
SAMGRID EXPERIENCES WITH THE CONDOR TECHNOLOGY
IN RUN II COMPUTING

A. Baranovski, L. Loebel-Carpenter, G. Garzoglio, R. Herber, R. Illingworth, R. Kennedy, A.

Kreymer, A. Kumar, L. Lueking, A. Lyon, W. Merritt, I. Terekhov, J. Trumbo, S. Veseli, S. White,
FNAL, Batavia, IL 60510, USA, FNAL, Batavia, IL 60510, USA

R. St. Denis, University of Glasgow, Glasgow G12 8QQ; United Kingdom
S. Jain, A. Nishandar, University of Texas at Arlington, Arlington, TX 76019, USA

Abstract

SAMGrid is a globally distributed system for data

handling and job management, developed at Fermilab for
the D0 and CDF experiments in Run II. The Condor
system is being developed at the University of Wisconsin
for management of distributed resources, computational
and otherwise. We briefly review the SAMGrid
architecture and its interaction with Condor, which was
presented earlier. We then present our experiences using
the system in production, which have two distinct aspects.
At the global level, we deployed Condor-G, the Grid-
extended Condor, for the resource brokering and global
scheduling of our jobs. At the heart of the system is
Condor's Matchmaking Service. As a more recent work at
the computing element level, we have been benefiting
from the large computing cluster at the University of
Wisconsin campus. The architecture of the computing
facility and the philosophy of Condor's resource
management have prompted us to improve the application
infrastructure for D0 and CDF, in aspects such as parting
with the shared file system or reliance on resources being
dedicated. As a result, we have increased productivity and
made our applications more portable and Grid-ready. Our
fruitful collaboration with the Condor team has been
made possible by the Particle Physics Data Grid.

INTRODUCTION

The SAMGrid project at Fermi National Accelerator
Laboratory has been developing solutions for data
handling, as well as related job and information
management, for the Run II experiments, D0 and CDF.
Started as a data handling system primarily for D0, it
grew to embrace recent Grid computing developments,
see [1] and references therein. The Job and Information
Management (JIM) is a principal SAMGrid component
co-sponsored by the Particle Physics Data Grid (PPDG), a
US Grid initiative that brings together Computer
Scientists and Grid Application projects such as SAM, in
order to develop end to end solutions for HEP
experiments. Our primary stakeholder experiment is D0,
with CDF getting increasingly more involved into
SAMGrid computing.

The first and foremost benefit for JIM, and more
generally SAMGrid, in PPDG and Grid has been our
collaboration with the Condor team at the University of
Wisconsin. Specifically, we have been studying, adapting
and enhancing the Condor technology. We view Condor
as a system for management of distributed resources,
where “distributed” may mean anything from a cluster to
a world-wide system, and “resources” may mean anything
from individual computers (or CPUs therein) to whole
participating sites.

We have found two distinct applications for the Condor
technologies, and the paper is correspondingly organized
in two main sections following an overview of our
architecture. First, we describe the global-level
deployment of Condor-G. Second, we show how our
experiences with Condor-managed local computing
cluster at Wisconsin have helped us better schedule and
manage Run II jobs. Throughout the presentation, we
emphasize the design solutions that we have developed.

OVERVIEW OF SAMGRID
ARCHITECTURE

Figure 1. SAMGrid architecture.

There are three principal components in the SAMGrid
architecture in Figure 1. These are data handling[2], job
services and information management. Data handling is
the flagship component, see [3,4], yet we artificially
reduce its size in the above picture to highlight the more
recent developments.

FERMILAB-CONF-04-470-CD

JOB MANAGEMENT AT THE GRID
LEVEL WITH CONDOR-G

Figure 2. Job Management in SAMGrid.

At the high (Grid) level, user jobs are described
logically as requests; for example, a job of type Monte-
Carlo has MC Request ID, specification of the D0 release
D0 version, data input (including minimum-bias mix-in)
as SAM dataset(s), any other control parameters and,
lastly, the size of the job such as the total number of
events desired. The job is presented to the Grid scheduler
through extremely thin user interface. The scheduler
(queuing system) communicates with the Request Broker
to determine the Grid site for the job to run, see Figure 2.

