
DEPARTMENT OF PHYSICS
UNIVERSITY OF JYVÄSKYLÄ
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Abstract

This work consists of an overview part and three research papers. The subject of
this work is a class of models for dynamical electroweak symmetry breaking, and
new generations of fermionic matter. An introductory overview of the standard
model of electroweak interactions is given, as well as an overview of some of the
recent developments in the field of walking technicolor models.

We study some recently proposed models for dynamical electroweak sym-
metry breaking, namely the minimal walking technicolor (MWT) and next to
minimal walking technicolor (NMWT) model. We show that, as a result of can-
cellation of the global and gauge anomalies associated with the technicolor sec-
tor, a non sequential SM-like matter generation may naturally arise. We study
the effects of this new matter generation on electroweak and flavor observables
and derive constraints for the masses of the new fermions. We show that the new
fermions may have a significant impact on the physics of the composite Higgs
boson of the technicolor theory. We present the resulting decay branching ratios
and production cross sections of the composite Higgs boson. We also find that
the fermions themselves should be visible in the LHC experiment, and outline
basic search strategies.

We construct a model framework for the origin of fermion masses, in which a
technicolor sector is accompanied by a scalar boson. In this bottom-up-approach
the scalar represents the low energy spectrum of the yet unkown full gauge theory
responsible for fermion masses. We construct a low energy effective Lagrangian
and use electroweak and flavor precision observables, as well as direct detection
limits, to constrain the parameters of the model. We find that the low energy
particle spectrum of the model consists of one light and one heavy Higgs-like
scalar, accompanied by three massive technipions.

We find that all of the models studied in this work are viable in the light of
all existing electroweak and flavor precision data. The LHC experiment will be
able to give crucial information on the subject, and possibly confirm or rule out
some of the models studied in this work.
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Chapter 1

Introduction: The Standard
Model

1.1 Elementary particles and interactions

The elementary matter particles and their interactions, excluding gravity, are de-
scribed by a quantum field theoretic model, the Standard Model (SM), schemat-
ically represented in fig 1.1. These interactions consist of electroweak (EW) and
strong interactions. All known particles interact via the electroweak interaction.
In addition to that, quarks and gluons feel the strong interaction, described by
quantum chromodynamics (QCD).

In quantum field theory all interactions are due to the gauge principle: The
fundamental forces are manifestations of the local symmetries of the Lagrangian
of the theory, conveniently described with corresponding gauge groups. A gauge
group is the group that consists of the transformations under which the La-
grangian is locally invariant. The gauge group related to the electroweak inter-
action is SU(2) × U(1), and the one corresponding to the strong interaction is
SU(3). There is a spin-1 gauge boson related to each generator of the corre-
sponding gauge group.

The particle content of the SM consists of the gauge bosons, responsible
for mediating the EW and strong interactions, and matter particles, which are
spin-1

2
fermions. Each matter particle is accompanied by a corresponding an-

tiparticle. Mass and spin of the antiparticle are equal to those of the particle,
but the charges under the different gauge groups of the SM are opposite, as well
as the charges associated with the global symmetries, such as baryon number.
So e.g. the electron has electric charge of minus one and lepton number of one,
whereas the anti-electron, the positron, has electric charge of plus one and lep-
ton number of minus one. The matter fields are arranged into three generations,
the first of which is the lightest and composes all stable matter found in nature.
Second and third generation quarks and leptons are heavier and unstable, de-
caying to the first generation particles. The gluon and the photon are massless
but the weak gauge bosons W and Z are massive.
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Figure 1.1: The particle content of the Standard Model.

1.2 Electroweak symmetry breaking

The gauge boson mass terms of the formm2
AA
†A are not gauge invariant and thus

can not be simply included in the Lagrangian. Instead the gauge boson masses
are generated by the process of spontaneous symmetry breaking. To achieve this
symmetry breaking, a scalar doublet field φ is added to the Lagrangian, with a
potential of the form1

V (φ) = −µ2φ†φ+ λ(φ†φ)2, φ =
1√
2

(
0
H

)
, (1.1)

where µ2 > 0. Classically, this potential has a minimum at

H =
µ√
λ
. (1.2)

In quantum field theory this means that H acquires a vacuum expectation value
〈H〉 = v = µ√

λ
. We then rewrite the field H as H(x) = v + h(x), where h is a

scalar field with zero vacuum expectation value 〈h〉 = 0. The excitation of this

1Generally a scalar doublet is written as φ =
(
φ+

φ0

)
, where φ+ and φ0 are complex fields.

