

−1F
b
j − LC − Lφ − L̂

)}
.

The term quadratic in F is obviously tree-level, whereas the first one is a 1-loop correction to
the effective action. The 1-loop ”behaviour” is encoded in the divergence associated with the
trace of an operator, since

TrÔ =

∫
dτ Oi

i(τ)〈τ |τ〉 = Λ

∫
dτ Oi

i(τ) , (2.56)

where the integration in Fourier space is divergent, and has been replaced by the cutoff Λ.
Transforming back to real Minkowskian time t, we obtain the following effective action

Ieff = γ

∫
dt

(
L̂ + LC + Lφ +

1

4β
(F

a
i )

ᵀ(1Iabij + ∆
ab
ij )

−1F
b
j −

Λ

2γ

(
ln(1I + ∆(t))

)aa
ii

)
. (2.57)

2.5.6 Analysis of the different contributions to the effective action

The natural scale of (2.57) is β, which is proportional to the mass parameter µ. We therefore
expand (2.57) in powers of 1/β, which amounts to expanding (2.57) in powers of ∆. Now, this
procedure must be regarded as a formal expansion, since we don’t want to set β to a particular
value. However, this formal expansion in 1/β actually conceals a true expansion in [Xi, Xj ],
which should be small to minimize the potential energy, as will become clear later on.
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First of all, let us consider the expansion of the tree-level term up to O(1/β 3). The first
order term is given by:

1

β

∫
dt (F

a
i )

ᵀF
a
i =

1

β

∫
dt Tr

(
(Fi)

2 − (Gi)
2
)
.

Since Fi contains [Dt, Xi] and {Ψ,Ψ}, while Gi contains only {Ψ,Ψ} (ignoring Z-type contri-
butions), this term will generate a kinetic term for the X i’s as well as trilinear and quartic
interactions.

The second-order term is:

1

β

∫
dt (F

a
i )

ᵀ∆
ab
ijF

b
j =

3i

β2

∫
dt Tr

(
Cij

{
[Fi, Fj ]− [Gi, Gj ]

}
− 2φ [Fi, Gi]

)
.

All vertices generated by this term contain either one C, with 2 to 4 X or Ψ, or one φ, with 3
or 4 X or Ψ.

Finally, the third-order contibution is as follows:

1

β

∫
dt (F

a
i )

ᵀ(∆
2
)abij F

b
j = − 32

β3

∫
dt Tr

(
[Fi, Cij][Cjk, Fk] − [Gi, Cij ][Cjk, Gk] +

+[Fi, φ][φ, Fi] − [Gi, φ][φ,Gi] + 2 [Gi, Cij ][φ, Fj ] − 2 [Fi, Cij ][φ,Gj ]

)
,

producing vertices with 2 φ’s or 2 C’s, together with 2 to 4 X or Ψ, as well as vertices with 1 φ
or 1 C, with 3 to 4 X or Ψ.

Next we turn to the 1-loop term, where we expand the logarithm up to O(1/β3). Because of
the total antisymmetry of both f abc and Cij, one has Tr∆ = 0, so that the first term cancels.
Now, keeping in mind that

fabcf bad = −C2(ad)δcd and famnf bnof com =
1

2
C2(ad)fabc ,

C2(ad) referring to the quadratic Casimir operator in the adjoint representation of the Lie
algebra, one readily finds:

(i). Tr∆
2

=
(

3
β

)2
2iC2(ad)Λ

∫
dt Tr

(
(Cij)

2 − 9(φ)2
)
,

(ii). Tr∆
3

= −
(

3
β

)3
C2(ad)Λ

∫
dt Tr

(
Cij [Cjk, Cki]

)
.

In other words, the 1-loop correction (i) renormalizes the mass terms for Cij and φ in Ĩc as
follows:

• Mass renormalization for Cij :
1
2γβ −→ 1

2γβ
(
1 + 32

γβ3C2(ad)Λ
)

• Mass renormalization for φ: γβ −→ γβ
(
1 + 34

2γβ3C2(ad)Λ
)

Whereas the 1-loop correction (ii) renormalizes the trilinear coupling between the Cij in Ic:

• Renormalization of the Cij[Cjk, Cki] coupling: γ −→ γ
(
1− 32

2γβ3C2(ad)Λ
)

Up to Tr∆
3
, the 1-loop corrections actually only renormalize terms already present in Ic

from the start. This is not the case for the higher order subsequent 1-loop corrections: there is
an infinite number of such corrections, each one diverging like Λ. A full quantization of (2.57)
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is obviously a formidable task, which we will not attempt in the present paper. A sensible
regularization of the divergent contributions should take into account the symmetries of the
classical action, which are not explicit anymore after performing T-dualities and the IMF limit.
However, since our model is quantum-mechanical, we believe it to be finite even if we haven’t
come up with a fully quantized formulation.

Summing up the different contributions computed in this section, one gets the following
1-loop effective action up to O(1/β3):

1

γ
Ieff =

∫
dt
(
LC + Lφ + L̂

)
+

γ

4β

∫
dt Tr

(
F 2
i −G2

i

)
−

− 3iγ

4β2

∫
dt Tr

(
Cij

(
[Fi, Fj ]− [Gi, Gj ]

)
− 2φ [Fi, Gi]

)
+

γλ

2β2

∫
dt Tr

(
C2
ij − 9φ2

)
−

− 9γ

4β3

∫
dt Tr

(
[Fi, Cij ][Cjk, Fk] − [Gi, Cij ][Cjk, Gk] + [Fi, φ][φ, Fi] − [Gi, φ][φ,Gi] +

+2 [Gi, Cij ][φ, Fj ] − 2 [Fi, Cij ][φ,Gj ]

)
− iλγ

2β3

∫
dt Tr

(
Cij [Cjk, Cki]

)
+ O(1/β4) .(2.58)

where λ is proportional to the cutoff Λ:

λ ,
9C2(ad)Λ

γ
.

Note that the O(1/β4) terms that we haven’t written contain at least three powers of Cij or φ.

2.5.7 Iterative solution of the constraint equations

The 1-loop corrected action (2.58) still contains the constraint fields Cij and φ, which should
in principle be integrated out in order to get the final form of the effective action. Since Ieff

contains arbitrarily high powers of Cij and φ, we cannot perform a full path integration. We
can however solve the equations for Cij and φ perturbatively in 1/β. This allows to replace
these fields in (2.58) with the solution to their equations of motion. Thus, in contrast with the
preceeding subsection, here we remain at tree-level.

The equation of motion for Cij may be computed from (2.58), and reads:

Cij +
1

β

(
Eij + 3i[Cjk, Cki]

)
+

1

β3

(
3

4
i
{

[Gi, Gj ]− [Fi, Fj ]
}

+ λCij

)
+

+
1

β4

9

2

({
[F[i, [Cj]k, Fk]]− [G[i, [Cj]k, Gk]] + [G[i, [φ, Fj]]]− [F[i, [φ,Gj]]]

}
+

− iλ

3
[Cjk, Cki]

)
+ O(1/β5) = 0 , (2.59)

while the equation of motion for φ is:

φ − 1

2β
J − 3

β3

(
i

4
[Fi, Gi]− 3λφ

)
+

32

4β4

(
[Fi, [Fi, φ]] −

− [Gi, [Gi, φ]] + [Fi, [Cij , Gj ]] − [Gi, [Cij , Fj ]]

)
+ O(1/β5) = 0 . (2.60)

By solving the coupled equations of motion (2.59) and (2.60) recursively, one gets Cij and φ up to
O(1/β5). We can safely stop at O(1/β5), because the terms contributing to that order in (2.59)

and (2.60) are, on the one hand, β−1Λ(δ/δCij)Tr∆
4

and β−1Λ(δ/δφ)Tr∆
4
, whose lowest order is

O(1/β8), and on the other hand β−2(δ/δCij)F
ᵀ∆

3
F and β−2(δ/δφ)Fᵀ∆

3
F, whose lowest order
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is O(1/β7), so that the eom don’t get any corrections from contributions of O(1/β4) coming
from Ieff.

Subsequently, the 1/β expansion for Cij reads

Cij = − 1

β
Eij +

3i

β3

(
[Eik, Ekj ] +

1

4
[Fi, Fj ]−

1

4
[Gi, Gj ]

)
+

λ

β4
Eij +

+
9

β5

(
− 2[E[ik, [Ekl, Elj]]] +

1

2
[E[ik, [Fk, Fj]]] −

1

2
[E[ik, [Gk, Gj]]] +

1

2
[[E[ik, Fk], Fj]]−

− 1

2
[[E[ik, Gk], Gj]] +

1

4
[G[i, [Fj], J ]]− 1

4
[F[i, [Gj], J ]]

)
+ O(1/β6) , (2.61)

and the expansion for φ:

φ =
1

2β
J +

3i

4β3
[Fi, Gi] −

(
3

2

)2 λ

β4
J − (2.62)

− 9

8β5

(
[Fi, [Fi, J ]]− [Gi, [Gi, J ]] − 2[[Fi, Eij ], Gj ] + 2[[Gi, Eij ], Fj ]

)
+O(1/β6) .

Now, plugging the result for Cij and φ into Ieff, one arrives at the ”perturbative” effective
action, which we have written up to and including O(1/β5), since the highest order (O(1/β3)) we
calculated in Ieff is quadratic in C and φ6, and since the O(1/β4)-terms in (2.58) only generate
O(1/β7) - terms. This effective action takes the following form:

1

γ
Ieff =

∫
dt

(
L̂+

1

4β
Tr
(
F 2
i −G2

i + J2 − 2 (Eij)
2
)

+

+
i

β3
Tr

(
−Eij [Ejk, Eki] +

3

4
Eij

{
[Fi, Fj ]− [Gi, Gj ]

}
+

3

4
J [Fi, Gi]

))
+

+
λ

2β4
Tr

(
(Eij)

2 − 9

4
J2

)
+

9

2β5
Tr

(
([Eik, Ekj])

2 +
1

16
([Fi, Fj ]− [Gi, Gj ])

2 −

+
1

2
[Eik, Ekj ]

(
[Fi, Fj ]− [Gi, Gj ]

)
− 1

8
([Fi, Gi])

2 − 1

2

{
([Fi, Eij ])

2 − ([Gi, Eij ])
2
}

+

+
1

4

{
([Fi, J ])2 − ([Gi, J ])2

}
− 1

2
[Gi, Eij ][J, Fj ] +

1

2
[Fi, Eij ][J,Gj ]

))
+O(1/β6) .

At that point, we can replace the aliases E, F , G and J by their expression in terms of the
fundamental fields X, Ψ, Z, Π, B and H. The result of this lengthy computation (already to
order 1/β) is presented in the Appendix. Here, we will only display the somewhat simpler result
obtained by ignoring all 5-form induced fields. Furthermore, we will remove the parameter
β from the action, since it was only useful as a reminder of the order of calculation in the
perturbative approach. To do so, we absorb a factor of 1/β in every field, as well as in Dt (so
that the measure of integration scales with β). Thus, β only appears in the prefactor in front
of the action, at the 4th power. This is similar to the case of Yang-Mills theory, where one can
choose either to have a factor of the coupling constant in the covariant derivatives or have it as
a prefactor in front of the action. To be more precise, we set:

Θ =
1

4
√

6β
Ψ , X̃i =

1

β
Xi , Ã0 =

1

β
A0 , G = 9β4 γ , t̃ = βt ,

and similarily for the Z sector: (Z,Π,H,B) → (Z/β,Π/β,H/β,B/β).

6note that their expansion starts at O(1/β)

71



With this redefinition, it becomes clear that our developpment is really an expansion in
higher commutators and not in β. It makes thus sense to limit it to the lowest orders since the
commutators should remain small to minimize the potential energy. To get a clearer picture of
the final result, we will put all the 5-form-induced fields (Z,Π,H,B) to zero. For convenience
we will still write X̃ as X and t̃ as t in the final result, which reads:

I(X,Θ) =
1

G

∫
dt Tru(N)

(
([Dt, Xi])

2 +
1

2
([Xi, Xj ])

2 + iΘΓ̃0[Dt,Θ]−ΘΓ̃i[Xi,Θ]−

−1

9
(Xi)

2 − 2i

3
ΘΘ− 3[Dt, Xi]{Θ, Γ̃iΓ̃0Θ} −

3i

2
[Xi, Xj ]{Θ, Γ̃ijΘ}+

+
9

4
({Θ, Γ̃iΓ̃0Θ})2 −

9

4
({Θ, Γ̃iΓ̃∗Θ})2 +

9

4
({Θ, Γ̃0Γ̃∗Θ})2 −

9

8
({Θ, Γ̃ijΘ})2+

+3[Xi, Xj ][[Xj , Xk], [Xk, Xi]]− 9[Xi, Xj ][[Dt, Xi], [Dt, Xj ]]−

−33i

2
{Θ, Γ̃ijΘ}[[Xj , Xk], [Xk, Xi]] +

34

22
[Xi, Xj ][{Θ, Γ̃jkΘ}, {Θ, Γ̃kiΘ}]−

−34i

23
{Θ, Γ̃ijΘ}[{Θ, Γ̃jkΘ}, {Θ, Γ̃kiΘ}] +

33i

2
{Θ, Γ̃ijΘ}[[Dt, Xi], [Dt, Xj ]]+

+33[Xi, Xj ][[Dt, Xi], {Θ, Γ̃jΓ̃0Θ}]−
34i

22
{Θ, Γ̃ijΘ}[[Dt, Xi], {Θ, Γ̃jΓ̃0Θ}]−

−34

22
[Xi, Xj ][{Θ, Γ̃iΓ̃0Θ}, {Θ, Γ̃jΓ̃0Θ}] +

35i

23
{Θ, Γ̃ijΘ}[{Θ, Γ̃iΓ̃0Θ}, {Θ, Γ̃jΓ̃0Θ}]+

+
34

22
[Xi, Xj ][{Θ, Γ̃iΓ̃∗Θ}, {Θ, Γ̃jΓ̃∗Θ}]−

35i

23
{Θ, Γ̃ijΘ}[{Θ, Γ̃iΓ̃∗Θ}, {Θ, Γ̃jΓ̃∗Θ}]−

−34i

2
{Θ, Γ̃0Γ̃∗Θ}[[Dt, Xi], {Θ, Γ̃iΓ̃∗Θ}]+,

35i

2
{Θ, Γ̃0Γ̃∗Θ}[{Θ, Γ̃iΓ̃0Θ}, {Θ, Γ̃iΓ̃∗Θ}]

)
+

+eighth-order interactions.

We see that the first four terms in this action correspond to the BFSS matrix model, but with
a doubled number of fermions. So, in order to maintain half of the original supersymmetries

(i.e. N = 1 in 10D), one could project out half of the original fermions with P−
IMF−−→ (1 +

Γ̃∗)/2. Finally, in addition to the BFSS-like terms, we have mass terms and an infinite tower
of interactions possibly containing information about the behaviour of brane dynamics in the
non-perturbative sector.

2.6 Discussion

After a general description of osp(1|32) and its adjoint representation, we have studied its
expression as a symmetry algebra in 12D. We have described the resulting transformations of
matrix fields and their commutation relations. Finally, we have proposed a matrix theory action
possessing this symmetry in 12D. We have then repeated this analysis in the 11-dimensional
case, where osp(1|32) is a sort of super-AdS algebra. Compactification and T-dualization of
two coordinates produced a one-parameter family of singular limiting procedures that shrink
the world-sheet along a world-line. We have then identified one of them as the usual IMF
limit, which gave rise to a non-compact dynamical evolution parameter that has allowed us
to distinguish dynamical from auxiliary fields. Integrating out the latter and solving some
constraints recursively, we have obtained a matrix model with a highly non-trivial dynamics,
which is similar to the BFSS matrix model when both X 2 and multiple commutators are small.
The restriction to a low-energy sector where both X 2 and [X,X] are small seems to correspond

72



to a space-time with weakly interacting (small [X,X]) D-particles that are nevertheless not
far apart (small X2). The stable classical solutions correspond to vanishing matrices, i.e. to
D-particles stacked at the origin, which displays some common features with matrix models in
pp-wave backgrounds (see for instance [26, 89, 49]).

Since the promotion of the membrane charges in the 11D super-Poincaré algebra to sym-
metry generators implied the non-commutativity of the P ’s, and thus the AdS11 symmetry, the
membranes are responsible for some background curvature of the space-time. Indeed, since the
CMN don’t appear as dynamical degrees of freedom, their rôle is to produce the precise tower
of higher-order interactions necessary to enforce such a global symmetry on the space-time dy-
namically generated by the Xi’s. The presence of mass terms is thus no surprise since they were
also conjectured to appear in matrix models aimed at describing gravity in de Sitter spaces,
albeit with a tachyonic sign reflecting the unusual causal structure of de Sitter space ([125, 65]).
One might also wonder whether the higher interaction terms we get are somehow related to
the high energy corrections to BFSS one would obtain from the non-abelian Dirac-Born-Infeld
action. Another question one could address is what kind of corrections a term of the form
STrosp(1|32)⊗u(n)([M,M ][M,M ]) would induce.

It would also be interesting to investigate the dynamics of the 5-branes degrees of freedom
more thoroughly by computing the effective action for Z (from Ieff of the Appendix) and give a
definite proposal for the physics of 5-branes in M-theory. Note that there is some controversy
about the ability of the BFFS model to describe transverse 5-branes (see e.g. [123, 230] and
references therein for details). Our model would provide an interesting extension of the BFSS
theory by introducing in a very natural way transverse 5-branes (through the fields dual to Zijkl)
in addition to the D0-branes bound states describing longitudinal 5-branes, which are already
present in BFSS theory.
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2.7 Appendix

We give here the complete effective action at order 1/β.

Ieff =
1

G

∫
dt Tru(N)

(
− β

{
(Xi)

2 +
i

16
ΨΨ +

1

4!

(
(Zi1···i4)

2 + (Πi1···i4)
2 − (Hi1···i4)

2 − 4 (Bi1i2i3)
2
)}

+

+

{
1

4
Πi1···i4 [Dt, Zi1···i4 ] +

3i

32
ΨΓ̃0[Dt,Ψ] + iΠi1i2i3 j[Xj , Bi1i2i3 ]−

i

4 · 4!εi1···i8jZi1···i4 [Xj ,Hi5···i8 ] +

+
i

3! · 4!εi1···i9
(
Bi1i2 j

(
2 [Πj i3i4i5 ,Πi6···i9 ] + [Zj i3i4i5 , Zi6···i9 ] − [Hj i3i4i5 ,Hi6···i9 ]

)
+

+
2

3
Bi1i2i3

(
[Bi4i5i6 , Bi7i8i9 ] + [Zi4i5i6 j, Zj i7i8i9 ] − [Hi4i5i6 j,Hj i7i8i9 ]

))
+

+
i

4
Πi1i2j1j2 [Zj1j2k1k2 ,Hk1k2i1i2 ] −

3

32

(
Ψ Γ̃i [Xi,Ψ] +

1

4!
Ψ
(
Γ̃i1···i4Γ̃∗[Zi1···i4 ,Ψ]+

+ Γ̃i1···i4Γ̃0Γ̃∗[Πi1···i4 ,Ψ] − Γ̃i1···i4Γ̃0[Hi1···i4 ,Ψ] − 4 Γ̃i1i2i3 Γ̃0Γ̃∗[Bi1i2i3 ,Ψ]
))}

+

+
1

4β

{
36 ([Dt, Xi])

2 − i

8
εij1···j8 [Dt, Xi][Hj1···j4 ,Πj5···j8 ] − 12i [Dt, Xi][Zij1···j3 , Bj1···j3 ] −

− 9

8
[Dt, Xi]{Ψ, Γ̃iΓ̃0Ψ} −

1

16
[Hi1···i4 ,Πj1···j4 ]

(
[Hi1···i4 ,Πj1···j4 ] − 16[Hi1i2i3j4 ,Πj1j2j3i4 ] +

+ 36[Hi1i2j3j4 ,Πj1j2i3i4 ] − 16[Hi1j2j3j4 ,Πj1i2i3i4 ] + [Hj1j2j3j4 ,Πi1i2i3i4 ]
)
−

− 1

2 · 4!εij1···j8 [Hj1···j4 ,Πj5···j8 ][Zik1···k3 , Bk1···k3 ] +
i

29
εij1···j8 [Hj1···j4 ,Πj5···j8 ]{Ψ, Γ̃iΓ̃0Ψ} −

− ([Zij1···j3 , Bj1···j3 ])
2 +

3i

16
[Zij1···j3 , Bj1···j3 ]{Ψ, Γ̃iΓ̃0Ψ} +

9

210
({Ψ, Γ̃iΓ̃0Ψ})2 +

+
1

16
[Zi1···i4 ,Πj1···j4 ]

(
[Zi1···i4 ,Πj1···j4 ] − 16[Zi1i2i3j4 ,Πj1j2j3i4 ] + 36[Zi1i2j3j4 ,Πj1j2i3i4 ] −

− 16[Zi1j2j3j4 ,Πj1i2i3i4 ] + [Zj1j2j3j4 ,Πi1i2i3i4 ]
)
− 1

2 · 4!εij1···j8 [Zj1···j4 ,Πj5···j8 ][Hik1···k3 , Bk1···k3 ] −

− i

29
εij1···j8 [Zj1···j4 ,Πj5···j8 ]{Ψ, Γ̃iΓ̃∗Ψ} + ([Hij1···j3 , Bj1···j3 ])

2 +
3i

16
[Hij1···j3 , Bj1···j3 ]{Ψ, Γ̃iΓ̃∗Ψ} −

− 9

210
({Ψ, Γ̃iΓ̃∗Ψ})2 −

1

16
([Zi1 ···i4 ,Hi4···i4 ])

2 +
3i

26
[Zi1···i4 ,Hi4···i4 ]{Ψ, Γ̃0Γ̃∗Ψ}+

9

2
([Bik1k2 , Bjk1k2 ])

2 +

+
1

2
([Zik1k2k3 , Zjk1k2k3 ])

2 + [Zik1k2k3 , Zjk1k2k3 ][Πil1l2l3 ,Πjl1l2l3 ] +
1

2
([Πik1k2k3 ,Πjk1k2k3 ])

2 −

− 3[Zik1k2k3 , Zjk1k2k3 ][Bil1l2 , Bjl1l2 ] − [Zik1k2k3 , Zjk1k2k3 ][Hil1l2l3 ,Hjl1l2l3 ] +
9

210
({Ψ, Γ̃0Γ̃∗Ψ})2 −

− 3 [Πik1k2k3 ,Πjk1k2k3 ][Bil1l2 , Bjl1l2 ] − [Πik1k2k3 ,Πjk1k2k3 ][Hil1l2l3 ,Hjl1l2l3 ] +

+ 3 [Bik1k2 , Bjk1k2 ][Hil1l2l3 ,Hjl1l2l3 ] +
1

2
([Hik1k2k3 ,Hjk1k2k3 ])

2 − 6 [Zik1k2k3 , Zjk1k2k3 ][Xi, Xj ] +

+
3i

32
[Zik1k2k3 , Zjk1k2k3 ]{Ψ, Γ̃ijΨ} − 6[Πik1k2k3 ,Πjk1k2k3 ][Xi, Xj ] +

3i

32
[Πik1k2k3 ,Πjk1k2k3 ]{Ψ, Γ̃ijΨ}+

+ 18 [Bik1k2 , Bjk1k2 ][Xi, Xj ] −
9i

32
[Bik1k2 , Bjk1k2 ]{Ψ, Γ̃ijΨ} + 6 [Hik1k2k3 ,Hjk1k2k3 ][Xi, Xj ] −

− 3i

32
[Hik1k2k3 ,Hjk1k2k3 ]{Ψ, Γ̃ijΨ}+ 18 ([Xi, Xj ])

2 − 9i

16
[Xi, Xj ]{Ψ, Γ̃ijΨ} −

9

211
({Ψ, Γ̃ijΨ})2

}
+

+ O(1/β3)

)
.
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Part II

Anomaly cancellation in heterotic
M-theory and membrane instantons
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Introduction

In this second part, we will be interested in the limit in which M-theory descends to the heterotic
E8 × E8 string theory, which differs from the purely circular compactification to IIA theory in
that the theory we now want to recover only has N10 = 1 supersymmetry. A compactification on
a circle S1 would indeed preserve all 32 original supercharges present in the eleven-dimensional
theory, and thus lead to N10 = 2 supersymmetry required by type II string theories. Con-
sequently, to get rid of half of these supersymmetries in ten-dimensions, on must consider a
compactification on a singular space. In the E8 × E8 heterotic case, the appropriate space was
shown to be the orbifold S1/ � 2 [148, 147], which can be pictured as an interval with end-points
corresponding to the two fixed points of the orbifold action.

In general, compactifying a string theory on orbifolds generates anomalies which have to
be cancelled, for the quantum theory to be consistent. This entails the existence of twisted
states charged under the appropriate gauge group and localised at the orbifold fixed points.
But while twisted sectors of superstring theories can be determined by a standard procedure,
when working in the eleven-dimensional M-theory limit however, one must resort to indirect
arguments to reconstitute the equivalent of ”twisted states”. In particular since, in this approach,
one is ultimately bound to work in the low-energy limit of the eleven-dimensional theory, the
consistency criterion there is the absence of anomalies in local symmetries, in the resulting
field theory description. But since the anomalies are determined by the massless modes of the
spectrum, their absence in the low-energy field theory guarantees automatically that its string
theory limit is also well behaved.

Thus, anomaly cancellation has proved a powerful tool which Hořava and Witten have used
to show that recovering the strongly-coupled E8 × E8 heterotic string from M-theory requires
a factorization of the gauge and gravitational anomaly polynomial of the heterotic theory into
two separate terms, each being associated to one of the E8 factor. Local anomaly cancellation
in the M-theory setup then involves the existence of E8 gauge multiplets propagating on the
ten-dimensional boundary hyperplanes located at each of the � 2 fixed points. In the small
radius limit of the orbifold, one recovers the low-energy heterotic supergravity with one-loop
corrections. In particular, the fundamental string of the heterotic theory descends from M2-
brane states in the presence of boundary hyperplanes, while the dependence on the two separate
E8 gauge group is now merged into a single semisimple E8 × E8 dependence, expected for the
gauge bosons of heterotic string theory.

For this purpose, we also review in Chapter 3 anomaly cancellation in string theory in
general, since the discovery that all known string theories are anomaly-free was a major step
in reviving the interest in them, and led to the so-called first string revolution. In particular,
the heterotic string requires an additional mechanism to cancel mixed gravitational and gauge
anomaly, which necessitates the introduce of a higher order type correction to the supergravity
lagrangian, namely the Green-Schwarz term.

In eleven dimensions, a similar term is known to exist, from string dualities [241] and anomaly
cancellation of the five-brane in eleven dimensions [107, 251], and has to be taken into account
in heterotic M-theory, in addition to the topological Chern-Simons term predicted by eleven-

76



dimensional supergravity. More concretely, the presence of boundaries in the eleven-dimensional
setup modifies the Bianchi identity for the four-form field strength of eleven-dimensional super-
gravity, which is now neither exact nor closed anymore.

Anomaly cancellation is then achieved by inflow from both the topological Chern-Simons
interaction and the additional Green-Schwarz term, both depending on a four-form field strength
now satisfying a Bianchi identity modified by a non-zero gauge and gravitational source term.
This construction requires care. In particular, when working in a formalism where instead of
considering the orbifold S1/ � 2, one works alternatively on a boundary free-circle S1, and then
imposes � 2 projection, one must insist on requiring periodicity of all fields of the theory in the
circle coordinate [43]. In addition, [44] have shown that that the Chern-Simons term should
be modified by a redefinition of the three-form potential, similar to what is done to treat the
normal bundle anomaly of the M5-brane [119].

Finally, the solution to the modified Bianchi identity for the four-form field strength depends
on an arbitrary integration parameter, which, in principles, defines a whole family of solution.
However, it has been pointed out [43] that demanding invariance under large gauge and Lorentz
transformation of the four-form modified by boundary contribution fixes this parameter uniquely.
This, in turn, determines the value of the ratio between the 11D gravitational constant and the
gauge coupling, which was put forward by [147] as a prediction of M-theory, and guarantees
that all eleven-dimensional fields can be safely truncated to the massless modes of the heterotic
theory.

At the end of Chapter 3, we will move to considering how the Hořava-Witten scenario is
affected by the presence of five-branes. Since they are described by a tensor multiplet contain-
ing chiral fermions and a self-dual threeform and break 11D lorentz invariance, five-branes are
potential sources for both tangent space and normal bundle anomalies, which we will carefully
review. In particular, when introduced in the Hořava-Witten setup five-branes wrapping the
orbifold circle do not influence the results obtained in their absence, while five-brane perpendic-
ular to the interval can be shown to produce an additional non-vanishing anomaly inflow from
the Chern-Simons term, which are localised on the world-volume of the five-brane and lead to
new interesting effects in the four-dimensional theory.

These five-brane contribution are indeed central to the discussion in Chapter 4, where we
consider further compactification of M-theory on S1/ � 2 to four dimensions, which preserves
N4 = 1 supersymmetry. For this purpose, we choose the additional six-dimensional compact
space to be a Calabi-Yau three-fold, and the five-branes to be space-time filling and transverse
to the S1/ � 2 interval, and having two directions wrapping a two-cycle in the Calabi-Yau. Their
fluctuation along the orbifold direction is parametrized by a modulus field, independent of the
precise geometry of the Calabi-Yau space, which is thus referred to as universal. In the effective
supergravity realization, this modulus can be incorporated either in a chiral or (in a dual picture)
in a linear multiplet, depending on the formulation we choose for the effective theory.

The effective supergravity including these space-time filling M5-branes can then be obtained
by using a superfield formulation which takes into account the modification of the Bianchi iden-
tity of the four-form field strength, incorporates the topological contribution from the anomaly
polynomials located on the fixed planes and respects the self-duality of the three-form living on
the five-brane. In this framework, one can in particular study configurations with open mem-
brane with Euclidean world-volume connecting 10D hyperplanes or five-branes together. In
particular, taking pairs of five-branes transverse to the interval, one can consider an Euclidean
membrane localized in space-time stretching between both of them. Such effects lead to instan-
ton corrections to the interaction Lagrangian and, after gaugino condensation occurs, contribute
to the non-perturbative superpotential of the four-dimensional theory.

More precisely, in this effective supergravity approach, such contributions originate from
the topological Chern-Simons term, which generates an interaction between the gauge fields on
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the 10D hyperplanes and the masless orbifold modes of the three-form located on the world-
volume of the fivebranes. These interactions depend explicitely on the position of the five-branes
along the interval, and can be viewed, in this framework, as gauge threshold corrections. One
can then use gaugino condensation to determine the non-perturbative superpotential resulting
from these interaction terms. In particular, we recover the exact exponential dependence on the
universal moduli of the fivebranes as it is obtained by standard membrane instanton calculations
[193, 183], but by a completely different route and without the limitations of validity imposed
by the latter. This work, done in collaboration with J.P. Derendinger, appears in [63].
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Chapter 3

M-theory on an orbifold, anomaly
cancellation and membrane
instantons

3.1 Eleven-dimensional supergravity à la Cremmer-Julia-Scherk

In this section, we will review some basic facts about the 11D supergravity theory found by
Cremmer-Julia-Scherk [81]. This introduction is motivated by the fact that the so-called Hořava-
Witten scenario, which gives a proposal for the strong coupling limit of the E8 × E8 heterotic
string, results from a modification of the Bianchi identity of the four-form field strength of 11D
supergravity. In 11D supergravity, it is an exact form, derived from a three-form potential:
G4 = dC3. Hence, its Bianchi identity is trivial: dG4 = 0. In constrast, the low-energy E8 ×E8

supergravity with 1-loop corrections is obtained from the 11D theory when the RHS of this
Bianchi identity is now proportional to a source term, reproducing upon compactification on
the interval I = S1/ � 2, the correct anomaly counterterms of the heterotic effective theory. As
a result, G4 is in this case neither closed nor exact anymore.

We have already introduced qualitatively the M-theory limit of IIA string theory in Sec-
tion 1.3.1, thereby making contact with 11D supergravity à la Cremmer-Julia-Scherk. In the
following, we will make these statement mathematically more precise. The bosonic sector of 11D
supergravity comprises, along with the Einstein-Hilbert action in 11D and the kinetic term for
the three-form field, a topological, or Chern-Simons, term, transforming into a total derivative
under a gauge transformation of C3. In the absence of the fermionic sector, we leave, following
[44], the coefficients of each term unfixed (the original choice of Cremmer-Julia-Scherk [81] is
a = −1, b = 2κ2, c = −2

√
2κ3):

Sbos =
1

2κ2

∫

M11

d11x e
(
aR(ω1)−

b

48
GABCDG

ABCD +
c

(144)2e
εA1..A11CA1A2A3GA4..A7GA8..A11

)
.

(3.1)
We have defined εA1..A11 = −1, and we lower and raise the indices of the epsilon tensor with
the metric, so that: εA1..A11 = −det g−1 = e−2. The integration is performed over a (yet
unspecified) 11D space M11 with signature (−1,+1, ..,+1). Like in Chapter 2, we choose
capital roman indices (A, B, C...) for 11D space-time indices, and small case greek letters (µ,
ν, ρ...) for the 10D space-time ones. As mentioned above, G4 is the field-strength associated to
C3: GABCD = 4∂[ACBCD], and the metric is given in terms of the elfbein as: gAB = ηabe

a
A e b

B ,
with the lower-case a, b.. referring to SO(10, 1) tangent-space indices (the SO(9, 1) ones will be
denoted m, n, ..)

We see that the theory has a unique parameter κ2, and no scalars (”dilatons”) whose back-
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ground value would generate additional Lorentz invariant parameters. This supergravity is the
maximally supersymmetric theory in 11D, with 25 = 32 supercharges. We recall the counting of
massless physical states of the theory already outlined in Section 1.3.1. The massless states of the
three-form C3 are classified according to the helicity group, or little group, which is SO(11−D).
In 11D, an antisymmetric 3-index tensor has (9 × 8 × 7)/3! = 84 dof. This, together with the
traceless symmetric tensor gAB with (9 × 10)/2! − 1 = 44 physical degrees of freedom, makes
128 bosonic fields. The 11D supergravity multiplet will thus contain, in addition, a gravitino,
given by the physical components of spin- 3

2 Lorentz spinor ψA. In 11D, this leads precisely

(11− 3)× 2[ 9
2
] = 128 physical massless fermionic fields1.

From their tensorial nature, one can deduce how an infinitesimal local Lorentz transforma-
tions will act on the vielbein and the Rarita-Schwinger spinor now defined in the tangent frame:
ψa = eAaψA. While the the vielbein transforms as δΛL

e a
A = −(ΛL)abe

b
A (where (ΛL)ab are

the infinitesimal parameters of the Lorentz transformation), the variation of the 3
2 -spin field

combines the transformations of both a vector and a spinor according to:

δΛL
ψa = −(ΛL) b

a ψb −
1

4
(ΛL)bcΓ

bcψa .

The supersymmetrisation of the theory can now be considered. It will, in particular, fix the
ratios b/a and c/a in the action (3.1), which have up to now been left undetermined.

Our conventions for the remain of this section are: a = 1, b = 1, c = 1, so that the 11D
gravitational constant only appears as factor κ−2 in front of the action. This corresponds to the
rescaling κ → κ/

√
2 in the original supersymmetric action of [81], followed by a redefinition of

the fields: ψA → κ−1ψA and C3 → (
√

2κ)−1C3, and a change of sign of R(ω1).
We also choose a Majorana representation for the Clifford algebra where all the Dirac ma-

trices are real. With respect to [81], this corresponds to the redefinition ΓA → −iΓA.

SCJS =
1

2κ2

∫
d11x eR(ω1)−

1

2κ2

∫ (
1

2
G4 ∧ ∗G4 +

1

6
C3 ∧G4 ∧G4

)

+
1

2κ2

∫
d11x e

[
iψAΓABCDB

(ω1 + ω̂1

2

)
ψC

− 1

192
ψA1

[
ΓA1..A6 + 12ΓA3A4gA1A2gA5A6

]
ψA6

(
GA2..A5 + ĜA2..A5

2

)]
.

(3.2)

We see in particular that supersymmetry requires the introduction of a covariant derivative
for the spinors, which contains the 11D spin connection one-form: ω1 = 1

2ωAabT
abdxA, where

(T ab)cd = 2δa[cδ
b
d] are the Lorentz generators in the vector representation. In components, it

reads:
ω ab
A = eBa∂[Ae

b
B] − eBb∂[Ae

a
B] − eBaeCd∂[BeC]fe

f
A ≡ ω ab

A (e) ,

which defines the curvature two-form as R2 = dω1+ω1∧ω1. Writing R2 = 1
4Rab ABT

abdxA∧dxB ,
the Riemann tensor is obtained from the components of the curvature two-form as RAB

CD =
eAae

B
bR

ab
CD.

The covariant derivative is given by:

DA(ω1)ψB = (∂A +
1

4
ωAabΓ

ab)ψB

1The spin- 3
2

representation can be viewed as the tensor product 1 ⊗ 1

2
of a spinor and a vector. It reduces

under the Lorentz group to the sum of gravitino and a spinor. In order to eliminate the (non-physival) spinor

part, one must project Γaψa = 0. For massless particles, this keeps α(D − 3) × 2[ D−2
2

] degrees of freedom, where
α = 1 for a Majorana spinor, which is our case here (we would have α = 2 for a Dirac spinor and α = 1/2 for a
Majorana-Weyl one). For more details see [179].
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where ω1 is the spin connection with non-vanishing torsion. For a Majorana gravitino, this is
equal to:

ω ab
A = ω ab

A (e)− 1

8
ψB(ΓBCA)abψC −

1

4

(
ψ[aΓAψ

b] + ψAΓ[aψb] + ψ[aΓb]ψA
)
.

In addition, supersymmetry requires the connection to be modified by a term bilinear in the
fermions. The field strength G4 is shifted accordingly so that the hatted components in the
action (3.2) read:

ω̂Abc = ωAbc −
1

8
ψD(ΓAbc)

DEψE ,

ĜA1A2A3A4 = GA1A2A3A4 + 3ψ[A1
ΓA2A3ψA4] .

(3.3)

Then, the action (3.2) is invariant under the N = 1 supersymmetry variations, for an infinitesi-
mal Grassmanian transformation parameter ε

δεe
a

A = − 1√
2
ε̄ΓaψA , (3.4)

δεCA1A2A3 = − 3√
2
ε̄Γ[A1A2

ψA3] ,

δεψA =

[√
2DA(ω̂1)−

1

144
√

2

(
ΓA1..A4

A − 8δA1
A ΓA2A3A4

)
ĜA1A2A3A4

]
ε .

This can be proven thanks to a particular Fierz identity in 11D, similar in spirit to the 10D
one found in Appendix A.6. The closure of the supersymmetry algebra is realised on shell only,
so that commutators of two supercharges have to be evaluated on solutions of the equations of
motion of eleven-dimensional supergravity.

In addition, under a general infinitesimal variation of the (curved) coordinates system {xA}:
δxA = −ζA(x), the gravity and three-form fields transform as

δζe
a

A = ζB∂Be
a

A + e a
B ∂Aζ

B , δζgAB = ζC∂CgAB + 2gC(A∂B)ζ
C ,

δζCABC = ζD∂DCABC + 3CD[AB∂C]ζ
D , δζψA = ζB∂BψA + ψB∂Aζ

B ,

The action (3.2) can be shown to covariant under such general 11D coordinate transformation.
Invariance of the action under gauge transformation of the three-form potential will be discussed
in the next section.

3.2 Dualising the three-form and the introduction of M5-branes

In this section, we will concentrate on the bosonic sector of 11D supergravity (3.1) and show
how, in the context of M-theory, it can accomodate the inclusion of dynamical five-branes, or
M5-branes. In contrast, the fermionic sector (3.2) will be important for us when discussing the
possible anomalies in the compactified M-theory, so we will leave it aside for the moment being
and come back to it later in this chapter.

We consider the bosonic part of the action (3.2):

Sbos =
1

2κ2

∫
d11x eR(11) − 1

2κ2

∫ (
1

2
G4 ∧ ∗G4 +

1

6
C3 ∧G4 ∧G4

)
(3.5)

which is invariant under the gauge transformation of C3 by a closed two-form

δC3 = dΛ2 . (3.6)
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The equation of motion for the three-form and the Bianchi identity for G4 are

d ∗G4 +
1

2
G4 ∧G4 = 0 , dG4 = 0 , (3.7)

Now we can in particular consider the picture where the identity G4 = dC3 is expressed by
means of a Lagrange multiplier. This requires introducing a six-form C6, whose field-strength
is the dual of G4, namely: dC6 = G7 with G7 = ∗G4. Then, we can regard the field G4 as
independent and constrain it by the addition to the action (3.5) of the term

Sconstraint =
1

2κ2

∫
(G4 − dC3) ∧G7

where now G7 plays the rôle of a Lagrange multiplier. Now, this new action reads:

Sbos =
1

2κ2

∫
d11x eR(11) −

1

2κ2

∫ (
1

2
G4 ∧ ∗G4 +

1

3!
C3 ∧ dC3 ∧ dC3

)
+ Sconstraint (3.8)

and the equations of motion for C3 namely dG7 + 1
2dC3 ∧ dC3 = 0, can be solved by

G7 = −dC6 −
1

2
C3 ∧ dC3

which is gauge invariant if

δC6 = −1

2
dC3 ∧ Λ2 + dΛ5 . (3.9)

At this stage one can now rewrite the constraint in the action (3.8) in terms of C6. This is
particularly useful when introducing additional terms sourced by M5-branes, since the world-
volume of such an object naturally couples to a six-form potential. After this substitution we
have:

Sbos =
1

2κ2

∫
d11x eR(11) − 1

4κ2

∫
G4 ∧ ∗G4 −

1

4κ2

∫
C3 ∧ dC3 ∧

(
G4 −

2

3
dC3

)

+
1

2κ2

∫
dG4 ∧C6

(3.10)

This form of the Lagrangian will in a particular be used in Chapter 4. There, the analysis of
the effective heterotic M-theory resulting from the orbifold compactification of action (3.10) on
M11 =M4×K6×S1/Z2, whereM4 is the 4D Minkowski space and K6 a Calabi-Yau threefold,
will necessitate a modification of the Bianchi identity for G4 to dG =

∑
a Ja,5, where the Ja,5 are

source terms induced by anomaly inflow from the chiral or self-dual fields of either the heterotic
supergravity multiplet or from the D = 6 N = 2 five-brane tensor multiplet. This modification
is then easily implemented in expression (3.10) by a simple shift: G4 → G′

4 = G4 −
∑

a Ja,4,
with Ja,5 = dJa,4.

In addition, when considering dynamical five-branes in M-theory, one has to include the
world-volume bosonic action for the D = 6 N = 2 five-brane tensor multiplet, containing five
massless scalar fields and a chiral two-form, whose field-strength is self-dual on the five-brane
world-volume W6. In general, constructing a covariant action for such a rank-two tensor is
notably difficult, because of the usual clash between incorporating the self-duality condition and
preserving manifest Lorentz invariance. This problem has been solved for the 11D five-brane
in [210, 16], by introducing an auxiliary scalar field a which ensures world-volume covariance
and first class constraints on the model (this latter point becomes important when quantising
the theory). In the absence of any supergravity fields, the kinetic action for the field strength
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F3 = dB2, where B2 is the two-form living on W6, is then given, for a free five-brane, by a
modification of the DBI action (1.40):

SfreeM5 = −T5

∫

W6

d6x̂

(√
−
∣∣∣ĝαβ + iF∗

αβγV
γ
∣∣∣+ 1

4
ê V αF∗

αβγFβγδVδ
)
. (3.11)

As already seen in Section 1.2, all the quantities in expression (3.11) depend on the brane
coordinates {yα}α=0,..,5. The tensors already present in the 11D supergravity Lagrangian such
as gAB and CABC have to be pulled back to the five-brane word volume. To avoid confusion,
we denote the pullback Ŷα1..αp = ∂α1X

A1 · · · ∂αpX
ApYA1..Ap of a p-form Yp by a hat. Here in

particular, the fields XA, A = 0, 1, .., 10, represent the five-brane embedding in the 11D target
space, among which theX i, i = 6, .., 10, constitute the five scalar fields of the five-brane multiplet
describing the fluctuation of W6 in the transverse space. In particular, we will see in Chapter 4
that when considering a compactification of M-theory on M11 = M4 ×K6 × S1/ � 2, the only
transverse scalar surviving the Calabi-Yau compactification is X 10, which represents the five-
brane position along the interval S1/ � 2 and is referred to, in this context, as the five-brane
universal modulus.

In expression (3.11), the auxiliary field a(y) has been introduced as

Vα =
∂αa√
∂βa ∂βa

.

In addition, we have (F ∗)α1α2α3 = − 1
3!êε

α1..α6Fα4α5α6 and ê =
√
−|ĝαβ|. We see in particular,

that when expanding expression (3.11) around the flat metric, we get:

SfreeM5 ∼ −T5

4

∫

W6

d6x̂ ê VαF∗αβγ [Fβγδ −F∗
βγδ

]
V δ

∼= −T5

4

∫

W6

d6x̂ ê

(
1

3!
F2 − 1

2
V α(F∗ −F)αβγ(F − F∗)βγδVδ

)

which is precisely the action for a free self-dual field B2 with: F∗
αβγ = Fαβγ . The action (3.11)

is invariant under diffeomorphisms and the following local transformations:

δB2 = dΛ̂1 −
1

2
Λ̂1 ∧ da, δa = 0 , (3.12)

plus another set of transformations for which, in particular δa = λ0 (together with another more
involved transformation for B2).

Thanks to the transformations (3.12), one can algebraically gauge-fix some of the components
of B2. Moreover, one can use the other set of local symmetries to eliminate a. Noting that
VαV

α = 1 by definition, one can in particular, after identifying yµ = xµ, make the choice:

Vµ = 0 , V4V
4 + V5V

5 = 1

which preserves four dimensional Lorentz covariance. This will be the choice made in Chapter 4,
where we study M5-branes with world-volume W6 = M4 × C2, where C2 is a two-cycle in an
unspecified Calabi-Yau three-fold.

Finally, in the presence of an 11D supergravity background, the five-brane two-form B2 will
couple not only to C3 but also to its Hodge dual C6, through a Wess-Zumino type interaction
(1.42). In addition, this coupling requires shifting F3 → H3 = F3 − Ĉ3 in the action (3.12),
where Ĉ3 is the pullback of the three-form to W6. Then, gauge invariance demands that for
the usual local gauge transformation δĈ = dΛ̂2 we shift δB2 = Λ̂2. Furthermore, the original
self-duality condition on F3 is now extended to H3.
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Then, the five-brane action in a non-trivial 11D supergravity background reads:

SM5 = −T5

∫

W6

d6x̂

(√
−
∣∣∣ĝαβ + iH∗

αβγV
γ
∣∣∣+ 1

4
ê V αH∗

αβγHβγδVδ
)
−T5

∫

W6

(
Ĉ6 +

1

2
Ĉ3 ∧ F3

)
.

(3.13)
Clearly, this Wess-Zumino term is invariant under the transformations (3.6) and (3.9) pulled
back on the five-brane world-volume, with now the additional variation for B2 mentioned above

δĈ3 = dΛ̂2 , δĈ6 = −1

2
dĈ3 ∧ Λ̂2 + dΛ̂5 , δB2 = Λ̂2

provided
∫
∂W6

Λ5 = 0.
Expression (3.13) will be supersymmetrised, along with the rest of the heterotic M-theory

action in Section 4. We will be particularly interested to study, in this setup, how threshold
corrections are modified by instanton effects due to the presence of open Euclidean membranes
stretching between two M5-branes, and the structure of the resulting superpotential and gaugino
condensates, and their dependence on the five-brane universal modulus.

3.3 Anomaly cancellation in ten-dimensional string theories

In this section, we will, as a warm up, review the mechanism of anomaly cancellation in the
E8×E8 heterotic supergravity theory, which is precisely reproduced by the small radius limit of
the Hořava-Witten scenario. Thus, when studying the anomaly inflows from the Chern-Simons
and Green-Schwartz terms in 11D, we will pay particular attention to retrieving the anomaly
counterterms in the same convention as the one chosen here.

Generally speaking, anomalies will appear in chiral theories. We thus expect them only in
even dimensions, which are the ones allowing Weyl spinors. Anomalies will break the classical
symmetry of the theory at the quantum level, and only depend on the massless modes of the
fields, since massive degrees of freedom will, asympotically in the distance, contribute local terms
in the path integral, so that their (local) gauge variation can be removed by a counterterm. Now,
while global symmetry breakings may be desirable for phenomenological reasons, local gauge
and Lorentz anomalies must be cancelled to avoid inconsistencies in the theory, thus a careful
study of anomalies is a crucial test for the validity of low-energy effective string theories.

3.3.1 Anomaly polynomials in D dimensions

In dimension D = 2d, the simplest Feynman diagram leading to anomalies is a loop with d+ 1
legs. For superstrings in 10D this corresponds to the well known hexagonal diagram. The
external incoming legs are gauge bosons and gravitons, while the internal ones fermions or
self-dual bosons.

We define the gauge field-strength (curvature) in terms of differential forms as F = dA+A∧A
with2 A = (AiµTi)dx

µ, Ti the generators of the gauge group Lie algebra g, and ω the spin
connection one-form introduced in equation (3.3), i.e. an SO(D)-valued one-form for a theory
in D dimensions. The relevant gauge and Lorentz transformations read:

δΛgA = dΛg + [A,Λg]g , δΛL
e a
A = −(ΛL)abe

b
A , δΛL

ω = dΛL + [ω,ΛL]so(D) ,

where (ΛL)ab is the parameter of the local infinitesimal Lorentz transformation and ΛL the
so(D)-valued zero-form constructed from it.

2In this chapter, The generators of the gauge group are chosen anti-hermitian: T †
i = −Ti, i = 1, .., dimG.
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From now on, we will omit to specify the rank of the gauge and gravitational n-forms we are
using, writing simply F , A, ω.. for instance. Then, the anomaly is governed by a formal gauge-
and Lorentz-invariant D + 2-form ID+2(R,F ), or anomaly polynomial, subject to the descent
equation

ID+2 = dID+1 , δID+1 = dI1
D , (3.14)

which results in theD-form ID used to compensate a local gauge or Lorentz transformation of the
classical action. Under such variations, the Minkowskian action3 transforms as δScl =

∫
MD

∆D.
Then, the anomaly-free effective action will incorporates the anomaly polynomial in its variation
as δΓ =

∫
M2n

(∆D + ID), leading to the condition for anomaly cancellation: ID = −∆D.
An important point, is that ID+2 is uniquely defined, which is not the case of ID. Eqn.(3.14)

is indeed unchanged if we shift ID+1 → I ′D+1 = ID+1 +dΛD. Then, the second descent equation

tells us that ID is defined up to the transformation I1
D → I

′,1
D = I1

D + δΛD + dΛD−1. Thus

starting form the same polynomial ID+2, we arrive at two different anomalies I1
D and I ′,1D related

by the variation of a local counterterm and a possible additional exact form, which does not
survive the second eq.(3.14).

In 10D supergravity theories, the relevant anomaly polynomials originating from gauge,
gravitational and mixed anomalies are given by the Atiyah-Singer index theorem applied to the
relevant differential operators. Thus, the anomalous contributions are in general due to spin- 1

2
fields, spin- 3

2 fields and self-dual tensor fields. In the following, we will determine all indices and
related anomaly polynomials relevant for the known superstring low-energy theories and 11D
supergravity. In this discussion, we follow in particular [6, 7, 44].

The operator attached to a positive (negative) chirality spin- 1
2 fermion, or Weyl operator, is

defined from the basic Dirac operator

/D = eBaΓ
a

[
∂B +AB +

1

4
ωAbcΓ

bc

]
.

by combining it with a chiral projector /D 1/2 = /DP+, with P+ = 1
2(1I ± Γ∗) as defined in

Appendix A.3. Then, the anomaly polynomial corresponding to such a spinor is related to
the index of its Weyl operator by the Atiyah-Singer theorem, where the index is defined as the
difference between the number of zero modes of this operator and the zero modes of its hermitian
conjugate. For a Weyl operator in a D dimensional space MD, in particular, it picks up the
D-form contribution of the following expression:

Ind(i/D1/2) =

∫

MD

[
Â(MD)ch(F )

]
D
, (3.15)

with ch(F ) =tre
i

2π
F the Chern character, and the A-roof genus given by

Â(MD) =

D/2∏

k=1

(
xk/2

sinh(xk/2)

)
= 1+

1

(4π)2
1

12
trR2 +

1

(4π)4

(
1

288
(trR2)2 +

1

360
trR4

)
+ .. (3.16)

where the ±ixk are the two-form ”eigenvalues” of the curvature two-form R. Moreover, the trace
tr is on the adjoint of SO(D). More precisely, we have used the antisymmetry of the curvature
two-form R to bring it to a skew-diagonal form:

1

2π
R =




0 x1

−x1 0
0 x2

−x2 0
. . .



. (3.17)

3We will give the results directly for the Minkowskian case, without deriving them first, as on should do, in
the Euclidean picture, and then doing the analytic continuation [6].

85



In order to determine the expression of the two-forms xk in terms of trR, we start by
expanding the total Pontrjagin class for the SO(D)-valued Riemann curvature tensor as p(R) =

det(1I + 1
2πR) =

∑D/2
i=0 pi(R).

Now in the basis (3.17), we have: p(R) =
∏D/2
k=1(1 + x2

k) =
∑D/2

n=0 t
i1..inx2

k1
· · · x2

kn
with

tk1..kn = 1 if i1 < .. < in and 0 otherwise, which implies the relation:

1

2
tr

(
R

2π

)2l

= (−1)l
D/2∑

k=1

(xk)
2l . (3.18)

This, in turn, fixes the dictionary between the Pontrjagin classes pi(R), the eigenvalues two-forms
xk and trR, namely:

p1(R) =
∑

k

x2
k = −1

2

1

(2π)2
trR2 , (3.19)

p2(R) =
∑

k1<k2

x2
k1x

2
k2 =

1

8

1

(2π)4
(
(trR2)2 − 2trR4

)
,

...

pD/2(R) =
∑

k1<..<kD/2

x2
k1 · · · x2

kD/2
=

1

(2π)D
detR .

With these relations in hand, one can now rewrite the LHS of the A-roof genus (3.16) in
terms of the Pontrjagin classes as:

Â(MD) = 1− 1

24
p1 +

1

5760
(7p2

1 − 4p2)−
1

967680
(31p3

1 − 44p1p2 + 16p3) + ... (3.20)

which, as one can check, gives the result on the RHS of eq.(3.16).
The standard procedure [6] relating the index (3.15) to the anomaly polynomial appearing

as the variation δΓ =
∫
MD
I1
D yields in this case:

I(1/2)
D+2 (R,F ) = 2π

[
Â(MD)ch(F )

]
D+2

. (3.21)

For the spin- 3
2 fermion, viewed as the tensor product between a spin- 1

2 object and a vector,
the corresponding index can be computed by substracting the spin- 1

2 part to the index of a

vector field, with index density tre
i

2π
R, which yields:

Ind(iD3/2) =

∫

MD

[
Â(MD)

(
tre

i
2π
R − 1

)
ch(F )

]
D

(3.22)

Since in the supergravity theories we will be dealing with, the gravitino field is not charged
under the gauge group, we will drop the gauge-curvature part in the following. In this case,
the expansion of the index density in expression (3.22) with ch(F ) = 1 is best computed by
diagonalizing the matrix (3.17) to (1/2π)R =diag{ix1,−ix1, .., ixD/2,−ixD/2}, so that

(e
i

2π
R − 1) = D − 1 + 2

D/2∑

j,k=1

1

(2j)!
(xk)

2j = D − 1 +

D/2∑

j=1

1

(2π)2j(2j)!
trR2j , (3.23)

where we have used eq.(3.18).
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Putting together expressions (3.16) and (3.23), one arrives at:

Â(MD)
(
tre

i
2π
R − 1

)
= D − 1 +

1

(4π)2

(
D − 25

12

)
trR2 (3.24)

+
1

(4π)4

((
D − 49

288

)
(trR2)2 +

(
D + 239

360

)
(trR2)2

)
+ ..

Then, the anomaly polynomial for the spin- 3
2 particle in the absence of mixed anomalies can

once again be directly read off the index (3.22), yielding:

I(3/2)
D+2 (R) =

[
Â(MD)

(
tre

i
2π
R − 1

)]
D+2

. (3.25)

Finally, there remains to determine the anomaly polynomial for the self-dual tensors pos-
sibly appearing in the supergravity theories of interest. As already seen, for D even, these
objects are described by

(
D
2 − 1

)
-form potential whose field strength are self-dual in a space

with Minkowskian signature. In particular, when D = 2n + 2, this D
2 -form can be constructed

from the bilinear χΓ(D/2)ψ, where χ and ψ are two spin- 1
2 fermions with positive chiralities

(cf. eqn.(A.5) in Appendix A). Such self-dual antisymmetric tensors are usually not charged
under under the gauge group, so their index will only dependend on the curvature two-form.
Moreover, since self-dual form fields can be viewed as fermion bilinears, the index will contain

a factor tre
i

2π
1
4
RabΓ

ab
, where Γab is the spin rep for SO(D). More precisely, it is given by the

following prescription:

Ind(iDSD) =
1

4

∫

MD

[L(MD)]D . (3.26)

in terms of the Hirzebruch polynomial L(MD) = Â(MD)tre
i

2π
1
4
RabΓ

ab
. The prefactor in expres-

sion (3.26) decomposes as 1
4 = 1

2 × 1
2 , where one factor comes from the chirality projector and

the other from the reality condition on the self-dual field-strength.
Hirzebruch polynomial has the following expansion

L(MD) =

D/2∏

k=1

(
xk

tanh(xk)

)
= 1− 1

(2π)2
1

6
trR2 +

1

(2π)4

(
1

72
(trR2)2 − 7

180
trR4

)
+ ..

So one can again check, as we have done for expression (3.16), the RHS of the above equation
by reexpressing its LHS in terms of the Pontrjagin classes (3.19):

L(MD) = 1 +
1

3
p1 −

1

45

(
p2
1 − 7p2

)
+

1

945
(2p3

1 − 13p1p2 + 6p3) + ... (3.27)

In contrast to the two preceding cases, the corresponding (D + 2)-anomaly polynomial should
be rescaled by an extra corrective factor taking into account both the bosonic nature of the field
and the dimension of the spinor represention in D dimensions. Thus, we have:

I(SD)
D+2 (R) = 2π

(
−1

8

)
[L(MD)]D+2 . (3.28)

All these rather technical results can now be applied to verify that the gauge, gravitational and
mixed anomalies of the known superstring theories indeed cancel, which led, when this fact was
discovered, to the so-called first string revolution.
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3.3.2 The example of IIB string theory

In this section, we will discuss anomaly cancellation in low-energy string theories more precisely.
Since we have ultimately the low-energy effective heterotic M-theory in mind, we will just il-
lustrate how anomalies cancel in the IIB setting, as an example up, before treating the more
involved E8 ×E8 heterotic case.

In contrast to type IIA, type IIB string theory is chiral, but since it contains no gauge
fields, it exhibits only gravitational anomalies, which can be directly deduced from its massless
spectrum

IIB : [0]2 + [2]2 + [4]+ + (2) + (8c)
2 + (56s)

2 .

In the expression above, we recognise the (NS+,NS+) sector of the 10D theory, which decomposes
under the little group SO(8) into the following representations: [0]+ [2]+(2) = 1+28+35v. In
supergravity terms, this refers to the dilaton, the antisymmetric tensor B2 and the symmetric and
traceless metric tensor (which accounts for the v index denoting the vector representation). On
the other hand, the (R+,R+) sector consists of the following states [0]+[2]+[4]+ = 1+28+35c,
in other words a zero-, a two- and a four-form potential. The latter defines a self-dual field-
strength in 10D, and is thus in a left-handed (the c subscript) chiral representation of SO(8).
Finally in the mixed (R−,NS+)+(NS+,R−) sector, we have two copies of left-handed spin- 1

2
fermions and right-handed gravitinos: (8c)

2 + (56s)
2, for a total of 128 fermions, as expected.

Clearly, the source of anomalies comes the two spin- 1
2 Majorana-Weyl fermions (8c)

2, the
gravitinos (56s)

2 with opposite chiralities, and four-form potential [4]+. The two pairs of
fermions and gravitinos can be grouped together into two complex combinations, yielding one
twelve-form anomaly polynomial per chiral field.

Assembling the relevant contributions from eqs.(3.21), (3.25) and (3.28) with R now the
ten-dimensional curvature two-form, the total anomaly polynomial

IIIB
12 (R) = I(1/2)

12 (R)− I(3/2)
12 (R)− I(SD)

12 (R) = 0

vanishes thanks to expressions (3.20), (3.27) and (3.24), rephrased in terms of Pontrjagin classes
(3.19) as follows:

1

2π
I(1/2)

12 (R) = − 1

967680
(31p3

1 − 44p1p2 + 16p3) ,

1

2π
I(3/2)

12 (R) =
1

967680
(225p3

1 − 1620p1p2 + 7920p3) ,

1

2π
I(SD)

12 (R) = −
(

1

8

)
1

945
(2p3

1 − 13p1p2 + 6p3) .

This is indeed a beautiful and somehow striking result. In this respect, the stringency of the
numerical constraints involved points at the idea that the internal consistency conditions for
string theory are so powerful and straightforward that they directly imply that the resulting
low-energy theory is anomaly-free.

3.3.3 Anomaly cancellation for the E8 × E8 heterotic string

The heterotic and type I string theories, in contrast, have chiral fields which are charged under
their respective gauge groups. However, since the only charged spinor is the gaugino, we need to
take into account an additional coupling term, which is absent from the minimal supergravity
theory, to cancel gauge and mixed anomalies. This is the Green-Schwarz mechanism [130], which
will be presented in detail hereafter. This additional Green-Schwarz correction will typically
originate from the higher derivative topological term (1.42), and thus receive an interpretation
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in terms of a coupling of the world-volume of a p-brane of the original string theory, with a lower
rank p′-brane, with p′ < p.

Here we will concentrate on the E8×E8 heterotic string, since it is the only heterotic theory
directly related to M-theory via compactification. The heterotic SO(32) theory is then obtained
from the E8 × E8 heterotic theory by toroidally compactifying one dimension, turning on a
Wilson line to break both groups to SO(16) × SO(16), and then perform T-duality on the
compactified dimension. S-dualising the heterotic SO(32) theory we finally get type I string
theory, so that all three of these string theories are related by the appropriate chain of dualities.
In any case, the analysis of anomaly cancellation for the heterotic SO(32) and type I strings is
similar in spirit, and can be easily worked out by following the subsequent discussion.

All these theories are constructed from combining the right-moving side of a superstring of
type II with a left-moving bosonic string in 26 flat dimensions, but with 16 of its bosonic degrees
of freedom compactified on a self-dual torus T 16. The requirement for these gauge bosons to
be written as vertex operators and the modular invariance of the partition function demands
an even self-dual compactification lattice (which only exist in dimensions which are multiples
of eight), leading, in 16 Euclidean dimensions, to the well known SO(32) and E8 × E8 gauge
groups. The remaining ten non-compact bosons together with the ones from the right-moving
type II superstring form the usual 10 world-volume coordinates in the vector rep of the SO(9, 1)
Lorentz group.

The low-lying heterotic E8 × E8 string states have massless spectrum given in terms of
SO(8)Spin ×E8 ×E8 representations, where again SO(8) is the light-cone little group:

(1,1,1)+(28,1,1)+(35,1,1)+(56c,1,1)+(8s,1,1)+[8v+8c]× [(248,1)+(1,248)] . (3.29)

Denoting by ÑS and R̃ the sectors corresponding to the 8v and 8c reps of the right-moving
II superstring, and by NS the tachyonic (1,1) and massless (8v ,1) + (1,496) states from the

26D bosonic string side, the spectrum (3.29) decomposes into an (ÑS,NS) sector: (1,1,1) +
(28,1,1)+(35,1,1)+(8v ,248,1)+(8v,1,248), and a mixed (R̃,NS) one: (56c,1,1)+(8s,1,1)+
(8c,248,1) + (8c,1,248).

In the low-energy effective theory, the uncharged states correspond to the dilaton φ, the
antisymetric tensor Bµν , the vielbein e a

µ , the left-handed Majorana-Weyl gravition ψµ and the
right-handed Majorana-Weyl fermion χ forming the N = 1 supergravity multiplet we already
now from the type II superstring. The charged part of the spectrum (3.29), on the other hand, is
incorporated in a SYM multiplet, containing the ten-dimensional gluon Ai

µ and Majorana-Weyl
gluino λi, where the i labels the generators of a certain representation of the gauge group (here,
the adjoint rep of E8 ×E8).

Obviously, the chiral fields contributing to the anomaly inflow can be read off the (R̃,NS)
sector and consist of a spin- 1

2 fermion (8s,1,1), as in type IIB theory, a gravitino (56c,1,1) and
the gauginos (8c,248,1) + (8,1,248) in the adjoint representation of E8 ×E8.

Leaving the dimension of the gauge group unfixed for the time being, these (heterotic and
type I) supergravity theories thus have the following anomaly twelve-form (on gets a 1/2 factor
in front of eveverybody, since all chiral fields are this time Majorana spinors):

Ihet
12 (R,F ) =

1

2

(
−I(1/2)

12 (R,F ) + I(1/2)
12 (R)− I(3/2)

12 (R)
)

=
1

(2π)596

(
1

15
TrAF

6 − 1

24
TrAF

4trR2 +
1

960
TrAF

2
(
5(TrAR

2)2 + 4trR4
)

− 1

32
(trR2)3 − 1

8
trR2trR4 (3.30)

− dimG− 496

72

[
1

105
trR6 +

1

80
trR4trR2 +

1

192
(trR2)3

])
.
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The second equality is obtained by using (3.21) and (3.25), and taking the trace on the adjoint
representation of the gauge group in ch(F ), denoted here by TrA.

As we will see below, the Green-Schwarz mechanism for compensating anomalies relies on
the fact that the anomaly twelve-form factorises as I4(R,F ) ∧X8(R,F ), where I4 and X8 are
respectively a four- and an eight-form. Now, terms such as TrAF

6 and trR6 cannot a priori be
compensated this way. So trR6 must disappear from expression (3.30), which is achieved when
dimG = 496 and provided TrAF

6 is not an independent Casimir operator. Both conditions are
met for the following groups: SO(32), E8 × E8, E8 × U(1)248 and U(1)496. However, only the
two first ones are related to known 10D superstring theories.

We will now go into the details of the anomaly cancellation mechanism. To fix the conven-
tions, we choose to write the classical heterotic supergravity action as

Shet =
1

2κ2
10

∫
d10x ee−2φ

[
R+ 4∂µφ∂

µφ− 1

2
H3 ∧ ∗H3 −

κ2
10

g2
YM

1

30
TrA(F ∧ ∗F )

]
(3.31)

where κ10 is the ten-dimensional gravitational coupling, and gYM the gauge coupling constant.
The factor 1/30 comes from selecting a normalisation for the trace on the adjoint rep of the
gauge group which is compatible both with SO(32) and E8×E8 (for type I, one usually resorts
to the vector rep, which does not exist for E8 × E8). In other words, we fix trF 2 = 1

30TrAF
2

which is an identity for SO(32) and a definition for E8 ×E8.
The three-form tensor H3 is given by

H3 = dB2 −
κ2

10

g2
YM

(ωYM − ωL) . (3.32)

It contains the gauge Chern-Simons three-form ωYM and the ten-dimensional Lorentz Chern-
Simons three-form ωL built from the spin connection ω (the ten-dimensional version of eq.(3.3)).
Both are given by:

ωYM =
1

30
TrA

(
A ∧

[
dA+

2

3
A2
])
, ωL = tr

(
ω ∧

[
dω +

2

3
ω2
])
. (3.33)

One can verify that the action (3.31) is invariant under both a Lorentz transformation with
parameter ΛL and a gauge transformation, provided:

δΛgωYM =
1

30
dTrA(ΛgdA) , δΛL

ωL = dtr(ΛLdω) , (3.34)

δ(Λg ,ΛL,Λ′)B2 =
κ2

10

g2
YM

[
1

30
TrA(ΛgdA)− tr(ΛL dω)

]
+ dΛ′

1

As a first try, one considers, in addition, a Chern-Simons type interaction, not present in the
minimal version (3.31) since it results from higher derivative effects:

S′ =
g2
YM

κ2
10

∫

M10

B2 ∧ (aTrAF
4 + b(TrAF

2)2) (3.35)

Such a term is invariant under gauge transformation of A and under the linear transformation
δΛ′B2 = dΛ′

1, since F closed, so that by integrating by parts in δΛ′S′, F will vanish. Now, crucial
to this discussion, under the more involved gauge transformations of B2 (3.34), the action (3.35)
transforms non-trivially as

δΛgS
′ =

1

30

∫
TrA(ΛgdA) ∧ (aTrAF

4 + b(TrAF
2)2) . (3.36)
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This anomalous gauge variation is the anomaly ten-form I10 at the end of a descent equation
(3.14). In fact, it is determined by the following chain of anomaly polynomials:

I12 =
1

30
(aTrAF

2 ∧ TrAF
4 + b(TrAF

2)3) ,

I11 =
1

30
TrA(A ∧ F 2) ∧ (aTrAF

4 + b(TrF 2)2) , (3.37)

I1
10 =

1

30
TrA(ΛgdA) ∧ (aTrAF

4 + b(TrF 2)2) ,

so that the additional term S ′ (3.35) cancels an anomaly given by the twelve-form I12. This is
not the whole story, since we have not yet reproduced the total anomaly (3.30).

To do so, we generalise expression (3.36) by taking into account both gauge and Lorentz
transformations. Such a topological expression, or Green-Schwarz term, is defined up to local
counterterms, as discussed at the beginning of Section 3.3:

SGS = − 1

(4π)2
g2
YM

κ2
10

∫

M10

B2 ∧X8(R,F ) + local counterterms . (3.38)

Extending the discussion of the simplified case (3.36), a term such as (3.38) will cancel an
anomaly of the form:

I12 =
1

(4π)2

(
1

30
TrAF

2 − trR2

)
∧X8(R,F ) . (3.39)

The aim of the rest of this section is to determine the correct expression for X8(R,F ) which
reproduces the anomaly (3.30) for the gauge group E8 ×E8.

For this purpose, we first note that: dωYM = 1
30TrAF

2 and dωL =trR2, defining the following
three- and four-form polynomials:

I3 =
1

(4π)2
(ωYM − ωL) , I4 = dI3 =

1

(4π)2

(
1

30
TrAF

2 − trR2

)
. (3.40)

The descent equation is then completed by computing the combined gauge and Lorentz vari-
antions: δ(Λg ,ΛL)I3 = dI1

2 , resorting to the previous results (3.34). This determines the end of
the descent chain to be:

I1
2 =

1

(4π)2

(
1

30
TrAΛgdA− trΛLdω

)
(3.34)≡ 1

(4π)2
g2
YM

κ2
10

δB . (3.41)

Now, coming back to the anomaly twelve-form, a solution to the descent I12 = dI11 is

I11 =
1

3
I3 ∧X8 +

2

3
I4 ∧X7 + βd (I3 ∧X7)

where X8 = dX7, β is an arbitrary constant, and the last total derivative term reflects the
ambiguity in defining I11. Then, by further applying the procedure, the solution to δ(Λg ,ΛL)I11 =
dI1

10 is

I1
10 =

(
β +

2

3

)
I4 ∧X1

6 +

(
1

3
− β

)
I1
2 ∧X8

where δ(Λg ,ΛL)X7 = dX1
6 .

Such an anomaly inflow is cancelled by the following coupling:

SGS = − 1

(4π)2
g2
YM

κ2
10

∫

M10

B ∧X8(R,F )−
(
β +

2

3

)∫

M10

I3 ∧X7 . (3.42)
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Clearly, this is indeed of the form (3.38) with an additional term which lifts to a vanishing
anomaly twelve-form, thereby falling in the category of the local counterterms mentioned above.

Up to now, the whole discussion is in fact applicable to any gauge group. But we saw above
that the anomaly (3.30) factorises only when dimG = 496 and TrF 6 is not an independent
Casimir of the group in the adjoint rep, which occurs for the four semi-simple groups we men-
tioned above. The first of these two points is straightforward. The second one will now be
presented in details for the case G = E8×E8. For the adjoint rep of E8, both TrAF

6 and TrAF
4

can be reexpressed in terms of lower power Casimir operators by using the decomposition of
248 = 120 + 128 under the SO(16) subgroup of E8:

Tr248F
6 =

1

7200
(Tr248F

2)3 , Tr248F
4 =

1

100
(Tr248F

2)2 . (3.43)

Both these relations can be applied to the adjoint rep of E8 × E8, with the definition:
trG1×G2X

m =trG1X
m+trG2X

m, to derive:

TrAF
6 =

1

48
TrAF

2

(
TrAF

4 − 1

300
(TrAF

2)2
)
.

With this last identity in hand, we can now show that expression (3.30) factorises according to:

Ihet
12 (R,F )

(3.39)
= I12, and then be cancelled by the variation of the Green-Schwarz term (3.38)

with:

X8(R,F ) =
1

(2π)34!8

(
trR4 +

1

4
(trR2)2 − 1

30
TrAF

4trR2 +
1

3
TrAF

4 − 1

900
(TrAF

2)2
)
. (3.44)

The SO(32) case can be treated similarly, see [132] for details.
From the physical point of view, the addition of the Green-Schwarz term to the low-energy

effective action (3.31) brings in higher derivative effects. Indeed, the spin connection is propor-
tional to the derivative of the vielbein, so a gravitational term such as ω ∧ (trR2)2 will contain
three derivatives instead of one.

