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In this proposed device coherent electromagnetic radiation, modulated by an optical element called template, produces
a field at the trajectory of charged particles whiCh are accelerated by the field and, emit electromagnetic radiation. The
template may be a holograph. The spectrum of this radiation depends on the original coherent radiation, the template
arid the position of the particle in the field. For existing machines high intensity X- and y-ray production is possible
and the frequency and polarization spectrum can be controlled. Coherent production (between the charged particles)
enhances the radiation particularly at lower energies. This suggests the possibility of producing essentially monochro
matic photons. Coherent (between photons) radiation production seems feasible. For a suitably chosen field the dominant
part o(the radiative reaction force goes to zero near the beam axis so that it does not interfere with the earlier suggested
method of particle acceleration with template modulated coherent light.

In this paper we briefly described a proposed device
capable of producing X-rays and y-rays with a
tunable frequency and polarization spectrum.
The device is to be used in conjunction with high
energy accelerators or storage rings.

From here on we will use the phrase "y-ray"
to mean both X-rays and y-rays, unless explicitly
specified otherwise.

In the proposed device, y-rays are to be produced
by high energy charged particles traversing a
suitably shaped electromagnetic field. The pro
duction mechanism is related to, but different
from, the one by which high energy charged parti
cles produce synchrotron radiation. The difference
is the following. The intensity and, to some extent,
the polarization spectrum ofthe radiation produced
by the device to be described are variable and can
be adjusted. By contrast, for any accelerator or
storage ring and a given particle energy, the syn
chrotron radiation spectra are fixed and often in
convenient. The proposed device is also related to
but distinct from a class of devices which we will
refer to as undulators. In an undulator charged
particles pass through a static magnetic field which
varies as a function of position along the particle
trajectory. When this magnetic field is inserted
into a particle accelerator or storage ring, the field
exerts a force on the charged particles and the so
accelerated particles emit electromagnetic radia
tion. The change in the particle trajectory caused
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by the magnetic field can have the shape of a
"break" or "wave.,,1,2 The intensity of the magnetic
field can be varied. The device to be described
differs from an undulator, in that in it no static
field is to be used, but instead a radiation field
shaped by an optical template. This makes it
possible to increase the power radiated in the
form of y-rays, to produce Fourier components
with a much shorter wavelength than static mag
netic fields would permit, and to combine and
adjust Fourier components in an essentially arbi
trary manner, the precise meaning of this phrase
being given below. The electromagnetic field at the
trajectory in turn determines the intensity and
polarization spectra of the radiation produced by
the device here described. By appropriately choos
ing the former, one can select an intensity and, to
some extent, the polarization spectrum for the
latter.

In the template radiator described here, high
velocity (in the laboratory) charged particles are
accelerated by an electromagnetic field. During
acceleration, these particles radiate y-rays. The
charged particles may be electrons,protons or
other particles. We need not specify their exact
nature at this time, and until we do, we will refer
to them simply as "particles."·

The accelerating electromagnetic field is pro
duced in two steps. In the first step, coherent
electromagnetic radiation is generated by a source
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which may be a laser. We need not now specify the
exact nature of the source, and until we do, we will
refer to it simply as "light source" and to the radia
tion produced by it as "light." Ip the second step
the light produced by the light source passes
through a template and is then focused on the
particle trajectory. The template3 is an optical
ele~ent which modulates both the intensity and the
phase of the light passing through it, and it may be a
holograph. By suitably choosing the template, any
electromagnetic field can be constructed at the
particle trajectory, provided only that it satisfies
Maxwell's equations and the boundary condition
that it is produced at the template by a converging
monochromatic field. In practice it will sometimes
be convenient not to insist on creating the most
desirable field at the trajectory, but one which
differs from it by the appearance of certain un
wanted but relatively harmless Fourier com
ponents. When the template is a simple holograph,
then these unwanted Fourier components form the
so called "twin image" of the desired "correct
image" and can indeed be quite harmless as will be
discussed below.