However, we may use the SU(2) symmetry to rotate the field φ into the form of equation
(1.1). This corresponds to choosing a gauge, in this case the unitary gauge.
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field then becomes a physical massive scalar, the Higgs boson, with a potential

V (φ) =
1

2
m2
hh

2 +

√
λ

2
mhh

3 +
1

4
λh4, (1.3)

where mh =
√

2µ is the Higgs boson mass. The field φ is coupled to the elec-
troweak SU(2)× U(1)-gauge fields via the covariant derivative

Dµφ = (∂µ − igAaµτa − i
g′

2
Bµ)φ, (1.4)

where τa = 1
2
σa are the generators of SU(2). At the minimum of the potential

H = v and the kinetic term of the field φ acquires the form

(Dµφ)†(Dµφ)
∣∣∣
H=v

=
v2

8

(
g2(W+†

µ W+µ+W−†
µ W−µ)+(g2+g′2)Z†µZ

µ
)

+. . . , (1.5)

where W±
µ = 1√

2
(A1

µ ∓ iA2
µ) and Zµ = 1

g2+g′2 (gA3
µ − g′Bµ) are the massive weak

gauge bosons and interaction terms have been neglected. The masses of the
gauge bosons can be read from equation (1.5), yielding

mW =
gv

2
, mZ =

√
g2 + g′2

v

2
. (1.6)

The photon field Aµ = 1√
g2+g′2 (g′A3

µ + gBµ) remains massless. The electron

charge e and the Weinberg angle θw are defined as

e =
gg′√
g2 + g′2

, sin θw =
g′√

g2 + g′2
, (1.7)

yielding the W and Z mass ratio

mW

mZ

= cos θw. (1.8)

The Higgs field is therefore needed to break the electroweak symmetry and
generate masses for the weak gauge bosons. In the SM, the Higgs field is also
responsible for generating fermion masses. The weak SU(2) gauge fields only
couple to the left handed fermions. Thus left handed fermions are SU(2) dou-
blets and right handed fermions are singlets.

EL =

(
eL
νeL

)
, eR, QL =

(
uL
dL

)
, uR, dR. (1.9)

Since left and right handed fermions transform under different representations of
the SU(2) gauge group, a mass term of the form mf (f̄LfR + f̄RfL) is not gauge
invariant. Instead the fermion masses originate from gauge invariant Yukawa
couplings with the Higgs field:

Lmq = −λdQ̄LφdR − λuQ̄Lφ̃uR + h.c. , (1.10)
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where φ̃ = iσ2φ†, yielding the quark mass terms

md =
λd√

2
v, mu =

λu√
2
v. (1.11)

The neutrinos are considered to be massless, and thus only the left handed
netrinos are included in the SM.

1.3 Naturality, hierarchy and triviality

The SM has proven to be extremely accurate in describing high energy phenom-
ena up to the scale of a couple hundred GeV, but there are reasons to believe
that some form of new physics lies in the TeV scale. This is because the mathe-
matical structure of the SM breaks down at high energies2, suggesting that the
SM is not an UV-complete theory, but an effective low energy model of a more
complete theory.

The problems of the SM arise from the existence of a fundamental scalar
field, the Higgs field. The mass term of such a field is problematic, since the
radiative corrections tend to drive it towards a very large value. The radiative
corrections to the parameters of the Lagrangian of a given model usually include
divergent integrals. Regulating these integrals yields a mass scale to the theory,
which is interpreted as the cut-off scale above which the theory is no longer valid.
The quantum effects of gravity are known to be significant at the Planck scale
ΛP ∼ 1016 TeV. Since the SM does not contain a quantum theory of gravity, it
is to be taken as an effective model that is only valid below the Planck scale.
The radiative corrections to scalar mass are quadratically divergent, that is,
δMH ∼ Λ2. This means that in order to generate a Higgs mass of the order
∼ 100 GeV, the mass parameter has to be fine tuned order by order with a
precision of M2

H/Λ
2
P ∼ 10−34. This kind of fine tuning is considered to be

extremely unnatural. Also, the radiative corrections to the scalar mass are
additive, that is, δMH receives a term proportional to the mass of each particle
in the theory. Alternatively this means that there is no symmetry protecting the
scalar mass: even if set to zero, it will receive large radiative corrections. Given
the possibility that there may exist a number of yet unknown heavy fermions
(e.g. fourth generation quarks and leptons), it becomes excessively difficult to
understand the low value of MH .

The self-coupling λ of the Higgs field is also problematic. The renormaliza-
tion group equation (RGE) implies a running of the Higgs self-coupling of the
form [2]

λ(µ) ' λ(Λ)

1 + (24/16π2)λ(Λ) log(Λ/µ)
. (1.12)

2Actually, as discussed recently [1], the mathematical consistency of the SM may survive
all the way up to the Planck scale. However, the problems related to fine tuning of the mass
parameter still remain.
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As the cut-off scale Λ is taken to infinity, the self-coupling vanishes. This prob-
lem is known as the triviality problem. To have a non-trivial Higgs sector we
thus need a finite cut-off scale Λc above which the Higgs field -description of
electroweak symmetry breaking is no longer valid. In other words, this implies
that the scalar Higgs field is just a low energy effective model of a more complete
high energy theory.

