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We propose a new concept, the transversely trapping surface (TTS), as an extension of the
static photon surface characterizing the strong gravity region of a static/stationary spacetime in
terms of photon behavior. The TTS is defined as a static/stationary timelike surface S whose
spatial section is a closed two-surface, such that arbitrary photons emitted tangentially to S from
arbitrary points on S propagate on or toward the inside of S. We study the properties of TTSs
for static spacetimes and axisymmetric stationary spacetimes. In particular, the area A0 of a TTS
is proved to be bounded as A0 ≤ 4π(3GM )2 under certain conditions, where G is the Newton
constant and M is the total mass. The connection between the TTS and the loosely trapped
surface proposed by us [Prog. Theor. Exp. Phys. 2017, 033E01 (2017)] is also examined.
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1. Introduction

If a black hole forms, everything is trapped inside of its horizon. Such extremely strong gravity is
realized only when a mass is concentrated in a small region. One of the mathematical conjectures
concerning its scale is the Penrose inequality [1],

AH ≤ 4π(2GM )2, (1)

where AH is the area of an apparent horizon, G is the Newton gravitational constant, and M is
the Arnowitt–Deser–Misner (ADM) mass. Here, the right-hand side is the horizon area of the
Schwarzschild black hole with the same mass. The Penrose inequality has been proved with the
methods of the inverse mean curvature flow [2,3] and the conformal flow [4] for time-symmetric
initial data with nonnegative Ricci scalar.

In a Schwarzschild spacetime, a collection of unstable circular orbits of null geodesics forms a
sphere at r = 3GM , called a photon sphere. The photon sphere plays an important role in phenomena
related to observations, like gravitational lensing [5] and the ringdown of waves around a black hole
[6]. The region between the event horizon and the photon sphere is a very characteristic region
because if photons are emitted isotropically from a point in this region, more than half of them will
be (eventually) trapped by the horizon [7] (see also Sect. 5.1 of Ref. [8]).

A nonspherical black hole would also possess a strong gravity region in which (roughly speaking)
photons propagating in the transverse direction to the source will be trapped by the horizon. It is a
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basic problem to determine/constrain its characteristic scale. To be more specific, we expect that if
an appropriate definition is given, an inequality that is analogous to the Penrose inequality should
hold for surfaces in such a strong gravity region, that is,

A0 ≤ 4π(3GM )2. (2)

Here, A0 is the area of a surface in the strong gravity region and the right-hand side is the area of the
photon sphere of a Schwarzschild spacetime with the same mass. In this paper, we call this inequality
the Penrose-like inequality. In order to formulate and prove the Penrose-like inequality, we have to
introduce an appropriate concept of a surface characterizing the strong gravity region.

One of the generalized concepts of the photon sphere is the photon surface [9]. It is defined as a
timelike hypersurface S such that any photon emitted in any tangent direction of S from any point on
S continues to propagate on S. The photon surface is allowed to be dynamical or to be non spherically
symmetric. In our context, the concept of the static photon surface may be expected to be useful to
characterize the strong gravity region. However, the existence of a photon surface practically requires
high symmetry of the spacetime, because the condition of a photon surface strongly constrains the
photon behavior on it. For this reason, the uniqueness of static photon surfaces has been expected
and partially proved [10–19]; if a static photon surface exists, the spacetime must be spherically
symmetric in various setups (see also an example of a nonspherical photon surface but with a conical
singularity [20]). Another manifestation of the strong requirement on a photon surface is that it does
not exist in stationary spacetimes. In a Kerr spacetime, for example, there are null geodesics staying
on r = const. surfaces, but their r values depend on the angular momentum of the photons [21]. As
a result, a collection of photon orbits with constant r values forms a photon region with thickness
instead of a photon surface (Sect. 5.8 of Ref. [8]). The photon region becomes infinitely thin and
reduces to a photon surface in the limit of zero rotation.

Clearly, the absence of a photon surface does not imply the absence of a strong gravity region.
It is nice to introduce other concepts to characterize the strong gravity region that are applicable to
spacetimes without high symmetry or to stationary spacetimes. One such approach is the loosely
trapped surface (LTS) proposed by us [22].An LTS is defined with quantities of intrinsic geometry of
the initial data; in a Schwarzschild spacetime, the marginal LTS coincides with the photon sphere. We
have proved that LTSs satisfy the Penrose-like inequality (2) in initial data with a nonnegative Ricci
scalar. However, the connection between the LTS and the photon behavior in non-Schwarzschild
cases is still unclear. We speculated that such a connection would exist, but it was left as a remaining
problem.

In light of the above discussion, the purpose of this paper is threefold. First, as a generalization of the
static photon surface, we introduce a new concept to characterize a strong gravity region through the
behavior of photons, the transversely trapping surface (TTS). A TTS is defined as a static/stationary
timelike hypersurface S such that arbitrary photons emitted tangentially to S propagate on or toward
the inside of S. TTSs can be present in static spacetimes without high symmetry and in stationary
spacetimes, and examples in a Kerr spacetime are explicitly calculated. Second, we show how the
TTS is related to the LTS in static spacetimes and axisymmetric stationary spacetimes. Through
this study, we give an answer to the remaining problem of our previous paper. Third, we will prove
that TTSs satisfy the Penrose-like inequality (2) in static spacetimes and axisymmetric stationary
spacetimes under fairly generic conditions.

This paper is organized as follows. In the next section, we explain the basic concepts and prop-
erties of the TTS and the LTS. In Sect. 3, we study TTSs in static spacetimes. In Sect. 4, TTSs in
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axisymmetric stationary spacetimes are explored. Section 5 is devoted to a summary and discussion.
In Appendix A, we present derivations of the TTS condition in static and axisymmetric-stationary
cases in a different manner from those in the main article. In Appendix B, we give a supplementary
explanation of the derivation of the TTS condition in the axisymmetric stationary case. In Appen-
dix C, we present some geometric formulas that are useful for studying TTSs in more general cases.
Throughout the paper, we use units in which c = 1. Although we write the Newton constant G
basically, we set G = 1 when a Kerr spacetime is studied in Sect. 4.2 for conciseness.

2. Definitions of surfaces in strong gravity regions

In this section, we explain the two concepts of surfaces to characterize strong gravity regions. In
Sect. 2.1, we define the TTS and derive the mathematical condition for a surface S to be a TTS. In
Sect. 2.2, we review the LTS introduced in our previous paper [22]. A theorem proved in Ref. [22],
which is used in this paper as well, is also reviewed.

2.1. Transversely trapping surfaces

Consider a static or stationary spacetime M possessing a timelike Killing vector field ta, and take a
spacelike hypersurface � given by t = const. We consider an orientable closed two-surface S0 in �
and suppose that� is divided into the inside and outside regions by S0. By transporting S0 along the
integral lines of ta, we obtain a static/stationary three-dimensional timelike surface S. In this setup,
we define the TTS as follows:

Definition 1 A static/stationary timelike hypersurface S is a TTS if and only if arbitrary light rays
emitted in arbitrary tangential directions of S from arbitrary points of S propagate on S or toward
the inside region of S.

Below, we derive the mathematical expression for the condition for S to be a TTS. Before starting
our analysis, we summarize the notations commonly used throughout this paper. The metric of
the spacetime M is gab. With the future-directed unit normal na to �, the induced metric and the
extrinsic curvature of� are given by qab = gab + nanb and Kab = (1/2)£nqab, respectively, where £
denotes the Lie derivative. With the outward unit normal r̂a to S, the induced metric and the extrinsic
curvature of S are Pab = gab − r̂ar̂b and K̄ab = (1/2)£r̂Pab, respectively. Although the unit normal
to S in M and the unit normal to S0 in� do not coincide in general, in this paper we consider setups
such that these two unit normals agree. We will come back to this point in Sects. 3.1 and 4.1. In
this situation, the induced metric of S0 is hab = gab + nanb − r̂ar̂b, and its extrinsic curvature in the
hypersurface � is kab = (1/2)(3)£r̂hab, where (3)£ is the Lie derivative on the hypersurface �. The
covariant derivatives of M, �, S, and S0 are denoted as ∇a, Da, D̄a, and Da, respectively. These
definitions are summarized in Fig. 1.

Consider a null geodesic γ with the tangent vector ka emitted tangentially to S from a point p on
S. If S is a TTS, this null geodesic must stay on S or go toward the inside of S. Let us introduce
another null trajectory γ̄ from the point p with the tangent vector k̄a, which is assumed to be a null
geodesic on the hypersurface S,

k̄aD̄ak̄c = 0. (3)
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Fig. 1. Schematic picture of the transversely trapping surface. The notations are also indicated.