Let us denote the wavelength in vacuum of the
(by assumption monochromatic) light produced
by the light source by Ao, and OJ = 2nc/Ao. We
restrict the following discussion to the special
case when the trajectory of the particle before enter
ing the field produced by the template, is horizontal
and straight, and we choose the z axis to be parallel
to it. We assume that the electric field E produced
by the template is cylindrically symmetric around
the z axis. It follows that the magnetic induction,
B, is also cylindrically symmetric around the same
axis. Generalization to arbitrary geometry is
straightforward. We denote by r the radius vector
measured from the z axis (see Figure 1). The
horizontal and vertical Cartesian components of
r are x and y, respectively. We choose the origin
of our coordinate frame so that at the point
where a particle enters the electromagnetic field
produced by the template, its z coordinate is
zero. To specify E, we could now give its three
Cartesian components Ex, Ey , and Ez. Instead,
for any point P whose coordinates are (z, y, x)
we will specify Ez, Er and Es' Where Er is the E
component parallel to r, the s is defined as

(2)
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We also assume that the electromagnetic field is
periodic along z with a period 2L. Since L is
arbitrary, this assumption imposes no restriction
on the field, but allows us to write sums instead of
integrals.

The most general electromagnetic field satisfying
these four conditions (varies as eiwt

, cylindrical
symmetry, Es = 0, and 2L periodic along z) is

FIGURE 1 The figure shows the x, y, z Cartesian coordinates
of an arbitrary point P, its radius vector r, and the sunit vector
defined at P by z x r = s. The electromagnetic radiation from
the light source passes through a cylindrical template which
modifies it so as to produce a suitable electromagnetic field.
This field extends from 0 to D along the z axis and accelerates
charged particles thereby inducing them to radiate. The particles
enter the field with a common velocity v, and come in bunches
whose length along z is bz , and whose horizontal and vertical
diameter (not shown in figure) are bx and by.

the time dependence of E and B is given by the
factor eiwt

, and by the assumed cylindrical sym
metry E and B depend on z and r, but not on s.

The most general electromagnetic field satisfying
these conditions is an arbitrary linear superposition
of two types of fields. For the first type, Es = 0,
while for the second type Bs = 0. The second type
can be obtained from the first type by the substitu-
tion E~ B, B~ - E. Thus it suffices to know the
most general field of the first type. Since fields of the
second type are of little interest for our present
purposes, we will impose the condition

(1)ZXf=S,

and E s is the component parallel to S. The B
vector will be specified similarly. By assumption,
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(3c)

Es(t, z, r) = Bz(t, z, r) = Br(t, Z, r) = 0, (3d)

where

Kn=[(~Y -k;,nJ
/2

, (3e)

J 0 and J 1 are cylindrical Bessel functions, C is the
velocity of light in vacuum, kz,n = nn/L with n
some integer because the field is periodic along z,
and the Cn are Fourier coefficients.

The particle moves with a velocity w(t) in the
laboratory. The particle enters the electromagnetic
field at time to. At that time its velocity is w(to) = v.
By definition v is parallel to z. After to, the particle is
accelerated by the field, and w(t) will change. In
cases ofmost interest to us, the particle will oscillate
while crossing the field. While oscillating, it will
radiate, thereby loose energy, and slow down. We
will assume that this slowing down is negligible
within the time the particle crosses the field, so that
the particle velocity can be written as

w(t) = v + u(t), (4a)

where u(t) is simply a periodic function of t, and
thus the average (over one oscillation) velocity v
is constant in time.

We denote the inertial frame which moves with
the constant velocity v with respect to the labora
tory by K v • For obvious reasons, we may call this
frame the average (over oscillations) restframe of the
particle. We denote quantities measured in K v by
a prime, e.g. in this frame the particle velocity is

w'(t) = u'(t), (4b)

and v' = 0 by definition. The components of the
electromagnetic field can be obtained by a Lorentz
transformation from Eq. (3). Defining v == Iv I and
y == (1 - V 2/C 2)-1 /2,

(8)

(10)

if Iu I ~ c, (7)
E'(t', ·z', r')

~q----

rno

B~(t', z' ,. r')

22[d J2P' = _L - u'(t') .
3c3 dt'

This expression will be a good approximation
provided that for every Fourier component of E

hw~ ~ rno c2
; for all n, (11)

is satisfied. In the cases of interest to us, Eq. (10)
holds.