1.4 Unification

The SM Higgs sector is therefore interpreted as an incomplete description of
the electroweak symmetry breaking. This motivates the agenda to build models
beyond the SM, that are capable of breaking the electroweak symmetry without
the problems associated with a SM-like elementary scalar field. In addition to
breaking the electroweak symmetry one may wish that the new theory possesses
some other desirable features. One such feature is the unification of the elec-
troweak and strong interactions. Since the beginning of quantum field theory
(and probably already long before that), physicists have pursued a ’theory of
everything’ ; a simple model that would describe all interactions of all particles.
One step towards that goal would be a theory that combines the electroweak
and strong gauge groups of the SM under one unified gauge group. To achieve
this goal, one would need the electroweak and strong coupling constants to unify
at some high scale. This means that the renormalization group equation (RGE)
running of the couplings should drive them to a common value at that scale.

This does not happen in the SM, but it is possible to tweak the matter con-
tent of the SM so that this unification is achieved. One may wish that a beyond
SM theory, designed to cure the problems of the electroweak sector, would at the
same time drive unification of the electroweak and strong interactions. As a mat-
ter of fact, this happens if a new symmetry between fermions and bosons, called
supersymmetry, is invoked [3]. Partly based on this observation, supersymmet-
ric theories have for long been the prime candidate for beyond SM physics, but
these models will not be considered here. For a review of supersymmetry, see
for example [4].

1.5 Dark and bright matter

In addition to the problems in the mathematical structure of the Higgs sector,
there are also some phenomenological problems in the SM. First, the neutrinos
are massless in the SM, but there now exists direct evidence of non-zero neutrino
masses [5]. However, this is not a very severe fault in the SM, since the model can
easily be extended to include right handed neutrinos. A much more problematic
issue in the SM is the lack of a dark matter particle and a mechanism to generate
excess of baryons over antibaryons, starting from a baryon-antibaryon symmetric
initial state.
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The evidence of the existence of dark matter comes from numerous different
sources. The orbital velocity of stars and gas clouds in spiral galaxies is incon-
sistent with the predictions of classical gravity, if only the visible matter in the
galaxy is taken in to account. But if one assumes that the galaxy is filled and
surrounded by a halo of dark matter, the rotation curves can be made combati-
ble with gravity. Another, more direct evidence comes from observing colliding
galaxy clusters. In such collision the interstellar plasma that makes up most of
the visible matter of the cluster collides with the plasma of the other cluster
and slows down. The weakly interacting dark matter instead passes trough and
thus gets separated from the visible matter. Since dark matter makes up most
of the mass of the galaxy cluster, the center of gravity of the cluster moves with
the dark matter and is separated from the center of radiation. Such collisions
have been observed, see e.g. [6], and this separation has been verified, giving
direct evidence of the existence of weakly interacting dark matter. However, the
SM includes no such particle that would be this matter. Therefore one wishes
that an extension of the SM would include a particle that is stable and interacts
weakly enough to be a possible candidate for dark matter.

Besides the weakly interacting massive particle (WIMP) paradigm, there
have been other suggestions for the content of dark matter, such as massive
compact halo objects (Machos) or microscopic black holes. However, the dif-
ferent sources of evidence seem to suggest that a WIMP is the most likely con-
stituent of dark matter. For a modern review of dark matter candidates, see for
example [7] and the references therein.

Also, the origin of bright, i.e. visible matter in the universe remains unknown
on the basis of the SM. As all matter is believed to have been born as the
radiation dominated universe cooled down just moments after the big bang, all
matter particles must have been produced in processes where radiation turns
into matter. But the SM, excluding weak interactions, obeys a symmetry under
charge conjugation and parity transformation (CP), which prevents producing
different amounts of matter and antimatter in these kinds of processes. Therefore
there should be as much antimatter in the universe as there is matter, but
this antimatter is nowhere to be found. The weak interactions violate the CP
symmetry in the SM, but these CP-violations are much too weak to explain
the origin of baryonic matter. Extending the SM to account for the problems
described above, one may also wish to give rise to more CP violation and thus
explain the origin of matter in the universe.
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Chapter 2

Model building

2.1 Technicolor

2.1.1 Dynamical symmetry breaking

Dynamical symmetry breaking is a natural way to break the electroweak sym-
metry. Indeed, the electroweak symmetry is dynamically broken in the SM
already without the Higgs sector, by QCD. Let us examine a simple case of
QCD dynamics, taking into account only two massless quarks