3.4 M-theory on an orbifold: the Hořava-Witten scenario

The Hořava-Witten scenario proposes that the strong coupling limit of the E8 × E8 heterotic
string in ten dimensions is given by M-theory on M11 = M10 × S1/ � 2 with the insertion
of two copies of E8 gauge multiplets propagating on the boundary of space-time [148, 147].
The dilaton in the 10D heterotic string theory is then reinterpreted as the radius Rhet of the
interval. The introduction of massless fields located at the orbifold singularities and charged
under a particular gauge group is reminiscent of the twisted sectors occurring in the orbifold
compactifications of superstring theories. In both cases, these are required for the quantum
consistency of the resulting theory. In the string theory setup, these twisted sectors have to
be added at the fixed points to ensure modular invariance of the orbifolded theory and have
an explicit representation as closed strings with twisted boundary conditions. In the M-theory
picture, since we are working in the strongly coupled but low-energy limit of the theory, we lack
such a microscopic description, so that the equivalent of the twisted sectors is determined by
anomaly-cancellation arguments.

Another consequence of considering a space-time with boundaries is that the formerly exact
four-form G4 of 11D supergravity (3.1) is now modified by terms which are neither exact nor
closed: G4 = dC3 + .., leading to the non-trivial Bianchi identity: dG4 6= 0, where the LHS of
this equation is supported at the fixed points of the orbifold. Properly solving this equation
by considering functions with definite periodicity properties under the � 2 action is at the core
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of a rigorous verification of local anomaly cancellation in the 11D theory. This requires, in
particular, a modification of the topological Chern-Simons term [44], similar to the prescription
we will encounter in Section 3.6 when treating the normal bundle anomaly of the M5-brane.

3.4.1 Heterotic M-theory: the upstairs and downstairs approaches

When treating such an orbifold of M-theory with end-of-the-world hyperplanes, one can either
work in terms of a manifold with boundaries, which is convenient intuitively, or consider the
interval as a boundary-free circle S1 and project out all non � 2-invariant modes of the fields.
These two points of view have been denominated respectively as the downstairs and upstairs
approach, and are defined by:

Sbos =

∫

M10×S1/ � 2

d11xLdown =

∫

M10×S1

d11xLup ,

where the upstairs Lagrangian density now includes an addition factor of 2 to account for
integrating on the whole circle.

In the following, we will work exclusively in the upstairs approach. Making the structure of
Lup more precise, it will become clear later on that, in addition to the (modified) topological
Chern-Simons term of 11D supergravity, one has to include, as in the heterotic case, a Green-
Schwarz term, to cancel both gravitational and mixed anomalies:

4κ2Lup = eR(11) − 1

2
G4 ∧ ∗G4 −

κ2

g2
YM

∑

i=1,2

Fi ∧ ∗Fi ∧ δi −
1

3!
C̃3 ∧G4 ∧G4

− 3

√
2κ4

π
G4 ∧Xgrav

7 + .. (3.45)

= 4κ2
(
LEH + LCJS

kin + LSYM
kin + LCS + LGS

)
+ .. .

To distinguish the eleven-dimensional from the ten-dimensional curvature two-form, we repre-
sent, in the rest of this chapter, the first by R(11) and the second by R.

In the action (3.45), we denote by i = 1, 2 the two 10D hyperplanes, and include the
kinetic terms for the gauge multiplets, which are confined to the hyperplanes by the delta one-
forms (3.48) and contain the Yang-Mills connection ωYM,i as in expression (3.33) (these are now
charged separately under the two E8). In the supersymmetric formulation of the theory, one will
include the fermionic part of the supergravity action (3.2) and of the SYM Lagrangian (1.46)
plus additional terms required for supersymmetry to hold locally, which we ignore here. Note
that we have fixed the two-derivative part of the (modified) Lagrangian density (3.45) by setting
a = b = c = 1 in expression (3.1).

The three-form C̃3 is the modification C̃3 = C3 + ... resulting from solving the new Bianchi
identity for G4 which now includes contributions from the boundary hyperplanes. The subse-
quent modification of LCS has been pointed out in [44] as necessary to ensure simultaneously
local anomaly cancellation in 11D and well-defined periodicity properties under � 2 for all bosonic
fields of the theory.

The seven-form Xgrav
7 is a polynomial in the 11D curvature two-form resulting from the

descent equation
Xgrav

8 = dXgrav
7 , δXgrav

7 = dXgrav,1
6 (3.46)

for the gauge-invariant eight-form:

Xgrav
8 (R(11)) =

1

(4π)34!

(
tr(R(11))4 − 1

4
(tr(R(11))2)2

)
. (3.47)
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The above polynomial is formally defined as a polynomial in the 11D curvature two-form.
We will see later on that anomaly cancellation restricts it to the 10D boundary hyperplanes.
For this purpose, we also introduce a 10D spin connection one-form on each plane: ωi, with
i = 1, 2, giving rise to two curvature two-forms restricted to the boundaries: Ri = dωi + ω2

i .
These are nothing but the 11D Riemann curvature two-form R(11) with components tangent
to S1 suppressed. In addition, one also defines a 10D Lorentz Chern-Simons three-form per
hyperplane through trR2

i = dωL,i.
Finally, denoting y ∈ [−πRhet, πRhet] the coordinate on the circle S1, the delta one-forms

appearing in expression (3.45) are defined as

δ1 = δ(y)dy , δ2 = δ(y −Rhetπ)dy . (3.48)

with respect to the fixed points of the interval: {0; πRhet}.
A word now on the orbifold projection. Since we are in an odd orbifold of M-theory, invariance

of the topological Chern-Simons term ∝ C3∧G4∧G4 requires the three-form to undergo a global
change of sign under the action of the orbifold group:

� 2 : C3 → −C3

so the components Cµνρ are odd under the � 2 action, and so are projected out, whereas the
Cµν10 are invariant and therefore kept. In the upstairs formalism, the three-form C3 will then
reduce to: 1

2!Cµι10 dx
µ ∧ dxν ∧ dy = B2 ∧ dy, where the factor 2 is needed to recover, in the

upstairs picture, the correct small Rhet limit to the two-form of heterotic string theory.
Furthermore, when considering the fermionic sector of the theory, the supersymmetries (3.4)

commuting with the orbifold action satisfy, at the boundary of M11:

(1I− Γ10)ε = 0 ,

from which we deduce the invariance conditions for the gravitino on the boundary space:

(1I− Γ10)ψµ = 0 , (1I + Γ10)ψ10 = 0 . (3.49)

A � 2-invariant truncation will thus project out half of the spinor components, reducing ψA to
the 10D Majorana-Weyl gravitino ψµ together with the 10D Majorana-Weyl spinor ψ of the
low-energy heterotic supergravity. This is supplemented with the gauginos entering expression
(1.46), which already live in 10D.

3.4.2 The modified Bianchi identity

As was first shown in [147], the insertion of boundary hypeplanes in the 11D setting calls for a
modification of the Bianchi identity (3.50). The precise way in which this modification occurs can
be deduced from observing how the basic lagrangian LCJS+LSYM given by expressions (3.2) and
(1.46) has to be modified by additional interactions to become locally supersymmetric. This in
turn also has the effect of modifying the supersymmetry transformations (3.4). This procedure
however only produces the TrAF

2
i part of expression (3.51). The part depending on trR2

i is
introduced for the needs of anomaly cancellation (which is a typical O(α′) string correction, cf.
Section 3.3).

The Bianchi identity for G4 has now to be modified to:

dG4 = −γ
∑

i=1,2

I4,i ∧ δi (3.50)
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by a contribution supported at the � 2 fixed points. The four-forms I4,i are the analogs of
expression (3.40), being exact and gauge/Lorentz invariant, they satisfy the descent equations:

I4,i = dω3,i =
1

(4π)2

(
1

30
TrAF

2
i −

1

2
trR2

i

)
, δω3,i = dω1

2,i . (3.51)

with the polynomials:

ω3,i =
1

(4π)2

(
ωYM,i −

1

2
ωL,i

)
, ω1

2,i =
1

(4π)2

(
1

30
TrAΛgdAi −

1

2
trΛLdωi

)
(3.52)

Note that the above expressions contain a 1/2 factor with respect to expression (3.40) and (3.41)
in front of the gravitational contributions. Indeed, when performing the small radius limit to
recover the weakly coupled heterotic theory, we have R2,1 = R2,2 = R2, and the gravitational
contributions from each hyperplane add up.

The next important issue is the constant appearing in expression (3.50). It is fixed by
anomaly cancellation in eleven dimensions, as we will see in Section 3.5, according to:

γ = (4π)2
2κ2

g2
YM

= 2
3
√

4πκ2 . (3.53)

The second equality can be determined, for instance, by the variation of the Green-Schwarz
term, see eqn.(3.69) later on. This relation is interesting in various respects. First of all, it
fixes the ratio g6

YM/κ
2 = (4π)5 and thereby the dependence of the gauge coupling in terms of

the 11D gravitational constant. This is expected from the 11D theory which has no scalar field
controlling the value of this ratio. Furthermore, in the bottom up approach, the strong coupling
regime of the resulting string theory does not exhibit any such adjustable parameter, so that
the 11D theory has to fix it in some way. Consequently, M-theory on S1/ � 2 can be regarded as
predicting this value.

Solving the Bianchi identity (3.50) requires the primitive of the delta one-forms (3.48), which,
to be consistent with the orbifold reduction, need to exhibit a definite � 2 periodicity under � 2.
For this purpose, we choose [43]

εi(y) = sgn(y − yi)−
1

πR
(y − yi) , δi(y) =

1

2

(
dεi +

dy

πRhet

)
, i = 1, 2 . (3.54)

defined with respect to fixed points of the interval {y1 = 0; y2 = πRhet}.
When performing the reduction to the heterotic string, we will need in particular the following

integrals: ∫

S1

εi(y) dy = 0 ,

∫

S1

εi(y)εj(y) dy = πRhet

(
δij −

1

3

)
. (3.55)

The first one reflects the fact that the εi are odd under a parity transformation of y. Moreover,
one should also choose a sensible regularisation for an expression such as

∫
εiεjδk involving the

Dirac distributions one-forms δk. Ref. [43] has shown that, since in the vicinity of the identity
εi(y) ' 2δ(y), one can deduce the first of the two following relations:

∫
εiεjδk '

1

3

∫
δi,kδi,kδk ,

∫
δiεj → 0 (3.56)

where the δi,k are the Kronecker symbols. The second relation is obvious from the definition of
εi (3.54).

The Bianchi identity (3.50) is then solved by expression

G4 = dC̃3 + γ
∑

i=1,2

δi ∧ ω3,i (3.57)
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which contains a free integration parameter bHW , defining the following family of solution:

C̃3 = C3 − bHW
γ

2

∑

i=1,2

εiω3,i (3.58)

The tilded three-form C̃3 is precisely the expression modifying the Chern-Simons term in the
Lagrangian (3.45). The motivation for rewriting the four-form (3.57) in terms of C̃3, stems
from expressing it as closed form G4 = dC̃3 in the bulk, which suggests the modification of the
Lagrangian (3.45). This has been confirmed [44] to be required by anomaly cancellation. The
presence of localised contributions in expression (3.57) will generate interaction terms in the
Lagrangian proportional to δi. In [147], this has been argued to be attributable to the fact that
one is trying to enforce a classical supergravity treatment of a problem which should be con-
sidered in quantum M-theory, where a natural cutoff proportional to 1/

9
√
κ2 would presumably

replace the singular δi one-forms.
In any case, the information we can retrieve from the analysis of anomalies should in principle

be reliable, since, being interpretable as an infrared effect, anomalies are independent from the
choice of the cutoff, so that anomalous 1-loop contributions can be computed even in non-
renormalisable theories.

3.4.3 Gauge invariance and consistent truncation

In the preceding section, we just saw that solving the modified Bianchi identity (3.50) led to
a family of solution (3.57) determined by a parameter bHW (3.58). Let us pause a while and
consider how gauge invariance and a consistant � 2-truncation of the four-form constrains the
value of bHW .

Since the ω3,i have non-trivial gauge/Lorentz transformation (3.51), for G4 to be gauge
invariant, the three-form has to transform as

δC3 = dB1
2 + γ

∑

i

(
bHW

2
εidω

1
2,i + δi ∧ ω1

2,i

)

↔ δC̃3 = dB1
2 + γ

∑

i

δi ∧ ω1
2,i

(3.59)

with B1
2 linear in the gauge and Lorentz parameters Λg and ΛL.

In particular, if bHW = 1, which we will see below to be a necessary condition for the � 2

truncation to be consistent (and later on, for G4 to be globally well defined), the transformation
for C3 takes the particularly simple form:

δC3 = d
(
B1

2 +
∑

i

γ

2
εiω

1
2,i

)
+

γ

2πRhet
dy ∧

∑

i

ω1
2,i

where we have used the second relation (3.54).
As seen in Section (3.4), the � 2 projection resulting from considering the 11D the-

ory on an interval eliminates Cµνρ = 0. However, this is a consistent truncation only
if the components we project out are gauge-invariant, namely: δCµνρ = 0, which implies
∂[µB

1
νρ] + γ bHW

2

∑
i εi∂[µω

1
i νρ] = 0, and therefore fixes

B1
2 = −γ bHW

2

∑

i

εiω
1
2,i
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so that the transformation (3.59) is now rewritten:

δC3 = γ
∑

i

(
(1− bHW )δi +

bHW
2πRhet

dy

)
∧ ω1

2,i

↔ δC̃3 = γ
∑

i

δi ∧ ω1
2,i − γ

bHW
2

∑

i

d(εiω
1
2,i) .

(3.60)

At this stage, setting bHW = 1 cancels the part of the transformation which is localised on the
hyperplanes for both C3 and C̃3. In any case, δC3 and δC̃3 will have non-trivial transformations
in the bulk, due to requiring the step functions εi to be periodic.

We will now show, following [43], that a consistent truncation of the 11D fields in the small
Rhet limit actually requires bHW = 1. In this limit we make contact with the weakly coupled
heterotic string theory, whose field content is recovered from the zero-modes of the Fourier
expansion of the M-theory degrees of freedom on the circle. In this procedure, the massive fields
corresponding to higher Fourier modes are truncated. In particular, if we expand the 11D fields
G4 and C3 on S1 using the orthonormal basis

en(y) =
1√

2πRhet
e
in y

Rhet , n ∈ �

satisfying
∫
dy en(y)e

∗
m(y) = δnm, then, the Fourier modes for any tensor field X(x, y) are

obtained from X (n)(x) = 1√
2πRhet

∫ πRhet

−πRhet
X(x, y) en(y) dy, leading, in the case of interest, to the

following expressions

G
(0)
µνρ 10 = 3∂[µC

(0)
νρ]10 −

γ

2πRhet

∑

i=1,2

(ωi)µνρ ,

G
(n)
µνρ 10 = 3∂[µC

(n)
νρ]10 −

γ

2πRhet
(1− bHW ) [(ω1)µνρ + (−1)n(ω2)µνρ] .

In principle, a truncation of the n > 0 modes can only be consistently performed if the latter

are gauge invariant. Now, since G4 is gauge and local Lorentz invariant, C
(n)
νρ10 is never so,

unless bHW = 1. Consequently, the small radius limit to the perturbative heterotic string can
be considered safe only in this case, which, in passing, corresponds to a non-singular solution
for G4 (3.57) (where all delta-function contributions have been cancelled). We will see later
on when considering the addition of M5-branes to this setup, that bHW is fixed to the same
value independently by a cohomology constraint relating the number of five-branes and the non-
triviality of the anomaly polynomial I4,i. Actually, it will be shown that even in the absence
of M5-branes, a global definition of the four-form G4 requires bHW = 1 if the polynomial I4,i is
cohomologically non-trivial.

Having set bHW = 1, we perform the reduction to the 10D heterotic theory. In particular,
the B-field from the (ÑS,NS) sector and its associated field strength are given by the following
zero-modes:

2Bµν
.
= B

(0)
µν (x) =

1

2πRhet

∫ πRhet

−πRhet

Cµν10(x, y) dy , (3.61)

2Hµνρ
.
= G

(0)
µνρ10(x) =

1

2πRhet

∫ πRhet

−πRhet

Gµνρ10(x, y) dy

for x ∈ � 1+9.
Note that that in the upstairs approach, taking the 10D gravitational constant to be κ2

10 =
κ2

2πRhet
requires both 10D fields B2 and H3 to be defined with an additional factor of 2, as in

expression (3.61)
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We also insist on keeping the
κ2
10

g2Y M
factor overt, to compare our results with expression

(3.32) and, later on, (3.42). Then, in the weak coupling limit, taking Rhet → 0 identifies
ωL,1 = ωL,2 = ωL, so that using eqs. (3.53), (3.33), and integrating G4 (3.57) over S1, and
truncating to the zero-modes, one obtains:

H = dB − γ

4πRhet

∑

i=1,2

ω3,i = dB − κ2
10

g2
YM

(ωYM − ωL) (3.62)

since we have defined κ2
10 = κ2

2πRhet
.

As expected, we recover expression (3.32). We will see later on how the field-strength (3.62)
is modified when five-branes are present in the parent 11D theory. In the 10D heterotic picture,
these additional terms descend to contributions from NS five-branes.

3.5 Anomaly cancellation in M-theory compactified on S1/
�

2

In this section, we carry out the anomaly cancelling procedure in the Hořava-Witten theory.
Since, despite a few proposals, the fundamental degrees of freedom of M-theory are still unknown,
we will be working in the strongly coupled low-energy supergravity description of the theory,
inspired by a modification of the 11D Cremmer-Julia-Scherk (CJS) supergravity Lagrangian and
given by expression (3.45). As pointed out in Section 3.4.2, since anomalies are infrared effects,
their cancellation in the effective theory should in principle suffice to ensure quantum consistency
of the original high-energy theory, thereby uncovering some new aspects of the dualities between
the known superstring theories and the still evasive M-theory.

In particular, the topological Chern-Simons term of 11D supergravity will now play a rôle
similar to the Green-Schwarz term (3.38) appearing as a 1-loop correction to classical heterotic
supergravity. However, this only cancels part of the 11D anomaly, so that one needs yet another
counterterm, the 11D Green-Schwarz

∫
LGS (3.45), to remove the residual part.

The chiral fields contributing to the anomaly result from the invariant zero-modes of the
11D gravitino and from the 10D gaugino fields living on the hyperplanes located at the fixed
points of the interval (which can be considered, as mentioned before, as part of the ”twisted
sector” of the orbifold). The � 2-projection (3.49) removes half the components of the 11D
(Majorana) gravitino leaving two 10D spinors: a (Majorana-Weyl) graviton together with a
spin-1

2 (Majorana-Weyl) fermion. Adding up the gaugino contributions, one arrives at two
separate anomaly twelve-forms attached to each hyperplane:

IHW
12,i (Ri, Fi) =

1

2

(
−I(1/2)

12 (Ri, Fi) +
1

2

[
I(1/2)

12 (Ri)− I(3/2)
12 (Ri)

])
. (3.63)

A few comments about the shape of the anomaly (3.63) are worth making. First, since
the two hyperplanes have equal orientations4, it is natural to assume that they carry the same
anomaly. As pointed out before, this implies a factor 1/2 in front of the purely gravitational
part (the 11D gravitino contribution), since we expect to recover the anomaly polynomial (3.39)
in the heterotic limit where R1 = R2 = R. The inflow from the gauge fields remains the same,
since the two separate E8 eventually combine into a single E8 × E8. Finally, similarly to the
heterotic case (3.30) there is an overall 1/2 factor coming from the Majorana condition in 10D.
The difference in signs between the three contributions to the anomaly reflects the fact that
gravitino and the gauginos are left-handed, while the spin- 1

2 fermion has opposite chirality.

4In contrast to the E8 × E8 theory of [112] which is non-supersymmetric, and unstable, due to the Casimir
force exerted on the two boundary hyperplanes.
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Using the eight-form (3.47) and relation (3.43), expression (3.63) factorises as

IHW
12,i (Ri, Fi) =

(
Xgrav

8 (Ri) +
π

3
I2
4,i

)
∧ I4,i (3.64)

so that one can check that in the small radius limit, one recovers the anomaly polynomial (3.39)
by using the elementary identity a3+b3 = (a+b)(a2+b2−ab). In this limit, the above expression
restricts to

∑

i

(
Xgrav

8 (Ri) +
π

3
I2
4,i

)
∧ I4,i

∣∣∣∣∣
R1=R2=R

=
∑

i

I4,i∧
[
Xgrav

8 (R)+
π

3

(∑

j

I2
4,j−I4,1∧I4,2

)]
. (3.65)

We then use the fact that for a semisimple group such as E8 × E8, the trace splits into a sum
of traces over each simple factor: trXm =trXm

1 +trXm
2 , and resort again to relation (3.43), to

obtain:
300TrAF

4 − (TrAF
2)2 = 2

[
(TrAF

2
1 )2 + (TrAF

2
2 )2 − TrAF

2
1 TrAF

2
2

]
. (3.66)

Combining both eqs (3.65) and (3.66), we are able to show that:

∑

i=1,2

IHW
12,i (Ri, Fi)

∣∣∣∣∣∣
R1=R2=R

=
1

(4π)2

(
1

30
TrAF

2 − trR2

)
∧X8(R,F ) .

recovering the result (3.39) known from heterotic string theory.
After this consistency check, we poceed to show how both the Chern-Simons and Green-

Schwarz terms in expression (3.45) are needed to cancel the total anomaly inflow (3.64) and how
this cancellation occurs locally on each plane.

Taking advantage of the analysis made in Section (3.4.3), we set bHW = 1 for consistency
throughout the calculation. Using the solutions (3.57) and (3.58) and relation (3.55), we can
compute the anomaly inflow due to the Chern-Simons:

δ

[
− 1

24κ2

∫

M10×S1

C̃3 ∧G4 ∧G4

]
=

γ3

96κ2

∫

M10×S1

∑

i,j,k

(
2εiεjδk ∧ dω1

2,i ∧ I4,j ∧ ω3,k

−εjεkδi ∧ ω1
2,i ∧ I4,j ∧ I4,k

)
(3.67)

= − γ3

96κ2

∑

i

∫

M10

ω1
2,i ∧ (I4,i)

2 .

To determine the first two lines of the contribution (3.67), we have exploited the fact that
C3 = B2 ∧ dy and δi ∧ δj = 0. While the last line is obtained after integration by parts
(assuming that ∂M10 = ∅) by using the first of the two relations (3.56)

At this stage, we can check the validity of the relation (3.53). Using this relation indeed

turns the prefactor of the last line of eqn.(3.67) into γ3

96κ2 = π
3 , so that the anomalous variation

3.67 results, by descent, from the anomaly twelve-form:

ICS12 =
∑

i

ICS12,i , with ICS12,i = −π
3
(I4,i)

3 , (3.68)

and the inflow from the topological Cher-Simons term exactly compensates the second term on
the RHS of expression (3.64).

The first term on the RHS of expression (3.64), meanwhile, is cancelled by inflow from the
11D Green-Schwarz term

∫
LGS (3.45) whose variation yields:

δ

[
− 1

2
3
√

4πκ2

∫

M10×S1

G4 ∧Xgrav
7

]
(3.53)
= −

∑

i

∫

M10

I4,i ∧Xgrav,1
6 (3.69)
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after integration by parts. Once again, fixing the value of the gauge coupling in terms of
the gravitational one as in eqn.(3.53), results from requiring the anomalous variation (3.69) to
descend from the twelve-form:

IGS12 =
∑

i

IGS12,i , with IGS12,i = −Xgrav
8 (Ri) ∧ I4,i . (3.70)

Summing up both contributions 3.70 and 3.68 will cancel the total anomaly 3.64 locally on each
10D boundary hyperplanes:

IGS12,i + ICS12,i = −IHW
12,i (Ri, Fi) .

In conclusion, we will make a few comments on what new light the analysis of anomalies per-
formed here sheds on the structure of M-theory.

We first notice that topological Chern-Simons interaction now acts a Green-Schwarz term
with respect to anomaly cancellation. Since this term is already present in the minimal (CJS)
supergravity, it implies that the classical theory with supergravity multiplets in the bulk and E8

vector multiplets on the boundary is not gauge invariant, so that the Hořava-Witten construction
with end-of-the-world hyperplanes is really consistent only as a quantum theory. This is in
particular illustrated by the prediction (3.53) which fixes the order of magnitude between the
gauge and gravitational couplings to gYM ∝ κ2/3. Then, the gauge kinetic terms being of
O(1/g2

Y M ) are higher order corrections compared to the gravity Lagrangian of O(1/κ2), which
confirms that the classical theory is only consistent in the absence of gauge fields.

This is somehow different from the heterotic string case presented in Section 3.3.3, where
the Green-Schwarz term is a one-loop corrections, so that the theory is gauge invariant both at
the classical (ignoring altogether loop contributions from chiral fields) and the quantum level.

Furthermore, the structure of the 11D Green-Schwarz also opens some perspectives in the
framework of string dualities. In particular, restricting the term

∫
G7 ∧Xgrav

7 to the case where
G4 = dC3, we obtain, after integration by parts, an expression proportional to

∫
C3 ∧ Xgrav

8 .
Upon compactifying on S1(without � 2 projection this time) and after taking the small radius
limit, one recovers the one-loop correction to IIA string theory, proportional to

∫

M10

BIIA ∧
(

trR4 − 1

4
(trR2)2

)
(3.71)

with BIIA the antisymetric NSNS two-form of IIA supergravity. Such an interaction has been
shown in [241] to be an exact one-loop calculation and is thus expected to be found in 11D as
well. Moreover, the polynomial Xgrav

8 (3.47) is also proportional, as we will see in Section 3.6,
to the Lorentz anomaly of the 11D five-brane, so that, in 10D, inflow from a term such as
expression (3.71) cancels the NS five-brane world-sheet anomaly in IIA string theory, as shown
in [107, 251]. The fact that the same 11D Green-Schwarz term gives rise to both the heterotic
anomaly cancelling term, a one-loop exact correction in IIA string theory and ensures consistency
of the 11D five-brane, and that all these corrective terms are known independently in ten or
eleven dimensions seems to indicate that what relates them is their common link through M-
theory.

3.5.1 The heterotic limit

Having verified anomaly cancellation in 11D for the Hořava-Witten model, it is instructive to
take the small radius limit Rhet → 0 and check that we indeed recover the heterotic Green-
Schwarz term (3.38) from the reduction of both the 11D Chern-Simons and Green-Schwarz
terms in expression (3.45).
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Inserting the solution for G4 (3.57) and C̃3 (3.58) in LCS (3.45) and setting bHW = 1 for
consistency, the 11D Chern-Simons term yields the following contributions:
∫

M10×S1

LCS

= − 1

24κ2

∫

M10×S1

(
B ∧ dy − γ

2

∑

i

εiω3,i

)
∧
([
dB − γ

2πRhet

∑

j

ω3,j

]
∧ dy − γ

2

∑

k

εkI4,k

)2

= − 1

24κ2

∫

M10×S1

∑

i,j

εiεjdy ∧
[
3
(γ

2

)2
B ∧ I4,i ∧ I4,j −

2

πRhet

(γ
2

)3
ω3,i ∧ I4,j ∧

∑

k

ω3,k

]
.

(3.72)
where we have used the fact that the differential acting on dB vanishes on a function f = f(y),
when integrated by parts.

One can now perform the integral over S1, by using the second eqn. (3.55), and truncate to
the zero-modes of the invariant B (3.61).

Next, in order to compare with expression (3.38), we need to reinstate the dependence on
the gauge coupling constant gYM . For this purpose, we use relation (3.53) to reexpress

2π2Rhet
γ2

κ2
=

64π3Rhet

γ
=
g2
YM

κ2
10

.

Then, the 10D reduction of the Chern-Simons (3.72) term gives the contribution:

− 1

(4π)2
g2
YM

κ2
10

∫

M10

B ∧ π
3

(
∑

i

I2
4,i − I4,1 ∧ I4,2

)

+
1

72π

∫

M10

[∑

i

ω3,i ∧ I4,i −
1

2

(
ω3,1 ∧ I4,2 + ω3,2 ∧ I4,1

)]
∧ (ωYM − ωL) .

(3.73)

In the first line of the above expression, we recognise the descent of the second part of the anomaly
(3.65), so that this first line reproduces part of the heterotic Green-Schwarz term (3.38), while the
second line contributes an irrelevant counterterm, which, due to the identification R1 = R2 = R,
is given in terms of ω3,i = 1

(4π)2

(
ωYM,i − 1

2ωL

)
and I4,i = 1

(4π)2

(
1
30TrAF

2
i − 1

2trR2
)
, where R is

the 10D curvature tensor.
The rest of the Green-Schwarz term (3.38) is retrieved from the S1/ � 2 reduction of the 11D

Green-Schwarz action (3.45). Paying attention to the position of the one-form dy for the overall
sign, this contribution reads:

∫

M10×S1

LGS =
1

γ

∫

M10×S1

dy ∧
[
dB − γ

2πRhet

∑

i

ω3,i

]
∧Xgrav

7 (R(11))

=

(
1

(4π)2
64π3Rhet

γ

∫

M10

dB −
∫

M10

∑

i

ω3,i

)
∧Xgrav

7 (R) (3.74)

= − 1

(4π)2
g2
YM

κ2
10

∫

M10

B ∧Xgrav
8 (R)− 1

(4π)2

∫

M10

(ωYM − ωL) ∧Xgrav
7 (R) .

The first term on the second line (3.74) is what we need to cancel the first part of the anomaly
(3.65). Again, there comes along in the process a counterterm which descends from a vanishing
twelve-form. Using the definition (3.40) for I3, it exactly reproduces the counterterm computed
in expression (3.42) for β = 1

3 . Alternatively, the whole expression (3.74) can be rephrased as:

1

(4π)2
g2
YM

κ2
10

∫

M10

H3 ∧Xgrav
7 (R)
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were now H3 is gauge invariant, but not Xgrav
7 , so that the anomaly inflow will now result from

applying the descent equation to the latter.
If we now add up expressions (3.73) and (3.74), we reproduce the Green-Schwarz term (3.38)

with a sum of irrelevant counterterms determined by the residual parts of these expressions,
namely:

Scounter =

∫

M10

[2π
9

∑

i

ω3,i ∧ I4,i −
π

9

(
ω3,1 ∧ I4,2 − ω3,2 ∧ I4,1

)
+Xgrav

7 (R)
]
∧ I3

where I3 is given by expression (3.40).

3.6 Eleven-dimensional five-branes

In this section we will consider the anomalies resulting from the inclusion of five-branes in the
Hořava-Witten scenario. We will see in particular what new interaction terms are implied in
the topological part of the Lagragian (3.45) by the resulting modification of the Bianchi identity
and what constraints the presence of 11D five-branes sets on the free parameters of the theory,
in particular the parameter bHW seen previously and a new integration constant bM5 related to
the five-brane solution.

3.6.1 Five-branes and membrane solutions in 11D

Before giving a detailed treatment of 11D five-brane anomalies, we briefly review some basic
facts necessary to our discussion. As we have seen in Section 3.2, M5-branes couple magnetically
to the six-form potential whose field-strength is the Hodge dual of the three-form C3 of 11D
supergravity, through the Wess-Zumino term: Q5

∫
W6

Ĉ6. Integration is over the five-brane
world volume W6. For later purpose, we now distinguish the M5-brane charge Q5 from its
surface tension T5.

In particular, since an M5-brane produces long-range gravitational and other fields, its charge
Q5 can be detected as a surface integral at infinity. The M5-brane is a solitonic solution of
the equations of motion in 11D. The spatial part of the metric (see eqn.(3.78) below) for an
infinite planar M5-brane is then topologically equivalent to � 5×S4 asympotically. Translational
invariance in the directions parallel to the brane reduces integrals for total charges to integrals
over the transverse S4. Then Q5 is determined by the magnetic flux of the four-form G4 at
infinity, which we give in units relevant for 11D supergravity:

Q5 =
1

2κ2

∫

S4

G4 (3.75)

For 1
2BPS objects, Q5 is equal to T5 . In particular, it has been set to this value in the

corresponding WZ term of expression (3.13). To see how this identification comes about, consider
the (simplified) M5-brane action in a 11D supergravity background (see eq.3.11):

SM5 = −T5

∫

W6

(
vol(ĝ)− Q5

T5
Ĉ6

)
.

We now recall that an M5-brane contibutes a central charge term in the 11D supersymmetry
algebra (1.76), given by the integral of current density:

ZMNOP = Q5

∫

C4

dXM ∧ dXN ∧ dXO ∧ dXP . (3.76)

where C4 is a non-contractible four-cycle occupied by the M5-brane is space-time.
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Now choosing, for instance, a Majorana rep of the Dirac matrices where C = −iΓ0. Then,
for a static M5-brane, a four-cycle C4 in directions {y1; y2; y3; y4} and in the absence of M2-brane
charges, expression (1.76) becomes [238]:

{Qα,Q
β} = P 0δ β

α + (Γ01234) β
α Z1234 . (3.77)

As already mentioned in Section 1.4, P 0 and Z1234 are infinite, but the tension T5 and the charge
Q5 remain nonetheless finite.

Since the Q are real, the LHS of the expression (3.77) is positive semi-definite. When P 0 = 0,
we have the vacuum. Otherwise, since P 0 > 0, the energy must satisfy the Witten-Olive bound
P 0 > |Z1234|, as taking anti-M5-brane solutions switches the sign Z1234 → −Z1234. This bound
can be reformulated using eqn.(3.76) as:

T5 > |Q5|

When this bound is saturated T5 = |Q5|, expression (3.77) becomes

{Qα,Q
β} = 2P 0(P01234

± ) β
α

where P01234
± = 1

2

[
1I± (Γ01234)

]
acts as a projector on spinors satisfying (Γ01234)ε = ±ε, which

are then eigenspinors of this operator with zero eigenvalue. Since ΓMNOPQ is traceless and
idempotent, we have TrP01234

± = 1
2 × 32, so that the dimension of the eigenspace with zero-

eigenvalue is 16. The (anti)-M5-brane solution preserves therefore 1/2 of the supersymmetry for
T5 = ±|Q5|.

A p-brane whose mass saturates the BPS bound is called extremal. For ten and eleven-
dimensional supergravities, extremality coincides with supersymmetry, which ensures that these
objects are protected against quantum corrections. Second, there is in addition a no-force
theorem guaranteeing that the static force between two parallel p-branes cancels due to the
compensation between the gravitational attraction and the electrostatic repulsion resulting from
branes being charged under the fields of the theory (under RR-fields in the case of type II
supergravities).

In complement to the extremal magnetic M5-brane, 11D supergravity also possesses an
electric M2-brane solution which couples to C3, as already seen in Section 1.4. Its electric
charge also satisfies a BPS bound T2 > |Q2|. The whole string of argument above can be
repeated by exchanging Z1234 ↔ Z12 and Γ01234 ↔ Γ012. In addition, there exists two more
extremal solitonic solution: the pp-wave (or Kaluza-Klein particle) and the KK7M-brane (or
also Kaluza-Klein monopole), which couple to the vielbein and its dual. We will not need them
further here.

We now focus on the M2- and M5-branes. They represent vacua of 11D supergravity for a
warped metric which splits into a world-volume part ds2( � (1,p)) (with Minkoswkian signature)
and a transverse Euclidean space ds2( � (10−p)), preserving (Poincaré)p+1×SO(10−p) symmetry:

M5-brane: ds2M5 = H(r)−
1
3ds2( � (1,5)) +H(r)

2
3ds2( � (5)) , (3.78)

M2-brane: ds2M2 = H(r)−
2
3ds2( � (1,2)) +H(r)

1
3ds2( � (8)) , (3.79)

H(r) being a harmonic function with single pole5:

H(r) = 1 +
kp
r8−p

where, in polar coordinates, r is the radius of the transverse space ds2( � (10−p)).

5It can have more than one pole for multi-centered p-brane solutions, which we will not consider here.
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Given the metrics (3.78) and (3.79), Einstein’s equations with non-vanishing Energy mo-
mentum tensor computed from the 11D supergravity Lagrangian (3.5)

TAB =
1

12

(
GAD1D2D3G

D1D2D3
B − 1

12
gABGD1D2D3D4G

D1D2D3D4

)

and the equations of motion of the four-form field strength (3.7) are solved for:

G4 =

{ ∗5dH(r) , for the M5-brane ,

vol( � (1,2)) ∧ d(H(r)−1) , for the M2-brane ,
. (3.80)

These solutions satisfyG4∧G4 = 0, so that the equations of motion (3.7) reduce to ∂i(eG
ijkl) = 0,

which is solved by expressions (3.80), since H(r) is radial. Denoting by α, β, γ = 0, 1, .., p, the
coordinates on the p-brane and i, j, k, l = p+1, .., 10, the coordinates of the transverse Euclidean
space, and restricting to flat space for � (10−p) and flat space-time for � (1,p), then r =

√
xixi,

and the M5-brane solution gives in components

Gijkl =
3k5

r5
εijklx

l ←→ Gθ1θ2θ3θ4 = 3k5

√
|gS4 |

with ε1234 = +1. The θi, i = 1, 2, 3, 4, parametrize the solide angle for the transverse space
ds2( � 5) = dr2 + r2dΩ2

4 in spherical coordinates, with determinant
√
|gS4 |.

The surface charge (3.75) is then easily determined in these coordinates

Q5 =
3k5

2κ2
Ω4 =

4π2k5

κ2

since the volume of a unit n-sphere is given by:

Ωn =
2π

n+1
2

Γ
(
n+1

2

) .

In units of the Planck length lP , the 11D gravitational constant reads 2κ2 = (2π)8l9P , so

that the M5-brane charge can be reexpressed as Q5 =
2k5M9

P
(2π)6

, with MP = l−1
P the Planck mass.

Then, if one is dealing with a stack of N M5-branes, the BPS bound is modified to NT5 = |Q5|,
where T5 =

M6
P

(2π)5 is the tension of a single M5-brane. This equation then fixes the parameter k5

to
k5 = πNl3P .

Following the same reasoning, one can determine the electric charge

Q2 =
1

2κ2

∫

S7

G7 .

From expression (3.80), on obtains with Gθ1...θ7 = −6k2

√
|gS7 |, with and the electric charge:

Q2 = −3k2

κ2
Ω7 = −π

4k2

κ2
.

Considering N M2-branes with individual tension T2 =
M3

P
(2π)2

and total charge NT5 = |Q2|, one

can again determine the parameter k2 :

k2 = 32π2Nl6P .
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Finally, their exists a Dirac-like charge quantization condition relating the tensions of an
electric brane and its magnetic dual, which fixes their product to a constant value:

T5T2 =
π

κ2
.

This relation is clearly verified for the tensions of two single M2- and M5-branes given above.
It can be used to rephrase the results for the M5-brane in units of the M2-brane tension.

Finally, their is yet another relation between these two quantities, given in [90]: (T2)
2T−1

5 =
2π, which allows to write T2,5 in units of κ2 alone:

T2 =
3

√
2π2

κ2
, T5 = 3

√
π

2κ4
, (3.81)

In the next section, a singular and smoothed out solution of the above equation will be
derived to show how the anomalies due to the chiral fields in the five-brane mutiplet cancel in
the 11D theory.

3.6.2 Anomalies of the eleven-dimensional five-brane

As seen in Section 3.2, five-branes have an even dimensional world-volume, thereby constituting
a potential source for anomalies, contrary to membranes, whose world-volume is even6. In eleven
dimensions, the presence of a five-brane world-volumeW6 ⊂M11 reduces the Lorentz symmetry
according to SO(10, 1) → SO(5, 1) × SO(5), which reflects the decomposition of the tangent
space TM11 restricted to W6 into a sum of two orthogonal vector spaces: TW6 ⊕NW6, where
NW6 = ∪p∈W6NpW6 has the structure of a fiber bundle over W6, and is therefore referred to
as the normal bundle. Clearly, its structure group is the SO(5) resulting from the breaking of
SO(10, 1) into simple factors.

For a theory admiting five-branes as solutions to its equations of motion, the group of
diffeomorphisms mapping the five-brane to itself should be a symmetry of the theory. In the
present case, these diffeomorphisms split into vector fields acting on the world-volume W6 and
into gauge transformations on the connection of the SO(5)-normal bundle mentioned above.
Both sets of diffeomorphisms are potentially afflicted by anomalies.

More precisely, as we have seen in Section 3.2, the D = 6 N = 2 five-brane tensor multiplet
contains as chiral fields a two-form potential B2, with anti-self-dual field-strength, and two
spinors with negative chirality, whose zero-modes will be sources for anomalies. The two chiral
fermions are in the spinor representation of SO(5), which, as we will see below, can be regarded
as a sort of ”gauge” group, and will thus contribute both world-volume and ”gauge” anomalies.
The dual three-form field strength F3 (cf. Section 3.2) being a singlet under SO(5) will only
contribute gravitational anomalies in the five-brane world-volume W6.

Because of the direct sum decomposition TW6 ⊕ NW6 of TM11|W6 , the restriction of the
spin connection to W6 can be shown to split into a tangent space and a normal bundle part:
ω|W6 = ωt +ωn ≡ 1

2 (ωt
αabT

ab +ωn
αstT

st)dyα, with {dyα}α=0,1,..,5 the basis of one-forms on TW6

and T ab and T st the generators of respectively SO(5, 1) and SO(5). As in the preceding section,
the coordinates on W6 are labelled by α, β = 0, 1, .., 5 and their tangent space equivalent are
denoted by a, b = 0, 1, .., 5, while the normal bundle indices are represented by s, t, u, v = 6, .., 10.
We see now that the space NW6 has clearly the structure of a principal bundle with gauge
connection one-form A1 = (ωN )α stT

stdyα. This splitting of the spin connection extends to the
curvature two-form R(11)|W6 = RN +RT by definition with RN/T = dωN/T + ω2

N/T .

6To be more precise, the zero-modes of the membrane do not lead to any perturbative anomalies. There may
however be global anomalies associated to them. In M-theory, their cancellation has been established in [254].
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Computing the anomaly polynomials

We now turn to the computation of the five-brane anomaly as given from the index formulae
presented in Section 3.3.1. We start by considering the anomaly inflow from the chiral fermions
in the five-brane multiplet. When acting on spin- 1

2 particles, the spin-connection and curvature
on the normal bundle are expanded on the generators Γst of the spin representation of SO(5)
as ωN = 1

4(ωN )stΓ
st and RN = 1

4 (RN )stΓ
st, so that using the identity [Γst,Γuv] = 8δ[s[uΓv]t].we

have the relation:

1

4
(RN )stΓ

st =
1

4
(dωN )stΓ

st+
1

16
(ωN )st∧ (ωN)uv

1

2
[Γst,Γuv] =

1

4
((dωN )st + (ωN )su ∧ (ωN )ut) Γst.

As already mentioned, the relevant Dirac operator for the chiral fermions of the five-brane tensor
multiplet will then contain a part behaving as a ”gauge” connection and given by:

Aα =
1

4
(ωN )α stΓ

st , α = 0, 1, .., 5

which interacts with the fermions through the operator:

/D = êαaΓ
a

(
∂α +Aα +

1

4
(ωT )α bcΓ

bc

)
.

Since the brane world-volume is six-dimensional, the above operator will contribute a mixed
anomaly characterized by an eight-form polynomial in both Rt and Rn, the latter playing the
rôle of the gauge curvature F . The index for such an operator is given by replacing F → RN =
1
4(RN )stΓ

st so that the total Chern class is now evaluated over the spin bundle over NW6,
denoted by S(NW6) [253]:

Ind(i/D 1/2) =

∫

W6

[
Â(W6) ch(S(NW6))

]
6
.

The anomaly due to the chiral fermions on the five-brane is then given by the following eight-
form anomaly polynomial, with a factor − 1

2 accounting for the projection onto negative chirality
spinors:

IM5,ferm
8 = −π

[
Â(W6) ch(S(NW6))

]
8

(3.82)

= − 1

(4π)3
1

8

(
1

45
trR4

T +
1

36
(trR2

T )2 − 1

6
trR2

T trR2
N −

1

3
trR4

N +
1

4
(trR2

N )2
)
.

where we have used the following relations for gamma-matrices:

ΓstΓuv = Γstuv + 4δ[s[uΓv]t] + 2δ[s[uδv]t]1I ,

ΓrsΓtuvw = Γrstuvw + 8δ[r[tΓuvw]s] − 12δ[t[rδs]uΓvw] .

to determine the two relevant terms in the expansion of ch(S(NW6)) = tr exp
[
i

2π
1
4(RN )stΓ

st
]
,

namely:

[ch(S(NW6))]2 = − 1

(4π)24
trR2

N · tr1I ,

[ch(S(NW6))]4 = − 1

(4π)4

[
1

24
trR4

N −
1

32
(trR2

N )2
]
· tr1I ,

(3.83)

with tr1I = 4 since we are working with 22-dimensional SO(5) gamma-matrices. The expansion
of Â(W6) has been given in eqn.(3.16) so that combining it with eqn.(3.83), one arrives at
expression (3.82).
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There is an additional contribution to the anomaly coming from the three-form F3 of the
D = 6 N = 2 five-brane multiplet, which is purely gravitational. Resorting to the anomalous
variation for the Euclidean action of the three-form field strength, we can use expression (3.28)
to compute its corresponding anomaly polynomial. Since the Minkowskian three-form F3 is self-
dual, its Euclidean version is anti-self dual. This accounts for the minus sign in its contribution
to the anomaly:

IM5,SD
8 =

π

4
[L(TW6)]8 = − 1

(4π)3
1

36

(
7

5
trR4

T −
1

2
(trR2

T )2
)
. (3.84)

Summing up contributions (3.82) and (3.84), we arrive at the total anomaly eight-form for the
five-brane, which can be decomposed into a purely gravitational part, depending on Rt, also
called tangent bundle anomaly, and a mixed anomaly, which involves both Rn and Rt:

IM5
8 = IM5,ferm

8 + IM5,SD
8 = −Xgrav

8 (Rt) + Y8(R
n, Rt) (3.85)

The polynomial Xgrav
8 (Rt) is the usual eight-form (3.47) produced by anomaly inflow of the

Green-Schwarz term, while the normal bundle anomaly can be determined to be:

Y8(R
n, Rt) =

1

(4π)38

(
1

3
trR4

N −
1

4
(trR2

N )2 +
1

6
trR2

T trR2
N

)

If the decomposition (3.85) is useful in discriminating purely gravitational contributions
from mixed ones (implying SO(5) ”gauge” contributions from the structure group of the normal
bundle), the appropriate decomposition with respect to anomaly cancellation will be shown to
be expression (3.86), where one makes visible the eight-form polynomial (3.47) defined on the
curvature R(11)|W6 = Rt + Rn of the total M5-brane tangent space TM11|W6 = TW6 ⊕ NW6

[253]:

IM5
8 = −Xgrav

8 (R(11)|W6) +
[
Xgrav

8 (R(11)|W6)−Xgrav
8 (Rt)

]
+ Y8(R

n, Rt)

= −Xgrav
8 (R(11)|W6)−

π

12
p2(NW6)

(3.86)

with p2(NW6) the second Pontrjagin class (3.19) defined on the normal space curvature Rn. We
will refer to the later as the normal bundle anomaly.

3.6.3 Anomaly cancellation mechanisme for the five-brane in 11D

As just mentioned, the choice of decomposing the anomaly eight-form (3.86) as in expression
(3.86) is not at all arbitrary. Indeed, the part X grav

8 (R(11)|W6) is cancelled by inflow from
the Green-Schwarz term, while cancellation of the normal bundle anomaly is achieved by the
anomalous various of the M5-brane contributions to the Chern-Simons term (3.45). In this
discussion, we consider only a single M5-brane, but the results which follow can readily be
extended to a setup with multiple five-branes. Since we are considering the embedding of W6

in a general space M11, we work with usual normalisation for the toplogical terms:

SCS = − 1

12κ2

∫

M11

C3 ∧G4 ∧G4 ,

SGS = −T2

2π

∫

M11

G4 ∧X7 = −2

γ

∫

M11

G4 ∧X7 ,

where, on the second line, we have used relations (3.53) and (3.81) to rewrite T2 = 4π/γ. In
this case, since we have not yet considered the insertion of gauge multiplets in the theory, γ is
simply defined as γ = 2

3
√

4πκ2, with no reference to the gauge coupling gYM .
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To see how this comes about, first note that a four-form carrying a non-vanishing flux (3.75)
corresponds to a solution of the modified Bianchi identity. As a first approximation, the term
sourcing the four-form flux can be modelled by a singular delta-like five-form in the modified
Bianchi identity (since we are aiming at introducing five-branes in the Hořava-Witten scenario,
we adopt here the upstairs approach):

dG4 = ±γ
2
δ(5)(W6) . (3.87)

The ±-sign corresponds to M5-/anti-M5-brane solutions. The five-brane current is given by the
five-form

δ(5)(W6) =

5∏

k=1

δ(xik − xik0 ) dxi1 ∧ .. ∧ dxi5 (3.88)

with delta function support on the five-brane world-volume, located, in transverse space, at
{xik0 }k=1,..,5. Furthermore, we have used eqns.(3.81) and (3.53) to rephrase the coefficient in
expression (3.75) in terms of γ.

The above expression is only valid locally, but is sufficient to treat anomaly inflow from the
Green-Schwarz term, where C3 enters only linearly. In this case, considering a single (anti-)M5-
brane in eqn.(3.87), we have the anomalous variation:

δSGS = −2

γ

∫
G4 ∧ dXgrav,1

6 (R(11)) = (±)

∫

W6

Xgrav,1
6 (R(11)) . (3.89)

Thanks to the descent equation (3.46), this variation cancels the (∓)X grav
8 (R(11)|W6) part of the

(anti-)M5-brane anomaly (3.86)7.
Cancellation of the remaining part − π

12p2(NW6) will by achieved by anomaly inflow from
the Chern-Simons coupling in expression (3.45). However, such a term is now cubic in C3, and
a well-defined and nonsingular result in such a case requires smoothing out the delta-function
contribution on the RHS of eqn.(3.87) together with covariantizing it under the structure group
of the normal bundle, SO(5). The prescription is in this case [119] to switch to spherical
coordinates ds2( � 5) = dr2 + r2dΩ2

4 for the transverse space, as in Section 3.6.1. Then define a
smooth function ρ(r) of the radial coordinate, with transverse compact support centered at the
position of the M5-brane world-volume in transverse space, such that it interpolates between
the two values ρ(0) = −1 and limr→∞ ρ(r) = 0, while keeping

∫ �

+
dρ = 1. After introducing,

in addition, a global angular four-form e4 which is closed, SO(5)-invariant, and integrates to∫
S4

e4
2 = 1, thus satisfying the descent equations:

e4 = de3 , δe3 = de12 ,

one arrives at a smoothed and gauge invariant version of the modified Bianchi identity (3.87):

dG4 = ±γ
2
dρ(r) ∧ e4(W6)

2
. (3.90)

This expression reduces to (3.87) for a flat infinite M5-brane. To sum up, we have smoothed
out the magnetic charge (3.75) to a four-sphere connecting to the horizon.

In order to evaluate the variation (3.95), one needs to solve the Bianchi identity (3.90), which
leads to the general solution:

G4 = d
(
C3 + (±)aM5

γ

2
ρ(r)

e3(W6)

2

)
− (±)

γ

2
dρ(r) ∧ e3(W6)

2
(3.91)

7The anomaly for an anti-M5-brane.is the same as for the M5-brane but with overall sign flipped.
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where again C3 can be viewed locally as a small fluctuation field about the M5-brane and aM5

is an integration parameter. Since e4(W6)
2 is singular at the location of the M5-brane, a smooth

and nonsingular solution for both C3 and G4 fixes aM5 = 0. In the next section, we will see how
this parameter is set to a different value if the requirement for smoothness and nonsingularity
of the solution is relaxed, but Witten’s cohomology condition [252] for M5-brane aligned along
an interval is taken into account.

In any case, for G4 to be gauge invariant, one has to enforce the following anomalous gauge-
variation:

δC3 = −(±)
γ

2
dρ(r) ∧ (1− aM5)

e12(W6)

2
. (3.92)

In the following, we will require regularity of the solutions at r = 0, which imposes aM5 = 0.
If one, in addition, takes into account the constraints on LCS dictated by gauge invariance un-

der diffeomorphism and three-form gauge transformation, one should modify the Chern-Simons
term according as LCS ∼ C̃ ∧ G̃∧ G̃ [119] by shifting the four-form (3.91) back to an exact form:

G̃4
.
= G4 − (±)

γ

2
ρ(r)

e4(W6)

2
= dC̃3 , C̃3

.
= C3 − (±)

γ

2
ρ(r)

e3(W6)

2

with the modified gauge variation resulting from eqn.(3.92):

δC̃3 = −(±)
γ

2
d
(
ρ(r)

e12(W6)

2

)
, (3.93)

so that G̃4 is still gauge invariant.
Now the singularity at r = 0 can be dealt with by cutting a disc of radius η around the

M5-brane position, which corresponds to removing a tube of corresponding radius starting from
the origine r = 0. We then construct the regularized Chern-Simons action as the bulk integral:

S̃CS = − 1

12κ2
lim
η→0

∫

M11\Dε(W6)
C̃3 ∧ G̃4 ∧ G̃4 ,

whereDε(W6) denotes the disc bundle, with baseW6 and fiber the discs of radius ε. In particular,
the space M11\Dε(W6) has boundary ∂(M11\Dε(W6))

.
= Sε(W6), which is an S4-bundle with

base W6 and radius ε.
We use once again eqn.(3.53).Then, the variation (3.93) followed by an integration by parts

which is reexpressed as an integration over the boundary space Sε(W6) yields

δS̃CS =
4π

3γ3
lim
ε→0

∫

M11\Dε(W6)
(±)γd

(
ρ(r)

e12
2

)
∧ G̃4 ∧ G̃4

= (∓)
4π

3γ2
lim
ε→0

∫

Sε(W6)
ρ(r)

e12
2
∧ dC̃3 ∧ dC̃3 = (±)

π

3
lim
ε→0

∫

Sε(W6)

e12
2
∧ e4

2
∧ e4

2

(3.94)

where we have used the fact that C3 is a smooth function of r, and dρ(r)→ 0 as ε→ 0, so that
all terms including dC3 or dρ drop out of the integral. The sign on the second line of eqn.(3.94)
is due to the choice of profile function with ρ(0) = −1.

Then, using a result of [53], the integral over the angular forms yields

δS̃GS = (±)
π

12

∫

W6

p2(NW6)
1 (3.95)

which cancels, in expression (3.86), the normal bundle anomaly for an (anti-)M5-brane due to
the eight-form I8 = (∓) π12p2(NW6).
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More concretely, the anomalous gauge variation of the second Pontrjagin class is given by

p2(NW6)
1 =

2

(4π)4
(
tr(ΛLdω

n)dωn
L − 2(Ωn)16

)

where ωn and ωn
L are the spin connection and the Lorentz three-form of the normal bundle space,

and dΩn
7 = tr(Rn)4 with variation δΩn

7 = d[(Ωn)16].

3.7 Five-branes in 11D in a space with boundaries

In this final section, we study the effect of including multiple M5/M5-branes in the Hořava-
Witten scenario. We work this time in the upstairs formalism and use the Lagrangian (3.45).
We now assume that cancellation of the normal bundle anomaly can be taken care of by the
procedure outlined in Section 3.6.3, so we content ourselves with working with the (more naive)
singular solution (3.88). In principle, one could consider a better-behaved smoothed out solution
of the type (3.91), but this would only obscure the discussion by complicating the integration
procedure without changing much to the discussion.

3.7.1 Global definition of G4 and five-brane contributions

Since in Chapter 4, we are ultimately interested in M5-brane configuration preserving N = 1
supersymmetry in 4D, we will concentrate on M5-branes positioned along the orbifold circle S 1

and wrapping an even cycle in space. For obvious reasons, one now singles out the S 1 coordinate
in expression (3.88), and introduces a sum on the brane currents, where n5 is the total number
of M5/M5-branes. To preserve the � 2 symmetry of the system, five-branes will be introduced
by pairs, one at position yI and the other (the ”mirror” brane) at position −yI .

This configuration generates a current:

δ(5)(W6) =

n5∑

I=1

qI [δ(y − yI) + δ(y + yI)] dy ∧ δ(4)(W6,I) (3.96)

where δ(4)(W6,I) is similar to expression (3.88) with lesser rank, and qI = ±1 for an (anti-
)M5-brane. This expression is now substituted in eqn.(3.87) for (+) sign, and the doubled
contributions resulting from considering pairs of five-branes will cancel the factor 2 from the
upstairs formalism in expression (3.45).

By defining a Heavyside-type threeform such that:

δ(4)(W6,I) = dθ(3)(W6,I)

one solves the modified Bianchi identity (3.87) with (we leave aside anti-M5-branes):

G4 = d
(
C3+

aM5

4
γ

n5∑

I=1

qI ε̂I(y) θ
(3)(W6,I)

)
−γ

2

nM5∑

I=1

[δ(y − yI) + δ(y + yI)] dy∧θ(3)(W6,I) . (3.97)

where aM5 is an integration constant and

ε̂I(y) = ε1(y − yI) + ε1(y + yI) ,
1

2
dε̂I(y) = δ(y − yI) + (y + yI)−

1

πRhet
dy .

Since we do not require this solution to be non-singular, the parameter aM5 is in principle free,
contrary to what we have seen in Section 3.6.3. The condition on the integration constant bHW

(3.58) is now also likely to be modified. It can however be fixed [43] by demanding invariance
of G4 under large gauge and Lorentz transformations. Let us review the argument here. For
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simplicity, we consider only M5-branes (the conclusions of the discussion remain unchanged even
if we also introduce M5-branes), then qI = +1 ∀I in expression (3.97).

Invariance of G4 under large gauge and Lorentz transformations can be rephrased, according
to the cohomological criterion in [252], as the requirement that dG4 be exact, in other words∫
C5
dG4 = 0, for any five-cycle C5. Then, choosing C5 along the orbifold circle: C5 = C4 × S1,

where C4 is an arbitrary four-cycle at fixed y, and combining eqns.(3.50) and (3.87), dG4 is exact
if: ∑

i=1,2

∫

C4

I4,i = −
∑

I

[C4,I ] = −n5 (3.98)

where [C4,I ] is the Poincaré dual cohomology class to the four-cycles C4,I wrapped by each five-
brane I (the contributions of the M5-brane and its mirror brane add up to one). It counts the
total number n5 of five-branes intersecting C4 × S1 at a point (note that, in this case, [C4,I ]
always yields a factor +1 since the five-branes and Yang-Mills instantons contributions to the
irreducible part of the gravitational anomaly are the same [108]).

Restricting for a moment to a subinterval of S1 containing the fixed point y = 0, namely
Σ5 = C4 × I, with I = [y′1, y

′
2] ⊂ S1/ � 2, we are now dealing with a surface with boundary and

not a closed five-cycle and we can apply Stokes’ theorem:

∫

Σ5

dG4 =

(∫

C4(y′2)
−
∫

C4(y′1)

)
G4 . (3.99)

The RHS of this expression is evaluated by using again the modified Bianchi identity eqns.(3.50)
together with (3.87). For the LHS, we add up (3.57) and (3.97) (without the three-form C3) and
keep only the Gµνρσ components. Using eqn.(3.98), one then reexpresses I4,2 in terms of I4,1 and
n5, the total number of M5-branes, and denotes m5(I) the number of M5-branes intersecting
the interval I. Eqn.(3.99) yields:

∫

C4

I4,1 +m5(I) = bHW

(∫

C4

I4,1 −
1

2πRhet
(y′1 − y′2)n5

)
+ aM5

(
m5(I) +

1

2πRhet
(y′1 − y′2)n5

)
,

where we have taken advantage of the fact that the I4,i are independent of y and that(∫
C4(y′2)−

∫
C4(y′1)

)
δ(5)(W6,I)ε1(y−yI) is equal to 1

πRhet
(y′1−y′2) if an M5-brane does not intersect

the interval and to 2 + 1
πRhet

(y′1 − y′2) if it does [43]. Then since the y′i are arbitrary, we can
deduces the following set of equations for bHW and aM5:

(bHW − aM5)n5 = 0 , (1− aM5)m5(I) + (1− bHW )

∫

C4

I4,1 = 0 (3.100)

In the trivial case where there are no M5-branes, n5 = m5(I) = 0, if I4,1 is cohomologically
non-trivial, we must set bHW = 1 and G4 (3.57) becomes non-singular. If n5 6= 0, since the
function m5(I) can vary, eqns.(3.100) are satisfied only when bHW = aM5 = 1, which implies
that the hyperplanes contribution (3.57) to the four-form is non-singular. To sum up, bHW is
unconstrained only if I4,i are cohomologically trivial and there are no M5-branes present.

In all other cases, a global definition of G4 imposes bHW = aM5 = 1, and coincides with
expression (3.57) being nonsingular. Fixing aM5 = 1, however, only removes the singularity
along the interval in the five-brane contribution (3.97), but not the one at the five-brane world-
volume in δ(4)(W6,I). In this respect, the analysis carried out in this section is different from
Section 3.6.3, where the singular behaviour of the solution G4 along the radial direction is
smoothed out from the start by an appropriate choice of function with compact support, so that
the singularity at the five-brane world-volume can be made to disappear by setting aM5 = 0.
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3.7.2 Additional terms from five-branes in the Hořava-Witten scenario

Summarizing the results (3.57), (3.97) and (3.60), we can now write the solution for the four-
form field strength anf the gauge variation for the modified three-form in the presence of 10D
boundary hyperplanes, together with n5 M5-branes not wrapping the orbifold circle. In this
case, the previous analysis has shown that global definition of G4 requires fixing the integration
parameters to bHW = aM5 = 1. Then:

G4 = dC3 +
γ

2

2∑

i=1

[
1

πRhet
dy ∧ ω3,i − εiI4,i

]

−γ
2

nM5∑

I=1

[
1

πRhet
dy ∧ θ(3)(W6,I)−

1

2
ε̂I(y) δ

(4)(W6,I)

]
, (3.101)

δC̃3 =
γ

2πRhet

2∑

i=1

[
dy ∧ ω1

2,i − εi dω1
2,i

]
. (3.102)

In the alternative case where the world-volume of the M5-branes are allowed to extend along the
circle S1, we have a family of solutions parametrised by bHW. In addition, the second term on the
RHS of eqn.(3.101) is now replaced by a formal solution of the equation δ (5)(W6,I) = dθ(4)(W6,I),
where δ(5)(W6,I) are sources for the G4-flux induced by the presence the M5-branes. Such a
contribution generates a term in G4 which is trivially gauge and Lorentz invariant We then have
the solutions:

G4 = dC3 + γ
2∑

i=1

[(
(1− bHW) δi +

bHW

2πRhet
dy
)
∧ ω3,i −

bHW

2
εi(y)I4,i

]

+γ

n5∑

I=1

θ(4)(W6,I) . (3.103)

δC̃3 = γ

2∑

i=1

[(
(1− bHW) δi +

bHW

2πRhet
dy
)
∧ ω1

2,i −
bHW

2
εi(y) dω

1
2,i

]
, (3.104)

As shown in Section 3.6.3, both solutions (3.101) and (3.103) cancel the gravitational anomaly
−Xgrav

8 (R(11)|W6) (3.86) by inflow from the GS term (3.89), while their smoothed versions com-
pensate the normal bundle anomaly by contributing to the anomalous variation of the CS term
(3.67). This was in the case where the 11D manifold M11 does not possess singularities which
call for the presence of twisted sectors at the (orbifold) fixed points. When 10D hyperplanes
carrying gauge multiplets are present, as in the Horava-Witten scenario, we now expect mixed
contributions from the CS term, where by mixed we mean terms that contain both E8×E8 gauge
fields contributions, gravitational ones and ones coming from the M5-brane world-volumes.

For instance, considering the case of M5-branes wrapping the circle S1, anomalous variation
of the modified CS term for the solution (3.103)-(3.104) generates a mixed contribution of the
form:

δ

∫
LCS = − 1

12κ2

n5∑

I=1

∫
δC̃3 ∧ G4|no M5 ∧ γθ(4)(W6,I)

=
4πbHW

3

n5∑

I=1

2∑

i,j=1

∫

S1

[
(1− bHW) δi +

bHW

2πRhet
dy

]
εi(y)

·
∫

M10

(
ω1

2,i ∧ I4,j − dω1
2,i ∧ ω3,j

)
∧ θ(4)(W6,I) .
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where we have used the fact that both δ(5)(W6,I) and θ(4)(W6,I) dependent on the space trans-
verse to the M5-branes’ world-volumes and are thus independent of the circle coordinate. The
integral over the S1 then vanishes thanks to eqns.(3.55) and (3.56), and a term such as the one
above does not affect the anomaly cancelling procedures for the gauge or M5-brane multiplets
outlined in the preceding sections.

3.8 Outlook

In this chapter, we have presented the mechanism of anomaly cancellation for M-theory on a
space with boundaries, namely M11 = M10 × (S1/ � 2), which gives the strong coupling limit
of the heterotic E8 × E8 theory. We have seen in particular that if we insist on working with
functions with a definite periodicity under the � 2 action, one finds a one parameter family of
solutions to the modified Bianchi identity for the four-form field-strength.

Then, all gauge and gravitational anomalies in the 11D theory cancel for any value of this
parameter, provided we modify the original Chern-Simons coupling of CJS 11D supergravity by
shifting the three-form potential by gauge and gravitational contributions living on the boundary
hyperplanes. Anomaly cancellation thus does not set this extra integration parameter to a
definite value, and the latter is fixed by requiring the truncation to the ten-dimensional theory
to be consistent.

Furthermore, this scenario for heterotic M-theory allows for the insertion of M5-branes,
which modify the Bianchi identity for the four-form field strength by extra source terms. This
modification introduces an additional free parameter in the solution to the Bianchi identity,
which can this time be fixed by demanding invariance of the four-form under large Lorentz
and gauge transformations. When the gauge and gravitational four-form polynomials on the
boundary hyperplanes are cohmological non-trivial, this fixes both parameters to be equal to
one, which is the value required for the small radius limit to the heterotic string theory to be
consistent.

We have seen in particular that the anomalies for these M5-branes cancel in this setup,
and that the introduction of M5-branes extending in the orbifold direction does not spoil the
anomaly cancellation argument of the Hořava-Witten scenario.

In contrast, the presence of M5-branes that do not extend in the direction of the S 1 modifies
the solution of the four-form (3.101), and will now induce contributions of the form ∼

∫
δC̃3 ∧

G4|no M5 ∧ ε̂I(y) δ(4)(W6,I) in the anomalous variation of the CS term. The study of these new
non-vanishing effects will be at the centre of Chapter 4.

In particular, these contributions are associated to an invariant eight-form polynomial:

I8 ∼
n5∑

I=1

2∑

i,j=1

cijfi(yI) I4,j ∧ I4,i (3.105)

where the cij are constants which are easily determined, and the fi(yI) are functions of the
position of the M5-branes along the orbifold circle:

f1(yI) =

(
yI

2πRhet

)2

− yI
2πRhet

+
1

6
, f2(yI) =

(
yI

2πRhet

)2

− 1

12
. (3.106)

In Chapter 4, the rôle of these functions will be studied in a compactification to four dimensions
of the Hořava-Witten scenario with space-time filling M5-branes, transverse to the orbifold circle.
We will consider in particular a compactification of the typeM11 =M4×K6×S1/ � 2, where K6

is a Calabi-Yau threefold. In this case, when integrated over the Calabi-Yau space, contributions
from the CS action related to the eight-form (3.105) such as ∼

∫
C̃3∧G4|no M5∧ ε̂I(y) δ(4)(W6,I)
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generate a coupling of the axionic partner ImT of the Calabi-Yau volume modulus to the expres-
sion F ∧F involving the gauge fields. The dependence of this gauge coupling on the position of
the M5-branes along the orbifold circle is then precisely dictated by the functions (3.106). Now,
in the effective supergravity description of the theory presented in the coming chapter, these
interactions can be understood as threshold corrections due to instanton contributions to the
non-perturbative superpotential, from Euclidean membranes stretching between two M5-branes.
In this perspective, the precise dependence of these threshold corrections on the modulus of the
M5-branes parametrizing their position on the interval can be determined without resorting to
an involved instanton calculations as in [193, 182, 183].
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Chapter 4

Five-Brane Thresholds and
Membrane Instantons in
Four-Dimensional Heterotic
M-Theory

This chapter is the reproduction of the article with identical title published in:

Nucl. Phys. B 736 (2006) 1.

4.1 Introduction

Heterotic E8×E8 strings compactified to four dimensions on a six-dimensional space K6 are also
described by M-theory compactified on K7 ≡ S1/Z2×K6 [252, 148]. In particular, it is straight-
forward to verify [200, 201, 9, 188, 187, 146, 110, 178, 111] that the effective N = 1 supergravity
found in Calabi-Yau or orbifold compactifications of perturbative heterotic strings [250, 97] is
reproduced by brane-free M-theory configurations with compact space K7. A novelty of the M-
theory approach lies in the possibility to concretely analyse physical effects of non-perturbative
brane configurations. In the low-energy effective supergravity approximation, configurations
with five-branes and/or membranes (two-branes) [107, 23, 39, 252] of compactified M-theory
can be studied from simple modifications of the field equations predicted by eleven-dimensional
supergravity [81].

An obvious distinction in the nature of five-brane and membrane effects follows from the
alignement conditions applying to their respective world-volumes if one requires that the con-
figuration admits (exact or spontaneously broken) N4 = 1 supersymmetry (four supercharges).
Each five-brane world-volume is the product of four-dimensional space-time and a holomorphic
two-cycle in the Calabi-Yau threefold and conditions apply on the respective cycles of pairs of
world-volumes [23, 39, 252]. Five-brane massless excitations [127, 162], which belong to six-
dimensional chiral supersymmetry multiplets expanded in modes of the two-cycle, lead then to
new four-dimensional fields to be included in the effective supergravity description. Some of
these modes do not depend on the detail of the Calabi-Yau geometry: the five-brane modulus
describing fluctuations along the S1/Z2 direction, the two-index antisymmetric tensor B̂µν with
self-dual field strength and their fermionic N4 = 1 partner. These states can be assembled either
in a chiral supermultiplet which we will call Ŝ or, in a dual version, in a linear multiplet. The
effective supergravity for this “universal five-brane modulus” supermultiplet has been studied in
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ref. [100] (see also ref. [193])1. Firstly, the Kähler potential of the theory with this new superfield
has been obtained and the absence of direct contributions to the (perturbative) superpotential
has been demonstrated. Secondly, on the basis of the four-dimensional superspace structure
only, the possible appearance of new threshold corrections has been emphasized.

In contrast, open membrane euclidean world-volumes include the S1/Z2 direction and a cycle
in K6 [23, 39, 227, 237, 54, 177]. They stretch between the S1/Z2 fixed planes, or between a fixed
plane and a five-brane, or between pairs of five-branes. Their effects in the four-dimensional
effective supergravity are then localized in space-time, they can be viewed as instanton-like
corrections to the interaction Lagrangian. While open membrane stretching between the fixed
hyperplanes correspond in the string approach to world-sheet instantons, membranes ending on
a five-brane describe forces acting on this brane. Their contributions to the effective supergrav-
ity are then expected to lead to new (non-derivative since the world-volume includes S 1/Z2)
interactions involving the five-brane modulus.

The corrections to the effective four-dimensional supergravity induced by the various types
of membranes have been studied in refs. [193, 183, 182, 82]. They were found to contribute to the
chiral F–density part of the Lagrangian density, in the form of a non-perturbative superpotential.
Specifically, an interaction bilinear in the five-brane fermion in superfield Ŝ has been computed
in the four-dimensional background with the five-brane and open membranes ending on it. The
resulting non-perturbative superpotential shows an exponential dependence on the five-brane
universal modulus typical of instanton calculus. To isolate the membrane contributions from
other possible non-perturbative sources, a specific regime is chosen.2 As a consequence, even if
the instanton calculation clearly establishes the existence of an exponential dependence on Ŝ, it
does not allow to infer how this exponential term would combine with other non-perturbative
contributions which, like gauge instantons, are expected as well.3

The relevance to physics of the M-theory system with five-branes and membranes strongly
relies upon the structure of superpotentials generated by fluxes, gaugino condensates and open
membrane instantons. Phenomenological questions addressed in the literature include super-
symmetry breaking and gaugino condensation [189, 82], five-brane stabilization (stabilization of
the modulus Ŝ) [193, 82], stabilization of all moduli [60, 57], the existence of stable de Sitter
vacua [60, 57, 58, 22], inflationary phases and potentials [58, 22] and cosmic strings [59]. These
analyses use in general simplifying assumptions, in the Kähler metric which shows a severe mix-
ing of all moduli when five-brane fields are present, or in the superpotential which is assumed
to be a simple sum of non-perturbative contributions.

In the present paper, we use the anomaly-cancelling terms of the eleven-dimensional theory
on the orbifold S1/Z2, as modified when five-branes are present, to derive new interactions in-
volving the five-brane universal modulus supermultiplet which describes fluctuations along the
S1/Z2 orbifold direction. These new interactions are then shown to induce, in the condensed
phase, the effective non-perturbative instanton superpotential expected from membranes stretch-
ing between a fixed hyperplane and a five-brane. This superpotential correctly reduces to the
results of refs. [193, 183, 182, 82] in the regime considered in these articles, but its derivation
does not require choosing a particular limiting regime. This approach provides then direct infor-
mation on the non-perturbative superpotential with combined gauge and membrane instantons
effects.