We emphasize the hierarchical structure of the job,
which is unique to SAMGrid A single Grid job is mapped
onto many local (i.e. materialized in the batch system of
the site) jobs. In our opinion, this provides a clear,
hierarchical view of the jobs where the Grid-level job
management deals only with high-level jobs, easily
understood by user scientists, and detailed decomposition
of the job into executable (in the batch system) tasks is
left for the Fabric-resident services. This “divide and
conquer” paradigm therefore facilitates job management
and scales well with the workload increase.

Strictly speaking, our job structure is such that a Grid
job is mapped (decomposed) onto one or more cluster
jobs, each cluster job being scheduled at one site; it is the
cluster job that is decomposed into a collection of local
jobs. As of the time of wring this document, however,
Grid job corresponds to only one cluster job, and in the
remainder of the document we use cluster job and Grid
job interchangeably.

Consider the mapping of our job management
components onto Condor Components. In SAMGrid, the
Request Broker is embodied as the Condor-G
Matchmaking Service (MMS). Although MMS was a part
of the classic Condor system, it was absent from the
Condor-G technology due to initial implementation
limitations. We have decided to reuse the MMS concept
at the Grid level and forgo implementation of our own
parochial Broker.

Next, we enhanced the MMS with the ability to
dynamically retrieve additional information from
(resource) advertisers. We accomplished this through
introduction of functions into ClassAds. Previously, the
ClassAd system manipulated with constants, variables
and expressions; see [5] for more details. We applied our
extension in querying the advertising sites for the input
data available for the job being matched, thus linking, for
the time in Grid history, of scheduling of Grid jobs with
the data handling system, see [1].

 Next, we decoupled the client (User Interface in the
Figure) from the submission/queuing machines. The
former has become easier to install (i.e. no longer requires
root privilege, no daemons running, etc) and will
probably eventually become a Web-enabled client. The
latter is a full-fledged spooling and scheduling server
(Condor Schedd) running on a “dedicated” machine.

Our miscellaneous extensions for Condor-G included,
among other features, the rematch possibility. This
allowed the system to recover from “mis-matched”, e.g.,
routing a job to a site with outdated gridmapfile or other
fatal obstacle to accepting the job.

GRID JOB INSTANTIATION AT A LARGE
LOCAL CONDOR CLUSTER

In the course of SAMGrid deployment, we have used

the large Condor cluster at the University of Wisconsin,
the homeland of the Condor project. Obviously, this
cluster is not dedicated to D0, and our usage thereof has
been made possible exclusively by virtue of Grid
collaboration of SAM. (Specifically, this is D0-Condor
collaboration under the auspices of the Particle Physics
Data Grid consortium). What is important for the
purposes of this paper is that the Wisconsin cluster has
been our first, and foremost true grid cluster. In practice,
this means that we received a good share of resources for
D0 computations and we have enjoyed the support of the
resource owners, but we never owned any piece of the
cluster.

Such an environment has been ideal for SAMGrid for
understanding and solving the problem of Grid job
instantiation at the Fabric, which we have done in the
context of running D0 Monte-Carlo jobs. In this section,
we define the “job instantiation” problem and then
describe how the Wisconsin cluster configuration imposes
constraints and thereby forces one to think in terms of
proper abstractions. We then outline our solutions.

Job instantiation at the site physically means
submission of multiple local jobs to the batch system,
including preparation of all the necessary non-Physics
data as “input” and subsequent retrieval of the small
output (i.e. output files such as logs that are not destined
for a full-fledged data handling system such as SAM).
The movement of non-Physics input data is done from/to
SAMGrid submission site, where the (Grid-level) jobs are
spooled, and which in turn is typically close to the
SAMGrid client site from where the user submits the Grid

Computing
Element

Submission
Client

User
Interface

Queuing
System

User
Interface

Broke
Match

Making
Service

Information
Collector

Execution Site

Submission
Client

Match
Making
Service

Computing
Element

Grid
Sensors

Execution Site

Queuing
System

Grid
Sensors

Storage
Element

Storage
Element

Computing
Element

Storage
Element

Data
Handling
System

Data
Handling
System

Storage
Element

Storage
Element

Information
Collector

Grid
Sensors

Grid
Sensors

Computing
Element

Data
Handling
System

Data
Handling
System

1

2

1

3

4 4
5 5

6

7

jobs. It happens at the Grid to Fabric boundary and in
SAMGrid is carried out by the Grid to Fabric Interface
Services, see [6].