QL =

(
UL
DL

)
, UR, DR, (2.1)

and let’s assume there is no Higgs field and thus the weak gauge bosons are
massless. The formation of the condensate

〈ŪU + D̄D〉 6= 0 (2.2)

breaks the chiral SU(2)L × SU(2)R-symmetry down to SU(2)V . The resulting
Goldstone bosons are the charged and neutral pions π± and π0. These bosons
couple to the electroweak gauge bosons via the SU(2)L currents J±µ , J0

µ and the
hypercharge current JYµ . The strength of the coupling is given by the pion decay
constant Fπ

〈0|J±µ |π±〉 = Fπqµ, 〈0|J0
µ|π0〉 = Fπqµ, 〈0|JYµ |π0〉 = Fπqµ. (2.3)

From this coupling, the W boson propagator receives a correction of the form

∆µν(q2) = −ig
µν

q2
→ − igµν

q2(1− Π(q2))
, (2.4)

where Π(q2) is the vacuum polarization of the W . The massless Goldstone boson
coupling to the W gives rise to the vacuum polarization of the form

Π(q2) =
g2F 2

Π

4q2
, (2.5)

7



shifting the pole in the W -propagator in (2.4) from zero to

m2
W =

1

4
g2F 2

π . (2.6)

The neutral bosons mix with a mixing matrix

m2 =

(
g2 gg′

gg′ g′2

)
1

4
F 2
π , (2.7)

yielding the masses of the Z and the photon

m2
Z =

1

4
(g2 + g′2)F 2

π , mγ = 0. (2.8)

As a result, the electroweak symmetry is broken and the gauge boson masses
obey the correct ratio mW = mZ cos θw. The scale of the masses is given by the
pion decay constant Fπ, which in QCD is of the order of 100 MeV. Thus we see
that dynamical electroweak symmetry breaking already occurs in the SM, but
unfortunately the gauge boson masses generated by QCD are three orders of
magnitude smaller than the observed values. The simplest idea that comes to
mind would then be to introduce a ’scaled up QCD’, that is, a sector identical
to QCD in all other aspects, but with chiral symmetry breaking occuring at 103

times higher scale. Models that incorporate a new strong interaction in order to
break the electroweak symmetry are called technicolor models [8] [9].

2.1.2 Extended technicolor

Given the ’scaled up QCD’ model described above, the electroweak symmetry
is correctly broken and the weak gauge bosons have their correct masses, all
this without an elementary scalar and the problems associated with it. But one
problem still remains: in the SM, fermion masses were generated by Yukawa-
couplings to the Higgs field. By removing the Higgs field, we have also removed
these couplings, rendering all fermions massless. Since fermions have masses,
we need to introduce a new interaction capable of providing mass terms for
fermions. This interaction is called extended technicolor interaction (ETC).
ETC couples techniquarks, that is, the quarks of the new QCD-like sector, to
the SM fermions. The full gauge symmetry of ETC is broken at some high
scale ΛETC , and the ETC gauge bosons become massive. Therefore, at energy
scales well below ΛETC , this coupling is effectively represented by a four fermion
interaction. This is similar to what happens in, say, the muon decay: if the
masses and energies of all the particles involved in the process are much below
the mass of the mediating vector boson, the interaction is effectively represented
by a four fermion interaction. Diagrammatically this can be understood as shown
in figure 2.1.

The resulting effective four fermion interacion is given by the operator

g2
ETC

Λ2
ETC

f̄LfRQ̄
TC
L QTC

R , (2.9)

8



f̄LQ̄TC
L

QTC
RfR fR

f̄LQ̄TC
L

QTC
R

Figure 2.1: The effective four fermion interaction generated by the ETC cou-
pling. f is a SM fermion and QTC is a techniquark. The curly line represents
the ETC-vector boson with mass ∼ ΛETC .

where gETC is the ETC-coupling constant. This operator implies fermion mass
terms of the form

mf ∼ g2
ETC

Λ2
ETC

〈Q̄TC
L QTC

R 〉ETC , (2.10)

where 〈Q̄TC
L QTC

R 〉ETC presents the vacuum expectation value of the techniquark
condensate at the ETC-scale ΛETC . Based on RGE this can be related to the
value of the condensate at the scale ΛTC of the chiral symmetry breaking by the
equation [2]

〈Q̄TC
L QTC

R 〉ETC = 〈Q̄TC
L QTC

R 〉TC exp

 ΛETC∫
ΛTC

dµ

µ
γm(µ)

 , (2.11)

where γm is the anomalous dimension of the operator Q̄TCQTC . Given γm � 1
in QCD-like dynamics, we get