E'(t', z'(t'), r'(t')J ~ E'(t', z~, r~), (9)

where z~ and r~ are the average (over one oscilla
tion) of the z' and r' coordinates of the. particle, so
that by the definition of K v and Eq. (4b) they are
constants in time.

To calculate the power, P', radiated by the
oscillating particle in K v , we use the classical
formula

where q, rn and rno are respectively the charge,
mass and rest mass of the particle.

Denote by I1r and I1z the amplitude of particle
oscillation in K v along rand z respectively. Assume

= Re{L cne-i(wt-kz,nz)~[~ - ~ kz,nJ.L J l(Knr)},
n C C C K n

(5c)

E~ = B~ = B~ = 0 (5d)

where t', z' and r' are the coordinates in K v of that
space time point whose coordinates in the labora
tory are t, z, and r.

We assume that while the particle is the electro
magnetic field,

so that during one particle oscillation along r, the
value of J 1 changes only by a small amount which
we neglect. Similarly, we neglect the change in E'
due to particle oscillations parallel to z, and can
write

u'(t) ~ c. (6)

Then in K v the dominant force on the particle will
be electric, as opposed to magnetic, so that

d E'(t' z' r')
- u'(t' z' r') ~ q "
dt' " rn

(5a)E~(t', z', r') = Ez(t, z, r),

E~(t', z', r')
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(13b)

We now focus our attention on the interesting
case when

(15)

(14)

w~' = w~.

1, 1
-2 Kn = -2( Kn •n n'

When the particle moves in the field of these pho
tons, it will radiate photons which have in K v

angular frequency w~', momentum k~' with com
ponents, k~:n and K~'. By the classical approxi
mation permitted by Eq. (11),

tively a cylindrical wave converging on the z axis
with radial momentum - Kn/2n and a wave
diverging with radial momentum + K n/2n.

Performing a Lorentz transformation to K v , we
find that the Fourier component proportional to Cn

describes photons which have angular frequency
and momentum components

w~ = y(w - vkz,n) ~ y(w - ckz,n),

2~ k~,n = ;n y0z,n - ;2 w) ~ y;n (kz,n -~}

The probability of photon emission by a particle
located at ro [and, by Eq. (13b) essentially oscilla-,
ting radially along roJ, in the k~' direction, is
proportional to (k~' x r')2:

P'(k~') ""-I (k~' x r~)2 (16)

The polarization of the emitted photon is parallel
to (k~' x r~) x k~'.

So far we considered the radiation emitted by
one particle only. When two particles of the same
type are moving parallel to the z axis, both with
velocity v', then they will both radiate and the
radiated field emitted by them may interfere con
structively or destructively at any point at I'.
Denote the position of the two particles by
a'l and a~, d' = a~ - a~. The Cartesian com
ponents of a'l are a'lx, a'ly, a'lz, and a'lr == (a'lx, a'ly)'
Similarly for a~, d', etc. The phase of the field at
a'l, due to photons produced by the template with
w~ and k~ differs from the phase at a~ by (- k~, n • d~

- K~' d~), i.e. the phase of the two fields emitted
by the two particles differs by this much at their
respective points of emission. Since the distance
II' - a'l\ may differ from II' - a~ I, the phase of the
radiation reaching I' from the two particles may be
further shifted. Assuming II' I ~ Id' I, this shift is
approximately - (wellc) (d' - 1')1 II' I so that the
phase at l' of the two radiations differs by a total of

!lcp = (-k~,n d~ - K~ d~) + we' (d' ·1')/11' I. (17)
C

(12)