Any member of HEP computing community is familiar
with the application-imposed complexities in the
instantiation and management of a real Run II physics.
Hundreds, often thousands of small files must be supplied
with the job in a manner that is efficient enough so as not
to break local file transfer mechanisms. The jobs
shouldn’t interfere even when several of them are
scheduled on a single node. The number of local jobs
running in parallel must be determined so as to maximize
the probability of job completion (within the batch system
imposed boundaries) yet not to have too many small jobs
producing too many small output files.

The problem of job instantiation is made more difficult
by heterogeneity of participating clusters, in terms of
directory structures, shared file systems, conventions for
naming standard output/diagnostic files, designated
mechanisms of intra-cluster small file transfers, etc,
which is not managed by any “standard” Grid (or not)
software. Consequently, pre-SAMGrid solutions typically
made a number of simplifying assumptions, of which the
following two are the most profound:

1. Some experiment-specific software is pre-
installed cluster-wide. The software may be
something as conspicuous as the experiment
code or something as subtle as the Python
language interpreter.

2. There is a utopistic “no-cost”, transparent and
efficient shared file system, epitomized by the
home area concept, which the jobs and/or their
wrapping scripts may use.

Obviously, these assumptions hinder severely our move
towards Grid computing. Particularly flagrant is the
“home area” where the jobs can in fact deposit files
expected to stay there even after job completion.
Overload of (e.g. NFS) shared file system server by
uncontrolled, implicit file transfers, or overflow of the
user “quota” are only some of the problems. What is
more, home area is a ramification of a static “account”
concept which cannot possibly make its way into modern
Grid computing – imagine jobs from different users from
the same VO colliding on a file with a name like
“~/seed”.

The Wisconsin cluster has helped us enormously by
breaking these unrealistic assumptions. First, our Grid
jobs were mapped to a non-existent local username such
as “nobody” which didn’t have a writeable “home” on the
worker node. Second, instead of implicit file transfers in a
shared file system, Condor provides mechanisms for
explicit pre-staging of the job’s small (i.e. non-data) files.
Third, jobs run in dynamically created scratch space and
are required to “carry away” all the small files they
produce (i.e. log files) by themselves upon completion.

In SAMGrid, we strongly believe that the services
provided by this local Condor cluster (scratch
management, explicit intra-cluster small file transfers)
and the overall cluster configuration (no shared “home”
or other file system) are the correct approach towards
making a true Grid Fabric from computing clusters. The
SAMGrid job instantiation at the Grid-Fabric has been
inspired by this configuration and our solution worked
immediately on other (non-Condor) clusters, which made
the ongoing SAMGrid deployment possible.

SAMGrid solutions

Due to space constraints, we merely sketch our

solutions for the problem of Grid job instantiation at the
Fabric, see Figure 3.

Figure 3. SAMGrid services at the Grid-Fabric
boundary.

Batch System Idealizers. We adopted (but not
invented) a term that despite its appearance is intended to
represent a serious concept. These, as the name implies,
“idealize” the batch systems to make their interactions
with Grid machinery easier, by “mitigating” any
imperfections and adding any “missing” features.
Mitigation includes:

• retries in lookup commands for certain batch
systems,

• generation of easy to parse output (batch
system commands return output that’s usually
too terse or too verbose),

• compensation for confusing exit status from
batch system commands.

Added features include:
• grouping of jobs for all batch systems by an

attribute such as generalized “project” (i.e. in
SAMGrid rather than SAM sense),

SAM Batch Adapters

BS Idealizers

JIM
Sandboxing

SAMGrid Job Managers

Local Batch System

The Grid

• local scratch management on the worker
nodes, i.e. setup and cleanup of the scratch
space before/after user job execution,

• (optional) explicit preference/avoidance of
nodes that are /are not well suited for the grid
job(s) in question

Batch System adapters. These were originally
intended for use by the “sam submit” command, which in
turn was intended to provide the correct interface to
submit SAM analysis job to a batch system, and
performing actions such as starting/stopping of a SAM
project. In the expanded job management scheme,
provided by the JIM and other SAMGrid tools, this
package serves as the configuration tool for the job
submission/lookup/kill commands, implemented in the
aforementioned idealizers, i.e. the adapters for jobs
coming from the Grid must be configured to use the
idealizer appropriate for the local batch system.