At the point p, we choose k̄a to be same as ka, i.e. ka = k̄a. Rewriting Eq. (3) in terms of the
four-dimensional quantities, we have

ac = −(K̄abk̄ak̄b)r̂c, (4)

where ac is four-acceleration, ac := k̄a∇ak̄c. The two trajectories γ and γ̄ agree locally when
K̄abk̄ak̄b = 0, and the four-acceleration āc of γ̄ is directed toward the outside if and only if K̄abk̄ak̄b <

0. This means that a four-dimensional null geodesic γ satisfies the desired property if and only if
K̄abkakb ≤ 0 holds. This result is summarized as follows:

Proposition 1 The necessary and sufficient condition for S to be a TTS is that for every point on S,
the condition

K̄abkakb ≤ 0 (5)

holds for an arbitrary null tangent vector ka of S.

Hereafter, we call this condition the TTS condition. In Sects. 3.1 and 4.1, we will rewrite the TTS
condition in the cases of static spacetimes and axisymmetric stationary spacetimes. Note that if the
equality in Eq. (5) holds at all points on S, the surface S coincides with the photon surface proposed
in Ref. [9]. Therefore, our definition of the TTS includes the photon surface as the marginal case.

In addition to the TTS condition, we sometimes require the two-surface S0 to be a convex surface.
The condition for the convexity depends on the choice of the slice t = const. We will specify this
point in Sects. 3.1 and 4.1. When the convex condition is additionally imposed on the TTS, we call
it the convex TTS.

2.2. Loosely trapped surfaces

Now, we explain the LTS defined in our previous paper [22]. Consider the initial data � of a (not
necessarily static or stationary) spacetime M and a closed two-surface S0 that divides� into outside
and inside regions. The initial data � is supposed to have a nonnegative Ricci scalar (3)R ≥ 0. We
introduce a radial foliation of � starting from S0 specified by the coordinate r with the dual basis
Dar = r̂a/ϕ, where r̂a is the unit normal to S0 and ϕ is the (spatial) lapse function. In this setup, the
LTS is defined as follows:
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Definition 2 The surface S0 is a loosely trapped surface if k > 0 and r̂aDak ≥ 0, where k is the
trace of the extrinsic curvature kab.

The motivation for this definition is that in the static slice of the Schwarzschild spacetime, the
r = const. surface has this property in the range 2M < r ≤ 3M . Since r = 3M is the photon sphere,
photons are loosely trapped inside of this sphere and the positivity of r̂aDak is expected to be a useful
indicator for a strong gravity region. Note that, as seen from the following formula which is derived
from the trace of the Ricci equation with the double trace of the Gauss equation,

r̂aDak = −1

2

(
(3)R − (2)R + k2 + kabkab

)
− 1

ϕ
D2ϕ, (6)

the value of r̂aDak depends on the choice of the lapse function ϕ. The surface S0 is called an LTS if
r̂aDak ≥ 0 is satisfied (at least) for one choice of ϕ.

There are two main results in our previous paper [22]. The first is that the LTS has topology S2

and satisfies ∫
S0

k2dA ≤ 16

3
π . (7)

This is proved by integrating the relation (6) under the condition r̂aDak ≥ 0 and (3)R ≥ 0, and using
the Gauss–Bonnet theorem. The second result is very important in this paper, and we state it in the
form of a theorem:

Theorem 1 If the inequality (7) is satisfied on S0 with k ≥ 0 in asymptotically flat initial data �
with nonnegative Ricci scalar (3)R, the area A0 of the surface S0 satisfies the Penrose-like inequality
(2), A0 ≤ 4π(3GM )2.

In order to prove this, we used the method of the inverse mean curvature flow originally proposed in
Refs. [2,23]. The inverse mean curvature flow is generated by the lapse function ϕ = 1/k , and along
this flow, Geroch’s quasilocal energy is monotonic and asymptotes to the ADM mass at spacelike
infinity r → ∞.1 This leads to the bound on the surface area (see also Ref. [3] for resolution of
the possible formation of singularities along the flow). We refer to our previous paper [22] for the
detailed proof. Note that the theorem in Ref. [22] states that the Penrose-like inequality holds for an
LTS. We modified the statement of the theorem to the above because the inequality (7) and k ≥ 0 on
S0 are necessary in the proof, but the LTS condition r̂aDak ≥ 0 is not used directly; it was used to
guarantee (7) in our previous paper. This modification will become important in Sects. 3.3 and 4.4.

3. Static spacetimes

In this section, we explore the properties of TTSs in static spacetimes. In Sect. 3.1, we explain the
setup and rewrite the TTS condition. In Sect. 3.2, the relation between the TTS and the LTS is
examined using the Einstein equations. The Penrose-like inequality for TTSs is proved in Sect. 3.3.

1 Because this property of Geroch’s mass is used in the proof, our theorems apply to asymptotically flat
spacetimes. Note that the modification of Geroch’s mass has been proposed for asymptotically anti-de Sitter
spacetimes [24].
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3.1. Setup and TTS condition

A static spacetime has the property that the timelike Killing vector field ta is hypersurface orthogonal
[25]. Namely, there exist t = const. slices on which

ta = αna (8)

holds (called static slices). Here,α is the lapse function. On this slice, the extrinsic curvature vanishes,
Kab = 0. We will rewrite the TTS condition (5) using this slice. For this reason, our results below
cannot be applied to the t = const. slice with nonvanishing Kab. An example of static slices in a
Schwarzschild spacetime is the t = const. hypersurfaces in the standard Schwarzschild coordinates
(t, r, θ ,φ), and a counter-example is those of the Gullstrand–Painlevé coordinates [26].

For a static slice �, the unit normal to S in M and that to S0 in � agree, and we denote those
common normals as r̂a. It is easily derived that

K̄ab = −nanb
r̂cDcα

α
+ kab (9)

holds. Since the null tangent vector of S is expressed as ka = na + sa, where sa is a unit tangent
vector of S0, the TTS condition (5) is rewritten as

kabsasb ≤ r̂cDcα

α
(10)

for an arbitrary unit tangent vector sa of S0. If we introduce a tensor

σab := kab − r̂cDcα

α
hab, (11)

the TTS condition (10) is equivalent to σab having two nonpositive eigenvalues. Such conditions are
given by

tr(σab) ≤ 0 and det(σab) ≥ 0. (12)

After calculation, these two conditions can be expressed in a unified form,

k

2
+

√
1

2
k̃abk̃ab ≤ r̂cDcα

α
, (13)

where k is the trace of kab and k̃ab is the trace-free part of kab, i.e. k̃ab := kab − (k/2)hab. This is the
TTS condition in the static case. Note that the condition (13) in the static case can be also derived
by studying the geodesic equations directly. This is demonstrated in Appendix A.1.

For practical purposes, the following form may be more useful. Since kab is a symmetric tensor, it
can be diagonalized by appropriately choosing the tetrad basis (e1)a and (e2)a as

kab = k1(e1)a(e1)b + k2(e2)a(e2)b. (14)

Without loss of generality, we can assume k1 ≥ k2. Using this form of kab, the TTS condition becomes

k1 ≤ r̂aDaα

α
. (15)
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As defined in Sect. 2.1, we call S a convex TTS when S0 is a convex surface. The surface S0 is a
convex surface if and only if both k1 and k2 are nonnegative. Therefore, for S to be a convex TTS,
we require k2 ≥ 0 in addition to the condition (15). The convex condition can also be expressed in

a covariant manner as k ≥
√

2k̃abk̃ab.

3.2. Connection to the LTSs

Below, we study the relation between convex TTSs and the LTSs. Specifically, the condition that
a convex TTS becomes an LTS simultaneously is investigated using the Einstein equations. The
projected components of the energy-momentum tensor Tab are defined as

ρ := Tabnanb, Ja := −Tbcnbqc
a, Sab := Tcdqc

aqd
b. (16)

We adopt the 3 + 1 split form of the Einstein equations. For a static spacetime,

(3)R = 16πGρ, (17a)

(3)Rab = 1

α
DaDbα + 8πG

[
Sab + 1

2
qab(ρ − Sc

c)

]
. (17b)

Here, Eq. (17a) is the Hamiltonian constraint, and Eq. (17b) is the evolution equation with £tKab = 0.
The momentum constraint is trivially satisfied with Ja = 0. Taking the trace of Eq. (17b), we have

1

α
D2α = 4πG

(
ρ + Sc

c
)

. (18)

Consider a convex TTS whose spatial section is S0. The quantity r̂aDak for S0 is given by the
formula (6). The three-dimensional Ricci scalar (3)R appearing in this equation can be expressed by
the Gauss equation for S0,

(3)R = 2(3)Rabr̂ar̂b + (2)R − k2 + kabkab. (19)

The first term on the right-hand side of Eq. (19) can be written as

(3)Rabr̂ar̂b = 8πG(ρ + Pr)− 1

α
D2α − k

r̂cDcα

α
, (20)

which is obtained by multiplying Eq. (17b) by r̂ar̂b and rewriting with Eq. (18). Here, we introduced
pressure in the radial direction,

Pr := Tabr̂ar̂b. (21)

As a result, the formula (6) is transformed into (see also Appendix C)

r̂aDak = −8πG(ρ + Pr)+ 1

α
D2α + k

r̂cDcα

α
− kabkab − 1

ϕ
D2ϕ. (22)

For this formula, we consider the condition that S0 is guaranteed to satisfy the LTS condition r̂aDak ≥
0. Because the lapse function ϕ can be freely chosen, we impose ϕ = α (if one considers the
Schwarzschild spacetime, this corresponds to adopting the tortoise coordinate for r). The null energy
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condition indicates ρ + Pr ≥ 0 in general, and hence we restrict to the situation ρ + Pr = 0 on S0.
Using the expression (14) for kab and applying the TTS condition (15) with the convex condition
k2 ≥ 0, we have

k
r̂cDcα

α
− kabkab ≥ k2(k1 − k2) ≥ 0. (23)

Therefore, we have found the following:

Proposition 2 A convex TTS S in a static spacetime is an LTS as well if ρ + Pr = 0 on S.