(13a)v ~ C,

The field produced by the template is a super
position of several Fourier components. The
component proportional to Cn describes photons
which in the laboratory frame have angular
frequency w, and whose momentum along the Z

axis is kz , n/2n. The absolute value of their momen
tum in the radial direction is Kn/2n. Along the
radial direction the momentum of half of these
photons is Kn/2n, and for the other half it is - Kn/2n,
because the cylindrical Bessel functions for large
argument K n r can be written as a sum of two Hankel
functions, one with argument - Knr and the other
with argument +Knr, and these describe respec-

and when y is large enough, so that the J6 term
can be neglected. This last assumption is equivalent
to neglecting the radiation due to E~ in comparison
with the radiation due to E~. In other words, we
assume that the emitted radiation by a particle
located at r0, is mainly due to radial oscillations
along r o.

Substituting Eq. (7) into Eq. (10) and using
approximation (9), we obtain

2 q2
P' ""-I [E'2(' , ') + E,2(, , '/)J

""-I-

3
Z3 z l,zo,ro r t,zo,lo'
moc

For anyone particle the z~ and r~ do not change
in time, by assumption. Therefore, in the labora
tory frame ro is also constant in time, while
Z = [zo + v(t - to)Jy. Equation (5) shows that for
fixed ro and linearly varying z, the fields E~ and
E~ oscillate harmonically as a function of time due
to the factor e-i[wt-kz,nz(t)]. Thus the time average
of E~2 is one half of the maximum value (in time) of
E~2, and similarly for E~2. Therefore, we find from
Eqs. (5) and (12) that the time average of P', is

1 q4 (W)2
<P') = -32:3 L Icn l2 -

moc n C

X {J5(Knr) + [k2 ,n - ~~J[:/l(Knr)J}
(13)
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d' nc< 2w' then /).<p < n,

otherwise constructive interference may occur
when I' is almost parallel to k~'.

The values w~ and k~ in the laboratory frame can
be found by Lorentz transforming w~' and k~', and
using v ~ c: The average angular frequency is one half of the

maximum, because in K v all emitted photons have
the same energy: their energy in the laboratory
frame depends on the direction of their emission,
but since f o is perpendicular to v, Eq. (16) shows
that for every photon with momentum k~' n

there is one with momentum - k~: no. The polar~
ization of the y rays emitted by a particle at f 0,

is predominantly parallel to fa in the laboratory.
By Eq. (20), (18) and (14), the radiation emitted by
those particles which in the K v frame lie within a
sphere of diameter

d' < n
'" 2y(w/c - kz,nJ (23)

will add constructively everywhere.
Concerning the light source, we assume that it

emits radiation impulses each of which last 11
seconds. During the pulse it emits an instantaneous
power W The light illuminates a section of the z
axis whose length is D, i.e. the particle travels a
distance D in the field produced by the template.
(See Fig. 1.) Since the energy density of the electro
magnetic field in vacuum is E2/4n, we can express
the electric field in terms of Wand D. Using
Eqs. (3) and (20) we can then express Icno I in terms
of Wand D:

ICnol = 2(nW/Dw)1/2. (24a)

is when the light converges in the form of a cylin
drical wave on the cylindrical template. In practice
it will be easier to split the light beam into three or
more branches and direct them onto the template
from three or more directions. Of course, the
electromagnetic field on the outside surface of the
template depends on the manner in which the light
converges, but in any case the template is so chosen
as to achieve a desired field configuration in the
vicinity of the z axis. Inside the template one may
visualize the electromagnetic energy as being
concentrated in a cylindrically converging wave
train, the energy density reaching its maximum
within a radius of order 2n/Kno measured from the z
axis.

Now Eq. (13b) reduces to

< ' _ 1 q4y2 W - ckz,no 2(W)2 2p> - -3 """32 + k Icnol - J 1(Kno r) (21)
c rno w C z,no C

According to Eq. (19) the maximum angular
frequency

(18)

(20)

(19)

d' < nc
~ 2w

Clearly (d'· 1')/11'1 S Id'l, and by Eq. (3e)

I(k~ n • d~ + K~ d~) I ~ w' Id' I,, c

so that whenever

i.e. the interference is constructive everywhere. If
2w' d/c > n then the interference may still be
constructive when I' is almost parallel to k~'.