〈Q̄TC
L QTC

R 〉ETC ≈ 〈Q̄TC
L QTC

R 〉TC ≈ 4πF 3
Π (2.12)

This can be used to approximate the fermion mass term (2.10), yielding

mf ∼ 4πg2
ETCF

3
Π

Λ2
ETC

. (2.13)

To be able to generate the top quark mass we must have mf & mt. To get
correct masses for the weak gauge bosons the technipion decay constant must
be of the order FΠ ∼ 250 GeV. These conditions can be translated into an upper
limit for the ETC-scale, yielding

ΛETC

gETC
. 1 TeV. (2.14)
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q

q̄′

q′

q̄

QTC

Q̄TC

Figure 2.2: Flavor changing neutral current generated by the effective four
fermion interaction.

2.1.3 Flavor changing neutral currents

Currents that mediate processes in which an up(down)-type quark of given gen-
eration changes into an up(down)-type quark of another generation are called
flavor changing neutral currents (FCNC). That is, processes in which a quark
changes flavor but not electric charge. These processes are absent in the tree
level of the SM, and are experimentaly known to be very rare. This is due to the
GIM mechanism [10], which ensures that the neutral Z boson couples diagonally
to the fermion flavors. A generic problem of the ETC-model is that the effective
four fermion interaction required to build fermion masses inevitably generates
flavor changing neutral currents via the diagram presented in figure 2.2.

This interaction can generally be described by the operator

LFCNC =
g2
ETCV

2
qq′

Λ2
ETC

q̄′Γµqq̄Γ′µq
′ + h.c., (2.15)

where Vqq′ is a possibly complex mixing angle factor, presumably of the order
0.1 . |Vds| . 1. The matrixes Γµ, Γ′µ are the chirality matrixes associated with
the ETC-vertex. We shall put Γµ,Γ

′
µ = 1

2
γµ(1 − γ5) and double count the in-

teraction to allow for any chirality arrangement. The most stringent constraint
for the FCNC processes comes from the ∆S = 2 processes. We can approxi-
mate the contribution of interaction (2.15) to the neutral kaon mass difference
∆MK = mK0

L
−mK0

S
to constrain the ETC-scale ΛETC . The mass difference is

given by

∆MK =
1

MK

<(〈K0|LFCNC |K̄0〉). (2.16)

Putting q = d, q′ = s and using the vacuum saturation approximation [11]

〈K0|LFCNC |K̄0〉 ≈ ∣∣〈0|d̄γµγ5s|K0〉∣∣2, we get

∆MK ≈ g2
ETC<(V 2

ds)

Λ2
ETC

f 2
KMK , (2.17)
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where fK ≈ 110 MeV is the kaon decay constant, defined by

〈0|d̄γµγ5s|K0(p)〉 = i
√

2fKpµ. (2.18)

This has to be below the measured value ∆MK = 3.48× 10−12 MeV [5], yielding
a lower limit for the ETC-scale

ΛETC

gETC
&
√
<(V 2

ds)× 1300 TeV. (2.19)

Putting <(V 2
ds) ∼ O(10−1), this is clearly inconsistent with the upper limit ob-

tained in equation (2.14). If Vds is complex, we run into similar problems with
the imaginary part of the K0 − K̄0 mass matrix. Scaled up QCD thus fails to
produce large enough fermion masses without producing too large contributions
to the flavor changing neutral current processes.

2.1.4 Walking technicolor

The discrepancy between the upper and lower limit for the ETC-scale from
fermion masses and FCNCs can be resolved by altering the dynamics of the
technicolor gauge coupling αTC . This means moving away from the simple scaled
up QCD, into a class of models where the gauge coupling evolves very slowly,
walks instead of running, over a certain range of energy scales.

In the evaluation of the fermion mass term (2.10) we used the approximation
γm � 1 for the anomalous dimension of the techniquark condensate, which holds
well if the dynamics of the technicolor gauge theory are similar to that of QCD.
But if we assume that the value of the β-function of the technicolor gauge theory
is very small near the value of the technicolor coupling constant at the scale of
the chiral symmetry breaking ΛTC , then γm may be large in that energy range.
This means that we assume that the coupling constant is near a critical value at
the chiral symmetry breaking scale, that is αTC(ΛTC) . α∗TC , where α∗TC is an
infrared fixed point of the β-function, β(α∗TC) = 0. Following the discussion in
[12] we conclude that near such fixed point the value of the anomalous dimension
γm is close to unity. If we then make the assumption that αTC remains near its
critical value over the range ΛTC to ΛETC , we can substitute the approximation
γm(µ) ≈ 1 to equation (2.11), yielding

〈Q̄TC
L QTC

R 〉ETC ≈
ΛETC

ΛTC

〈Q̄TC
L QTC

R 〉TC . (2.20)

This enhances the fermion masses generated by the effective four fermion inter-
action by a factor of ΛETC/ΛTC , which we assume to be of the order of 102 − 103,
therefore allowing for high enough value for the ETC-scale to suppress the FCNC
interactions below the experimentaly allowed values.