Note that the condition ρ + Pr = 0 is not too strong because it must be imposed just on S and it
is satisfied if the region around S is vacuum. Also, the Reissner–Nordström spacetimes satisfy this
condition for r = const. surfaces. In this sense, we have proved the close connection between the
TTS and the LTS with sufficient generality.

3.3. Area bound for TTSs

Once a TTS is proved to be an LTS, it possesses the properties that have been proved for LTSs. In
particular, its area satisfies the Penrose-like inequality (2), A0 ≤ 4π(3GM )2. However, there might
be the case that a TTS is not guaranteed to be an LTS but satisfies the Penrose-like inequality (i.e.,
we suppose that ρ + Pr = 0 may not be necessary on S). Therefore, there remains a possibility that
the condition can be relaxed if just the area bound is considered. Let us explore this possibility.

The strategy here is to find the condition that a convex TTS S satisfies the inequality (7) without
using the concept of the LTS, because the Penrose-like inequality follows from Eq. (7) by Theo-
rem 1 in Sect. 2.2. Eliminating (3)R and r̂ar̂bRab from Eqs. (17a), (19), and (20), we have (see also
Appendix C)

(2)R = −16πGPr + 2

α
D2α + 2k

r̂aDaα

α
+ k2 − kabkab. (24)

Using the expression (14) for kab and the TTS condition (15), we have

2k
r̂aDaα

α
+ k2 − kabkab ≥ 3

2
k2 + 1

2
(k1 + 3k2)(k1 − k2) ≥ 3

2
k2 (25)

for a convex TTS. Assuming Pr ≤ 0 and integrating the relation (24) over S0, we have∫
S0

(2)RdA ≥
∫

S0

(
3

2
k2 + 2DaαDaα

α2

)
dA. (26)

If k > 0 at least at one point, the Gauss–Bonnet theorem tells us that S0 has topology S2 and the
left-hand side is

∫
(2)RdA = 8π . This implies the inequality (7). Therefore, we have found the

following:

Theorem 2 The static time cross section of a convex TTS, S0, has topology S2 and satisfies the
Penrose-like inequality A0 ≤ 4π(3GM )2 if Pr ≤ 0 holds on S0, k > 0 at least at one point on S0,
and (3)R is nonnegative (i.e. the energy density ρ ≥ 0) in the outside region on a static slice in an
asymptotically flat static spacetime.
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Compared to Proposition 2 in Sect. 3.2, the equality ρ+Pr = 0 is relaxed to the inequality Pr ≤ 0.
Therefore, Theorem 2 is expected to have greater applicability. Note that from Eq. (25), this theorem
also holds for a nonconvex TTS if k2 is within the range k2 ≥ −k1/3.

4. Axisymmetric stationary spacetimes

In this section, we explore the properties of axisymmetric TTSs in (nonstatic) stationary spacetimes
with axial symmetry. In Sect. 4.1, we explain the setup in detail and rewrite the TTS condition. In
Sect. 4.2, we show that TTSs actually can exist in a stationary spacetime by presenting examples of
a Kerr spacetime. In Sect. 4.3, the relation between the TTS and the LTS is examined, but for fairly
restricted situations. The Penrose-like inequality for the TTS is proved in Sect. 4.4.

4.1. Setup and TTS condition

Consider an axisymmetric stationary spacetime M. There are two Killing vector fields: One is the
timelike Killing vector field ta and the other is a spacelike Killing vector field φa that represents U (1)
isometry. Since these two Killing fields have been proved to commute [27], it is possible to adopt a
t = const. slice on which U (1) symmetry becomes manifest. In addition, we require the existence
of two-dimensional surfaces that are orthogonal to both ta and φa (called the t–φ orthogonality
property). The necessary and sufficient condition for this requirement is proved to be [28]

taTa[btcφd] = φaTa[btcφd] = 0. (27)

Physically, this condition means that matter, if it exists, is moving just in the φa direction. In this
case, there exists the symmetry of the metric under the transformation ta → −ta and φa → −φa.

Since we consider the nonstatic case in this section, the timelike Killing field is decomposed as

ta = αna + βa, (28)

where α is the lapse function and βa is the shift vector. Here, we consider the time slice on which
the shift vector βa is proportional to the Killing vector field φa,

βa = −ωφa. (29)

Here, the quantity ω in Eq. (29) corresponds to the angular velocity of the zero-angular-momentum
observers (ZAMOs). Note that this condition is realized only on a special slice. For example, although
the Boyer–Lindquist coordinates of the Kerr spacetime possess this property, other coordinates like
the Kerr–Schild coordinates [29] or the Doran coordinates [30] do not satisfy this condition because
the shift vector has a radial component.

In this paper, we consider only axisymmetric TTSs for a technical reason. If a TTS S is axisym-
metric, the timelike unit normal na to � becomes a tangent vector of S, because both ta and βa are
tangent to S. Then, the outward unit normal r̂a to S becomes the outward unit normal to S0 in � as
well. If S is not axisymmetric, these properties do not hold and the analysis becomes complicated.
The study of nonaxisymmetric TTSs in the stationary case is left as a remaining problem.

Let us start the derivation of the TTS condition in the axisymmetric stationary spacetime. Because
the induced metric of S is given by Pab = −nanb + hab in this setup, we have

K̄ab = 1

2
£r̂Pab = −nanb

r̂cDcα

α
+ 1

2
£r̂hab. (30)
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On the other hand, rewriting the three-dimensional quantities by the four-dimensional quantities, we
have

kab = 1

2
(3)£r̂hab = 1

2
£r̂hab + 1

2
(nd∇d r̂c − r̂d∇dnc)(nahcb + nbhca). (31)

Putting these together, the decomposition of the extrinsic curvature of S is given as

K̄ab = −nanb
r̂cDcα

α
+ kab − navb − nbva, (32)

with

va = 1

2
hab£nr̂b. (33)

Note that va can be regarded as the cross-components of K̄ab, that is, va = ha
bK̄bcnc. Now, we recall

the TTS condition (5).As in the static case, the null tangent vector of S is decomposed as ka = na+sa

with a unit tangent vector sa of S0. Then, the TTS condition in this case is that

kabsasb + 2vbsb ≤ r̂cDcα

α
(34)

holds for an arbitrary unit tangent vector sa of S0.
This condition can be simplified further. Because S is stationary and axisymmetric, the unit normal

r̂a of S is Lie transported along the integral lines of the Killing vectors: £t r̂a = (3)£φ r̂a = 0. Using
this relation, the vector vb is rewritten as

va = 1

2α
hab

(3)£r̂β
b = − 1

2α
(r̂bDbω)φa. (35)

On the other hand, the assumption of symmetry under the transformation ta → −ta and φa → −φa

(the t–φ orthogonality property) implies that the geometry of the t = const. slice has symmetry
under φa → −φa. Therefore, the extrinsic curvature of S0 satisfies kabθ̂

aφb = 0, where θ̂a is the
unit tangent vector of S0 orthogonal to φa. Hence, introducing the tetrad basis as (e1)a = φa/φ and
(e2)a = θ̂a (with φ = √

φaφa), kab and va are expressed as

kab = k1(e1)a(e1)b + k2(e2)a(e2)b, (36a)

va = v1(e1)a, (36b)

with v1 = −(φ/2α)(r̂bDbω). Setting sa = cos ξ(e1)a +sin ξ(e2)a and substituting these expressions
into Eq. (34), the function

f (cos ξ) = (k2 − k1) cos2 ξ − 2v1 cos ξ + r̂cDcα

α
− k2 (37)

must be nonnegative for arbitrary 0 ≤ ξ < 2π . This condition can be re-expressed in terms of the
relation between the coefficients (see Appendix B for a derivation), and we have the following result:

Proposition 3 The necessary and sufficient condition for S to be an axisymmetric TTS in an axisym-
metric stationary spacetime with the t–φ orthogonality property is that one of the following three
conditions is satisfied at any point on S0:

(i)
r̂cDcα

α
− k1 ≥ |2v1| > 2(k2 − k1) > 0; (38a)
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(ii)
r̂cDcα

α
− k2 ≥ v2

1

k2 − k1
and k2 − k1 ≥ |v1|; (38b)

(iii)
r̂cDcα

α
− |2v1| ≥ k1 ≥ k2. (38c)

Similarly to the static case, this condition can be derived by directly studying the geodesic equations.
This is demonstrated in Appendix A.2. For a convex TTS, the conditions k1 ≥ 0 and k2 ≥ 0 are
additionally required.