The fact that these four-dimensional interactions can be obtained by considering seemingly
unrelated arguments (membrane instanton calculus or gauge anomaly-cancelling terms) is a con-

1And, as a function of a non-trivial background value of the five-brane modulus, ref. [190, 189].
2For instance, Moore, Peradze and Saulina [193] select a regime where “open membrane instanton effects are

the leading source of non-perturbative effects”.
3Writing the complete non-perturbative superpotential as a sum of contributions, as for instance in ref. [193],

is an assumption which needs to be justified.
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sequence of the superfield structure of the four-dimensional theory. We use an effective superfield
formulation [98, 100] which fully respects the symmetry and supersymmetry ingredients defin-
ing the microscopic system: the modifications of the Bianchi identities and of the topological
term induced by fixed planes and five-branes. It also respects the symmetries of the five-brane
multiplet, with its self-dual three-form field. Thus, a given superspace contribution in the ef-
fective Lagrangian describes various aspects of the microscopic theory, related by the superfield
structure of the effective theory. This method has been applied to the derivation of the Kähler
potential [100], including non-linear couplings of the five-brane superfield Ŝ, and we will see
in paragraph 4.4.1 that these kinetic terms can be derived from (at least) two quite distinct
sectors of the microscopic theory. They can certainly be derived from the Calabi-Yau reduction
of the five-brane Born-Infeld Lagrangian [100]. But they can also be derived from a universal
correction to gauge kinetic terms, quadratic in Ŝ, induced by S1/Z2 anomaly-cancellation.

Schematically, our argument goes as follows. Since we confine ourselves to the effective
four-dimensional supergravity with up to two derivatives, for which a (superconformal) super-
space formulation exists, counterterms cancelling Lorentz anomalies will be irrelevant to our
discussion.4 Gauge anomaly-cancelling terms are then entirely due to the “topological term” of
eleven-dimensional supergravity [81]

− 1

24κ2

∫
C3 ∧G4 ∧G4.

Sources for the Bianchi identity verified by G4 are provided by the two fixed hyperplanes of the
S1/Z2 orbifold and by the aligned five-branes, so that

G4 = dC3 + ∆G4,planes + ∆G4,branes.

The contribution ∆G4,planes depends on the gauge curvatures living on the planes, and both
corrections explicitly depend on the S1/Z2 coordinate and respect the Z2 symmetry used to
define the orbifold projection. The topological term leads then to a gauge interaction of the
form

− 1

12κ2

∫
C3 ∧∆G4,planes ∧∆G4,branes.

This term gives rise in particular to a gauge interaction of the massless orbifold modes of
C3 located on the five-brane world-volumes and depending explicitly on their position along
S1. And, after integration over the Calabi-Yau space, it produces a coupling to F ∧ F of
the axionic partner ImT of the Calabi-Yau volume modulus5 Re T which depends on the five-
brane locations along S1. The superfield structure developed for the effective supergravity of the
universal five-brane modulus [100] can then be used to understand this interaction as a threshold
correction with a calculable dependence on the five-brane modulus. In particular, the universal
part of these contributions can be derived from the Dirac-Born-Infeld kinetic Lagrangian. The
non-perturbative effective superpotential follows then from standard gaugino condensation. Its
dependence on the five-brane modulus is precisely the one expected from membrane instanton
calculations, as performed for instance in ref. [193].

Along similar lines, a description of some new charged matter contributions arising from M-
theory anomaly-cancellation can be given. An interesting feature is that the structure organizing
five-brane threshold corrections is carried over to these matter interactions.

4They would however lead to similar phenomena.
5For the bulk moduli T and S, we use the terminology familiar from string compactifications in which T is the

volume modulus and S the dilaton or string coupling modulus. The terminology commonly used in the context
of M -theory, as for instance in refs. [193, 190], is unfortunately different. Our conventions are precisely stated in
the appendix.
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The paper is organised as follows. The anomaly counterterm at the origin of the five-brane-
related gauge interactions is derived in Section 4.2. The reduction to four dimensions and the
identification of the obtained terms as superfield densities are then discussed in Sections 4.3 and
4.4. Then, in Section 4.5, condensation is performed to derive the non-perturbative superpo-
tential, compare it with membrane instanton results and discuss some physical consequences.
Conclusions and comments are added in Section 4.6 and an appendix collects conventions, no-
tations and technical details.

4.2 The anomaly counterterm

Ten-dimensional hyperplanes located at the Z2 fixed points along S1 and five-branes act as
sources of the Bianchi identity verified by the four-form field G4 of eleven-dimensional super-
gravity. As a consequence of these contributions, the topological term acquires anomalous
variations under local symmetries. Together with the variations of the Green-Schwarz term
[130, 252, 148, 107], of order four in the Riemann curvature, these anomalous variations are
precisely those required to cancel perturbative gauge and Lorentz anomalies generated by the
Z2 orbifold projection of the eleven-dimensional theory and by the chiral gauge multiplets living
on the hyperplanes.

The modification of the Bianchi identity and of its solution G4 of course leads to modifications
of the effective action. All modifications generated by the topological term would have more
than two derivatives in the heterotic, ten-dimensional, small S1 radius limit. But compactifying
further to four dimensions on the Calabi-Yau space K6 also generates modifications of the
effective action at the level of two-derivative gauge terms, because of the non-trivial background
values of 〈trR2〉 and 〈trF 2〉. The purpose of this section is to precisely derive some of these
terms which arise whenever five-branes are present. We then begin by recalling some aspects of
the description of M -theory on the orbifold S1/Z2. It should be noted that some ambiguities
remain in our understanding of this description. The gauge sector relevant to our problem
escapes however these ambiguities.

The explicit formulation of the modified Bianchi identity uses two types of sources, associated
with hyperplanes supporting Yang-Mills ten-dimensional supermultiplets and five branes world-
volumes. On both hyperplanes (labelled by i = 1, 2) live gauge supermultiplets with curvature
two-forms Fi. The quantity appearing in the Bianchi identity is the gauge invariant four-form

I4,i =
1

(4π)2

[
1

30
TrF 2

i −
1

2
trR2

]
, dI4,i = 0, (i = 1, 2), (4.1)

where R is the Lorentz curvature two-form. Five-branes compatible with N4 = 1 (four su-
percharges) supersymmetry wrap space-time M4 and a two-cycle in K6. The transverse Dirac

distribution δ
(5)
W6,I

for five-brane number I with world-volume W6,I is the five-brane source in

the Bianchi identity, which then reads6

dG4 = 2(4πκ2)1/3
[
1

2

∑

I

δ(5)(W6,I)−
∑

i

δiI4,i

]
. (4.2)

The one-forms
δ1 = δ(y) dy, δ2 = δ(y − π) dy (4.3)

localize the gauge sources on the Z2–fixed hyperplanes.7 In order to respect the Z2 symmetry
used in the orbifold projection, we actually label with index I pairs of five-branes located at
±yI .8

6Supersymmetry forbids that both five-branes and anti-five-branes couple to the S1/Z2 orbifold.
7The appendix collects our conventions.
8And one may then choose 0 ≤ yI ≤ π.
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The procedure to resolve ambiguities in the solution of the Bianchi identity has been discussed
in detail in the literature.9 The general solution of eq. (4.2) includes several arbitrary integration
constants which are constrained by consistency conditions: the four-form field G4 should be
gauge-invariant and globally well-defined, its action should be well-defined, the fields eliminated
by the Z2 truncation should be gauge-invariant, as well as the massive modes of the S 1 expansion
of the surviving states. These conditions should be verified for any number of five-branes at
arbitrary locations. Writing

G4 = dC3 + ∆G4,branes + ∆G4,planes, (4.4)

the consistency constraints point to a unique solution for the hyperplane contribution10:

∆G4,planes = −(4πκ2)1/3
∑

i

(
εi I4,i − dy

π ∧ ω3,i

)
,

= −(4πκ2)1/3
∑

i

(
d[εi ω3,i]− 2δi ∧ ω3,i

)
,

(4.5)

where, as discussed in detail in the appendix,

εi(y) = sgn (y − yi)−
y − yi
π

, y1 = 0, y2 = π, y ∈ [−π, π] (4.6)

and the Chern-Simons three-forms are defined by

dω3,i = I4,i, i = 1, 2. (4.7)

A similar discussion can be made for the five-brane contribution to G4. As already mentioned,
the five-branes are space-time filling and wrap a holomorphic two-cycle in K6. This implies that
one can certainly write

δ(5)(W6,I) = [δ(y − yI) + δ(y + yI)]dy ∧ δ(4)(W6,I), (4.8)

where δ(4)(W6,I) is now a four-form Dirac distribution in K6 such that

∫

M4×K6

I6 ∧ δ(4)(W6,I) =

∫

W6,I

I6

for any six-form I6. The natural solution of the Bianchi identity is then to include in G4 the
brane contribution

∆G4,branes = (4πκ2)1/3
∑

I

[
1
2 ε̂yI

(y)δ(4)(W6,I)− 1
πdy ∧ θ(3)(W6,I)

]
+ dC3

= −(4πκ2)1/3
∑

I

{
δ(y − yI) + δ(y + yI)

}
dy ∧ θ(3)(W6,I)

+d
{
C3 + 1

2(4πκ2)1/3
∑

I ε̂yI
(y)θ(3)(W6,I)

}
,

(4.9)

where dθ(3)(W6,I) = δ(4)(W6,I) and

ε̂yI
(y) = sgn (y − yI) + sgn (y + yI)− 2y

π , 0 ≤ yI ≤ π,

dε̂yI
(y) = 2

[
δ(y − yI) + δ(y + yI)− 1

π

]
dy.

(4.10)

Notice that ε1(y) = 1
2 ε̂0(y) and ε2(y) = 1

2 ε̂π(y). The addition in eq. (4.9) of the term dC3 allows
for the introduction of brane modes contributions into the topological term, if necessary [44]: it is

9For instance in refs. [43] and [44], and references therein.
10This is the solution with “b = 1” in refs. [43, 44].

119



known [236, 34, 1, 251, 253] that a gauging by C3 of the three-form field of five-brane fluctuations
is induced by consistent coupling of five-branes to eleven-dimensional supergravity. We will not
elaborate on this point here since in four dimensions the needed terms would automatically
appear in the supersymmetrization of the effective theory.11

To summarize, one can write

G4 = dC̃3 + 2(4πκ2)1/3
∑

i δi ∧ ω3,i

−(4πκ2)1/3
∑

I

{
δ(y − yI) + δ(y + yI)

}
dy ∧ θ(3)(W6,I),

C̃3 = C3 − (4πκ2)1/3
[∑

i εi ω3,i − 1
2

∑
I ε̂yI

(y)θ(3)(W6,I)
]
+ C3,

(4.11)

and G4 and dC̃3 only differ at locations where hyperplanes or five-branes sit.
The gauge transformation of C3 is completely fixed by consistency of the Z2 orbifold pro-

jection. The topological term indicates that C3 is intrinsically odd. The components CABC ,
A,B,C = 0. . . . , 9, are then projected out and should then for consistency be gauge invariant.
This condition implies

δC3 = (4πκ2)1/3 1
π dy ∧

∑
i ω

1
2,i ,

δC̃3 = (4πκ2)1/3
∑

i

[
2δi ∧ ω1

2,i − d{εiω1
2,i}
]
,

(4.12)

where δω3,i = dω1
2,i. The correct modified topological term, which cancels anomalies locally, is

then [44]

− 1

24κ2

∫
C̃3 ∧G4 ∧G4. (4.13)

Our goal is to infer from this modified topological term four-dimensional interactions of the
massless S1/Z2×K6 modes. The substitution of eqs. (4.11) leads to two classes of terms. Firstly,
contributions involving the massless mode CABy (A,B = 0, . . . , 9). This mode corresponds to
the antisymmetric tensor BAB of ten-dimensional sixteen-supercharge supergravity. From gauge-
transformation (4.12), one deduces that the appropriate definition with δB = (4π)2

∑
i ω

1
2,i is12

BAB = (4πκ2)−1/3(4π)2 πRS1 C
(0)
ABy, C

(0)
ABy =

1

2π

∫ π

−π
dy CABy, (4.14)

where RS1 is the S1 radius. In terms of this massless field, the topological term produces the
following four-dimensional interactions

− 1

32π2

∫

S1×K6

B2 ∧
[∑

i,j

εi εj I4,i ∧ I4,j −
∑

i,I

εi ε̂yI
I4,i ∧ δ(4)(W6,I)

]
, (4.15)

with
∫
S1 =

∫ π
−π dy. The first contribution, when integrated over S1 only, generates the Green-

Schwarz gauge anomaly-cancelling terms expected for the E8 × E8 heterotic string [130]. Its
consequences for Calabi-Yau compactifications have been studied long ago [150, 97]. When
integrated over S1 ×K6, it leads to gauge threshold corrections depending on the Calabi-Yau
volume modulus as well as dilaton-dependent charged-matter terms. The second contribution,
which also depends on the S1 position of the five-branes, is of interest to us.

11See Section 4.4.
12Taking into account the factor (4π)−2 in the definitions of I4,i and ω3,i. This is the definition of the two-form

field commonly used in ten dimensions, with dimension (mass)2.
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The modified topological term also produces the following C3–independent gauge interac-
tions:

−1

3

∫

S1×K6

[
−
∑

i,j,k

εiεj ω3,i ∧ I4,j ∧ ω3,k +
1

2

∑

i,J,k

εiε̂yJ
ω3,i ∧ δ(4)(W6,J) ∧ ω3,k

+
1

2

∑

i,J,k

εiε̂yJ
I4,i ∧ θ(3)(W6,J) ∧ ω3,k +

∑

i,j,K

εiεjω3,i ∧ I4,j ∧ θ(3)(W6,K)

]
.

(4.16)

After integration over y, the first contribution is a local counterterm allowed by anomaly can-
cellation [44]13. The next three terms are non-trivial brane contributions depending on their
positions along S1.

The overlap integrals over S1 give an interesting result. First introduce the numbers

dij =

∫ π

−π
dy εi εj =

π

3
(3δij − 1) (4.17)

for the first integrals in contributions (4.15) and (4.16). For those depending on the brane
position, define the variables

∆I,1 =
yI
π
, ∆I,2 = 1− yI

π
,

(
0 < yI < π; 0 < ∆I,j < 1

)
, (4.18)

the distances from brane I to the fixed planes, with normalization ∆I,1 + ∆I,2 = 1. Then,

1

2π

∫ π

−π
dy ε1(y)ε̂yI

(y) = (∆I,2)
2 − 1

3
=

y2
I

π2
− 2

yI
π

+
2

3
,

1

2π

∫ π

−π
dy ε2(y)ε̂yI

(y) = (∆I,1)
2 − 1

3
=

y2
I

π2
− 1

3
.

(4.19)

It will be important for the supersymmetrization of the four-dimensional interactions that the
terms quadratic in yI are identical in both integrals. With these results, contributions (4.15)
lead to

− 1

16π

∫

K6

B2 ∧
[
1

3
(I2

4,1 + I2
4,2 − I4,1I4,2)

−
∑

I

δ(4)(W6,I) ∧
{(

∆2
I,2 −

1

3

)
I4,1 +

(
∆2
I,1 −

1

3

)
I4,2

}]
,

(4.20)

while expressions (4.16) give

π

3

∫

K6

{
ω3,1 ∧ ω3,2 ∧ (I4,1 − I4,2) +

3

2

∑

I

(∆I,1 −∆I,2)δ
(4)(W6,I) ∧ ω3,1 ∧ ω3,2

−
∑

I

θ(3)(W6,I) ∧
[
(∆I,2 ω3,1 −∆I,1 ω3,2) ∧ (∆I,2 I4,1 −∆I,1 I4,2)

−ω3,1 ∧ I4,1 − ω3,2 ∧ I4,2 +
1

2
ω3,1 ∧ I4,2 +

1

2
ω3,2 ∧ I4,1

]}
,

(4.21)

after some partial integrations.

13The anomaly twelve-form obtained from descent equations vanishes.
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The anomalous gauge variation of contributions (4.20) and (4.21) can be written as

−π
3
(ω1

2,1 I
2
4,1 + ω1

2,2 I
2
4,2)

+
2π

3

∑

I

δ(4)(W6,I) ∧ [∆I,2 ω
1
2,1 −∆I,1 ω

1
2,2] ∧ [∆I,2 I4,1 −∆I,1 I4,2].

(4.22)

Applying descent equations to these variations leads to the formal anomaly twelve-form

I12 = −π
3

[
I4,1 + I4,2 −

∑
I δ

(4)(W6,I)
]

∧
[
I2
4,1 + I2

4,2 − I4,1I4,2 +
∑

I δ
(4)(W6,I) ∧ {(1− 3∆2

I,2)I4,1 + (1− 3∆2
I,1)I4,2}

]

= I12,het. +
∑

I δ
(4)(W6,I) I8,I ,

(4.23)
since for four-dimensional space-time-filling five-branes, δ(4)(W6,I) ∧ δ(4)(W6,J) = 0. The con-
tribution of each five-brane is encoded in the eight-form

I8,I = π[∆I,2I4,1 −∆I,1I4,2]
2, (4.24)

while the heterotic contribution is as usual I12,het. = −π
3 [I3

4,1 + I3
4,2].

The form of I8,I , eq. (4.24), clearly shows that the distance from the brane to the first plane
acts as the (inverse squared) coupling of the gauge fields living on the second plane. Similarly,
the distance from the brane to the second plane acts as the (inverse squared) coupling of the
gauge fields living on the first plane.

At this point, the conclusion is that the effective, four-dimensional supergravity includes
gauge contributions due to five-branes which arise from the Calabi-Yau reduction of expressions
(4.20) and (4.21), as derived from the modified topological term (4.13). In the next two sections,
we perform this reduction keeping only the “universal” massless modes unrelated to geometrical
details of K6, but including the five-brane modulus along the S1 direction, and we write the
effective four-dimensional supergravity using superconformal tensor calculus.

4.3 Reduction to four dimensions

In the reduction to four dimensions, we use the freedom to rescale moduli fields to set the S 1

circumference 2πRS1 and the Calabi-Yau volume V6 to unity.14

As usual, the massless modes of the metric tensor expanded on M4 ×K7 include gµν , the
scalar field gyy and massless modes of the internal metric gik. Among these, we only keep the
universal, Kähler-metric volume modulus. Similarly, the antisymmetric tensor CABy leads to a
massless Bµν and we only keep the universal massless mode of the internal tensor Bik. With these
bosonic modes and their fermionic partners, the reduction of eleven-dimensional supergravity
can be described by two chiral multiplets S and T with the familiar Kähler potential [250, 97]15

K = − ln(S + S)− 3 ln(T + T ). (4.25)

Following eq. (4.14), we define

Bµν =
(4π)2

2
(4πκ2)−1/3 Cµνy , Bij̄ =

i

κ2
4

ImT δij̄ (4.26)

14The four-dimensional gravitational constant is then κ2
4 = κ2, but we nevertheless use different symbols since

their mass dimensions differ.
15In general, we use the same notation for a chiral supermultiplet and for its lowest complex scalar component.
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and Bµν is dual to ImS.
With five-branes, vector fields on the two fixed hyperplanes gauge an algebra G1 × G2

which is further broken by the Calabi-Yau compactification. Embedding the SU(3) holonomy
into G1 × G2 defines the four-dimensional gauge group G(4) as the stabilizer of this SU(3) in

G1 × G2. Calabi-Yau reduction of the ten-dimensional gauge fields16 Aα(i)
B leads then to the

corresponding gauge fields Aa(i)µ . It also produces a set of SU(3)–singlet complex scalar fields
Am(i) in some representation of G(4).

With up to two derivatives, Riemann curvature contributions in counterterms (4.20–4.21)
can be omitted. The Calabi-Yau reduction of I4,i delivers then:

Ii,µνρσ =
3!

(4π)2

∑

α

F
α(i)
[µν F

α(i)
ρσ] ,

Ii,µνkl̄ = − 4

(4π)2

∑

m

(D[µAm(i))(Dν]A
m(i)

) δkl̄

=
2i

(4π)2

∑

m

∂[µ

(
Am(i)Dν]A

m(i) −Am(i)Dν]Am(i)
)
iδkl̄ ,

Ii,µjkl =
2

(4π)2
∂µ

(
λi,mnpAm(i)An(i)Ap(i)

)
εjkl .

(4.27)

In the last expression, λi,mnp is the symmetric tensor invariant under G(4) that may arise from
the internal Chern-Simons term ωi, jkl. We will use the notations

λA3 =
∑

i

λA3
i , λA3

i ≡ λi,mnpAm(i)An(i)Ap(i) (4.28)

to denote this cubic holomorphic couplings which also appear in the superpotential

W = c+ λA3. (4.29)

Finally, I4,i has a non-trivial background value 〈I4,i〉ijkl.
With these results, the reduction to four dimensions of the first line in expression (4.20),

which depends on B2 and exists without five-brane can be written

∆Lplane =
1

2(4π)4

∑

i,j

dij

{
1

κ2
4

e4 〈Ij〉 ImT Fα(i)
µν F̃α(i) µν

−i〈Ij〉 εµνρσ(∂µBνρ)
∑

m

[Am(i)(DσAm(i)
) − Am(i)

(DσAm(i))]

− i

(4π)2
εµνρσ(∂µBνρ) (λA3

i ∂σ(λA
3
j )− ∂σ(λA3

i )λA
3
j)

}
.

(4.30)

The background value of I4,i is encoded in the integral over the Calabi-Yau manifold

〈Ii〉 = V −1
6

∫

K6

〈Ii〉klkl δjj εjklεjkl. (4.31)

16We find useful to keep track of the plane index i = 1, 2 and α(i) is then an index in the adjoint representation
of Gi. Similarly, a(i) will be used for the adjoint of G(4) and m(i) for the representation spanned by complex
scalar fields.
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In expression (4.30), the first term is a threshold correction depending on the volume modulus
already well-known from the heterotic strings [97, 150]. The second and third contributions
describe interactions of matter scalars with the string coupling multiplet. They have been
considered in detail in refs. [200, 201, 188, 187, 98].

The reduction of the five-brane contribution in expression (4.20) leads to the following La-
grangian terms:

∆Lbrane =
1

8(4π)3

∑

I,i

aI

(
∆2
I,i −

1

3

) [ 1

κ2
4

e4 ImT Fα(i)
µν F̃α(i) µν

−i εµνρσ∂µBνρ
∑

m

[Am(i)(DσAm(i)
) − Am(i)

(DσAm(i))]
]
.

(4.32)

The area of the Calabi-Yau two-cycle (with coordinate z) wrapped by the five-brane world-
volume can be written

aI =

∫

C2,I

dz dz
∂zm

∂z

∂zn

∂z
δmn . (4.33)

The first term in (4.32) is the five-brane contribution to gauge threshold corrections. Its existence
has been demonstrated in an explicit background calculation by Lukas, Ovrut and Waldram
[190, 189]. The second term is again a matter interaction with the string coupling multiplet.
Both terms depend on the positions yI of the five-branes. Hence, they depend on the S1/Z2

five-brane modulus.
The terms collected in expression (4.21) are somewhat ambiguous since they are defined up

to contributions which, like the first one or any counterterm of the form θ (3)(W6,I) ∧ I7, do not
contribute to the gauge-invariant anomaly twelve-form. To reduce the first term, introduce the
four-dimensional Chern-Simons forms

∂[µωi,νρσ] =
1

4
Fi,[µν Fi,ρσ] , ∂[µωi,ν]jk̄ =

1

2
Ii,µνjk̄ ,

∂µωi,jkl = Ii,µjkl .

(4.34)

The first term then generates couplings of charged matter scalars to gauge fields:

∆Lplane =
i

3(4π)5
εµνρσω1,µνρ

[
λA3

2 ∂σ(λA
3
2)− λA

3
2 ∂σ(λA3

2) + λA3
1 ∂σ(λA

3
2)

−λA3
1 ∂σ(λA3

2) + 2[λA3
2 ∂σ(λA3

1)− λA3
2 ∂σ(λA

3
1)]
]

+ (1↔ 2)

− i

12(4π)3
εµνρσ ω1,µνρ

∑
m(Am(2)DσAm(2) −Am(2)DσAm(2)) (〈I1〉 − 〈I2〉)

+(1↔ 2).
(4.35)

As we will see in the next section, these terms do not have a natural supersymmetric extension
in general, a fact which may have some relation to their ambiguous character. Notice however
that in the minimal embedding of the Calabi-Yau background into one plane only, most of these
mixing terms are absent and a natural supersymmetrization exists.

Likewise, the second term in eq. (4.21) yields gauge–matter interactions depending on the
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five-brane positions along S1:

∆Lbrane =
i

8(4π)3

∑

I

aI (∆I,1 −∆I,2) ε
µνρσω1,µνρ

×
∑

m

[Am(2)(DσAm(2)
) − Am(2)

(DσAm(2))] + (1↔ 2).

(4.36)

In the next section, we will derive the effective four-dimensional supergravity in the partic-
ular case of a single five-brane. To simplify, we will omit the index I and the corresponding
sums. We will however use a formulation in which restoring contributions of several branes is
straightforward.

4.4 The effective supergravity

The universal S1/Z2 five-brane modulus describing fluctuations along the interval direction has a
supersymmetric bosonic partner arising from the mode expansion of the five-brane antisymmetric
tensor B̂mn. Six-dimensional (world-volume) supersymmetry of the five-brane multiplet requires
that the three-form curvature Ĥmnp of this tensor is self-dual. For the massless four-dimensional
universal mode, self-duality is the condition17

Ĥµνρ ≡ 3∂[µB̂νρ] = e4εµνρ
σ∂σB̂ij ≡ e4εµνρσĤσij . (4.37)

Then, clearly, the four-dimensional supersymmetric description of the five-brane universal mod-
ulus uses either a linear multiplet L̂ with the tensor Ĥµνρ and a real scalar Ĉ for the modulus, or
a chiral multiplet with complex scalar Ŝ and Im Ŝ related to B̂ij. The supersymmetric extension

of condition (4.37) is chiral-linear duality, the duality transformation exchanging superfields Ŝ
and L̂ [113, 223].

The fact that the chiral multiplet Ŝ is dual to a linear multiplet has three important con-

sequences for its supergravity couplings. Firstly, the Kähler potential is a function of Ŝ + Ŝ
only. Secondly, the holomorphic gauge kinetic function can only depend linearly on Ŝ. These
two consequences follow from the intrinsic gauge invariance of B̂µν , which translates into axionic
shift symmetry of Ŝ in the chiral formulation. Thirdly, the superpotential does not depend on Ŝ.
In supergravity, in contrast to global supersymmetry, this statement is ambiguous and directly
linked to the first consequence above. The superpotential W and the Kähler potential K are
not independent: the entire theory depends only on G = K+ ln |W |2. Terms can then be moved
from or into K provided they are harmonic functions of the complex chiral fields. The correct

statement is then that G may only depend on Ŝ+ Ŝ. Moving terms from K to the superpotential
can artificially generate a dependence on Ŝ of the form

Wnew = ebŜW (zi), (4.38)

where b is a real constant and zi denotes all other chiral multiplets, and a new Kähler potential

Knew(Ŝ+Ŝ, zi, zi) such that the function G remains unchanged, K+ln |W |2 = Knew+ln |Wnew|2.
Notice that adding a Ŝ–independent term to the superpotential (4.38) is not allowed. Non-
perturbative exponential superpotentials generated, for instance, by gaugino condensation, and
added to a perturbative superpotential are then incompatible with chiral-linear duality.18

The effective four-dimensional supergravity depends on three moduli multiplets coupled to
supergravity, gauge and charged matter superfields. Each of the three moduli scalars has a

17Omitting fermion and covariantization contributions.
18See however ref. [61, 62] for an analysis.
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component of an antisymmetric tensor as supersymmetry partner. More precisely, the string
coupling modulus is in the multiplet describing Gµνρy , the K6 volume modulus is paired with
Gµiky and the five-brane S1/Z2 modulus is the partner of the components Ĥµνρ or Ĥµik of
the self-dual antisymmetric tensor living on the brane world-volume. We find, as explained
in ref. [98], more efficient to formulate the theory using superconformal tensor calculus and to
introduce three moduli vector superfields to describe these moduli multiplets:19

V (w = 2, n = 0): Gµνρy , string coupling modulus, . . .
VT (w = n = 0): Gµiky, Calabi-Yau volume modulus, . . .

V̂ (w = n = 0): Ĥµνρ, five-brane S1/Z2 modulus, . . .
The components of the antisymmetric tensors are identified with the vector fields in these mul-
tiplets, the moduli scalars with their real lowest components. These vector multiplets are then
submitted to Bianchi identities obtained from theK7 reduction of the eleven-dimensional Bianchi
identity for G4, eq. (4.2), and the self-duality condition of the five-brane tensor. In each case,
the supersymmetrized Bianchi identity also reduces the number of off-shell states from 8B + 8F
in a vector multiplet to 4B + 4F . These Bianchi identities are imposed as the field equations of
three Lagrange-multiplier superfields:

S (w = n = 0): a chiral multiplet for the Bianchi identity verified by V ,
LT (w = 2, n = 0): a linear multiplet for the Bianchi identity verified by VT ,

Ŝ (w = n = 0): a chiral multiplet for the self-duality condition of the

brane tensor, applied to V̂ .
Eliminating these Lagrange multiplier superfields defines the three vector multiplets in terms of
the physical fields solving Bianchi identities. The important advantage of this procedure is that
supersymmetrizing the theory before eliminating Lagrange multipliers automatically delivers
the correct non-linear couplings of source terms (brane and plane contributions) to moduli and
then the correct Kähler potential. Alternatively, equivalent (dual) versions of the theory can be
obtained by eliminating some vector multiplets instead of the Lagrange multipliers.

These six multiplets describing bulk and brane states are supplemented by states living on
the fixed hyperplanes. In the notation defined in the previous section, these states include gauge
chiral superfields Wα(i) (i = 1, 2 as usual, w = n = 3/2) and charged matter chiral multiplets
(w = n = 0) in some representation of the gauge group. They will be collectively denoted by M
and they contain the complex scalar components Am(i). Finally, we need the compensating chiral
multiplet S0 (w = n = 1) to gauge fix the superconformal theory to super-Poincaré symmetry
only.

With this set of superfields, the Lagrangian nicely splits in a sum of five terms with well-
defined higher-dimensional interpretations:

L = Lbulk + LBianchi + Lkinetic + Lthresholds + Lsuperpotential. (4.39)

The bulk Lagrangian [64]

Lbulk = −
[
(S0S0VT )3/2(2V )−1/2

]
D

(4.40)

can be directly obtained from the K7 reduction of eleven-dimensional supergravity, expressed in
terms of G4. It depends on V (string coupling multiplet) and VT (K6 volume modulus multiplet),
and of the compensator S0. In eq. (4.40), [. . .]D denotes the invariant real density formula of
superconformal calculus, as reviewed and developed in for instance refs. [176]. Similarly, [. . .]F
will below denote the chiral density formula.20

The coupling of plane and brane fields (Wα(i), M and V̂ ) to bulk multiplets is entirely

19The Weyl weight is w and n is the chiral weight.
20In global supersymmetry, [. . .]D and [. . .]F would be

R
d4θ[. . .] and

R
d2θ[. . .] + h.c.
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encoded in LBianchi, which reads [100]

LBianchi =
[
−(S + S)(V + 2Ω1 + 2Ω2) + LT (VT + 2Me2AM) +

1

2
τ(Ŝ + Ŝ)V V̂

]
D
, (4.41)

where Ω1 and Ω2 are the Chern-Simons multiplets (w = 2, n = 0) for the gauge alge-
bra arising on each hyperplane, defined by21

∑
αWα(i)Wα(i) = 16Σ(Ωi), and Me2AM ≡

∑
m,iM

m(i)
[e2AM ]m(i) is the Wess-Zumino Lagrangian superfield. This contribution is gauge-

invariant since [(S+S)(δΩ1+δΩ2)]D is a derivative. The dimensionless number τ is proportional
to the five-brane tension T5. In our units, it reads

τ =
2

(4π)3
a, (4.42)

where a is the area of the two-cycle wrapped by the brane in K6, as defined in eq. (4.33). Notice
shift symmetries δS = ic, δŜ = id (c, d real).

The kinetic terms of the five-brane fields arise from reduction of the Dirac-Born-Infeld (DBI)
Lagrangian:

Lkinetic = −τ
[
V VT V̂

2
]
D
. (4.43)

They are quadratic in V̂ , a consequence of the form of the DBI action, and the prefactor V VT is
the coupling to the supergravity background. Notice that since this term is linear in V , it will
naturally assemble with the contribution in S + S in eq. (4.41).

At this point, the contributions from bulk, plane and five-brane kinetic Lagrangians have
been considered, with tensor fields in V , VT and V̂ verifying Bianchi identities modified by plane
and brane sources. But we still have to consider further contributions from the topological term
with modified G4, as obtained in the previous section. These terms will be collected in Lthreshold.
The symmetries of expressions (4.40)–(4.43) allow the introduction of the following corrections
to gauge kinetic terms [100] (threshold corrections):

Lthresholds =
[
−2
∑

i βiΩi(VT + 2Me2AM)
]
D

+ τ
4

[
Ŝ
∑

i β̂iWiWi

]
F

+
[
V
{
ε|αM3|2 − 2τ

∑
i gi(V̂ )M

i
e2AM i

}]
D
.

(4.44)

The first contribution corresponds to threshold corrections depending on the volume modulus
[97, 150, 95]. Gauge invariance of the full Lagrangian with this term is obtained by postulating
the appropriate variation of the linear multiplet LT in LBianchi:

δLT = 2
∑

i

βiδΩi.

The second and third contributions are threshold corrections depending on the S 1/Z2 location
of the five-brane and/or, for the last one, on matter multiplets. The coefficients βi, β̂i, ε and
the functions gi(V̂ ) can be obtained, as explained below, from Calabi-Yau reduction of the
topological term with anomaly-cancelling modifications. Symmetries of the theory leave these
functions unconstrained but the terms considered here only require linear functions, gi(V̂ ) =
γ̂iV̂ + δ̂i. Finally, the quantity αM 3 in expression (4.44) denotes the holomorphic cubic invariant
also present in the matter superpotential [250, 97].

The superpotential arises from the components Gijk y of G4. They also verify a non-trivial
Bianchi identity which is not modified by five-branes since three holomorphic directions cannot
be transverse to their world-volumes. The superpotential contribution to the Lagrangian is then

Lsuperpotential =
[
S3

0 W
]
F
, with W = c+ αM 3, (4.45)

21The operation Σ(. . .) is the superconformal analog of 1
8
DD in global superspace.
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The constant c being the ‘flux’ of the heterotic three-form in direction εijk [250, 96, 102].
This formulation of the effective supergravity, with six superfields to describe three moduli

supermultiplets leads to several equivalent forms, depending on the choice made when eliminat-
ing the three superfluous multiplets. The Lagrange multipliers S, LT and Ŝ imply the following
constraints on the vector multiplets:

S : V = L− 2
∑

iΩi, L linear (w = 2, n = 0),

LT : VT = T + T − 2Me2AM, T chiral (w = n = 0),

Ŝ : V̂ = V −1
(
L̂+ 4

∑
i β̂iΩi

)
, L̂ linear (w = 2, n = 0).

(4.46)

Eliminating S, LT and Ŝ leads then to a formulation where moduli are described by L, T and
L̂, two linear and one chiral multiplets:

L =
[
− 1√

2
[S0S0(T + T − 2Me2AM)]3/2 (L− 2

∑
iΩi)

−1/2

−τ(T + T − 2Me2AM) (L− 2
∑

iΩi)
−1 (L̂+ 4

∑
j β̂jΩj)

2

+(L− 2
∑

iΩi)
{
ε|αM3|2 − 2τ

∑
j δ̂jM

j
e2AM j

}

−2τ(L̂+ 4
∑

i β̂iΩi)
∑

j γ̂jM
j
e2AM j

]
D

+
[
S3

0W + 1
4

∑
i βiTWiWi

]
F
.

(4.47)

Component expressions for this apparently complicated theory can be obtained using supercon-
formal tensor calculus [176]. Notice that plane contributions (superfields Ωi, Wi and M i) now
appear in the bulk Lagrangian (first line) and also in the five-brane DBI contribution (second
line). Five-brane contributions (multiplet L̂) appear in gauge kinetic terms (a “plane term”)
while threshold corrections (third and fourth lines) involve plane and five-brane fields. These
mixings are induced by the modified Bianchi identities, eqs. (4.46), and by threshold corrections
required by anomaly cancellation.

The kinetic term quadratic in the five-brane modulus superfield L̂ appears in the second line.
It can clearly be derived from the DBI Lagrangian, as done in ref. [100]. But the superfield
structure implied by the modified Bianchi identity leading to the first eq. (4.46) also implies
that the same kinetic term can be obtained from gauge threshold corrections which follow from
Calabi-Yau reduction of the (modified) topological term. This point will be explicitly verified
in the next paragraph.

This unfamiliar supergravity theory is particularly useful to study its scalar potential and
vacuum structure since linear multiplets do not have auxiliary fields. We will come back to this
point later on and especially when studying condensation.

It is however more common to formulate the supergravity theory with chiral moduli S and
T , and then to eliminate V and LT using their field equations. One obtains:

L = −3

2

[
S0S0 e

−K/3
]
D

+
[
S3

0 W +
1

4

∑

i

(S + βiT + τ β̂iŜ)W iWi
]
F
, (4.48)

with the Kähler potential

K = − ln(S + S −∆)− 3 ln(T + T − 2Me2AM) (4.49)
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and

∆ = −τ(T + T − 2Me2AM)V̂ 2 +
1

2
τ(Ŝ + Ŝ)V̂ + ε|αM 3|2 − 2τ

∑

i

gi(V̂ )M
i
e2AM i . (4.50)

The field equation of the vector multiplet V̂ implies then

V̂ = (4VT )−1
(
Ŝ + Ŝ − 4

∑

i

γ̂iM
i
e2AM i

)
, (4.51)

with VT as in the second eq. (4.46). The fully chiral formulation of the effective supergravity is
then defined by Kähler potential (4.49) with now

∆ = τ
16(T + T − 2Me2AM)−1

(
Ŝ + Ŝ − 4

∑
i γ̂iM

i
e2AM i

)2

+ε|αM3|2 − 2τ
∑

i δ̂iM
i
e2AM i ,

(4.52)

gauge kinetic functions
f i = S + βiT + τ β̂iŜ, (4.53)

and superpotential (4.45). The presence of the five-brane then introduces mixing of the three chi-
ral multiplets S, T and Ŝ and the off-diagonal elements of the Kähler metric severely complicate
the analysis of the theory.

Before returning to the analysis of the effective supergravity, we need a precise identification
of the supergravity fields in terms of massless modes of the K7 compactification.

The notation we use for component fields is as follows. Vector multiplets V , V̂ and VT have
respectively vector fields Vµ, V̂µ and Tµ and (lowest) real scalar C, Ĉ and CT . And we use the
same notation for chiral multiplets S, T and Ŝ and for their complex scalar lowest components.
Eqs. (4.46) indicate then that

CT = 2(Re T −MM), Tµ = −2∂µ ImT − 2iM (DµM) + 2i(DµM )M,

that the lowest scalar component of the string coupling linear multiplet L is also C and that the
five-brane linear multiplet L̂ has a real scalar ˆ̀= CĈ. Relation (4.51) also implies that

Re Ŝ = 4Ĉ(Re T −MM) + 2
∑

i γ̂iM
i
M i ,

∂µ Im Ŝ = −4V̂µ(ReT −MM) + 4Ĉ(∂µ ImT + iMDµM − iMDµM )

−2i
∑

i γ̂i(M
iDµM i −M iDµM i

).

(4.54)

The scalar field Ĉ has background value proportional to y, the five-brane location along S 1. In
our units with 2πRS1 = 1 = V6, the four-dimensional gravitational constant is κ4 = κ and

〈Ĉ〉 =
1

κ4
yRS1 =

y

2πκ
. (4.55)

In order to derive the identification of the matter scalars Am(i) of eq. (4.27) and the super-
conformal multiplets Mm(i), we note that the component Gµij̄y of the four-form is related to the
vector component of the real multiplet VT , which is

(VT )µ = −2[∂µ ImT + iM (DµM)− i(DµM)M ].
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On the other hand, using eqs. (4.26) and (4.27), we also find

Gµij̄y = ∂µCijy −
(4πκ2)1/3

π

∑

k

ωk,µij

=
1

2π
(4πκ2)−2/3

(
∂µ ImT − i κ

2

2π

[
A(i)DµA(i) −A(i)DµA(i)

])
δij̄ .

By comparison, one obtains

A(i) =

√
2π

κ
M (i), (4.56)

with an irrelevant sign choice.

Finally, the gauge fields in Ωi or Wa(i) are the massless modes Aa(i)µ .

4.4.1 Gauge coupling constants

The effective supergravity Lagrangian predicts a very specific moduli dependence in the super-
Yang-Mills sector relevant to the determination of the effective superpotential with non-
perturbative configurations. The field-dependent gauge couplings can of course be obtained
in any formulation of the theory. But the closest relation to the higher-dimensional origin of
the effective supergravity is realized with supermultiplets L (for the string dilaton multiplet),
T (Calabi-Yau volume modulus) and L̂ (for the five-brane S1/Z2 modulus). This is the theory
defined by eq. (4.47) in which tensor calculus leads to the following (inverse squared) gauge
couplings:

1

g2
i

=
1

2

(
z0z0(T + T − 2MM)

2C

)3/2

+
τ

2
(T + T − 2MM)[Ĉ2 + 4β̂iĈ]

+βiRe T + 1
2

[
ε|αM3|2 − 2τ

∑
j(δ̂j − β̂iγ̂j)M

j
M j
]
.

(4.57)

The complex scalar z0 is the lowest component of the compensating multiplet S0. In the Poincaré
theory, it is a function of the physical scalars chosen to obtain a specific “gravity frame”. The
Einstein frame where the gravity Lagrangian is − 1

2κ2
4
e4R4 corresponds to22

2κ2
4C =

(
z0z0(T + T − 2MM)

2C

)−3/2

. (4.58)

Without branes or threshold corrections the dimensionless field 4κ2
4C is then the (universal)

gauge coupling g2
i .

On the other hand, the chiral version of the theory has gauge kinetic functions (4.53) and
then:

1

g2
i

= Re(S + βiT + τ β̂iŜ). (4.59)

The equality of these two expressions is encoded in the duality transformations exchanging linear
multiplets L and L̂ with S and Ŝ:

1
2(Ŝ + Ŝ) = 2(T + T − 2Me2AM)V̂ + 2

∑
i γ̂iM

i
e2AM i,

1
2(S + S) = 1

2

(
S0S0(T+T−2Me2AM)

2V

)3/2
+ 1

2

[
ε|αM3|2 − 2τ

∑
i δ̂iM

i
e2AM i

]

+ τ
2 (T + T − 2Me2AM)V̂ 2,

(4.60)

22See for instance [99, 100].
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with V and V̂ as in eqs. (4.46). The lowest scalar components of these two superfield equations
show the equality of (4.57) and (4.59).

The “natural” definition of the dilaton ϕ with kinetic Lagrangian (∂µ lnϕ)2/4 is to identify

− ln(S + S −∆) ←→ − ln(2ϕ)

in the Kähler potential (4.49), i.e.

ϕ =
1

2

(
z0z0(T + T − 2MM)

2C

)3/2

= ReS − τ

32

[Ŝ + Ŝ − 4
∑

i γ̂iM
i
M i]2

T + T − 2MM
+ τ

∑

i

δ̂iM
i
M i − 1

2
ε|αM3|2 .

(4.61)

From now on, we omit charged matter terms, as we expect 〈M〉 = 0. In terms of the dilaton,
the gauge couplings read then

1

g2
i

= ϕ+ Re T
[
τĈ2 + 4τ β̂iĈ + βi

]

= ϕ+ Re T
[ τ
16

(
Re Ŝ

Re T

)2

+ τ β̂i
Re Ŝ

ReT
+ βi

]
.

(4.62)

They display a universal23 correction quadratic in the five-brane location, as well as gauge group-
dependent corrections linear in Ĉ or constant. The chiral version has only terms linear in S, T
and Ŝ: the universal quadratic correction has been absorbed in the non-harmonic redefinition
turning the dilaton ϕ into ReS. And of course the quadratic term reappears in the Kähler
potential for S [see eqs. (4.49) and (4.52)].

We now restore the summation over several five-branes and split the coefficients βi according

to βi = β
(pl.)
i +β

(br.)
i

∑
I τI since they receive in general contributions from both planes and five-

branes.24 Using the identification (4.55), one obtains

1

g2
i

= ϕ+ β
(pl.)
i Re T + Re T

∑

I

τI

[
β

(br.)
i +

4

κ
β̂i

( yI
2π

)
+

1

κ2

( yI
2π

)2]
. (4.63)

Notice that since the exchange 1↔ 2 of the plane indices is equivalent to moving the five-brane
from yI to π − yI , we expect

β̂1 + β̂2 = − 1

4κ
, β

(br.)
2 = β

(br.)
1 +

2

κ
β̂1 +

1

4κ2
.

The next step is to compare these results with the terms obtained from the reduction of the
topological term and especially with the brane contributions described by the first term in eq.
(4.32):

e−1
4 ∆Lbrane =

1

4

∑

I

τI
κ2

ImT

{[( yI
2π

)2
− yI

2π
+

1

6

]
TrF (1)F̃ (1)

+

[( yI
2π

)2
− 1

12

]
TrF (2)F̃ (2)

}
.

(4.64)

23
i.e. identical for all group factors, all values of index i.

24The constants β
(pl.)
i , β

(br.)
i and β̂i should not depend on I.
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The terms of order (yI)
2 have identical coefficient for both planes. If our effective supergravity

is correct, this contribution should appear in the DBI term appearing in the second line of
Lagrangian (4.47). The vector component of the Chern-Simons multiplet Ω is

[Ω]vector ≡ Ωµ =
1

8e4
εµνρσωνρσ + ...

and the component expansion of (4.47) includes then

−4e4 τI Ĉ
2
I (∂µ ImT )

∑

i

Ωµ
i + . . .

Integrating by part for constant values ĈI = 〈ĈI〉 = yI/(2πκ), we obtain

1

4
e4
τI
κ2

( yI
2π

)2
ImT

∑

i

Tr F (i)
µν F̃

(i)µν + . . . (4.65)

which fits correctly the quadratic term in (4.64). It is then not needed to perform the Calabi-Yau
reduction of the five-brane DBI Lagrangian to find the kinetic terms of the five-brane modulus
superfield: knowledge of the superfield structure, eq. (4.47), and of the gauge terms implied
by the topological term is sufficient. Similarly, the terms of order yI and (yI)

0 in the effective
supergravity and in the reduction of the topological term can be used to find the values of the

coefficients β
(2)
i and β̂i.

The second line of Lagrangian (4.47) indicates that the DBI contribution also includes gauge
terms of order Ĉ, which after partial integration read

1

κ
ImT

∑

I

τI
yI
2π

∑

i

β̂i Tr F (i)
µν F̃

(i)µν . (4.66)

By comparison with (4.64), we find

β̂1 = − 1

4κ
, β̂2 = 0. (4.67)

Finally, comparison of the yI–independent terms in eq. (4.64) with the first term of (4.44),
which includes

−2
∑

i

[βiΩiVT ]D =
1

4
ImT

∑

i

βi TrF (i)
µν F̃

(i)µν + . . . , (4.68)

indicates that

β
(br.)
1 =

1

6κ2
, β

(br.)
2 = − 1

12κ2
. (4.69)

As expected, exchanging planes 1↔ 2 is equivalent to yI ↔ π − yI .
Finally, as usual, the coefficients β

(pl.)
i can be read directly from the first line of eq. (4.30),

which includes contributions to the topological terms arising from the hyperplanes only:

β
(pl.)
i =

2

(4π)4κ2

∑

j

dij 〈Ij〉, (4.70)

or

β
(pl.)
1 =

1

6(4π)3κ2

(
2〈I1〉 − 〈I2〉

)
, β

(pl.)
2 =

1

6(4π)3κ2

(
2〈I2〉 − 〈I1〉

)
. (4.71)

Notice that

β
(pl.)
1 + β

(pl.)
2 =

1

6(4π)3κ2

(
〈I1〉+ 〈I2〉

)
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vanishes in the minimal embedding without five-brane [97, 150].
To summarize, in terms of the dilaton, the gauge couplings on both planes, as calculated

from the modified topological term, read:

1

g2
1

= ϕ+ β
(pl.)
1 ReT +

1

κ2
Re T

∑

I

τI

[( yI
2π

)2
−
( yI

2π

)
+

1

6

]
,

1

g2
2

= ϕ+ β
(pl.)
2 ReT +

1

κ2
Re T

∑

I

τI

[( yI
2π

)2
− 1

12

]
.

(4.72)

A nicer expression reminiscent of eqs. (4.20) or (4.23) uses the distance from the brane to the
planes:

1

g2
1

= ϕ+ β
(pl.)
1 Re T +

1

4κ2
ReT

∑

I

τI

[
(∆I,2)

2 − 1

3

]
,

1

g2
2

= ϕ+ β
(pl.)
2 Re T +

1

4κ2
ReT

∑

I

τI

[
(∆I,1)

2 − 1

3

]
.

(4.73)

where ∆I,1 = yI/π, and ∆I,2 = 1 − yI/π, as in eq. (4.18). The contribution of a five-brane to
the gauge couplings on one hyperplane decreases quadratically from a maximum value

1

6κ2
τI ReT

when the brane lies on the plane, to a minimal value

− 1

12κ2
τI ReT

when the five-brane lies on the opposite plane. For a five-brane in the middle of the interval,
both gauge couplings receive the correction

− 1

48κ2
τI ReT.

With however (∆I,i)
2 = −∆I,1∆I,2 + ∆I,i, (i = 1, 2), the term quadratic in y is necessarily

universal and the two (inverse squared) gauge couplings differ only by a contribution linear in
y:

1

g2
1

− 1

g2
2

=
Re T

2(4π)3κ2

[
〈I1〉 − 〈I2〉+

∑

I

aI

(
1− 2yI

π

)]
, (4.74)

with ∆I,2 − ∆I,1 = 1 − 2yI/π and in terms of the area aI of the two-cycle wrapped by the
five-brane in K6 [see eq. (4.42)].

The normalization of the four-forms I4,1 and I4,2 is such that their integrals over a four-cycle
in K6 are half-integers. Similary aI is an intersection number of the two-cycle wrapped by the
brane with the four-cycle, in units of the Calabi-Yau volume.25 These statements follow from
the integrated Bianchi identity verified by G4 and from rewriting eqs. (4.31) and (4.33) in the
form

aI = −i
∫

K6

δ(4)(W6,I) ∧ dz ∧ dz, 〈Ii〉 = −i
∫

K6

〈Ii〉 ∧ dz dz.

Eq. (4.74) matches then nicely the idea that a five-brane moved to the hyperplane at y = 0
decreases the instanton number on this plane, or on the second plane when moved to y = π.

25We have chosen V6 = 1.
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In the chiral version of the theory, the gauge kinetic functions are

f2 = S + β
(pl.)
2 T − 1

12κ2

∑

I

τIT,

f1 = f2 +
[
β

(pl.)
1 − β(pl.)

2

]
T +

1

4κ2

∑

I

τI

[
T − κŜ

]
.

(4.75)

Since

〈ReT 〉 − κ〈Re Ŝ〉 = 〈Re T 〉
(
1− 2y

π

)
,

the difference is again eq. (4.74).

4.4.2 Discussion of some matter terms

We have seen that the gauge part of the five-brane-induced contributions to the topological terms
are due, in the effective supergravity, either to the effect of the modified Bianchi identities on
the Dirac-Born-Infeld Lagrangian, or to threshold corrections. Since charged matter multiplets
M arise from the fields living on the fixed hyperplanes, as do gauge multiplets, we may expect
that some or all matter contributions obtained from the reduction of the topological term can
also be derived from the DBI effective Lagrangian.

As an illustration, we will establish that the charged matter term in expression (4.32) arises
for its part quadratic in yI from the DBI Lagrangian, while the terms linear and constant in yI
originate from threshold corrections. Since the vector component of V is related to the string
antisymmetric tensor BAB by

vµ = − 2π

8e4
εµνρσ∂νBρσ , (4.76)

the string–matter coupling term in eq. (4.32) takes the form

− i

8(4π)3

∑

I,i

aI

(
∆2
I,i −

1

3

)
εµνρσ∂µBνρ

∑

m

[Am(i)(DσAm(i)
) − Am(i)

(DσAm(i))]

= − 2i

κ2
e4
∑

I

τIv
µ
{( yI

2π

)2
[M(DµM) − M(DµM)]

+
∑

i

g̃i(yI)[M
i(DµM i

) − M
i
(DµM i)]

}
.

(4.77)

The functions g̃i(yI) are at most linear in yI :

g̃1(yI) = − yI
2π

+
1

6
, g̃2(yI) = − 1

12
. (4.78)

The first term in the r.h.s. of eq. (4.77) is universal and can clearly be retrieved from the DBI
Lagrangian in the second line of theory (4.47) by selecting the matter contribution inside VT ,

−2ie4τI Ĉ
2
I v

µ[M(DµM) − M(DµM)] + . . . , (4.79)

and identifying as usual Ĉ2 with y2
I (2πκ)

−2.
The second term in the r.h.s. of eq. (4.77) originates from matter threshold corrections in

the supergravity Lagrangian (4.47). The relevant term is:

−2ie4τIv
µ
∑

i

gi(Ĉ)[M i(DµM i
) − M

i
(DµM i)] + . . . (4.80)
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Comparison with eq. (4.77) indicates that

γ̂1 = −1

κ
γ̂2 = 0 , δ̂1 =

1

6κ2
, δ̂2 = − 1

12κ2
. (4.81)

Interestingly enough, δ̂i = β
(br.)
i and γ̂i = 4β̂i.

Finally, we briefly return to the issue of tracing back the supersymmetric origin of inter-
actions such as expressions (4.35) and (4.36). As already mentioned in Section 3, eq. (4.35)
seems in general hard to cast in a supersymmetric form because of the complicated mixing of
matter contributions from both hyperplanes. This feature is also present in eq. (4.36), for-
bidding by the same token its supersymmetrization for a generic background. We however
have little information on the nature of four-dimensional matter counter-terms which could be
added to anomaly-cancelling corrections and could radically change the picture. At this level of
understanding, this discussion cannot be conclusive.

Nevertheless, eq. (4.35) allows a supersymmetric formulation for the standard embedding in
the gauge group in which chiral matter multiplets only appear on one plane, say A ≡ A2. Then,
eq. (4.35) reduces to

∆Lplane = i εµνρσ ω1,µνρ

{ 1

3(4π)5
[λA3 ∂σ(λA3

)− λA3
∂σ(λA3)]

− 1

12(4π)3

∑

m

(AmDσAm −AmDσAm) (〈I1〉 − 〈I2〉)
}
,

(4.82)

which extends to the supersymmetric density

1

3(4π)2κ6

[
Ω1 |αM3|2

]
D
− 1

3(4π)2κ2
(〈I1〉 − 〈I2〉)

[
Ω1Me2AM

]
D
. (4.83)

The second term could in principle correspond to the first contribution appearing in the threshold
correction (4.44).

4.5 Condensation, the non-perturbative superpotential and mem-
brane instantons

The non-perturbative superpotential arises from the F–density in the supergravity Lagrangian
(4.39) when some or all gauge fields condense. It can be evaluated using a standard two-step
procedure: first obtain the effective action for condensates and then eliminate the condensate by
solving (approximately in general) its field equation. Computing the effective action amounts
in principle to couple the superfield WW to an external source, integrate the gauge fields and
perform the Legendre transformation exchanging the source field with the (classical) condensate
field. It is well known that the symmetry content of super-Yang-Mills theory and anomaly-
matching are sufficiently restrictive to accurately describe condensation [242].

As usual, we assume that the gauge multiplet which first condenses does not couple to
matter multiplets M . We then split the gauge group into G0 ×

∏
a Ga, where the simple group

G0 condenses and matter multiplets only tranform under
∏
a Ga. The terms involving G0 gauge

fields in the Lagrangian reduce then to

1

4

[
(S + β0T + τ β̂0Ŝ)W0W0

]
F
. (4.84)

Following ref. [242], these contributions are simply replaced in the effective action for condensates
by

1

4

[
(S + β0T + τ β̂0Ŝ)U +

b0
24π2

{
U ln

(
U

µ3

)
− U

}]

F

+
[
S0S0 K̃

(
US−3

0 , US
−3
0

)]
D
, (4.85)
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where U is the (classical) chiral superfield (w = n = 3) describing the gaugino condensate,
〈U〉 = 〈λλ〉. The coefficient of the Veneziano-Yankielowicz superpotential is dictated by the
anomaly of the superconformal chiral U(1). It is proportional to the one-loop beta function,
b0 = 3C(G0), and the scale parameter µ is the energy at which gauge couplings in expressions
(4.73) are defined. Finally, the leading contribution to the Kähler potential K̃ is controlled by
the scaling dimension (Weyl weight) of U .

The effective Lagrangian with condensate U can be obtained by collecting all terms in the
“microscopic” Lagrangian (4.39), with contributions (4.84) replaced by the effective terms (4.85):

Leff. =
[
− {S0S0(T + T − 2Me2AM)}3/2(2V )−1/2 − (S + S)V

−τV V̂ 2(T + T − 2Me2AM) + τ
2 (Ŝ + Ŝ)V V̂

+V {ε|αM 3|2 − 2τ
∑

i gi(V̂ )M
i
e2AM i}+ S0S0 K̃

(
US−3

0 , US
−3
0

)]
D

+1
4

[∑
a(S + βaT + τ β̂aŜ)WaWa

]
F

+
[
S3

0 (c+ αM3) + 1
4(S + β0T + τ β̂0Ŝ)U + C(G0)

32π2 {U ln(U/µ3)− U}
]
F
.

(4.86)

As before, vector multiplets V and V̂ are constrained by the field equations of Lagrange multi-
pliers S and Ŝ, which impose modified Bianchi identities. Rewriting their contributions in the
form

[
2S
{

Σ(V ) +
1

8
U +

1

8

∑

a

WaWa

}
− τ Ŝ

{
Σ(V V̂ )− 1

4
β̂0U −

1

4

∑

a

β̂aWaWa

}]
F
, (4.87)

multiplier S implies

U = −8Σ(V0), V = V0 − 2
∑

a

Ωa, (4.88)

with a real vector multiplet V0 (8 bosons + 8 fermions). Then, multiplier Ŝ requires

V V̂ = L̂0 − 2β̂0V0 + 4
∑

a

β̂aΩa, (4.89)

with a linear multiplet L̂0 and V as given in eqs. (4.88). These solutions can be compared with
eqs. (4.46), which apply before condensation of W0W0. Clearly, the real vector multiplet V0

describes L−2Ω0|cond., i.e. it includes the string coupling linear multiplet L and the condensate
field [61, 62]. Similarly, the linear multiplet L̂0 replaces L̂+ 2β̂0L.

To obtain the non-perturbative superpotential however, one first chooses the formulation of
the theory with chiral multiplets only. The elimination of vector multiplets V and V̂ is as in
the previous section. Omitting from here on gauge fields Wa and charged matter fields M , the
chiral formulation of the effective Lagrangian is

Leff. =
[
−3

2S0S0 e
−K/3 + S0S0K̃

]
D

+
[
S3

0 (c+ αM3) + 1
4(S + β0T + τ β̂0Ŝ)U + C(G0)

32π2 {U ln(U/µ3)− U}
]
F
.

(4.90)

The Kähler potential K is as in eqs. (4.49) and (4.52), with full mixing of multiplets S, T and
Ŝ. To derive the non-perturbative effective potential, neglect K̃.26 The field equation of the

26Disregarding the Kähler potential eK is the same as considering U as a constant background field with value
chosen to extremize the action.
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condensate field U implies then

U = µ3 exp

(
− 8π2

C(G0)
[S + β0T + τ β̂0Ŝ]

)
≡ U , (4.91)

and the effective superpotential becomes

Wnp = c+ αM3 − C(G0)

32π2
U S−3

0 . (4.92)

This superpotential is the sum of the ‘microscopic’ superpotential and the non-perturbative
contribution of the gauge condensate. The non-perturbative contribution is the exponential of
the sum of the string coupling, Calabi-Yau volume and five-brane moduli contributions. With
several condensates, the non-perturbative piece would be replaced by a sum of similar terms
over all gauge simple factors which condense.

To get a qualitative picture of the effect of the five-brane, use eqs. (4.75) and (4.74) to
rewrite the condensate as a function of the five-brane position along S1, assuming first that the
condensate arises on the hyperplane at y = 0:

|U |1st plane = |µ|3 exp
(
− 8π2

C(G0)

[
ReS + 1

(4π)3κ2 Re T
{

1
3〈I1〉 − 1

6〈I2〉+ 1
3a−

y
πa
}])

= |µ|3 exp
(
− 8π2

C(G0)g21

)
.

(4.93)

If the condensate arises on the hyperplane at y = π:

|U |2nd plane = |µ|3 exp
(
− 8π2

C(G0)g22

)

= |U |1st plane × exp
(

4π2

C(G0)
ReT

(4π)3κ2

[
〈I1〉 − 〈I2〉+ a(1− 2y

π )
])
.

(4.94)

The non-perturbative superpotential (4.92) and the condensates (4.93) and (4.94) display
the dependence on the five-brane location on S1 expected from explicit calculations of membrane
instanton corrections in the four-dimensional effective theory [193, 183, 182]. We have obtained
this dependence from the analysis of the fundamental Bianchi identity of M-theory and from the
(modified) topological term, showing in this way that open membrane instanton contributions
find their higher-dimensional origin in anomaly-cancellation in the presence of five-branes.

This observation has a second consequence. The non-perturbative superpotential is not a sum
of exponential terms generated by gaugino condensates and membrane instantons, a structure
which is not in any case expected to appear in the effective supergravity. Instead, we find a
non-perturbative term which is the exponential of a sum of terms linear in the chiral fields,
a structure characteristic of threshold corrections induced by anomaly-cancellation in higher
dimensions.

In our reduction scheme, the “microscopic” superpotential c+ αM 3 is moduli-independent.
It is however known that T-duality induces a holomorphic dependence on T compatible with our
supermultiplet structure as described in Lagrangian (4.86). The existence of dual descriptions
of moduli S and Ŝ in terms of constrained vector multiplets V and V̂ or in terms of linear
multiplets L and L̂ implies that the “microscopic” superpotential cannot depend on S or Ŝ.

4.5.1 The scalar potential

Because of the mixing of the three moduli multiplets S, T and Ŝ in the Kähler metric, the scalar
potential present in the component expansion of the effective Lagrangian (4.86) is not positive
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and analysing its vacuum structure is a severe problem. This mixing is due to the kinetic terms
of the five-brane massless modes, it is unavoidable whenever five-branes, and then whenever Ŝ,
are present.

We may however gain insight by deriving the scalar potential directly in terms of the com-
ponents of the constrained vector multiplets. This version of the theory is indeed more tractable
than the chiral one since the mixing of moduli fields is simpler. The relevant multiplets are then
T , V , V̂ for the moduli and U for the condensate. Charged matter terms are as before omitted
since we are interested in vacua where they vanish. In the Einstein frame (4.58), the relation
between the dilaton (4.61) and the lowest scalar component C of V is

ϕ =
1

4κ2
4C

(4.95)

and the scalar potential is eventually expressed in terms of the physical dilaton. As explained in
eqs. (4.88), eliminating S with Ωa omitted generates the modified Bianchi identity U = −8Σ(V ),
where V is the vector field describing L − 2Ω0|cond.. To derive the potential, we only need the
scalar components of V and U ,

V = (C, 0,H,K, 0, 0, d), U = (u, 0, fU ),

u = −4(H − iK), fU = 4d.
(4.96)

Since a non-zero condensate u also switches on the field H − iK of the dilaton multiplet V ,
the gaugino condensate clearly breaks supersymmetry in this sector, as expected in a theory
where the dilaton couples to gauge fields. Eliminating Ŝ defines the five-brane (effective) linear
multiplet V V̂ = L̂0 − 2β̂0V and, since linear multiplets do not have auxiliary fields, we may
simply write

L̂0 = (CĈ + 2β̂0C , 0, 0, 0, 0, 0, 0 ),

in terms of the lowest scalar component Ĉ of V̂ , when deriving the scalar potential. The resulting
scalar potential is then a function of the physical scalars C (the dilaton, see. eq. 4.95), the S 1/Z2

modulus Ĉ = y/(2πκ), the Calabi-Yau volume modulus T and the gaugino condensate u. It is
also a function of the auxiliary fields d, fT and f0 (in the compensating multiplet S0) which can
be easily eliminated.

The Kähler potential K̃ generates a term quadratic in d. We will write the scalar potential
by restricting K̃ to its leading term [242]

K̃(US−3
0 , US

−3
0 )S0S0 = A(UU )1/3 , (4.97)

with an arbitrary normalisation constant A ≥ 0. The scalar potential as a function of d, C, Ĉ,
T and u reads then:

Veff. = −32

9
A(uu)−2/3d2 −Bd

+
uu

16C

[
3

2

1

4κ2
4C

+ τ(Ĉ + 2β̂0)
2(T + T )

]

+
2κ2

4C

κ4
4(T + T )3

{
−2

∣∣∣∣∣W +
1

8
κ3

4 u

(
T + T

2κ2
4C

)3/2
∣∣∣∣∣

2

+
(T + T )2

3

∣∣∣∣∣WT −
3

T + T
W +

1

4
κ3

4 u
(T + T )3/2

(2κ2
4C)1/2

(
β0 + τ [Ĉ2 + 4β̂0Ĉ]

)∣∣∣∣∣

2}
.

(4.98)
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The first two terms arise respectively from the condensate Kähler potential term [S0S0K̃]D =
A[(UU )1/3]D and from the condensate F–density

[Wcond.]F ≡
[1
4
(S + β0T + τ β̂0Ŝ)U +

b0
96π2

{U ln(U/µ3)− U}
]
F
.

The coefficient B relates the gaugino condensate field u and the gauge coupling g2
0 , as defined

in eq. (4.62):

B =
2

g2
0

+
b0

24π2
ln

(
uu

µ6

)
= 8Re

∂

∂u
Wcond. . (4.99)

The standard field-theory value of the condensate,

|u| = µ3exp

(
−24π2

b0g
2
0

)
, (4.100)

is obtained if B = 0 is part of the scalar potential vacuum equations.
In eq. (4.98), the second line is proportional to |H − iK|2 and the fourth line to |fT |2, and

we have included the possibility of a T–dependent perturbative superpotential, as often implied
by T–duality, even if our reduction scheme predicts WT = ∂W

∂T = 0. The dependence of the

potential on the five-brane position Ĉ = y/(2πκ) is best understood by defining the distance ∆c

from the brane to the condensate:

For a condensate on plane 1: ∆c = y/π = 2κ Ĉ.

For a condensate on plane 2: ∆c = 1− y/π = 1− 2κ Ĉ.

(4.101)

Using then the values of the threshold coefficients found in eqs. (4.67) and (4.69), we find in
both cases:

β0 + τ [Ĉ2 + 4β̂0Ĉ] = β
(pl.)
0 +

τ

4κ2

[
(1−∆c)

2 − 1

3

]
,

(Ĉ + 2β̂0)
2 =

1

4κ2
(1−∆c)

2.

(4.102)

These results agree with the dependence on the five-brane location found in gauge couplings
(4.73).

At this stage, we have two options. We may neglect the Kähler potential K̃ and assume
A = 0. Then, the auxiliary field d imposes the field equation B = 0 and the correct value
of the gaugino condensate. This procedure is equivalent to the derivation of the effective non-
perturbative superpotential (4.92). The field equation B = 0 allows to eliminate u and to express
the effective potential, which does not include the first line in expression (4.98), as a function of
the moduli scalars C, Ĉ and T only.

Instead, with a non-zero Kähler potential K̃ (i.e. with A > 0), solving for the auxiliary d
turns the first two terms of the scalar potential (4.98) into

9

128

B2

A
(uu)2/3 , (4.103)

and a generic (non supersymmetric) stationary point of the potential does not necessarily lead
to B = 0 and to the standard gaugino condensate (4.100). But since B appears quadratically
in the potential, the same stationary points with B = 0 would exist in both cases A = 0 and
A > 0. Notice that the condensate term (4.103) can also be written

1

2
(K̃uu)

−1
(
Re

∂

∂u
Wcond.

)2
, K̃uu =

∂2

∂u ∂u
A(uu)1/3.
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This is the potential term due to the auxiliary field fu of the condensate chiral superfield U ,
with non-standard Weyl weight w = 3. The imaginary part of ∂

∂uWcond. does not contribute to
the potential because of the constraint U = −8Σ(V ) [61, 62].

A complete analysis of the stationary values of the scalar potential (4.98) cannot be performed
analytically. In the absence of five-branes, the potential can be written in the form

V =
1

2
(K̃uu)

−1
(
Re

∂

∂u
Wcond.

)2
+

1

κ2
4

[
(2κ2

4C)2|fS |2 + 3(T + T )−2|fT |2
]
− 3

κ4
4

eK|W |2,

in terms of the Kähler potential K = − ln(S+S)−3 ln(T +T ) with diagonal metric. A relatively
simple study of the stationary points of the potential with for instance B = 0 can be performed
as a function of the auxiliary fields fS and fT of the chiral dilaton S and the volume modulus
T respectively.

But the introduction of the five-brane mode leads to mixings of the chiral superfields. For
instance, according to the second superfield eq. (4.60), the auxiliary field in the chiral dilaton
multiplet S reads

fS = κ−1
4 (2κ2

4C)−1/2(T + T )−3/2

[
W − 1

4

(
T+T
2κ2

4C

)3/2
κ3

4u

]

+τ
[
Ĉ2fT − 1

2(T + T )(Ĉ2 + 2β̂0Ĉ)(2κ2
4C)−1κ2

4u
]
.

(4.104)

The second term is due to the five-brane and it involves the auxiliary field fT , which is propor-
tional to the last line in the potential (4.98). Similarly, the auxiliary component of the five-brane
multiplet Ŝ is

fŜ = 4ĈfT − (T + T )(Ĉ + 2β̂0)(2κ
2
4C)−1κ2

4u. (4.105)

Mixings of the auxiliary fields then arise whenever Ĉ 6= 0, i.e. whenever the five-brane does not
lie on the fixed hyperplane at y = 0.

4.6 Conclusion

In this paper, we have studied the Calabi-Yau reduction of the low-energy limit of M-theory on
the interval S1/Z2, with five-branes aligned to preserve four supercharges. We have used a fully
consistent, four-dimensional supergravity and superfield setup and included the modulus field
describing five-brane fluctuations in the interval direction. The gauge anomaly-cancelling topo-
logical term is modified as a consequence of the five-brane contributions to M-theory Bianchi
identities. We have derived the new four-dimensional interactions induced by these five-brane
modifications and shown that they lead to new gauge threshold corrections with a calculable
dependence on the five-brane position along S1. In particular, these threshold corrections fit
nicely the change in the instanton number expected when a five-brane is moved onto one of the
fixed hyperplanes. Of course, when gauge condensation occurs, these threshold corrections ex-
plicitly appear in the effective non-perturbative superpotential, with an exponential dependence
of the five-brane location.

The same five-brane-dependent contributions to the non-perturbative superpotential can be
obtained from a different perspective. It is expected that open membranes wrapping a two-cycle
in the Calabi-Yau threefold and extending from a five-brane to a ten-dimensional hyperplane
generate, in the four-dimensional effective field theory, instanton-like contributions. Instanton
calculus allows to explicitly compute these instanton corrections and the resulting contributions
to the non-perturbative effective superpotential. Strictly speaking however, instanton calculus
only applies in specific limits, which in the case under scrutiny restricts the understanding of the

140



global structure of the superpotential and of the interplay of the various moduli fields. It is pre-
cisely here that our effective supergravity Lagrangian, as derived from M-theory, adds important
new information. In particular, since membrane instanton corrections actually originate from
threshold corrections related to ten-dimensional anomaly cancellation, the non-perturbative su-
perpotential is the exponential of a sum of terms linear in moduli chiral fields.

4.7 Appendix: conventions and notations

Our conventions are as in refs. [44] and [43]. We use the upstairs picture M4×K6×S1/Z2, where
the S1 coordinate is x10 = yR, with a (2π)–periodic angular variable y. We use −π < y ≤ π
when explicit values are needed because of the natural action of Z2 in this interval. Our indices
convention for the M4 ×K6 × S1/Z2 reduction is

xM = (xA, yR) = (xµ, zi, zk, yR), M = 0, . . . , 10, A = 0, . . . , 9, i, k = 1, 2, 3.

For bulk moduli, we use the terminology familiar from string compactifications: the moduli
s = ReS and t = ReT with Kähler potential (4.25) are respectively related to the dilaton (or
string coupling) and to the Calabi-Yau volume. This convention follows from the metric

ds211 = e−2φ/3g
(10)
AB dxAdxB + e4φ/3dy2 , (4.106)

which defines the string frame and the string coupling e−2φ with R = e2φ/3, together with

g
(10)
AB dxAdxB = gµν dx

µdxν + V 1/3δij̄ dz
idz j̄ (4.107)

which defines the Calabi-Yau volume. Rescaling gµν to the four-dimensional Einstein frame
leads to

ds211 = e4φ/3 [V −1gµν dx
µdxν + dy2] + e−2φ/3V 1/3δij̄ dz

idzj̄ . (4.108)

Comparison with the standard eleven-dimensional metric used to diagonalize kinetic terms in
the four-dimensional N = 1 supergravity Lagrangian,

ds211 = s−2/3 [t−1gµν dx
µdxν + t2dy2] + s1/3δij̄ dz

idzj̄ , (4.109)

leads to the identifications

(Re T )3 = V , ReS = V e−2φ . (4.110)

Hence, t is the volume modulus while s is the dilaton or string coupling modulus.
The terminology often used in the context of M-theory defines instead another Calabi-Yau

volume V̂ in units specified by the metric (4.108), with then

V̂ ≡ V e−2φ = ReS, (Re T )3 = V̂ e2φ = V̂ R3.