Walking behavior is thus needed to suppress the FCNCs while still being
able to produce heavy fermion masses. To achieve this kind of behavior, the
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Figure 2.3: The walking behavior of the coupling constant ans a function of
energy, and the corresponding β-function.

β-function of the technicolor sector has to be of a very specific form. In low
energy range the theory must confine, so the coupling constant has to grow
large in the low energy region. This means that the β-function has to get large
negative values for large values of αTC . At the chiral symmetry breaking scale
ΛTC the coupling constant must freeze, and stay almost constant up to the
ETC-scale ΛETC . This means that the β-function has to be almost zero at
the corresponding value of αTC . Yet, the β-function must not be exatly zero,
since that would freeze the coupling constant permanently and render the theory
conformal in the infrared (IR). After the ETC-scale we wish to have a QCD-
like, asymptotically free theory, so the β-function must be negative for small
values of αTC . The walking behavior of αTC and the corresponding β-function
are schematically presented in figure 2.3.

It is not possible to analytically calculate the exact form of the β-function in
all orders of perturbation theory, except for some very special cases. One can,
however, approximate the behavior of the β-function with respect to different
properties of the gauge theory, such as the number of colors N , the number of
flavors Nf and the representation under which the fermions transform. We shall
now try to schematically describe the conditions that are required for a theory
to express conformal or close to conformal dynamics. We will explicitly focus on
the two loop β-function, but the same conditions must be true for the analytical
all orders β-function as well for the model to work as desired.

Phase diagram and the conformal window

As discussed above, to achieve asymptotic freedom the β-function must be neg-
ative for small values of αTC . This indicates that the lowest order term in
perturbation theory has to be negative, β0 < 0. For IR-conformal dynamics the
theory must have an infrared fixed point at a given value of the coupling constant
αTC , which we shall call α∗TC , at which the value of the β-function is zero. This
implies that the graph of the β-function must turn upwards as shown in figure
2.3, which in turn implies β1 > 0. On the other hand, there is a critical value
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αcTC of the coupling constant, at which the chiral symmetry breaking occurs. If,
in the RGE evolution of the coupling constant αTC , this value is achieved much
before α∗TC , the chiral symmetry breaking will alter the dynamics of the gauge
theory and drive the theory away from the fixed point, thereby preventing the
walking or conformal behavior. If, on the other hand, the infrared fixed point is
achieved before αcTC , the coupling freezes and chiral symmetry breaking never
occurs. Thus the Goldstone bosons do not appear and the electroweak symme-
try is left unbroken. Therefore these two critical values of the coupling constant
should be of the same magnitude and ordered as αcTC . α∗TC .

Following the discussion in [13], we will now try to find the conformal window,
an area in the (N,Nf )-plane in which the theory is expected to be conformal.
The two-loop β-function of an SU(N) gauge theory reads

β(g) = β0
g3

(4π)2
+ β1

g5

(4π)4
, (2.21)

with β0 and β1 given by

2Nβ0 = −11

3
C2(G) +

4

3
T (R),

(2N)2β1 = −34

3
(C2(G))2 +

20

3
C2(G)T (R) + 4C2(R)T (R).

(2.22)

Here R refers to the representation under which the fermions transform and G
refers to the adjoint representation. C2(R) is the quadratic Casimir operator of
the representation R,

2NXa
RX

a
R = C2(R)I, (2.23)

where Xa
R are the generators of the group SU(N) in representation R. Corre-

spondingly, C2(G) is the quadratic Casimir operator of the adjoint representation
G. T (R) is the trace normalization factor for the representation R, given by

NfC2(R)d(R) = T (R)d(G), (2.24)

where d(R) is the dimension of the representation R, and d(G) the dimension
of the adjoint representation G. Requiring β0 < 0 and substituting (2.24) into
(2.22) yields an upper limit for the number of flavors

Nf <
11d(G)C2(G)

4d(R)C2(R)
, (2.25)

above which the theory is no longer asymptoticly free. On the other hand, we
must require β1 > 0, yielding a lower limit for the number of flavors

Nf >

(
d(G)C2(G)

d(R)C2(R)

)
17C2(G)

10C2(G) + 6C2(R)
, (2.26)
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below which there is no infrared fixed point. Using the ladder approximation of
the Schwinger Dyson equation for the techniquark self energy [14], the critical
coupling may be evaluated as

αcTC =
2πN

3C2(R)
. (2.27)