4.2. Examples in a Kerr spacetime

Here, we explicitly demonstrate that TTSs exist in a stationary spacetime using the Kerr spacetime
as an example. We start with a sufficiently general metric of axisymmetric stationary spacetimes
possessing the t–φ orthogonality property,

ds2 = −α2dt2 + γ 2(dφ − ωdt)2 + ϕ2dr2 + ψ2dθ2, (39)

where all metric functions depend on r and θ only. Here, α andω are same as those given in Eqs. (28)
and (29) (i.e., the lapse function and the ZAMO angular velocity). Here, we consider the condition
that the surface r = const. becomes a TTS. The tetrad components of the extrinsic curvature kab and
the vector va defined in Eqs. (36a) and (36b) are calculated as

k1 = γ,r

ϕγ
, k2 = ψ,r

ϕψ
, v1 = −γω,r

2ϕα
, (40)

and the relation r̂cDcα/α = α,r/(ϕα) is also used.
The metric functions of a Kerr spacetime in the Boyer–Lindquist coordinates (with G = 1) are

given by

α2 = ��

A , γ 2 = A sin2 θ

�
, ω = 2Mar

A , ϕ2 = �

�
, ψ2 = �, (41)

with

� = r2 + a2 cos2 θ , � = r2 + a2 − 2Mr, (42a)

A = (r2 + a2)2 −�a2 sin2 θ . (42b)

Here, M is the ADM mass and a is the rotation parameter that is related to the ADM angular
momentum as J = Ma. The event horizon is located at r = r+ = M + √

M 2 − a2. We consider the
parameter region 0 < a ≤ M , i.e., a nonstatic spacetime with an event horizon.

For a Kerr spacetime, it is easy to check k2 > k1, which is natural because the Kerr black hole
has oblate geometry. Although the calculation is more tedious, one can show that v2

1 > (k2 − k1)
2

holds. Therefore, we consider case (i) of Proposition 3, and the inequality r̂cDcα/α − k1 ≥ |2v1| in
Eq. (38a) determines the range of r. The squared inequality gives the condition

r(r − 3M )2 ≥ 4a2M (43)

on the equatorial plane θ = π/2 (the condition is weaker for other θ values). There are two domains
satisfying this inequality, and just the inner one satisfies the nonsquared inequality (in the outer
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Fig. 2. The behavior of r(TTS)
max and r(LTS)

max as functions of a. The unit of the length is M .

domain, r̂cDcα/α − k1 becomes negative). In this way, we find that the surface r = const. is a TTS
for

r+ < r < r(TTS)
max = 2M

{
1 + cos

[
2

3
arccos

(
− a

M

)]}
. (44)

The behavior of r(TTS)
max is shown as a function of a/M in Fig. 2. Note that the value of r(TTS)

max

corresponds to the radius of the circular orbit of a photon closest to the black hole (e.g., p. 73 of
Ref. [31]). Therefore, our result is reasonable because only photons propagating on the equatorial
plane in the direction of the black hole rotation propagate on the surface r = r(TTS)

max , and all other
photons initially moving in the tangent direction to the surface will fall into the black hole.

Let us also look at LTSs in the Kerr spacetime. A surface r = const. becomes an LTS when
k,r ≥ 0 is satisfied at every point. This condition becomes strictest on the equatorial plane θ = π/2,
and there exists a maximum radius r(LTS)

max such that an r = const. surface becomes an LTS for
r+ ≤ r ≤ r(LTS)

max . Unfortunately, no simple analytic formula for r(LTS)
max seems to exist, unlike the TTS

case. The behavior of r(LTS)
max is shown in Fig. 2. Although r(LTS)

max = r(TTS)
max = 3M at a/M = 0, LTSs

distribute in a broader region compared to TTSs when a/M is large. While r = r(TTS)
max indicates

the inner edge of the photon region, r = r(LTS)
max is located in the middle of the photon region. In

this sense, the TTS and the LTS are different indicators for strong gravity regions, and the TTS is a
stricter one compared to the LTS.

4.3. Connection to the LTSs

Here, we try to derive the condition that a convex TTS becomes an LTS using the Einstein equation.
Since £thab = 0 in a stationary spacetime, we have

Kab = − 1

2α
(Daβb + Dbβa) . (45)
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Using the projection (16) of the energy momentum tensor, the Einstein equations in the 3 + 1 split
form are

(3)R + K2 − KabKab = 16πGρ, (46a)

DaKa
b − DbK = −8πGJb, (46b)

(3)Rab + KabK − 2KacKc
b = 1

α

(3)£βKab + 1

α
DaDbα

+ 8πG

[
Sab + 1

2
qab(ρ − Sc

c)

]
. (46c)

Here, Eqs. (46a) and (46b) are the Hamiltonian and momentum constraints, respectively, and
Eq. (46c) is the evolution equation with £tKab = 0. Because of the axisymmetry of the space
�, the Lie derivatives with respect to φa of the geometric quantities become zero:

(3)£φα = (3)£φβa = (3)£φqab = (3)£φKab = 0. (47)

Here, (3)£φqab = 0 is equivalent to the Killing equation of φa on �, Daφb + Dbφa = 0. From
Eq. (29), (3)£φβa = 0 is equivalent to φbDbω = 0, and

Kab = 1

2α
(φaDbω + φbDaω) . (48)

Taking the trace of this relation, we have K = 0, i.e. the spacelike hypersurface � is maximally
sliced. Substituting these relations, the Hamiltonian constraint (46a) and the evolution equation (46c)
become

(3)R = φ2

2α2 (DbωDbω)+ 16πGρ, (49a)

(3)Rab = 1

2α2

[
φaφb(DcωDcω)− φ2DaωDbω

]
+ 1

α
DaDbα + 8πG

[
Sab + 1

2
qab(ρ − Sc

c)

]
, (49b)

with φ2 = φaφa. The trace of Eq. (49b) gives

1

α
D2α = φ2

2α2 (DcωDcω)+ 4πG(ρ + Sc
c). (50)

Consider a convex TTS whose spatial section is S0. We rewrite the formula (6) for r̂aDak of S0

using the Gauss equation (19). The quantity (3)Rabr̂ar̂b in Eq. (19) is rewritten by

(3)Rabr̂ar̂b = 8πG(ρ + Pr)− 1

α
D2α − k

r̂cDcα

α
+ φ2

2α2 (DcωDcω), (51)

which is obtained by multiplying Eq. (49b) by r̂ar̂b and rewriting with Eq. (50). Here, Pr is the
pressure in the radial direction introduced in Eq. (21). The result is (see also Appendix C)

r̂aDak = −8πG(ρ + Pr)+ 1

α
D2α + k

r̂cDcα

α
− kabkab − φ2

2α2 (DcωDcω)− 1

ϕ
D2ϕ. (52)
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Fig. 3. Contour surfaces of the ZAMO angular velocity ω for ω/�H = n/10 with n = 1, . . . , 10, where�H is
the angular velocity of the event horizon, in the (r cos θ , r sin θ)-plane of a Kerr spacetime with a/M = 0.99.
The unit of the length is M .

We would like to find the condition that the positivity of r̂aDak is guaranteed. Similarly to the static
case, we impose ϕ = α and ρ + Pr = 0. Then, if the condition

k
r̂cDcα

α
− kabkab ≥ φ2

2α2 (DcωDcω) (53)

is satisfied, a TTS is guaranteed to be an LTS. However, unlike in the static case, the existence of the
right-hand side makes it difficult to prove this inequality.

Instead of making a general argument, we consider surfaces each of which is given by ω = const.
The ω = const. surface consists of trajectories of ZAMO observers with the same angular velocity
ω. Examples of contour surfaces of the ZAMO angular velocity are depicted in Fig. 3 in the case of
a Kerr spacetime with a/M = 0.99. These surfaces are approximately the same as the r = const.
surfaces. For this surface, the right-hand side of the inequality (53) vanishes. By setting sa = ±(e1)a

and (e2)a in the TTS condition (34), we have r̂cDcα/α ≥ k1 + 2|v1| ≥ k1 and r̂cDcα/α ≥ k2. These
two inequalities are expressed as r̂cDcα/α ≥ kL by setting kL := max(k1, k2) and kS := min(k1, k2).
Using this, the relation

k
r̂cDcα

α
− kabkab = kS(kL − kS) ≥ 0 (54)

holds for a convex TTS. To summarize, we have proved the following:

Proposition 4 If a contour surface of the ZAMO angular velocity is a convex TTS and ρ + Pr = 0
on it, it is an LTS as well.