It seemingly exchanges the respective roles of the bulk moduli.
In order to avoid duplication of contributions due to Z2 periodicity, our eleven-dimensional

supergravity action and Green-Schwarz terms are multiplied by 1/2 with respect to standard
conventions in use for M11:

LC.J.S. + LG.S =
1

4κ2

[
eR− 1

2
G4 ∧ ∗G4 −

1

6
C3 ∧G4 ∧G4

]
− T2

4π
G4 ∧X7 , (4.111)

with membrane tension T2 = 2π(4πκ2)−1/3, and

dX7 = X8 =
1

(2π)34!

[
1

8
trR4 − 1

32
(trR2)2

]
. (4.112)
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To respect Z2 symmetry, we assume that a five-brane with world-volume located at some
y0 has a Z2–mirror at −y0. The Dirac distribution transverse to its world-volume M4 ⊂ W6 ⊂
M4 ×K6 is then defined by the condition

∫

M4×K6×S1/Z2

I6 ∧ δ(5)(W6) = 2

∫

W6

I6 (4.113)

for any 6–form I6, since it takes both copies into account.
The membrane and five-brane tensions T2 and T5 are related by the Dirac-Zwanziger quan-

tization condition
2κ2T2T5 = 2π

and also by [90]
(T2)

2 = 2πT5.

We then express all constants in terms of κ2, with

(4πκ2)1/3 =
2π

T2
= 2κ2T5. (4.114)

With these conventions, the Bianchi identity is

dG4 =
4π

T2

(
1

2

∑

I

qI δ
(5)(W6,I)−

∑

i

δiI4,i

)
, (4.115)

where the index I labels the Z2–symmetric pairs of five-branes and the charge qI is +1 for a
five-brane, −1 for an anti-five-brane.

One subtlety when integrating the Bianchi identity is that one cannot find a Z2–odd function
ε(y) such that dε = δ(y − y0)dy. As in ref. [43], we then use y, y0 ∈]− π, π] and

εy0(y) = sgn (y − y0)−
y − y0

π
, dεy0(y) =

(
2δ(y − y0)−

1

π

)
dy,

ε1(y) = ε0(y) = sgn (y)− y

π
, dε1(y) = 2δ1 −

1

π
dy,

ε1(y) = επ(y) = sgn (y − π)− y − π
π

, dε2(y) = 2δ2 −
1

π
dy.

(4.116)

The sign function is

sgn (r) =
r

|r| if r 6= 0, sgn (0) = 0, sgn (r) = −sgn (−r). (4.117)

With this definition, ε1 and ε2 are odd functions while εy0(−y) = −ε−y0(y). The function

εy0(y) + ε−y0(y) = sgn (y − y0) + sgn (y + y0)−
2y

π
(4.118)

(0 < y0 < π) is then odd with

d[εy0(y) + ε−y0(y)] = 2
(
δ(y − y0) + δ(y + y0)

)
dy − 2dy

π
. (4.119)

This function is useful to insert five-brane sources in the Bianchi identity. Since the five-brane
world-volumes W6,I are of the form M4 × C2 (C2 a holomorphic cycle in K6), W6,I is located at
y = yI with a “Z2–mirror five-brane” at −yI . We then use

δ(5)(W6,I) =
(
δ(y − yI) + δ(y + yI)

)
dy ∧ δ(4)(W6,I),

d
(
[εyI

(y) + ε−yI
(y)] δ(4)(W6,I)

)
= 2 δ(5)(W6,I)−

2

π
dy ∧ δ(4)(W6,I),

(4.120)

to integrate five-brane contributions to the Bianchi identity.
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Part III

Orbifolds of M-theory and e10
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Introduction

In this last part of the thesis, we want to adress the question of what the underlining symmetries
of M-theory could be. String theories are known to enjoy duality transformations which map
one theory to another theory (such as T-duality), or relate the weakly-coupled sector to the
strongly-coupled sector of the same or of another theory. Taking the example of T-duality,
which, performed once, maps type IIA theory compactified on a circle to type IIB on the
circle with inverse radius, we see that an even number of T-duality transformation becomes
a symmetry of type II theories, and of their M-theory extension. So while string dualities
constitute a rephrasing of the same physics in different languages, the study of symmetries may
prove useful in a better understanding of M-theory.

Hidden symmetries in toroidally compactified maximal supergravity theories have been
known for a long time, since the foundating works of Cremmer and Julia [77, 75, 76, 155, 152].
In particular, the bosonic part of 11D supergravity compactified on T 11−D for 10 > D > 3 was
shown to possess a continuous non-compact E11−D|11−D( � ) global symmetry, provided all RR-
and NS-NS fields are dualized to scalars whenever possible [79, 80]. This series of exceptional
groups also appear as symmetries of the action of classical type IIA supergravity compactified
on T 10−D, and the BPS states of the compactified theory turn out to arrange into multiplets of
the Weyl group of E11−D|11−D( � ) [186]. From the point of view of perturbative type IIA string
theory, this continuous symmetry does not preserve the weak coupling regime in gs, and is thus
expected to be broken by quantum effects. Nevertheless, the authors of [149] have advocated
that a discrete version thereof, namely E11−D|11−D( � ) remains as an exact quantum symmetry
of both 11D supergravity and type II theories, and thus might provide a guideline for a better
understanding of M-theory.

This exceptional series of arithmetic groups can alternatively be obtained as the closure of
the T-duality symmetry of IIA theory compactified on T 10−D, namely SO(10 −D, 10 −D, � ),
with the discrete modular group of the (11−D)-torus of M-theory, namely SL(11−D, � ). The
T-duality symmetry SO(10−D, 10−D, � ) is an exact symmetry of the conformal theory, and is
thus valid at every order of perturbation theory. As for the SL(11−D, � ) symmetry of the torus,
it turns in D = 9, into the expected S-duality symmetry of type IIB string theory, which acts
as a modular transformation on the complex parameter τ = C0 + ie−φ, with C0 the expectation
value of the scalar of the theory, and φ the dilaton. Under this transformation, in addition,
the NS three-form, H3, and the Ramond one, F3, transform as a doublet (H3, F3). Again, the
supergravity theory is invariant under the continuous group SL(2, � ), which is broken, in the
quantum regime, to its discrete subgroup SL(2, � ), due to the existence of the fundamental
string, charged under this symmetry. One is then led to conjecture the existence of a solitonic
string multiplet with integer charges (p, q) with respect to the fields (H3, F3), and to suppose a
non-perturbative extension of type IIB superstring theory. In the massless limit, these charged
states are absent, and we recover the continuous symmetry of the low-energy supergravity.

Moreover, this continuous hidden symmetry also appears in the global SO(6, 22, � ) ×
SL(2, � ) symmetry of the low energy effective supergravity of the heterotic string compacti-
fied on T 6. For reasons similar as before, this semi-simple group is conjectured to extend, in its
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discrete version, to a full symmetry of the quantum theory. Thus, both the heterotic and IIB
string theories share, although at different levels of compactification, an S-duality transforma-
tion which acts on the dilaton and axion fields, and in particular interchanges strong and weak
coupling regimes, mapping perturbative to non-perturbative effects, and vice versa.

Such hidden symmetries appear in several cases and combine with T-duality symmetry to
form a larger group, called the U-duality group, acting in the conjectured non-perturbative
extension of the known string theories and relating different theories via field redefinitions.

In this perspective, the global E11−D|11−D( � ) can be regarded as a unifying group encoding
both a target-space symmetry, which relates apparently different string backgrounds endowed
with isometries, and a rigid symmetry of the maximally symmetric space of compactification
which naturally contains a non-perturbative symmetry of type IIB string theory (which is also
shared by the heterotic string compactified to four dimensions).

Furthermore, this U-duality symmetry has been conjectured to extend to the moduli space
of M-theory compactified on T 11−D for 10 > D > 3. In particular, it was shown in [204] how to
retrieve exact R4 and R4H4g−4 corrections as well as topological couplings [205], from M-theory
E11−D|11−D( � )-invariant mass formulae.

In D = 2, 1, the dualization procedure mentioned above is not enough to derive the full
U-duality symmetry, which has been conjectured, already some time ago [153, 154, 156] to be
described by the Kac-Moody affine e9|10 and hyperbolic e10|10 split forms, that are characterized
by an infinite number of positive (real) and negative/null (imaginary) norm roots. In a more
recent perspective, e10|10 and the split form of e11 have been more generally put forward as
symmetries of the uncompactified 11D, type II and type I supergravity theories, and possibly
as a fundamental symmetry of M-theory itself, containing the whole chain of Cremmer-Julia
split algebras, and hinting at the possibility that M-theory might prove intrinsically algebraic
in nature.

Along this line, [84] have proposed a tantalizing correspondence between 11D supergravity
(composite) operators at a given point close to a spacelike singularity and the coordinates of a
one-parameter sigma-model based on the coset e10|10/k(e10|10) and describing the dynamics of a
hyperbolic cosmological billiard. In particular, a class of real roots of e10 have been identified,
using a BKL expansion [24, 25], as multiple gradients of 11D supergravity fields reproducing the
truncated equations of motion of the theory. More recently [87], imaginary roots were shown to
correspond to 8th order Rm(DF )n type M-theory corrections to the classical 11D supergravity
action.
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Chapter 5

Hidden Borcherds symmetries in
�

n

orbifolds of M-theory and
magnetized D-branes in type 0’
orientifolds

This chapter is based on the publication [13] which is a first step in the study of the behaviour
of the infinite dimensional U-duality symmetry e10|10 on singular backgrounds. More precisely,
the present chapter concentrates on the study of the residual U-duality symmetry that survives
the orbifold projection and the way the shift vectors defining the orbifold action are related to
the extended objects necessary for the theory to reduce to a well-defined string theory.

In [55], an algebraic analysis of a certain class of orbifolds of M-theory has already been
carried out in a compact version of the setup of [84]. Their work is based on a previous investi-
gation of the relation between the moduli space of M-theory in the neighbourhood of a spacelike
singularity and its possible hyperbolic billiard description [17]. For their analysis, these authors
took advantage of a previous work [56] which helped establishing a dictionary between null roots
of e10 and certain Minkowskian branes and other objects of M-theory on T 10. Let us briefly
recall this correspondence.

In [205, 202, 203], a systematic description of the relation between a subset of the positive
roots of E11−D|11−D and BPS objects in type II string theories and M-theory has been given.
In particular, they were shown to contribute to instanton corrections to the low-energy effective
theory. In D = 1, this suggests a correspondence between certain positive real roots of e10 and
extended objects of M-theory totally wrapped in the compact space (such as Euclidean Kaluza-
Klein particles, Euclidean M2 and M5-branes, and Kaluza-Klein monopoles). In the hyperbolic
billiard approach to the moduli space of M-theory near a cosmological singularity, these real roots
appear in exponential terms in the low-energy effective Hamiltonian of the theory [86, 87]. Such
contributions behave as sharp wall potentials in the BKL limit, interrupting and reflecting the
otherwise free-moving Kasner metric evolution. The latter can be represented mathematically
by the inertial dynamics of a vector in the Cartan subalgebra of e10 undergoing Weyl-reflections
when it reaches the boundary of a Weyl chamber. In the low energy 11D supergravity limit, these
sharp walls terms can be regarded as fluxes, which are changed by integer amounts by instanton
effects. This description, however, is valid only in a regime where all compactification radii can
all become simultaneously larger than the Planck length. In this case, the corresponding subset
of positive real roots of e10 can safely be related to instanton effect. As shown in [17], the regions
of the moduli space of M-theory where this holds true are bounded by the (approximate) Kasner
solution mentioned above. A proper description of these regions calls for a modification of the
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Kasner evolution by introducing matter, which leads to a (possibly) non-chaotic behaviour of the
system at late time (or large volume). The main contribution of [56] was to give evidence that
these matter contributions have a natural description in terms of imaginary roots of e10. More
precisely, these authors have shown that extended objects such as Minkowskian Kaluza-Klein
particles, M2-branes, M5-branes, and Kaluza-Klein monopoles (KK7M-branes) can be related to
prime isotropic imaginary roots of e10 that, interestingly enough, are all Weyl-equivalent. These
results, although derived in a compact setting, are amenable to the non-compact case [84, 87].

Ref.[55] only considers a certain class of orbifolds of M-theory, namely: T 10−q × T q/ � 2

for q = 1, 4, 5, 8, 9. After orbifold projection, the residual U-duality algebra g inv describing the
untwisted sectors of all these orbifolds was shown to possess a root lattice isomorphic to the root
lattice of the over-extended hyperbolic de10|10 algebra. However, a careful root-space analysis
led the authors to the conclusion that ginv was actually bigger than its hyperbolic counterpart,
and contained de10|10 as a proper subalgebra. Furthermore, in the absence of flux, anomaly
cancellation in such orbifolds of M-theory is known to require the insertion of 16 M(10 − q)-
branes, for q = 5, 8, Kaluza-Klein particles/monopoles or other BPS objects (the S 1/ � 2 has to
be treated from a type IA point of view, where 16 D8-branes are required to compensate the
charges of the two O8-planes) extending in the directions transverse to the orbifold [249, 88]. In
[55], such brane configurations were shown to be nicely incorporated in the algebraic realization
of the corresponding orbifolds. It was proven that the root lattice automorphism reproducing
the � 2 action on the metric and the three-form field of the low effective M-theory action could
always be rephrased in terms of a prime isotropic root, playing the rôle of the orbifold shift vector
and describing precisely the transverse Minkowskian brane required for anomaly cancellation.

This construction in terms of automorphisms of the root lattice is however limited to the � 2

case, where, in particular, the diagonal components of the metric play no rôle. In order to treat
the general � n>2 orbifold case, we are in need of a more elaborate algebraic approach, which
operates directly at the level of the generators of the algebra. In this regard, the works of Kac
and Peterson on the classification of finite order automorphisms of Lie algebras, have inspired
a now standard procedure [163, 164, 66] to determine the residual invariant subalgebra of a
given finite dimensional Lie algebras, under a certain orbifold projection. This has in particular
been used to study systematically the breaking patterns of the E8 ×E8 gauge symmetry of the
heterotic string [164, 118]. The method is based on choosing an eigenbasis in which the orbifold

charge operator can be rephrased as a Cartan preserving automorphism Ade
2iπ
n
HΛ , where Λ is

an element of the weight lattice having scalar product (Λ|θG) 6 n with the highest root of the
algebra θG, and HΛ is its corresponding Cartan element. The shift vector Λ then determines
by a standard procedure the invariant subalgebra ginv for all � n projections. However, the
dimensionality and the precise set of charges of the orbifold have to be established by other
means. This is in particular necessary to isolate possible degenerate cases. Finally, this method
relies on the use of extended (not affine) Dynkin diagrams, and it is not yet known how it can
be generalized to affine and hyperbolic Kac-Moody algebras.

Here we adopt a novel point of view based on the observation that the action of an orbifold
on the symmetry group of any theory that possesses at least global Lorentz symmetry can
be represented by the rigid action of a formal rotation operator in any orbifolded plane. In
algebraic terms, the orbifold charge operator will be represented by a non-Cartan preserving,
finite-order automorphism acting on the appropriate complex combinations of generators. These
combinations are the components of tensors in the complex basis of the orbifolded torus which
diagonalize the automorphism. Thus, they reproduce the precise mapping between orbifolded
generators in e10|10/k(e10|10) and charged states in the moduli space of M-theory on T 10. It
also enables one to keep track of the reality properties of the invariant subalgebra, provided we
work with a Cartan decomposition of the original U-duality algebra. This is one reason which
prompted us to choose the symmetric gauge (in contrast to the triangular Iwasawa gauge) to
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parametrize the physical fields of the theory. For this gauge choice, the orbifold charge operator

is expressible as
∏
α∈∆+

Ade
2πQα

n
(Eα−Fα), for Eα−Fα ∈ k(e10|10), and ∆+ a set of positive roots

reproducing the correct orbifold charges {Qα}. The fixed point subalgebra ginv is then obtained
by truncating to the Qα = kn sector, k ∈ � .

This method is general and can in principle be applied to the U-duality symmetry of any
orbifolded supergravities and their M-theory generalization. In this paper, we will restrict our-
selves to the gU = e11−D|11−D U-duality chain for 8 6 D 6 1. We will also limit our detailed

study to a few illustrative examples of orbifolds, namely: T 11−D−q × T q/ � n>2 for q = 2, 4, 6
and T 11−D−q × T q/ � 2 for q = 1, . . . , 9. In the � 2 case, we recover, for q = 1, 4, 5, 8, 9, the
results of [55]. In the other cases, the results are original and lead, for D = 1, to several ex-
amples where we conjecture that ginv is obtained by modding out either a Borcherds algebra or
an indefinite (not affine) Kac-Moody algebra, by its centres and derivations. As a first check
of this conjecture, we study in detail the T 8 × T 2/ � n case, and verify its validity up to level
l = 6, investigating with care the splitting of the multiplicities of the original e10 roots under the
orbifold projection. We also show that the remaining cases can be treated in a similar fashion.
From a different perspective [138, 139], truncated real super-Borcherds algebras have been shown
to arise already as more general symmetries of various supergravities expressed in the doubled
formalism and compactified on square tori to D = 3. Our work, on the other hand, gives other
explicit examples of how Borcherds algebras may appear as the fixed-point subalgebras of a
hyperbolic Kac-Moody algebra under a finite-order automorphism.

Subsequently, we engineer the relation between our orbifolding procedure which relies on
finite order non-Cartan preserving automorphism, and the formalism of Kac-Peterson [161]. We
first show that there is a new primed basis of the algebra in which one can derive a class of
shift vectors for each orbifold we have considered. Then, we prove that these vectors are, for
a given n, conjugate to the shift vector expected from the Kac-Peterson formalism. We show
furthermore that, in the primed basis, every such class contains a positive root of e10, which can
serve as class representative. This root has the form Λ′

n + nδ̃′, where δ̃′ is in the same orbit as
the null root δ′ of e9 under the Weyl group of SL(10), and is minimal, in the sense that Λ′

n is
the minimal weight leading to the required set of orbifold charges. We then list all such class
representatives for all orbifolds of the type T q1/ � n1 × · · · × T qm/ � nm with

∑m
i=1 qi 6 10, where

the � ni actions act independently on each T 2 subtori.
In particular, for the T 10−q × T q/ � 2 orbifolds of M-theory with q = 2, 3, 6, 7 that were not

considered in [55], we find that a consistent physical interpretation requires to consider them
in the bosonic M-theory that descend to type 0A strings. In such cases, we find class repre-
sentatives that are either positive real roots of e10, or positive non-isotropic imaginary roots of
norm −2. We then show that these roots are related to the twisted sectors of some particular
non-supersymmetric type 0’ orientifolds carrying magnetic fluxes. Performing the reduction to
type 0A theory and T-dualizing appropriately, we actually find that these roots of e10 descend
to magnetized D9-branes in type 0’ orientifolds carrying (2π)−[q/2]

∫
TrF ∧ .. ∧ F︸ ︷︷ ︸

[q/2]

units of flux.

This gives a partial characterization of open strings twisted sectors in non-supersymmetric ori-
entifolds in terms of roots of e10. Moreover, the fact that these roots can be identified with
Minkowskian D-branes even though none of them is prime isotropic, calls for a more general
algebraic characterization of Minkowskian objects than the one propounded in [55]. A new
proposal supported by evidence from the � n>2 case will be presented in Section 5.9.2.

More precisely, the orbifolds of M-theory mentioned above descend to orientifolds of type
0A string theory by reducing on one direction of the orbifolded torus for q even, and on one
direction outside the torus for q odd. T-dualizing to type 0B, we find cases similar to those
studied in [46, 45], where specific configurations of D-branes and D’-branes were used to cancel
the two 10-form RR tadpoles. Here, in contrast, we consider a configuration in which the branes
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are tilted with respect to the orientifold planes in the 0A theory. This setup is T-dual to a type
0’ orientifold with magnetic fluxes coupling to the electric charge of a D(10−q)-brane embedded
in the space-filling D9-branes in the spirit of [47, 48]. In this perspective, the aforementioned
roots of e10 which determine the � 2 action also possess a dual description in terms of tilted
D-branes of type 0A string theory. In the original 11-dimensional setting, these roots are related
to exotic objects of M-theory and thereby provide a proposal for the M-theory origin of such
configurations.

Finally, we will also comment on the structure of the e10 roots that appear as class represen-
tatives for shift vectors of � n orbifolds of M-theory, and hint at the kind of flux configurations
these roots could be associated to.

5.1 Generalized Kac-Moody algebras

In this section, we introduce recent mathematical constructions from the theory of infinite-
dimensional Lie algebras. Indeed, it is well-known in Lie theory that fixed-point subalgebras
of infinite-dimensional Lie algebras under certain algebra automorphisms are often interesting
mathematical objects in their own right and might have quite different properties. Of particular
interest here is the fact that fixed-point subalgebras of Kac-Moody algebras are not necessarily
Kac-Moody algebras, but can belong to various more general classes of algebras like extended
affine Lie algebras [5, 4, 3], generalized Kac-Moody algebras [50, 51, 52], Slodowy intersection
matrices [224] or Berman’s generalized intersection matrices [38]. Indeed, invariant U-duality
symmetry subalgebras for orbifolds of M-theory are precisely fixed-point subalgebras under a
finite-order automorphism and can be expected (at least in the hyperbolic and Lorentzian cases)
to yield algebras that are beyond the realm of Kac-Moody algebras.

5.1.1 Central extensions of Borcherds algebras

Since they are particularly relevant to our results, we will focus here on the so-called generalized
Kac-Moody algebras, or GKMAs for short, introduced by Borcherds in [50] to extend the Kac-
Moody algebras construction to infinite-dimensional algebras with imaginary simple roots. We
define here a number of facts and notations about infinite-dimensional Lie algebras which we
will need in the rest of the paper, starting from very general considerations and then moving to
more particular properties. This will eventually prompt us to refine the approach to GKMAs
with a degenerate Cartan matrix, by providing, in particular, a rigorous definition of how scaling
operators should by introduced in this case in accordance with the general definition of GKMAs
(see for instance Definitions 5.1.3 and 5.1.4 below). This has usually been overlooked in the
literature, but turns out to be crucial for our analysis of fixed point subalgebras of infinite
KMAs under a finite order automorphism, which occur, as we will see, as hidden symmetries of
the untwisted sector of M-theory under a given orbifold.

In this perspective, we start by defining the necessary algebraic tools. Let g be a (pos-
sibly infinite-dimensional) Lie algebra possessing a Cartan subalgebra h (a complex nilpotent
subalgebra equal to its normalizer) which is splittable, in other words, the action of adH on g

is trigonalizable ∀H ∈ h. The derived subalgebra g′ = [g, g] possesses an r-dimensional Car-
tan subalgebra h′ = g′ ∩ h spanned by the basis Π∨ = {Hi}i∈I , with indices valued in the set
I = {i1, .., ir}.

We denote by h′∗ the space dual to h′. It has a basis formed by r linear functionals (or
1-forms) on h′, the simple roots of g: Π = {αi}i∈I . Suppose we can define an indefinite scalar
product: (αi|αj) = aij for some real r × r matrix a, then:
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Definition 5.1.1 The matrix a is called a generalized symmetrized Cartan matrix, if it satisfies
the conditions:

i) aij = aji , ∀i, j ∈ I.

ii) a has no zero column.

iii) aij ≤ 0 , for i 6= j and ∀i, j ∈ I.

iv)
if aii 6= 0 : 2

aij

aii

if aii = 0 : aij

}
∈ � , for i 6= j and ∀i, j ∈ I.

From integer linear combinations of simple roots, one constructs the root lattice Q =∑
i∈I � αi. The scalar product ( | ) is then extended by linearity to the whole Q ⊂ h′∗. Further-

more, by defining fundamental weights {Λi}i∈I satisfying (Λi|αj) = δij , ∀i, j ∈ I, we introduce

a duality relation with respect to the root scalar product. Then, from the set {Λi}i∈I we define
the lattice of integral weights P =

∑
i∈I � Λi dual to Q, such that Q ⊆ P .

Let us introduce the duality isomorphism ν: h′ → h′∗ defined by

ν(Hi) =

{
2 αi
|aii| , if aii 6= 0 .

αi , if aii = 0 ,
. (5.1)

We may now promote the scalar product (αi|αj) = aij to a symmetric bilinear form B on h′

through:
bij = B(Hi,Hj) = (ν(Hi)|ν(Hj)) , ∀i, j ∈ I .

Suppose next that the operation ad(H) is diagonalizable ∀H ∈ h, from which we define the
following:

Definition 5.1.2 We call root space an eigenspace of ad(H) defined as

gα = {X ∈ g | ad(H)X = α(H)X, ∀H ∈ h} (5.2)

which defines the root system of g as ∆(g, h) = {α 6= 0 | gα 6= {0}}, depending on the choice of
basis for h.

The multiplicities attached to a root α ∈ ∆(g, h) are then given by mα = dim gα. As usual,
the root system splits into a positive root system and a negative root system. The positive root
system is defined as

∆+(g, h) =
{
α ∈ ∆(g, h) |α =

∑

i∈I
niαi,with ni ∈ � ,∀i ∈ I

}

and the negative root one as ∆−(g, h) = −∆+(g, h), so that ∆(g, h) = ∆+(g, h) ∪∆−(g, h). We
call ht(α) =

∑
i∈I n

i the height of α. From now on, we shall write ∆ ≡ ∆(g, h) for economy,
and restore the full notation ∆(g, h) or partial notation ∆(g) when needed.

Finally, since (α|α) is bounded above on ∆, α is called real if (α|α) > 0, isotropic imaginary
if (α|α) = 0 and (non-isotropic) imaginary if (α|α) < 0. Real roots always have multiplicity
one, as is the case for finite-dimensional semi-simple Lie algebras, while (non-simple) isotropic
roots have a multiplicity equal to rka(ĝ) for some affine subalgebra ĝ ⊂ g, while (non-simple)
non-isotropic imaginary roots can have very big multiplicities.

Generalized Kac-Moody algebras are usually defined with all imaginary simple roots of mul-
tiplicity one, as well. One could in principle define a GKMA with simple roots of multiplicities
bigger than one, but then the algebra would not be completely determined by its generalized

150



Cartan matrix. In this case, one would need yet another matrix with coefficients specifying
the commutation properties of all generators in the same simple root space. Here, we shall not
consider this possibility further since it will turn out that all fixed point subalgebras we will be
encountering in the framework of orbifold compactification of 11D supergravity and M-theory
possess only isotropic simple roots of multiplicity one.

We now come to specifying the rôle of central elements and scaling operators in the case of
GKMAs with degenerate generalized Cartan matrix.

Definition 5.1.3 If the matrix a does not have maximal rank, define the centre of g as z(g) =
{c ∈ h |B(Hi, c) = 0 , ∀i ∈ I}. In particular, if l = dim z(g), one can find l linearly independent
null root lattice vectors {δi}i=1,..,l (possibly roots, but not necessarily) satisfying (δi|ν(Hj)) = 0 ,
∀i = 1, . . . , l, ∀j ∈ I. One then defines l linearly independent Cartan generators {di}i=1,..,l with
di ∈ h/h′ thus extending the bilinear form B to the whole Cartan algebra h as follows:

• B(ci, dj) = δij , ∀i, j = 1, .., l .

• B(di, dj) = 0 , ∀i, j = 1, .., l .

• B(H, di) = 0 , ∀i = 1, .., l and for H ∈ h′/Span{ci}i=1,..,l .

Then, we have rk(a) = r − l and dim h = r + l.

This definition univocally fixes the i-th level ki of all roots α ∈ ∆ to be ki = B(ν−1(α), di),
using the decomposition of ν−1(α) on orthogonal subspaces in h′ = (h′/Span{c1, . . . , cl}) ⊕
Span{c1} ⊕ · · · ⊕ Span{cn}.

We are now ready to define a GKMA by its commutation relations. Definitions of various
levels of generality exist in the literature, but we choose one that is both convenient (though
seemingly complicated) and sufficient for our purpose, neglecting the possibility that [Ei, Fj ] 6= 0
for i 6= j (see, for example, [126, 18] for such constructions), but taking into account the
possibility of degenerate Cartan matrices, a generic feature of the type of GKMA we will be
studying later on in this paper.

Definition 5.1.4 The universal generalized Kac-Moody algebra associated to the Cartan ma-
trix a is the Lie algebra defined by the following commutation relations (Serre-Chevalley basis)
for the simple root generators {Ei, Fi,Hi}i∈I :

(i). [Ei, Fj ] = δijHi, [Hi,Hj ] = [Hi, dk] = 0 , ∀i, j ∈ I, k = 1, .., l .

(ii). [Hi, Ej ] =

{
2aij

|aii|Ej , if aii 6= 0

aijEj , if aii = 0
, [Hi, Fj ] =

{
−2aij

|aii|Fj , if aii 6= 0

−aijFj , if aii = 0
, ∀i, j ∈ I .

(iii). If aii > 0 : (adEi)
1−2

aij
aii Ej = 0, (adFi)

1−2
aij
aii Fj = 0 , ∀i, j ∈ I .

(iv). ∀i, j ∈ I such that aii ≤ 0, ajj ≤ 0 and aij = 0 : 1 [Ei, Ej ] = 0, [Fi, Fj ] = 0 ,

(v). [di, [Ej1 , [Ej2 , .., Ejn ]..]] = ki[Ej1 , [Ej2 , .., Ejn ]..] ,
[di, [Fj1 , [Fj2 , .., Fjn ]..]] = −ki[Fj1 , [Fj2 , .., Fjn ]..] ,
where ki is the i− th level of α = αj1 + . . .+ αjn , as defined above.

1Note that there is no a priori limit to the number of times one can commute the generator Ei for αi imaginary
with any other generator Ej in case aij 6= 0.

151



Since a generalized Kac-Moody algebra can be graded by its root system as: g = h⊕
⊕

α∈∆

gα,

the indefinite scalar product B can be extended to an ad(g)-invariant bilinear form satisfying:
B(gα, gβ) = 0 except if α+ β = 0, which we call the generalized Cartan-Killing form. It can be
fixed uniquely by the normalization

B(Ei, Fj) =

{
2

|aii|δij , if aii 6= 0

δij , if aii = 0
,

on generators corresponding to simple roots. Then ad(g)- invariance naturally implies:
B(Hi,Hj) = (ν(Hi)|ν(Hj)).

The GKMA g can be endowed with an antilinear Chevalley involution ϑC acting as ϑC(gα) =
g−α and ϑC(H) = −H , ∀H ∈ h, whose action on each simple root space gαi is defined as as
usual as ϑC(Ei) = −Fi , ∀i ∈ I. The Chevalley involution extends naturally to the whole algebra
g by linearity, for example:

ϑC([Ei, Ej ]) = [ϑC(Ej), ϑC(Ej)] = [Fi, Fj ] . (5.3)

This leads to the existence of an almost positive-definite contravariant form BϑC
(X,Y ) =

−B(ϑC(X), Y ). More precisely, it is positive-definite everywhere outside h.
Note that there is another standard normalization, the Cartan-Weyl basis, given by:

eαi =

{ √
|aii|
2 Ei , if aii 6= 0

Ei , if aii = 0
, fαi =

{ √
|aii|
2 Fi , if aii 6= 0

Fi , if aii = 0
,

hαi =

{ |aii|
2 Hi , if aii 6= 0
Hi , if aii = 0

,

and characterized by: B(eα, fα) = 1, ∀α ∈ ∆+(g).
We will not use this normalization here, but we will instead write the Cartan-Weyl relations

in a Chevalley-Serre basis, as follows:

Definition 5.1.5 For all α ∈ ∆+(g) introduce 2mα generators: Ea
α and F aα , a = 1, ..,mα.

Generators corresponding to roots of height ±2 are defined as:

Eαi+αj = Nαi,αj [Ei, Ej ], Fαi+αj = N−αi,−αj [Fi, Fj ], ∀i, j ∈ I ,

for a certain choice of structure constants Nαi,αj . Then, higher heights generators are defined
recursively in the same way through:

[Eaα, E
b
β ] =

∑

c

(Nα,β)abcEcα+β . (5.4)

The liberty of choosing the structure constants is of course limited by the anti-commutativity
of the Lie bracket: (Nα,β)abc = −(Nβ,α)bac and the Jacobi identity, from which we can derive
several relations. Among these, the following identity, valid for finite-dimensional Lie algebras,
will be useful for our purposes:

Nα,βN−α,−β = −(p+ 1)2, p ∈ � , s.t. {β − pα, . . . , β + α} ⊂ ∆(g, h) .

Note that this relation can be generalized to the infinite-dimensional case if one chooses the
bases of root spaces gα with mα > 1 in a particular way such that there is no need for a sum in
(5.4). Imposing in addition (Nα,β)abc = −(N−α,−β)abc gives sign conventions compatible with
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ϑC(Eaα) = −F aα , ∀α ∈ ∆+(g), a = 1 . . . ,mα, not only for simple roots. In the Serre-Chevalley
normalization, this furthermore ensures that: Nα,β ∈ � , ∀α, β ∈ ∆. Here lies our essential reason
for sticking to this normalization, and we will follow this convention throughout the paper. In
the particular case of simply-laced semi-simple Lie algebras, we always have p = 0, and we can
choose Nα,β = ±1 , ∀α, β ∈ ∆ (note, however, that this is not true for infinite-dimensional
simply-laced algebras).

Another important consequence of the Jacobi identity in the finite case, which will turn out
to be useful is the following relation

Nα,−β = Nβ−α,α ∀α, β ∈ ∆ .

5.1.2 Kac-Moody algebras as a special case of GKMA

Standard symmetrized Kac-Moody algebras (KMA) can be recovered from the preceding section
by imposing aii > 0 , ∀i ∈ I in all the above definitions. In addition, one usually rephrases
the dual basis Π∨ in terms of coroots, by setting α∨

i ≡ Hi. Their image under the duality
isomorphism reads

ν(α∨
i ) =

2

(αi|αi)
αi , ∀i ∈ I ,

so that instead of the symmetrized Cartan matrix a, one generally resorts to the following
non-symmetric version, defined as a realization of the triple {h,Π,Π∨} with Π∨ = {α∨

i }i∈I ⊂ h∗:

Aij =
2aij
aii
≡ 〈α∨

i , αj〉 . (5.5)

where the duality bracket on the RHS represents the standard action of the one-form αj on the
vector α∨

i .
The matrix a is then called the symmetrization of the (integer) Cartan matrix A. As a conse-

quence of having introduced l derivations in Definition 5.1.3, the contravariant form BϑC
(., .) now

becomes non-degenerate on the whole of g, even in the case of central extensions of multi-loop
algebras, which are the simplest examples of extended affine Lie algebra (EALA, for short).

For the following, we need to introduce the Weyl group of g as

Definition 5.1.6 The Weyl group of g, denoted W (g), is the group generated by all reflections
mapping the root system into itself:

rα : ∆(g) → ∆(g)

β 7→ β − 〈α∨, β〉α .

The set {ri1 , .., rir}, where ri
.
= rαi are called the fundamental reflections, is a basis of W (g).

Since r−1
i = r−αi , W (g) is indeed a group.

The real roots of any finite Lie algebra or KMA can then be defined as being Weyl conjugate
to a simple root. In other words, α ∈ ∆(g, h) is real if ∃w ∈W (g) such that α = w(αi) for i ∈ I
and g is a KMA.

A similar formulation exists for imaginary roots of a KMA, which usually turns out to be
useful for determining their multiplicities, namely (see [159]):

Theorem 5.1.1 Let α =
∑

i∈I kiαi ∈ Q\{0} have compact support on the Dynkin diagram of
g, and set:

K = {α | 〈α∨
i , α〉 6 0 , ∀i ∈ I} ,
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Then denoting by ∆im the set of imaginary roots of g, we have:

∆im(g) =
⋃

w∈W (g)

w(K) .

It follows from Theorem 5.1.1 that, in the affine case, every isotropic root α is Weyl-equivalent
to nδ (with δ = α0 + θ the null root) for some n ∈ � ∗, which is another way of showing that
all such roots have multiplicity mα = r. All isotropic roots which are Weyl-equivalent to δ are
usually called prime isotropic. Note, finally, that statements similar to Theorem 5.1.1 holds
for non-isotropic imaginary roots of hyperbolic KMAs. For instance, all positive roots with
(α|α) = −2 can in this case be shown to be Weyl-equivalent to Λ0, the weight dual to the
extended root α0.

Intersection matrix algebras are even more general objects that allow for positive non-
diagonal elements in the Cartan matrix. Slodowy intersection matrices allow such positive
diagonal metric elements, while Berman generalized intersection matrices give the most general
framework by allowing imaginary simple roots, as well, as in the case of Borcherds algebras.
Such more complicated algebras will not appear in the situations considered in this paper, but
it is not impossible that they could show up in applications of the same methods to different
situations.

5.1.3 A comment on sl(10) representations in e10 and their outer multiplicity

Of particular significance for Kac-Moody algebras beyond the affine case are of course the root
system and the root multiplicities, which are often only partially known. Fortunately, in the
case of e10, we can rely on the work in [173, 171, 114] to obtain information about a large
number of low-level roots, enough to study � n orbifolds up to n = 6. These works rely on
decomposing Lorentzian algebras in representations of a certain finite subalgebra. However, the
set of representations is not exactly isomorphic to the root system (modulo Weyl reflections).
Indeed, the multiplicity of a representation in the decomposition is in general smaller than the
multiplicity of the root corresponding to its highest weight vector. Typically, the m-dimensional
vector space corresponding to a root of (inner) multiplicity m will be split into subspaces of
several representations of the finite subalgebra. Typically, a root α of multiplicity mα > 1 will
appear no(α) times as the highest weight vector of a representation, plus several times as a
weight of other representations. The number no(α) is called the outer multiplicity, and can
be 0. For a representation R of g it shall be denoted by a subscript as: R[no] when needed.
Even though the concept of outer multiplicity is of minor significance for our purpose, it is
important to understand the mapping between the results of [115, 171], based on representation
of finite subalgebras, and ours, which focuses on tensorial representations with definite symmetry
properties.

5.2 Hidden symmetries in M-theory: the setup

As a start, we first review some basic facts about hidden symmetries of 11D supergravity and
ultimately M-theory, ranging from the early non-linear realizations of toroidally compactified
11D supergravity [79, 80] to the conjectured hyperbolic e10 hidden symmetry of M-theory.

Then in Sections 5.2.1-5.2.5, we do a synthesis of the algebraic approach to U-duality sym-
metries of 11D supergravity on T q and the moduli space of M-theory on T 10, presenting in detail
the physical material and mathematical tools that we will need in the subsequent sections, and
justify our choice of parametrization for the coset element (algebraic field strength) describing
the physical fields of the theory. The reader familiar with these topics may of course skip the
parts of this presentation he will judge too detailed.
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The global E11−D|11−D symmetry of classical 11D supergravity reduced on T 11−D for 10 6
D 6 3 can be best understood as arising from a simultaneous realization of the linear non-
perturbative symmetry of the supergravity Lagrangian where no fields are dualized and the
perturbative T-duality symmetry of type IIA string theory appearing in D = 10 and below.
Actually, the full E11−D|11−D symmetry has a natural interpretation as the closure of both these
groups, up to shift symmetries in the axionic fields.

Type IIA string theory compactified on T 10−D enjoys a SO(10 −D, 10 −D, � ) symmetry2

which is valid order by order in perturbation theory. So, restricting to massless scalars arising
from T-duality in D 6 8, all inequivalent quantum configurations of the scalar sector of the
bosonic theory are described by the moduli space

MD = SO(10−D, 10−D, � )\SO(10 −D, 10 −D)/(SO(10 −D)× SO(10−D)) ,

where the left quotient by the arithmetic subgroup corrects the over-counting of perturbative
string compactifications. In contrast to the NS-NS fields B2 and gµν which, at the perturbative
level, couple to the string worldsheet, the R-R fields do so only via their field strength. So a step
towards U-duality can be achieved by dualizing the R-R fields while keeping the NS-NS ones
untouched. It should however be borne in mind that such a procedure enhances the T-duality
symmetry only when dualizing a field strength to an equal or lower rank one. Thus, Hodge-duals
of R-R fields start playing a rôle when D 6 8, those of NS-NS fields when D 6 6. However,
when perturbative symmetries are concerned, we will not dualize NS-NS fields.

This enlarged T-duality symmetry can be determined by identifying its discrete Weyl group
W (D10−D) [186], which implements the permutation of field strengths required by electric-
magnetic duality. In D 6 8 it becomes now necessary to dualize R-R field strengths in order to
form Weyl-group multiplets. This results in 29−D R-R axions, all exhibiting a shift symmetry,
that enhances the T-duality group to:

G̃ = SO(10−D, 10−D) n � 29−D
, (5.6)

the semi-direct product resulting from the fact that the R-R axions are now linearly rotated
into one another under T-duality. The (continuous) scalar manifold is now described by the
coset G̃/SO(10−D)×SO(10−D), whose dimension matches the total number of scalars if we
include the duals of R-R fields only. The symmetry (5.6) can now be enlarged to accomodate
non-perturbative generators, leading to the full global symmetry E11−D|11−D. However, this can
only be achieved without dualizing the NS-NS fields in the range 9 > D > 7. When descending to
lower dimensions, indeed, the addition of non-perturbative generators rotating R-R and NS-NS
fields into one another forces the latter to be dualized.

To evade this problem arising in low dimensions, we might wish to concentrate instead on
the global symmetry of the 11D supergravity Lagrangian for D 6 9, whose scalar manifold is
described by the coset

GL(11 −D) n � (11−D)!/((8−D)!3!)/O(11 −D) .

The corresponding group GSG = GL(11 −D) n � (11−D)(10−D)(9−D)/6 encodes the symmetry of
the totally undualized theory including the (11−D)(10−D)(9−D)/6 shift symmetries coming
from the axions produced by toroidal compactification of the three-form C3. Again, the semi-
direct product reflects the fact that these axions combine in a totally antisymmetric rank three
representation of GL(11−D). Since NS-NS and R-R fields can be interchanged by GL(11−D),

2We consider SO(10−D, 10−D) instead of O(10−D, 10−D), as is sometimes done, because the elements of
O(10 −D, 10 −D) connected to −1I flip the chirality of spinors in the type IIA/B theories. As such, this subset
of elements is not a symmetry of the R-R sector of the type IIA/B supergravity actions, but dualities which
exchange both theories.
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the arithmetic subgroup of GL(11 −D) n � (11−D)(10−D)(9−D)/6 constitutes an acceptable non-
perturbative symmetry of type II superstring theory in D 6 9. The price to pay in this case
is to sacrifice T-duality, since the subgroup of the linear group preserving the NS-NS and R-R
sectors separately is never big enough to accomodate SO(10−D, 10 −D).

Eventually, the full non-perturbative symmetry E11−D|11−D can only be achieved when both
NS-NS and R-R fields are dualized, and may be viewed as the closure of its GL(11 − D) and
SO(10−D, 10−D) subgroups. However, the number of shift symmetries in this fully dualized
version of the theory is given by {3, 6, 10, 16, 27, 44} for 8 > D > 3. Since, in D 6 5, these
numbers are always smaller or equal to (11 − D)(10 − D)(9 − D)/6 and 29−D, neither G̃ nor
GSG are subgroups of E11−D|11−D in low dimensions.

This exceptional symmetry is argued to carry over, in its discrete version, to the full quantum
theory. Typically, the conjectured U-duality group of M-theory on T 11−D can be rephrased as
the closure

E11−D|11−D( � ) = SO(10−D, 10−D, � )×̄SL(11−D, � ) , (5.7)

where the first factor can be viewed as the perturbative T-duality symmetry of IIA string theory,
while the second one is the modular group of the torus T 11−D. In D = 9, the latter can be
rephrased in type IIB language as the expected S-duality symmetry.

The moduli space of M-theory on T 11−D is then postulated to be

MD = E11−D|11−D( � )\E11−D|11−D/K(E11−D|11−D) . (5.8)

It encodes both the perturbative NS-NS electric p-brane spectrum and the spectrum of non-
perturbative states, composed of the magnetic dual NS-NS (9 − D − p)-branes and the R-R
D-branes of IIA theory for 10 6 D 6 3.

In dimensions D < 3, scalars are dual to themselves, so no more enhancement of the U-
duality group is expected from dualization. However, an enlargement of the hidden symmetry
of the theory is nevertheless believed to occur through the affine extension E9|10( � ) in D = 2,
the over-extended E10|10( � ), generated by the corresponding hyperbolic KMA, in D = 1, and
eventually the very-extended E11( � ) in the split form, whose KMA is Lorentzian, for the totally
compactified theory.

Furthermore, there is evidence that the latter two infinite-dimensional KMAs are also sym-
metries of unreduced 11D supergravity [172, 246], viewed as a non-linear realization (in the
same spirit as the Monstruous Moonshine [192] has been conjectured to be a symmetry of un-
compactified string theory) and are believed to be more generally symmetries of uncompactified
M-theory itself [198].

5.2.1 The exceptional Er series: conventions and useful formulæ

Before going into more physical details, we need to introduce a few mathematical proper-
ties of the U-duality groups and their related algebras. To make short, we will denote
GU

.
= Split(E11−D), for D = 1, . . . , 10, and their defining Lie or Kac-Moody algebras

gU
.
= Split(e11−D).
Except in D = 10, 9, the exceptional series Er, with r = 11 −D, possesses a physical basis

for roots and dual Cartan generators:

Definition 5.2.1 Let the index set of Definition 5.1.1 be chosen as I = 9− r, . . . , 8, for 3 ≤
r ≤ 10 3, then in the physical basis of h′∗: {ε11−r .

= (1, 0, . . . , 0), . . . , ε10
.
= (0, . . . , 0, 1)}, the set

3The physical basis makes sense only in cases where there are scalars coming from compactification of the
3-form, which excludes the first two algebras of the series.
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Π = {α9−r, . . . , α8} of simple roots of the semi-simple KMAs er reads:

α9−r = ε11−r − ε12−r = (1,−1, 0, . . . , 0) ,

...
α7 = ε9 − ε10 = (0, . . . , 0, 1,−1) ,

α8 = ε8 + ε9 + ε10 = (0, . . . , 0, 1, 1, 1) .

(5.9)

The advantage of such a basis is to give a rank-, and hence dimension-, independent formu-
lation of Π, which is not the case for an orthogonal basis ei. Preserving the scalar product on
the root system requires the physical basis to be endowed with the following scalar product:

(α|β) =
10∑

i=11−r
nimi − 1

9

10∑

i,j=11−r
nimj (5.10)

for α =
∑10

i=11−r n
iεi and β =

∑10
i=11−rm

iεi (note that the basis elements satisfy (εi|εj) =

δij − (1/9) and have length 2
√

2/3).

In fact, writing this change of basis as αi = (R−1) ji εj , we can invert this relation (which
leads to the matrix R given in Appendix A.i)and obtain the metric corresponding to the scalar
product (5.10), given in terms of the Cartan matrix as:

gε = RAR> , (5.11)

in the simply-laced case we are interested in.
As seen in Section 5.1.2, the Cartan matrix of the er series is a realization of (h,Π,Π∨),

where now Π∨ = {α∨
9−r, . . . , α

∨
8 } ∼= Π. Then, from Aij = 〈α∨

i , αj〉 = (αi|αj) we have:

A =




2 −1 0 0 0 · · · 0 0
−1 2 −1 0 0 · · · 0 0

0 −1 2 −1 0 · · · 0 0

0
. . .

. . .
. . .

. . .
. . .

...
...

0 · · · −1 2 −1 0 0 0
0 · · · 0 −1 2 −1 0 −1
0 · · · 0 0 −1 2 −1 0
0 · · · 0 0 0 −1 2 0
0 · · · 0 0 −1 0 0 2




(5.12)

and A corresponds to a Dynkin diagram of the type:

e e e a a a e e e e

e

α9−r α10−r α11−r α4 α5 α6 α7

α8

Figure 5.1: Dynkin diagram of the Er series

The simple coroots, in turn, form a basis of the derived Cartan subalgebra h ′, and we may
choose (or alternatively define) Hi

.
= α∨

i , ∀i = 9− r, . . . , 8. Since we consider simply laced-cases
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only, the relation α∨
i = (AR>)ijε

∨j determines the dual physical basis for r 6= 9, i.e. D 6= 2:

H9−r = ε∨ 11−r − ε∨ 12−r = (1,−1, 0, . . . , 0)

...

H7 = ε∨ 9 − ε∨ 10 = (0, . . . , 0, 1,−1) ,

H8 = −1

3

7∑

i=11−r
ε∨ i +

2

3

10∑

i=8

ε∨ i =
1

3
(−1, . . . ,−1, 2, 2, 2) .

(5.13)

In the same spirit as before, this dual basis is equipped with a scalar product given in terms of
the metric g∨ε = (gε)

−1 as:

B(H,H ′) =

10∑

i=11−r
hih

′
i +

1

9− r
10∑

i,j=11−r
hih

′
j , for r 6= 9 (5.14)

for two elements H =
∑10

i=11−r hiε
∨ i and H ′ =

∑10
i=11−r h

′
iε

∨ i. In the affine case r = 9, the
Cartan matrix is degenerate. In order to determine B(H,H ′), one has to work in the whole
Cartan subalgebra h, and not only in the derived one, and include a basis element related to the
scaling operator d. Consequently, there is no meaningful physical basis in this case.

Not surprisingly, we recognize in (5.14) the Killing form of er restricted to h(er). Since the
dual metric is the inverse of g∨ε , the duality bracket is defined as usual as 〈εi, ε∨ j〉 = εi(ε

∨ j) = δ ji ,
so that consistently:

〈α∨, β〉 = (ν(α∨)|β) = β(Hα) . (5.15)

Since er is simply-laced, ν(α∨) = α, and we then have various ways of expressing the Cartan
matrix:

Aij
.
= αi(Hj) ≡ (αi|αj) ≡ B(Hi,Hj) . (5.16)

A choice for structure constants

We now fix the conventions for the Er series that will hold throughout the paper. For obvious
reasons of economy, we introduce the following compact notation to characterize er generators:

Notation 5.2.2 Let Xα be a generator of the root space (er)α, or of the dual subspace hα ⊂ h

for some root α =
∑8

i=9−r k
iαi ∈ ∆(er). We write the corresponding generator as

X
(9−r)k9−r ...8k8 instead of Xk9−rα9−r+...+k8α8

.

For example we will write:

E452678 instead of Eα4+2α5+α6+α7+α8 ,

and similarly for F and H. Sometimes, we will also write α
(9−r)k9−r ... 8k8 instead of

∑8
i=9−r k

iαi.

Furthermore, δ always refers to the isotropic root of e9, namely δ = δE9 = α01223344556647283 ,
c = Hδ to its center, and d to its usual derivation operator d = dE9 . Possible subscripts added
to δ, c and d will be used to discriminate e9 objects from objects belonging to its subalgebras.

Moreover, we use for e9 the usual construction based on the loop algebra L(e8)
.
= � [z, z−1]⊗

e8, z ∈ � . The affine KMA e9 is then obtained as a central extension thereof:

e9 = L(e8)⊕ � c⊕ � d .
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and is spanned by the basis of vertex operators satisfying

[zm ⊗Hi, z
n ⊗Hj] = mδijδm+n,0 c ,

[zm ⊗Hi, z
n ⊗Eα] = 〈α∨

i , α〉zm+n ⊗Eα , (5.17)

[zm ⊗Eα, zn ⊗Eβ ] =





Nα,βzm+n ⊗Eα+β , if α+ β ∈ ∆(e9)
zm+n ⊗Hα +mδm+n,0 c , if α = −β
0 , otherwise

.

In addition, the Hermitian scaling operators d = z d
dz defined from z ∈ S1 normalizes L(e8):

[d, zn ⊗X] = nzn ⊗X, ∀X ∈ e8.
In e10, for which there is no known vertex operator construction yet, we rewrite the e9

subalgebra according to the usual prescriptions for KMAs by setting: d = −H−1, E
a
nδ = zn⊗Ha,

with a = 1, .., 8 its multiplicity, Eα+nδ = zn ⊗ Eα and E−α+nδ = zn ⊗ Fα, and similarly for
negative-root generators.

Finally, there is a large number of mathematically acceptable sign conventions for the struc-
ture constants Nα,β, as long as one satisfies the anti-commutativity and Jacobi identity of the Lie
bracket, as explained in Definition 5.1.5. If one decides to map physical fields to generators of a
KMA, which will eventually be done in this paper, one has to make sure that the adjoint action
of a rotation with positive angle leads to a positive rotation of all physical tensors carrying a
covariant index affected by it. This physical requirement imposes more stringent constraints on
the structure constants. Though perhaps not the most natural choice from a mathematical point
of view, we fix signs according to a lexicographical ordering for level 0 (sl(r, � )−) roots, but
according to an ordering based on their height for roots of higher level in α8. More concretely,
if α = αj···k has level 0, we set:

Nαi,α =

{
1 if i < j
−1 if k < i

.

On the other hand, we fix N5,8 = +1, and always take the positive sign when we lengthen a
chain of simple roots of level l > 0 by acting with a positive simple root generator from the left,
i.e.:

Nαi,α = 1 , ∀α s.t. l(α) > 0 .

Structure constants for two non-simple and/or negative roots are then automatically fixed by
these choices.

5.2.2 Toroidally reduced 11D supergravity: scalar fields and roots of E11−D

In this section, we rephrase the mapping between scalar fields of 11D supergravity on T q, q > 3,
and the roots of its finite U-duality algebras, in a way that will make clear the extension to the
infinite-dimensional case. We start with N = 1 classical 11D supergravity, whose bosonic sector
is described by the Lagrangian:

S11 =
1

l9P

∫
d11x e

(
R− l6P

2 · 4!(G4)
2
)

+
1

2 · 3!

∫
C3 ∧G4 ∧G4 (5.18)

where the four-form field strength is exact: G4 = dC3. There are various conventions for
the coefficients of the three terms in the Lagrangian (5.18), which depend on how one defines
the fermionic sector of the theory. In any case, the factors of Planck length can be fixed by
dimensional analysis. Here, we adopt the conventions of [203], where we have, in units of length

[gAB ] = 2 , [CABC ] = 0 , [d] = [dx] = 0 .
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As a consequence of the above: [R] = −2.
The action (5.18) rescales homogeneously under:

gAB →M2
P gAB , CABC →M3

PCABC (5.19)

which eliminates all lP terms from the Einstein-Hilbert and gauge Lagrangian while rescaling the
Chern-Simons (CS) part by l−9

P , and renders, in turn, gAB dimensionless. This is the convention
we will adopt in the following which will fix the mapping between the E11−D root system and
the fields parametrizing the scalar manifold of the reduced theory for D > 3. How to extend this
analysis to the conjectured affine and hyperbolic U-duality groups E9 and E10 will be treated
in the next section.

The Kaluza-Klein reduction of the theory to D > 3 dimensions is performed according to
the prescription

ds211 = e
√

2
D−2

(ρD |ϕ)ds2D +
10∑

i=D

e−
√

2(εi|ϕ)
(
γ̃ijdx

j +Ai1
)2
, (5.20)

with γ̃ij = (δij +Ai0 j) with i < j for Ai0 j. The compactification vectors εi are the ones defining

the physical basis of Definition 5.2.1, and can be expressed in the orthonormal basis {ei}11−Di=1 ,
ei · ej = δij , as

εk = −
10−k∑

i=1

1√
(10− i)(9 − i)

ei +

√
k − 2

k − 1
e11−k . for k 6 8 .

In the D = 2, 1 cases, the additional vectors completing the physical basis are defined formally,
without reference to the compactification procedure.

Accordingly, the vector of dilatonic scalars can be expanded as ϕ =
∑11−D

i=1 ϕiei. We will
however choose to stick to the physical basis. The expression of εk in terms of the orthonormal
basis will help to connect back to the prescription of [79] and [168, 169]. In this respect, the
scalar product ( | ) used in expression (5.20) is precisely the product on the root system (5.10).
Finally, we also introduce the ”threshold” vector

ρD =

10∑

i=D

εi (5.21)

which will be crucial later on when studying the structure of Minkowskian objects in E10.
From expression (5.20), we see that the elfbein produces (11 −D) one-forms Ai1 and (11 −

D)(12 −D)/2 scalars Ai0 j , whereas the three form generates the following two-, one- and zero-
form potentials: (11−D) C2 i, (11−D)(10−D)/2 C1 ij and (11−D)(10−D)(9−D)/6 C0 ijk.
The reduction of the 11D action (5.18) to any dimension greater than two reads:

e−1L = R− 1

2
(∂ϕ)2 − 1

2 · 4!e
√

2(κ|ϕ)(G4)
2 − 1

2 · 3!
∑

i

e
√

2(κi|ϕ)(G3 i)
2

− 1

2 · 2!
∑

i<j

e
√

2(κij |ϕ)(G2 ij)
2− 1

2 · 2!
∑

i

e
√

2(λi|ϕ)(F i2)2

−1

2

∑

i<j<k

e
√

2(κijk |ϕ)(G1 ijk)
2 − 1

2

∑

i<j

e
√

2(λij |ϕ)(F i1 j)2 + e−1LCS

(5.22)

where LCS is the reduction of the CS-term C3 ∧ G4 ∧ G4, and again indices run according to
i, j, k = D, .., 10. The field strengths appearing in the above kinetic term exhibit the exterior
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derivative of the corresponding potentials as leading term, but contain additional non-linear
Kaluza-Klein modifications. For instance:

G4 = G4 − γijG3 i ∧Aj1 + γikγ
j
lG2 ij ∧Ak1 ∧Al1 + . . . , F i2 = F i2 − γjkF i1 j ∧Ak1 ,

... F i1 j = γkjF i1 k .
G2 ij = γmi γ

n
jG2mn − γliγmj γnkG1 lmn ∧Ak1 ,

G1 ijk = γliγ
m
j γ

n
kG1 lmn ,

(5.23)

with γij = (γ̃−1)ij , the not-underlined field strengths being total derivatives: G(n) i1···il =

dC(n−1) i1···il and F i(n) i1···il = dAi(n−1) i1···il , where n is the rank of the form. The whole set
of field strengths and the details of the reduction of the CS term are well known and can be
found in [185].

The global symmetry of the scalar manifold which, upon quantization, is conjectured to
become the discrete U-duality symmetry of the theory is encoded in the compactification vectors
∆ = {κ;κi;κij ;κijk;λi;λij} appearing in the Lagrangian (5.22). As pointed out previously, this
global symmetry will only be manifest if potentials of rank D−2 are dualized to scalars, thereby
allowing gauge symmetries to be replaced by internal ones. In each dimension D, this will select
a subset of ∆ to form the positive root system of E11−D. One has to keep in mind, however,
that in even space-time dimensions, this rigid symmetry is usually only realized on the field
strengths themselves, and not on the potentials. This is attributable to the customary difficulty
of writing a covariant lagrangian for self-dual fields 4. In even dimensional cases then, the E11−D
symmetry appears as a local field transformation on the solution of the equations of motion.

We now give the whole set ∆ in the physical basis. One has to bear in mind that some of these
vectors become roots only in particular dimensions, and thus do not, in general, have squared
length equal to 2. In constrast, λij and κijk are always symmetries of the scalar manifold, and
can therefore be directly translated into positive roots of E11−D for the first two levels l = 0, 1
in α8. We have for i < j < k:

l = 0 : WKKp 3 λij = εi − εj
l = 1 : WM2 3 κijk = εi + εj + εk

In fact, they build orbits of E11−D under the Weyl group of SL(11−D, � ), which we denote by
WKKp and WM2, anticipating results from M-theory on T 10 which associates λij with Euclidean
KK particles and κijk with Euclidean M2-branes. So, in 10 > D > 6, since no dualization
occurs, the root system of the U-duality algebra is completely covered by WKKp and WM2, with
the well known results GU = {SO(1, 1);GL(2, � );SL(3, � )×SL(2, � );SL(5, � );SO(5, 5)}, for
D = {10; 9; 8; 7; 6}.

For D = 5, we dualize G4 = e−κ·ϕ ∗ G̃1, with −κ = θE6 = ((1)6) the highest root of E6,
which constitutes a Weyl orbit all by itself. For highest roots of the Lie algebra relevant to our
purpose, we refer the reader to Appendix 5.12 ii). In D = 4, we dualize (G3 i) = e−κi·ϕ ∗ G̃1 i,
with −κi = ((1)i−1, 0i, (1)

7−i) forming the Weyl orbit of θE7 (which contains θE6). Finally, in

D = 3, dualizing G2 ij = e−κij ·ϕ ∗ G̃1 ij and F i2 = e−λi·ϕ ∗ F̃ i1 increases the size of the former θE7

Weyl orbit and creates the remaining θE8 orbit:

D = 5 l = 2 : WM5 3 −κ = 3
D−2ρD

D = 4 l = 2 : WM5 3 −κi = 2
D−2ρD − εi

D = 3 l = 2 : WM5 3 −κij = 1
D−2ρD − εi − εj

l = 3 : WKK7M 3 −λi = 1
D−2ρD + εi

(5.24)

4In some cases -for the 11D five-brane for instance-, this can be achieved by resorting to the Pasti-Sorokin-Tonin
formalism.
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For the same reason as before, we denote these two additional orbits WM5 and WKK7M

since they will be shown to describe totally wrapped Euclidean M5-branes and KK monopoles.
For D = 3, for instance, we can check that dimWKKp = dimWM5 = 28, dimWM2 = 56 and
dimWKK7M = 8, which reproduces the respective number of scalars coming from the KK gauge
fields, 3-form, and their magnetic duals, and verifies dim∆+(E8) =

∑
i dimWi.

For what follows, it will turn out useful to take advantage of the dimensionless character of
the vielbein, resulting from the rescaling (5.19), to rewrite the internal metric in terms of the
duality bracket (5.15):

ds211−D =

10∑

i=D

e2〈HR ,εi〉δij γ̃
i
kγ̃

j
ldx

k ⊗ dxl (5.25)

with HR =
∑10

i=D ln(MPRi)ε
∨i. Thus in particular: e−

√
2(εi|ϕ) = (MPRi)

2. In this convention,
the scalar Lagrangian for D = 3 reads

−egAB(g∨ε )ij
(
∂ARi
Ri

)(
∂BRj
Rj

)
− 1

2
e
∑

i<j<k

1

(M3
PRiRjRk)

2
(G1 ijk)

2

−1

2
e
∑

i<j

(
Rj
Ri

)2

(F i1 j)2 −
1

4
e
∑

i<j

(
RiRj
M6
PV8

)2

(G̃1 ij)
2 − 1

4
e
∑

i

(
1

M9
PRiV8

)2

(F̃ i1)2
(5.26)

with the dual metric (g∨ε )ij = δij + (D − 2)−1
∑

k,l δ
ikδlj (5.14) and the internal volume V8 =∏10

i=3Ri. Clearly, the coefficients5 in front of the one-form kinetic terms reproduce the inverse
squared tensions for totally wrapped Euclidean KK particles, M2-branes, M5-branes and KK
monopoles (KK7M-branes). This will be the touchstone of our analysis, and in the next section
we will present, following [56], how the corresponding Minkowskian branes arise in D = 1 in the
framework of E10|10/K(E10|10) hyperbolic billiards.

5.2.3 Non-linear realization of supergravity: the triangular and symmetric
gauges

The final step towards unfolding the hidden symmetry of the scalar manifold of the reduced
theory consists in showing that one can construct its Langrangian density as a coset σ-model
from a non-linear realization. Here, we rederive, in the formalism we use later on, only the most
symmetric D = 3 case, since the D > 4 constructions are obtainable as restriction thereof by
referring to table (5.24). For the detailed study of the D > 3 cases, see [79].

Furthemore, the use of a parametrization of the coset sigma-model based on the Borel sub-
algebra of the U-duality algebra, called triangular gauge, is crucial to this type of non-linear
realization. In contrast, we will show in the second part of this section, that the most natural
setup to treat orbifolds of the corresponding supergravities is given by a parametrization of the
coset based on the Cartan decomposition of the U-duality algebra. We refer to this choice as
the symmetric gauge.

In D = 3, the non-linear realization of the scalar manifold is based on the group element:

g = exp
[
− 1√

2

∑

i

ln(MPRi)ε
∨i
]
·
(∏

i<j

eA
i
jK

+ j
i

)
· exp

[ ∑

i<j<k

CijkZ
+ ijk

]
·

· exp
[ ∑

i1<..<i6

C̃i1..i6Z̃
+ i1..i6

]
· exp

[ ∑

i1<..<i8,j

Ãji1..i8K̃
+ i1..i8
j

]
,

(5.27)

5Note that the interpretation of these coefficients is somewhat different than in [203], since here we are working
in the conformal Einstein frame.
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where the dual potentials are reformulated to exhibit a tensorial rank that would generalize to
D < 3 (we drop all 0 subscripts since we are only dealing with scalars). In particular, they
are related to the D = 3 dual potentials as C̃i1..i6 = 1

2!εi1..i6klC̃
kl

0 and Ãji1..i8 = εi1.i8Ãj0, by
the totally antisymmetric rank 8 tensor of SL(8, � ), εi1..i8 . These entered expression (5.26) as
G̃1 ij = dC̃0 ij and F̃ i1 = dÃi0.

The group element (5.27) is built out of the Borel subalgebra of E8, which is spanned by the
following raising operators

[K+ j
i ,K+ l

k ] = δjkK
+ l
i − δliK

+ j
k ,

[K+ j
i , Z+ k1k2k3 ] = −3δ

[k1
i Z+ |j|k2k3] , [K+ j

i , Z̃+ k1..k6 ] = −6δ
[k1
i Z̃+ |j|k2..k6] ,

[K+ j
i , K̃+ k1..k8

k ] = δjkK̃
+ k1..k8
i ,

[Z+ i1i2i3 , Z+ i4i5i6 ] = −Z̃+ i1..i6 , [Z+ i1i2i3 , Z̃+ i4..i9 ] = −3K̃+[i1|i2i3]i4..i9 ,
(5.28)

and the Cartan subalgebra, acting on the former as (without implicit summations on repeated
indices)

[ε∨i,K+ k
j ] = λjk(ε

∨i)K+ k
j , [ε∨i, Z+

jkl] = κjkl(ε
∨i)Z+

jkl ,

[ε∨i, Z̃+
j1..j6

] = −
∑

l<m

ε lm
j1..j6

κlm(ε∨i)Z̃+
j1..j6

, [ε∨i, K̃+ k1..k8
j ] = −κj(ε∨i) K̃+ k1..k8

j .

Anticipating the extension to D = 2, 1, we redefine positive roots κi1..i6
.
=
∑

l<m ε
lm

i1..i6
κlm

and λj|i1..i8
.
= εi1..i8κj corresponding to the generators Z̃ and K̃. The scalar Lagrangian in D

dimensions is then expressible as a coset sigma-model, obtained from the algebraic field strength
G .

= g−1dg

G = − 1√
2

∑

i

ln(MPRi)ε
∨i +

∑

i<j<k

e〈HR,κijk〉G1 ijkZ
+ ijk +

∑

i<j

e〈HR,λij〉F i1 jK+ j
i

+
∑

i1<..<i6

e−〈HR,κi1..i6
〉G̃1 i1..i6 Z̃

+ i1..i6 +
∑

i1<..<i8,j

e−〈HR,λj|i1..i8
〉F̃ j

1 i1..i8K̃
+ i1..i8
j .

(5.29)

This particular parametrization of the coset e8|8/k(e8|8) is known as the Iwasawa decomposition.

In other words, the split form gU = e11−D|11−D decomposes as a sum of closed factors gU =

k⊕a⊕n, where k is its maximal compact subalgebra. Then, the coset gU/k = a⊕n is parametrized
by the direct sum of an abelian and a nilpotent subalgebra. This can be interpreted as a ”gauge”
choice, where the coset elements are either diagonal (Cartan generators) or upper triangular
(Borel, or positive root, generators). In the following, this choice will be referred to as the
triangular gauge.

The negative root generators can be retrieved from the Borel subalgebra by defining the
appropriate transposition operation. Since we want it to be applicable to gU = e11−D|11−D ∀D,
and not only to U-duality algebras with orthogonal maximal compact subalgebra, we construct
it as in [79] out of the Cartan involution ϑ as T (X) = −ϑ(X), ∀X ∈ gU . This induces a
corresponding generalized transposition [79, 80] on the group level denoted by: T (X ) = Θ(X −1),
∀X ∈ GU . In the present case, since gU is the split form, we have ϑ = ϑC , the latter being the
Chevalley involution.

By requiring the following normalizations:

Tr(ε∨iε∨j) = 2(g∨ε )ij , Tr
(
K j
i T (K l

k )
)

= δikδ
jl ,

Tr
(
Xi1..ip|j1..jqT (Xk1..kp|l1..lq)

)
= p!q!δ

[i1
k1
· · · δip]

kp
δ
[j1
l1
· · · δjq ]

lq
,
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where X i1..ip|j1..jq stand for the remaining generators of (5.28), the bosonic scalar Lagrangian
(5.26) is readily obtained from the coset sigma-model

L = −1

2
eTr

[
g−1∂g(1I + T )g−1∂g

]
≡ 1

4
eTr(∂M−1∂M) (5.30)

where M = gT (g) is the internal σ-model metric. The equations of motion for the moduli of
the theory are then summarized in the Maurer-Cartan equation: dG = G ∧ G. By adding the
negative root generators, we restore the K(E11−D) local gauge invariance, and enhance the coset
to the full continuous U-duality group. In D = 3, for instance, we thus recover the dimension
of E8 as:

248 = 8(Hi) + 28(K+j
i ) + 56(Z+ijk) + 28(Z̃+i1 ..i6) + 8(K̃+i1..i8

j )

+28
(
T (K+j

i )
)

+ 56
(
T (Z+ijk)

)
+ 28

(
T (Z̃+i1..i6)

)
+ 8

(
T (K̃+i1..i8

j )
)

Note that the triangular gauge is not preserved by a rigid left transformation U from the symme-
try group GU : g(x)→ Ug(x) for g ∈ GU/K(GU ). This leaves G invariant but will generally send
g out of the positive root gauge. We will then usually need a local compensator h(x) ∈ K(GU )
to bring it back to the original gauge. So the Lagrangian (5.30) is kept invariant by the compen-
sated transformation g(x)→ Ug(x)h(x)−1 which sends: M→ UMT (U), provided hT (h) = 1I.

If the triangular gauge is the natural choice to obtain a closed non-linear realization of a
coset sigma-model, it will show to be quite unhandy when trying to treat orbifolds of reduced
11D supergravity and M-theory. In this case, a parametrization of the coset based on the Cartan
decomposition into eigenspace of the Chevalley involution gU = k ⊕ p is more appropriate. In
other words, one starts from an algebraic field strength valued in gU :

g̃−1dg̃ = P +Q , (5.31)

so that the coset is parametrized by:

P =
1

2
(1I + T ) g−1dg . (5.32)

and Q ensures local (now unbroken) K(GU ) invariance of the model. Note that the Lagrangian
(5.30) is, as expected, insensitive to this different parametrization since 1

4eTr(∂M−1∂M) ≡
−eTr [PT (P)].

We then associate symmetry generators to the moduli of compactified 11D supergravity
/ M-theory in the following fashion: for economy, we will denote all the Borel generators of
sl(11−D, � ) ⊂ gU by K+ j

i for i 6 j, by setting in particular K± i
i = K i

i
.
= ε∨ i. Using relation

(5.13), the Cartan generators can now be reexpressed as

Hi = K i+2
i+2 −K i+3

i+3 , i = 1, .., 7 , H8 = −1

3

5∑

i=1

K i+2
i+2 +

2

3

(
K 8

8 +K 9
9 +K 10

10

)
.

The dictionary relating physical moduli and coset generators can then be established for all
moduli fields corresponding to real roots of level l = 0, 1, 2, 3, generalizing to D = 2, 1 the
previous result (5.24). We will denote the generalized transpose of a Borel generator X+ as
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X− .
= T (X+).

modulus generator physical basis

ln(MPRi) K i
i ε∨ i

Aij K j
i = 1

2

(
K+ j
i +K− j

i

)
εi − εj

Cijk Zijk = 1
2

(
Z+ ijk + Z− ijk

)
εi + εj + εk

C̃i1..i6 Zi1..i6 = 1
2

(
Z+ i1..i6 + Z− i1..i6

) ∑6
l=1 εil

Ãji1..i8 , j ∈ {i1, .., i8} K̃ i1..i8
j = 1

2

(
K̃+ i1..i8
j + K̃− i1..i8

j

) ∑8
l=1(1 + δilj )εil

(5.33)

This list exhausts all highest weight sl(11 − D, � ) representations present for D = 3. In the
infinite-dimensional case, there is an infinite number of other sl(11 − D, � ) representations.
The question of their identification is still a largely open question. Progresses have been made
lately in identifying some roots of E10 as one-loop corrections to 11D supergravity [87] or as
Minkowskian M-branes and additional solitonic objects of M-theory [56]. These questions will
be introduced in the next section, and will become one of the main topics of the last part of this
paper.

However, it is worth noting that for D 6 2, the 8-form generator is now subject to the Jacobi
identity

K̃ [i1|i2..i9] = 0 . (5.34)

In D = 2, this reflects the fact that the would-be totally antisymmetric generator K̃ [i1i2..i9]

attached to the null root δ is not the dual of a supergravity scalar, but corresponds to the root
space {z ⊗Hi}i=1,..,8, and reflects the localization of the U-duality symmetry.