Similarly, if several particles of the same type
are moving parallel to the z axis, all with a velocity
v, then radiation fields produced by all of them will
add constructively everywhere, provided that all of
them lie within a sphere of diameter

One simple way to produce this is by imprinting a
cylindrically symmetric reflecting surface on a
transparent one and let the reflexivity as a function
of z vary as cos kz,noz. The hologram produced by
this template will contain, in addition to the desired
Fourier component which varies as exp{kz n z},
another which varies as exp{ -kz,noz}: the "t~in
image." In most cases this component will produce
undesired low energy y rays, which can be ignored.
If their presence is harmful, then they have to be
eliminated by constructing a more sophisticated
template. Theoretically the easiest case to consider

The probability of emission for a photon with k~

can be obtained from Eq. (16), and depends on the
values of Cn. In general, most of the y rays will be
emitted within an angle of l/y radians measured
from the z axis. If the emitting particle is located
at f 0' the polarization of the y rays will be predomi
nantly parallel to f 0 .

Next we make some numerical estimates to
evaluate the capabilities of such a device. We
consider the special case when only one Fourier
amplitude is non-zero
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Substituting Eq. (24a) into Eq. (21), we find the
value in K v of the power radiated by one particle
while it passes through the electromagnetic field.

<P
') _ 1 q4y2 OJ - ckz , no 4nWOJ 2( '")---- ---J K 1

3 c3m2 OJ + ck c2D 1 no ,o z, no

(while light pulse lasts) (24)

Concerning the particles, we assume that they
are produced in bunches, each bunch containing N
particles. The density of the particles can be written
as

p(t, z, y, x) = p(t, z)p(x, y), (25)

where p(t, z) in the laboratory is a "step function
moving with velocity v" along z and is nonzero
over a z interval whose length is bz • The p(x, y) is
left unspecified (see Fig. 1).

Let ~t be the time a particle spends radiating y
rays, i.e. the time the particle takes to pass through
the field produced by the template. The same
quantity measured in K v is then ~t' = ~t/y. The
total energy, lff~, radiated out by the particle during
one passage through the field, is clearly measured
t6 be ~t'. <P') in K v • The total momentum radiated
out in K v is zero. The total energy radiated out by
the particle is measured to be lffy in the laboratory
frame:

lffy = ylff~ = ~t<P'). (26)

To obtain the total energy lffy,t radiated out by all
the particles in a bunch we multiply lff y by Nand
average Ji over the cross section of the beam. We
denote the resulting average of Ji by

Ji(Knor) == (f p(x, y)Ji(Knor) dx dy)

Ifp(x, y) dx dy, (27)

and obtain from Eqs. (24), (26) and (27)

4n OJ - ckz,no q4y2 W J-2( )N A
lffy t = - 52 OJ - 1 Knor ut.

, 3 OJ + ckz , no C mO D
(28)

So far we assumed that Eq. (7) holds, i.e., that in
K v magnetic forces can be neglected in comparison
with electric forces. We will now evaluate the energy
radiated out by the particles as a result of their
acceleration due to magnetic forces: ~~. Since
in cases of interest to us Eq. (6) holds, the term to
be evaluated will be only a small correction to

lffy,t given in Eq. (28). We denote by u~, u~ and
u~ the corresponding components of u', assume

(29)

and neglect u~. In evaluating lff~t we may proceed
exactly as we did for lff y, t except that we have to
use Eq. (5c) instead of Eqs. (5a) and (5b), and that
the force will be proportional to Iu' 1/c, so that the
energy radiated will be proportional to I u' 1

2/c2
. In

the limit of high y, stated after Eq. (13a), the result is
simply

lffy~ = (~):fy, to (30)

where (u'/c);v is the average of (U'/C)2 taken over all
particles, and time. (Since u' may change in time.)