Compared to the static case, the argument here is fairly restricted, not because a convex TTS is not
an LTS in many situations, but because the method here does not work sufficiently.As we have seen in
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the Kerr case, the TTSs given by r = const. surfaces are simultaneously LTSs for all 0 ≤ a/M ≤ 1.
We expect that a better method may establish the connection between the TTS and the LTS in the
axisymmetric stationary case more firmly. This is left as a remaining problem.

4.4. Area bound for TTSs

If we are only interested in the area bound by the Penrose-like inequality, it is possible to relax the
condition of Proposition 4 in a similar manner to the static case in Sect. 3.3. Namely, we consider the
condition that leads to the inequality (7) on a convex TTS S without using the concept of the LTS.
Eliminating (3)R and (3)Rabr̂ar̂b from Eqs. (19), (49a), and (51), we have (see also Appendix C)

(2)R = −16πGPr + 2

α
D2α + 2k

r̂aDaα

α
+ k2 − kabkab + φ2

2α2

[
(r̂aDaω)

2 − (DaωDaω)
]

. (55)

The inequality r̂cDcα/α ≥ kL implies

2k
r̂aDaα

α
+ k2 − kabkab ≥ 3

2
k2 + 1

2
(kL + 3kS)(kL − kS) ≥ 3

2
k2 (56)

for a convex TTS (a nonconvex TTS also satisfies this inequality if kS is within the range kS ≥ −kL/3).
Assuming Pr ≤ 0 and integrating the relation (55), we have∫

S0

(2)RdA ≥
∫

S0

{
3

2
k2 + 2DaαDaα

α2 + φ2

2α2

[
(r̂aDaω)

2 − (DaωDaω)
]}

dA. (57)

If the right-hand side is positive, S0 has topology S2 and the left-hand side becomes
∫

S0
(2)RdA = 8π

because of the Gauss–Bonnet theorem. Therefore, we have the following result:

Theorem 3 The time cross section of an axisymmetric convex TTS S0 has topology S2 and satisfies
the Penrose-like inequality A0 ≤ 4π(3GM )2 if Pr ≤ 0 and

4

φ2 (DaαDaα)+ (r̂aDaω)
2 ≥ (DaωDaω) (58)

holds on S0, k > 0 at least at one point on S0, and (3)R is nonnegative in the outside region in an
asymptotically flat axisymmetric stationary spacetime with the t–φ orthogonality property.

Here, we discuss to what extent the condition (58) is strong. Since φaDaω = 0, the right-hand side
is rewritten as (θ̂aDaω)

2. This quantity is zero at the symmetry axis, and also on an equatorial plane
(if it exists). Therefore, the condition (58) is satisfied at least at these two locations. Furthermore,
since the ZAMO angular momentum ω coincides with the (constant) horizon angular velocity �H

on the event horizon, the condition (58) must be satisfied at least on surfaces sufficiently close to
the event horizon. For this reason, the condition (58) does not restrict the situation strongly, and
hence many TTSs satisfying this condition should exist. In fact, we can check that this condition is
satisfied by arbitrary r = const. surfaces of a Kerr spacetime. Therefore, Theorem 3 is expected to
have sufficient generality.

5. Summary and discussion

In this paper, we have defined a new concept, the transversely trapping surface, as a generalization
of static photon surfaces. Its definition was introduced in Sect. 2.1 (Definition 1), and the condition
for a surface S to be a TTS is mathematically expressed as Eq. (5) in Proposition 1. The properties of
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the TTS in static spacetimes were studied in Sect. 3. There, a TTS is proved to be a loosely trapped
surface as defined in our previous paper [22] (see Definition 2 of this paper) at the same time under
certain conditions (Proposition 2 in Sect. 3.2). The area of a TTS is shown to satisfy the Penrose-like
inequality (2) under some generic conditions (Theorem 2 in Sect. 3.3).

In Sect. 4, we studied TTSs in axisymmetric stationary spacetimes. Because of a technical reason,
we considered axisymmetric TTSs in spacetimes with the t–φ orthogonality property. The TTS
condition in this setup was summarized in a concise form (Proposition 3 in Sect. 4.1). It was explicitly
shown that TTSs exist in a Kerr spacetime (Sect. 4.2). As for the connection to the LTS, we have
shown that TTSs given by contour surfaces of the ZAMO angular velocity are LTSs at the same
time under certain conditions (Proposition 4 in Sect. 4.3). This fairly restricted argument is due to
a technical reason, and generalization is left as an open problem. However, we have proved the
Penrose-like inequality (2) under fairly general situations (Theorem 3 in Sect. 4.4).

We have established that the area of a TTS is bounded from above by the area of a photon sphere
with the same mass in quite generic static/stationary situations. This is a natural result, because if
photons propagating in the transverse direction to the source are trapped, such a region must be
compact so that gravity is sufficiently strong.

It is interesting to list spacetimes possessing TTSs. Black hole spacetimes generally possess TTSs
around their horizons. In addition to the vacuum black holes, black holes surrounded by ring-shaped
matter [32] and those with scalar or proca hairs [33–35] also possess TTSs. There are a few examples
of spacetimes without horizons whereTTSs are present. One is a spherically symmetric star composed
of incompressible fluid (e.g., Ref. [25]): the radius of such a star R can be as small as 8/3 ≤ R/M ≤ 3
without violating the dominant energy condition. Another example is the soliton-like structure of a
complex massive scalar field, the so-called boson star. It has been reported in Ref. [36] that a boson
star can have a photon sphere (and, therefore, TTSs), although the binding energy is not negative for
such situations if the scalar field is minimally coupled to gravity. Other rather exotic examples are
spacetimes with naked singularities, as studied in Refs. [37–41].

In this paper, we restricted the definition of the TTS as a static/stationary surface in a
static/stationary spacetime. It would be possible to generalize this definition to more general surfaces
in dynamical spactimes. For example, one may define the generalized TTS as an arbitrary spatially
bounded timelike surface S on which the TTS condition K̄abkakb ≤ 0 holds for arbitrary null tangent
vectors ka everywhere. Taking account of this possibility, in Appendix C we present some useful
geometric formulas in the setup given by Fig. 1 but without assuming the timelike Killing symmetry.
As special cases, the formulas in the main text are rederived as a consistency check.

There are many possible directions of extensions of our current work. Some examples are
listed here. First, for axisymmetric spacetimes with nonvanishing global angular momentum J ,
a generalization of the Penrose inequality,

AH ≤ 8πG2

⎛⎝M 2 +
√

M 4 − J 2

G2

⎞⎠, (59)

has been conjectured for apparent horizons [42]. Namely, the bound of the apparent horizon area is
expected to become stronger as J is increased. From the study of a Kerr spacetime in Sect. 4.2 of
this paper, the same tendency is also expected for TTSs. Looking for a stronger bound of the TTS
area depending on J is an interesting problem. Furthermore, an inequality of a different type,

8πG|Jq| ≤ AH, (60)
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has been proved for an apparent horizon in an axisymmetric spacetime under some generic conditions,
where Jq is an appropriately defined quasilocal angular momentum [43]. The lower bound of the
TTS area in terms of Jq is also an interesting issue.

Second, there is another formulation for compactness of an apparent horizon, the hoop conjecture
[44], which states that black holes with horizons form when and only when a mass M gets compacted
into a region whose circumference in every direction is bounded by C � 2π(2GM ). The important
claim of this conjecture is that an apparent horizon does not become arbitrarily long in one direction,
and this property was shown to hold in several examples (e.g., Ref. [45]). It would be interesting to
test whether TTSs also satisfy this property. We expect that an argument such that the circumference
of a TTS is bounded as C � 2π(3GM ) could be made.

Finally, since a TTS suggests that gravity is strong there, ordinary matter would not be able to
support itself inside of the TTS. Therefore, it would be possible to show the existence of a horizon
inside of a TTS under some conditions. In the spherically symmetric case, it has been shown that a
perfect fluid star consisting of polytropic balls cannot possess a photon sphere [46]. We expect that
it would be possible to generalize such an argument for nonspherical TTSs applying the methods for
proving singularity theorems.
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Appendix A. TTS conditions from geodesic equations

The purpose of this appendix is to demonstrate that the TTS conditions in the static case and in the
axisymmetric stationary case can be derived by directly examining the geodesic equations.