In addition, we denote the compact generators by K j
i = K+ j

i −K− j
i , Zijk = Z+ ijk−Z− ijk

and similarly for Z i1..i6 and K̃i1..i8j . Then:

K(GU ) = Span
{
K j
i ;Zijk;Zi1..i6 ; K̃ i1..i8

j

}

Fixing the normalization of the compact generators to 1 has been motivated by the algebraic
orbifolding procedure we will use in the next sections, and ensures that automorphism generators
and the orbifold charges they induce have the same normalization.

In particular, the compact Lorentz generators K i+1
i ≡ Eαi−2 − Fαi−2 , ∀i = D, . . . , 9 clearly

generate rotations in the (i, i+1)-planes, so that a general rotation in the (i, j)-plane is induced by

K j
i . One can check that, as expected, [K j

k , Xi1 ..j..ip] = Xi1..k..ip ∀X ∈ gU/k(gU ) in Table (5.33).

For instance, the commutator [K i+1
i , Zi+1 jk] for i+ 1 < j < k belongs to the root space of:

α = αi−2 + ..+ αj−3 + 2(αj−2 + ..+ αk−3) + 3(αk−2 + ..+ α5) + 2α6 + α7 + α8

that defines Zijk = (1/2)(Eα + Fα).
As a final remark, note that the group element g̃ with value in GU can be used to reinstate

local K(GU )-invariance of the algebraic field strength g̃−1dg̃ = P +Q under the transformation
as g̃(x)→ Ug̃(x)h(x)−1 for h(x) ∈ K(GU ) and a rigid U-duality element U ∈ GU . In this case,
Q transforms as a generalized connection:

Q → h(x)Qh(x)−1 − h(x) dh(x)−1 ,

and P+Q as a generalized field-strength: P+Q → U−1(P+Q)U . Performing a level expansion
of Q:

Q =
1

2
dxA

(
ω i
Aj K

j
i + ω ijk

A Zijk
)

+ . . .
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we recognize for l = 0 the Lorentz connection, for l = 1 the 3-form gauge connection, etc.
Actually our motivation for working in the symmetric gauge comes from the fact that, at

the level of the algebra, the orbifold charge operator acting as Adh preserves this choice. Indeed
h ∈ K(GU ) is in this case a rigid transformation, so that one can drop the connection part Q
in expression (5.31), and Adh normalizes P.

Along this line, a non-linear realization where only local Lorentz invariance is implemented
has been used extensively in [246, 245, 244] to uncover very-extended Kac-Moody hidden sym-
metries of various supergravity theories. This has led to the conjecture that e11 is a symmetry
of 11D supergravity, and possibly M-theory, as this very-extended algebra can be obtained as
the closure of the finite Borel algebra of a non-linear realization similiar to the one we have seen
above, with the 11D conformal algebra.

5.2.4 M-theory near a space-like singularity as a E10|10/K(E10|10) σ-model

In the preceding section, we have reviewed some basic material about 11D supergravity compact-
ified on square tori, which we will need in this paper to derive the residual U-duality symmetry
of the untwisted sector of the theory when certain compact directions are taken on a orbifold.
The extension of this analysis to the orbifolded theory in D = 2, 1 dimensions, where KM hid-
den symmetries are expected to arise, will require a generalization of the low-energy effective
supergravity approach. The proper framework to treat hidden symmetries in D = 1 involves a
σ-model based on the infinite coset E10|10/K(E10|10). In the vicinity of a space-like singularity,
this type of model turns out to be a generalization of a Kasner cosmology, leading to a null
geodesic motion in the moduli space of the theory, interrupted by successive reflections against
potential walls. This dynamics is usual referred to as a cosmological billiard, where by billiard,
we mean a convex polyhedron with finitely many vertices, some of them at infinity.

In [84, 86] the classical dynamics of M-theory near a spacelike singularity has been conjec-
tured to possess a dual description in terms of this chaotic hyperbolic cosmological billiard. In
particular, these authors have shown that, in a small tension limit lp → 0 corresponding to
a formal BKL expansion, there is a mapping6 between (possibly composite) operators7 of the
truncated equations of motion of 11D supergravity at a given spatial point, and one-parameter
quantities (coordinates) in a formal σ-model over the coset space E10|10/K(E10|10). More re-
cently, [87] has pushed the analysis even further, and shown how higher order M-theory correc-
tions to the low-energy 11D supergravity action (similar to α′ corrections in string theory) are
realized in the σ-model, giving an interpretation for certain negative imaginary roots of E10.

In particular, the regime in which this correspondence holds is reached when at least one
of the diagonal metric moduli is small, in the sense that ∃i s.t. Ri � lP . In this case, the
contributions to the Lagrangian of 11D supergravity (with possible higher order corrections)
coming from derivatives of the metric and p-form fields can be approximated by an effective
potential, with polynomial dependence on the diagonal metric moduli. In the BKL limit, these
potential terms become increasingly steep, and can be replaced by sharp walls or cushions,
which, on the E10|10/K(E10|10) side of the correspondence, define a Weyl chamber of E10. The
dynamics of the model then reduces to the time evolution of the diagonal metric moduli which,
in the coset, map to a null geodesic in the Cartan subalgebra of E10 deflected by successive
bounces against the billiard walls. In the leading order approximation, one can restrict his
attention to the dominant walls, i.e. those given by the simple roots of E10, so that the billiard
motion is confined to the fundamental Weyl chamber of E10. As mentioned before, [84, 86, 87]
have shown how to extend this analysis to other Weyl chambers by considering higher level non-

6Which has been worked out up to order l = 6 and ht(α) = 29.
7Constructed from the vielbein, electric and magnetic components of the four-form field-strength, and their

multiple spatial gradients.
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simple roots of E10, and how the latter can be related, on the supergravity side, to composite
operators containing multiple gradients of the supergravity fields and to M-theory corrections.
These higher order terms appear as one considers smaller and smaller corrections in lP as we
approach the singularity x0 →∞. These corrections are of two different kind: they correspond
either to taking into account higher and higher spatial gradients of the supergravity fields in the
truncated equations of motion of 11D supergravity at a given point of space, or to considering
M-theory corrections to the classical two-derivative Lagrangian.

In the following, since we ultimately want to make contact with [56, 55], we will consider
the more restrictive case in which the space is chosen compact, and is in particular taken to be
the ten-dimensional torus T 10, with periodic coordinates 0 6 xi < 2π, ∀i = 1, . . . , 10. This, in
principle, does not change anything to the non-compact setup of [85], since there the mapping
relates algebraic quantities to supergravity fields at a given point in space, regardless in principle
of the global properties of the manifold.

Before tackling the full-fledged hyperbolic E10 billiard and the effective Hamiltonian descrip-
tion of 11D supergravity dual to it, it is instructive to consider the toy model obtained by setting
all fields to zero except the dilatons. This leads to a simple cosmological model characterized
by a space-like singularity at constant time slices t. This suggests to introduce a lapse function
N(t). The proper time σ is then defined as dσ = −N(t)dt, and degenerates (σ → 0+) at the
singularity N(t) = 0. This particular limit is referred to as the BKL limit, from the work of
Belinskii, Khalatnikov and Lifshitz [24, 25]. As one approaches the singularity, the spatial points
become causally disconnected since the horizon scale is smaller than their spacelike distance.

In this simplified picture, the metric (5.20) reduces to a Kasner one, all non-zero fields can
be taken to depend only on time (since the space points are fixed):

ds2 = −(N(t)dt)2 +
10∑

i,j=1

e2〈HR(t),εi〉δijdx
i ⊗ dxj . (5.35)

In addition to proper time σ, we introduce an ”intermediate time” coordinate u defined as

du = − 1√
ḡ
dσ =

N(t)

M10
P V (t)

dt , (5.36)

where
√
ḡ =

√
det gij = e〈HR,ρ1〉 and V (t) =

∏10
i=1Ri(t), where ρ1 is the ”threshold” vector

(5.21). In this frame, one approaches the singularity as u→ +∞.
Extremizing

∫
eR with respect to the Ri and N/

√
ḡ, we get the equations of motion for the

compactification radii and the zero mass condition:

d

du

(
1

Ri

dRi
du

)
= 0 ,

∑

i

(
Ṙi
Ri

)2

−
(
∑

i

Ṙi
Ri

)2

= 0 , (5.37)

where the dot denotes d
dt . Setting Ri(u0) = Ri(s0) = M−1

P , one obtains Ri in terms either of u
or of σ

MPRi = e−vi(u−u0) =

(
σ

σ0

) vi
P

j vj

(5.38)

since u = − 1P
j vj

ln(σ + const) + const′. Then, the evolution of the system reduces to a null

geodesic in h(E10). In the u-frame in particular, the vector HR(u) =
∑

i ln(MPRi(u))ε
∨i can be

regarded as a particle moving along a straight line at constant velocity −~v. In the u-frame, it
is convenient to define ~p = (

∑
j vj)

−1~v, whose components are called Kasner exponents. These
satisfy in particular:

∑

i

p2
i −

(∑

i

pi

)2
= 0 ,

∑

i

pi = 1 . (5.39)
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The first constraint originates from the zero mass condition (5.37) and implies ~p ∈ h∗(E10),
while the second one comes from the very definition of the pi’s. These two conditions result in
at least one of the pi’s being positive and at least another one being negative, which leads, as
expected, to a Schwartzschild type singularity in the far past and far future.

In the general case, we reinstate off-diagonal metric elements in the line-element (5.35) by
introducing the vielbein (5.25) in triangular gauge:

δijdx
i ⊗ dxj → δij γ̃

i
pγ̃

j
qdx

p ⊗ dxq , (5.40)

with γ̃ip = (δip + Ai p), and Ai p defined for i < p. For reasons of clarity, we discriminate this
time the flat indices (i, j, k, l) from the curved ones (p, q, r, s).

In this more general case, it can be shown [85], that asymptotically (when approaching
the singularity), the log of the scale factors lnMPRi are still linear functions of u, while the
off-diagonal terms Aij tend to constants: in billiard language, they freeze asymptotically.

To get the full supergravity picture, one will in addition turn on electric 3-form and magnetic
6-form fields and the duals to the Kaluza-Klein vectors, and possibly other higher order corrective
terms. Provided we work in the Iwasawa decomposition (5.20), one can show that, similarly to
the off-diagonal metric components, these additional fields and their multiple derivatives also
freeze as one approaches the singularity. In particular, all (p+ 1)-form field strengths will tend
to constants in this regime, and therefore behave like potential terms for the dynamical scale
factors.

An effective Hamiltonian description of such a system has been proposed [85, 87]:

H(HR, ∂uHR, F ) = B(∂uHR, ∂uHR) +
1

2

∑

A

e2wA(HR)cA(F ) , (5.41)

For later convenience, we want to keep the dependence on conformal time apparent, so that we
use ∂uHR to represent the canonical momenta given by πi = 2(g∨ε )ij ∂u lnMPRi. In units of
proper time (5.57), the Hamiltonian is then given by the integral:

H =

∫
d10x

N√
ḡ
H . (5.42)

Let us now discuss the structure of H (5.41) in more details. First, the Killing form B is defined
as in eqn. (5.14) and is alternatively given by the metric g∨ε . It determines the kinetic energy
of the scale factors. The second term in expression (5.41) is the effective potential generated by
the frozen off-diagonal metric components, the p-form fields, and multiple derivatives of all of
them, which are collectively denoted by F . The (possibly) infinite sum over A includes the basic
contributions from classical 11D supergravity (5.26), plus higher order terms related to quantum
corrections coming from M-theory. In the vicinity of a spacelike singularity, the dependence on
the diagonal metric elements factorizes, so that these contributions split into an exponential of
the scale factors, e2wA(HR), and a part that freezes in this BKL limit, generically denoted by
cA(F ).

These exponential factors e2wA(HR) behave as sharp wall potentials, now interrupting the
former straight line null geodesics HR(u) and reflecting its trajectory, while conserving the
energy of the corresponding virtual particle and the components of its momentum parallel to
the wall. In contrast, the perpendicular components change sign. Despite these reflections, the
dynamics remains integrable and leads to a chaotic billiard motion. The reflections off the walls
happen to be Weyl-reflections in h(E10), and therefore conserve the kinetic term in H (5.41).
However, since the Weyl group of E10 is a subgroup of the U-duality group, it acts non-trivially
on the individual potential terms of H. As the walls represent themselves Weyl reflections, they
will be exchanged under conjugation by the Weyl group. More details on the action of the
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U-duality group in the general case, and in relation with hyperbolic billiard dynamics can be
found in Appendix 5.13.

In the BKL limit then, the potential terms e2wA(HR) can be mimicked by theta-functions:
Θ (wA(HR)) so that the dynamics is confined to a billiard table defined by the inequalities
wA(HR) 6 0. If one can isolate, among them, a finite set of inequalities I = {A1, .., An}, n <∞,
which imply all the others, the walls they are related to are called dominant.

The contributions to the effective potential in H (5.41) arising from classical supergravity
can be described concretely, and we can give to the corresponding walls an interpretation in
terms of roots of E10. As a first example, we give the reduction on T 10 of the kinetic energy for
the 3-form potential, and write it in terms of the momenta conjugate to the Cijk:

1

2

∑

i<j<k

e2wijk(HR)(π
ijk

)2 =
1

2

∑

i<j<k

(M3
PRiRjRk)

2
[
γ̃ipγ̃

j
qγ̃
k
r π

pqr
]2
. (5.43)

As pointed out above, the momenta πijk freeze in the BKL limit. Their version in curved space
can be computed to be

πp1p2p3 =
∑

i<j<k

e−2wijk(HR)γp1iγ
p2
jγ
p3
kγ

q1
iγ
q2
jγ
q3
k∂uCq1q2q3 ,

with ∂uCq1q2q3 =
√
ḡ G0q1q2q3 , since the flat time-index is defined by: dx0 = N(t)dt. From ex-

pression (5.43), one identifies the walls related to the three-form effective potential, and referred
to as ”electric” in [85], with l = 1 positive roots of E10, namely: wijk = εi+εj+εk ∈WM2(E10).

Note, in passing, that the exponential in eqn.(5.43) has the opposite sign compared to the
reduced Lagrangian (5.26) for D > 3. This is a consequence of opting for the Hamiltonian
formalism, where the Legendre transform inverts the sign of the phase factor e2wA(HR) for the
momenta πpqr. In this respect, the latter are defined with upper curved indices (flattened by
γ̃ip), as in expression (5.43), while their conjugate fields carry lower curved ones (flattened by

the inverse γip
.
= (γ̃−1)ip, see (5.44) below). For more details, see [85]. In any case, one can si-

multaneously flip all signs in the wall factors for both the Lagrange and Hamiltonian formalisms,
by choosing a lower triangular parametrization for the vielbein (5.40), which corresponds to an
Iwasawa decomposition with respect to the set of negative roots of the U-duality group.

Similarly, there will be a potential term resulting from the dual six-form C̃6 kinetic term
(the second term in the second line of expression (5.26)). In contrast to eqn. (5.26), we rewrite
the electric field energy for C̃6 as the magnetic field energy for C3:

1

2

∑

i<j<k<l

e2wijkl(HR)(Gijkl)
2 =

1

2

∑

i1<...<i6

∑

i7<...<i10

(M6
PRi1 · · ·Ri6)2

[
γpi7γ

q
i8
γri9γ

s
i10Gpqrs ε

i1...i10
]2 (5.44)

Again, the components Gijkl freeze in the BKL limit, leaving a dependence on the ”magnetic”
walls given by l = 2 roots of E10: wijkl =

∑
m/∈{i,j,k,l} εm ∈ WM5(E10). Dualizing this expres-

sion with respect to the ten compact directions, we can generate Chern-Simons terms result-
ing from the topological couplings appearing in the definition of G2 ij in eqn. (5.23), namely:

2γp1i1γ
p2
i2
γp3i3γ

p4
i4
γp5i5Gp3p4p5[p1A

i5
p2]

. However, such contributions are characterized by the same

walls as expression (5.44), and thus have no influence on the asymptotic billiard dynamics, but
only modify the constraints.

The off-diagonal components of the metric Ai j will also contribute a potential term in H
(5.41). Inspecting the second line of expression (5.26), we recognize it as the frozen kinetic part
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of the first term on this second line:

1

2

∑

i<j

e2wij(HR)(πij)
2 =

1

2

∑

i<j

(
Ri
Rj

)2 [
γ̃i pπ

p
j

]2
(5.45)

where the momentum with curved indices is defined as

πpj =
∑

k

e−2wkj(HR)γpkγ
r
j∂uAkr , with k < j .

The sharp walls appearing in this case are usually called symmetry (or centrifugal) walls and
correspond to l = 0 roots of E10, namely: wij = εi − εj ∈WKKp(E10).

Finally, the curvature contribution to the potential in H (5.41) produces two terms:

1

2

∑

j<k

∑

i6={j,k}
e2 ewijk(HR)(F ijk)2 −

∑

i

e2wi(HR)(F i)2

= 2
∑

i1<...<i7,i8

∑

i9<i10

(M9
PRi1 · · ·Ri7R2

i8)
2(γp i9γ

q
i10
∂[pAi8q]ε

i1...i10)2

−
∑

i1<...<i9,i10

(M9
PRi1 · · ·Ri9)2(F i10εi1...i10)2 .

(5.46)

The first one is already present as the third term on the second line of expression (5.26), the F i
jk

being related to the spatial gradients of the metric, or, alternatively, to the structure functions
of the Maurer-Cartan equation for the vielbein (5.40):

F ijk = 2γpjγ
q
k∂[pAiq] (5.47)

As for expression (5.44), one can generate Chern-Simons couplings γpjγ
q
kγ

r
lF ir[pAlq] by du-

alizing the above expression in the ten compact directions. This again will not generate
a new wall, and, as for expression (5.47), corresponds to l = 3 roots of E10 given by
w̃ijk =

∑
l /∈{i,j,k} εl + 2εi ∈WKK7M(E10).

The F i on the other hand are some involved expressions depending on the fields Ri, ∂Ri,
F ijk and ∂F ijk. In eqn.(5.46), they are related to lightlike walls wi =

∑
k 6=i εk given by all

permutations of the null root δ = (0, (1)9). These prime isotropic roots are precisely the ones at
the origin of the identity (5.34). Since they can be rewritten as wi = (1/2)(w̃jki+ w̃kij), they are
subdominant with respect to the w̃ijk, and will not affect the dynamics of HR even for ~p close to
the lightlike direction they define. So they are usually neglected in the standard BKL approach.
In the next section, we will see that these walls have a natural interpretation as Minkowskian
KK-particles [56], and contribute matter terms to the theory.

All the roots describing the billiard walls we have just listed are, except for wi, real l 6 3
roots of E10, and the billiard dynamics constrains the motion of HR to a polywedge bounded by
the hyperplanes: 〈HR(t), wA〉 = 0, with A spanning the indices of the walls mentioned above.
The dominant walls are then the simple roots of E10. In this respect, the orbits WM5(E10) and
WKK7M(E10) contains only subdominant walls, which are hidden behind the dominant ones,
and can, in a first and coarse approximation, be neglected. The condition αi(HR(t)) 6 0, with
αi ∈ Π(E10) ⊂WKKp(E10) ∪WM2(E10), leads to the constraints:

R1 6 R2 , R2 6 R3 , . . . , R9 6 R10 , and R8R9R10 6 l3P (5.48)

and the motion on the billiard is indeed confined to the fundamental Weyl chamber of E10. The
order in expression (5.48) depends on the choice of triangular gauge for the metric (5.40), and
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does not hold for an arbitrary vielbein. In the latter case, the formal E10 coset σ-model is more
complicated than expression (5.49) below.

At this stage, we can rederive the mapping between geometrical objects of M-theory on T 10

and the formal coset σ-model on E10|10/K(E10|10) proposed by [84], for the first l = 0, 1, 2, 3 real
positive roots of E10. This geodesic σ-model is governed by the evolution parameter t, which
will be identified with the time parameter (5.36). To guarantee reparametrization invariance of
the latter, we introduce the lapse function n, different from N . Then, in terms of the rescaled
evolution parameter dτ = ndt, the formal σ-model Hamiltonian reads [85]:

H(HR, ∂τHR, ν, ∂τν) = n
(
B(∂τHR|∂τHR) +

1

2

∑

α∈∆+(E10)

mα∑

a=1

e2〈HR,α〉[Pα,a(ν, ∂τν)]
2
)

(5.49)

where (ν, ∂τν) denotes the infinitely-many canonical variables of the system. We again use ∂τHR

to represent the momenta πi = 2(g∨ε )ij (Ri)
−1∂τRi conjugate to lnMPRi. The metric entering

the kinetic term is chosen to be g∨ε , which is dictated by comparison with the bosonic sector of
toroidally reduced classical 11D supergravity.

Expression (5.49) is obtained by computing the formal Lagrangian density from the algebraic
field strength valued in a(E10|10)⊕ n(E10|10) as:

g−1 d

dt
g = − 1√

2

∑

i

Ṙi
Ri

ε∨i +
∑

α∈∆+(E10)

mα∑

a=1

Yα,a(ν, ν̇) e
−〈HR ,α〉Eaα , (5.50)

As in eq.(5.30), one starts by calculating L = n−1Tr(PT (P)) with P given in expression (5.32).
One then switches to the Hamiltonian formalism, with momentum-like variables given by the
Legendre transform Pα,a(ν, ν̇) = 1

ne
−2〈HR ,α〉Yα,a(ν, ν̇), eventually leading to expression (5.49).

In the BKL limit, the (non-canonical) momenta tend to constant values Pα,a(ν, ν̇) → Cα,a,
and the potential terms in expression (5.49) exhibit the expected sharp wall behaviour. One
can now try and identifiy the roots α ∈ ∆+(E10) of the formal Hamiltonian (5.49) with the wall
factors wA in the effective supergravity Hamiltonian (5.41). With a consistent truncation to
l = 3, for instance, one recovers the supergravity sector (5.29) on T 10. This corresponds to the
mapping we have established between real simple roots of E10 and the symmetry, electric, mag-
netic and curvature walls wij wijk, wijkl and w̃ijk. which are all in ∆+(E10). The identification
of the algebraic coordinates Cα,a with geometrical objects in the low energy limit of M-theory
given by cA(F ) (as defined in (5.41) and below) can then be carried out.

Proceeding further to l = 6, one would get terms related to multiple spatial gradients of
supergravity fields appearing in the truncated equations of motion of 11D supergravity [84, 87]
at a given point. Finally, considering a more general version of the Hamiltonian (5.49) by
extending the second sum in the coset element (5.50) to negative roots, i.e.: α ∈ ∆+(E10) ∪
∆−(E10), and pushing the level truncation to the range l = 10 to 28, one eventually identifies
terms corresponding to 8th order derivative corrections to classical supergravity [87] of the form
Rm2 (DG4)

n, where R2 is the curvature two-form and D is the Lorentz covariant derivative. At
eighth order in the derivative, i.e. for (m,n) ∈ {(4, 0), (2, 2), (1, 3), (0, 4)}, they are typically
related to O(α′3) corrections in 10D type IIA string theory, at tree level. In this case however, it
may happen that the corresponding subleading sharp walls wA are negative, which means that
they can only be obtained for a non-Borel parametrization of the coset. In addition, they may
not even be roots of E10. However, these walls usually decompose into wA = −(n+m−1)ρ1 +ζ,
for ζ ∈ ∆+(E10), where the first term on the RHS represents the leading Rn+m correction. If
n+m = 3 � + 1, the Rm(DF )n correction under consideration is compatible with E10, and ζ is
regarded as the relative positive root associated to it.
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This means that the wA are not necessarily always roots of e10, and when this is not the
case, a (possibly infinite) subset of them can still be mapped to roots of E10, by following a
certain regular rescaling scheme.

5.2.5 Instantons, fluxes and branes in M-theory on T 10: an algebraic ap-
proach

If we now consider the hyperbolic U-duality symmetry E10 to be a symmetry not only of 11D
supergravity, but also of the moduli space space of M-theory on T 10, which is conjectured to be
the extension of expression (5.8) to D = 1:

M10 = E10|10( � )\E10|10/K(E10|10) (5.51)

the real roots appearing in the definition of the cosmological billiard are now mapped to totally
wrapped Euclidean objects of M-theory, and can be identified by computing the action:

Sα[MPRi] = 2πe〈HR ,α〉 , α ∈ ∆+(E10) . (5.52)

Thus, the roots of E10 found in the preceding section, namely: wij = εi − εj ∈ WKKp(E10),
wijk = εi+εj+εk ∈WM2(E10), wi1..i6 = (εi1 +..+εi6) ∈WM5(E10) and w̃ijk =

∑
l /∈{i,j,k} εl+2εi ∈

WKK7M(E10) describe totally wrapped Euclidean Kaluza-Klein particles, M2-branes, M5-branes
and Kaluza-Klein monopoles. The dictionary relating these roots of E10 to the action of extended
objects of M-theory can be found in Table 5.1, for the highest weight of the corresponding
representation of sl(10, � ) in e10.

Now, as pointed out in [17], the (approximated) Kasner solution defines a past and future
spacelike singularity. On the other hand, the low-energy limit in which 11D supergravity be-
comes valid requires all eleven compactification radii to be larger than lP , and consequently the
Kasner exponents to satisfy (for a certain choice of basis for h(E10), which can always be made):

0 < p10 6 p9 6 . . . 6 p1 (5.53)

so that the vector −→p is timelike with respect to the metric |−→p |2 =
∑

i p
2
i − (

∑
i pi)

2 (5.14).
Clearly, this does not satisfy the constraints (5.39) which require −→p to be lightlike. Such a
modification of the Kasner solution (5.38) has been argued in [17] to be achieved if one includes
matter, which dominates the evolution of the system in the infinite volume limit and thereby
changes the solution for the geometry. This does not invalidate the Kasner regime prevailing
close to the initial spacelike singularity, since, as pointed out in [17], matter and radiation
become negligible when the volume of space tends to zero (even though their density becomes
infinite). In the following, we will see how matter, in the form of Minkowskian particles and
branes, have a natural interpretation in terms of some class of imaginary roots of e10, and can
thus be incorporated in the hyperbolic billiard approach.

In particular, the inequality (5.53) is satisfied if at late time we have

R1 � R2 , R2 � R3 , . . . , R9 � R10 , and R8R9R10 � l3P (5.54)

which can be rephrased as: 〈HR, αi〉 � 0, ∀αi ∈ Π(e10). The action (5.52) related to such roots
is then large at late time, and the corresponding Euclidean objects of Table 5.1 can then be
used to induce fluxes in the background, and thus be related to an instanton effect. This is
in phase with the analysis in [17], which states that at large volume, the moduli of the theory
become slow variables (in the sense of a Born-Oppenheimer approximation) and can be treated
semi-classically.

Let us now make a few remarks on the two different regimes encountered so far, the bil-
liard and semi-classical dynamics. In the semi-classical regime of 5.54, we are well outside the
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fundamental Weyl chamber (5.48) and higher level roots of e10 have to be taken into account
and given a physical interpretation. In this limit of large radii, the dominance of matter and
radiation will eventually render the dynamics non-chaotic at late times, but the vacuum of the
theory can be extremely complicated, because of the presence of instanton effects and solitonic
backgrounds. In contrast, in the vicinity of the spacelike singularity, matter and radiation play
a negligible rôle, leading to the chaotic dynamics of billiard cosmology. On the other hand, the
structure of the vacuum is simple in the BKL regime, in which the potential walls appear to be
extremely sharp. It is characterized by ten flat directions bounded by infinite potential walls,
the dominant walls of the fundamental Weyl chamber of e10.

Finally, when −→p is timelike, it has been shown in [17] that the domain (5.53) where 11D
supergravity is valid can be mapped, after dimensional reduction, to weakly coupled type IIA
or IIB supergravity. For instance, the safe domain for type IIA string theory (where all the nine
radii are large compared to ls and gIIA < 1, two parameters given in terms of 11D quantities in
eqns.(5.59)) is given by:

p10 < 0 < p10 + 2p9 , and p9 6 p8 6 . . . 6 p1 . (5.55)

The two domains (5.53) and (5.55) are then related by U-duality transformations (cf. Appendix
5.13).

Let us now discuss the issue of fluxes in this setup. From now on and without any further
specification, we assume that the conditions (5.54) are met. Then, in addition to the instanton
effects we have just mentioned, one can consider more complicated configurations by turning
on some components of the p-form potentials of the theory. In this case, the action (5.52)
receives an additional contribution due to the Wess-Zumino coupling of the p-form potential to
the world-volume of the corresponding brane-like object. The action (5.52) will now receive a
flux contribution which can be rephrased in algebraic terms as [124, 56]:

Sα(p)
[MPRi; Cα(p)

] = 2πe〈HR,α(p)〉 + iCα(p)
=
Mp+1
P

(2π)p

∫

Wp+1

e dp+1x+ i

∫

Wp+1

Cp+1 , (5.56)

where the α(p) are positive real roots of e10 given by the second column of Table 5.1, for all
possible permutations of components in the physical basis. In particular, we will have three-form
and six-form fluxes for non-zero potentials C3 and C̃6 coupling to the Euclidean world-volumes
W3/W6 of M2-/M5-branes respectively. For fluxes associated to Kaluza-Klein particle, we have
the couplings Cαi−2 =

∫
γ gi i+1g

−1
i+1 i+1 dx

i, i = 1, .., 9, where γ is the KK-particle world-line, and

the internal metric g can be written in terms of our variables Ri and Ai8 using eqs (5.20) and

(5.25). There is also a similar coupling of the dual potential Ãi8 to the eight-dimensional KK7M
world-volume.

The moduli MPRi, i = 1, .., 10, together with the fluxes from p-form potentials (5.56)
parametrize the moduli space (5.51). Furthermore, on can define the following function
which is harmonic under the action of a certain Laplace operator defined on the variables
{MPRi; Cα}i=1,..,10

α∈∆+(e10) in the Borel gauge of e10|10, and which is left-invariant under E10|10:

√
Np exp

[
−2πNp

(
e〈HR,α(p)〉 ± i

2π
Cαp

)]
.

In the limit of large radii, Np is the instanton number and this expression is an extension to
e10 of the usual instanton corrections to string thresholds appearing in the low-energy effective
theory. As such, it is conjectured to capture some of the non-perturbative aspects of M-theory
[124].

Another kind of fluxes arise from non-zero expectation values of (p+1)-form field strengths.
If we reconsider the effective Hamiltonian (5.41) in the region (5.54) where instanton effects are
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present, we notice that the action (5.52) appears in the effective potential as 1
2πSα = e2α(HR).

On the other hand, since their coefficients cA(F ) freeze in the BKL limit, we may regard them
as fluxes or topology changes provided the (p+ 1)-form field strengths appearing in eqns.(5.43),
(5.44), (5.45) and (5.47) have, in this limit, integral background value:

πijk → (2π)6〈(∗10π)i1..i7〉 =
1

2π

∫

Ci1..i7

∗10π3 ∈ � ,

Gijkl → (2π)3〈Gijkl〉 =
1

2π

∫

Cijkl

G4 ∈ � ,

πij → (2π)8〈(∗10πi)j1..j9〉 =
1

2π

∫

Cj1..j9

∗10πi1 ∈ � ,

F ijk → 2π〈F ijk〉 =
∫

Cjk

ch1

(
F i2
)
≡ Ch1(F i2;Cjk)∈ � ,

Where Ci1..ip+1 is a (p+ 1)-cycle chosen along the appropriate spatial directions.
In particular, the coefficients cA(F ) appearing in the potential terms (5.43) and (5.44) are

now restricted to be integers: cA(F ) →
[
(2π)6〈(∗10π)i1..i7〉

]2
and

[
(2π)3〈Gijkl〉

]2
and generate

respectively seven-form and four-form fluxes. In this perspective, the instantons encoded in the
exponential term e2wA(HR) ≡ e2〈HR,α(p)〉 for αM5 =

∑
m/∈{i,j,k,l} εm and αM2 =

∑
n/∈{i1,..,i7} εn are

understood as the process that changes the fluxes by an integral amount.

The wall coefficient cA(F ) =
[
2π〈F ijk〉

]2
(5.47), on the other hand, corresponds to a de-

formation of the basic torus T 10 to an S1 fibration of the ith direction over the two-torus
T 2 = {xj , xk}, in other words to the metric:

ds2 = −(Ndt)2 +
∑

m6=i
(MPRm)2(dxm)2 + (MPRi)

2
[
dxi − 1

2π
Ch1(F i2;Cjk)xkdxj

]2
.

where the periodicity of xk implies xi → xi+Ch1(F i2;Cjk)xj for the fiber coordinate, all other
coordinates retaining their usual 2π-periodicity. The value of cA(F ) determines the first Chern
character (or Chern class, since ch1 = c1) of the fibration, and the instanton effect associated to
the root αKK7M =

∑
l /∈{i,j,k} εl + 2εi creates an integral jump in this first Chern number.

Minkowskian branes from prime isotropic roots of e10

As mentioned in the preceding section, when considering the large volume limit (5.54) in the
domain (5.53) where 11D supergravity is valid, one should in principle start considering higher
level roots of e10 in other Weyl chambers than the fundamental one. These roots, which, in the
strict BKL limit, appear as subdominant walls and can be neglected in a first approximation,
should now be taken into account as corrective or mass terms. In [56, 55], a program has been
proposed to determine the physical interpretation of a class of null roots of e10. These authors
have, in particular, shown the correspondence between prime isotropic roots and Minkowskian
extended objects of M-theory, for the first levels l = 3, 5, 6, 7, 8. On the other hand, as seen in
Section 5.2.4, the autors of [87] have developed a different program where they identify imaginary
(both isotropic and non-isotropic) bur also real roots, with Rm(DF )n type M-theory corrections
to classical supergravity. However, these results have been obtained in an intermediate domain
of the dynamical evolution, where not only negative roots become leading (accounting for the
fact that these higher order corrections are described by negative roots), but where we expect
quantum corrections to be visible. In the approach of [56], in contrast, the regime (5.54) allows
for effects related to extended objects to become important, pointing, in the line of Section 5.2.5,
at an interpretation for certain higher level roots in terms of branes and particles.
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In the following, we give a condensed version of the correspondence between prime isotropic
roots of e10 and Minkowskian extended objects of M-theory, which can be found in a much more
detailed and ample version in [56], which we follow closely until the end of this section.

First of all, since we now restrict to the region (5.53), we are sufficiently far from the singu-
larity for the lapse function N(t) to have any non-zero value. In particular, we can gauge-fix to
N(t) = MP in expression (5.36), which defines the conformal time:

dũ =
dt

M9
PV (t)

. (5.57)

As we will see below, these are the ”natural” units to work out the relation between prime
isotropic roots of e10 and Minkowskian particles and branes in M-theory.

Consider, for instance two M5 instantons at times tβM5
� tαM5

encoded algebraicly in

αM5 = ((1)4, (0)4, (1)2), βM5 = ((0)4, (1)6)

Since each of them creates a jump in their associated flux, inverting the time order to tβM5
� tαM5

will pass one instanton through the other, thereby creating a Minkowskian M2-brane stretched
between them in the interval [tαM5

, tβM5
], where their respective fluxes overlap. This M2-brane

will be associated to the root γM2 = αM5 + βM5 = ((1)8, (2)2). Recalling that we gauge-fixed
to conformal time (5.57), the action for such an object has to be expressed in unit of conformal
time, then:

d

dũ
S̃α = M9

PV
d

dt
Sα = 2πe〈HR ,α〉 −→ Mα =

1

2π

d

dt
Sα = M−9

P V −1e〈HR,α〉 (5.58)

This expression for the mass of the object could also be deduced from the rescaling (5.42). Thus,
in particular: MγM2

= M3
PR9R10 as expected from a membrane wrapped around directions x9

and x10.
From the supergravity perspective, the instanton described by αM5 will create a jump in the

flux: (2π)3〈G5678〉 → (2π)3〈G5678〉+1 when going from t < tαM5
to tαM5

< t, while instanton βM5

induces (2π)3〈G1234〉 → (2π)3〈G1234〉 − 1 when t passes tβM5
. Now the M2-brane flux sourced

by (2π)6〈G1234〉〈G5678〉, via the topological term
∫
C3 ∧ G4 ∧ G4 of 11D supergravity, has to

be counterbalanced by an equal number of anti M2-branes. Thus, going from configuration
tβM5

� tαM5
to configuration tβM5

� tαM5
after setting both initial fluxes to zero produces

one unit of Minkowskian anti-M2-brane flux which must be compensated by the creation of a
M2-brane in the same directions, as expected.

Another process involves passing an M2-instanton αM2 = ((1)2, (0)7, 1) through a KK-
monopole βKK7M = ((0)2, (1)6, 2, 1). Since the KK-monopole shifts by one unit the first Chern
class of the circular x9-fibration over the (x1, x2)-torus: Ch1(F9

(2); C12)→Ch1(F9
(2); C12) + 1, it

creates an obstruction that blocks the M2-instanton somewhere in the (x1, x2) plane, and, by
means of the fibration, produces an object at least wrapped along the x9 direction. It is not
hard to see that the Minkowskian object resulting from this process is a M2-brane wrapped
around x9 and the original x10. One can check that the root αM2 +βKK7M = γM2 = ((1)8, (2)2),
recovering the same object as before.

Furthermore, by combining an M5-instanton αM5 = (0, (1)6, (0)3) shifting the magnetic
flux (2π)3〈G189 10〉 by one unit with an M2-instanton βM2 = ((0)7, (1)3) shifting the electric
flux (2π)6〈(∗10π)1···7〉 accordingly, one creates a Minkowskian KK-particle αKKp = (0, (1)9)
corresponding to the following contribution the momentum in the x1 direction: P1 =∫
d10xG189 10π89 10. The mass (5.58) of this object MγKKp

= R−1
1 is in accordance with this

interpretation.
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object real root Sα prime isotropic Mα

KKp (0, 0, 0, 0, 0, 0, 0, 0, 1,−1) 2πR9R
−1
10 (0, 1, 1, 1, 1, 1, 1, 1, 1, 1) R−1

1

M2 (0, 0, 0, 0, 0, 0, 0, 1, 1, 1) 2πM 3
PR8R9R10 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2) M 3

PR9R10

M5 (0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 2πM 6
PR5 · · ·R10 (1, 1, 1, 1, 1, 2, 2, 2, 2, 2) M 6

PR5 · · ·R10

KK7M (0, 0, 1, 1, 1, 1, 1, 1, 1, 2) 2πM 9
PR3 · · ·R9R

2
10 (1, 1, 1, 2, 2, 2, 2, 2, 2, 3) M 9

PR3 · · ·R9R
2
10

KK9M (1, 1, 1, 1, 1, 1, 1, 1, 1, 3) 2πM 12
P R1 · · ·R9R

3
10 (1, 2, 2, 2, 2, 2, 2, 2, 2, 4) M 12

P R2 · · ·R9R
3
10

Table 5.1: Euclidean and Minkowskian branes of M-theory on T 10 and positive roots of E10

Similar combinations of Euclidean objects can be shown, by various brane creation processes,
to produce Minkowskian M5-branes and KK7M-branes. To conclude, all four types of time-
extended matter fields are summarized in Table 5.1 by their highest weight representative with
its mass formula. At present, it is still unclear how matter terms produced by the prime
isotropic roots of Table 5.1 should be introduced in the effective Hamiltonian (5.41). Since the
corresponding Minkowskian branes originate from creation processes involving two instantons,
as explained above, we expect such a contribution to be [56]: 2πnγme

〈HR,γm〉, where the isotropic
root γm describing the Minkowskian brane decomposes into two real roots related to instantons
γm = αe + βe, and turns on nγm = nαenβe units of flux which compensates for the original nαe

and nβe units of flux produced by the two instantons. Since γm is a root, such a term will never
arise as a term in the series (5.49). We then expect the Hamiltonian (5.49) to be modified in
the presence of matter. In this respect, a proposal for a corrective term has been made in [56],
which reproduces the energy of the Minkowskian brane only up to a 2π-factor. Moreover, it
generates additional unwanted contributions for which one should find a cancelling mechanism.

From Table 5.1, one readily obtains the spectrum of BPS objects of type IIA string theory,
by compactifying along x10, and taking the limit MPR10 → 0, thereby identifying:

R10 =
gA
Ms

, MP =
Ms

3
√
gA

. (5.59)

In this respect, we have included in Table 5.1 the conjectured KK9M-brane as the putative M-
theory ascendant of the D8, KK8A and KK9A-branes of IIA string theory, the latter two being
highly non-perturbative objects which map, under T-duality, to the IIB S7 and S9-branes.

Since we mention type IIB string theory, we obtain its spectrum after compactification (5.59)
by T-dualizing along the toroidal x9 direction, which maps:

R9,B =
1

M2
sR9,A

, gB =
gA

MsR9,A
.

From the E10 viewpoint, T-dualizing from type IIA to IIB string theory corresponds to different
embeddings of sl(9, � ) in e10|10. Going back to the Dynkin diagram 5.1 for r = 10, type
IIA theory corresponds to the standard embedding of sl(9, � ) along the preferred subalgebra
sl(10, � ) ⊂ e10|10 (the gravity line), while type IIB is obtained by choosing the the Dynkin
diagram of sl(9, � ) to extend in the α8 direction. This two embeddings consist in the two
following choices of basis of simple roots for the Dynkin diagram of sl(9, � ):

ΠA = {α−1, α0, . . . , α5, α6} , ΠB = {α−1, α0, . . . , α5, α8} ,

which results in two different identifications of the NS-NS sector of both theories. Then, a
general T-duality on xi, i 6= 10, can be expressed in purely algebraic language, as the following
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mapping:

Ti : h(Er)→ h(Er)

εi 7→ −εi

From the σ-model point of view, the type IIA and IIB theories correspond to two different level
truncations of the algebraic field strength (5.50), namely a level decomposition with respect to
(l7, l8) for type IIA, and (l6, l7) for type IIB, li being the level in the simple root αi of E10.
The NS-NS and RR sectors of both supergravity theories are then obtained by pushing the
decomposition up to level (l7, l8) = (2, 3) for IIA, and up to (l6, l7) = (4, 2) for IIB. See for
instance [174], where the results are directly transposable to E10 (all roots considered there are
in fact E10 roots).

Minkowskian objects from threshold-one roots of e10

By inspecting the second column of Table 5.1, we observe that all Minkowskian objects ex-
tended in p spatial directions, are characterized, on the algebraic side, by adding

∑p
i=1 εki

to
the threshold vector ρ1 = ((1)10). For the Minkowskian KK particle, the corresponding root of
e10 is related to its quantized momentum, and one needs therefore to substract a factor of εj to
the threshold vector.

The Minkowskian world-volume of these objects naturally couples to the respective (p+ 1)-
form potentials (5.52). So, in contrast to the Hamiltonian formalism (5.41), which treats, for
a different purpose, the temporal components of the field-strengths as conjugate momenta,
one now needs to keep the time index of the tensor potentials apparent, thereby working in
the Lagrange formalism. This is similar to what is done in [87] where the authors perform a
component analysis of one-loop corrections to classical 11D supergravity.

As pointed out in Section 5.2.4, the (p + 1)-form components separate into an oscillating
part and a part that freezes as u→ +∞, so that we have:

C0i1..iq =
1

N(t)
ep1i1 · · · e

pq

iq
Ctp1···pq = e−〈ρ1+

Pq
n=1 εin ,HR〉γp1i2 · · · γ

pq

iq
Cup1···pq . (5.60)

where we have used
√
ḡ = e〈ρ1 ,HR〉, and the index 0 stands for the flat time coordinate dx0 =

N(t)dt. Following the analysis of Section 5.2.4, the component Cup1···pq can be shown to freeze.
Now, by selecting the appropriate basis vectors εjn , we observe that all imaginary roots in
the second column of Table 5.1 are related to a tensor component of the form (5.60) with the
expected value of q. As a side remark, the minus sign appearing in the exponential wall factor
in eqn.(5.60) comes from working in the Lagrange formalism, as discussed in Section 5.2.5.

For Minkowskian KK particles and M2-branes, this approach is related to performing the
e10 extension of the last two sets of roots in eqns.(5.24) by setting D = 1. When restricting
to the roots obtained by this procedure which are highest weights under the Weyl group of
sl(10, � ), one again recovers the two first terms in the second column of Table 5.1. Since we
have not performed any Hodge duality in this case, we obtain, as expected, roots characterizing
KK particles and M2-branes.

It results from this simple analysis that it is the presence of the threshold vector ρ1 =
((1)10) which determines if an object is time-extended, and not necessarily the fact that the
corresponding root is isotropic. We shall see in fact when working out 0B’ orientifolds that
certain types of magnetized Minkowskian D-branes can be associated to real roots and non-
isotropic imaginary roots, provided they decompose as α = ρ1 + ~q ∈ ∆+(E10), where ~q is a
positive vector (never a root) of threshold 0, i.e. that can never be written as ~q = nρ1 + ~q′ for
n 6= 0.
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5.3 Orbifolding in a KMA with non-Cartan preserving auto-

morphisms

In this section, we expose the method we use to treat physical orbifolds algebraicly. It is based
on the simple idea that orbifolding a torus by � n is geometrically equivalent to a formal 2π/n
rotation. Using the mapping between physical and algebraic objects, one can then translate the
geometrical rotation of tensors into purely algebraic language as a formal rotation in the KM
algebra. This is given by an adjoint action of the group on its KM algebra given by a finite-order
inner automorphism.

More concretely, let us consider an even orbifold T q/Zn, acting as a simultaneous rotation
of angle 2πQa/n, a = 1, . . . , q/2 in each pair of affected dimensions determined by the charges
Qa ∈ {1, . . . , n − 1}. A rotation in the (xi, xj) plane is naturally generated by the adjoint
action of the compact group element exp( 2π

n QaK
j
i ) ≡ exp( 2π

n Qa(Eα − Fα)) for α = αi−2 +
. . . + αj−3. In particular, rotations on successive dimensions (i + 2, i + 3) are generated by
Eαi − Fαi . We will restrict ourselves to orbifolds acting only on successive pair of dimensions
in the following, although everything can be easily extended to the general case. In particular,
physically meaningful results should not depend on that choice, since it only amounts to a
renumbering of space-time dimensions. For the same reason, we can restrict our attention to
orbifolds that are taken on the last q spatial dimensions of space-time {x11−q, . . . , x10}. In that
case, we have the q/2 rotation operators

V1
.
= e

2π
n
Q1 K11−q 12−q = e

2π
n
Q1 (Eα9−q−Fα9−q )

...

V q
2

.
= e

2π
n
Q q

2
K9 10

= e
2π
n
Qq/2 (Eα7−Fα7 )

(5.61)

that all mutually commute, so that the complete orbifold action is given by:

U � n
q

.
=

q/2∏

a=1

Va . (5.62)

Note that U � n
q generically acts non-trivially only on generators ∈ g±α (and the corresponding

Hα ∈ h) for which the decomposition of α in simple roots contains at least one of the root
α8−q, . . . , α8 for q > 2 (α6 and α7 for q = 2).

In the particular case of � 2 orbifolds, the orbifold action leaves the Cartan subalgebra in-
variant, so that it can be expressed as a chief inner automorphism by some adjoint action
exp(iπH), H ∈ h � on g. It indeed turns out that the action of such an automorphism on
g/h =

⊕
α∈∆(g) gα depends linearly on the root α grading gα and can thus be simply expressed

as:
Ad(eiπH)gα = (−1)α(H)gα = (−1)

P8
i=9−r k

iαi(H)gα ,

forH ∈ h � and α =
∑8

i=9−r k
iαi .

(5.63)

If q is even, both methods are completely equivalent, while, if q is odd, the determinant is
negative and it cannot be described by a pure SO(r) rotation. If one combines the action of
Eα − Fα with some mirror symmetry, however, one can of course reproduce the action (5.63).
Indeed, the last form of the orbifold action in expression (5.63) is the one given in [55]. The
results of [55] are thus a subset of those obtainable by our more general method.

5.3.1 Cartan involution and conjugation of real forms

In the preceding sections, we have already been acquainted with the Chevalley involution ϑC .
Here, we shall introduce just a few more tools we shall need later in this work to deal with real
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forms in the general sense. Let g be a complex semisimple Lie algebra. If it is related to a real
Lie algebra g0 as g = (g0)

� .
= g0⊗

�

� , g will be called a complexification thereof. Reciprocally,
g0 is a real form of g with g = g0 ⊕ ig0. Next, a semisimple real Lie algebra is called compact if
it can be endowed with a Killing form satisfying

B(X,X) < 0 , ∀X ∈ g0 (X 6= 0) , (5.64)

and non-compact otherwise.
Thus, a non-compact real form can in general be obtained from its complexification g by

specifying an involutive automorphism ϑ defined on g0, such that B(ϑX, ϑY ) = B(X,Y ) and
Bϑ(X,Y ) = −B(X,ϑY ), ∀X,Y ∈ g0, is a symmetric and positive definite form. ϑ is called
a Cartan involution (the argument here is a generalization of the construction of the almost-
positive definite covariant form based on the Chevalley involution ϑC in Section 5.1.1). It can be
shown that every real semisimple Lie algebra possesses such an involution, and that the latter
is unique up to inner automorphisms. This is a corollary of the following theorem:

Theorem 5.3.1 Every automorphism ψ of g is conjugate to a chief automorphism ϑ of g

through an inner automorphism φ, ie:

ψ = φ−1 ◦ ϑ ◦ φ, φ ∈ Int(g) (5.65)

Then, it is clear that ψ is involutive iff ϑ is involutive. In this case, the two real forms of
g generated by ψ and ϑ are isomorphic, so that for every conjugacy class of involutive auto-
morphisms, one needs only consider the chief involutive automorphism (as class representative),
which can in turn be identified with the Cartan involution.

The Cartan involution induces an orthogonal (±1)−eigenspace decomposition into the direct
sum g0 = k⊕⊥ p, called Cartan decomposition of g0, with property

ϑ|k = 1 and ϑ|p = −1 . (5.66)

More specifically, k is a subalgebra of g0 while p is a representation of k, since: [k, k] ⊆ k, [k, p] ⊆ p

and [p, p] ⊆ k. Finally, as our notation for the Cartan decomposition suggested, k and p are
orthogonal with respect to the Killing form and Bϑ.

Alternatively, it is sometimes more convenient to define a real form g0 of g as the fixed point
subalgebra of g under an involutive automorphism called conjugation τ such that

τ(X) = X , τ(iX) = −iX , ∀X ∈ gU (5.67)

then: g0 = {X ∈ g | τ(X) = X}.
Finally, by Wick-rotating p in the Cartan decomposition of g0 one obtains the compact Lie

algebra gc = k⊕⊥ ip which is a compact real form of g = (g0)
�

.
Because of Theorem 5.3.1, one needs an invariant quantity sorting out involutive automor-

phisms leading to isomorphic real forms. This invariant is the signature (or character of the real
Lie algebra) σ, defined as the difference between the number d− = dim k of compact generators
and the number d+ = dim p of non-compact generators (the ±-sign recalling the sign of the
Killing form):

σ = d+ − d− .
For simple real Lie algebras, σ uniquely specifies g0. The signature varies between its maximal
value for the split form σ = r and its minimal one for the compact form σ = −dim g.

Defining the following linear operator constructed from ϑ (see [71], p.543)

√
ϑ =

1

2
(1 + i)ϑ+

1

2
(1− i)1I , (5.68)
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satisfying
√
ϑ ◦
√
ϑX = ϑX, ∀X ∈ g, all non-compact real forms of g will be obtained through

g0 =
√
ϑ gc (5.69)

by selecting the appropriate chief involutive automorphism ϑ.

5.3.2 Determining the real invariant subalgebra from its complexification

For a given orbifold T 11−q−D×T q/ � n of eleven-dimensional supergravity/M-theory, the orbifold
action on the corresponding U-duality algebra in D dimensions is given by the inner automor-
phism U � n

q , ∀D. This automorphism has a natural extension to the complexification (gU )
�

of

the split form gU , where the appropriate set of generators describing physical fields and duality
transformations on a complex space can be properly defined.

The requirement that these new generators diagonalize U � n
q and are charged according to

the index structure of their corresponding physical objects will select a particular complex basis
of (gU )

�

. We will henceforth refer to this algebraic procedure as ”orbifolding the theory”.
Projecting out all charged states under U � n

q is then equivalent to an orbifold projection in

the U-duality algebra, resulting in the invariant subalgebra (ginv)
�

= FixU
�

n
q

(gU )
�

(the notation

FixV g stands for the fixed-point subalgebra of g under the automorphism V ).
Since we expect the untwisted sector of the theory to be expressible from the non-linear

realization of Ginv/K(Ginv) as a coset sigma-model, we are particularly interested in determining
the reality properties of ginv, the algebra that describes the residual U-duality symmetry of the
theory.

Retrieving the real form ginv from its complexification (ginv)
�

can be achieved by restricting
the conjugation (5.67) to (ginv)

�

. Denoting such a restriction τ0
.
= τ |ginv

, the real form we are
looking for is given by

ginv = Fixτ0(ginv

�

) .

Since gU is naturally endowed with the Chevalley involution ϑC , the Cartan involution associated
to the real form ginv is then the restriction of ϑC to the untwisted sector of the U-duality algebra,
which we denote φ = ϑC |ginv

. Consequently, the real form ginv possesses a Cartan decomposition
ginv = kinv ⊕ pinv, with eigenspaces φ(kinv) = kinv and φ(pinv) = −pinv. The whole procedure
outlined in this section can be summarized by the following sequence:

(gU , ϑC)
U

�
n

q−−−−→ (gU )
�

FixU
�

n
q−−−−−→ (ginv)

� Fixτ0−−−−→ (ginv, φ) . (5.70)

5.3.3 Non-compact real forms from Satake diagrams

As we have seen before, real forms are described by classes of involutive automorphisms, rather
than by the automorphisms themselves. As such, the Cartan involution, which we will refer to
as ϑ, can be regarded as some kind of preferred involutive automorphism, and is encoded in the
so-called Satake diagram of the real form it determines. The Cartan involution splits the set of
simple roots Π into a subset of black (invariant) roots (ϑ(αi) = αi) we call Πc, and the subset
Πd = Π /Πc of white roots, such as

ϑ(αi) = −αp(i) +
∑

k

ηikαk, with αp(i) ∈ Πd and αk ∈ Πc

where p is an involutive permutation rotating white simple roots into themselves and ηik is
a matrix of non-negative integers. A Satake diagram consists in the Dynkin diagram of the
complex form of the algebra with nodes painted in white or in black according to the above
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prescription. Moreover, if two white roots are exchanged under p, they will be joined on the
Satake diagram by an arrow.

From the action of ϑ on the root system, one can furthermore determine the Dynkin diagram
and multiplicities of the so-called restricted roots, which are defined as follows: for a Cartan
decomposition g0 = k ⊕ p, let a ⊂ p be maximal abelian. Then, one can define the partition
under a into simultaneous orthogonal eigenspaces (see [175] for a detailed discussion):

(g0)ᾱ = {X ∈ g0 | ad(Ha)X = ᾱ(Ha)X, ∀Ha ∈ a} . (5.71)

This defines the restricted roots ᾱ ∈ a∗ as the simultaneous eigenvalues under the commuting
family of self-adjoint transformations {ad(Ha)|∀Ha ∈ a}. Then, we can choose a basis such
that h0 = t ⊕ a, where t is the maximal abelian subalgebra centralizing a in k. The Cartan
subalgebra can be viewed as a torus with topology (S1)nc × ( � )ns where ns = dim a is called
the � -rank. Restricted-root spaces are the basic ingredient of the Iwasawa decomposition, so
we shall return to them when discussing non-linear realizations (see Section 5.2.2) of orbifolded
11D supergravity/M-theory models.

We denote by Σ the set of roots not restricting to zero on a∗. As an example, one can choose
a basis where such a set Σ reads:

Σ =

{
ᾱ =

1

2
(α− ϑ(α)) ∈ a∗ | ᾱ 6= 0

}
. (5.72)

Then, a real form can be encoded in the triple (a,Σ,mᾱ) and mᾱ is the function giving the
multiplicity of each restricted root, in other words mᾱ = dim(g0)ᾱ. If we denote by Π a basis of
Σ, all non-compact real forms of g can be encoded graphically in

I) the Satake diagram of (Π, ϑ);

II) the Dynkin diagram of Π;

III) the multiplicities mᾱi and m2ᾱi for ᾱi ∈ B̄.

On the other hand, given a Satake diagram, we can determine the real form associated to it
as a fixed point algebra under τ . Indeed from the Satake diagram one readily determines ϑ, and
since it can be shown that there always exists a basis of h such that the ”compact” conjugation
τ c = ϑ ◦ τ acts as τ c(α) = −α, ∀α ∈ ∆, then the conjugation is determined by τ = −ϑ on the
root lattice.

Finally, in the finite case, the � -rank ns is given in the Satake diagram by the number of
white roots minus the number of arrows, and nc by the number of black roots plus the number
of arrows.

5.4 The orbifolds T 2/
�
n>2

From the algebraic method presented in Section 5.3.2, it is evident that a T 2/ � n orbifold on
the pair of spatial dimensions {x9, x10} is only expected to act non-trivially on the root spaces
(gU )α ⊂ gU , characterized by all roots α containing α6 and/or α7, as well as on the corresponding
Cartan element Hα.

The basis of (gU )
�

diagonalizing the orbifold automorphism U � n
2 with the appropriate set

of charges will be derived step by step for the chain of compactification ranging from D = 8
to D = 1. This requires applying the machinery of Section 5.3.2 to the generators of the root
spaces (gU )α mentioned above and selecting combinations thereof to form a basis of (gU )

�

with
orbifold charges compatible with their tensorial properties. We will at the same time determine
the real invariant subalgebra ginv by insisting on always selecting lowest-height invariant simple
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roots, which ensures that the resulting invariant subalgebra is maximal. In D = 2, 1, subtleties
connected with roots of multiplicities greater than one and the splitting of their corresponding
root spaces will be adressed.

For a start, we will work out the D = 8 case in detail, and then show how this construc-
tion can be regularly extended down to the D = 3 case. The affine and hyperbolic D = 2, 1
cases require more care and will be treated separately. In D = 8, then, we consider eleven-
dimensional supergravity on T 3, which possesses U-duality algebra gU = sl(3, � ) ⊕ sl(2, � ),
whose complexification is described by the Dynkin diagram of a2⊕a1. It has positive-root space
∆+ = {α6, α7, α6 + α7, α8}, and its Cartan subalgebra is spanned by

{
H6 = ε∨8 − ε∨9 ; H7 =

ε∨9 − ε∨10 ; H8 = (2/3)(ε∨8 + ε∨9 + ε∨10)
}
. The a1 factor corresponds to transformations acting on

the unique scalar C89 10 produced by dimensional reduction of the 3-form field on T 3.
The orbifold action on the two-torus

(z, z̄)→ (e2πi/nz, e−2πi/nz̄) (5.73)

induces the following inner automorphism on the U-duality algebra

U � n
2 = Ad(e

2π
n

(E7−F7))
.
= Ad(e−

2π
n
iKzz̄) , for n > 2 .

This automorphism acts diagonally on the choice of basis for (gU )
�

appearing in Table 5.2,
where both compact and non-compact generators have the charge assignment expected from
their physical counterparts.

QA generators

0 Kzz̄ = −1
6(2H6 +H7) + 1

2H8

K88 = 1
3 (2H6 +H7) + 1

2H8

Z8zz̄ = i
2(E8 + F8) , Z8zz̄ = i(E8 − F8)

Kzz̄ = i(E7 − F7)

±1

{
K8z̄

K8z

}
= 1

2
√

2
(E6 + F6 ± i(E67 + F67))

{
K8z̄

K8z

}
= 1√

2
(E6 − F6 ± i(E67 − F67))

±2

{
Kz̄z̄

Kzz

}
= 1

2 (H7 ± i(E7 + F7))

Table 5.2: Algebraic charges for S1 × T 2/ � n>2 orbifolds

The invariant subalgebra (ginv)
�

can be directly read off Table 5.2, the uncharged objects
building an a1 ⊕ � ⊕2

subalgebra, since the original a2 factor of (gU )
�

now breaks into two
abelian generators H [2] .

= 2H6 + H7 and H̃ [2] .
= −Kzz̄. The total rank (here 3) is conserved,

which will appear to be a generic feature of (ginv)
�

.
The real form ginv is then easily identified by applying the procedure outlined in eq. (5.70).

Since Kzz̄ and K88 are already in Fixτ0(ginv

�

) while τ0(Z8zz̄) = −Z8zz̄, τ0(Z8zz̄) = −Z8zz̄ and
τ0(Kzz̄) = −Kzz̄, a proper basis of the invariant real form is, in terms of (ginv)

�

generators:
ginv = Span

{
2/3(K88 +2Kzz̄) ; iZ8zz̄ ; iZ8zz̄

}
⊕Span{2(K88−Kzz̄)}⊕Span{−iKzz̄}. From now

on, the last two abelian factors will be replaced by H [2] and iH̃ [2]. Now, how such a basis
behaves under the associated Cartan involution φ is clear from Section 5.3.2. This determines
the invariant real form to be sl(2, � )⊕so(1, 1)⊕u(1), with total signature σ = 1. In general, the
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signature of the subalgebra kept invariant by a T 2n/ � n>2 orbifold will be given by σ(gU ) − 2n
(keeping in mind that some orbifolds are equivalent under a trivial 2π rotation).

The coset defining the non-linear realization of the orbifolded supergravity is obtained in the
usual way by modding out by the maximal compact subgroup:

SL(2, � )

SU(2)
× SO(1, 1)

� 2
.

In D = 7, there appears an additional simple root α5, which, in the purely toroidal com-
pactification, enhances and reconnects the U-duality algebra into gU = sl(5, � ), following the
well known en|n serie. The complexification (gU )

�

resulting from orbifolding the theory calls for
six additional generators: {K7z̄ , Z7zz̄,K7z̄ ,Z7zz̄} and the 2 corresponding Hermitian conjugates,
produced by acting with ad(E5±F5) on the objects in Table 5.2, all of which, together with the
Cartan element K77, have the expected orbifold charges.

Beside these natural combinations, we now have four new types of objects with charge ±1,
namely: {

Z78z̄ /
1
2Z78z̄

Z78z /
1
2Z78z

}
=

1

2
√

2
(E5678(+/−)F5678 ± i(E568(+/−)F568)) , (5.74)

so that the invariant subalgebra (ginv)
�

is a straightforward extension by α5 of the D = 8 case,
as can be seen in Table 5.3. Its real form is obtained from the sequence (5.70) just as in D = 8,
yielding the expected ginv = sl(3, � ) ⊕ so(1, 1) ⊕ u(1), where the non-compact abelian factor is
now generated by the combination

H [2] = 4H5 + 6H6 + 3H7 + 2H8 =
10

3

(
K 7

7 +K 8
8 −K z

z

)
, (5.75)

while, as before, u(1) = � (E7 − F7). Thus σ(ginv) = 2, while the total rank is again conserved
by the orbifold projection.

The above procedure can be carried out in D = 6. In this case however, the invariant
combination H [2] which generated earlier the non-compact so(1, 1) factor is now dual to a root
of gU = so(5, 5), namely:

H [2] = HθD5
=

2

3

(
K 6

6 +K 7
7 +K 8

8 −K z
z

)
. (5.76)

The abelian factor is thus enhanced to a full sl(2, � ) subalgebra with root system {±θD5}, while
the real invariant subalgebra clearly becomes sl(4, � )⊕sl(2, � )⊕u(1). In D = 5, θD5 connects to
α3 giving rise to ginv = sl(6, � )⊕u(1). The extension to D = 4, 3 is completely straightforward,
yielding respectively ginv = so(6, 6) ⊕ u(1) and e7|7 ⊕ u(1). The whole serie of real invariant
subalgebras appears in Table 5.3, beside their Satake diagram, which encodes the set of simple
invariant roots Π0 and the Cartan involution φ.

5.4.1 Affine central product and the invariant subalgebra in D = 2

New algebraic features appear in D = 2, since, in the purely toroidal case, the U-duality algebra
is now conjectured to be the affine e9|10

.
= Split(ê8).

8

The invariant subalgebra (ginv)
�

consists in the affine ê7 together with the Heisenberg algebra
û(1)

�

spanned by {zn ⊗ (E7 − F7),∀n ∈ � ; c ; d}. Though both terms commute at the level of
loop-algebras, their affine extensions share the same central charge c = Hδ and scaling operator
d. Now, a product of two finite-dimensional algebras possessing (at least partially) a common
centre is called a central product in the mathematical literature. The present situation is a

8Since ϑC(δ) = −δ implies ϑC(d) = −d and ϑC(c) = −c, the split form of any KMA has signature σ = dim h.
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natural generalization of this construction to the infinite-dimensional setting, where not only
the central charge but also the scaling element are in common. Since the latter is a normalizer,
we are not strictly dealing with a central product. We will therefore refer to such an operation
as an affine central product and denote it by the symbol 1. Anticipating the very-extended
D = 1 case, we can write the invariant subalgebra as the complexification

ê7 1 û(1) ≡
(
ê7 ⊕ û(1)

)
/ {z, d̄} , (5.77)

where z = HδE7
−cû(1) is the centre of the algebra and d̄ = dδE7

−dû(1) is the difference of scaling
operators.

The real form ginv can be determined first by observing that the non-compact and compact
generators Hα and Eα ± Fα (with (α|α7) = 0) of the e7|7 factor in D = 3 naturally extend to
the (tn ± t−n) ⊗ Hα and (tn ⊗ Eα ± t−n ⊗ Fα) vertex operators of an affine ê7|9 and second,
by noting that the remaining factor in the central product ê7 1 û(1) is in fact the loop algebra
L(u(1)) whose tower of generators can be grouped in pairs of one compact and one non-compact
generator, according to 9

φ
(
(zn ± z−n)⊗ (E7 − F7)

)
= ±(zn ± z−n)⊗ (E7 − F7) , (5.78)

in addition to the former compact Cartan generator iH̃ [2] = E7 − F7. In short, the L(u(1))
factor contributes −1 to the signature of ginv, so that in total: σ = 8. Restoring the central
charge and the scaling operator in L(u(1)) so as to write ginv in the form (5.77), we will denote
the resulting real Heisenberg algebra û|1(1), so as to render its signature apparent.

For the sake of clarity, we will represent ginv in Table 5.3 by the Dynkin diagram of ê7|9⊕û|1(1)
supplemented by the signature σ(ginv), but it should be kept in mind that ginv is really given by
the quotient (5.77). In Table 5.3, we have separated the D = 2, 1 cases from the rest, to stress
that the Satake diagram of (Π0, φ) describes ginv completely only in the finite case.

Finally, to get some insight into the structure of the algebra ê7 1 û(1), it is worthwhile noting
that the null root of the original e9 is also the null root of ê7, as

δ = α0 + 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8

= α0 + 2α1 + 3α2 + 4α3 + 3α4 + 2α5 + α8 + 2θD5 = δE7 .

Although the root space gδ ⊂ e9 is eight-dimensional, we have mult(δE7) = 7, since the eighth
generator z⊗H7 of gδ is projected out. The latter is now replaced by the invariant combination
z ⊗ (E7 − F7) whose commutator with itself creates the central charge of the û(1), whereas the
seven remaining invariant generators {z⊗HθD5

; z⊗Hi,∀i = 1, · · · , 5, 8} build up the root space
gδE7

. In a sense that will become clearer in D = 1, the multiplicity of δE9 is thus preserved in
ê7 1 û(1).

5.4.2 A Borcherds symmetry of orbifolded M-theory in D = 1

In D = 1, finally, plenty of new sl(10, � )-tensors appear as roots of e10, so it is now far from
obvious whether the invariant subalgebra constructed from ê7 1 û(1) by adding the node α−1

exhausts all invariant objects. Moreover, the structure of such an algebra, as well as its Dynkin
diagram is not a priori clear, since we know of no standard way to reconnect the two factors
of the central product through the extended node α−1. As a matter of fact, mathematicians
are aware that invariant subalgebras of KMA under finite-order automorphisms might not be
KMA, but can be Borcherds algebras or EALA [10, 5, 4]. Despite these preliminary reservations,

9Note that the combination used in eqn. (5.78) is well-defined in e9|10, since it can be rewritten in the following
form: (zn ⊗E7 ∓ z−n ⊗ F7) ± (z−n ⊗E7 ∓ zn ⊗ F7).
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D (Π0, φ) ginv σ(ginv)

8 e
α8

× H [2] × iH̃ [2]
sl(2, � ) ⊕ so(1, 1)

⊕ u(1)
1

7 e e
α5 α8

× H [2] × iH̃ [2]
sl(3, � ) ⊕ so(1, 1)

⊕ u(1)
2

6 e e e e
α4 α5 α8 θD5

× iH̃ [2]
sl(4, � ) ⊕ sl(2, � )

⊕ u(1)
3

5 e e e e e

θD5
α3 α4 α5 α8

× iH̃ [2] sl(6, � ) ⊕ u(1) 4

4

e

e

�
�

Z
Z e e e e

θD5

α2

α3 α4 α5 α8

× iH̃ [2] so(6, 6) ⊕ u(1) 5

3

e

e e e e e e

θD5

α1 α2 α3 α4 α5 α8

× iH̃ [2] e7|7 ⊕ u(1) 6

2

e

e e e e e e e

θD5

α0 α1 α2 α3 α4 α5 α8

×
{
iH̃

[2]
n

}
n∈ �

ê7|9 ⊕L(u(1))|−1 8

1

ehβI
e

e e e e e e e e

θD5

α−1 α0 α1 α2 α3 α4 α5 α8

× iH̃ [2] 2B10|11 ⊕ u(1) 8

Table 5.3: The split subalgebras ginv for T 9−D × T 2/ � n>2 compactifications

we will show that the real invariant subalgebra ginv in D = 1 can nevertheless be described
in a closed form by a Satake diagram and the Conjecture 5.4.1 below, while its root system
and root multiplicities can in principle be determined up to arbitrary height by a proper level
decomposition.

Conjecture 5.4.1 The invariant subalgebra of e10 under the automorphism U � n
2 is the direct

sum of a u(1) factor and a Borcherds algebra with degenerate Cartan matrix characterized by
one isotropic imaginary simple root βI of multiplicity one and nine real simple roots, modded
out by its centre and its derivation.
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As already mentioned in Section 5.4.1, we choose to represent, in Table 5.3, the real form
ginv before quotientation, by the Dynkin diagram of its defining Borcherds algebra 2B10. Both
are related through

ginv = u(1)⊕ 2B10|11 / {z, dI} , (5.79)

which is an extension of the affine central product (5.77) encountered in D = 2, provided we
now set z = Hδ −HI . We also define HI

.
= HβI

and dI
.
= dβI

as the Cartan generator dual to
βI and the derivation counting levels in βI .

More precisely, 2B10 has the following 10× 10 degenerate Cartan matrix, with rank r = 9

A =




0 −1 0
−1 2 −1

�

0 −1
A(ê7)�


 ,

and it can be checked that its null vector is indeed the centre z of the Borcherds algebra mentioned
above. As for affine KMA, the Cartan subalgebra of Borcherds algebras with a non-maximal
n× n Cartan matrix has to be supplemented by n− r new elements that allow to discriminate
between roots having equal weight under Ad(Hi), ∀i = 1, .., n. Here, the Cartan subalgebra of
2B10 thus contains a derivation dI counting the level in βI , allowing, for example, to distinguish
between 2βI ,

10 βI+δ and 2δ, which all have weights −2 under H−1 and 0 under all other Cartan
generators dual to simple roots. However, the operator dI is not in e10 and consequently not in
ginv, either. Hence, the quotient by

{
z, d̄
}

in Conjecture 5.4.1 amounts to identifying HI with
Hδ. Furthermore, since the roots α−1 and βI are connected on the Dynkin diagram, −H−1

plays, already in 2B10, the same rôle as dI with respect to βI . So the elimination of dI by the
quotient (5.79) is equivalent to identifying it with −H−1, which parallels the treatment of HI

with Hδ.
These two processes reconstruct in ginv the 8-dimensional root space (ginv)δ = (g2B10

)δ ⊕
(g2B10

)βI
inherited from e10.

Formally, one decomposes:

Eaδ |ginv
= Eaδ |2B10

,∀a = 1, . . . , 7 , and E8
δ |ginv

= EβI

.
=

1√
2

(Eδ+α7 −Eδ−α7) .

and FβI
= (EβI

)† in e10. One should thus pay attention to the fact that although βI ∼ δ in ginv,
their corresponding ladder operators remain distinct.

We have chosen to depict the Borcherds algebra under scrutiny by the Dynkin diagram
displayed in Table 5.3. However such a GKMA, let alone its root multiplicities, is not known in
the literature. So at this stage, one must bear in mind that the Dynkin diagram we associate
to 2B10 is only meant to determine the correct root lattice for (ginv)

�

. The root multiplicities,
on the other hand, have to be computed separately by decomposing root-spaces of e10 into root-
spaces of (ginv)

�

. So we need both the Dynkin diagram of 2B10 and the root multiplicities listed
in Table 5.6 in order to determine ginv completely.