The infrared fixed point is given by equation (2.21) as α∗TC = g∗2/(4π), where g∗

is the zero of the β-function, yielding α∗TC = −4πβo/β1. Requiring α∗TC = αcTC
then yields the critical value of flavors

N c
f =

(
d(G)C2(G)

d(R)C2(R)

)
17C2(G) + 66C2(R)

10C2(G) + 30C2(R)
, (2.28)

for which conformal dynamics is expected.
Using these expressions we can construct the phase diagram of a given SU(N)

gauge theory. For the fundamental representation F and the adjoint represen-
tation G of SU(N) we have

d(F ) = N, C2(F ) = N2 − 1,

d(G) = N2 − 1, C2(G) = 2N2.
(2.29)

Substituting these into equations (2.25), (2.26) and (2.28) then yields the phase
diagram, presented in figure 2.4. Inside the conformal window the theory is ex-
pected to be IR-conformal. The walking behavior is expected to occur when Nf

is just slightly below the conformal window, for there the β-function is expected
to behave as presented in figure 2.3, that is, to get very close to zero without
actually reaching the infrared fixed point.

It should be pointed out that there is no way to conclude with absolute
certainty whether a given gauge theory exhibits walking behavior or not. The
procedure presented above is a semi-analytical analysis, relying on perturbation
theory, and thus is only able to give an esitimate on the area of the parameter
space where walking behavior is most likely to occur. There is ongoing research
conducted with the help of lattice simulations [15], [16], [17] as well as with
analytical methods [18], [19], [20] aimed at confronting the results obtained with
the above analysis, and this far the results seem to be encouraging.

Looking at figure 2.4 we conclude that the required number of flavors to
obtain walking behavior is quite large, Nf & 8 for SU(2) and Nf & 12 for SU(3).
Addition of that many new fermions coupled to the electroweak gauge bosons
is likely to influence the results of the electroweak precision tests and contradict
existing data. This will be discussed in more detail in chapter 3. For now we
conclude that it would be desirable to obtain walking behavior with much less
new fermions.

Higher representations

Although all matter fields in the SM transform under the fundamental repre-
sentation of the corresponding gauge group, there is no apparent reason why
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Figure 2.4: The phase diagram of the fundamental representation of an SU(N)
gauge theory. The theory is expected to be conformal inside the shaded re-
gion, the conformal window. Below the lowest line β1 is negative and there is
no infrared fixed point, resulting in a QCD-like running coupling. Above the
conformal window β0 is positive and asymptotic freedom is lost, resulting in
a QED-like theory. The walking behavior is expected to occur just below the
conformal window.

this should be the case for any possible beyond SM fermions. As it turns out,
walking behavior can be obtained with a modest number of new fermions if the
fermions transform under given higher representations of the technicolor gauge
group. A complete list of candidates for a walking or conformal SU(N) gauge
theories with at least two flavors is given in [13]. Here we will concentrate on a
couple of prime candidates.

Two-index symmetric representation For N colors and Nf flavors in the
two-index symmetric representation R, the relevant group theory factors are

d(R) =
1

2
N(N + 1), C2(R) = 2(N − 1)(N + 2),

d(G) = N2 − 1, C2(G) = 2N2.
(2.30)

Substituting these to equations (2.25) and (2.28) yields the upper and lower
bounds of the conformal window

Nf <
11N

2(N + 2)
, N c

f =

(
N

N + 2

)
83N2 + 66N − 132

20N2 + 15N − 30
. (2.31)

The resulting phase diagram is presented in the left panel of figure 2.5. As can
be seen from the figure, the point (Nf , N) = (2, 2) lies just below the conformal
window and is therefore proposed as a good candidate for a walking theory.

15



Figure 2.5: Phase diagrams of the two-index symmetric (left) and two-index an-
tisymmetric (right) representations of an SU(N) gauge theory. In the two-index
symmetric representation walking behavior is expected to occur with a mod-
est number of techniquarks, therefore providing good candidates for a walking
technicolor theory.

Here the number of new fermions remains small, since we only need to add
one generation of techniquarks to the SM. This model, two flavors in the two-
index symmetric representation of SU(2), is called minimal walking technicolor
(MWT) [21], [22], since in this model the walking behavior is achieved with the
minimal possible amount of techniquarks1. We shall explore this model in detail
later. Another possibility is the next to minimal walking technicolor (NMWT)
[23], which incorporates two flavors in the two-index symmetric representation
of SU(3). The phenomenology of these models have been studied in e.g. [24]
and [25]. For an ETC construction based on the MWT model see [26].