A.1. Static spacetimes

The metric of a static spacetime with static slices t = const. is given by

ds2 = −α2dt2 + ϕ2dr2 + hIJ dxI dxJ . (A.1)

Consider a null geodesic whose tangent vector is ka = (ṫ, ṙ, ẋI ) with I = 1 and 2, where the dot
denotes the derivative with respect to the affine parameter. For a surface S given by r = const. to be
a TTS, r̈ ≤ 0 must hold for arbitrary ka with ṙ = 0 at arbitrary points on S. The radial equation is
given by

r̈ = −αα,r

ϕ2 ṫ2 − ϕ,r

ϕ
ṙ2 − 2ϕ,I

ϕ
ẋI ṙ + hIJ ,r

2ϕ2 ẋI ẋJ . (A.2)

Imposing ṙ = 0 and eliminating ṫ using the null condition kaka = 0, we have

r̈ = 1

ϕ

(
kIJ − r̂aDaα

α
hIJ

)
ẋI ẋJ , (A.3)

where we used r̂aDaα = α,r/ϕ and kIJ = hIJ ,r/2ϕ. In order that r̈ ≤ 0 holds for arbitrary ẋI , the
matrix σab defined in Eq. (11) must have two nonpositive eigenvalues. Therefore, we obtain the same
TTS condition.
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A.2. Axisymmetric stationary spacetimes

We study the geodesic equation of an axisymmetric stationary spacetime with the t–φ orthogonality
property using the general metric (39). Similarly to the static case, we consider a null geodesic with
a tangent vector ka = (ṫ, ṙ, θ̇ , φ̇), and require a surface S given by r = const. to be a TTS. Then,
r̈ ≤ 0 must hold for arbitrary ka with ṙ = 0 at arbitrary points on S. The radial equation is given by

−ϕ2r̈ = αα,r ṫ2 + ϕϕ,r ṙ2 + 2ϕϕ,θ ṙθ̇ − ψψ,r θ̇
2 − γ γ,r(φ̇ − ωṫ)2 + γ 2ω,r(φ̇ − ωṫ)ṫ. (A.4)

Here, we impose ṙ = 0 and rewrite with the null condition kaka = 0. The difference from the static
case is that eliminating ṫ causes the appearance of square roots in the equation and makes the analysis
complicated. Instead, we eliminate θ̇ as

−ϕ2r̈ =
(
α,r

α
− ψ,r

ψ

)
(αṫ)2 + γω,r

α
(αṫ)[γ (φ̇ − ωṫ)] +

(
ψ,r

ψ
− γ,r

γ

)
[γ (φ̇ − ωṫ)]2. (A.5)

Here, the left-hand side must be nonnegative for arbitrary αṫ and γ (φ̇−ωṫ) satisfying the constraint
(αṫ)2 ≥ [γ (φ̇ − ωṫ)]2. Introducing

x = γ (φ̇ − ωṫ)

αṫ
, (A.6)

Eq. (A.5) is rewritten as −ϕr̈ = (αṫ)2f (x) with

f (x) = 1

ϕ

(
α,r

α
− ψ,r

ψ

)
+ γω,r

ϕα
x + 1

ϕ

(
ψ,r

ψ
− γ,r

γ

)
x2. (A.7)

Therefore, this function f (x) must be nonnegative in the interval [−1, 1]. Using the relation (40)
between the tetrad components of kab and va and the metric functions, we find that the function f (x)
here is exactly equivalent to Eq. (37) or Eq. (B.1).

Appendix B. Derivation of the conditions (38a)–(38c)

Here, we present the detailed derivation of the TTS conditions (38a)–(38c) for axisymmetric
stationary spacetimes. The problem is reduced to clarifying the condition that

f (x) = (k2 − k1)x
2 − 2v1x + r̂cDcα

α
− k2 (B.1)

becomes nonnegative in the interval [−1, 1]. This parabola has the axis at x = xa with

xa = v1

k2 − k1
, (B.2)

and there, it takes the value

f (xa) = r̂cDcα

α
− k2 − v2

1

k2 − k1
. (B.3)

At the endpoints of the interval [−1, 1], f (x) satisfies

f (±1) ≥ r̂cDcα

α
− k1 − 2|v1|. (B.4)
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Fig. B.1. The three cases (i)–(iii) that f (x) becomes nonpositive in the region −1 ≤ x ≤ 1.

The condition can be studied by dividing it into the three cases as indicated in Fig. B.1:

(i) The case that k2 > k1 and there is no axis in the interval [−1, 1], i.e., |xa| > 1. Since f (x)
takes the minimum value at one of the endpoints, we require f (±1) ≥ 0. This leads to the
condition (38a).

(ii) The case that k2 > k1 and the axis exists in the interval [−1, 1], i.e., |xa| ≤ 1. Since f (x)
takes the minimum value at the axis, we require f (xa) ≥ 0. This leads to the condition (38b).

(iii) The case that k2 ≤ k1. Since f (x) takes the minimum value at one of the endpoints, we require
f (±1) ≥ 0. This leads to the condition (38c).

Appendix C. Useful geometric formulas

In Sects. 3 and 4, we discussed the connection between the TTS and the LTS and the area bound of
TTSs for (i) static and (ii) stationary and axisymmetric cases separately. In this appendix, we will
present some useful formulas that have a unified treatment for them and the potential for further
generalization to dynamical cases. We can also see the role of the assumption of staticity/stationarity
in the argument of the main text.

Here, the setup depicted by Fig. 1 is considered. Specifically, the unit normal na to the spacelike
hypersurface � is tangent vectors of S, and the outward unit normal r̂a to S is tangent to �. First,
we derive the general formula without assuming ta to be a Killing field or ta to be tangent to S
(unlike the main text of this paper); the discussion here also holds for dynamical setups as long as
the above conditions are satisfied. After that, the static case and the axisymmetric stationary case are
considered. We also note that the study here concerns the relations between geometric quantities,
and the field equations are not explicitly imposed. In addition to the quantities in Fig. 1, we introduce
one more geometric quantity, that is, the extrinsic curvature k̄ab of S0 in the hypersurface S as defined
by k̄ab = (1/2)̂£nhab. Here, £̂ denotes the Lie derivative in the timelike hypersurface S.

C.1. Useful formulas for consideration on LTS

Here, we present the formulas that are useful for considering the connection between the LTS and
the TTS. Applying the trace of the Ricci equation to S0 as a hypersurface in S and �, respectively,
we have

Rabnanb = −£nK − KabKab + 1

α
D2α, (C.1a)

Rabr̂ar̂b = −£r̂ K̄ − K̄abK̄ab − 1

ϕ
D̄2ϕ, (C.1b)
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where α and ϕ are the time and space lapse functions with respect to the na and r̂a directions,
respectively. From these two, one may want to construct

£r̂ K̄ = −£nK − Rab(n
anb + r̂ar̂b)− KabKab − K̄abK̄ab + 1

α
D2α − 1

ϕ
D̄2ϕ. (C.2)

Recall the decomposition of K̄ab that is given by Eq. (32) with the vector va defined in Eq. (33).
These formulas also hold in the current setup without assuming staticity/stationarity. The trace of
Eq. (32) is

K̄ = k + 1

α
£r̂α. (C.3)

Substituting these formulas together with the decomposition of D2α and D̄2ϕ into lower-dimensional
quantities,

D2α = D2α + k£r̂α + Daϕ

ϕ
Daα + (£r̂)

2α, (C.4a)

D̄2ϕ = D2ϕ − k̄£nϕ + Daϕ
Daα

α
− (£n)

2ϕ, (C.4b)

we arrive at the general formula for £r̂k ,

£r̂k = −£nK − Rab(n
anb + r̂ar̂b)+ 1

α
D2α − 1

ϕ
D2ϕ

+ k
£r̂α

α
+ k̄

£nϕ

ϕ
+ 1

ϕ
(£n)

2ϕ − KabKab − kabkab + 2vava. (C.5)

Below, we look at the static case and the stationary axisymmetric case, one by one.

C.1.1. Static case
Since Kab = £nϕ = va = 0 for static spacetimes, Eq. (C.5) becomes

£r̂k = −Rab(n
anb + r̂ar̂b)+ 1

α
D2α − 1

ϕ
D2ϕ + k

£r̂α

α
− kabkab. (C.6)

This corresponds to Eq. (22) when the Einstein equation holds.