In order to support the conjecture 5.4.1, we start by performing a careful level by level
analysis. We proceed by decomposing e10 with respect to the coefficient of α8 into tensorial
irreducible representations of sl(10, � ). Such representations, together with the multiplicity
of the weights labelling them, are summarized up to level l = 6 in α8 in Tables 5.4 and 5.5.
These tables have been deduced from the low-level decomposition of roots of e10 that can be
found up to level 18 in [115]. Since we are more interested in the roots themselves and their

10In contrast to real simple roots, we expect for isotropic simple roots of a Borcherds algebra that nβI ∈ ∆,
∀n ∈ � .
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l R(Λ) Λ dimR(Λ)

0 K(ij) [200000000] 55 = 45 + 10 Cartan

1 Z[ijk] [001000000] 120

2 Z̃[i1···i6] [000001000] 210

3 K̃(i)[j1···j8] [100000010] 440 = 360 + 8× 10[0]

4 (K̃(i) ⊗ Z)[j1···j8][k1k2k3] [001000001] 1155 = 840 + 7× 45[0]

A(ij) [200000000] 55 = 10 + 45[0]

5 (K̃(i) ⊗ Z̃)[j1···j8][k1···k6] [000001001] 1848 = 840 + 4× 252[0]

B(i)[j1···j4] [100100000] 1848 = 840 + 4× 252[0]

6 (K̃(i) ⊗ K̃(j))[k1···k8][l1···l8] [100000011] 3200 = 720 + 2× 840 + 16 × 45 + 8× 10[0]

(A⊗ Z̃)(ij)[k1···k6] [010001000] 8250 = 3150 + 5× 840 + 20× 45

D(i)[j1···j7] [100000100] 1155 = 840 + 7× 45

S[i1···i8] [000000010] 45

Table 5.4: Representations of sl(10, � ) in e10 up to l = 6

multiplicities than in the dimension of the corresponding sl(10, � ) representations, we added,
in column dimR(Λ) of Table 5.4, the way the dimension of each representation decomposes
in generators corresponding to different sets of roots, obtained by all reflections by the Weyl
group of sl(10, � ) (i.e. permutations of indices in the physical basis) on the highest weight and
possibly other roots. In the first column of Table 5.5, the tensor associated to the highest weight
is defined, the highest weight being obtained by setting all indices to their maximal values.

Note that roots that are permutations of the highest weight of no representation, or in
other words, have null outer multiplicity, do not appear in Table 5.4, contrary to what is done
in [115]. However, these can be found in Table 5.5. The order of the orbits under the Weyl
group of sl(10, � ) is given in column O10

w , in which representations of null outer multiplicity
are designated by a [0] subscript. Besides, column m contains the root multiplicities, while
column |Λ|2 contains the squared length, which, in the particular case of e10, provide equivalent
characterizations.

For example, the representation with Dynkin labels [000001000] at level 3 is composed of
the Weyl orbit of its highest weight generator K̃(10)[3···10] together with 8 Weyl orbits of the

(outer multiplicity 0) root K̃(2)[3···10] for a total size 360 + 8 × 10. Similarly, the representation
[001000001] at level 4 is composed of the 840 components of the associated tensor, together with
7 copies of the anti-symmetric part of Aij that corresponds to a root of multiplicity 8 and outer
multiplicity 0, for a total dimension 840 + 7 × 45. The remaining eighth copy combines with
the (inner and outer) multiplicity 1 diagonal part A(ii) to form a symmetric tensor [200000000].
Note that the A(ij) representation differs from the K(ij) one, first because the diagonal elements
of the latter are given by Cartan elements and not ladder operators as in A(ij), and second
because these two representations obviously correspond to roots of totally different level, height
and threshold. Clearly, isomorphic irreducible representations of sl(10, � ) can appear several
times in the decomposition of e10.
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Generator α Physical basis O10
w m(α) |α|2

K9 10
0

0 0 0 0 0 0 0 0 1
(0, 0, 0, 0, 0, 0, 0, 0, 1,−1) 45 1 2

Z[89 10]
1

0 0 0 0 0 0 0 0 0
(0, 0, 0, 0, 0, 0, 0, 1, 1, 1) 120 1 2

eZ[56789 10]
2

0 0 0 0 1 2 3 2 1
(0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 210 1 2

eK(10)[3···10]
3

0 0 1 2 3 4 5 3 1
(0, 0, 1, 1, 1, 1, 1, 1, 1, 2) 360 1 2

eK(2)[3···10]
3

0 1 2 3 4 5 6 4 2
(0, 1, 1, 1, 1, 1, 1, 1, 1, 1) 10[0] 8 0

( eK(2) ⊗ Z)[3···10][89 10]
4

0 1 2 3 4 5 6 4 2
(0, 1, 1, 1, 1, 1, 1, 2, 2, 2) 840 1 2

A(10 10)
4

1 2 3 4 5 6 7 4 1
(1, 1, 1, 1, 1, 1, 1, 1, 1, 3) 10 1 2

( eK(2) ⊗ Z)[3···10][19 10]

A(9 10)

4
1 2 3 4 5 6 7 4 2

(1, 1, 1, 1, 1, 1, 1, 1, 2, 2) 45[0] 8 0

( eK(2) ⊗ eZ)[3···10][5··· 10]
5

0 1 2 3 5 7 9 6 3
(0, 1, 1, 1, 2, 2, 2, 2, 2, 2) 840 1 2

B(10)[7··· 10]
5

1 2 3 4 5 6 8 5 2
(1, 1, 1, 1, 1, 1, 2, 2, 2, 3) 840 1 2

( eK(2) ⊗ eZ)[3···10][16··· 10]
B(6)[7··· 10]

5
1 2 3 4 5 7 9 6 3

(1, 1, 1, 1, 1, 2, 2, 2, 2, 2) 252[0] 8 0

( eK(2) ⊗ eK(10))[3···10][3··· 10]
6

0 1 3 5 7 9 11 7 3
(0, 1, 2, 2, 2, 2, 2, 2, 2, 3) 720 1 2

(A⊗ eZ)(9 10)[5··· 10]
6

1 2 3 4 6 8 10 6 3
(1, 1, 1, 1, 2, 2, 2, 2, 3, 3) 3150 1 2

( eK(1) ⊗ eK(10))[24···10][3··· 10]

(A⊗ eZ)[4 10][5··· 10]
D(10)[4···10]

6
1 2 3 5 7 9 11 7 3

(1, 1, 1, 2, 2, 2, 2, 2, 2, 3) 840 8 0

( eK(2) ⊗ eK(2))[3···10][3··· 10]
6

0 2 4 6 8 10 12 8 4
(0, 2, 2, 2, 2, 2, 2, 2, 2, 2) 10[0] 8 0

( eK(1) ⊗ eK(10))[2···9][3··· 10]

(A⊗ eZ)(34)[5··· 10]
D(3)[4···10]

( eK(1) ⊗ eK(2))[3···10][3··· 10]

S[3···10]

6
1 2 4 6 8 10 12 8 4

(1, 1, 2, 2, 2, 2, 2, 2, 2, 2) 45 44 −2

Table 5.5: Decomposition of root spaces of e10 into sl(10, � ) representations

Moreover, and more interestingly, weights with different physical interpretations may live in
the same representation of e10. In particular, the third weight K̃(10)[3···10] in Table 5.5 is clearly
related to the corresponding Euclidean Kaluza-Klein monopole (KK7M), while the fourth weight
K̃(2)[3···10], though belonging to the same [100000010] representation, corresponds, according to
the proposal of [56] (cf. Table 5.1) to the Minkowskian Kaluza-Klein particle (KKp) G01.
Similarly, the seventh weight A(10 10) is associated to the conjectured Euclidean KK9M-brane
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W(10 10)[1··· 10], while A(9 10) is interpreted as the Minkowskian M2-brane C09 10. To complete
the list of Minkowskian objects, we have in addition the weights B(6)[7··· 10] and D(10)[4···10] re-

lated respectively to the exceptional M5-brane C̃06···10 and the Kaluza-Klein monopole (KK7M)
G̃(10)04···10.

After this short excursion into weights and representations of e10, let us come back to the
characterization of 2B10. Observing that objects commuting with iH̃ [2] = −iKzz̄ have the form
X···(99) −X···(10 10) or X···[9 10], we are naturally looking for invariant combinations of generators
of e10 with such tensorial properties. The latter can then be decomposed into sl(8, � ) tensors
with Weyl orbits of order O8

w and identified with a root of 2B10. We have carried out such a
decomposition up to l = 6 in α8 and listed the corresponding roots of 2B10, together with their
multiplicities m, in Table 5.6.

In order to make clear how to retrieve the root system of ginv from Table 5.6, we give in the
third column the expression of a given root of 2B10 in a generalized notation for the physical
basis, denoted physical eigenbasis of e10. This eigenspace basis is defined by11:

E′
i = Ei , ∀i = −1, . . . , 5, 8 , E ′

6 =
1√
2
(E6 + iE67) , E′

7 =
1

2
(H7 − i(E7 + F7)) , (5.80)

so that
[Eα′ , E′

7/F
′
7] = ∓i(Eα+α7 −Eα−α7) , (5.81)

for all α′’s satisfying |α′|2 ≤ 0 and α′ = α, where α is a root of e10 in the original basis. In fact,
all invariant generators in e10 either satisfy Eα′ = Eα, or are of the form (5.81). In Table 5.6,
we characterize the former by their root α′ = α in the physical eigenbasis, and the latter as the
sum of a root α′ = α and −α′

7, to emphasize the fact that they build separate root spaces of
2B10 that will merge in ginv. Indeed, modding out 2B10 by {z; d̄} eliminates the Cartan elements
measuring the level in βI = δ − α′

7 in ginv, thus identifying βI with δ.
As an example, consider the fourth and sixth root at l = 4 in Table 5.6. Both are identified

in (ginv)
�

:
(1, 1, 1, 1, 1, 1, 1, 1, 2, 2)′ + (08,−1, 1)′ ∼ (1, 1, 1, 1, 1, 1, 1, 1, 2, 2)′

so that their respective generators: A99−A10 10 on the one hand, and A9 10 plus 6 combinations
of operators of the form K̃[1···̂i···89 10] ⊗Z[i9 10] , i = 1, . . . , 6 on the other hand, are now collected

in a common 8-dimensional root space (ginv)α for α = δ + α−1 + . . . + α5 + α8. As a result,
the root multiplicity of δ + α−1 + . . .+ α5 + α8 is conserved when reducing e10 to (ginv)

�

, even
though its corresponding root space is spanned by (partly) different generators in each case. We
expect this mechanism to occur for all imaginary roots of ginv.

On the other hand, the multiplicity of isotropic roots in 2B10 splits according to 8→ 1 + 7,
in which the root space of multiplicity one is of the form (5.81). Likewise, imaginary roots of e10

of length −2 split in 2B10 as 44 → 8 + 36, and we expect, though we did not push the analysis
that far, that imaginary roots of length −4 will split as 192 → 44 + 148. Generally, we predict
root multiplicities of 2B10 to be 1, 7, 36, 148, 535, 1745,. . . Although not our initial purpose,
the method can thus be exploited to predict root multiplicities of certain Borcherds algebras
constructed as fixed-point algebras of KMAs under a finite-order automorphism of order bigger
than 2.

Finally, a remark on the real ginv. As anticipated in eqn.(5.79), the Borcherds algebra
involved is actually the split form 2B10|11. Its reality properties can be inferred from the affine
case, which has been worked out in detail in Section 5.4.1, and the behaviour of the generators
EnβI

.
= (1/

√
2)(Enδ+α7 −Enδ−α7) and FnβI

= (EnβI
)† under the restriction φ.

Since φ(EnβI
) = −FnβI

and φ(FnβI
) = −EnβI

, both sets of operators combine symmetrically
in the usual compact and non-compact operators EnβI

∓ FnβI
. Moreover, the Cartan generator

11This basis will be used again for computing shift vectors in Section 5.8.
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l Invariant Tensor Physical eigenbasis of e10 O8
w α ∈ ∆+(2B10) m(α)

0 K[78] (0, 0, 0, 0, 0, 0, 1,−1, 0, 0)′ 28
0 0
0 0 0 0 0 0 1 0

1

1 Z[89 10] (0, 0, 0, 0, 0, 0, 0, 1, 1, 1)′ 8
0 0
0 0 0 0 0 0 0 1

1

Z[678] (0, 0, 0, 0, 0, 1, 1, 1, 0, 0)′ 56
0 1
0 0 0 0 0 0 0 0

1

2 eZ[56789 10] (0, 0, 0, 0, 1, 1, 1, 1, 1, 1)′ 70
0 1
0 0 0 0 1 1 1 1

1

eZ[345678] (0, 0, 1, 1, 1, 1, 1, 1, 0, 0)′ 28
0 2
0 0 1 2 3 2 1 0

1

3 eK(9)[2···89] − eK(10)[2···810] (0, 1, 1, 1, 1, 1, 1, 1, 1, 1)′ + (08,−1, 1)′ 8
1 0
0 0 0 0 0 0 0 0

1

eK(8)[3···10] (0, 0, 1, 1, 1, 1, 1, 2, 1, 1)′ 168
0 2
0 0 1 2 3 2 1 1

1

eK(2)[3···10] (0, 1, 1, 1, 1, 1, 1, 1, 1, 1)′ 8
0 2
0 1 2 3 4 3 2 1

7

eK(8)[1···8] (1, 1, 1, 1, 1, 1, 1, 2, 0, 0)′ 8
0 3
1 2 3 4 5 3 1 0

1

4

`
( eK ⊗ Z)[1···9][789]

−( eK ⊗ Z)[1···8 10][78 10]

´ (1, 1, 1, 1, 1, 1, 2, 2, 1, 1)′ + (08,−1, 1)′ 28
1 1
1 1 1 1 1 0 0 0

1

( eK(2) ⊗ Z)[3···10][89 10] (0, 1, 1, 1, 1, 1, 1, 2, 2, 2)′ 56
0 2
0 1 2 3 4 3 2 2

1

( eK(2) ⊗ Z)[3···10][678] (0, 1, 1, 1, 1, 2, 2, 2, 1, 1)′ 280
0 3
0 1 2 3 4 3 2 1

1

( eK(2) ⊗ Z)[3···10][19 10]

A(9 10)

(1, 1, 1, 1, 1, 1, 1, 1, 2, 2)′ 1
0 2
1 2 3 4 5 4 3 2

7

( eK(2) ⊗ Z)[3···10][178]

A(78)

(1, 1, 1, 1, 1, 1, 2, 2, 1, 1)′ 28
0 3
1 2 3 4 5 3 2 1

7

A(9 9) −A(10 10) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2)′ + (08,−1, 1)′ 1
1 0
1 1 1 1 1 1 1 1

1

A(88) (1, 1, 1, 1, 1, 1, 1, 3, 1, 1)′ 8
0 3
1 2 3 4 5 3 1 1

1

5

`
( eK ⊗ eZ)[1···9][4··· 9]

−( eK ⊗ eZ)[1···810][4···8 10]

´ (1, 1, 1, 2, 2, 2, 2, 2, 1, 1)′ + (08,−1, 1)′ 56
1 2
1 1 1 2 3 2 1 0

1

( eK(2) ⊗ eZ)[3···10][5··· 10] (0, 1, 1, 1, 2, 2, 2, 2, 2, 2)′ 280
0 3
0 1 2 3 5 4 3 2

1

( eK(2) ⊗ eZ)[3···10][3··· 8] (0, 1, 2, 2, 2, 2, 2, 2, 1, 1)′ 56
0 4
0 1 3 5 7 5 3 1

1

B(8)[7··· 10] (1, 1, 1, 1, 1, 1, 2, 3, 2, 2)′ 56
0 3
1 2 3 4 5 3 2 2

1

B(8)[5··· 8] (1, 1, 1, 1, 2, 2, 2, 3, 1, 1)′ 280
0 4
1 2 3 4 6 4 2 1

1
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5 B(9)[678 9] −B(10)[678 10] (1, 1, 1, 1, 1, 2, 2, 2, 2, 2)′ + (08,−1, 1)′ 56
1 1
1 1 1 1 1 1 1 1

1

( eK(2) ⊗ eZ)[3···10][16··· 10]

B(6)[7··· 10]
(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)′ 56

0 3
1 2 3 4 5 4 3 2

7

( eK(2) ⊗ eZ)[3···10][14··· 8]

B(4)[5··· 8]
(1, 1, 1, 2, 2, 2, 2, 2, 1, 1)′ 56

0 4
1 2 3 5 7 5 3 1

7

6

`
( eK ⊗ eK(9))[2···10][2··· 9]

−( eK ⊗ eK(10))[2···8 10][2···810]
´ (0, 2, 2, 2, 2, 2, 2, 2, 2, 2)′ + (08,−1, 1)′ 8

2 0
0 0 0 0 0 0 0 0

1

( eK(2) ⊗ eK(8))[3···10][3··· 10] (0, 1, 2, 2, 2, 2, 2, 3, 2, 2)′ 336
0 4
0 1 3 5 7 5 3 2

1

`
( eK ⊗ eK(9))[1···9][3··· 10]

−( eK ⊗ eK(10))[1···8 10][3···10]
´

`
(A⊗ eZ)[89][3··· 79]

−(A⊗ eZ)[8 10][3··· 7 10]

´

D(9)[3···9] −D(10)[3···8 10]

(1, 1, 2, 2, 2, 2, 2, 2, 2, 2)′ + (08,−1, 1)′ 28
2 0
1 0 0 0 0 0 0 0

8

( eK(2) ⊗ eK(8))[3···10][1··· 8]

(A⊗ eZ)[78][2··· 68]

D(8)[2···8]

(1, 2, 2, 2, 2, 2, 2, 3, 1, 1)′ 56
0 5
1 3 5 7 9 6 3 1

1

(A⊗ eZ)(9 10)[5··· 10] (1, 1, 1, 1, 2, 2, 2, 2, 3, 3)′ 70
0 3
1 2 3 4 6 5 4 3

1

(A⊗ eZ)(78)[5··· 10] (1, 1, 1, 1, 2, 2, 3, 3, 2, 2)′ 420
0 4
1 2 3 4 6 4 3 2

1

(A⊗ eZ)(78)[3··· 8] (1, 1, 2, 2, 2, 2, 3, 3, 1, 1)′ 420
0 5
1 2 4 6 8 5 3 1

1

`
(A⊗ eZ)(89)[4··· 89]

−(A⊗ eZ)(8 10)[4···8 10]

´ (1, 1, 1, 2, 2, 2, 2, 3, 2, 2)′ + (08,−1, 1)′ 280
1 2
1 1 1 2 3 2 1 1

1

`
( eK ⊗ eK(1))[1···9][2··· 9]

−( eK ⊗ eK(1))[1···8 10][2···8 10]

´ (2, 2, 2, 2, 2, 2, 2, 2, 1, 1)′ + (08,−1, 1)′ 8
2 1
2 2 2 2 2 1 0 0

8

( eK(2) ⊗ eK(2))[3···10][3··· 10] (0, 2, 2, 2, 2, 2, 2, 2, 2, 2)′ 8
0 4
0 2 4 6 8 6 4 2

7

( eK ⊗ eK(10))[1···9][3··· 10]

(A⊗ eZ)(34)[5··· 10]

D(3)[4···10]

( eK ⊗ eK(2))[13···10][3··· 10]

S[3···10]

(1, 1, 2, 2, 2, 2, 2, 2, 2, 2)′ 28
0 4
1 2 4 6 8 6 4 2

36

( eK ⊗ eK(8))[1···79 10][1··· 8]

(A⊗ eZ)(12)[3··· 8]

D(1)[2···8]

( eK ⊗ eK(1))[1···9][2··· 810]

S[1···8]

(2, 2, 2, 2, 2, 2, 2, 2, 1, 1)′ 1
0 5
2 4 6 8 10 7 4 1

36

Table 5.6: Decomposition of root spaces of 2B10 in representations of sl(8, � )
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HI has to match the reality property of Hδ to which it gets identified under relation (5.77),
and must therefore be non-compact in 2B10, which agrees with the definition of the split form
2B10|11.

As in the affine case, the signature of ginv remains finite and is completely determined by
the reality properties of the Cartan subalgebra. Taking into account the quotient (5.77), the
signature is σ = 8.

5.5 The orbifolds T 4/
�
n>2

In this section, we will treat the slightly more involved orbifold T 7−D × T 4/Zn for n > 3. A
new feature appears in this case: the invariant subalgebras will now contain generators that
are complex combinations of the original e10 generators. If the orbifold is chosen to act on
the coordinates {x7, x8, x9, x10}, it will only affect roots containing α4, α5, α6, α7 or α8, and
the corresponding generators. This orbifold should thus be studied first in D = 6 where gU =
so(5, 5), with the following action on the complex coordinates:

(z1, z̄1)→ (e2πi/nz1, e
−2πi/nz̄1) , (z2, z̄2)→ (e−2πi/nz2, e

2πi/nz̄2) . (5.82)

In other words, we choose the prescription Q1 = +1 and Q2 = −1 to ensure
∑

iQi = 0.

The rotation operator U � n
4 =

2∏

k=1

e−
2πi
n
QkKzkz̄k with the above charge prescription leaves in-

variant the following objects:

QA = 0 K66 = 1
4(5H4 + 6H5 + 4H6 + 2H7 + 3H8) ,

Kz1z̄1 = 1
2(K5 +K6) = 1

4(H4 + 4H5 + 4H6 + 2H7 + 3H8) ,

Kz2z̄2 = 1
2(K7 +K8) = 1

4(H4 + 2H5 + 3H8) ,{
Kz̄1 z̄2 /

1
2Kz̄1barz2

Kz1z2 /
1
2Kz1z2

}
= 1

4

(
E56 −E67(+/−)(F56 − F67)

±i
(
E6 +E567(+/−)(F6 + F567)

))
,

Z6z1 z̄1 /
1
2Z6z1 z̄1 = i

2(E4526278(+/−)F4526278)

Z6z2 z̄2 /
1
2Z6z2 z̄2 = i

2(E458(+/−)F458) ,{
Z6z̄1 z̄2 /

1
2Z6z̄1 z̄2

Z6z1z2 /
1
2Z6z1z2

}
= 1

4

(
E452678 −E4568(+/−)(F452678 − F4568)

±i
(
E45268 + F45268(+/−)(E45678 + F45678)

))
.

Kz1 z̄1 = i(E5 − F5) , Kz2 z̄2 = i(E7 − F7) .
(5.83)

Thus ginv has as before (conserved) rank 5. Note that the invariant diagonal metric elements are
in fact linear combinations of the three basic Cartan generators satisfying α5(H) = α7(H) = 0,
namely {2H4 +H5,H5 + 2H8,H5 + 2H6 +H7}. Furthermore, we have various charged combi-
nations:

QA = +1 K6z̄1 /
1
2K6z̄1 = 1

2
√

2

(
E4(+/−)F4 + i(E45(+/−)F45)

)
,

K6z2 /
1
2K6z2 = 1

2
√

2

(
E456(+/−)F456 − i(E4567(+/−)F4567)

)
,

Zz1 z̄1z2 /
1
2Zz1z̄1z2 = 1

2
√

2

(
E568(+/−)F568 + i(E5678(+/−)F5678)

)
,

Zz̄1z2z̄2 /
1
2Zz̄1z2 z̄2 = 1

2
√

2

(
− (E8(+/−)F8) + i(E58(+/−)F58)

)
,

(5.84)
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and their complex conjugates with QA = −1, along with:

QA = +2 Kz̄1z̄1 = 1
2

(
H5 + i(E5 + F5)

)
,

Kz2z2 = 1
2

(
H7 − i(E7 + F7)

)
,

Kz̄1z2 /
1
2Kz̄1z2 = 1

4

(
E56 +E67(+/−)(F56 + F67)

−i
(
E567 −E6(+/−)(F567 − F6)

))
,

Z6z̄1z2 /
1
2Z6z̄1z2 = 1

4

(
E452678 +E4568(+/−)(F452678 + F4568)

−i
(
E45268 −E45678(+/−)(F45268 − F45678)

))
,

(5.85)

and complex conjugates (QA = −2). Note that these five sectors are all different in T 4/ � n for
n > 5, while the two sectors with QA = ±2 will clearly have the same charge assignment in
T 4/ � 4. Finally, the orbifold T 4/ � 3 merges, on the one hand, the two sectors with QA = 2,−1
and, on the other hand, the two remaining ones with QA = 1,−2, giving rise to three main
sectors instead of five. In string theory, these three cases will lead to different twisted sectors,
however, the untwisted sector and the residual U-duality algebra do not depend on n for any
n > 3. The n = 2 case will again be treated separately.

For clarity, we will start by deriving the general structure of the (complex) invariant sub-
algebra, leaving aside, for the moment being, the analysis of its reality property. To do so, we
perform a change of basis in the QA = 0 sector, separating raising from lowering operators.
Let Xα = (1/2)(Eα + Fα) be the generator of any field element of gU , we will resort to the
combinations X+

α
.
= Xα + 1

2Xα = Eα and X−
α

.
= Xα − 1

2Xα = Fα to derive (ginv)
�

. First, the
following generators can be shown to form a basis of the non-abelian part of (ginv)

�

:

Eα̃ = −iE458 = Z+
6z̄2z2

, Feα = iF458 = Z−
6z2 z̄2

,

Eα± =
1

2
(E56 −E67 ± i(E567 +E6)) = (Kz̄1 z̄2/Kz1z2)

+ , (5.86)

Fα± =
1

2
(F56 − F67)± i(−F567 − F6)) = (Kz1z2/Kz̄1 z̄2)

− .

Computing their commutation relations determines the remaining generators of the algebra (for
economy, we have omitted the lowering operators, which can be obtained quite straightforwardly
by Fα = (Eα)†):

Eeα+α±
.
= ±[Eeα, Eα± ] =

1

2
(E452678 −E4568 ± i(E45678 +E45268))

= (Z6z̄1 z̄2/Z6z1z2)
+ ,

Eα−+eα+α+

.
= [Eα− , Eeα+α+

] = −iE4526278 = (Z6z̄1z1)
+ ,

Heα
.
= [Eeα, Feα] = (H4 +H5 +H8) ,

Hα±
.
= [Eα± , Fα± ] =

1

2

(
H5 + 2H6 +H7 ± i(F5 −E5 + F7 −E7)

)
,

Heα+α±
.
= [Eeα+α± , Feα+α± ]

=
1

2

(
2H4 + 3H5 + 2H6 +H7 + 2H8 ∓ i(E5 − F5 +E7 − F7)

)
,

Hα−+eα+α+

.
= [Eα−+eα+α+

, Fα−+eα+α+
] = H4 + 2H5 + 2H6 +H7 +H8 .

(5.87)

which shows that the non-abelian part of the complexified invariant subalgebra is of type a3 ' d3.
The rest of the QA = 0 sectors combines into two abelian contributions, so that the whole

D = 6 (ginv)
�

reads

d3 ⊕ � ⊕2
: e e e

α− α̃ α+

× {H8 −H4} × {E5 − F5 −E7 + F7}
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Concentrating on the non-abelian d3 part of the real form ginv, we remark that it can be
chosen to have Cartan subalgebra spanned by the basis

{
i(Hα+ − Hα−); Heα; Hα+ + Hα−

}

compatible with the restriction Fixτ0(ginv

�

). Since, in this basis, all ladder operators combine
under φ into pairs of one compact and one non-compact operator, the signature of the real
d3 is again completely determined by the difference between non-compact and compact Cartan
generators: since i(Hα+−Hα−) is compact while the two remaining generators are non-compact,
σ(d3) = 1, which determines the real form to be su(2, 2) ' so(4, 2). The reality property of the
invariant subalgebra is encoded in the Satake diagram of Table 5.7.

In addition, the two abelian factors appearing in the diagram restrict, under Fixτ0 to H [4] =
H8−H4 and iH̃ [4] = (E5−F5−E7 +F7) and generate so(1, 1)⊕ u(1), similarly to the T 2/ � n>2

case. Their contributions to the signature cancel out, so σ(ginv) = 1
If we refer to the Satake diagram of Table 5.7, we note that in contrast to the split case, the

arrows now joining the roots α+ and α− indeed change the compactness of the Cartan subalgebra
without touching the ”split” structure of the ladder operators. Moreover, the combinations
i(Hα+ − Hα−) and Hα+ + Hα− are now directly deducible from the action of φ on the set of
simple roots.

Finally, as will be confirmed with the T 6/ � n>2 orbifold, if the chief inner automorphism U � n
q

produces k pairs of Cartan generators in (ginv)
�

taking value in h(er|r) ± ik(er|r), there will be
k arrows joining the dual simple roots in the Satake diagram.

Compactifying further to D = 5, the additional node α3 connects to α̃ forming a d4 sub-
algebra. As in the T 2/ � n>2 case, this extra split a1 will increase the total signature by one,
yielding the real form so(5, 3). Since α3(H8 −H4) 6= 0, the non-compact Cartan generator H [4]

commuting with so(5, 3) ⊕ u(1) is now any multiple of H [4] = 2H3 + 4H4 + 3H5 + 2H6 +H7.
In D = 4, a new invariant root γ = α2 + 2α3 + 3α4 + 3α5 + 2α6 +α7 +α8 ∈ ∆+(e7) appears

which enhances the so(1, 1) factor to sl(2, � ). The reality property of the latter abelian factor
can be checked by rewriting γ = α2+2α3+2α4+α5+α−+α̃+α+, which tells us that φ(γ) = −γ.
In D = 3, the additional node α1 extending ginv reconnects γ to the Dynkin diagram, resulting
in so(8, 6) ⊕ u(1).

5.5.1 Equivalence classes of involutive automorphisms of Lie algebras

Before treating the affine case, we shall introduce a procedure extensively used by [71], par.
14.4, to determine real forms by translating the adjoint action of the involutive automorphism
on the generators by an exponential action on the root system directly.

Our concern in this paper will be only with real forms generated from chief inner involutive
automorphisms, in other words involutions which can be written as ϑ = Ad(eH ) for H ∈ h

�

. In

this case, a matrix realization of the defining chief inner automorphism, denoted ϑ = Ad(eH )
will act on the compact real form gc as:

ϑ = 1Ir ⊕
∑

α∈∆+

(
cosh(α(H)) i sinh(α(H))

−i sinh(α(H) cosh(α(H))

)
, ∀α ∈ ∆+ . (5.88)

Being involutive ϑ
2 = 1I implies cosh(2α(H)) = 1, leading to

eα(H) = ±1, ∀α ∈ ∆+ . (5.89)

In particular, this should hold for the simple roots: eαi(H) = ±1, ∀αi ∈ Π. Then, how one
assigns the ±-signs to the simple roots completely determines the action of ϑ on the whole root
lattice (5.89). For a r-rank algebra, there are then 2r inner involutive automorphisms, but in
general far less non-isomorphic real forms of g.
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We are now ready to implement the procedure (5.69), first by splitting the positive root
system ∆+ into two subsets

∆(±1)
.
=
{
α ∈ ∆+ | eα(H) = ±1

}
(5.90)

and then by acting with the linear operator (5.68) in its matrix realisation (5.88) on the base of
gc. Then, the eigenspaces with eigenvalue (±1) can be shown to be spanned by

k = Span
{
iHαj , ∀αj ∈ Π; (Eα − Fα) and i(Eα + Fα), ∀α ∈ ∆(+1)

}
(5.91)

and
p = Span

{
i(Eα − Fα), (Eα + Fα), ∀α ∈ ∆(−1)

}
. (5.92)

In this approach, the signature determining all equivalence classes of involutive automorphisms
(5.89) takes the handy form

−σ = Trϑ =
(
r + 2

∑

α∈∆+

cosh(α(H))
)

= r + 2(dim ∆(+1) − dim∆(−1)) . (5.93)

5.5.2 A matrix formulation of involutive automorphisms of affine KMAs

This analysis can be extended to real forms of affine extension of Lie algebras. The general
method based on a matrix reformulation of the involutive automorphism has been developed in
[73] and successfully applied to the Âr, B̂r, Ĉr and D̂r cases in [74, 72, 67, 69, 68]. Here, we
will only present the very basics of the method, and refer the reader to these articles for more
details.

There are two ways of handling involutive automorphisms of untwisted affine Lie algebras.
The first (classical) one is based on the study of Cartan-preserving automorphisms. Since
every conjugacy class of the automorphism group contains at least one such automorphism, one
can by this means arrive at a first classification of the involutive automorphisms of a given
affine KMA. This procedure would be enough for determining all real forms of a finite Lie
algebra, but would usually overcount them for affine KMA, because in this case some Cartan-
preserving automorphisms can be conjugate via non-Cartan-preserving ones within Aut(ĝ). This
will obviously reduce the number of conjugacy classes and by the same token the number of real
forms of an untwisted affine KMA. A matrix formulation of automorphisms has been proposed
in [73] precisely to treat these cases.

The first method takes advantage of the fact that Cartan-preserving automorphisms can be
translated into automorphisms of the root system that leave the root structure of ĝ invariant. Let
us call φ such an automorphism acting on ∆(ĝ). It can be constructed from an automorphism
φ0 acting on the basis of simple roots Π(g), for rkg = r, as φ0(αi) =

∑r
j=1(φ0)

j
i αj for i = 1, .., r.

12 Define the linear functional Ω ∈ P (ĝ) such that

φ(δ) = µδ , φ(αi) = φ0(αi)− (φ0(αi)|Ω)µδ , ∀i = 1, .., r . (5.94)

with (αi|Ω) = ni ∈ � . This automorphism will be root-preserving if

µ = ±1 , and (φ0)
j
i ∈ � .

All root-preserving automorphisms can thus be characterized by the triple Dφ = {φ0,Ω, µ}, with
the composition law:

Dφ1Dφ2 = {(φ1)0 · (φ2)0, µ2Ω1 + (φ1)0(Ω2), µ1µ2} (5.95)

12Not to confuse with the Cartan involution acting on the root system, as given from the Satake diagram. In
the finite case, if φ0 is non-trivial, it typically corresponds to outer automorphisms of the algebra.
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The action of φ lifts to an algebra automorphism ϑφ. The first relation in expression (5.94)
implies ϑφ(c) = µc, while we have:

ϑφ(z
n ⊗Eα) = Cα+nδ z

µ(n−(φ0(αi)|Ω)) ⊗Eφ0(α) ,

ϑφ(z
n ⊗Hα) = Cnδ z

µn ⊗Hφ0(α) , ϑφ(d) = µd+HΩ − 1
2 |Ω|2µc .

(5.96)

on the rest of the algebra. By demanding that ϑφ preserves the affine algebra (5.17), we can
derive the relations, for α and β ∈ ∆(g): CnδCmδ = C(m+n)δ , Cα+nδ = CnδCα, and Nα,βCα+β =
Nφ0(α),φ0(β)CαCβ with C0 = 1 and C−α = C−1

α . The condition for ϑφ to be involutive is
analogous to the requirement (5.89), namely

eαi(H) = ±1 , ∀i = 0, 1, .., r ,

where i = 0 is this time included, and H =
∑
ciHi + cdd, with ci, cd ∈ � .

In particular, for a Cartan-preserving chief inner automorphism of type ϑ = ead(H), we have:

φ0 = 1I , Ω = 0 , µ = 1 , Cα = eα(H) , ∀α ∈ ∆(g) . (5.97)

Possible real forms of an untwisted affine KMA are then determined by studying conjugacy
classes of triples Dφ, for various involutive automorphisms φ. However, from the general struc-
ture (5.97), we see that a chief inner automorphism cannot be conjugate through a Cartan-
preserving automorphism to an automorphism associated with a Weyl reflection, for instance.
They could, however, be conjugate under some more general automorphism (note that this
could not happen in the finite context). The above method might thus lead to overcounting the
number of equivalence classes of automorphisms, and consequently, of real forms of an affine Lie
algebra.

This problem has been solved by a newer approach due to Cornwell, which is based on a
matrix reformulation of the set of automorphisms for a given affine KMA. Choosing a faithfull
dΓ-dimensional representation of g denoted by Γ, we can represent any element of L(g) by
A(z) =

∑r
b=1

∑∞
n=−∞ a b

n zn ⊗ Γ(Xb), for Xb ∈ g. Then any element of ĝ may be written as:

Â(z) = A(z) + µcc+ µdd

where the + are clearly not to be taken as matrix additions.
It has been pointed out in [73] that all automorphisms of complex untwisted KMAs are

classified in this matrix formulation according to four types, christened: type 1a, type 1b, type
2a and type 2b.

A type 1a automorphism will act on A(z) through an invertible dΓ × dΓ matrix U(z) with
components given by Laurent polynomials in z:

ϕ(A(z)) = U(z)A(uz)U(z)−1 +
1

γΓ

∮
dz

2πiz
Tr

[(
d

dz
lnU(z)

)
A(uz)

]
c , (5.98)

where γΓ is the Dynkin index of the representation, and u ∈ � ∗ (this parameter corre-
sponds, in the preceding formulation, to a Cartan preserving automorphism of type ϑ =
ead(d)). The remaining three automorphisms are defined as above, by replacing A(uz) →
{−Ã(uz);A(uz−1);−Ã(uz−1)} on the RHS of expression (5.98) for, respectively, type {1b;2a;2b}
automorphisms.

Here the tilde denotes the contragredient representation −Γ̃. The action on c and d is the
same for all four automorphisms, namely:

ϕ(c) = µc ,

ϕ(d) = µΦ(U(z)) + λc+ µd ,
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with µ = 1 for type 1a and 1b, and µ = −1 for type 2a and 2b, and the matrix:

Φ(U(z)) = −z d
dz

lnU(z) +
1

dΓ
Tr

(
z
d

dz
lnU(z)

)
1I . (5.99)

An automorphism ϕ can then be encoded in the triple: Dϕ = {U(z), u, λ}, and, as before,
conjugation classes of automorphisms can be determined by studying equivalence classes of
triples Dϕ. In this case, the more general structure of the matrix U(z) as compared to φ0,
which acts directly on the generators of ĝ in a given representation, allows conjugation of two
Cartan-preserving automorphisms via both Cartan-preserving and non-Cartan-preserving ones.

Finally, the conditions for ϕ to be involutive are, for type 1a:

u2 = 1 , (5.100)

and
U(z)U(uz) = ζzk1I , with k ∈ � and ζ ∈ � ,

λ = − 1

2γΓ

∮
dz

2πiz
Tr

[(
d

dz
lnU(z)

)
Φ(U(uz))

]
.

(5.101)

For a type 1b automorphism, the first condition (5.100) remains the same, while we have to
replace U(uz)→ Ũ(uz)−1 and Φ(U(uz))→ −Φ̃(U(uz)) in the two last conditions (5.101).

Involutive automorphisms of type 2a and 2b are qualitatively different since they are already
involutive for any value of u (so that condition (5.100) can be dropped), provided the last two
conditions (5.101) are met, with the substitutions U(uz)→ U(uz−1) in the first and Φ(U(uz))→
Φ(U(uz−1)) in the second one for type 2a, and U(uz)→ Ũ(uz−1)−1 in the first and Φ(U(uz))→
−Φ(Ũ(uz−1)) in the second one for type 2b. In both cases, we are free to set u = 1.

When studying one particular class of involutive automorphisms, one will usually combine
both the method based on root-preserving automorphisms and the one using the more elaborate
matrix formulation to get a clearer picture of the resulting real form.

5.5.3 The non-split real invariant subalgebra in D = 2

The affine extension in D = 2 yields a real form of d̂7 1 û(1). We will show that this real
form, obtained from projecting from e9|10 all charged states, builds a ŝo(8, 6) 1 û|1(1), where,
by ŝo(8, 6), we mean the affine real form described by the D = 2 Satake diagram of Table 5.7
as determined in [239]. The proof requires working in a basis of ginv in which the Cartan
subalgebra is chosen compact. It will be shown that such a basis can indeed be constructed
from the restriction (ginv)

�

∩ e9|10. Then, by determining the action of φ on the latter, we will
establish that, following [73], the vertex operator (or Sugawara) construction of g inv reproduces
exactly the Cartan decomposition of ŝo(8, 6) expected from [69]. Finally, we will show how the
reality properties of d̂7, entail, through the affine central product, those of the û(1) factor.

Concentrating first on d̂7, we follow for a start the matrix method outlined in the preceding
Section 5.5.2. In this case, the automorphism (5.98) restricted to the transformation A(z) →
U(z)A(z)U(z)−1 has to preserve the defining condition:

A(z)ᵀG+GA(z) = 0 ,

where G is the metric kept invariant by SO(14) matrices in the rep Γ.
We start by choosing, for d7 ⊂ d̂7, the 14-dimensional representation given in Appendix 5.14

with Dynkin index γΓ = 1/
√

42, whose generators will be denoted Γ(Eα) and Γ(Hi). The
affine extension of these operators is obtained as usual by the Sugawara construction, and the
involutive automorphism U(z) will be represented by a 14 × 14 matrix. This representation
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Γ is in fact equivalent to its contragredient one −Γ̃ in the sense that one can find a 14 × 14
non-singular matrix C such that:

Γ(X) = −C Γ̃(X)C−1 , ∀X ∈ d7 .

One readily sees from eqn. (5.98) and subsequent arguments that, in this case, type 1b and 2b
automorphisms coincide respectively with type 1a and 2a, which leaves us, for d̂7, with just two
classes of involutive automorphisms, characterizing, roughly, real forms where the central charge
c and the scaling operator d are both compact or both non-compact.

Since we do not expect the restriction φ of the Chevalley involution to ginv to mix levels in δ
in this case, this in principle rules out all involutive automorphisms of type 2a, which explicitly
depend on z. In turn, it tells us that the central charge and the scaling operator are now both
compact in ginv, contrary to, for instance, the T 7 × T 2/ � n>2 case analyzed in Section 5.4, and
will be written ic′

.
= iHδ′D7

= ic and id′. Neither is the involution φ likely to involve different

compactness properties for even and odd levels in δ. These considerations lead us to select
u = +1. The z-independent automorphism of type 1a with u = +1 which seems to be a good
candidate, in the sense that it reduces to so(8, 6) when we restrict to the finite Lie algebra
d7 ⊂ d̂7, is

U(z) = 1I4 ⊕ (−1I6)⊕ 1I4 , (5.102)

so that eq.(5.98) reduces to ϕ(A(z)) = U(z)A(z)U(z)−1.
Obviously, we have Φ(U(z)) = 0 from expression (5.99) and the condition (5.101) for the

automorphism to be involutive determines λ = 0. Now, since both central charge and scaling
operator are compact in the new primed basis, we have µ = 1. All these considerations put
together lead to:

ϕ(ic′) = ic′ , ϕ(id′) = id′ , (5.103)

from which we can determine the two triples:

Dϕ = {1I4 ⊕ (−1I6)⊕ 1I4; +1; 0} ↔ Dφ = {1I7; 0;+1} ,

the structure of Dφ clearly showing that we are dealing with a chief inner involutive automor-
phism. A natural choice for the primed basis of the Cartan subalgebra of d7 is to pick it compact,
so that its affine extension h̃ = {iH ′

1, . . . , iH
′
7, ic

′, id′} is compact, as well.
We will check that the real form of d̂7 generated by the automorphism (5.102) and the one

determined by the Cartan involution φ are conjugate, and thus lead to isomorphic real forms.
Let us, for a start, redefine the basis of simple roots of d̂7 ⊂ ginv appearing in Table 5.7:

β1 ≡ α− , β2 ≡ α̃ , β3 ≡ α+ , β4 ≡ α3 , β5 ≡ α2 , β6 ≡ α1 , β7 ≡ γ β0 ≡ α0 .
(5.104)

The lexicographical order we have chosen ensures that the convention for the structure con-
stants is a natural extension of the D = 6 case. As for e9, we introduce an abbreviated notation
Eβ6+2β5+2β4+β1+2β2+β3

.
= E652421223. Conventions and a method for computing relevant struc-

ture constants are given in Appendix 5.14.
We can now construct the compact Cartan subalgebra h̃ by selecting combinations of elements

of d7 ⊂ d̂7 ⊂ ginv which commute and are themselves combinations of compact generators of
e9|10. The Cartan generators in this new basis are listed below, both in terms of d7 ⊂ (ginv)

�
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and e8 ⊂ gU generators:

iH ′
1 = i(E2 + F2) ≡ E458 − F458 ,

iH ′
2 =

i

2

(
η1(H3 −H1)−E2 − F2 −E123 − F123

)

≡ 1

2

(
η1(E5 − F5 +E7 − F7)−E458 + F458 −E4526278 + F4526278

)
,

iH ′
3 = i(E123 + F123) ≡ E4526278 − F4526278 ,

iH ′
4 =

1

2

(
η2(E5421223 − F5421223)− iη1(H3 −H1)−E5 + F5

)

≡ −1

2

(
η2(E23425362782 − F23425362782) + η1(E5 − F5 +E7 − F7) +E2 − F2

)
, (5.105)

iH ′
5 = E5 − F5 ≡ E2 − F2 ,

iH ′
6 =

1

2

(
η3(E76252421223 − F76252421223)−E7 + F7 −E5 + F5 − η2(E5421223 − F5421223)

)

≡ −1

2

(
η3(EθE8

− FθE8
) +Eγ − Fγ +E2 − F2 − η2(E23425362782 − F23425362782)

)
,

iH ′
7 = E7 − F7 ≡ Eγ − Fγ ,

where the factors ηi = ±1, ∀i = 1, 2, 3, determine equivalent solutions.
The Cartan generator attached to the affine root β ′

0 is constructed from the above (5.105)
in the usual way:

iH ′
0 = iHδ′D7

− η3(E76252421223 − F76252421223)

= ic′ + η3(EθE8
− FθE8

) ,

which commutes with h̃ (5.105) and is indeed compact, as expected from expression (5.103).
We find the associated ladder operators by solving the set of equations [H ′

j, E
′
i] = AijE

′
i,

[E′
i, F

′
j ] = δijH

′
i and [E′

i, E
′
j ] = Ni,jE′

ij (the corresponding commutation relations for the lowering

operators are then automatically satisfied). Here we write E ′
i ≡ Eβ′

i
and F ′

i ≡ E−β′
i

for short,
for the set Π′ = {β′0, . . . , β′

7} of simple roots dual to the Cartan basis (5.105). Thus:

E′
1/F

′
1 = H2 ∓ (E2 − F2) ≡ H458 ± i(E458 + F458) ,

E′
2 = E1 − F3 − η1(F12 − F23) ≡ Eα− − Fα+ − η1(Eα−+eα − Feα+α+

) ,

E′
3/F

′
3 = H123 ∓ (E123 − F123) ≡ H4526278 ± i(E4526278 + F4526278) ,

E′
4 = E4(23↔12) + iE54(23↔12) − η2(F4(12↔23) + iF54(12↔23)) , for η1 = ±1 ,

E′
5/F

′
5 = H5 ± i(E5 + F5) ≡ H2 ± i(E2 + F2) ,

(5.106)

together with F ′
i = (E′

i)
†, for i = 2, 4. In the expression in (5.106) for E ′

4 , the ↔ gives the two
possible values of the last two indices depending on the choice of η1 = ±1. It can be checked
that [E′

2, E
′
4] = 0.

The raising operator E ′
6 is independent of η1 and takes the form:

E′
6 = (E6 + iE65 − iE76 +E765) + η2η3(F6 + iF65 − iF76 + F765)

−η2(iE65421223 +E652421223 +E765421223 − iE7652421223) (5.107)

−η3(iF65421223 + F652421223 + F765421223 − iF7652421223) ,

the corresponding lowering operator is obtained from the above by hermitian conjugation. More-
over, it can be verified after some tedious algebra that indeed [E ′

4, E
′
6] = 0. Note that we have
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translated the primed generators into e8 ones only when the expression is not too lengthy. Here-
after, such substitutions will be made only when necessary.

The two remaining pairs of ladder operator enhancing d6 to d̂7 are:

E′
7/F

′
7 = H7 ± i(E7 + F7) ≡ Hγ ± i(Eγ + Fγ) ,

E′
0/F

′
0 = −η3 t

±1 ⊗
(
HθD7

∓ i(EθD7
+ FθD7

)
)

≡ η3 t
±1 ⊗

(
HθE8

∓ i(EθE8
+ FθE8

)
)
,

(5.108)

where θD7

.
= β7 + 2(β6 + β5 + β4 + β2) + β1 + β3.

At this stage it is worth pointing out that the affine real form ginv is realized as usual as a
central extension of the loop algebra of the finite (d7)0 which may or may not descend to a real
form of d7 (in our case, it does since it will be shown that (d7)0 = d7|5)

ginv/L(u(1)) = � [t, t−1]⊗ (d7)0 ⊕ � ic′ ⊕ � id′ .

The difference is that we are now tensoring with an algebra of Laurent polynomials L = � [t, t−1]
in the (indeterminate) variable t defined as follows

t =
1

2

(
(1− i) + (1 + i)ϑC

)
z ≡ 1

1 + i

(
1 + iϑC

)
z . (5.109)

The second term of the equality (5.109) is clearly reminescent from the operator
√
ϑ (5.68). The

inverse transformation yields:

z =
(1 + i)t+

√
2i(t2 − 2)

2
, z−1 ≡ z̄ =

(1 + i)t−
√

2i(t2 − 2)

2i
.

On can check that under the Chevalley involution: ϑC(t) = t and ϑC(t−1) = t−1. Moreover,
using

tn =
1

(1− i)nzn
n∑

k=0

(
n

k

)
(−iz2)k

one can check that ϑC(tn) = tn ∀n ∈ � ∗, as required by the affine extension of the basis (5.105-
5.108), which will become clearer when we give the complete realization of the real g inv/L(u(1))
(5.114-5.115).

Finally, we may now give the expression of the compact scaling operator in the primed basis:

id′ =
(1 + iϑC)z

(1− iϑC)z
id ,

which can be shown to be Hermitian.
Now that we know the structure of the generators E ′

i and F ′
i , i = 0, . . . , 7, we are in the

position of determining Fixτ0(d̂7) and, by acting with φ on the latter, are able to reconstruct the

eigenvalues of the representation φ = Ad(eH ) of the Cartan involution on the basis (5.91)-(5.92),

namely φ · (d̂7)β′ = eβ
′(H) (d̂7)β′ , with eβ

′
i(H) = ±1, ∀β′

i ∈ Π′. We will then show that the four
automorphisms determined by this method corresponding to all possible values of ηi, i = 1, 2, 3,
are conjugate to the action of the U(z) given in (5.102) on the representation Γ of d7.

Reexpressing, for instance, the second line of the list (5.106) in terms of the original ba-
sis (5.86) and (5.87), and taking Fixτ0(d̂7) yields the two following generators of ginv:

1

2
(E′

2 − F ′
2) =

1

2

(
E56 − F56 −E67 + F67 − η1

(
E4526278 − F4526278 −E4568 + F4568

))
,

i

2
(E′

2 + F ′
2) =

1

2

(
E567 − F567 +E6 − F6 − η1

(
E45678 − F45678 +E452678 − F45268

))
.

(5.110)
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Both are obviously invariant under φ, since they are linear combinations of compact generators.
According to Section 5.89, we have eβ

′
2(H) = +1. The same reasoning applies to the pairs

E′
4/F

′
4 and E′

6/F
′
6. In contrast to the E ′

2/F
′
2 case, these two couples of generators will be

alternatively compact or non-compact depending on the sign of η2 and η3. In particular, since
E′

4 has basic structure [Eα, Eα± ]−η2[Fα∓ , Fα], the choice η2 = +1 will produce the two compact

combinations 2−1(E′
4 − F ′

4) and 2−1i(E′
4 + F ′

4), while the opposite choice selects the two non-
compact ones, by flipping the reciprocal sign between E and F . From expression (5.107), we
see that the E ′

6/F
′
6 case is even more straightforward, compactness and non-compactness being

selected by η2η3 = ±1 respectively. At this stage, our analysis thus leads to the four possibilities:
eβ

′
4(H) = ±1 and eβ

′
6(H) = ±1.

Finally, the remaining ladder operators E ′
i and F ′

i for i = 0, 1, 3, 5, 7 combine in purely
non-compact expressions, for instance

1

2
(E′

1 + F ′
1) = H458 ,

i

2
(E′

1 − F ′
1) = −(E458 + F458) , (5.111)

The E′
0/F

′
0 case is a bit more subtle because of the presence of the (t, t−1) loop factors, and re-

quires adding EθD7
+δ/FθD7

+δ = η3 t
±1⊗

(
HθE8

±i(EθE8
+FθE8

)
)

into the game. Computing Fixτ0
for all of these four operators results in four non-compact combinations. This is in accordance

with θ′D7
which we now know to statisfy e

θ′D7
(H)

= −1 for all four involutive automorphisms,

and tells us in addition that: eβ
′
0(H) = −1.

Collecting all previous results, the eigenvalues of the four involutive automorphisms

φ(η2 ,η3) = Ad(eH(η2,η3)) are summarized in the table (5.112) below.

η2 η3 eβ
′
2(H) eβ

′
4(H) eβ

′
6(H) eβ

′
i6=2,4,6(H)

+1 −1 +1 +1 +1 −1
+1 +1 +1 +1 −1 −1
−1 +1 +1 −1 +1 −1
−1 −1 +1 −1 −1 −1

(5.112)

The Cartan element H defining the involution φ can be read off table (5.112). The most general
solution is given by H = πi

∑7
i=0 ciH

′
i + πicd′d

′ with

c1 = c3 =
κ+ 1

2
+ � , c4 = κ− 1 , c5 = κ− η2 − 1

2
+ � , c6 = κ+ η2 − 1 ,

c7 =
κ+ η2

2
+ � , c0 =

κ+ η2 − η3 + 1

2
+ � , cd = η3 − 1

where c2
.
= κ ∈ � is a free parameter.

Restricted to d7, the four inner automorphisms defined in the table (5.112) are all in the same
class of equivalence, and thus determine the same real form, namely so(8, 6) as expected from
ginv in D = 3. In Appendix 5.14, we have computed the two sets of roots ∆(+1) and ∆(−1) (5.90)
generating the Cartan decomposition (5.91)-(5.92) of the real form. It can be checked that, in
these four cases, the signature σ|d7 = − (7+2(dim ∆(+1)−dim∆(+1))) = 5, in accordance with
so(8, 6).

The involutive automorphism (5.102) in turn can be shown to split the root system of d7

according to

β′ = εi ± εj →
{
β′ ∈ ∆(+1) 1 6 i < j 6 4 and 4 < i < j 6 7

β′ ∈ ∆(−1) 1 6 i 6 4 < j 6 7
, (5.113)
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which can be verified by computing U(z)γ(Eα)U(z)−1 for the representation γ (5.161). We can
check that we have again: σ|d7 = 5, for the splitting (5.113), since the automorphism (5.102)

corresponds, in our previous formalism to the involution eβ
′
4(H) = −1 and eβ

′
i(H) = +1, ∀i 6= 4.

Since they are conjugate at the d7 level and all of them preserve the central charge and scaling
element, the four automorphisms (5.112) lift to conjugate automorphisms of d̂7. All four of them
are again clearly conjugate to U(z) defined by properties (5.102), (5.103) and (5.113). These
five Cartan preserving inner involutive automorphisms lead to equivalent Cartan decomposition
k ⊕⊥ p (5.66) given by generalizing the basis (5.110) and (5.111) found previously to the affine
case:

k : • iH ′
k (∀k = 1, .., 7); ic′; id′; (5.114)

• 1

2
(tn − t−n)⊗H ′

k and
i

2
(tn + t−n)⊗H ′

k (∀k = 1, .., 7; n ∈ � ∗) ;

• 1

2
(tn ⊗Eβ′ − t−n ⊗ Fβ′) and

i

2
(tn ⊗Eβ′ + t−n ⊗ Fβ′) , n ∈ �

(∀β′ ∈ ∆(+1) defined by (5.113), (5.162), (5.163), (5.164) and (5.165))

p : • i
2
(tn ⊗Eβ′ − t−n ⊗ Fβ′) and

1

2
(tn ⊗Eβ′ + t−n ⊗ Fβ′), n ∈ � (5.115)

(β′ ∈ ∆(−1) = ∆+(D7)\∆(+1)) .

These decompositions define isomorphic real forms, which we denote by ŝo(8, 6), encoded in the
affine Satake diagram of Table 5.7 (see for instance [239] for a classification of untwisted and
twisted affine real forms).

We have checked before the behaviour of the ladder operators of the finite d7 subalgebra
of ginv. The verification can be performed in a similar manner for the level n > 1 roots
β′ + nδ′D7

. Applying for example Fixτ0 to the four generators 2−1(t±n ⊗ E4 − t∓n ⊗ F4) and
2−1i(t±n ⊗ E4 + t∓n ⊗ F4) for example, one obtains the following combinations

1
2(tn + t−n)⊗

(
E3452678 − η2F3452678 −E34568 + η2F34568

−E2345678 + η2F2345678 −E2345268 + η2F2345268

)
,

1
2(tn − t−n)⊗

(
E345678 − η2F345678 +E345268 − η2F345268

+E23452678 − η2F23452678 −E234568 + η2F234568

)
,

which, since now ϑC(tn ± t−n) = tn ± t−n, are all either non-compact if η2 = +1, or compact
otherwise, by virtue of table (5.112). This is in accordance with the Cartan decomposition (5.114-
5.115). The compactness of the remaining n > 1 ladder operators can be checked in similar and
straightforward fashion by referring once again to the table (5.112).

In contrast to the split case, a naive extension of the signature, which we denote by σ̂, is not
well defined since it yields in this case an infinite result:

σ̂ = 3 + 2× 5×∞ . (5.116)

In the first finite contribution, we recognize the signature of so(8, 6) together with the central
charge and scaling element, while the infinite towers of vertex operator contribute the second
part. As mentioned before in the D = 4 case, the signature for the finite d7 amounts to the
difference between compact and non-compact Cartan generators, for the following alternative
choice of basis for the Cartan algebra {Hγ ;H1;H2;H3;Hα̃;Hα+ + Hα− ; i(Hα+ − Hα−)}. This
carries over to the infinite contribution in expression (5.116), where it counts the number of
overall compact towers, with an additional factor of 2 coming from the presence of both raising
and lowering operators.
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Care must be taken when defining the real affine central product ginv. The real Heisenberg
algebra

û(1)|1 =

∞∑

n=0

� (zn + z−n)⊗ iH̃ [4] +

∞∑

n=1

� (zn − z−n)⊗ H̃ [4] + � c+ � d

is in this case isomorphic to the one appearing in the T 2/ � n>2 orbifold (5.78). Clearly both
scaling operators and central charge are, in contrast to ŝo(8, 6) non-compact. The identification
required by the affine central product formally takes place before changing basis in ŝo(8, 6) to
the primed operators. The central charge and scaling operators acting on both subspaces of
ginv = ŝo(8, 6) 1 û|1(1) are then redefined as d⊕d→ id′⊕d and c⊕c→ ic′⊕c ≡ ic⊕c. Then we

can write ginv = ŝo(8, 6) ⊕ û|1(1)/{z, d̄}, with z = c− c′ and d̄ = d−
√

2i(t2−2)

(1+i)t d′. The signature
σ̂ of ginv is undefined.

5.5.4 The non-split real Borcherds symmetry in D = 1

The analysis of the D = 1 invariant subalgebra closely resembles the T 8 × T 2/ � n>2 case. The
central product of Section 5.5.3 is extended to a direct sum of a u(1) factor with the quotient
of a Borcherds algebra by an equivalence relation similar to the one stated in Conjecture 5.4.1.
The Borcherds algebra 4B10 found here is defined by a 10 × 10 degenerate Cartan matrix of
rank r = 9. Its unique isotropic imaginary simple root (of multiplicity one) ξI is now attached
to the raising operator EξI = (1/2)(Eδ+α5 − Eδ−α5 − Eδ+α7 + Eδ−α7), so that the equivalence
relation defining (ginv)

�

from 4B10 ⊕ u(1) identifies the Cartan generator HI
.
= HξI with Hδ

and removes the derivation operator dI
.
= dξI .

Moreover, the splitting of multiplicities should occur as in the T 8× T 2/ � n>2 example, since
dim (d̂7)δD7

= dim (ê7)δ. It might a priori seem otherwise from the observation that both

K̃(7)[2···679 10] − K̃(8)[2···689 10] and K̃(9)[2···89] − K̃(10)[2···8 10] are separately invariant. However,
the combination:

K̃(7)[2···679 10] − K̃(8)[2···689 10] + K̃(9)[2···89] − K̃(10)[2···8 10] = K̃[2···10] ⊗ i(Hα+ −Hα−) ∈ d∧∧7

contributes to the multiplicity of δ, while we may rewrite

1

2
(K̃(7)[2···679 10] − K̃(8)[2···689 10] − K̃(9)[2···89] + K̃(10)[2···8 10]) = EξI ∈ 4B10 ,

which is the unique raising operator spanning (4B10)ξI . Thus, though root multiplicities remain
unchanged, we have to group invariant objects in representations of sl(6, � ), which are naturally
shorter than in the T 2/ � n case. We will not detail all such representations here, since they can in
principle be reconstructed by further decomposition and/or regrouping of the results of Table 5.6.

The real invariant subalgebra can again be formally realized as

ginv = u(1) ⊕ 4B10(Ib)/{z, dI}

where z = Hδ −HI . We denote by B10(Ib) the real Borcherds algebra obtained from Fixτ0(
4B10)

and represented in Table 5.7, choosing Ia to refer to the split form. The disappearance of the
diagram automorphism which, in the D = 2 case, exchanged the affine root α0 with γ leads
to non-compact H−1 and Hδ, in contrast to what happened with the ŝo(8, 6) ⊂ ginv factor in
D = 2. This is reflected by ξI being a white node with no arrow attached to it. Note that a
black isotropic imaginary simple root connected to a white real simple root would, in any case,
be forbidden, since such a diagram is not given by an involution on the root system. Moreover,
an imaginary simple root can only be identified by an arrow to another imaginary simple root
(and similarly for real simple roots).
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D (Π0, φ) ginv σ(ginv)

6 e e e
α− α̃ α+

× H [4] × iH̃ [4]
so(4, 2) ⊕ so(1, 1)

⊕ u(1)
1

5 e e�
�

Z
Z e

e

α3 α̃

α+

α−

× H [4] × iH̃ [4]
so(5, 3) ⊕ so(1, 1)

⊕ u(1)
2

4 e e e

e

e

�
�

Z
Z

e

α2 α3 α̃

α+

α−
γ

× iH̃ [4]
so(6, 4) ⊕ sl(2, � )

⊕ u(1)
3

3 e e e e e

e

e

�
�

Z
Zγ α1 α2 α3 α̃

α+

α−

× iH̃ [4] so(8, 6) ⊕ u(1) 4

2

e

e

�
�

Z
Z e e e e�

�

Z
Z e

e

α1 α2 α3 α̃

α+

α−

γ

α0

×
{
iH̃

[4]
n

}
n∈ �

ŝo(8, 6) ⊕L(u(1))|−1 -

1

he eγ

e e e e e e

e

e

�
�

Z
Z

ξI

α−1 α0 α1 α2 α3 α̃

α+

α−

× iH̃ [4] 4B10(Ib) ⊕ u(1) -

Table 5.7: The real subalgebras ginv for T 7−D × T 4/ � n>2 compactifications

5.6 The orbifolds T 6/
�
n>2

The orbifold compactification T 5−D × T 6/ � n for n > 3 can be carried out similarly. We fix
the orbifold action in the directions {x5, x6, x7, x8, x9, x10}, so that it will only be felt by the
set of simple roots {α2, .., α8} defining the e7|7 subalgebra of gU = Split(e11−D) from D = 4
downward. Thus, we may start again by constructing the appropriate charged combinations of
generators for gU = e7|7, and then extend the result for D ≤ 3 in a straightforward fashion.
Since e7 has 63 positive roots, we will restrict ourselves to the invariant subalgebra, and list only
a few noteworthy charged combinations of generators. In this case, a new feature appears: the
invariant algebra is not independent of n, ∀n > 3, as before. Instead, the particular cases T 6/ � 3

and T 6/ � 4 are non-generic and yield invariant subalgebras larger than the n > 5 one.
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More precisely, we start by fixing the orbifold action to be

(zi, z̄i)→ (e2πi/nzi, e
−2πi/nz̄i ) for i = 1, 2 , (z3, z̄3)→ (e−4πi/nz3, e

4πi/nz̄3) ,
(5.117)

in other words, we choose Q1 = +1, Q2 = +1 and Q3 = −2 to ensure
∑

iQi = 0. Note that
for values of n that are larger than four, there are other possible choices, like Q1 = 1, Q2 = 2
and Q3 = −3 for T 6/ � 6 or Q1 = 1, Q2 = 3 and Q3 = −4 for T 6/ � 8 and so on. Indeed,
the richness of T 6/Zn orbifolds compared to T 4/Zn ones stems from these many possibilities.
Though interesting in their own right, we only treat the first of the above cases in detail, though
any choice of charges can in principle be worked out with our general method. One has to keep
in mind, however, that any other choice than the one we made in expression (5.117) may lead
to different non-generic values of n.

5.6.1 The generic n > 5 case

Concentrating on the invariant subalgebra (ginv)
�

for n > 5, it turns out that the adjoint action

of the rotation operator defining the orbifold charges U � n
6 =

3∏

k=1

e−
2πi
n
QkKzkz̄k leaves invariant

the following diagonal components of the metric:

K44 =
1

2
(3H2 + 4H3 + 5H4 + 6H5 + 4H6 + 2H7 + 3H8) ,

Kz1z̄1 =
1

2
(H2 + 3H3 + 5H4 + 6H5 + 4H6 + 2H7 + 3H8) ,

Kz2z̄2 =
1

2
(H2 + 2H3 + 3H4 + 5H5 + 4H6 + 2H7 + 3H8) ,

Kz3z̄3 =
1

2
(H2 + 2H3 + 3H4 + 4H5 + 2H6 +H7 + 3H8) ,

(5.118)

as well as various fields corresponding to non-zero roots:

Kz1 z̄2/Kz̄1z2 =
1

4
(E34 + F34 +E45 + F45 ± i(E345 + F345 − (E4 + F4))) ,

Z4z1z̄1 =
i

2
(E23243536278 + F23243536278) ,

Z4z2z̄2 =
i

2
(E234526278 + F234526278) ,

Z4z3z̄3 =
i

2
(E23458 + F23458) ,

Z̃z1 z̄1z2z̄2z3z̄3 = − i
2
(E3425362782 + F3425362782) , (5.119)

Z4z1 z̄2/Z4z̄1z2 =
1

4

(
E23242536278 + F23242536278 +E2342526278 + F2342526278

±i
(
E23242526278 + F23242526278 − (E2342536278 + F2342536278)

))
,

Zz1z2z3/Zz̄1 z̄2z̄3 =
1

4
√

2

(
E3452678 + F3452678 −E34568 − F34568 −E45268

−F45268 −E45678 − F45678 ± i
(
−E345268 − F345268 −E345678

−F345678 −E452678 − F452678 +E4568 + F4568

))
,

together with their compact counterparts, supplemented by the generators of the orbifold action
Kz1 z̄1 = −i(E3 − F3), Kz2 z̄2 = −i(E5 − F5) and Kz3 z̄3 = −i(E7 − F7), which bring the Cartan
subalgebra to rank 7, ensuring rank conservation again.
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Note that the 4 invariant combinations in the list (5.119) are in fact spanned by the ele-
mentary set of linearly independent Cartan elements satisfying [H,Eα] = 0 for α ∈ {α3, α5, α7},
namely: {2H2 +H3;H3 + 2H4 +H5;H5 + 2H8;H5 + 2H6 +H7}.

Furthermore, let us recall that the objects listed in expression (5.118) form the minimal set
of invariant ladder operators for n > 5 . In the non-generic cases n = 3, 4, this set is enhanced,
and so is the size of (ginv)

�

. We will treat these cases later on, and, for the moment being, focus
on the generic invariant subalgebra for T 6/ � n>5 only.

As before, we extract the generators corresponding to simple roots of the invariant subalgebra
(the negative-root generators are omitted, since they can be obtained in a straighforward manner
as Fα = (Eα)†):

Eβ̃ = −iE234526278 = (Z4z̄2z2)
+ ,

Eβ± =
1

2
(E34 +E45 ± i(E345 −E4)) = (Kz1 z̄2/Kz̄1z2)

+ ,

Eγ± =
1

2
√

2

(
E3452678 −E34568 −E45268 −E45678

∓i
(
E345268 +E345678 +E452678 −E4568

))
= (Zz1z2z3/Zz̄1 z̄2z̄3)

+ ,

Eε = −iE23458 = (Z4z̄3z3)
+ ,

(5.120)

These generators define a complex invariant subalgebra (ginv)
�

of type d3⊕a2⊕a1⊕ � with
the following root labeling

e e e

β− β̃ β+

e e

γ− γ+

e

ε
× {E3 − F3 +E5 − F5 − 2(E7 − F7)}

The detailed structure of the d3 ⊂ (ginv)
�

is encoded in the following commutation relations:

Eβ̃+β±
.
= ±[Eβ̃, Eβ± ] =

1

2
(E23242536278 +E2342526278 ± i(E23242526278 −E2342536278))

= (Z4z1 z̄2/Z4z̄1z2)
+ ,

Eβ−+β̃+β+

.
= [Eβ− , Eβ̃+β+

] = iE23243536278 = (Z4z1 z̄1)
+ , (5.121)

Hβ̃
.
= [Eβ̃ , Fβ̃ ] = (H2 +H3 +H4 + 2H5 + 2H6 +H7 +H8) ,

Hβ±
.
= [Eβ± , Fβ± ] =

1

2
(H3 + 2H4 +H5 ± i(−E3 + F3 +E5 − F5)) .

The a2 ⊂ (ginv)
�

factor is characterized as follows:

Eγ−+γ+
.
= [Eγ− , Eγ+ ] = iE3425362782 = (Z̃z1 z̄1z2z̄2z3z̄3)

+ ,

Fγ−+γ+
.
= [Fγ+ , Fγ− ] = −iF3425362782 = (Z̃z1z̄1z2z̄2z3z̄3)

− ,

Hγ±
.
= [Eγ± , Fγ± ] =

1

2
(H3 + 2H4 + 3H5 + 2H6 +H7 + 2H8)

± i
2
(E3 − F3 +E5 − F5 −E7 + F7) .

(5.122)

Finally, the Cartan generator of the remaining a1 ⊂ (ginv)
�

is given by [Eε, Fε] = H2 + H3 +
H4 + H5 + H8. One can verify that all three simple subalgebras of (ginv)

�

indeed commute
and that the compact abelian factor iH̃ [6] = (E3 − F3 + E5 − F5 − 2(E7 − F7)) is the centre
of ginv. The structure of iH̃ [6] can be retrieved from rewriting the orbifold automorphism as
U � n

6 = exp
(
(2π/n) (E3 − F3 +E5 − F5 − 2(E7 − F7))

)
, and noting that it preserves ginv.
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D (Π0, φ) ginv σ(ginv)

4 e e e
β− β̃ β+

e e
γ− γ+

e

ε

× iH̃ [6]
su(2, 2) ⊕ su(2, 1)

⊕ sl(2, � ) ⊕ u(1)
1

3 e e e

e

e

�
�

Z
Zε α1 β̃

β+

β−

e e
γ− γ+

× iH̃ [6]
so(6, 4) ⊕ su(2, 1)

⊕ u(1)
2

2 e e

e

e

�
�

Z
Z

e

e

�
�

Z
Zα1 β̃

β+

β−

ε

α0

e e

e






J
JJ

γ− γ+

α′
0

×
{
iH̃

[6]
n

}
n∈ �

ŝo(6, 4) ⊕ ŝu(2, 1)

⊕ L(u(1))|−1

-

1 e e e e e

e

e

�
�

Z
Z

ehζI
e ε

e

e

�
�

Z
Z

α′
0 α−1 α0 α1 β̃

β+

β−

γ−

γ+

× iH̃ [6] 6B11(II) ⊕ u(1) -

Table 5.8: The real subalgebras ginv for T 5−D × T 6/ � n>5 compactifications

We determine the real form ginv by a manner similar to the T 4/ � n>3 case. Applying pro-
cedure (5.70), we find that, in a given basis, the Cartan combinations i(Hβ+ − Hβ−) and
i(Hγ+ − Hγ−) are compact, resulting, for both a2 and the d3 subalgebras, in maximal tori

(S1)⊕ � ⊕r−1
, for r = 2, 3, respectively. Taking into account the remaining u(1) factor, it is easy

to see that ginv = su(2, 2) ⊕ su(2, 1) ⊕ sl(2, � ) ⊕ u(1), with overall signature σ(ginv) = 1.
This and further compactifications of the theory are listed in Table 5.8. In D = 3 the

roots ε and β̃ listed in expression (5.120) connect through α1, producing the invariant real form
ginv = so(6, 4) ⊕ su(2, 1) ⊕ u(1).

InD = 2, the invariant subalgebra is now a triple affine central product d̂5 1 â2 1 û(1) ≡ d̂5 1

(â2 1 û(1)), associatively. For convenience, we have once again depicted in Table 5.8 the direct
sum before identification of centres and scaling operators. When carrying out the identification,
the affine root α′

0 has thus to be understood as a non-simple root in ∆+(E9), enforcing: α′
0 =

δ−(γ+ +γ−). Moreover, it can be checked that δD5

.
= α0 +ε+2(α1 + β̃)+β+ +β− = δ, resulting

in HδD5
= HδA2

= cû(1), for δA2 = α′
0 + γ+ + γ−. This identification carries over to the three

corresponding scaling operators.
The reality properties of ginv can be inferred from the finite case, by extending the analysis

of the T 5 × T 4/ � n>n orbifold in Section 5.5.3 separately to the d̂5 and â2 factors. Since both
subalgebras are ”next to split”, the d̂5 case is directly retrievable from the construction exposed
in Section 5.5.3 by reducing the rank by two. The real ŝu(2, 1) factor is also characterized
by an automorphism U(z) of type 1a, with u = 1, which can be found, along with further
specifications, in [72]. The rest of the analysis is similar to the discussion for the T 5× T 4/ � n>n

case. The signatures σ̂ of both non-abelian factors are infinite again, and can be decomposed
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as in expression (5.116).
In D = 1, the Borcherds algebra 6B11 resulting from reconnecting the three affine KMAs

appearing in D = 2 through the extended root α−1 is defined this time by a Cartan matrix of
corank 2, with simple imaginary root ζI attached to the raising operator EζI = (1/2)(Eδ+α3 −
Eδ−α3 + Eδ+α5 − Eδ−α5 − 2Eδ+α7 + 2Eδ−α5). Since the triple extension is not successive, the
ensuing algebra is more involved than an EALA. Writing for short δ2

.
= δA2 = α′

0 + γ+ + γ−, it
possesses two centres, namely {z1 = Hδ −HI , z2 = Hδ2 −Hδ} and two scaling elements {dI , d2}
counting the levels in ζI and δ2. The signature σ̂ of ginv is again undefined.