DISCUSSION

1) It was suggested in another paper3 that
template modulated coherent light can be used to
construct particle accelerators. The objection was
raised that the high intensity electromagnetic
fields in the accelerator will unavoidably lead to
unwanted interactions between those photons and
the accelerated particle, causing it to radiate energy
and slow down. Since this effect would be more
important at higher particle energies, it would make
it impossible to accelerate particles to high energies
by the suggested method.

We are now in a position to show that this
objection is unfounded. Indeed, the field con-,
figuration suggested for the accelerator is the one
given by Eq. (3). Therefore, the dominant term
i.e. the one due to electric forces in Kv-in the
energy radiated out by the charged particles is
given by a sum (over the various Fourier com
ponents) of terms of the form shown in Eq. (28).
Assume that the particles lie within a cylinder of
radius r m from the z axis, and that Knrm ~ 1.
Then we may approximate Ji(Knr) ~ (Knr/2)2, and
lffy,t ~ 0, as r m ~ O. Furthermore, by Eqs. (28)
and (30)

M (U')2 (U')2 - (U')2 2lCy,t = - lffy,t f'.I - J 1(Kn r m) rv - rm .
c av C av C av

(31)

Here the subscript "av" means averaging over all
particles and also over the time interval I1t,
because u' may be a function of time. Thus, the
lff y, t and lC~t can both be made arbitrarily small
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provided only that rm is small enough, i.e., provided
that the particles are confined close to the z axis.
Turning to the nondominant first term in the
square bracket in Eq. (13), one sees that it is pro
portional to J6, and does not go to zero as rm

does. However, this term being independent of y,
does not increase with energy. Since the forces
used for acceleration in the suggested particle
accelerator are largest near the z axis, while the
forces which would be dangerous at high energies
to to zero near the z axis, it seems that acceleration
to high energies by the suggested method is indeed
possible.

2) To estimate- the electric fields which can be
achieved by the method suggested here, we assume

that the light source is a laser. For u-: Tz, D and Ao
we assume the values given in Table I. For sim
plicity we assume that the template produces only
one Fourier component. We arbitrarily choose
that component for which

(32)

simply because for this one Ikz , no/Kno I = 1 is an
easy number to use in calculations. Substituting
these values into Eq. (24a), and (5b), we evaluate
IE~(t', z', r') I. Multiplying this bye, the electric
charge of the electron, we obtain the absolute value
of the force exerted by the field on a particle of
charge e. For example, for the first column of
Table I,

TABLE I

In the first part of Table I is a list of the parameters assumed for the light source which in this case is a laser;
the template; and the particle beam. The last four lines give the maximum force on a particle exerted by
the electromagnetic field created by the template, and some parameters of the y radiation produced during
one passage of a particle bunch through the electromagnetic field. The * means that while the dominant
Fouriercomponent has K no = -kz,no' other components also exist because the field is focused by a large
template on a section of only D = 3 cm long.

Laser
Energy output per pulse
Instantaneous power, W
Duration of pulse, ~
Wavelength in vacuum, Ao

Template
R
(1 - a)-l
Length of illuminated trajectory, D
K no =

5.104 J
1012 W
50 nsec
10- 4 cm

15 cm
No optical resonance
103 cm
-kz,no

103 J
2.1010 W
50 nsec
10- 4 cm

15 cm
50
103 cm
-kz,no

5.104 J
101~ W
50 nsec
10- 2 cm

15 cm
No optical resonance
3cm
dominant:* - kz , no

Particles
(1 - v2 jc2 )-1 / 2 == y
spread in y (related to velocity spread) in bunch
Particle is an
Number of particles per bunch, N
Bunchlength in time, ~
Bunchlength along z axis, bz

Horizontal emittance in- bunch, Ax
Vertical emittance in bunch, A y

Horizontal beam diameter at waist of bunch, bx

Vertical beam diameter at waist of bunch, by
Particle density in bunch, p
Time spent by particle in field f1t = Djv