C.1.2. Stationary and axisymmetric case
For stationary and axisymmetric spacetimes, adopting the time slice on which the shift vector βa

becomes βa = −ωφa, the extrinsic curvature Kab of � has the form of Eq. (48), and va is given as
Eq. (35). Since K = £nϕ = φaDaω = r̂aφa = 0, Eq. (C.5) becomes

£r̂k = − φ2

2α2 (Dω)2 − Rab(n
anb + r̂ar̂b)+ 1

α
D2α − 1

ϕ
D2ϕ + k

£r̂α

α
− kabkab. (C.7)

This corresponds to Eq. (52) when the Einstein equation holds. Note that the t–φ orthogonality
condition has not been used in deriving this relation.
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C.2. Useful formulas for consideration on area bound

Now, we turn our attention to the area bound. As introduced at the beginning of this appendix, k̄ab

denotes the extrinsic curvature of S0 in S. From the double trace of the Gauss equation on S0 in S,
we have

(2)R = (3)R̄ + 2(3)R̄abnanb − k̄2 + k̄abk̄ab, (C.8)

where (3)R̄ab is the Ricci tensor with respect to the metric Pab of S. Here, (3)R̄ is written using the
double trace of the Gauss equation on S in the spacetime,

(3)R̄ = −2Gabr̂ar̂b + K̄2 − K̄abK̄ab, (C.9)

where Gab is the Einstein tensor Gab := Rab−(1/2)gabR. As for (3)R̄abnanb, one may want to employ
the following formula derived by taking trace of the Ricci equation:

(3)R̄abnanb = −£nk̄ − k̄abk̄ab + 1

α
D2α. (C.10)

Here, we used the fact that the hypersurface S has the same time lapse function α as that of the
spacetime M because the timelike unit normal na is tangent to S. Then, Eq. (C.8) becomes

(2)R = −2£nk̄ − 2Gabr̂ar̂b + K̄2 − K̄abK̄ab − k̄2 − k̄abk̄ab + 2

α
D2α. (C.11)

Finally, we have the following formula using Eqs. (32) and (C.3):

(2)R = −2£nk̄ − 2Gabr̂ar̂b + k2 − kabkab + 2k
£r̂α

α
+ 2vava − k̄2 − k̄abk̄ab + 2

α
D2α. (C.12)

This is the general formula for (2)R. We look at the formulas for the static case and the stationary
and axisymmetric case, one by one.

C.2.1. Static case
For static cases, k̄ab = va = 0 holds, and the above formula then becomes

(2)R = −2Gabr̂ar̂b + k2 − kabkab + 2k
£r̂α

α
+ 2

α
D2α. (C.13)

This corresponds to Eq. (24) when the Einstein equation holds.

C.2.2. Stationary and axisymmetric case
For this case, since k̄ab = ha

chb
dKcd , we have

k̄ab = 1

2α
(φaDbω + φbDaω) (C.14)

and k̄ = 0. The formula for va is given in Eq. (35). Using these formulas, Eq. (C.12) becomes

(2)R = −2Gabr̂ar̂b + k2 − kabkab + 2k
£r̂α

α
+ 2

α
D2α + φ2

2α2 [(£r̂ω)
2 − (Dω)2]. (C.15)

This corresponds to Eq. (55) when the Einstein equation holds. Note that the t–φ orthogonality
property is not necessary in order to derive this formula.

21/23
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/6/063E01/3867530/Extension-of-photon-surfaces-and-their-area-Static
by CERN - European Organization for Nuclear Research user
on 03 October 2017



PTEP 2017, 063E01 H. Yoshino et al.

References
[1] R. Penrose, Annals N. Y. Acad. Sci. 224, 125 (1973).
[2] P. S. Jang and R. M. Wald, J. Math. Phys. 18, 41 (1977).
[3] G. Huisken and T. Ilmanen, J. Diff. Geom. 59, 353 (2001).
[4] H. Bray, J. Diff. Geom. 59, 177 (2001).
[5] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 62, 084003 (2000) [arXiv:astro-ph/9904193] [Search

INSPIRE].
[6] V. Cardoso, E. Franzin, and P. Pani, Phys. Rev. Lett. 116, 171101 (2016); 117, 089902 (2016) [erratum]

[arXiv:1602.07309 [gr-qc]] [Search INSPIRE].
[7] J. L. Synge, Mon. Not. Roy. Soc. 131, 463 (1966).
[8] V. Perlick, Living Rev. Relativity 7, 9 (2004).
[9] C. M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, J. Math. Phys. 42, 818 (2001) [arXiv:gr-qc/0005050]

[Search INSPIRE].
[10] C. Cederbaum, arXiv:1406.5475 [math.DG] [Search INSPIRE].
[11] C. Cederbaum and G. J. Galloway, arXiv:1504.05804 [math.DG] [Search INSPIRE].
[12] S. Yazadjiev and B. Lazov, Classical Quantum Gravity 32, 165021 (2015) [arXiv:1503.06828 [gr-qc]]

[Search INSPIRE].
[13] C. Cederbaum and G. J. Galloway, Classical Quantum Gravity 33, 075006 (2016) [arXiv:1508.00355

[math.DG]] [Search INSPIRE].
[14] S. S. Yazadjiev, Phys. Rev. D 91, 123013 (2015) [arXiv:1501.06837 [gr-qc]] [Search INSPIRE].
[15] S. Yazadjiev and B. Lazov, Phys. Rev. D 93, 083002 (2016) [arXiv:1510.04022 [gr-qc]] [Search

INSPIRE].
[16] M. Rogatko, Phys. Rev. D 93, 064003 (2016) [arXiv:1602.03270 [hep-th]] [Search INSPIRE].
[17] H. Yoshino, Phys. Rev. D 95, 044047 (2017) [arXiv:1607.07133 [gr-qc]] [Search INSPIRE].
[18] Y. Tomikawa, T. Shiromizu, and K. Izumi, Prog. Theor. Exp. Phys. 2017, 033E03 (2017)

[arXiv:1612.01228 [gr-qc]] [Search INSPIRE].
[19] Y. Tomikawa, T. Shiromizu, and K. Izumi, arXiv:1702.05682 [gr-qc] [Search INSPIRE].
[20] G. W. Gibbons and C. M. Warnick, Phys. Lett. B 763, 169 (2016) [arXiv:1609.01673 [gr-qc]] [Search

INSPIRE].
[21] E. Teo, Gen. Relativ. Gravit. 35, 1909 (2003).
[22] T. Shiromizu, Y. Tomikawa, K. Izumi, and H. Yoshino, Prog. Theor. Exp. Phys. 2017, 033E01 (2017)

[arXiv:1701.00564 [gr-qc]] [Search INSPIRE].
[23] R. Geroch, Ann. N.Y. Acad. Sci. 224, 108 (1973).
[24] X. Wang, J. Diff. Geom. 57, 273 (2001).
[25] R. Wald, General Relativity (The University of Chicago Press, Chicago, 1984).
[26] A. Gullstrand, Ark. Mat. Astron. Fys 16, 1 (1922).
[27] B. Carter, Commun. Math. Phys. 17, 233 (1970).
[28] B. Carter, J. Math. Phys. 10, 70 (1969).
[29] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
[30] C. Doran, Phys. Rev. D 61, 067503 (2000) [arXiv:gr-qc/9910099] [Search INSPIRE].
[31] V. P. Frolov and I. D. Novikov, Black Hole Physics: Basic Concepts and New Developments (Kluwer

Academic Publishers, Dordrecht and Boston, 1998).
[32] M. Ansorg and D. Petroff, Phys. Rev. D 72, 024019 (2005) [arXiv:gr-qc/0505060] [Search INSPIRE].
[33] C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101 (2014) [arXiv:1403.2757 [gr-qc]] [Search

INSPIRE].
[34] C. Herdeiro and E. Radu, Class. Quant. Grav. 32, 144001 (2015) [arXiv:1501.04319 [gr-qc]] [Search

INSPIRE].
[35] C. Herdeiro, E. Radu, and H. Runarsson, Class. Quant. Grav. 33, 154001 (2016) [arXiv:1603.02687

[gr-qc]] [Search INSPIRE].
[36] D. Horvat, S. Ilijic, A. Kirin, and Z. Narancic, Class. Quant. Grav. 30, 095014 (2013) [arXiv:1302.4369

[gr-qc]] [Search INSPIRE].
[37] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 65, 103004 (2002).
[38] V. Bozza, Phys. Rev. D 66, 103001 (2002) [arXiv:gr-qc/0208075] [Search INSPIRE].
[39] K. S. Virbhadra and C. R. Keeton, Phys. Rev. D 77, 124014 (2008) [arXiv:0710.2333 [gr-qc]] [Search

INSPIRE].