Denoting by 6B11(II) the real Borcherds algebra represented in Table 5.8, the II referring to
the two arrows connecting respectively γ± and β± in the Satake diagram, the real form ginv is
given by

ginv = u(1) ⊕ 6B11(II)/{z1; z2; dI ; d2} .
By construction, −H−1 will replace dI and d2 after the quotient is performed.

5.6.2 The non-generic n = 4 case

As we mentioned at the beginning of this section, there is a large number of consistent choices
for the charges of the T 6/ � n orbifold. Moreover, non-generic invariant subalgebras appear for
particular periodicities n. For our choice of orbifold charges, the non-generic cases appear in
n = 3, 4, and are singled out from the generic one by the absence of a u(1) factor in the invariant
subalgebra. In D = 1, this entails the appearance of simple invariant Kac-Moody subalgebras
in place of the simple Borcherds type ones encountered up to now. These KMA will be denoted
by KM.

The novelty peculiar to the T 6/ � 4 orbifold lies in the invariance of the root α7, which is
untouched by the mirror symmetry (z3, z̄3)→ (−z3,−z̄3), so that the generators E7, F7 and H7

are now conserved separately. Furthermore, several new invariant generators appear related to
Zz1z2 z̄3 and Zz̄1z̄2z3 :

Zz1z2 z̄3/Zz̄1 z̄2z3 =

1

4
√

2

(
E3452678 + F3452678 +E34568 + F34568 +E45268 + F45268 −E45678 − F45678

±i(E345268 + F345268 −E345678 − F345678 −E452678 − F452678 −E4568 − F4568)
)
,

together with the corresponding compact generators.
The invariant subalgebra is now more readily derived by splitting the Z generators into

combinations containing or not an overall AdE7 factor (in other words, we ”decomplexify” z3

into x9 and x10):

Eλ± = − i
2

(
E34568 +E45268 ± i(E345268 −E4568)

)
= (Zz1z210/− Zz̄1z̄210)

+ ,

Eα7+λ± =
1

2

(
E3452678 −E45678 ± i(E345678 +E452678)

)
= (Zz̄1z̄29/Zz1z29)

+
(5.123)

which verify the following algebra:

Eα7+λ±
.
= ±[Eα7 , Eλ± ] ,

Eλ−+α7+λ+

.
= [Eλ− , Eα7+λ+ ] = −E3425362782 = −i(K̃z1 z̄1z2z̄2z3z̄3)

+, (5.124)

Hλ±
.
= [Eλ± , Fλ± ] =

1

2
(H3 + 2H4 + 3H5 + 2H6 + 2H8 ± i(E3 − F3 +E5 − F5)) ,

so that the former a2 factor for n generic is now enhanced to a3. One compact combination
i(Hλ+−Hλ−) results from the action of Fixτ0 on the algebra formed by the generators in (5.124),
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D (Π0, φ) ginv σ(ginv)

4 e e e
β− β̃ β+

e e e
λ− α7 λ+

e
ε

su(2, 2)⊕
2 ⊕ sl(2, � ) 3

3 e e e

e

e

�
�

Z
Zε α1 β̃

β+

β−

e e e
λ− α7 λ+

so(6, 4) ⊕ su(2, 2) 4

2 e e

e

e

�
�

Z
Z

e

e

�
�

Z
Zα1 β̃

β+

β−

ε

α0

e e e

e
�

�
�

Z
Z

Z

λ− α7 λ+

α′′
0

ŝo(6, 4) ⊕ ŝu(2, 2) -

1 eα7
��

e

@@
λ+

@@ e
��
λ−
α′′

0

e

e e e e e

e

e

�
�

Z
Zα−1 α0

ε

α1 β̃

β+

β−

6KM11(II) -

Table 5.9: The real subalgebras ginv for T 5−D × T 6/ � 4 compactifications

which determines the corresponding real form to be su(2, 2). The chain of invariant subalgebras
resulting from further compactifications follows as summarized in Table 5.9.

In D = 2, we have the identification α′′
0 = δ− (λ+ + α7 + λ−) leading to the now customary

affine central product ŝo(6, 4) 1 ŝu(2, 2), represented for commodity as a direct sum in Table 5.9.
The corresponding Satake diagram defines the real form ginv. Its signature σ̂ is infinite with the
correspondence σ̂(ginv|D=2) = 2 + 2× 4×∞ = σ(ginv|D=3)− 2 + 2× σ(ginv|D=3)×∞.

InD = 1, ginv is defined by the quotient of a simple KMA: 6KM11, by its centre z = Hδ−Hδ3 ,
where δ3 = α′′

0 + λ+ + α7 + λ−, and by the derivation d3. As for affine KMAs, 6KM11 is
characterized by a degenerate Cartan matrix with rank r = 2× 11− dim h = 10. However, the
principal minors of its Cartan matrix are not all strictly positive, so that 6KM11 does not result
from the standard affine extension of any finite Lie algebra. The real form ginv is determined
from the Satake diagram in Table 5.9 and the relation:

ginv = 6KM11(II)/{z; d3} . (5.125)

Our convention denotes by II the class of real forms of 6KM11 for which the Cartan involution
exhibits both possible diagram symmetries, exchanging φ(λ±) = ∓λ± and φ(β±) = ∓β±.

5.6.3 The standard n = 3 case

Starting in D = 4, the � 3-invariant subalgebra builds up the semi-simple (ginv)
�

= a5 ⊕ a2.
The a5 part follows from enhancing the a3 ⊕ a1 semi-simple factor of the generic invariant
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D (Π0, φ) ginv σ(ginv)

4 e e e e e
β− α− ε α+ β+

e e
γ− γ+

su(3, 3) ⊕ su(2, 1) 1

3

e

e e e e e

α1

β− α− ε α+ β+
e e
γ− γ+

e6|2 ⊕ su(2, 1) 2

2

e

e

e e e e e

α0

α1β− α− ε α+ β+

e e

e






J

JJ

γ− γ+

α′
0

ê6|2 ⊕ ŝu(2, 1) -

1 e e e e e

e

e

�
�

Z
Z

e

e

�
�

Z
Z

e

e

�
�

Z
Z

α′
0 α−1 α0 α1 ε

α+

α−

β+

β−

γ−

γ+

6′KM11(III) -

Table 5.10: The real subalgebras ginv for T 5−D × T 6/ � 3 compactifications

subalgebra (5.120) by the following additional invariant generators:

Kz1z̄3/Kz̄1z3 =
1

4

(
E3456 + F3456 +E4567 + F4567

±i(E34567 + F34567 −E456 − F456)
)
,

Kz2z̄3/Kz̄2z3 =
1

4

(
E56 + F56 +E67 + F67 ± i(E567 + F567 −E6 − F6)

)
,

Z4z1 z̄3/Z4z̄1z3 =
1

4

(
E2324252678 + F2324252678 +E23425268 + F23425268

±i(E232425268 + F232425268 −E234252678 − F234252678)
)
,

Z4z2 z̄3/Z4z̄2z3 =
1

4

(
E23452678 + F23452678 +E234568 + F234568

±i(E2345268 + F2345268 −E2345678 − F2345678)
)
,

(5.126)
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(together with their corresponding compact generators). It becomes clear that one is dealing
with an a5-type algebra, when recasting the whole system in the basis:

Eε
.
= [E2, [E3, Eα̃]] = −iE23458 = (Z4z3 z̄3)

+ ,

Eα±
.
=

1

2
(E56 +E67 ± i(E567 −E6)) = (Kz2 z̄3/Kz̄2z3)

+ ,

Eβ±
.
=

1

2
(E34 +E45 ± i(E345 −E4)) = (Kz1 z̄2/Kz̄1z2)

+ ,

Eα±+β±
.
=

1

2
(E3456 +E4567 ± i(E34567 −E456)) = (Kz2 z̄3/Kz̄2z3)

+ ,

Eε+α±
.
=

1

2
(E23452678 +E234568 ± i(E2345268 −E2345678))

= (Z4z2 z̄3/Z4z̄2z3)
+ ,

Eε+α±+β±
.
=

1

2
(E2324252678 +E23425268 ± i(E232425268 −E234252678))

= (Z4z1 z̄3/Z4z̄1z3)
+ ,

Eα−+α23458+α+

.
= iE234526278 = (Z4z2 z̄2)

+ ,

Eα−+ε+α++β±
.
=

1

2
(E23242536278 +E2342526278 ± i(E23242526278 −E2342536278))

= (Z4z1 z̄2/Z4z̄1z2)
+

Eβ−+α−+ε+α++β+

.
= iE23243536278 = (Z4z1 z̄1)

+ ,

(5.127)

Combining expressions (5.121) and (5.127) reproduces the commutation relations of an a5-type
algebra. The remaining factor a3 ⊂ (ginv)

�

is kept untouched from the generic case. Choosing
an appropriate basis for the Cartan subalgebra of ginv produces three compact combinations
i(Hγ+−Hγ−), i(Hα+−Hα−) and i(Hβ+−Hβ−), leaving four non-compact ones, which determines
ginv = su(3, 3) ⊕ su(2, 1).

The T 5−D × T 6/ � 3 chain of real invariant subalgebras follows as depicted in Table 5.10, for
D = 4, . . . , 1. In D = 2, as for the n = 4 case, we can associate a formal signature σ̂ to the real
form ginv = ê6|2 1 ŝu(2, 1), which is infinite but keeps a trace of the D = 3 finite case for which
σ(ginv) = 2, as σ̂(ginv|D=2) = σ(ginv|D=3)− 2 + 2× σ(ginv|D=3)×∞ = 0 + 2× 2×∞. In D = 1,
the III subscript labeling the real form appearing in Table 5.10 refers, as before, to the number
of arrows in its defining Satake diagram, and the real invariant subalgebra is retrieved from
modding out 6′KM11(III) in a way similar, modulo the required changes, to expression (5.125).

5.7 Non-linear realization of the
�
n-invariant sector of M-theory

In this section, we want to address one last issue concerning the invariant (untwisted) sector of
these orbifolds, namely how the residual symmetry ginv can be made manifest in the equations of
motion of the orbifolded supergravity in the finite-dimensional case, and in the effective D = 1
σ-model description of M-theory near a space-time singularity in the infinite-dimensional case.
The procedure follows the theory of non-linear σ-models realization of physical theories from
coset spaces, more particularly from the conjectured effective Hamiltonian on E10|10/K(E10|10)
presented in Sections 5.2.2 and 5.2.4.

It is customary in this context to choose the Borel gauge to fix the class representatives
in the coset space. To do this in our orbifolded case, we need the Iwasawa decomposition
of the real residual U-duality algebra ginv, which can be deduced from its restricted-root space
decomposition (see Section 5.3.3). For this purpose, we build the set of restricted roots Σ0 (5.72)
for ginv and partition it into a set of positive and a set of negative restricted roots Σ0 = Σ+

0 ∪Σ−
0 ,
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based on some lexicographical ordering. Then, following definition (5.71), we build:

n
(±)
inv =

⊕

ᾱ∈Σ±
0

(ginv)ᾱ , with φ(n
(±)
inv ) = n

(∓)
inv . (5.128)

Identifying the nilpotent algebra as ninv ≡ n
(+)
inv , the Iwasawa decomposition of ginv is given by

ginv = kinv⊕ainv⊕ninv, and the coset parametrization in the Borel gauge by ginv/kinv = ainv⊕ninv.
The cases where ginv is a finite real Lie algebra are easily handled. For 8 6 D 6 3, the Satake

diagrams listed in Tables 5.3, 5.7, 5.8, 5.9 and 5.10 describing the residual U-duality algebras
under T q/ � n orbifolds for q = 2, 4, 6 and n > 3 are well known, and the corresponding Dynkin
diagrams for the basis Π0 of restricted roots Σ0 can be found, together with the associated
multiplicities mr(ᾱi), in [135]. We will not dwell on the D = 2 case, which only serves as a
stepping stone to the understanding of the D = 1 case. Moreover, all the arguments we present
here regarding D = 1 also apply, with suitable restrictions, to the D = 2 case.

In the D = 1 case, since the restricted root space is best determined from the Satake
diagram of the real form, we will replace ginv in eqn. (5.128) and all ensuing formulae by the
real Borcherds and indefinite KM algebras described by the corresponding Satake diagrams in
Tables 5.3 and 5.7-5.10. This procedure leads to the Dynkin diagrams and root multiplicities
represented in Table 5.11 for the bases of restricted roots Π0, given for all but the split case of
Table 5.3 (for which normal and restricted roots coincide). The multiplicities appear in bold
beside the corresponding restricted root, while we denote the multiplicity of 2ᾱ with a 2 subscript
whenever it is also a root of Σ0.

We may now give a general prescription to compute the algebraic field strength G = g−1dg of
the orbifolded theory, which also applies to the infinite-dimensional case, where G is the formal
coset element (5.50). There are two possible equivalent approaches, depending on whether we set
to zero the dual field associated to the possible centres and derivations of the Borcherds/KMA
algebras leading to ginv before or after the computation of G.

Let us consider an algebra withA pairs of non-compact centres and derivations: {za, da}a=1,...,A

and a maximal non-compact abelian subalgebra a of dimension ns. We introduce a vector of
ns − 2A scale factors ϕ̄ and a vector of auxiliary fields ψ and develop them on the basis of a(g)
as:

ϕ̄ =

ns−2A∑

ı̄=1

ϕ̄iHı̄ , ψ =

A∑

a=1

(
ψaza + ψA+ada

)
. (5.129)

For example, in the case of the T 6 × T 4/ � n orbifold, ainv is given by:

a(4B10(Ib)) = Span
�

{Hᾱ−1 ; . . . ;Hᾱ3 ;H ¯̃α = H4 +H5 +H8;Hᾱ+ = H5 + 2H6 +H7;

Hγ̄ = H2 + 2H3 + 3H4 + 3H5 + 2H6 +H7 +H8; z; dI} .

in which the centre is z = Hβ̄I
−(Hᾱ−1 + . . .+Hᾱ3 +H ¯̃α+Hᾱ+ +Hγ̄) = HβI

−Hδ. The generator
Hı̄ will be understood to represent the i-th element of the above list, for ı̄ = 1, . . . , 8.

In general, a central element obviously does not contribute much to G, except for a term
∝ dψa/dt, so that it does not matter whether we impose the physical constraint ψa = 0,
∀a = 1, . . . , A before or after the computation of G. The derivations da also create terms
∝ dψA+a/dt, but ψA+a appears in exponentials in front of generators for roots containing an
imaginary/affine (6= α0) simple root, as well. However, there is no difference between setting the
auxiliary field ψ to zero directly in g or, later, in the exponentials in G. Indeed, the counting of
levels in these imaginary/affine simple roots is taken care of by Hᾱ−1 anyway. Finally, a term
proportional to za other than za dψ

a/dt can not be produced either, since we work in the Borel
gauge, so that terms containing commutators like [EβI

, FβI
] are absent. It is thus not necessary

to impose za = 0 ∀a again in the end.
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Π0

T 6 × T 4/ � n>2 :

4B10(Ib)

ehβ̄I 1

f f f f f f f

f

〉

ᾱ−1

1

ᾱ0

1

ᾱ1

1

γ̄ 1

ᾱ2

1

ᾱ3

1

¯̃α

1

ᾱ+

2

T 4 × T 6/ � n≥5 :

6B11(II)

ehξ̄I 1

〈f f f f f f f

f

〉

γ̄+

(2,12)

ᾱ′
0

1

ᾱ−1

1

ε̄ 1

ᾱ0

1

ᾱ1

1

¯̃
β
1

β̄+

2

T 4 × T 6/ � 4 :

6KM11(II)

〉 〈f f f f f f f f

f

〉

ᾱ7

1

λ̄+

2

ᾱ′′
0

1

ᾱ−1

1

ε̄ 1

ᾱ0

1

ᾱ1

1

¯̃
β
1

β̄+

2

T 4 × T 6/ � 3 :

6′KM11(III)

〈f f f f f f f f〉

γ̄+

(2,12)

ᾱ′
0

1

ᾱ−1

1

ᾱ0

1

ᾱ1

1

ε̄

1

ᾱ+

2

β̄+

2

Table 5.11: Restricted Dynkin diagrams for very-extended ginv subalgebras

More generally, let us now set ninv =
⊕

ᾱ∈Σ+
0
(ginv)ᾱ with dim(ginv)ᾱ = m(ᾱ) · mr(ᾱ), the

(formal) group element13

g = eϕ̄+ψ ·
∏

ᾱ∈Σ+
0

mr(ᾱ)∏

s=1

m(ᾱ)∏

a=1

eCᾱ,(s,a)E
(k,a)
ᾱ , (5.130)

13Note that we adopt here a perspective that is different from [138] when associating restricted roots to the
metric and p-form potential of orbifolded 11D supergravity / M-theory. In particular the authors of [139] were
concerned with super-Borcherds symmetries of supergravity with non-split U-duality groups, which form the
so-called real magic triangle, i.e. which are oxidations of pure supergravity in 4 dimensions with N = 0, .., 7
supersymmetries. When doubling the fields of these theories by systematically introducing Hodge duals for all
original p-form fields (but not for the metric), the duality symmetry of this enlarged model can be embedded in a
larger Borcherds superalgebra. The self-duality equations for all p-forms of these supergravities can be recovered
by a certain choice of truncation in the Grassmanian coefficients of the superalgebra. In contrast to our approach
however, one positive restricted root was related to one p-form potential term in [139], whereas, we associate a
restricted root generator to one component of the potential. This is the reason why these authors drop the sum
over mr(ᾱ) in expression (5.130) (not mentioning the sum over m(ᾱ) in the D = 1 case, which we keep since we
do not want to discard any higher order contributions to classical 11D supergravity).
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can be used to compute the Maurer-Cartan one-form:

G =
[
g−1dg

]
ψa=0,a=1,...,2A

in which the coefficients {ϕ̄i;Cᾱ} correspond, at levels l = 0, 1, to the invariant dilatons and
potentials of orbifolded classical 11D supergravity, and, at higher levels, participate to (invariant)
contributions from M-theory. Their exact expressions can be reconstructed from the material of
Sections 5.4-5.6 and the Satake diagrams of Tables 5.3 and 5.7-5.10.

The Maurer-Cartan equation dG = G ∧ G will then reproduce the equations of motion of
the untwisted sector of the reduced supergravity theory in the finite case, of M-theory on
M = � + × T 11−D−2p × T 2p/ � n in D = 1, which will make manifest the residual symmetry
ginv. Finally, one can write down an effective invariant Hamiltonian as in expression (5.49),
by performing a Legendre transform of L = 1

4n

[
Tr(∂M−1∂M)

]
ψa=0,a=1,...,2A

, the orbifolded

version of expression (5.30).

5.8 Shift vectors and chief inner automorphisms

We have dedicated the first few chapters of this article to explaining the characterization of fixed-
point subalgebras under finite-order automorphisms of U-duality algebras. In physical words,
we have computed the residual U-duality symmetry of maximally supersymmetric supergravities
compactified on certain toric orbifolds. In D ≥ 3, the quotient of this residual algebra by its
maximal compact subalgebra is in one-to-one correspondence with the physical spectrum of
11D supergravity surviving the orbifold projection. In string theory language, this corresponds
to the untwisted sector of the orbifolded theory. Extrapolating this picture to D = 1, the orbifold
spectrum gets enhanced by a whole tower of massive string states and/or non-perturbative states.

Although the interpretation of most of these higher level e10 roots is still in its infancy, an
interesting proposal was made in [55] for a restricted number of them, namely for those appearing
as shift vectors describing � 2 orbifold actions. They were interpreted as the extended objects
needed for local anomaly and charge cancellations in brane models of certain M-theory orbifolds
and type IIA orientifolds.

In this section, a general method to compute the shift vectors of any T p × T q/ � n orbifolds
will be given, as well as explicit results for q = 2, 4, 6. Then, an empirical technique to obtain
e10 roots that are physically interpretable will be presented, exploiting the freedom in choosing
a shift vector from its equivalence class. Our results in particular reproduce the one given in [55]
for T 6 × T 4/ � 2. Note that the method will allow to differentiate, for example, between T 4/ � 3

and T 4/ � 4 despite the fact that they lead to the same invariant subalgebra, which gives a clue
on the rôle of the n-dependent part of the shift vectors. Finally, we will see how to extract the
roots describing a � n orbifolds from all level 3n roots of e10.

We first remark that the complex combinations of generators corresponding to the complexi-
fied physical fields are the eigenvectors of the automorphisms U � n

q with eigenvalues exp(i 2πn QA),
for QA ∈ � n. Having a basis of eigenvectors suggests that there is a conjugate Cartan subal-
gebra h′ inside of the QA = 0 eigenspace g(0) for which the automorphism is diagonal. We can
then reexpress the orbifold action as an automorphism that leaves this new Cartan subalgebra
invariant, in other words as a chief inner automorphism of the form Ad(exp(i 2π

n H
′)) for some

H ′ ∈ h′� . As already noticed in the case of � 2 orbifolds, such a chief inner automorphism simply

acts as exp(i 2πn α
′(H ′)) on every root subspace gα′ where α′ is a root defined with respect to h′.

In particular, we can find a (non-unique) weight vector Λ′ corresponding to H ′ so that

Ad(ei
2π
n
H′

)gα′ = ei
2π
n

(Λ′|α′)gα′ .
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Such a weight vector is commonly called shift vector. It turns out that all automorphisms of
a given simple Lie algebra can be classified by all weights Λ′ =

∑r
i=1 liΛ

′i, li ∈ � n without
common prime factor, so that, according to [161],

(Λ|θG) ≤ n (5.131)

(here, the fundamental weights Λ
′i are defined to be dual to the new simple roots α′

i, i.e.
(Λ

′i|α′
j) = δij ∀i, j = 9 − r, . . . , 8). Furthermore, there is a simple way, see [66], to deduce the

invariant subalgebra from Λ by guessing its action on the extended Dynkin diagram, if Λ satisfies
the above condition. Here, we will first show how to obtain the shift vectors in the cases we
are interested in and then describe the above-mentioned diagrammatic method with the help of
these examples.

5.8.1 A class of shift vectors for T 2/ � n orbifolds

Let us start by the particularly simple case of a T 2/ � n orbifold in T 3. We can directly use
the decomposition in eigensubspaces obtained in equation (5.2). The first task is to choose a
new Cartan subalgebra, or equivalently a convenient Cartan-Weyl basis. In other words, we are
looking for a new set of simple roots for a2⊕ a1, so that all Cartan generators are in the QA = 0
eigensubspace g(0). Since the a1 does not feel the orbifold action, we can simply take H ′

8 = H8.
On the other hand, we should take for H ′

6 and H ′
7 some combinations of 2H6 +H7 and E7−F7.

A particularly convenient choice is given by the following Cartan-Weyl basis:

E′
6 = 1√

2
(E6 + iE67) , F ′

6 = 1√
2
(F6 − iF67) , H ′

6 = 1
2(2H6 +H7 − i(E7 − F7)) ,

E′
7 = 1

2 (H7 − i(E7 + F7)) , F ′
7 = 1

2(H7 + i(E7 + F7)) , H ′
7 = i(E7 − F7) ,

E′
67 = 1√

2
(E6 − iE67) , F ′

67 = 1√
2
(F6 + iF67) , H ′

67 = 1
2(2H6 +H7 + i(E7 − F7)) ,

This gives the following simple decomposition in eigensubspaces:

g(0) = Span{H ′
6;H

′
7;E

′
8;F

′
8;H

′
8} , g(n−1) = Span{E′

67;F
′
6} ,

g(1) = Span{E′
6;F

′
67} , g(n−2) = Span{E′

7} ,
g(2) = Span{F ′

7} .

Notice that g(n−i) is obtained from g(i) by the substitution E ↔ F , so that we will only give the
latter explicitly in the following examples. Furthermore, since U � n

2 actually defines a gradation
g =

⊕n−1
i=0 g(i), we have the property [g(i), g(j)] ⊆ g(i+j). This implies that if we can find a weight

Λ
′{2} that acts as exp(i 2πn (Λ

′{2}|α′
i)) on gα′

i
for all new simple roots α′

i, i ∈ I, it will induce the

correct charges for all new generators. Here, we should choose Λ
′{2} so that it has scalar product

0 with α′
8, 1 with α′

6 and n− 2 with α′
7, which suggests to take:

Λ
′{2} = Λ

′6 + (n− 2)Λ
′7 . (5.132)

Note first that the same set of charges can be obtained with all choices of the form: Λ
′{2} = (c1n+

1)Λ
′6 + (c2n− 2)Λ

′7 + c3nΛ
′8 for any set of {ci}3i=1 ∈ � 3. In particular, there exists one weight

vector that is valid for automorphisms of all finite orders, here Λ
′{2} = Λ

′6 − 2Λ
′7. However,

in equation 5.132, we took all coefficients in � n as is required for the Kac-Peterson method to
work. Since the a1 is obviously invariant, we can restrict our attention to the a2 part. One can
verify that Λ

′{2} satisfies the condition (5.131) since θA2 = α′
6 + α′

7 implies (Λ
′{2}|θA2) = n− 1.

In general, for a U-duality group G, we can define an (r + 1)-th component of Λ′ as lG9 =
n− (Λ′, θG) (lA1×A2

9 = 1 in the above case). On the basis of this extended vector, one can apply
the following diagrammatic method to obtain the invariant subalgebra in the finite-dimensional
case (a simple justification of this method can be found in [66]):
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• Replace the Dynkin diagram of g by its extended Dynkin diagram, adding an extra node
corresponding to the (non-linearly independent) root α′

9 = −θG. We denote the extended
diagram by g+ to distinguish it from the affine ĝ in which the extra node α0 = δ − θG is
linearly independent.

• Discard all nodes corresponding to roots α′
i such that li 6= 0 and keep all those such that

li = 0, i ∈ {9− r; . . . ; 9}.

• Let p be the number of discarded nodes, the (usually reductive) subalgebra left invariant
by the automorphism U � n

2 is given by the (possibly disconnected) remaining diagram times
p− 1 abelian subalgebras.

In particular, for T 2/ � n in T 3 for n ≥ 3, we see that l6,l7 and l9 are non-zero, leaving
invariant only α′

8 = α8 which builds an a1 diagram. Since p = 3, we should add two abelian
factors for a total (complexified) invariant subalgebra a1⊕ � ⊕2

, the same conclusion we arrived
at from Table 5.2. On the other hand, for T 2/ � 2 in T 3, l7 = n− 2 = 0 and we have one more

conserved node, leaving a total (complexified) invariant subalgebra a⊕2

1 ⊕ � .
Since the orbifold is not acting on other space-time directions, it seems logical to extend this

construction by taking α′
i = αi and li = 0 ∀i < 6 for all T p×T 2/ � n orbifolds. Indeed, for p ≤ 4,

we obtain (Λ′{2}|θA4) = n − 1 → lA4
9 = 1, (Λ′{2}|θD5) = n → lD5

9 = 0 and (Λ′{2}|θE6) = n →
lE6
9 = 0, giving the results in Figure 5.2. Comparing Figure 5.2 with Table 5.3 in D = 6, we can
identify α′

9 = −θD5 .
However, looking at the respective invariant subdiagrams in D = 5, it is clear that one

should not choose α′
i = αi ∀i < 6. Looking at Table 5.3, one guesses that α′

3 = −θD5 , α
′
4 = −α3

and α′
5 = −α4. Since there is only one element in the eigensubspace g(n−2), we also have to

take E′
7 = 1

2 (H7 − i(E7 + F7)), as before. On the other hand, there are now plenty of objects

in g(1), all of them not commuting with E ′
7. One should find one that commutes with FθD5

and

Fα3 but not with Fα4 . This suggests to set E ′
6 = 1√

2
(E3425268 − iE34252678). Finally, we also

take E′
8 = F5. Computing the expression of the generator corresponding to the highest root in

this new basis gives E ′
9 = FθE6

= iF8, as one would expect. Since the shift vector simply takes

the same form Λ
′{2} = Λ

′6 + (n− 2)Λ
′7 on a new basis of fundamental weights, the naive guess

above was correct.
From D = 4 downwards, this ceases to be true, since naively (Λ

′{2}|θE7) = 2n − 1 > n.
In fact, we should again change basis in e7. Comparing again Figure 5.2 with Table 5.3, we
see that there are 2 different equivalent ways to choose the 2 roots to be discarded, on the
left (α′

2 and α′
3) or on the right (α′

7 and α′
9). We choose the latter, since it will be easier to

generalize to e8. Indeed, in the extended diagram of e8, the Coxeter label of α′
9 will be the only

one to be 1, making lE8
9 = n− 2 the only possible choice. Further inspection of Figure 5.2 and

Table 5.3 suggests to take the new basis as follows: α′
2 = −α8, α

′
3 = −α5, α

′
4 = −α4, α

′
5 = −α3,

α′
6 = −θD5 , α

′
8 = −α2 and finally

E′
7 =

1√
2
(E232435463782 − iE2324354637282) ∈ g(1) .

A lengthy computation allows to show that this choice leads to
E′

9 = Fθ′E7
= (i/2)(H7 − i(E7 + F7)) ∈ g(n−2) as it should, giving the shift vector: Λ = Λ

′7 with

lE7
9 = n− 2.

In e8, a similar game leads to α′
2 = −α8, α

′
3 = −α5, α

′
4 = −α4, α

′
5 = −α3, α

′
6 = −α2,

α′
7 = −α1, α

′
8 = −θD5 and finally

E′
1 =

1√
2
(E12233445563783 − iE122334455637283) ∈ g(1) ,
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Figure 5.2: Diagrammatic method for T 2/ � n>2 orbifolds of M-theory

leading to E ′
9 = Fθ′E8

= i
2(H7−i(E7 +F7)) ∈ g(n−2) with shift vector Λ′ = Λ

′1, while lE8
9 = n−2.

The results for n = 2 can be obtained directly by putting l7 = 0, adding one more node to
the diagrams instead of the abelian u(1) factor. The results are summarized in Figure 5.3.

It was instructive to compare our method based on automorphisms induced by algebraic
rotations and the standard classification of Lie algebra automorphisms based on shift vectors
defining chief inner automorphisms. However, the mapping from one language to the other can
be fairly obscure, in particular for orbifolds more complicated than the T 2/ � n case treated above.
In fact, in the ar serie of Lie algebras, for which the Coxeter labels are all equal, the necessary
change of basis can be computed only once and trivially extended to larger algebras in the serie.
In general, and in particular for exceptional algebras, one has to perform a different change
of Cartan-Weyl basis whenever we consider the same orbifold in a larger U-duality symmetry
algebra (or, geometrically speaking, when we compactify one more dimension).

Our method based on non-Cartan preserving automorphisms is thus more appropriate to
treat a few particular orbifolds in a serie of algebras that are successively included one into the
other, as is the case for the U-duality algebras of compactified supergravity theories. On the
other hand, the method based on chief inner automorphisms is more amenable to classify all
orbifolds of a unique algebra, for example all possible breakings of a given gauge group under
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Figure 5.3: Diagrammatic method for T 2/ � 2 orbifolds of M-theory

an orbifold action. For instance, the breakings of the E8 × E8 gauge group of heterotic string
theory have been treated this way by [163, 66]. It is also easier to generalize the method based
on algebraic rotations to the infinite-dimensional case, since we can use the decomposition of
e10 in tensorial representations of sl(10) and our intuition on the behaviour of tensorial indices
under a physical rotation to identify non-trivial invariant objects.

We can draw a related conclusion from the explicit forms of the above basis transformation:
when the orbifold is expressed in terms of the standard shift vector satisfying (Λ|θ) ≤ n, the
geometric interpretation of the orbifold action gets blurred. More precisely, the directions in
which the rotation is performed is determined above by the roots α′

i with coefficients li = n− 2.
For example, in e7, our original Lorentz rotation by K9 10 represented by α7 appears in the
standard basis as a gauge transformation generated by Z̃456789. Similarly, in e8, it seems that
we are rotating in a direction corresponding to (K̃3)3456789 10. Of course, mathematically, all
conjugate Cartan-Weyl basis in a Lie algebra give rise to an isomorphic gradation of g, but the
physical interpretation based on the decomposition of er in tensorial representations of sl(r) is
obscured by the conjugation.

Indeed, our T q/ � 2 and T q/ � n orbifolds for q = 2, 4 all appear in the classification of T 6/ � n

orbifolds given in [163], where they are interpreted as T 6/ � n orbifolds with particularly small
breakings of the gauge group and degenerate shift vectors (in the sense of having lots of 0). It is
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however clear in our formalism that this degeneracy should actually be seen as having considered
a rotation of null angle in certain directions.

5.8.2 Classes of shift vectors for T q/ � n orbifolds, for q = 4, 6

In the more complicated cases of T 4/ � n and T 6/ � n orbifolds, we will not give in detail the basis
transformations necessary to obtain the standard shift vectors satisfying (Λ ′|θ) ≤ n for the whole
serie of U-duality algebras. Rather, we will give the shift vectors in their universal form, which
is valid for the whole serie of U-duality algebras. In particular, for T 4/ � n, the gradation of d5

by eigensubspaces of U � n
4 has been given in expressions (5.83), (5.84) and (5.85). A particularly

natural choice of diagonal Cartan-Weyl basis for this decomposition is obtained by taking:

E′
4 = 1√

2
(E4 + iE45) , H ′

4 = 1
2(2H4 +H5 − i(E5 − F5)) ,

E′
5 = 1

2(H5 − i(E5 + F5)) , H ′
5 = i(E5 − F5) ,

E′
6 = 1√

2
(E56 −E67 + i(E567 +E6)) , H ′

6 = 1
2(H5 + 2H6 +H7 − i(E5 − F5 +E7 − F7)) ,

E′
7 = 1√

2
(H7 − i(E7 + F7)) , H ′

7 = i(E7 − F7) ,

E′
8 = − 1√

2
(E8 − iE58) , H ′

8 = 1
2(2H8 +H5 − i(E5 − F5)) ,

(5.133)
while F ′

i is obtained from E ′
i as above by conjugation and exchange of E and F . This leads to

the following eigensubspace decomposition of d5:

g(0) = Span{H ′
4;H

′
5;H

′
6;H

′
7;H

′
8;E

′
6;E

′
567;E

′
458;E

′
4568;E

′
452678;E

′
4526278;E

′ ↔ F ′} ,
g(1) = Span{E′

4;E
′
8;E

′
4567;E

′
5678;F

′
45;F

′
58;F

′
456;F

′
568} ,

g(2) = Span{E′
7;E

′
67;E

′
45678;F

′
5;F

′
56;F

′
45268} .

(5.134)

The shift vector corresponding to this basis is given by:

Λ
′{4} = Λ

′4 + (n− 2)Λ
′5 + 2Λ

′7 + Λ
′8 ,

which clearly reduces to Λ
′{4} = Λ

′4 + Λ
′8 in the case of T 4/ � 2. By simply taking E ′

i = Ei for
any additional roots that are unaffected by the orbifold action, this shift vector is valid in er,
for r = 6, .., 10, as well.

For the case of T 6/ � n, we take the following Cartan-Weyl basis:

E′
2 = 1√

2
(E2 + iE23) , H ′

2 = 1
2(2H2 +H3 − i(E3 − F3)) ,

E′
3 = 1

2(H3 − i(E3 + F3)) , H ′
3 = i(E3 − F3) ,

E′
4 = 1√

2
(E34 +E45 − i(E345 −E4)) , H ′

4 = 1
2(H3 + 2H4 +H5 + i(−E3 + F3 +E5 − F5)) ,

E′
5 = 1

2(H5 + i(E5 + F5)) , H ′
5 = −i(E5 − F5) ,

E′
6 = 1√

2
(E56 −E67 − i(E567 +E6)) , H ′

6 = 1
2(H5 + 2H6 +H7 + i(E5 − F5 +E7 − F7)) ,

E′
7 = 1√

2
(H7 + i(E7 + F7)) , H ′

7 = −i(E7 − F7) ,

E′
8 = − 1√

2
(E8 + iE58) , H ′

8 = 1
2(2H8 +H5 + i(E5 − F5)) ,

(5.135)
that leads to the universal shift vector:

Λ
′{6} = Λ

′2 + (n− 2)Λ
′3 + 2Λ

′5 + Λ
′6 + (n− 4)Λ

′7 + (n− 1)Λ
′8 ,

that is valid in e8, e9 and e10, as well. It is obvious in this form that the degeneration of the
coefficient l7 when n = 4 leads to a larger invariant subalgebra with fewer abelian factors. On
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the other hand, as the invariant subalgebras for T 6/ � 4 and T 6/ � 3 both have no abelian factors,
the coefficients of Λ

′{6} does not allow to discriminate between them. Another fact worth noting
is that setting n = 2 leads to Λ

′{6} = Λ
′2 + Λ

′6 + Λ
′8, corresponding to a T 4/ � 2 orbifolds with

respect to the nodes α3 and α5 and not to a T 6/ � 2 orbifolds. This is natural since we chose
the charge in the (x9, x10)-plane to be Q3 = −2, so that it reduces to the identity rotation for
n = 2.

5.8.3 Roots of e10 as physical class representatives

The universal shift vectors are mathematically interesting, but the original motivation to com-
pute them was actually to give a physical interpretation of certain roots of e10. Typically, our
universal shift vectors Λ′ are not roots, but we can use the self-duality of Q(e10) and the peri-
odicity modulo n of the orbifold action to replace Λ′ by a root ξ generating the same orbifold
action.

Self-duality of Q(e10) relates the weight Λ′ to a vector in the root lattice satisfying (Λ′|α′) =
(ξ̃|α′) ∀α′ ∈ ∆(g, h′). However, every root lattice vector is not a root. One should thus use the

equivalence modulo n: Λ′ ≡ Λ′ + n
∑8

i=−1 ciΛ
′i = Λ

′
, for any 10-dimensional vector ~c ∈ � 10, to

find a weight Λ
′
=
∑8

i=−1 liΛ
′i such that:

ξ =

8∑

i,j=−1

(A−1)ijljα
′
i

is a root of e10. In fact, such a condition does not fix ξ uniquely either. However, it seems that
there is a unique way to choose ~cq so that ξ[q,n] is a root describing the orbifold T 10−q × T q/ � n

for all values of n.
From that point of view, we can see the shift vector as containing two parts: the universal

part, that reflects the choices of orbifold directions and charges, and the n-dependent part, that
defines the orbifold periodicity.

Concretely, it seems that ~cq can always be chosen to be dual to a Weyl reflection of δ (at
least for even orbifolds). In the case of T 2/ � 2, for example, we had the universal part Λ

′{2} =
Λ

′6 − 2Λ
′7, which is dual to −α′

7. Adding n(Λ
′7 − Λ

′8), i.e. the root nδ̃[2] = n(δ′ +
∑7

i=−1 α
′
i),

we obtain the desired form of shift vector in the physical basis:

ξ[2,n] = (n, n, n, n, n, n, n, n, n− 1, 1) .

From the tables of [115] it is easy to verify that this is a root of e10 with l = 3n for all values
of n ≤ 6, and it is very likely to be a root for any integer value of n. Note also that translating
the results back in the original basis gives:

ei
2π
n

(ξ[2,n]|α′)gα′ = ei2π(α′ |δ̃[2]) Ade
2π
n

(E7−F7)gα′ ,

where the first factor does not contribute to the charge, so that the equivalence between the two
descriptions, one in terms of shift vectors and the other of in terms of non-Cartan preserving
inner automorphisms, is obvious.

For T 4/ � n, we similarly take Λ
′{4}

= Λ
′4 − 2Λ

′5 + 2Λ
′7 + Λ

′8 + n(Λ
′5 − Λ

′6 − Λ
′8), which

corresponds to

ξ[4,n] = −α′
5 + α′

7 + n(δ′ + α′
−1 + α′

0 + α′
1 + α′

2 + α′
3 + α′

4 + α′
5)

= (n, n, n, n, n, n, n− 1, 1, n + 1, n− 1) .

Again, this is indeed a root ∀n ≤ 6 and it can be checked to reduce to one of the 4 possible
permutations proposed in [55] for n = 2. Furthermore, Hξ[4,n] = nHδ̃[4] − i(E5 − F5 − E7 + F7)
as one would expect.
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Finally, for T 6/ � n, one can check that Λ
′{6}

= Λ
′2−2Λ

′3+2Λ
′5+Λ

′6−4Λ
′7−Λ

′8+n(Λ
′7−Λ

′8)
has all desired properties. It is dual to

ξ[6,n] = −α′
3 + α′

5 − 2α′
7 + n(δ′ + α′

−1 + α′
0 + α′

1 + α′
2 + α′

3 + α′
4 + α′

5 + α′
6 + α′

7)

= (n, n, n, n, n− 1, n+ 1, n+ 1, n− 1, n− 2, 2) ,

where the factor of -2 in front of α′
7 reminds us of the charge assignment Q3 = −2. On the other

hand, the - sign in front of α′
3 does not contradict our choice of Q1 = +1, but is rather due to

our Cartan-Weyl basis (5.135), in which H ′
3 has a different conventional sign compared to H ′

5

and H ′
7. Accordingly, one obtains: Hξ[6,n] = nHδ̃[6] − i(E3 − F3 + E5 − F5 − 2(E7 + F7)) as it

should.
It is now easy to guess the general form of the shift vector for all T 10−q×T q/ � n orbifolds, in

which the orbifold projections are taken independently on each of the (q/2) T 2 subtori (in other
words, we exclude for example a � 3 × � 3 orbifold of T 6 for which one � 3 acts on the planes
{x5, x6} and {x7, x8} and the other on the planes {x7, x8} and {x9, x10}, since it contains two
independent projections on the same T 2 subtorus).

By translating the tables of e10 roots established by [115] in the physical basis, we can
identify the roots which constitute class representatives of shift vectors (satisfying the conditions
mentioned above) for orbifolds with various charge assignments, and build the classification
represented in Tables 5.12 and 5.13. These listings deserve a few comments.

First of all, what we are really classifying are inner automorphisms of the type (5.62) with
all different charges assignments (up to permutations of the shift vectors). Though some of
these automorphisms allow to take a geometrical orbifold projection and descend to well-defined
type IIA orbifolds, like the T 4/ � n and the T 6/ � n cases14 we studied in Sections 5.5 and 5.6
for n = 2, 3, 4, 6, the Lefschetz fixed point formula would give a non-integer number of fixed
points for most of the others. Clearly, such cases do not correspond to compactifications on
geometrical orbifolds that can be made sense of in superstring theory (let alone preserve some
supersymmetry). However, whether compactifications on such peculiar spaces makes sense in
M-theory is, on the other hand, an open question. The invariant subalgebras and ”untwisted”
sectors can in any case be defined properly.

Second, we chose not to consider as different two shift vectors differing only by a permu-
tation of δ̃, but exhibiting the same universal part, for example (3, 3, 3, 3, 3, 3, 3, 3, 2, 1) and
(3, 3, 3, 3, 3, 3, 3, 0, 2, 4).

Finally, looking at the Tables 5.12 and 5.13 in an horizontal way, one can identify series of
shift vectors defining orbifold charges which appear as ”subcharges” one of the others, when
some Qi’s are set to zero. For example, starting from T 8/ � 6 × T 2/ � 3 for q = 10, one obtains
successively T 6/ � 6 × T 2/ � 3, T

4/ � 6 × T 2/ � 3, T
2/ � 6 × T 2/ � 3 and T 2/ � 3 for q = 8, 6, 4, 2, with

shift vectors of monotonally decreasing squared lengths -8, -10, -12, -14 and -16.
Though, for evident typographical reasons, we were not able to accomodate all shift vec-

tors related in this way on the same line, we have done so whenever possible to highlight the
appearance of such families of class representatives. This explains the blank lines, whenever
there was no such correspondence. An attentive study of Tables 5.12 and 5.13 shows that those
families end up when a root of the serie reaches squared length 2. For example, going backwards
and starting instead from T 6/ � ′

3 with a shift vector of null squared length for q = 6, one finds
T 2/ � 6 × T 6/ � 3 with a vector of squared length 2 for q = 8, but there is no T 4/ � 6 × T 6/ � 3 for
q = 10, since it would have to be generated by a vector of length 4, which is of course not a
root.

14This kind of T 6/ � n orbifold with charge assignment (1, 1,−2) is denoted T 4/ � n × T 2/ � n/2 in Tables 5.12
and 5.13 to distinguish it from the one with charge assignment (1,−1, 1).
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To extend this classification to orbifolds that are not induced by an automorphism of type
(5.62), further computations are nevertheless necessary (to obtain the correct form of the uni-
versal parts). However, exactly the same methods can in principle be applied and we leave this
matter for further research. When tables of roots of e10 will be available up to higher levels in
α8, one could also study orbifolds for higher values of n. Of physical interest are perhaps values
of n up to 12, which would in principle require knowledge of roots of levels up to 36.

A more speculative question is whether these orbifold-generating roots all have another
physical interpretation, for example as solitonic M-theory objects with or without non-trivial
fluxes, just as in [55]. A first look at the general shape of these roots in the physical basis
seems to confirm this view, since the first (10 − q) n’s remind of a (10 − q)-brane transverse
to the orbifolded torus, while the other components might be given an interpretation as fluxes
through the orbifold. Indeed, both are expected to contribute to local anomaly cancellation at
the orbifold fixed points. We do not have a general realization of this idea, yet, but we will
describe a number of more concrete constructions in the following and discuss in particular all
of the � 2 cases in detail, hinting at a possible interpretation of the general � n ones.
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q=2

n Orbifold shift vector Q1 |ξ|2 n Orbifold shift vector Q1 |ξ|2

3 T 2/

�

3 (3, 3, 3, 3, 3, 3, 3, 3, 2, 1) 1 −4 5 T 2/

�

5 (5, 5, 5, 5, 5, 5, 5, 5, 4, 1) 1 −8

T 2/

� ′
5 (5, 5, 5, 5, 5, 5, 5, 5, 3, 2) 2 −12

4 T 2/

�

4 (4, 4, 4, 4, 4, 4, 4, 4, 3, 1) 1 −6 6 T 2/

�

6 (6, 6, 6, 6, 6, 6, 6, 6, 5, 1) 1 −10

T 2/

�′
2 (4, 4, 4, 4, 4, 4, 4, 4, 2, 2) 2 −8 T 2/

� ′
3 (6, 6, 6, 6, 6, 6, 6, 6, 4, 2) 2 −16

T 2/

�′′
2 (6, 6, 6, 6, 6, 6, 6, 6, 3, 3) 3 −18

q=4 q=6

n Orbifold shift vector (Q1, Q2) |ξ|2 n Orbifold shift vector (Q1, Q2, Q3) |ξ|2

3 T 4/

�

3 (3, 3, 3, 3, 3, 3, 4, 2, 2, 1) (1,−1) −2 3 T 6/

�

3 (3, 3, 3, 3, 2, 4, 4, 2, 2, 1) (−1, 1,−1) 0

4 T 4/

�

4 (4, 4, 4, 4, 4, 4, 5, 3, 3, 1) (1,−1) −4 4 T 6/

�

4 (4, 4, 4, 4, 3, 5, 5, 3, 3, 1) (−1, 1,−1) −4

T 2/

�

4 × T 2/

�

2 (4, 4, 4, 4, 4, 4, 5, 3, 2, 2) (1,−2) −6 T 4/

�

4 × T 2/

�

2 (4, 4, 4, 4, 3, 5, 5, 3, 2, 2) (1, 1,−2) −4

T 4/

�

2 (4, 4, 4, 4, 4, 4, 6, 2, 2, 2) (2,−2) 0 T 2/

�

4 × T 4/

�

2 (4, 4, 4, 4, 5, 3, 6, 2, 2, 2) (1,−2, 2) 2

T 2/

�

2 × T 2/

�

4 (4, 4, 4, 4, 4, 4, 6, 2, 3, 1) (2,−1) 2

5 T 4/

�

5 (5, 5, 5, 5, 5, 5, 6, 4, 4, 1) (1,−1) −6 5 T 6/

�

5 (5, 5, 5, 5, 4, 6, 6, 4, 4, 1) (−1, 1,−1) −4

T 4/

�′
5 (5, 5, 5, 5, 5, 5, 6, 4, 3, 2) (1,−2) −10 T 6/

� ′
5 (5, 5, 5, 5, 4, 6, 6, 4, 3, 2) (−1, 1,−2) −8

T 4/

� ′′
5 (5, 5, 5, 5, 5, 5, 7, 3, 4, 1) (2,−1) 0 T 6/

� ′′
5 (5, 5, 5, 5, 4, 6, 7, 3, 4, 1) (−1, 2,−1) 2

T 4/

� ′′′
5 (5, 5, 5, 5, 5, 5, 7, 3, 3, 2) (2,−2) −2 T 6/

� ′′′
5 (5, 5, 5, 5, 4, 6, 7, 3, 3, 2) (−1, 2,−2) −2

6 T 4/

�

6 (6, 6, 6, 6, 6, 6, 7, 5, 5, 1) (1,−1) −8 6 T 6/

�

6 (6, 6, 6, 6, 5, 7, 7, 5, 5, 1) (−1, 1,−1) −6

T 2/

�

3 × T 2/

�

6 (6, 6, 6, 6, 6, 6, 8, 4, 5, 1) (2,−1) 2 T 2/

�

3 × T 4/

�

6 (6, 6, 6, 6, 4, 8, 7, 5, 5, 1) (−2, 1,−1) 2

T 2/

�

6 × T 2/

�

3 (6, 6, 6, 6, 6, 6, 7, 5, 4, 2) (1,−2) −14 T 4/

�

6 × T 2/

�

3 (6, 6, 6, 6, 5, 7, 7, 5, 4, 2) (−1, 1,−2) −12

T 4/

�′
3 (6, 6, 6, 6, 6, 6, 8, 4, 4, 2) (2,−2) −8 T 2/

�

6 × T 4/

�

3 (6, 6, 6, 6, 5, 7, 8, 4, 4, 2) (−1, 2,−2) −6

T 6/

� ′
3 (6, 6, 6, 6, 4, 8, 8, 4, 4, 2) (−2, 2,−2) 0

T 2/

�

2 × T 2/

�

3 (6, 6, 6, 6, 6, 6, 9, 3, 4, 2) (3,−2) 2

T 2/

�

6 × T 2/

�

2 (6, 6, 6, 6, 6, 6, 7, 5, 3, 3) (1,−3) −16 T 4/

�

6 × T 2/

�

2 (6, 6, 6, 6, 5, 7, 7, 5, 3, 3) (−1, 1,−3) −14

T 4/

�′
2 (6, 6, 6, 6, 6, 6, 9, 3, 3, 3) (3,−3) 0 T 2/

�

6 × T 4/

�

2 (6, 6, 6, 6, 5, 7, 9, 3, 3, 3) (−1, 3,−3) 2

Table 5.12: e10 roots as class representatives of shift vectors for

�

n orbifolds
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q=8 q=10

n Orbifold shift vector (Q1, . . . , Q4) |ξ|2 n Orbifold shift vector (Q1, . . . , Q5) |ξ|2

3 T 8/

�

3 (3, 3, 2, 4, 2, 4, 4, 2, 2, 1) (1,−1, 1,−1) 2

4 T 8/

�

4 (4, 4, 5, 3, 3, 5, 5, 3, 3, 1) (1,−1, 1,−1) −2 4 T 10/

�

4 (3, 5, 5, 3, 3, 5, 5, 3, 3, 1) (−1, 1,−1, 1,−1) 2

T 6/

�

4 × T 2/

�

2 (4, 4, 5, 3, 3, 5, 5, 3, 2, 2) (1,−1, 1,−2) −2 T 8/

�

4 × T 2/

�

2 (3, 5, 5, 3, 3, 5, 5, 3, 2, 2) (−1, 1,−1, 1,−2) 0

5 T 8/

�

5 (5, 5, 6, 4, 4, 6, 6, 4, 4, 1) (1,−1, 1,−1) −2 5 T 10/

�

5 (4, 6, 6, 4, 4, 6, 6, 4, 4, 1) (−1, 1,−1, 1,−1) 0

T 8/

�′
5 (5, 5, 6, 4, 4, 6, 6, 4, 3, 2) (1,−1, 1,−2) −6 5 T 10/

�

5 (4, 6, 6, 4, 4, 6, 6, 4, 3, 2) (−1, 1,−1, 1,−2) −4

T 8/

� ′′′
5 (5, 5, 6, 4, 4, 6, 7, 3, 3, 2) (1,−1, 2,−2) 0 T 10/

� ′′′
5 (4, 6, 6, 4, 4, 6, 7, 3, 3, 2) (−1, 1,−1, 2,−2) 2

6 T 8/

�

6 (6, 6, 7, 5, 5, 7, 7, 5, 5, 1) (1,−1, 1,−1) −4 6 T 10/
�

6 (5, 7, 7, 5, 5, 7, 7, 5, 5, 1) (−1, 1,−1, 1,−1) −2

T 2/

�

3 × T 6/

�

6 (6, 6, 8, 4, 5, 7, 7, 5, 5, 1) (2,−1, 1,−1) 2

T 6/

�

6 × T 2/

�

3 (6, 6, 7, 5, 5, 7, 7, 5, 4, 2) (1,−1, 1,−2) −10 T 8/
�

6 × T 2/

�

3 (5, 7, 7, 5, 5, 7, 7, 5, 4, 2) (−1, 1,−1, 1,−2) −8

T 4/

�

6 × T 4/

�

3 (6, 6, 7, 5, 5, 7, 8, 4, 4, 2) (1,−1, 2,−2) −4 T 6/
�

6 × T 4/

�

3 (5, 7, 7, 5, 5, 7, 8, 4, 4, 2) (−1, 1,−1, 2,−2) −2

T 2/

�

6 × T 6/

�

3 (6, 6, 7, 5, 4, 8, 8, 4, 4, 2) (1,−2, 2,−2) 2

T 6/

�

6 × T 2/

�

2 (6, 6, 7, 5, 5, 7, 7, 5, 3, 3) (1,−1, 1,−3) −12 T 8/

�

6 × T 2/

�

2 (5, 7, 7, 5, 5, 7, 7, 5, 3, 3) (−1, 1,−1, 1,−3) −10

T 4/

�

6 × T 2/

�

3 × T 2/

�

2 (6, 6, 7, 5, 5, 7, 8, 4, 3, 3) (1,−1, 2,−3) −6 T 6/

�

6 × T 2/

�

3 × T 2/

�

2 (5, 7, 7, 5, 5, 7, 8, 4, 3, 3) (−1, 1,−1, 2,−3) −4

T 2/

�

6 × T 4/

�

3 × T 2/

�

2 (6, 6, 7, 5, 4, 8, 8, 4, 3, 3) (1,−2, 2,−3) 0 T 4/

�

6 × T 4/

�

3 × T 2/

�

2 (5, 7, 7, 5, 4, 8, 8, 4, 3, 3) (−1, 1,−2, 2,−3) 2

Table 5.13: e10 roots as class representatives of shift vectors for

�

n orbifolds
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5.9
�

2 orbifolds

The case of � 2-orbifolds is slightly degenerated and must be considered separately. In [56], the
orbifold T 4m/ � 2, m = 1, 2 and T 4m′+1/ � 2, m

′ = 0, 1, 2 have been worked out, and the orbifold
charges have been shown to be generated by a generic Minkowskian brane required [88, 249] for
anomaly cancellation, living in the transverse space.

In this section, we will show how to treat all T q/ � 2 orbifolds for q ∈ {1, .., 9}. In Section 5.9.1,
it will be shown how the algebraic results for invariant subalgebras in [55], which we henceforth
refer to as � 2 orbifolds of the first kind, are recovered as a particular case in the more general
framework of Section 5.8.

In Section 5.9.2, we investigate in detail the q = 2, 3, 6, 7 cases, or � 2 orbifolds of the
second kind, which have not been considered in [55]. Let us stress that by orbifolds of the
second kind we mean the purely algebraic implementation of the � 2 projection in the U-duality
algebra. Then, we will extract from the construction of Section 5.8.3 the roots of e10 defining
the representatives of classes of shift vectors for these orbifolds of M-theory and give a tentative
physical interpretation.

Concretely, let i, j, k be transverse spacelike coordinates and A,B,C coordinates on the
orbifold, under a � 2-transformation, 11D-supergravity and fields have charge assignment

(all) : gij → +gij , giA → −giA , gAB → +gAB ,(
odd

even

)
: Cijk → ∓Cijk , CijA → ±CijA , CiAB → ∓CiAB , CABC → ±CABC ,

odd and even referring to the dimension of the orbifold torus.
In contrast to the � n>2 case, where the inner automorphisms generating the orbifold charges

were pure SO(r) rotations, the action of a � 2-orbifold can be regarded as an element of the
larger O(r) = � 2 × SO(r). This distinctive feature of � 2-orbifold can be ascribed to the fact
that while even orbifolds act as central symmetries and may be viewed as π-rotations, hence
falling in O+(r) (positive determinant elements connected to the identity), odd orbifolds behave
as mirror symmetries, and thus fall in O−(r). Concretely, negative determinant orthogonal trans-
formations will contain, in the e10 language, a rotation in the α8 direction, namely Ad(eπ (E8−F8))
or Ad(eiπ H8), which, in this framework, behaves as a mirror symmetry.

The even case can be dealt with in a general fashion by applying the following theorem:

Theorem 5.9.1 Let T q/ � 2 be a � 2 toroidal orbifold of er, for q ∈ {1, . . . , 9}, r ∈ {q+1, . . . , 10}.
Let q be either 2m or 2m + 1. Given a set of (possibly non-simple) roots ∆ � 2 = {β(p)}p=1,..,m

satisfying (β(p)|β(l)) = cpδp,l, with cp 6 2 and provided the orbifold acts on the U-duality algebra

gU with the operator U � 2
2m ∈ GU defined, according to expression (5.62), by

U � 2
q =

m∏

p=1

Ad(e
π (Eβ(p)

−Fβ(p)
)
) , (5.136)

then, the orbifold action decomposes on the root-subspace gUα ⊂ gU as

U � 2
q · gUα ≡

m∏

p=1

Ad(e
iπ Hβ(p) ) · gUα = (−1)

Pm
p=1(β(p)|α) gUα , ∀α ∈ ∆(gU ) . (5.137)

If the � 2-orbifold is restricted to extend in successive directions, starting from x10 downwards,
it can be shown that for any root α =

∑8
j=−1 k

jαj ∈ ∆(gU ), expression (5.137) assumes the
simple form

U � 2
2m · gUα ≡ Ad(eiπ

Pm
i=1H9−2i) · gUα =

{
(−1)k

6
gUα , for m = 1

(−1)k
8−2m+k8

gUα , for 2 6 m 6 4
. (5.138)
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for even orbifold. For odd ones, we note the appearance of the mirror operator we mentioned
above

U � 2
2m+1 · gUα ≡ Ad

(
eiπ (H8+H6+

Pm
i=1H8−2i)

)
· gUα = (−1)k

7−2m
gUα , for m > 0 . (5.139)

Following Section 5.8.1, we are free to recast the orbifold charges resulting from expres-
sions (5.138) and (5.139), by resorting to a shift vector ξ [q,2] such that:

U � 2
q · gUα = (−1)(ξ

[q,2]|α) gUα , ∀q = 1, . . . , 9 .

The subalgebra invariant under T q/ � 2 is now reformulated as a KMA with root system

∆inv =
{
α ∈ ∆(gU ) |(ξ[q,2]|α) = 0mod 2

}
. (5.140)

This is definition of the � 2-charge used in [56, 55].

5.9.1 � 2 orbifolds of M-theory of the first kind

The orbifolds of M-theory with q = 1, 4, 5, 8, 9 have already been studied in [55], and a possible
choice of shift vectors has been shown to be, in these cases, dual to prime isotropic roots,
identified in [56] as Minkowskian branes. As such, they were interpreted as representatives of
the 16 transverse M-branes stacked at the 2q orbifold fixed points and required for anomaly
cancellation in the corresponding M-theory orbifolds [249, 88].

In this section about � 2 orbifolds of the first kind, we will show how to rederive the results
of [55] about shift vectors and invariant subalgebra, from the more general perspective we have
developed in Section 5.8 by resorting to the Kac-Peterson formalism. After this cross check, we
will generalize this construction to the q = 2, 3, 6, 7 cases, which have not been considered so far,

and show how the roots ξ
[q,2]
2 are related to D-branes and involved in the cancellation of tadpoles

due to O-planes of certain type 0B’ orientifolds. For this purpose, we start by summarizing in
Table 5.14 the shift vectors for the q = 1, 4, 5, 8, 9 cases found in [55], specifying in addition the
SL(10, � )-representation they belong to. Next we will show how the results of Table 5.14 for

q ξ[q,2] physical basis Dynkin labels

1 α(−1)2041628310412514697687 (2, 2, 2, 2, 2, 2, 2, 2, 4, 1) [200000001]

4 α(−1)2041628310412513687586 (2, 2, 2, 2, 2, 2, 1, 1, 3, 1) [100000100]

5 α(−1)2041628310411512687485 (2, 2, 2, 2, 2, 1, 1, 1, 1, 1) [000010000]

8 α(−1)2041526374859667384 (2, 2, 1, 1, 1, 1, 1, 1, 1, 1) [010000000]

9 δ (0, 1, 1, 1, 1, 1, 1, 1, 1, 1) [000000001]

Table 5.14: Physical class representatives for T 10−q × T q/ � 2 orbifolds of M-theory of the first
kind

even orbifolds can be retrieved as special cases of the general solutions computed in Section 5.8.1.
The root of E10 relevant to the q = 4 orbifold can be determined as a special case of T 4/ � n

shift vectors, namely:

ξ[4,2] = 2(Λ5 − Λ6 − Λ8) + Λ{4} = 2δ̃[4] − α5 + α7 ,

which coincides with the results of Table 5.14. This choice of weight is far from unique, but is
the lowest height one corresponding to a root of E10 (given that Λ{4} is not a root). Likewise
ξ[8,2] can in principle be deduced from the generic weight Λ{8} determining the T 8/ � n charges.
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Shift vectors for odd orbifolds of Table 5.14 can also be recast in a similar form, even though
they do not generalize to n > 2. We can indeed rewrite:

ξ[1,2] = 2(2Λ7 − Λ6)− Λ7, ξ[5,2] = 2(−Λ8) + Λ3, ξ[9,2] = 2(−Λ−1) + Λ−1.

The last four E10 roots listed in Table 5.14 were identified in [56] as, respectively,
Minkowskian Kaluza-Klein monopole (KK7M), M5-brane, M2-brane and Kaluza-Klein particle
(KKp), with spatial extension in the transverse directions and have been presented in Table 5.1.
The first root is the mysterious M-theory lift of the type IIA D8-brane, denoted as KK9M in
this paper. In the language of Table 5.5, these roots correspond to the representation weights
(A⊗ K̃)(99)[1···9], D(10)[1···6 10], B(1)[2··· 5], A(12), K̃(2)[3···10].

Furthermore, it has been shown in [249, 88] that the consistency of � 2 orbifolds of M-theory
of the first kind requires the presence at the fixed points of appropriate solitonic configurations.
For T q=5,8/ � 2, one needs respectively 16 M5-branes/M2-branes to ensure anomaly cancellation.
In the case of T 9/ � 2, 16 units of Kaluza-Klein momentum are needed, while Kaluza-Klein
monopoles with a total Chern class of the KK gauge bundle amounting to 16 is required in the
case of T 4/ � 2.

For q = 4, 5, 8, 9, the transverse Minkowskian objects of Table 5.14 having all required prop-
erties were interpreted as generic representatives of these non-perturbative objects. However,
their total multiplicity/charge cannot be inferred from the shift vectors. It was proposed in [55]
that these numbers could be deduced from an algebraic point of view from the embedding of
ginv into a real form of the conjectured heterotic U-duality symmetry de18. However, this idea
seems to be difficult to generalize to the new examples treated in the present paper and we will
not discuss it further.

For q = 1, the analysis is a bit more subtle, and needs to be carried out in type IIA language.
To understand the significance of the shift vector in this case, it is convenient to reduce from
M-theory on T 8 × S1/ � 2 × S1 to type IIA theory on T 8 × S1/ΩI1, where I1 is the space
parity-operator acting on the S1 as the original � 2 inversion, while Ω is the world-sheet parity

operator. In this setup, the appropriate shift vector is ξ
[1,2]
σ = (2, 2, 2, 2, 2, 2, 2, 2, 1, 4), which can

be interpreted as a KK9M of M-theory with mass:

MKK9M = M−9
P V −1e〈ξ|Hm〉 = M12

P R1 · · ·R8R
3
10 .

Upon reduction to type IIA theory, we reexpress it in string units by setting

R10 = gAM
−1
s , and MP = g

−1/3
A Ms , (5.141)

and take the limit MPR10 → 0:

MKK9M →MD8 =
M9
s

gA
R1 · · ·R8 .

The resulting mass is that of a D8-brane of type IIA theory. The appearance of this object
reflects the need to align 8 D8-branes on each of the two O8 planes at both ends of the orbifold
interval to cancel locally the −8 units of D8-brane charge carried by each O8 planes, a setup
known as type I’ theory.

The chain of invariant subalgebras ginv in Table 5.15 is obtained by keeping only those root
spaces of gU which have eigenvalue +1 under the action of U � 2

2m (5.138) or U � 2
2m+1 (5.139). We

can use the set of invariant roots (5.140) to build the Dynkin diagram of ginv, but this is not
enough to determine root multiplicities in D = 1. In the hyperbolic case indeed, one will need
to know the dimension of the root spaces gUα ⊂ gU = e10|10 which are invariant under the actions
(5.138) or (5.139) to determine the size of ginv. We will come back to this issue at the end of
this section.
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D (Π0, φ) ginv σ(ginv)

8 e e × H so(2, 2) ⊕ so(1, 1) 3

7 e e e × H so(3, 3) ⊕ so(1, 1) 4

6 e e

e

e

�
�

Z
Z

× H so(4, 4) ⊕ so(1, 1) 5

5 e e e

e

e

�
�

Z
Z

× H so(5, 5) ⊕ so(1, 1) 6

4 e e e e

e

e

�
�

Z
Z

e so(6, 6) ⊕ sl(2, � ) 7

3 e e e e e e

e

e

�
�

Z
Z

so(8, 8) 8

2 e e e e e

e

e

�
�

Z
Z

e

e

�
�

Z
Z

d̂8|10 10

1

e

e e e e e e e

e

e

�
�

Z
Z

de10|10 10

Table 5.15: The split subalgebras ginv for � 2 orbifolds of the first kind

This construction of the root system leads, ∀q = 1, 4, 5, 8, 9, to a unique chain of invariant
subalgebras, depicted in Table 5.15. Thus, we verify that the statement made in [55] for the
hyperbolic case is true for all compactifications of type T 11−(D+q) × T q/ � 2 with q = 1, 4, 5, 8, 9.
There, this isomorphism was ascribed to the fact that, in D = 1, the shift vectors (5.14)
are all prime isotropic and thus Weyl-equivalent to one another. The mathematical origin
of this fact lies in the general method developed by Kac-Peterson explained in Section 5.8.1,
which states that equivalence classes of shift vectors related by Weyl transformation and/or
translation by n times any weight lattice vector lead to isomorphic fixed-point subalgebras.
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Since a Weyl reflection in gU generates a U-duality transformation in M-theory and its low-
energy supergravity, this isomorphism seems to indicate that all such orbifolds are dual in
M-theory, as pointed out in [88, 220]. In fact, if one had chosen to reduce � 2 orbifolds of the
first kind on a toroidal direction for q odd, and on an orbifolded direction for q even, one would
have realized that they are all part of the serie of mutually T-dual orientifolds (a T-duality on
xi is denoted by Ti):

type IIB on T 9/Ω
T9−→ type IIA on T 9/ΩI1

T8−→ type IIB on T 9/(−1)FLΩI2
T7−→

→ type IIA on T 9/(−1)FLΩI3
T6−→ type IIB on T 9/ΩI4

T8−→ . . .
(5.142)

where Ir denotes the inversion of the last r space-time coordinates, while Ω is as usual the
world-sheet parity. The space-time left-moving fermions number (−1)FL appear modulo 4 in
these dualities.

The reality properties of ginv are easy to determine. Since the original balance between
Weyl and Borel generators is preserved by the orbifold projection, the non-abelian part of g inv

remains split. In D = 8, . . . , 5, the abelian so(1, 1) factor in ginv is generated by the non-compact
element H [q] which also appears in T q/ � n>2 orbifolds. For q = 4, it is, for instance, given by
H [4] = H8−H4 in D = 6 and 2H3 +4H4 +3H5 +2H6 +H7 in D = 5, as detailed in Section 5.5,
and is enhanced, in D = 4, to the sl(2, � ) factor appearing in Table 5.15 when H [4] becomes
the root γ = α23243536278 ∈ ∆+(e7). The procedure is similar for q = 1, 5, 8, 9, for different
combinations H [q] and positive roots γ.

The root multiplicities in ginv is only relevant to the two cases D = 2, 1, for which the root
multiplicities are inherited from e9 and e10. For gU = e9 we have ginv = d̂8, since δginv

= δ, and
since δ and δd̂8

both have multiplicity 8.
In D = 1, the story is different. In [55], it has been shown that ginv contains a subalgebra

of type de10. The authors have performed a low-level decomposition of both ginv and de10. For
a generic over-extended algebra g∧∧, such a decomposition with respect to its null root δG∧∧ is
given by (g∧∧)[k]

.
=

⊕
(α,δG∧∧)=k

g∧∧α . In particular, they define: (ginv)[k]
.
= ginv ∩ (e10)[k] and show

that:
(ginv)[1] ' (de10)[1] , (ginv)[2] ⊃ (de10)[2] .

The first equality is a reformulation of ginv = d̂8 for gU = e9. The second result comes from the
fact that the orbifold projection selects certain preserved root subspaces without affecting their
dimension. This feature is similar to what we have observed in the case of � n orbifolds, where
the original root multiplicities are restored after modding out the Borcherds or KM algebras
appearing in D = 1 by their centres and derivations.

5.9.2 � 2 orbifolds of M-theory of the second kind and orientifolds with mag-
netic fluxes

Let us first recall that by orbifolds of the second kind we mean the purely algebraic imple-
mentation of T 10/Iq, q = 2, 3, 6, 7, in the U-duality algebra. In this case, the connection to
orbifolds of M-theory will be shown to be more subtle than in Section 5.9.1. Indeed, since
the algebraic orbifolding procedure does not discriminate between two theories with the same
bosonic untwisted sectors and different fermionic degrees of freedom, there are in principle sev-
eral candidate orbifolds on the M-theory side to which these orbifolds of the second kind could
be related.

The first (naive) candidate one can consider is to take M-theory directly on T 10/Iq, q =
2, 3, 6, 7. Then following the analysis of Section 5.9.1, a reduction of such orbifolds to type II
string theory would result in a chain of dualities similar to expression (5.142), with the important
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difference that the (−1)FL operator now appears in the opposite places. It is well known that the
spectrum of such theories cannot be supersymmetric. Referring to the chain of dualities (5.142)
with the required extra factor of the left-moving fermionic number operator, one observes that
such theories do not come from a consistent truncation of type IIB string theory, since (−1)FLΩ
is not a symmetry thereof, and all of them are therefore unstable.

A more promising candidate is M-theory on T q/{(−1)FS, � 2}, where (−1)F is now the total
space-time fermion number and S represents a π shift in the M-theory direction. In contrast to
the preceding case, these orbifolds are expected to be dual to orientifolds of type 0 theory, which
are non-supersymmetric but are nonetheless believed to be stable, so that tadpole cancellation
makes sense in such setups.

Let us work out, in these type 0 cases, a chain of dualities similar to expression (5.142). To
start with, we review the argument stating that M-theory on S1/(−1)FS is equivalent to the
non-supersymmetric type 0A string theory in the small radius limit [27].

Considering the reduction of M-theory on S1 × S1/(−1)FS to type IIA string theory on
S1/(−1)FS, one can determine the twisted sector of this orbifold (with no fixed point) and
perform a flip on {x9, x10} to obtain the spectrum of M-theory on S1/(−1)FS. At the level of
massless string states, all fermions are projected out from the untwisted sector and there appears
a twisted sector that doubles the RR sector and adds a NSNS tachyon, leading to type 0A string
theory in 10 dimensions. Interestingly, type 0 string theories have more types of � 2 symmetries
and thus more consistent truncations. In D = 10, type 0A theory is symmetric under the action
of Ω, while type 0B theory is symmetric under Ω, Ω(−1)fL and Ω(−1)FL , where fL and FL are
respectively the world-sheet and space-time left-moving fermion numbers. Furthermore, their
compactified versions on T 10 each belong to a serie of orientifold theories similar to (5.142).
Among these four chains of theories, one turns out to be tachyon-free, the chain descending
from type 0B string theory on Ω(−1)fL . Let us concentrate on this family of orientifolds and
show that the M-theory orbifolds of the second kind can all be seen to reduce to an orientifold
from this serie in the small radius limit.