(Maximum force acting on a particle exerted by
field, IF~ ImaJjy

Total energy radiated while bunch traverses
field once, $y, t

Maximum energy of emitted y-ray photon,
(nOJ~o)max

Number of y-ray photons produced while
bunch traverses field once, Ny

3.104

10- 3 y = 3·10
electron
5.1011

10- 1 nsec
3cm
1C' 1.5.10- 5 cm rad
1C. 10- 7 cm rad
1.5.10- 1 cm
2.10- 2 cm
5.55.1013 cm- 3

33.3 nsec

2.12.10- 1 GeVjcm

2.01 . 107 ergs

3.81 GeV

6.59.109

102

10- 1

electron
5.1010

10- 1 nsec
3cm
n . 1.5 . 10- 7 cm rad
n· 10- 9 cm rad
10- 3 cm
10- 4 cm
1.67.1017 cm- 3

10- 1 nsec

3.87.10- 1 GeVjcm

2.26.10- 1 ergs

4.23.102 eV

6.67 .108
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IF~(t', r', z') I = IE~(t', r', z') . e I

= 30 64
o

lO- 1Y!J{fiJ
x COs[~(ct -~)]~~V (33a)

This force oscillates periodically in time with
amplitude which depends on r, and reaches its
maximum IF~lmax, at r = 4.05.10- 5 cm, where
J 1(wr/j2c) = 0,582, and

IF~lmax = 2.12 ·10- 1y GeV/cm, (33)

a large force by most standards.
The required power output of the light source

can be reduced by the use of optical resonance.
This is the same principle which is also useful in
connection with particle acceleration by template
modified coherent light. To achieve such reso
nance, one coats the inside surface of the template
by a partially reflecting mirror surface whose re
flectivity is Ll, so that a photon impinges on it
(1 - Ll)-1 times on the average, before penetrating
it. We choose the radius of the cylindrical template
to be R, where R satisfies the resonance condition.
Since coherence of the radiation must be preserved
inside the template, the Ll and R can not exceed
the limits imposed by the coherence length of the
laser light and the maximum smoothness of
the mirror surfaces. Furthermore, the field at the
template must not exceed about E = 1.5 . 103 cgs
units depending on the template material, because
higher fields would damage the template. The
parameters Ll and R listed in Table I satisfy these
conditions. Table I shows that in this manner one
can achieve considerable decrease in the required
W For example, if (1 - Ll)-1 = 50, R = 15 cm,
then W can be reduced by a factor of 50, without
reducing IF~lmax.

3) The values assumed for the parameters
characterizing the particle beam are listed in
Table I.

For y = 3 . 104
, the parameters are similar

(but not identical) to the ones already achieved or
planned for electrons with energy up to 4.5 GeV
at SPEAR and up to 15 GeV at PEP, except that
here we assume a simple step function density
distribution (as a function of x, y and z). The
quantities bx, Ax and D are chosen so that the
horizontal beam diameter varies only by a small
fraction while the particle passes through the
field, and so does the vertical beam diameter. We

neglect these varIatIons and consider bx and by
to be the corresponding diameters everywhere in
the field produced by the template.

For these parameters p(x, y) = p(x)p(y), and the
beam cross section is a quadrangle whose hori
zontal and vertical sides are respectively 1.06·
103K;/ and j2. 102K;/. We evaluate Ji for
this p(x, y) from Eq. (27). We use the approximation

J1(Knor) ~ Cr~or}12 COS(Knor _ 3:}

observe that averaging over cos2 gives a factor 1/2
when by ~ K~ 1

, and evaluate Ji approximately:
-2 -3J 1(Kno r) ~ 10 . (34)

Substituting Eq. (34) into (28) we find ~y,t, the
energy produced during the time when one bunch
of particles passes once through the field produced
by the template. The result is listed in Table I.
From Eqs. (14), (22), and (32), we find the maximum
angular frequency (as measured in the laboratory
frame) of the emitted y rays. For example, when
A = 10- 4 cm, then