The difference between “adapters” and “idealizers” is
that the former provide uniform interface to the batch
system, whereas the latter provide the scripts that actually
correctly implement these interfaces. For example, the
adapter concept contains an interface to lookup a job in
the batch system, and an idealizer will actually perform
the lookup, handle some of the errors, and return a
complex, multi-line string that is nevertheless easy to
parse. In a broader sense, “adapters” include “idealizers”.

JIM Sandboxing. This service is provided within the
jim_sandbox software package and is documented
therein. “Sandboxing” in SAMGrid refers to the ability to
transfer and initialize all the relevant input files for the
user job, as well as correct collection and return of “small
output. For input sandboxing, a staged bootstrapping
process is used whereby each subsequent stage uses
results of the previous stage, the last and most advanced
stage being retrieval of a small input dataset through the
SAM data handling system.

SAMGrid job managers. These implement the
services of grid job instantiation at the execution site, by
means of mapping a logical grid job definition (with
details provided by e.g. SAM Monte-Carlo request
system) to set of local jobs submitted to the batch system.
Our job managers come with the jim_job_managers
software package and are installed into the Globus job
manager area. When activated, they receive the job
request via the standard GRAM protocol and perform
multiple creation, submission, lookup and kill of the local
jobs comprising the Grid job. In addition, they allow for
XMLDB-based monitoring of Grid jobs which is at the
heart of JIM Grid job monitoring.

CONCLUSIONS
Through the collaboration with the Condor team, the

SAMGrid project benefitted from the Condor technology
in two ways, Grid-level and cluster-level.

At the Grid level, we have been able to deploy an
enhanced matchmaking service instead of developing
VO-specific (or even SAMGrid-specific) resource broker

At the cluster level, we have enjoyed dealing with the
proper abstractions that present a true-Grid, non-dedicated
computing cluster with minimal assumptions to our
system, which helped factorize our local architecture and
simplify deployment elsewhere.

ACKNOWLEDGEMENTS
The SAM-Grid team would like to thank our Condor

collaborators and especially Alain Roy, Todd
Tannenbaum and Peter Couvares, who worked on all the
aspects ranging from design to support of our users. We
acknowledge the Particle Physics Data Grid consortium
which made this collaboration possible. Finally, we thank
all the D0 and CDF collaborators whose continued use
and critique of the SAMGrid system make our efforts
worthwhile!

REFERENCES
[1] I. Terekhov, et al. "Grid Job and Information

Management for the FNAL Run II Experiments", in
Proceedings of Computing in High Energy and
Nuclear Physics (CHEP03), La Jolla, Ca, USA,
March 2003.

[2] I. Terekhov, et al. "Distributed Data Access and
Resource Management in the D0 SAM System", in
Proceedings of the 10th IEEE International
Symposium on High Performance Distributed
Computing (HPDC-10), San Francisco, California,
Aug. 2001. See also SAM articles in these
Proceedings.

 [3] G. Garzoglio, et al. "The SAM-GRID project:
architecture and plan.", in Nuclear Instruments and
Methods in Physics Research, Section A,
NIMA14225, vol. 502/2-3 pp 423 – 425.

 [4] I. Terekhov et al., "Meta-Computing at D0"; in
Nuclear Instruments and Methods in Physics
Research, Section A, NIMA14225, vol. 502/2-3 pp
402 – 406.

 [5] A. Baranovski, et al. “Management of Grid Jobs and
Data within SAMGrid”, Cluster Computing 2004,
Sep. 2004, La Jolla, CA, to appear in Proceedings.

[6] G. Garzoglio, et al. "The SAM-Grid Fabric
services", talk at the IX International Workshop on
Advanced Computing and Analysis Techniques in
Physics Research (ACAT-03), Tsukuba, Japan; to
appear in Nuclear Instruments and Methods in
Physics Research, Section A

	SAMGRID EXPERIENCES WITH THE CONDOR TECHNOLOGY �IN RUN II CO
	INTRODUCTION
	OVERVIEW OF SAMGRID ARCHITECTURE
	JOB MANAGEMENT AT THE GRID LEVEL WITH CONDOR-G
	GRID JOB INSTANTIATION AT A LARGE LOCAL CONDOR CLUSTER
	SAMGrid solutions

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