In order to see this, one can mimick the procedure used for (5.142) and reduce on a toroidal
direction for q odd, and on an orbifolded direction for q even. The untwisted sectors of our
orbifolds then turns out to correspond to those of an orientifold projection by Ω(−1)fLI(q),

resp. Ω(−1)fRI(q−1), on type 0A string theory. A projection by Ω(−1)fL/RI(q) has the following
effects in type 0A string theory: it eliminates the tachyon and half of the doubled RR sector,
the remaining half being distributed over the untwisted and twisted sectors of M-theory on
S1/(−1)FS. Consequently, one expects to obtain theories that belong to the following chain of
dual non-supersymmetric orientifolds:

type 0B on T 9/(−1)fLΩ
T9−→ type 0A on T 9/(−1)fRΩI1

T8−→ type 0B on T 9/(−1)fRΩI2
T7−→ type 0A on T 9/(−1)fLΩI3

T6−→ type 0B on T 9/(−1)fLΩI4
T8−→ . . .

(5.143)
where (−1)fL and (−1)fR again appear modulo 4 in these dualities15. Complications might
however arise at the twisted sector level when reducing to type 0A string theory on an orbifolded
direction, since one should take into account a possible non-commutativity between the small
radius limit and the orbifold limit. We will come back to this point later.

Instead, we first want to remind the reader that, as was shown in [46], type 0B string on
(−1)fLΩ can be made into a consistent non-supersymmetric string theory by cancelling the
tadpoles from the two RR 10-forms through the addition of 32 pairs of D9- and D9’-branes
for a total U(32) gauge symmetry. This setup is usually called type 0’. There is also a NSNS

15From the point of view of M-theory, these dualities sometimes exchange the untwisted and twisted sectors
under (−1)FS
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dilaton tadpole, but this does not necessarily render the theory inconsistent. Rather, it leads
to a non-trivial cosmological constant through the Fischler-Susskind mechanism [116, 117]. It
was also shown in [46] that there is no force between the D9- and D9’-branes and that twisted
sector open strings stretched between them lead to twisted massless fermions in the 496⊕ 496
representation of U(32). Even though the latter are chiral Majorana-Weyl fermions, it was
shown in [215, 216] that a generalized Green-Schwarz mechanism ensures anomaly cancellation.

To characterize the twisted sectors of such orientifolds of type 0’ string theory algebraicly, we
will again use the equivalence classes of shift vectors that generate the orbifolds on the U-duality
group. The simplest elements of these classes which are also roots give the set of real roots in
Table 5.16.

q ξ̃[q,2] physical basis generator

2 α7 (0, 0, 0, 0, 0, 0, 0, 0, 1,−1) K[9 10]

3 α8 (0, 0, 0, 0, 0, 0, 0, 1, 1, 1) Z[89 10]

6 α3425362782 (0, 0, 0, 0, 1, 1, 1, 1, 1, 1) Z̃[5···10]
7 α1223344556647283 (0, 0, 2, 1, 1, 1, 1, 1, 1, 1) K̃(3)[3···10]

Table 5.16: Universal shift vectors for � 2 orbifolds of the second kind

As is obvious from the second and third column, all such roots are in ∆+(e8) and correspond
to instantons completely wrapping the orbifolded torus. Since they are purely e8 roots, we do
not expect them to convey information on the string theory twisted sectors. As such, this set
of shift vectors does not lend itself to an interesting physical interpretation, but gives however
certain algebraic informations. All these roots being in the same orbit of the Weyl subgroup
of E8, the resulting invariant subalgebras are again isomorphic (when existing) ∀q = 2, 3, 6, 7.
We list the invariant subalgebras for M-theory on T 2/{(−1)FS, � 2} together with their Dynkin
diagrams in Table 5.17. The same invariant subalgebras appear for all values of q, but of course
start to make sense only in lower dimensions.

The invariant subalgebras are not simple for D ≥ 3 and all of them contain at least one
sl(2, � ) factor with simple root ξ̃[q,2]. When an abelian factor is present, it coincides with the
non-compact Cartan element H [q] encountered in T q/ � n>2 orbifolds. Furthermore, in contrast
to the connected d̂8 diagram obtained for q = 1, 4, 5, 8, 9, the invariant subalgebra for q = 2, 3, 6, 7
is given in D = 2 by an affine central product, as in the T 2,4,6/ � n>2 cases treated before. In
D = 1, the invariant subalgebra is the following quotient of the KMA, whose Dynkin diagram
is drawn in Table 5.17:

ginv = 2KM11|12/{z, d1} ,
where z = ce7 − câ1

. As in the T 6/ � 3,4 cases, 2KM11 has a singular Cartan matrix with similar
properties.

We will now show that certain equivalent shift vectors can be interpreted as configurations
of D9 and D9’-branes cancelling R-R tadpoles in a type 0’ string theory orientifold. This can
be achieved by adding an appropriate weight lattice vector Λ[q] to ξ̃[q,2] that do not change the
scalar products modulo 2. It should be chosen so that Λ[q] + ξ̃[q,2] is a root, and gives insight on
the possible M-theory lift of such constructions. More precisely, we want to convince the reader
that certain choices of shift vectors generating M-theory orbifolds of the second kind can be seen
as representing either magnetized D9-branes or their image D9’-branes in some type 0’ theory
with orientifold planes. Such branes carry fluxes that contribute to the overall D(9 − q)-brane
charge for even q and D(10 − q)-brane charge for odd q, but not to the higher ones.

Let us first study the example of a T 3/ � 2 × S1/(−1)FS orbifold of M-theory. Following
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D (Π0, φ) ginv σ(ginv)

8 e e × H sl(2, � )⊕
2 ⊕ so(1, 1) 3

7 e e e × H
sl(3, � ) ⊕ sl(2, � )

⊕ so(1, 1)
4

6 e e e e e sl(4, � ) ⊕ sl(2, � )⊕
2

5

5 e e e e e e sl(6, � ) ⊕ sl(2, � ) 6

4 e e e e e

e

e

�
�

Z
Z so(6, 6) ⊕ sl(2, � ) 7

3

e

e e e e e e e e7|7 ⊕ sl(2, � ) 8

2

e

e e e e e e e e e〈 〉 ê7|9 ⊕ â1|3 10

1

ee

e e e e e e e e e

~�
2KM11|12 10

Table 5.17: The split subalgebras ginv for � 2 orbifolds of the second kind

the above construction, it should reduce in the limit MPR10 → 0 to type 0A string theory
on T 6 × T 3/(−1)fLΩI3, which is T-dual to type 0B string theory on T 7 × T 2/(−1)fRΩI2. We
summarize these dualities in the diagram below:

M-theory on T 6 × T 3/ � 2 × S1/(−1)FS
yMPR10→0

type 0A on T 6 × (S1 × T 2)/(−1)fLΩI3
T7−−−−→ type 0B on T 6 × S1 × T 2/(−1)fRΩI2

In this last type 0B orientifold, there will be one orientifold plane carrying -4 units of D7-
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and D7’-brane charge at each of the four orbifold fixed points. Suppose that we consider N pairs
of magnetized D9- and D9’-branes carrying fluxes in the orbifolded plane (x ′8, x9). This system
induces two Chern-Simons couplings on the world-volume of the space-time filling branes:

M10
s

2(2π)9

∫
�

×T 9

C8 ∧ 2πα′Tr(F2) =
M8
s

(2π)7

∫
�

×T 7

C8 ·
1

2π

∫

T 2/ � 2

Tr(F2) ,

and a similar expression involving C ′
8. The quantized fluxes can then be chosen in such a way

that the resulting total positive D7- and D7’-brane charges cancel the negative charges from the
orientifold planes and ensure tadpole cancellation. Note that these charges are determined by
the first Chern class c1 of the U(N) gauge bundle.

We can use an analogy with the supersymmetric case, where the system of O7-planes and
magnetized D9-branes in a T 8 × T 2/(−1)FLΩI2 type IIB orientifold has a well-known T-dual
equivalent [47, 191] built from D8-branes at angle with O8-planes in a T 9×S1/(−1)FLΩI1 type
IIA orientifold, in which the flux is replaced by an angle χ in the following way:

2πα′F89 =
c1
N

1IN
M2
sR

′
8R9

T8−→ cot(χ) =
c1
N

R8

R9
(5.144)

and where the type IIB radius16 is R′
8 = 1/M2

sR8. In fact, the appearance of D7-brane charges
in the absence of D9-brane ones on the type IIB side can be understood, in the dual setup, as
the addition (resp. cancellation) of the charges due to the tilted D8-branes to those of their
image branes with respect to the orientifold O8-plane. The image D8-brane indeed exhibits a
different angle, being characterized by wrapping numbers (c1,−N) instead of (c1, N) around
the directions along the orbifold. In our non-supersymmetric case, however, one should keep in
mind that the image brane of a D9-brane under Ω(−1)fR is a D9’-brane.

We will now show that the appropriate shift vector encodes not only explicit information on
the presence of type 0’ pairs of D9- and D9’-branes, but also on the tilting of their dual type 0A
D8- and D8’-branes with respect to the O8-planes. One can then deduce the presence of fluxes
from the angle χ.

To understand how this comes about, we note that both string theory D9- and D8-branes
descend from the (conjectured) KK9M soliton of M-theory described by the e10 roots that are
permutations of ξ = ((2)6, 1, 2, 2, 4) in the following way:

MKK9M = M−9
P V −1e〈ξ|HR〉 = M12

P R1 · · ·R6R8R9R
3
10 .

Following the chain of dualities (5.149), we successively obtain the D8- and D9-brane mass
formulae:

M12
P R1 · · ·R6R8R9R

3
10

MPR10→0−−−−−−−→ MD8 =
M9
s

gA
R1 · · ·R6R8R9

T7−→MD9 =
M10
s

gB
R1 · · ·R6R

′
7R8R9

(5.145)
Now, we select one definite shift vector ξ̃[3,2] from all equivalent ones, which has the partic-

ularity to correspond like ξ to a root of level 4. It is obtained from a permutation of the root

ξ̃[3,2] that describes an orbifold in the directions (x7;x8;x9), namely ξ̃
[3,2]
σ = ((0)6, (1)3, 0), as:

ξ[3,2] = 2(Λ6 − Λ7 − Λ8)− ξ̃[3,2]σ = ((2)6, 3, 3, 1, 2) . (5.146)

16Note that both the signs of the orientifold plane charges and this angle χ would also be sensitive to the
presence of a quantized Kalb-Ramond background flux

R
B89 dx

′8dx9, but we neglect this possibility here, since
it would be the sign of a tilted geometry in the (x8;x9) plane on the type A side (non-trivial complex structure
of the torus).
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Let us first blindly compute the ensuing mass formula, reduce it on x10 and T-dualize it on x7:

M12
P R1 · · ·R6(R7R8)

2R10
MPR10→0−−−−−−−→ M11

s

g3
A

R1 · · ·R6(R7R8)
2 T7−→MD9 =

M10
s

g3
B

R1 · · ·R′
7R

2
8 .

(5.147)
On the type B side, R8 and R9 form the pair of orbifolded directions. Comparing with (5.145),
we immediately see that we will have a D9-brane if: R9 ∝ R8/g

2
B . As hinted above, we need to

find an angle in the dual type 0A setup to identify the flux. In this perspective, we perform a
further T-duality along x8 that brings us to a S1/(−1)fRΩI1 orientifold of type 0A string theory
in which the type 0B flux is mapped to an angle between the O8-plane, and the D8-brane
obtained from (5.147) as

MD9 =
M10
s

g3
B

R1 · · ·R′
7R

2
8

T8−→ M9
s

g3
A

R1 · · ·R6R
′
7R

′
8 . (5.148)

This implies that there is a dual relation to R9 ∝ R8/g
2
B on the 0A side that has the same form:

R9 ∝ R8/g
2
B

T8−→ R9 ∝ R′
8/g

2
A .

Indeed, plugging back this dual relation in (5.148) clearly identifies the corresponding object
with a D8-brane of type A string theory. Interestingly, (5.144) implies that there can be a non-
right angle between the D8-brane and the O8-plane with cot(χ) = c1

N
R8
R9
∝ c1

N g
2
A. Unfortunately,

our purely algebraic formalism does not allow us to see the individual values of c1, N and the
proportionality constant, but they must be physically chosen so that: 1

2π

∫
T 2/ � 2

Tr(F89)dx
8dx9 =

c1 = 16. This is similar to the case of [55], where the type of brane necessary for anomaly
cancellation was obtained from the shift vector, but not their number.

Let us then study the case of a T 2/{(−1)FS, � 2} orbifold of M-theory (where the shift
operator S only acts on x10). We want to show that it gives an alternative M-theory lift of
the same type 0’ T 2/(−1)fRΩI2 orientifold that we have just studied. Before we discuss the
brane configuration, it is necessary to discuss the case of M-theory on S1/{(−1)FS, � 2} to
understand the effect of taking both orbifold projections on the same circle. We first remark
that the orientifold group has four elements: {1I, (−1)FS, I1, (−1)F I ′1}, where I ′1 = SI1. While
I1 is a reflexion of the coordinate x10 with respect to x10 = 0, I ′1 is a reflection of x10 with
respect to x10 = π/2. In particular, I1 has two fixed points at x10 = 0 and π, while I ′1
has two fixed points at x10 = π/2 and 3π/2, and S has no fixed point. Consequently, the
fundamental domain is an interval [0, π/2] and there are three types of twisted sectors, the usual
bosonic closed string twisted sector of (−1)FS that leads to a type 0 spectrum and two open
strings twisted sectors sitting at each pair of fixed points. What is not known, however, is the
precise resulting gauge symmetry and twisted spectrum. There is a dual picture of the same
model, where one first uses the S symmetry to reduce the circle by half, and then considers
the projection by I1 which replaces the circle by the interval. This second picture resembles
the non-supersymmetric heterotic orbifold of M-theory discussed in [112], except that these
authors did not include a closed string twisted sector, which hopefully helps stabilizing the non-
supersymmetric theory. We now conjecture that M-theory on T 2/{(−1)FS, � 2} is the strong
coupling limit of the S1/(−1)fRΩI1 orientifold of type 0A string theory and is thus T-dual to the
T 3/ � 2 × S1/(−1)FS orbifold of M-theory through a double T-duality, modulo the appropriate
breaking of gauge groups by Wilson lines.

Let us be more concrete. We need to reduce to type 0A string theory on an orbifolded direc-
tion, then T-dualize to type 0B on a normal toroidal direction to reach a type 0’ T 2/(−1)fRΩI2
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orientifold, as in the following mapping:

M-theory on T 8 × T 2/{(−1)FS, � 2}yMPR10→0

type 0A on T 8 × S1/(−1)fRΩI1
T8−−−−→ type 0B on T 7 × T 2/(−1)fRΩI2

(5.149)

First, we have to select one definite shift vector from all equivalent ones. We take the one
that has the particularity to descend from the more general T 2/ � n serie of shift vectors of the
form nδ̃[2] − α7, namely:

ξ[2,2] = 2(Λ7 − Λ8) + Λ{2} = 2δ̃[2] − ξ̃[2,2] = ((2)8, 1, 1) , (5.150)

which lead to the mass formulae:

M−9
P V −1e〈ξ[2,2],HR〉 = M9

PR1 · · ·R8
MPR10→0−−−−−−−→ M9

s

g3
A

R1 · · ·R8
T8−→ M10

s

g3
B

R1 · · ·R7R
′2
8 . (5.151)

We immediately see that we end up with the same objects as in (5.147) and (5.148) and the
analysis of fluxes and angles is completely parallel. In a sense, the presence of these two different
M-theory lifts of the same string orientifold reflects the equivalence between T-dualizing S 1/Ω � 2

in the transverse space and T-dualizing T 3/Ω � 2 along an orbifold direction. We will use a similar
property later to relate ξ [6,2] and ξ[7,2].

We can now turn to the T 6/{(−1)FS, � 2} orbifold of M-theory. We will study this case along
the same line as T 2/ � 2, first reducing on an orbifolded direction to a type 0A theory orientifold,
then T-dualizing along a transverse direction to a type 0B orientifold:

M-theory on T 4 × T 6/{(−1)FS, � 2}yMPR10→0

type 0A on T 4 × T 5/(−1)fRΩI5
T4−−−−→ type 0B on T 3 × T 6/(−1)fRΩI6

(5.152)

We will again have a system of N pairs of magnetized D9- and D9’-branes, now contributing to
cancel the -1/4 units of negative D3-brane charge carried by each of the 64 O3-planes. This can
be achieved by the Chern-Simons coupling:

M4
s

(2π)3

∫
�

×T 3

C4 ·
1

(2π)3

∫

T 6/ � 2

Tr(F2 ∧ F2 ∧ F2) .

In the case of a factorizable metric, we can separate T 6/ � 2 into 3 T 2/ � 2 sub-orbifolds, and only
F56, F78 and F49 yield non-trivial fluxes. Instead of c1 and N , we now introduce for each pair
of coordinates (xi;xj) of the T 2’s pairs of quantized numbers denoted by (ma

ij , n
a
ij) [191]. The

index a here numbers various stacks of Na pairs of branes, with different fluxes. In the dual 0A
picture, the ma

ij and naij’s give wrapping numbers around the directions parallel, respectively
perpendicular, to the O6-planes and a distinguishes between wrappings of branes around differ-
ent homology cycles. With an appropriate normalization of cohomology bases on the homology
cycles, one obtains:

1

(2π)3
Tr

(∫

T 2/ � 2

F56 dx
5dx6

∫

T 2/ � 2

F78 dx
7dx8

∫

T 2/ � 2

F49 dx
′4dx9

)
=
∑

a

Nam
a
56m

a
78m

a
49 = 16

On the other hand, Chern-Simons couplings to higher forms such as C5, C7 and C9 are deter-
mined by expressions which also include naij factors. For example, the D9-charge is related to
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∑
aNan

a
56n

a
78n

a
49. The wrapping numbers should then be chosen in a way that all those other

total charges cancel. There are in principle several ways to achieve this, but it is not our main
focus, so we will not give a specific example here (see [8] for concrete realizations in the super-
symmetric case). Rather, following the T 6/ � 2 case above, one wishes to study the magnetized
D9-brane action given by our algebraic method, deduce from it that certain pairs of radii are
related and then perform a triple T-duality along (x4;x6;x7) to exchange the fluxes against
tilting angles between O6-planes and pairs of D6-branes and their image D6’-branes.

Keeping this framework in mind, we first recall the choice of shift vector that comes from
the general T 6/ � n orbifold serie. It is given by:

ξ[6,2] = 2(Λ7 − Λ8) + ξ̃[6,2] = 2δ̃[6] − α3 + α5 − α7 = ((2)4, 1, 3, 3, 1, 1, 1) . (5.153)

where ξ̃[6,2] differs from its expression ξ [6,n] for n = 2 given in Section 5.8.3 because the charge
Q3 is now −1 instead of −2. Let us again follow the dualities (5.152) to see how the D9-brane
is expressed in this formalism:

e〈ξ[6,2]|HR〉
MPV

= M9
PR1 · ·R4(R6R7)

2 MPR10→0−−−−−−−→ M9
s

g3
A

R1 · ·R4(R6R7)
2 T4−→ M10

s

g3
B

R1 · ·R3(R
′
4R6R7)

2 .

This can match the action of a D9-brane if R5 ∝ R6, R7 ∝ R8 and R9 ∝ R′
4/g

2
B . On the

type A side, this again means that R9 ∝ R4/g
2
A, and one verifies easily that T4 indeed maps

the D9-brane to a D8-brane extended along all directions except x4. This D8-brane is tilted
with respect to the O4-plane in the (x4;x9)-plane by an angle cot(χa49) =

ma
49R4

na
49R9

and still carries

magnetic fluxes F56 and F78. T-dualizing further along x6 and x7 leads to a D6-brane extended
in the hypersurface along (x0;x1;x2;x3;x5;x8;x9) with mass:

M7
s

gA
R1 · · ·R4R6R7 ∼

M7
s

g3
A

R1 · · ·R3R5R8R9 .

Then, we can interpret this brane as one of the Na D6-branes exhibiting two additional non-right
angles with respect to the orientifold O6-plane, given by cot(χa56) =

ma
56R6

na
56R5

and cot(χa78) =
ma

78R7

na
78R8

.

It is of course understood in this discussion that the appropriate image Dp ′-branes are always
present.

Finally, we still wish to study T 7/{(−1)FS, � 2} orbifolds of M-theory. For this purpose, we

use the permutation of ξ̃[7,2] describing an orbifold in (x3; . . . ;x9) given by ξ̃
[7,2]
σ = (0, 0, (1)7, 2)

in the following fashion:

ξ[7,2] = 2(Λ2 − Λ3 + Λ5 − 2Λ8) + ξ̃[7,2]σ = (2, 2, 3, 3, 1, 3, 3, 1, 1, 2).

This time, we follow the successive mappings

M-theory on T 2 × T 8/(−1)FS
yMPR10→0

type 0A on × T 2 × T 7/(−1)fLΩI7
T3−−−−→ type 0B on T 3 × T 6/(−1)fRΩI6

leading to the mass formulae:

M12
P R1R2(R3R4R6R7)

2R10
MPR10−−−−−→ M11

s

g3
A

R1R2(R3R4R6R7)
2 T3−→ M10

s

g3
B

R1 · · ·R′
3(R4R6R7)

2 .

and we obtain again the same type 0B T 6/(−1)fRΩI6 orientifold as above, while tilting angles
in the dual type IIA picture can again be obtained by T467.
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q ξ[q,2] physical basis Dynkin label |Λ|2

2 α(−1)20416283104125146107586 (2, 2, 2, 2, 2, 2, 2, 2, 1, 1) [000000010] −2

3 α(−1)20416283104125156117587 (2, 2, 2, 2, 2, 2, 3, 3, 1, 2) [010000001] −2

6 α(−1)2041628394125156107586 (2, 2, 2, 2, 1, 3, 3, 1, 1, 1) [010001000] 2

7 α(−1)204172103114145176117587 (2, 2, 3, 3, 1, 3, 3, 1, 1, 2) [000100100] 2

Table 5.18: Physical class representatives for T 10−q×T q/ � 2 orbifolds of M-theory of the second
kind

Overall, we have a fairly homogeneous approach to these four different orbifolds of M-theory
and it should not be too surprising that their untwisted sectors build the same algebra. We finally
summarize the shift vectors we used for physical interpretation in Table 5.18. It is remarkable
that these roots are found at level 6 and 7 in α8, showing again that a knowledge of the e10 root
space at high levels is essential for the algebraic study of M-theory orbifolds.

Another fact worth mentioning is that our � 2 shift vectors either have norm 2 or -2, in
contrast to the null shift vectors of Section 5.9.1. This lightlike characteristic has been proposed
in [56, 55] to be a general algebraic property characterizing Minkowskian branes in M-theory.
Similarly, these authors associated instantons with real roots of e10, viewed as extensions of
roots of e8, that all have norm 2. However, we have just shown that Minkowskian objects can
just as well have norm 2, or -2, and perhaps almost any. We suggest that the deciding factor
is the threshold rather than the norm (at least for objects coupling to forms, forgetting for a
while the exceptional case of Kaluza-Klein particles that have negative threshold, when they are
instantonic and null threshold, when they are Minkowskian). Indeed, instantonic objects have
threshold 0, while Minkowskian ones have threshold 1. This approach is compatible with the
point of view of [87], as explained in Section 5.2.5, as well as with the results of this subsection.
Some higher threshold roots also appear in Table 5.12 and 5.13, however, but we leave their
interpretation for further investigation.

5.10 Shift vectors for
�
n orbifolds: an interpretative prospect

Now that we have an apparently coherent framework to treat � 2 M-theory orbifolds, it is tempt-
ing to try to generalize it to all � n orbifolds. To understand how this could be done, it is in-
structive to look at Tables 5.12 and 5.13. As mentioned at the end of Section 5.8.3, one notices
that shift vectors for T q/ � n orbifolds can typically be grouped in series, for successive values of
q and n. As an illustration, we give one such serie (i.e. relating orbifolds with all charges ±1)
in the following table:

n\q 2 4 6 8 10

2 ((2)8, 1, 1) ((2)6, 3, 1, 1, 1) ((2)4, 1, 3, 3, 1, 1, 1) (2, 2, 3, 1, 1, 3, 3, 1, 1, 1) /

3 ((3)8, 2, 1) ((3)6, 4, 2, 2, 1) ((3)4, 2, 4, 4, 2, 2, 1) (3, 3, 4, 2, 2, 4, 4, 2, 2, 1) (2, 4, 4, 2, 2, 4, 4, 2, 2, 1)

4 ((4)8, 3, 1) ((4)6, 5, 3, 3, 1) ((4)4, 3, 5, 5, 3, 3, 1) (4, 4, 5, 3, 3, 5, 5, 3, 3, 1) (3, 5, 5, 3, 3, 5, 5, 3, 3, 1)

5 ((5)8, 4, 1) ((5)6, 6, 4, 4, 1) ((5)4, 4, 6, 6, 4, 4, 1) (5, 5, 6, 4, 4, 6, 6, 4, 4, 1) (4, 6, 6, 4, 4, 6, 6, 4, 4, 1)
6 ((6)8, 5, 1) ((6)6, 7, 5, 5, 1) ((6)4, 5, 7, 7, 5, 5, 1) (6, 6, 7, 5, 5, 7, 7, 5, 5, 1) (5, 7, 7, 5, 5, 7, 7, 5, 5, 1)

From this table, it should be immediately apparent that typical shift vectors for T q/ � n
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orbifolds, with q ∈ 2 � are given by (some permutation of):

ξ = nδ̃ +

q/2∑

i=1

(−1)q/2−i pi α7−q+2i

= ((n)10−q, n+ p1, n− p1, n− p2, n+ p2, . . . , n− pq/2, pq/2)

and have a threshold bigger or equal to 1 since 1 ≤ qi ≤ n− 1, ∀i = 1, . . . , q/2. In analogy with
the � 2 orientifold cases, it is tempting to think of the ”average” value ((n)9, 0) as spacetime-filling
branes, and of the deviations qiα7−q+2i as fluxes in successive pairs of (orbifolded) dimensions.
Of course, the fluxes are only directly interpretable as such after the reduction to string theory.
In the � 2 examples, they appeared because an M-theory orbifold turns into a string theory
orientifold with open strings twisted sectors exhibiting non-abelian Chan-Paton factors. This
allowed us to invoke Chern-Simons couplings of the form:

∫
C10−q ·

∫
Tr(F q/2) (5.154)

on the world-volume of the space-filling branes that participate to tadpoles cancellation at the
orbifold fixed points. Geometrically speaking, the more orbifolded directions, the more non-
trivial fluxes can be switched on, producing higher non-zero Chern numbers that reflect the
increasingly complex topology in the presence of several conifold singularities at each fixed
point. A further research direction is to determine which kind of flux could appear in which � n

orbifolds.
In any case, one should not forget that the orbifolded directions in the string theory limit

are not exactly the same as in the original M-theory orbifold, so that a bit of caution is required
when trying to interpret the shift vector directly, without going through a chain of dualities
leading to a better-known string theory soliton.

Our proposal is to regard the mass formulae associated to these shift vectors as M-theory lifts
of the resulting string theory brane configurations, that are somehow necessary for the M-theory
orbifolds to be well-defined, in a sense which remains to be understood.

It also remains unclear how the change of average value of the components of the shift vector
from 2 to n determines the fact that we have a higher order orbifold. Intuitively, it should reflect
the presence of more twisted sectors, but is a priori not related to the different number of fixed
points.

All these questions are of course of primary interest to obtain non-trivial physical information
from our algebraic toolkit and we will pursue them in forthcoming research projects. They will
be addressed in future publications.

5.11 Conclusion

In this paper, we have aimed at developing a rigorous and general algebraic procedure to study
orbifolds of supergravity theories using their U-duality symmetry. We were particularly inter-
ested in the e11−D|11−D serie of real split U-duality algebras for D = 1, . . . , 8. Essentially, the
procedure can be decomposed in the following successive steps. First, one constructs a finite
order non-Cartan preserving inner automorphism describing the orbifold action in the complex-
ified algebra e11−D. This nth-order rotation automorphism reproduces the correct � n-charges
of the physical states of the theory, when using the ”duality” mapping relating supergravity
fields and directions in the coset e11−D|11−D/k(e11−D|11−D) (in the symmetric gauge). Next, one
derives the complexified invariant subalgebra satisfied by the null charge sector and fixes its real
properties by taking its fixed point subalgebra under the restricted conjugation. One then moves

238



to an eigenbasis, on which the orbifold action takes the form of a Cartan-preserving (or chief)
inner automorphism, and computes, in terms of weights, the classes of shift vectors reproducing
the expected orbifold charges for all root spaces of e11−D. In D = 1, one uses the invariance
modulo n to show that every such class contains a root of e10, which can be used as the class
representative. In a number of cases, these roots can be identified with Minkowskian objects
of M-theory or of the lower-dimensional string theories, and interpreted as brane configurations
necessary for anomaly cancellation in the corresponding orbifold/orientifold setups.

In fact, for a given T q/ � n orbifold, the first two steps only have to be carried out explicitly
once in eq+1 for the compactification space S1 × T q/ � n, and need not be repeated for all T p ×
T q/ � n. Rather, one can deduce in which way the Dynkin diagram of the invariant subalgebra will
get extended upon further compactifications. This is relatively straightforward until D = 3, but
requires some more care in D = 2, 1, when the U-duality algebra becomes infinite-dimensional.
In e10, in particular, a complete determination of the root system of the invariant subalgebra
requires in principle to look for all invariant generators. This could in theory be done, provided
we know the full decomposition of e10 in representations of sl(10, � ). However, one of the
conclusions of our analysis is that once we understand the structure of ginv at low-level, its
complete root system can be inferred from the general structure of Borcherds algebras.

By doing so, however, one realizes that there are three qualitatively different possible situa-
tions from which all cases can be inferred. The determining factor is the invariant subalgebra in
D = 3. If this subalgebra of e8|8 is simple, its extension in e10|10 is hyperbolic and non-degenerate.
This happens for T q/ � 2 for q = 1, 4, 5, 8, 9, as already shown in [55] by alternative methods.
If it is on the other hand semi-simple, we obtain, in D = 2, what we called an affine central
product. It denotes a product of the affinization of all simple factors present in D = 3, in which
the respective centres and derivations of all factors are identified. Descending to D = 1, all affine
factors reconnect through α−1 in a simple Dynkin diagram, leading to a degenerate hyperbolic
Kac-Moody algebra, but without its natural centre(s) and derivation(s). This is the case for all
remaining � 2 orbifolds, as well as for T 6/ � n orbifolds with n = 3, 4. Finally, if an abelian factor
is present in e8, its affinization in e9, û(1), turns into all multiples of an imaginary root in e10,
which also connects through α−1 to the main diagram, thus leading to a Borcherds algebra with
one isotropic simple root. Although it was conceptually clear to mathematicians that Borcherds
algebras can emerge as fixed-point subalgebras of Kac-Moody algebras under automorphisms,
we found here several explicit constructions, demonstrating how this comes about in examples
of a kind that does not seem to appear in the mathematical literature.

In the first case, the multiplicity of invariant roots is inherited from e10, in the other two
cases, however, great care should be taken in understanding how the original multiplicities split
between different root spaces. In fact, the Borcherds/indefinite KM algebras appearing in these
cases provide first examples of a splitting of multiplicities of the original KMA into multiplicities
of several roots of its fixed point subalgebra. This is strictly speaking the case only for the
algebras as specified by their Dynkin diagram, but one should keep in mind that the quotient by
its possible derivations suppresses the operators that could differentiate between these roots, and
recombines them into root spaces of the original dimension, albeit with a certain redistribution of
the generators. In fact, it is likely that a computation of the root multiplicities by an appropriate
Kac-Weyl formula for GKMA based on the root system of the Dynkin diagram would predict
slightly smaller root spaces than those of the fixed-point subalgebra that are obtained from
our method. However, it is not absolutely clear what is the right procedure to compute root
multiplicities in GKMA. This is a still largely open question in pure mathematics, on which our
method will hopefully shed some light.

Along the way, we also explicitly showed, in the T 4/ � n case, how to go from our completely
real basis for ginv, described by a fixed-point subalgebra under the restricted conjugation, to
the standard basis of its real form, obtained from the Cartan decomposition. This is especially
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interesting in the affine case, where we obtained the relation between the two affine parameters
and their associate derivations.

Even though the present paper was focused on the breakings of U-duality symmetries, it
is clear that, in another perspective, the same method can in principle be applied to obtain
the known classification of (symmetric) breaking patterns of the E8 × E8 gauge symmetry of
heterotic string theory (or any other gauge symmetry) by orbifold projections. Indeed, our
result in D = 3 for breakings of e8 can be found in the tables of [163, 164], where they are
derived from the Kac-Peterson method using chief inner automorphisms. Reciprocally, one
might wonder why we did not use the Kac-Peterson method to study U-duality symmetry, too.
It is certainly a beautiful and simple technique, very well suited to classify all possible non-
isomorphic symmetry breakings of one group by various orbifold actions. However, calculating
with � n-rotation automorphisms instead of Cartan-preserving ones has a number of advantages
when dealing with U-duality symmetries. In the Kac-Peterson method, one first fixes n, then
lists all shift vectors satisfying the condition (Λ, θG) ≤ n of Section 5.8, which allows to obtain
all non-isomorphic breakings. In the end, however, one has sometimes to resort to different
techniques to associate these breakings with a certain orbifold with determined dimension and
charges.

Here, we adopt a quite opposite philosophy, by resorting to non-Cartan preserving inner
automorphisms with a clear geometrical interpretation. In this perspective, one starts by fixing
the dimension and charges of the orbifold and then computes the corresponding symmetry
breaking, which allows to discriminate easily between a degenerate finite order rotation and an
effective one. Only then do we reexpress this automorphism in an eigenbasis of the orbifold
action, in which it takes the form of a chief inner automorphism, and compute the class of
associated shift vectors. Doing so, we can unambiguously assign a particular class of shift
vectors to a definite orbifold projection in space-time. Note that such shift vectors will typically
not satisfy (Λ, θG) ≤ n, so that a further change of basis is required to relate them to their
conjugate shift vector in the Kac-Peterson formalism (we have shown in Section 5.8 how to
perform this change of basis explicitly). However, this process may obscure the number of
orbifolded dimensions and the charge assignment on the Kac-Peterson side.

Furthermore, another reason for not resorting to the Kac-Peterson method is that we are not
so much interested in all possible breakings of one particular group, say E8, as in determining
the fixed-point subalgebras for the whole Er serie. Consequently, we can concentrate on the
T q/ � n orbifold action in Eq+1 and then extend the result to the whole serie without too many
additional computations, since the orbifold rotation acts trivially on the additional compactified
dimension and the natural geometrical interpretation of the SL(r, � ) ∈ Er generators has been
preserved. On the other hand, the change of basis necessary to obtain a shift vector satisfying
the Kac-Peterson condition can be completely different in Er compared to Er−1. Accordingly,
starting from such a shift vector for Er−1, there is no obvious way to obtain its extension
describing the same orbifold in Er. Finally, and much more important to us is the fact that
there is no known way to extend the Kac-Peterson method to the infinite-dimensional case.

The above discussion has concentrated on the part of this work where the invariant subal-
gebras of e11−D|11−D under an nth-order inner automorphism were derived. In D ≥ 3, these
describe the residual U-duality symmetry and bosonic spectrum of supergravity theories com-
pactified on orbifolds and map to the massless bosonic spectrum of the untwisted sector of
orbifolded string theories. In such cases, these results have been known for a long time. They
are however new in D = 2, 1, which was the main focus of this research project. In particular,
the D = 1 case is very interesting, since the hyperbolic U-duality symmetry encountered there
is expected to contain non-perturbative information, as well. Indeed, the specific class repre-
sentatives of shift vectors we find correspond to higher level roots of e10 which have no direct
interpretation as supergravity fields. It is thus tempting to try to relate them to non-classical ef-
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fects in M-theory which might give us information on the twisted sector of orbifolds/orientifolds
of the descendant string theories.

Let us now discuss this more physical interpretative aspect inspired from the work of [55],
where the shift vectors for a restricted class of � 2 orbifolds of M-theory were shown to reproduce
the mass formulae of Minkowskian branes, which turned out to be the correct objects to be placed
at each orbifold fixed point to ensure anomaly/tadpole cancellation. We have extended this anal-
ysis to incorporate other � 2 orbifolds of M-theory, which are non-supersymmetric and should
be considered in bosonic M-theory. They have the particularity to break the infinite U-duality
algebra to indefinite KMAs. These orbifolds reduce to T 2/(−1)fRΩ � 2 and T 6/(−1)fRΩ � 2 ori-
entifolds of the type 0B string theory in which pairs of magnetized D9- and D9’-branes are used
to cancel the O7- (resp. O3-)plane charges. They are part of a chain of dual orientifolds start-
ing from type 0B string theory on (−1)fLΩ, a tachyon-free theory believed to be well-defined,
usually referred to as type 0’ string theory. We have then shown that the e10 roots playing the
rôle of class representatives of shift vectors in these cases can be interpreted as such space-time
filling D9-branes carrying the appropriate configuration of magnetic fluxes. This identification
could in turn serve as a proposal for M-theory lifts of such type 0B orientifolds, as generated
by certain exotic objects corresponding to e10 roots that are not in e9. Finally, these type IIB
setups have an alternative reading in the T-dual type IIA pictures where the magnetic fluxes
appear as tilting angles between O8- (resp. O6-)planes and D8- (resp. D6-)branes and their
image branes, our analysis providing an algebraic characterization of this tilting angle.

As for � n≥3 case, even though we have treated only a few examples explicitly, we have noticed
that their associated shift vectors fall into series of roots of e10, for successive values of q and n,
with remarkable regularity. This has provided us with a facilitated procedure for constructing
shift vectors for any T q/ � n orbifold which acts separately on each of the (q/2) T 2 subtori.
These roots of level 3n are classified in Tables 5.12 and 5.13. Despite the remarkably regular
structure of such roots, it is not completely clear how to extract information on the correct
anomaly/tadpole-cancelling brane configurations of the corresponding orbifolds. In particular,
the components of the shift vectors transverse to the orbifold increase monotonously with n, so
that their interpretation requires novel ideas. However, it is clearly of interest to generalize the
identification of such brane constructions for � n-shift vectors with n > 2, and to understand
their possible relation to twisted sectors and/or fluxes present in the related string orbifolds.
Hopefully, this can be done in a systematic manner, reproducing what is known about string
theory orbifolds/orientifolds and leading to predictive results about less-known types of M-theory
constructions.

Another future direction of research would consist in investigating more complicated orbifold
setups in our algebraic framework, in which, for instance, several projections of various orders are
acting on the same directions. This could possibly lead to new interesting classes of GKMAs. In
general, however, not only one, but two or more shift vectors will be necessary to generate such
orbifolds and should from a physical perspective be interpreted separately. This will hopefully
open the door to working out the physical identification of yet a larger part of the e10 root system,
and constitute another step in the understanding of the precise relation between M-theory and
e10.
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5.12 Appendix 1: Highest roots, weights and the Matrix R

i) The matrix R: herebelow, we give the expression of the matrix R used in Section 5.2.1 to
define the root lattice metric gε (5.11) in the physical basis:

R =




1 1 1 1 1 1 1 2/3 1/3 1/3
0 1 1 1 1 1 1 2/3 1/3 1/3
0 0 1 1 1 1 1 2/3 1/3 1/3
0 0 0 1 1 1 1 2/3 1/3 1/3
0 0 0 0 1 1 1 2/3 1/3 1/3
0 0 0 0 0 1 1 2/3 1/3 1/3
0 0 0 0 0 0 1 2/3 1/3 1/3
0 0 0 0 0 0 0 2/3 1/3 1/3
0 0 0 0 0 0 0 −1/3 1/3 1/3
0 0 0 0 0 0 0 −1/3 −2/3 1/3




.

ii) Highest roots of the exceptional Er chain: We list the highest roots of the finite Lie algebras
of the chain a1 ⊂ a2 ⊂ . . . ⊂ a4 ⊂ d5 ⊂ e6 ⊂ e7 ⊂ e8, appearing throughout this article:

θA1 = α8 ,

θAi = α8−i + ..+ α7 , i = 2, 3

θA4 = α5 + α6 + α7 + α8 ,

θD5 = α4 + 2α5 + 2α6 + α7 + α8 ,

θE6 = α3 + 2α4 + 3α5 + 2α6 + α7 + 2α8 ,

θE7 = α2 + 2α3 + 3α4 + 4α5 + 3α6 + 2α7 + 2α8 ,

θE8 = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8 .

ii) Fundamental weights of e10: The expression, on the set of simple roots, of the fundamental
weights of e10 defined by (Λi|αj) = δij for i, j = −1, 0, 1, .., 8 is obtained by inverting Λi =

(A(e10)
−1)ijαj. In the physical basis, these weights have the particularly simple expression:

|Λ|2 |Λ|2

−Λ−1 = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0 −Λ4 = (5, 5, 5, 5, 5, 5, 6, 6, 6, 6) −30

−Λ0 = (1, 1, 2, 2, 2, 2, 2, 2, 2, 2) −2 −Λ5 = (6, 6, 6, 6, 6, 6, 6, 7, 7, 7) −42

−Λ1 = (2, 2, 2, 3, 3, 3, 3, 3, 3, 3) −6 −Λ6 = (4, 4, 4, 4, 4, 4, 4, 4, 5, 5) −18

−Λ2 = (3, 3, 3, 3, 4, 4, 4, 4, 4, 4) −12 −Λ7 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 3) −4

−Λ3 = (4, 4, 4, 4, 4, 5, 5, 5, 5, 5) −20 −Λ8 = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3) −10

For their expression in the root basis, see, for instance, [160]. It can be recast in the following
recursion relations:

Λ−1 = −δ , Λ4 = 2Λ3 − Λ2 − α3 ,

Λ0 = −(α−1 + 2δ) , Λ5 = 2Λ4 − Λ3 − α4 ,

Λ1 = 2Λ0 + θE8 , Λ6 = Λ3 + θD5 ,

Λ2 = 2Λ1 − Λ0 − α1 , Λ7 = 2Λ6 − Λ5 − α6 ,

Λ3 = 2Λ2 − Λ1 − α2 , Λ8 = Λ2 + θE6 .
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5.13 Appendix 2: The U-duality group for 11D supergravity

This appendix is meant as a complement to Section 5.2.4, and reviews the U-duality transforma-
tions for finite U-duality groups as presented in [203], which trivially extends to the hyperbolic
case in D = 1.

It has been shown in [109, 205, 202], that the E11−D|11−D( � ) chain of U-duality group
relevant for M-theory incorporates a generalized T-duality symmetry, which exchanges not only
the radii of 10-dimensional IIA theory among themselves, but also the 11-dimensional radius
R10 with any of them, leading to the transformation:

Tijk : Ri →
1

M3
PRjRk

, Rj →
1

M3
PRiRk

, Rk →
1

M3
PRiRj

, M3
P →M6

PRiRjRk . (5.155)

for i, j, k ∈ {D, .., 10}. To get the whole Weyl group of E11−D, one must supplement the
transformation (5.155) with the permutation of all radii (belonging to the SL(11−D, � ) modular
group of the torus)

Sij : Ri ↔ Rj ,

which is part of the permutation group S11−D generated by the neighbour to neighbour permu-
tations {Si,i+1}i=D,..,9. Then, taking the closure of the latter with the generator T89 10 leads to
the Weyl group:

W (E11−D) = � 2×S11−D (5.156)

with � 2 = {1I, T89 10}. This gives the whole set of Weyl generators in terms of their action on
the M-theory radii.

If we compactify to IIA string theory by setting MPR10 → 0, then the generators

Tı̂̂10 : Rı̂ →
1

M2
sR̂

, R̂ →
1

M2
sRı̂

, gA →
gA

M2
sRı̂R̂

for ı̂, ̂ ∈ {D, .., 9}, represent a double T-duality symmetry mapping IIA string theory to itself.
Likewise, the group of permutations is reduced to S10−D, generated by {Sı̂,̂ı+1}ı̂=D,..,8, which
belong to the SL(10−D, � ) modular group of the IIA torus.

In D = 1, this setup naturally extends to the dilaton vector HR ∈ h(E10). The permu-
tation group S10 acts as H i

R → Hj
R, for i, j = 1, .., 10, which corresponds to the dual Weyl

transformation: r∨α(HR) = HR − 〈HR, α〉α∨ for α = αi−2 + . . .+ αj−3 ∈ Π(A9).
The � 2 factor in expression (5.156) on the other hand, corresponds to a Weyl reflection with

respect to the electric coroot:

r∨8 (HR) = HR − 〈HR, α8〉α∨
8

=

(
H1
R +

1

3
∆H,H2

R +
1

3
∆H, ..,H7

R +
1

3
∆H,H8

R −
2

3
∆H,H9

R −
2

3
∆H,H10

R −
2

3
∆H

)
,

with ∆H = H8
R +H9

R +H10
R .

On the generators of e10, the Weyl group will act as σα = exp
[
πi
2 (Eα + Fα)

]
or alternatively

as σ̃α = exp
[
π
2 (Eα − Fα)

]
, ∀α ∈ ∆+(E10), depending on the choice of real basis. In particular,

a � 4 orbifold of M-theory can be represented in our language by a Weyl reflection, and is thus
naturally incorporated in the U-duality group.

As mentioned in Section 5.2.4, from the point of view of its moduli space, the effect of
acting with the subgroup W (E11−D) of the U-duality group on the objects of M-theory on
T 10 will typically be to exchange instantons which shift fluxes, with instantons that induce
topological changes. On the cosmological billiard, a Weyl transformation will then exchange the
corresponding walls among themselves.
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The rest of the U-duality group is given by the Borel generators. These act on the expectation
values Cα, α ∈ ∆+(E11−D), appearing, in particular, as fluxes in expression (5.56). Picking, in
a given basis, a root β ∈ ∆+(E11−D), its corresponding Borel generator Bβ will act on the
(infinite) set {Cα}α∈∆+(E11−D) typically as [203, 124]:

Bβ : Cβ → Cβ + 1 Cγ → Cγ + Cγ−β , if γ − β ∈ ∆+(E11−D) . (5.157)

If γ − β /∈ ∆+(E11−D), then Bβ : Cγ → Cγ . The first transformation in eqn.(5.157) is the
M-theory spectral flow [203], generated by part of the Borel subalgebra of the arithmetic group
E11−D( � ). Invariance under such a unity shift reflects the periodicity of the expectation values
of the fields Ai1, C3, C̃6 and Ãi7.

5.14 Appendix 3: Conventions and involutive automorphisms
for the real form ŝo(8, 6)

i) Conventions for d7: we recall the conventions used in Section 5.5.3 to label the basis of simple
roots of the finite d7 ⊂ d̂7 ⊂ ginv Lie algebra for the T 5 × T 4/ � n>2 orbifold of M-theory:

β1 ≡ α− , β2 ≡ α̃ , β3 ≡ α+ , β4 ≡ α3 , β5 ≡ α2 , β6 ≡ α1 , β7 ≡ γ . (5.158)

The affine d̂r will be described by the following Dynkin diagram: The lexicographic order used

f

f f f f f f

f

β0

β7

β6 β5 β4 β2

β3

β1

Figure 5.4: Dynkin diagram of d̂7 in the β-basis

in convention (5.158) is meant to naturally extend the a3 ⊂ ginv subalgebra appearing for the
T 4/ � n>2 orbifold in D = 5. In particular, we define Ei···4123

.
= [Ei, . . . [E4, Eα−+α̃+α+ ]] . . .] for

i > 4.
For non-simple roots of level 2 in β2, the corresponding ladder operator is defined by com-

muting two successive layers of simple root ladder operators, as, for instance, in:

E7652421223
.
= [E5, [E4, [E2, E7654123]]] .

This implies in particular the useful relation

Nβi,βi−1···j2(j−1)2···421223
= Nβj ,βi···j(j−1)2 ···421223

,

which, combined with N−α,−β = −Nα,β and Nα,γ−α = −Nα,−γ , induces
[
Fi, Ei···(j+1)j2···421223

]
= Ei−1···(j+1)j2···421223 ,

[
Fj , Ei···(j+1),j2···421223

]
= Ei···j+1,j(j−1)2···421223 .

ii) The representation Γ: the inner involutive automorphism written in the form (5.102) acts on
elements of the algebra d7 in the representation Γ{1, 0, . . . , 0} (see [71]) defined as follows. For
general r, let the basis of simple roots dr characterized by the Dynkin diagram of Figure 5.4 be
recast in terms of the orthogonal basis εi, i = 1, .., r

β1 = εr−1 − εr , β2 = εr−2 − εr−1 , β3 = εr−1 + εr ,

βi = εr+1−i − εr+2−i , ∀i = 4, . . . , r .
(5.159)
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The remaining non-simple roots can be reexpressed as follows: for 1 6 i < j 6 r − 3, we have

βr+1−i + . . . + βr+1−j = εi − εj+1 ,

βr+1−i + . . .+ β4 + β2 = εi − εr−1 ,

βr+1−i + . . .+ β4 + β2 + β1 = εi − εr , β2 + β1 = εr−2 − εr ,
βr+1−i + . . .+ β4 + β3 + β2 = εi + εr , β3 + β2 = εr−2 + εr ,

βr+1−i + . . .+ β4 + β3 + β2 + β1 = εi + εr−1 , β3 + β2 + β2 = εr−2 + εr−1 ,

(5.160)

while roots of level 2 in β2 decompose as

βr+1−i + . . .+ βr+1−j + 2(βr−j + . . .+ β4 + β2) + β3 + β1 = εi + εj+1 , 1 6 i < j 6 r − 4 ,

βr+1−i + . . .+ β4 + 2β2 + β3 + β1 = εi + εr−2 , 1 6 i 6 r − 4 .

Introducing the elementary matrices Ei,j, with components (Ei,j)kl = δikδjl, the Cartan subalge-
bra of dr may be cast in the form

Γ(H1) =
1√

r(r − 1)
(Er−1,r−1 − Er,r + Er+1,r+1 − Er+2,r+2) ,

Γ(H2) =
1√

r(r − 1)
(Er−2,r−2 − Er−1,r−1 + Er+2,r+2 − Er+3,r+3) ,

Γ(H3) =
1√

r(r − 1)
(Er−1,r−1 + Er,r − Er+1,r+1 − Er+2,r+2) ,

Γ(Hi) =
1√

r(r − 1)
(Er+1−i,r+1−i − Er+2−i,r+2−i + Er−1+i,r−1+i − Er+i,r+i) , ∀i = 4, . . . , r .

The matrices representing the ladder operators of dr, and solving in particular [Γ(Hi),Γ(Ej)] =
AjiΓ(Ej), can be determined to be (see [69])

Γ(Eεi−εj ) =
1√

r(r − 1)

(
Ei,j + (−1)i+j+1E2r+1−j,2r+1−i

)
,

Γ(Eεi+εj ) =
1√

r(r − 1)

(
Ei,2r+1−j + (−1)i+j+1Ej,2r+1−i

)
.

(5.161)

Raising and lowering operators in the basis {βi}i=1,..,r then readily follow from relations (5.159)
and (5.160) and expressions (5.161).

Finally, this representation of dr preserves the metric GDr =

( �
g>Dr

gDr

�

)
, where the

off-diagonal blocs are given by gDr =offdiag{1,−1, 1,−1, . . . , (−1)r−1}. It can be checked that
indeed: Γ(X)>GDr +GDrΓ(X) = 0, for X ∈ dr.

iii) Four involutive automorphisms for the real form so(8, 6): the set ∆(+1) of roots generating
the maximal compact subalgebra of the real form so(8, 6) appearing in Section 5.5.3 is deter-
mined for the four involutive automorphisms (5.112). Since dim∆+(d7) = 42, and since all
four cases have dim∆(+1) = 18, the corresponding involutive automorphisms all have signature
σ = 5, and thus determine isomorphic real forms, equivalent to so(8, 6). This construction lifts
to the affine extension d̂7 through the automorphism (5.102) building the Cartan decomposition
(5.114) and (5.115).

Herebelow, we give the set of roots ∆(+1) for the four cases (5.112) explicitly. We remind

the reader that these four involutive automorphisms all have eβ
′
2(H) = +1 and eβ

′
i 6=2,4,6(H) = −1.

Moreover, the set ∆(+1) generating the non-compact vector space p (5.115) can be deduced from
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∆(−1) = ∆+\∆(+1), where ∆+ is obtained from the system (5.159) and (5.160) by setting r = 7.
In this case obviously dim∆(−1) = 24.

The first involutive automorphism defined by eβ
′
4(H) = eβ

′
6(H) = +1 has

∆(+1) =
{
β′6, β

′
4, β

′
2, β

′
42, β

′
765, β

′
123, β

′
7564, β

′
5412, β

′
5423, β

′
4123, β

′
76542, β

′
65412,

β′65423, β
′
41223, β

′
7654123, β

′
76541223, β

′
765421223, β

′
652421223

}
. (5.162)

The second, defined by eβ
′
4(H) = −eβ′

6(H) = +1 has

∆(+1) =
{
β′4, β

′
2, β

′
76, β

′
65, β

′
42, β

′
654, β

′
123, β

′
6542, β

′
5412, β

′
5423, β

′
4123, β

′
41223,

β′765412, β
′
765423, b

′
654123, β

′
6541223, β

′
65421223, β

′
7652421223

}
. (5.163)

The third, defined by eβ
′
4(H) = −eβ′

6(H) = −1 has

∆(+1) =
{
β′6, β

′
2, β

′
54, β

′
765, β

′
654, β

′
542, β

′
412, β

′
423, β

′
123, β

′
6542, β

′
54123, β

′
765412,

β′765423, β
′
654123, β

′
541223, β

′
6541223, β

′
765421223, β

′
652421223

}
. (5.164)

The fourth, defined by eβ
′
4(H) = eβ

′
6(H) = −1 has

∆(+1) =
{
β′2, β

′
76, β

′
65, β

′
54, β

′
542, β

′
412, β

′
423, β

′
123, β

′
7654, β

′
76542, β

′
65412, β

′
65423,

β′54123, β
′
541223, β

′
7654123, β

′
76541223, β

′
65421223, β

′
7652421223

}
. (5.165)

The four of them lead as expected to dim∆(+1) = 18.
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Appendix A

Spinors in various dimensions:
conventions and useful formulæ

In this appendix, we first give our conventions for Gamma-matrices in (1 + 9)D and (1 +
10)D, whic hold throughout this thesis. Then, we present some general formulae (valid in all
dimensions) involving antisymmetrized products of Gamma-matrices and spinor bilinear, and
some useful properties of Weyl and Majorana spinors. We end this appendix by presenting a
Fierz identity in 10D which is required to prove supersymmetry of the Yang-Mills action and of
the BFSS matrix model.

A.1 Conventions for Dirac matrices in 10D and 11D

Our conventions for Gamma-matrices in (9 + 1)D and (10 + 1)D are the following. Start from
the Dirac matrices forming a 2[9/2] = 16 dimensional Majorana representation of SO(9):

{γi, γj} = 2δij1I16

with γi real, i = 1, .., 9. We can then construct a Majorana representation of SO(9, 1) by
tensoring the above in the following way:

Γ0 =

(
0 1I16
−1I16 0

)
, Γi =

(
0 γi

γi 0

)
, i = 1, .., 9 .

Fixing the Minkowskian metric to ηµν =diag{−,+, ..,+} we have as expected {Γµ,Γν} =
2ηµν1I32.

As usual in even dimensions, there is an additional linear independent matrix, the chirality
matrix, which, in our choice of basis (suited to Majorana representation), is block diagonal and
real:

Γ∗ = ±
9∏

µ=0

Γµ = ±
(

1I16 0
0 1I16

)
. (A.1)

obviously {Γ∗,Γµ} = 0. Identifying Γ10 = Γ∗, we obtain a 2[11/2] = 32 dimensional Majorana
representation of the Clifford algebra of SO(10, 1). In particular, we can choose the charge
conjugation matrix as C = Γ0.
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A.2 Product representations for spinors in various dimensions

In space-time dimensionsD = 2l+2 and 2l+3, the (complexe) the Dirac matrices have dimension

2[D
2

] = 2l+1 and realize the Clifford algebra:

{Γµ,Γν} = 2ηµν1I2l+1 . (A.2)

For both odd and even dimensions, there are 2l+3 such matrices, running from µ = 0, 1, .., 2l+2
for odd dimensions, and from µ = 0, 1, .., 2l+1, ∗, in even dimensions. In this case, the additional
Gamma matrice is given by:

Γ∗
.
= Γ2l+2 = ±i−l

2l+1∏

µ=0

Γµ

Moreover, conjugation by the matrix Γ0 is equivalent to hermitien conjugation of the Dirac
matrices:

Γ0Γµ(Γ0)−1 = −Γµ† , Γ0Γµ1..µn(Γ0)−1 = (−1)
n(n+1)

2 Γµ1..µn† .

The Clifford algebra is then spanned by the set {Γµ1..µn}n=0,..,2l+2, with Γµ1..µn
.
=

Γ[µ1 · · ·Γµn], which satisfy the orthogonality condition.

1

32
Tr (Γµ1..µnΓλ1..λm) = (−1)

n(n−1)
2 n!ηµ1

[λ1
· · · ηµn

λn]δ
n
m . (A.3)

Introducing the charge conjugation matrix

CΓµC−1 = −Γµᵀ , with Cᵀ = −cDC , (A.4)

where cl depends on the dimension of space-time. Thus, for D = {2, 3, 4} mod 8, one has
cD = −1, while for D = {6, 7, 8} mod 8, we get cD = 1. In dimensions D = 5 mod 8, where
no Majorana condition applies, as we will see later on, one uses the matrix C2 instead, which
satisfies C2Γ

µC−1
2 = Γµᵀ and Cᵀ

2 = −C2.
On antisymmetrized products of Dirac matrices, conjugation by C gives:

CΓµ1..µnC−1 = (−1)
n(n+1)

2 Γµ1..µnᵀ .

Using the orthogonality relations (A.3), one can expand the product of two spinors on a complete
set of independent tensors:

(ψᵀC)αλβ =
1

2l+1

2l+2∑

n=0

1

n!
(−1)

n(n−1)
2 (ψᵀCΓµ1..µnλ) (Γµ1..µn) α

β . (A.5)

In dimensions where the Majorana condition holds, i.e. for l ∈ {0, 1, 3} mod 4, one can use the
identity (A.17) below to replace ψᵀCΓµ1..µnλ→ ±ψΓµ1..µnλ in the above expression.

The above expression corresponds to the decomposition in antisymmetric tensorial represen-
tations of SO(2l + 1, 1) of the product of two 2l+1-dimensional Dirac representations:

2l+1
Dirac × 2l+1

Dirac = [0]2 + [1]2 + ..+ [l]2 + [l + 1] (A.6)

The doubling of the antisymmetric representations [k] for k 6 l, is due to the equivalence
[k] = [2l + 2− k] under Hodge-dualization of the corresponding Gamma-matrices.

The Hodge-dual (∗Γ)µ1 ..µn is obtained by acting with the chirality matrix Γ∗. In a particular,
we have in D = 2l + 2:

(D − n)!Γ∗Γµ1..µn = ±(−1)
n(n+1)

2 i−lεµ1..µnν1..νD−nΓν1..νD−n

= ±(−1)
n(n+1)

2 n!εµ1 ..µnλ1..λD−n(∗Γ)λ1 ..λD−n

(A.7)
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where ε012..D−1 = −ε012..D−1 = +1 is the totally antisymmetric tensor in flat Minkowskian

space satisfying εµ1..µnµn+1..µDεν1..νnµn+1..µD
= −(D − n)!δ

[µ1
ν1 · · · δµn ]

νn . In particular, the sign of
Γ∗ (A.1) fixes, in even dimensions, the notion of self-duality or anti-self-duality for tensors such
as ψᵀCΓµ1..µl+1λ.

A.3 Weyl spinors in various dimensions

In even 2l+2 dimensions, the Dirac representation for spinors is reducible as a representation of
the Lorentz group SO(2l+ 1, 1). The two irreducible 2l Weyl representations are obtained from
eigenvalue (±1) states (or right-/left-handed) under Γ∗. Thus one defines the following chirality
operators

P± =
1

2
(1I± Γ∗) ,

projecting the Dirac rep onto each of its two irreducible Weyl reps:

P±ψ± = ψ± , P±ψ∓ = 0 .

Using the properties of Γ∗ one can verify that such operators meet all requirements to be
projectors:

(P±)2 = 1I , P±P∓ = 0 , P±−µ = −µP∓ .
In (9 + 1)D, we usually identify P± ≡ 1

2 (1I± Γ10).
In particular since {Γ∗,Γµ} = 0, on can show that:

P±Γµ1..µnP±/∓ = Γµ1..µn
1

2
(1I± (−1)nΓ∗)P±/∓ =

{
Γµ1..µn , for n even/odd
0 , for n odd/even

. (A.8)

Using the properties of the charge conjugation matrix C (A.4) and Γᵀ
∗ = Γ∗ to show that in

D = 2l + 2:

Γ∗C =

D−1∏

k=1

(−1)D−k CΓ∗ = (−1)l+1CΓ∗ , (A.9)

then, the combination of eqns.(A.8) and (A.9) leads to

ψᵀ
±CΓµ1..µnλ±/∓ = ψᵀ

±CΓµ1..µn

[
1

2

(
1I± (−1)n+l+1Γ∗

)
P±/∓

]
λ±/∓

implying that for l even and spinors of the same chirality, only bilinears with n odd survive,
while for l odd, the converse is true. For two spinors of different chiralities, l even/odd kills
all bilinear with n even/odd. This can be summarized in the well known decompositions of
products of Weyl representations:

2l± × 2l± =

{
[1] + [3] + ..+ [l + 1]± , for l even
[0] + [2] + ..+ [l + 1]± , for l odd

, (A.10)

2l± × 2l∓ =

{
[0] + [2] + ..+ [l] , for l even
[1] + [3] + ..+ [l] , for l odd

. (A.11)

Furthermore, we can now exploit the properties of Γ∗ and its appearance in the dualizing
Gamma-matrices to rewrite the completeness relation (A.5) in a form where the action of Γ∗ on
the Weyl spinors is made manifest:

(ψᵀC)αλβ =
1

2l+1 · (l + 1)!
(ψᵀCΓµ1..µl+1λ) (Γµ1 ..µl+1

) α
β + (A.12)

+
1

2l+1

2l+2∑

n=0

1

n!
(−1)

n(n−1)
2

[
(ψᵀCΓµ1..µnλ) (Γµ1..µn) α

β + ((Γ∗ψ)ᵀCΓµ1..µnλ) (Γµ1 ..µnΓ∗)
α
β

]
.
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To derive this decomposition, we have used eqn.(A.7), (A.9) and the identity:

Γµ1..µn = −(±1)(−1)
n(n−1)

2
il

n!ε
µ1..µn

ρ1..ρD−nΓ∗Γρ1..ρD−n .

A.4 The Majorana condition

In even dimensions, the irreducible Weyl representations constructed in the preceding section
are unique up to a change of basis. Then since the conjugate matrices −(Γµ)∗ generate the same
Clifford algebra (A.2) as the original Dirac matrices Γµ, both have to be related by a similarity
transformation. Starting in even dimensions D = 2l + 2, and, in contrast to Section A.1, going
to a basis where the Γ0, Γ1 and Γ2k, ∀k = 1, .., l are chosen real, while the Γ2k+1, ∀k = 1, .., l
are chosen imaginary, complexe conjugation is achieved via the two following matrices:

B1 =

l∏

k=1

Γ2k+1 , B1 = Γ∗B2 ≡ (−1)lΓ3Γ5 · .. · Γ2l+1Γ2l+2 = (Γ0Γ1)

l∏

k=1

Γ2k .

Since these matrices lead to the anticommutation relations:

B1Γ
µB−1

1 = (−1)lΓµ∗ , B2Γ
µB−1

2 = (−1)l+1Γµ∗ , BiΓ∗B
−1
i = (−1)lΓ∗ , ∀i = 1, 2 . (A.13)

they transform, in particular, Σµν = − i
2Γµν into BiΣµνB

−1
i = −(Σµν)

∗, ∀i = 1, 2, so that a
Lorentz transformation acts on both the spinors ψ and B−1

i ψ∗ in the same way. The Dirac
representation is thus its own conjugate. In contrast, the chirality matrix Γ∗ has its eigenvalues
flipped under complexe conjugation (A.13) when l is odd, which tells us that the two irreducible
Weyl reps are self-conjugate when l is even, and conjugate to each other when l is odd.

One can furthermore show, using the above relations, that:

B1B
∗
1 = (−1)

l(l+1)
2 1I , B2B

∗
2 = (−1)

l(l−1)
2 1I . (A.14)

Then, self-conjugate spinors, or in other word spinors satisfying the Majorana condition:

ψ = Bψ∗ (A.15)

will occur for l = 0 mod 4, in which case B = {B1, B2} (the two conditions are then equivalent,
or conjugate by a similarity transformation), for l = 1 mod 4 with B = B2, and for l = 3 mod 4
with B = B1. When condition (A.15) is satisfied, spinors can be chosen real. In this case, there
always is a basis where the Dirac matrices Γµ are all real, like in Section A.1. Obviously, we then
have B = 1I and C = Γ0, implying (Γ0)† = (Γ0)ᵀ = −Γ0 and (Γi)† = (Γi)ᵀ = Γi. Alternatively,
one can also always find a basis where B = Γ∗ and then C = −Γ1Γ2 · · ·Γ2l+1. In particular,
thes to choices can never be imposed in D = 5, 6, 7 mod 8.

Henceforth, we will denote by B either B1 or B2 in dimensions for which they satisfy BB∗ =
1I.Clearly, we have now

BΓµB−1 = Γµ∗ , BΓµ1..µnB−1 = Γµ1..µn∗ .

Since CΓ0Γµ(CΓ0)−1 = Γµ∗, then C = BΓ0, so that:

C =

{
B1Γ

0 , for l = {0, 3} mod 4

B2Γ
0 , for l = {0, 1} mod 4

.

As Cᵀ = −cDC (A.4), then Cᵀ = (Γ0)−1B−1 = −CΓ0C−1B−1, so that combining both expres-
sions, we get:

Bᵀ = cDB . (A.16)
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In general, the Majorana condition can be enforced on Weyl spinors when the difference
between space dimensions s and time dimensions t satisfies: s − t = 0 mod 8. In particular
for SO(2l + 1, 1) spinors, this holds for l = 4k, where we have BB∗ = 1I and each Weyl rep is
conjugate to itself.

Finally, in odd dimensions D = 2l + 3, since the additional Dirac matrix is Γ2l+2 = Γ∗, the
action of B on the latter will be compatible with its action on the rest of the Dirac matrices
(A.13) only for l = {0, 3} mod 4, and in both cases one can choose B = B1. Then, the matrix
C ′ = B1Γ

0 acts as C ′ΓµC ′−1 = (−1)l+1Γµᵀ, behaving as the charge conjugation matrix C (A.4)
for even l and as the matrix C2 for odd l (see Section A.2).

A.5 Hermitian conjugation in 10D

Thanks to the property (A.16), the Dirac conjugate and charge conjugate of Majorana spinor
in dimensions D = 2l + 2 for l = {0, 1, 3} mod 4, are related to one another:

ψ = ψ†Γ0 = cDψ
ᵀC . (A.17)

Since in (9 + 1)D we have c10 = 1, bilinears of Majorana fermions can now equivalently be
written as ψΓµ1..µnλ ≡ ψᵀCΓµ1..µnλ. In particular, using the properties of the matrix C, one
can show that:

ψΓµ1..µnλ = (−1)
n(n+1)

2 λ̄Γµ1..µnψ , (A.18)

which determines their hermiticty property of these tensors: (ψΓµ1..µnλ)† = −λ̄Γµ1..µnε.
In addition, one can show, along a similar line, that

ψ†Γi1..inλ = (−1)
(n+2)(n+1)

2 λ†Γi1..inψ , ψ†λ = −λ†ψ (A.19)

if the ik are all space indices, and:

ψ†Γµ1..µnλ = (−1)
n(n−1)

2 λ†Γµ1..µnψ , (A.20)

when one of the indices µk is equal to 0.

A.6 A ten-dimensional Fierz identity

In this section, we prove a Fierz identity for a triplet of right-handed Majorana spinors in (9+1)D
which we use in eqn.(1.49) to prove supersymmetry of the 10D SYM action, and in eqn.(1.72) to
prove that of the BFSS matrix model. The expression in components of this identity is further
needed in eqn.(1.87) to derive p-brane charges from the BFSS matrix model.

In order to prove that the antisymmetrized expression

(ψ
[I
+Γµψ

J
+)(Γµψ

K]
+ )α = 0 (A.21)

vanishes, we rewrite it using the decomposition (A.12) as:

(ψ
[I
+)β (Γµψ

J
+)β(Γ

µψ
K]
+ )α =

1

32 · 5! (Γµ1..µ5Γµψ
[J
+ )α

(
ψ
I
+Γµ1..µ5Γµψ

K]
+

)

+
1

16

4∑

n=0

1

n!
(−1)

n(n−1)
2 (Γµ1..µnΓµψ

[J
+ )α

(
ψ
I
+Γµ1..µnΓµψ

K]
+

)
.

(A.22)
According to the decomposition (A.10) of product representations, since l = 4 and the spinors
are all of the same chirality, only bilinears for n odd survive in expression (A.22). Moreover,
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antisymmetry upon exchanging I ↔ K and the property (A.18) on Majorana spinors only spares
bilinears with n = 1, 5. Using in addition the commutation relations:

Γµ1Γµ = Γµ1µ + ηµ1µ1I32 , Γµ1µ2Γµ = Γµ1µ2µ + 2ηµ[µ1Γµ2]

the expansion (A.22) simplifies to:

1

16

[
(1− 9)(Γµψ

[J
+ )α

(
ψ
I
+Γµψ

K]
+

)
+

1

4!
(Γµ1 ..µ4µψ

[J
+ )α

(
ψ
I
+Γµ1..µ4µψ

K]
+

)]
. (A.23)

Concentrating on the first term in eqn.(A.23), we can replace ψJ+ → P+ψ
J
+. We then use

antisymmetry of I, J and K and eqn.(A.18) to rewrite this term in components (eliminating
ψJ+) as:

− 1

2 · 3 εJIK
(
(ΓµP+) γ

α

(
ψ
I
+ΓµψK+

)
+ 2(Γµψ

[I
+)α

(
ψ
K]
+ ΓµP+

)γ )
(A.24)

Then, using the orthogonality property for 1
16Tr(ΓµP±Γν) (A.3), one can show that:

ΓµΓνΓµ = Γµ (−ΓµΓν + 21Iηµν) = −8Γν =
1

2
Tr (ΓµP+Γν) Γµ ,

so that projecting (A.24) on the one-index basis tensor by contracting with (Γν)
α
γ we reobtain

part of expression (A.21). In this case, we immediately see, using the identities (A.24) that:

− 1

2 · 3εJIK
(
Tr(ΓµP+Γν)

(
ψ
I
+ΓµψK+

)
− 2ψ

[I
+P−ΓµΓνΓµψ

K]
+

)
= 0

since ψ+P− = P+ψ+ = ψ+.
The second, five-index tensor part in eqn.(A.23) can be dealt with in the same fashion. In

this case, it is even easier to show that this contribution vanishes, since Tr(Γµ1..µ4µP+Γν) = 0
and Γµ1..µ4µΓνΓµ1..µ4µ = 0. We have thus shown the identity (A.21)

We may now give the component expression for eqn.(A.21) which has been used in eqn.(1.87)
of Section 1.4. By denoting {αβγ} the cyclic permutation of three indices and eliminating all
spinorial components from eqn.(A.21), the latter can be recast into the form:

(P±Γ0Γµ) {β
α (P±Γ0Γµ)

γκ} = (P±Γ0Γi) {β
α (P±Γ0Γi)

γκ} − (P±) {β
α (P±)γκ} . (A.25)

Multiplying by the expression (Γ0k) α
λ , we get

(P±Γki)
{β
λ (P±Γ0Γi)

γκ} − (P±Γ0Γk)
{β

λ (P±)γκ} + (P±)
{β

λ (P±Γ0Γk)γκ} = 0 (A.26)

after having used ΓµΓν = 1
2 [Γµ,Γν ] + 1

2{Γµ,Γν} = Γµν + ηµν1I.

One can also contract eqn.(A.25) on the left with (Γ0k) ζ
γ and relabelling the indices,

one arrives at a similar expression, with expressions in parenthesis interchanged. and(
P±Γ0Γi

) (β

λ

(
P±Γki

)γκ)

(P±Γ0Γi)
β
λ (P±Γki)γκ − (P±Γ0Γi)

κ
λ (P±Γki)βγ − (P±Γ0Γi)

γ
λ (P±Γki)κβ (A.27)

−(P±){β(P±Γ0Γk)
γκ}

λ + (P±Γ0Γk){βγ(P±)
κ}

λ = 0 .

Adding expressions (A.26) and (A.27), we at the desired identity:

(P±Γki) β
λ (P±Γ0Γi)

γκ+(P±Γki)γκ(P±Γ0Γi)
β

λ +(P±Γki) κ
λ (P±Γ0Γi)

βγ−(P±Γki)βγ(P±Γ0Γi)
κ
λ = 0

In a basis where all Dirac matrices are real: (Γ0)ᵀ = −Γ0 and (Γi)ᵀ = Γi, ∀i = 1, .., 9, so that
the Γ0i are symmetric, while the Γij are antisymmetric. Then, the above expression simplifies
to

(P±Γki)
(β

λ (P±Γ0Γi)
|γ|κ)+(P±Γ0Γi)

(β
λ (P±Γki)|γ|κ)+(P±) γ

λ (P±Γ0Γk)βκ−(P±Γ0Γk) γ
λ (P±)βκ = 0 .
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