(w~o)max = 3.41 y 2 wno = 6.43· 1015
y2 sec- 1

, (35)

which means that the maximum energy of the
emitted y ray photons is 3.81 GeV in the laboratory
frame, and 63.5 keVin K v • Using ~y,t, we find that
the number, Ny, of photons emitted while one
bunch of particles traverses the field produced
by the template is about 6.5.109 . The y-ray
photons are emitted within a typical angle of
y-1 measured from the direction of the velocity of
the emitting particle. According to Table I, the
particle velocities themselves are parallel within
an angle of 10- 4 and 5.10- 6 radians respectively
in the horizontal and vertical direction, so that
t)1e y rays will be emitted within a typical angle of
10- 4 radians in the horizontal direction, and
3 . 10- 5 radians in the vertical direction.

The parameters for y = 102 are extrapolated
from the parameters for y = 3 . 103 using the
fact that the equilibrium electron beam diameters
are proportional to y. (The extrapolated beam
damping time, proportional to y- 3 would then be
about 45 minutes, but with a smaller radius of
orbit curvature, it can be reduced). The N is
assumed to be reduced by a factor of ten.

When y = 102
, then bx , by ~ K~l and the beam

can be arranged so that it passes at a distance
ro ~ 1.8K~ 1 from the axis, where Ji reaches its
maximum value of 0.3387. For Ao = 10- 2 cm, the
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so that the number of particles inside a sphere of
diameter d', is

maximum energy of the emitted photons is
2.5 . 102 eV, and the radiation is emitted within
a typical angle of 10- 2 radians.

4) According to Eqs. (23) and (32), those particles
which in K v lie within a sphere of diameter d'
will radiate coherently, provided that

d' ;5 n[(2 + j2)YW/C]-l. (36)

When y = 102
, and Ao = 10- 2 cm, then

d' = 1.46 . 10- 5 cm, (37)

and from Table I we find

p' = y-1 p = 5.55 .1014 cm- 3 , (38)

Since n is proportional to A3
, it can rapidly reach

high values. These n particles will radiate co
herently. The total radiated intensity coming from
these particles will be about n times that which
appears in Table I. This radiation will not be
observable in the high energy region of the emitted
radiation, unless the particle bunches have a
substructure. The coherent radiation will be best
observed in the high energy part of the emitted
spectrum, if the substructure consists of small
bunches of particles, d'/y long in the laboratory,
each containing about n particles. (If no sub
structure exists, then in the laboratory frame the
coherent radiation will be emitted predominantly
with a momentum and energy equal to the mo
mentum and energy of the photons produced by
the template).

5) The large enhancement in $y, t which can be
achieved by coherent scattering by the electrons,
opens up the possibility of producing essentially
monochromatic y rays. Indeed, Table I shows that

4n
n = - (d')3 p' ~ 2.5.

3
(39)

for high values of n, most of the photons produced
by the template are transformed into y-ray photons
near the surface of the particle beam. If the bx and
by beam diameters are large compared to the
wavelength A~ measured in K v of the photons
produced by the template, then we see that the
y rays are produced simply by reflection from a fast
moving mirror surface: the surface of the particle
bunch. When the front of the particle bunch is
sufficiently well defined, production of high energy
monochromatic y rays is possible in the'direction
which in the laboratory is almost parallel to v.

6) So far we discussed coherence referring to
production of y rays by several electrons simul
taneously. Next we will discuss the production of
coherent y ray radiation, that is radiation in which
the y ray photons are monochromatic and in phase
with each other.

To produce coherent y radiation, one can use the
produced y-rays (whether or not they are essentially
monochromatic) to irradiate and invert the electron
population of a target, by putting it into a higher,
possibly metastable energy level. Choosing the
y-ray frequency appropriately, this method would
be much more energy efficient than the usual
method of pumping with (low energy) laser
photons. This method of producing coherent
y-ray radiation will be discussed elsewhere.
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