22/23
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/6/063E01/3867530/Extension-of-photon-surfaces-and-their-area-Static
by CERN - European Organization for Nuclear Research user
on 03 October 2017

http://dx.doi.org/10.1111/j.1749-6632.1973.tb41447.x
http://dx.doi.org/10.1063/1.523134
http://dx.doi.org/10.4310/jdg/1090349447
http://dx.doi.org/10.4310/jdg/1090349428
http://dx.doi.org/10.1103/PhysRevD.62.084003
http://www.arxiv.org/abs/astro-ph/9904193
http://www.inspirehep.net/search?p=find+EPRINT+astro-ph/9904193
http://www.inspirehep.net/search?p=find+EPRINT+astro-ph/9904193
http://dx.doi.org/10.1103/PhysRevLett.116.171101
http://dx.doi.org/10.1103/PhysRevLett.117.089902
http://www.arxiv.org/abs/1602.07309
http://www.inspirehep.net/search?p=find+EPRINT+1602.07309
http://www.inspirehep.net/search?p=find+EPRINT+1602.07309
http://dx.doi.org/10.1093/mnras/131.3.463
http://dx.doi.org/10.12942/lrr-2004-9
http://dx.doi.org/10.1063/1.1308507
http://www.arxiv.org/abs/gr-qc/0005050
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0005050
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0005050
http://www.arxiv.org/abs/1406.5475
http://www.inspirehep.net/search?p=find+EPRINT+1406.5475
http://www.inspirehep.net/search?p=find+EPRINT+1406.5475
http://www.arxiv.org/abs/1504.05804
http://www.inspirehep.net/search?p=find+EPRINT+1504.05804
http://www.inspirehep.net/search?p=find+EPRINT+1504.05804
http://dx.doi.org/10.1088/0264-9381/32/16/165021
http://www.arxiv.org/abs/1503.06828
http://www.inspirehep.net/search?p=find+EPRINT+1503.06828
http://www.inspirehep.net/search?p=find+EPRINT+1503.06828
http://dx.doi.org/10.1088/0264-9381/33/7/075006
http://www.arxiv.org/abs/1508.00355
http://www.inspirehep.net/search?p=find+EPRINT+1508.00355
http://www.inspirehep.net/search?p=find+EPRINT+1508.00355
http://dx.doi.org/10.1103/PhysRevD.91.123013
http://www.arxiv.org/abs/1501.06837
http://www.inspirehep.net/search?p=find+EPRINT+1501.06837
http://www.inspirehep.net/search?p=find+EPRINT+1501.06837
http://dx.doi.org/10.1103/PhysRevD.93.083002
http://www.arxiv.org/abs/1510.04022
http://www.inspirehep.net/search?p=find+EPRINT+1510.04022
http://www.inspirehep.net/search?p=find+EPRINT+1510.04022
http://dx.doi.org/10.1103/PhysRevD.93.064003
http://www.arxiv.org/abs/1602.03270
http://www.inspirehep.net/search?p=find+EPRINT+1602.03270
http://www.inspirehep.net/search?p=find+EPRINT+1602.03270
http://dx.doi.org/10.1103/PhysRevD.95.044047
http://www.arxiv.org/abs/1607.07133
http://www.inspirehep.net/search?p=find+EPRINT+1607.07133
http://www.inspirehep.net/search?p=find+EPRINT+1607.07133
https://doi.org/10.1093/ptep/ptx033
http://www.arxiv.org/abs/1612.01228
http://www.inspirehep.net/search?p=find+EPRINT+1612.01228
http://www.inspirehep.net/search?p=find+EPRINT+1612.01228
http://www.arxiv.org/abs/1702.05682
http://www.inspirehep.net/search?p=find+EPRINT+1702.05682
http://www.inspirehep.net/search?p=find+EPRINT+1702.05682
http://dx.doi.org/10.1016/j.physletb.2016.10.033
http://www.arxiv.org/abs/1609.01673
http://www.inspirehep.net/search?p=find+EPRINT+1609.01673
http://www.inspirehep.net/search?p=find+EPRINT+1609.01673
http://dx.doi.org/10.1023/A:1026286607562
http://dx.doi.org/10.1093/ptep/ptx022
http://www.arxiv.org/abs/1701.00564
http://www.inspirehep.net/search?p=find+EPRINT+1701.00564
http://www.inspirehep.net/search?p=find+EPRINT+1701.00564
http://dx.doi.org/10.1111/j.1749-6632.1973.tb41445.x
http://dx.doi.org/10.4310/jdg/1090348112
http://dx.doi.org/10.1007/BF01647092
http://dx.doi.org/10.1063/1.1664763
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1103/PhysRevD.61.067503
http://www.arxiv.org/abs/gr-qc/9910099
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9910099
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9910099
http://dx.doi.org/10.1103/PhysRevD.72.024019
http://www.arxiv.org/abs/gr-qc/0505060
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0505060
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0505060
http://dx.doi.org/10.1103/PhysRevLett.112.221101
http://www.arxiv.org/abs/1403.2757
http://www.inspirehep.net/search?p=find+EPRINT+1403.2757
http://www.inspirehep.net/search?p=find+EPRINT+1403.2757
http://dx.doi.org/10.1088/0264-9381/32/14/144001
http://www.arxiv.org/abs/1501.04319
http://www.inspirehep.net/search?p=find+EPRINT+1501.04319
http://www.inspirehep.net/search?p=find+EPRINT+1501.04319
http://dx.doi.org/10.1088/0264-9381/33/15/154001
http://www.arxiv.org/abs/1603.02687
http://www.inspirehep.net/search?p=find+EPRINT+1603.02687
http://www.inspirehep.net/search?p=find+EPRINT+1603.02687
http://dx.doi.org/10.1088/0264-9381/30/9/095014
http://www.arxiv.org/abs/1302.4369
http://www.inspirehep.net/search?p=find+EPRINT+1302.4369
http://www.inspirehep.net/search?p=find+EPRINT+1302.4369
http://dx.doi.org/10.1103/PhysRevD.65.103004
http://dx.doi.org/10.1103/PhysRevD.66.103001
http://www.arxiv.org/abs/gr-qc/0208075
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0208075
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0208075
http://dx.doi.org/10.1103/PhysRevD.77.124014
http://www.arxiv.org/abs/0710.2333
http://www.inspirehep.net/search?p=find+EPRINT+0710.2333
http://www.inspirehep.net/search?p=find+EPRINT+0710.2333


PTEP 2017, 063E01 H. Yoshino et al.

[40] S. Sahu, M. Patil, D. Narasimha, and P. S. Joshi, Phys. Rev. D 86, 063010 (2012) [arXiv:1206.3077
[gr-qc]] [Search INSPIRE].

[41] S. Sahu, M. Patil, D. Narasimha, and P. S. Joshi, Phys. Rev. D 88, 103002 (2013) [arXiv:1310.5350
[gr-qc]] [Search INSPIRE].

[42] S. Dain, C. O. Lousto, and R. Takahashi, Phys. Rev. D 65, 104038 (2002) [arXiv:gr-qc/0201062]
[Search INSPIRE].

[43] S. Dain and M. Reiris, Phys. Rev. Lett. 107, 051101 (2011) [arXiv:1102.5215 [gr-qc]] [Search
INSPIRE].

[44] K. S. Thorne, in Magic without Magic: John Archbald Wheeler, ed. J. Klauder (Freeman, San
Francisco, 1972).

[45] H. Yoshino, Phys. Rev. D 77, 041501 (2008) [arXiv:0712.3907 [gr-qc]] [Search INSPIRE].
[46] H. Saida, A. Fujisawa, C. M. Yoo, and Y. Nambu, Prog. Theor. Exp. Phys. 2016, 043E02 (2016)

[arXiv:1503.01840 [gr-qc]] [Search INSPIRE].

23/23
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/6/063E01/3867530/Extension-of-photon-surfaces-and-their-area-Static
by CERN - European Organization for Nuclear Research user
on 03 October 2017

http://dx.doi.org/10.1103/PhysRevD.86.063010
http://www.arxiv.org/abs/1206.3077
http://www.inspirehep.net/search?p=find+EPRINT+1206.3077
http://www.inspirehep.net/search?p=find+EPRINT+1206.3077
http://dx.doi.org/10.1103/PhysRevD.88.103002
http://www.arxiv.org/abs/1310.5350
http://www.inspirehep.net/search?p=find+EPRINT+1310.5350
http://www.inspirehep.net/search?p=find+EPRINT+1310.5350
http://dx.doi.org/10.1103/PhysRevD.65.104038
http://www.arxiv.org/abs/gr-qc/0201062
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0201062
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0201062
http://dx.doi.org/10.1103/PhysRevLett.107.051101
http://www.arxiv.org/abs/1102.5215
http://www.inspirehep.net/search?p=find+EPRINT+1102.5215
http://www.inspirehep.net/search?p=find+EPRINT+1102.5215
http://dx.doi.org/10.1103/PhysRevD.77.041501
http://www.arxiv.org/abs/0712.3907
http://www.inspirehep.net/search?p=find+EPRINT+0712.3907
http://www.inspirehep.net/search?p=find+EPRINT+0712.3907
http://dx.doi.org/10.1093/ptep/ptw032
http://www.arxiv.org/abs/1503.01840
http://www.inspirehep.net/search?p=find+EPRINT+1503.01840
http://www.inspirehep.net/search?p=find+EPRINT+1503.01840


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