Two-index antisymmetric representation For N colors and Nf flavors in
the two-index antisymmetric representation, the dimension and the quadratic
Casimir operator are given by

d(R) =
1

2
N(N − 1), C2(R) = 2(N − 2)(N + 1), (2.32)

yielding the upper and lower bounds of the conformal window

Nf <
11N

2(N − 2)
, N c

f =

(
N

N − 2

)
83N2 − 66N − 132

20N2 − 15N − 30
. (2.33)

The phase diagram of two-index antisymmetric representation is presented in
the right panel of figure 2.5. We conclude that in this case, a large number
of technifermions is needed for walking or conformal behavior, and thus this
representation does not offer good candidates for a walking technicolor theory.

1Recently an ultra minimal model with even less new matter content has been proposed,
see [27]

16



Adjoint representation For fermions in the adjoint representation the equa-
tions (2.25) and (2.28) simplify to constants independent of the number of colors.
The conformal window is between the constant limits 2.075 < Nf < 2.75. For
the case of SU(2) the adjoint representation is equal to the two-index symmet-
ric representation presented above. Here we will not consider models of adjoint
fermions in SU(N) for N larger than two.

2.2 A natural next generation

A very straightforward way to expand the SM is the addition of a fourth gener-
ation of quarks and leptons. The SM itself does not contain any explanation for
the number of fermionic matter generations. Experimental evidence restricts the
number of light SM-like neutrinos to three, but if one assumes a heavy neutrino,
there is no apparent reason why there could not be a fourth generation.

The addition of a fourth fermion generation does not, in itself, solve the prob-
lems of naturality, unification or dark matter, although it might help to explain
the origin of baryonic matter via CP-violation [28]. Therefore simply adding
the fourth generation seems quite ad hoc. In models of walking technicolor,
however, the fourth generation may arise as a natural consequence of adding
the correct amount of technifermions needed to achieve the walking behavior.
In this case the fourth generation may be significantly different from the three
known generations of the SM.

2.2.1 Anomaly cancellation

Witten anomaly

As was shown by Witten [29] in 1982, an SU(2) gauge theory with an odd number
of fermion doublets is mathematically inconsistent, since the path integral of
such theory vanishes. This result limits the possible extensions of the SM. In
the SM there are three lepton doublets and nine quark doublets (three flavors in
the fundamental representation of SU(3)), and thus the total number of fermion
doublets coupled to the weak SU(2) gauge group is twelve. Therefore the SM
is free of the Witten topological anomaly. Accordingly, in any extension of the
SM the number of new fermion doublets coupled to the weak SU(2) group must
be even.

Gauge anomaly

The fundamental properties of a quantum field theory result from the gauge
symmetries of the theory. With each gauge symmetry there exists an associated
conserved current. Radiative corrections may, however, violate the conservation
of that current through loop diagrams. This process is called anomalous breaking
of the gauge symmetry, and must be absent for the gauge symmetry to be in
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Vi

Vj Vk

Figure 2.6: The triangle diagram responsible for generating the axial current
anomaly. The fermion in the loop is a lepton or a quark, and the gauge bosons
Vi,j,k represent any SM gauge bosons.

effect. In the SM, there is a gauge anomaly related to the conservation of the
axial current jµ5a = ψ̄γµγ5taψ, where ta is a generator of an SM gauge group.
The anomaly arises from the triangle diagram shown in figure 2.6.

The contribution of diagram 2.6, and the corresponding diagram with the
fermion current running in the other direction in the loop, to ∂µj

µ5a is propor-
tional to the trace

Aabci,j,k = ±Tr(tai {tbj, tck}), (2.34)

where {tbj, tck} is the anticommutator of the generators tbj and tck of the gauge
groups j and k, and the sign is minus one for right handed fermions and plus
one for left handed fermions in the loop. Thus, in order to conserve the axial
current, the sum of the factors Aa,b,ci,j,k must vanish when summed over all gauge
bosons in the external legs and all fermion species in the loop.

In the SM this cancellation takes place as follows: let us label the SU(N)
gauge bosons of the SM with N , so that the trace factor related to the diagram
with two external U(1) gauge bosons and one SU(2) gauge boson is Aabc1,1,2 and so
on. Now, since t1 = Y is just a number and the generators ta2 = τa of SU(2) and
ta3 = ta of SU(3) are traceless, all trace factors containing odd number of SU(2)
or SU(3) generators vanish. The remaining factors are Aabc1,1,1, Aabc1,2,2, Aabc1,3,3, and
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Aabc1,G,G, where G refers to the graviton. These are given as follows:

Aabc1,1,1 = 2
∑
f

εY 3
f ,

Aabc1,2,2 =
1

2
δab
∑
fL

YfL
,

Aabc1,3,3 =
1

2
δab
∑
q

εYq,

Aabc1,G,G = 2
∑
f

εYf ,

(2.35)

where the sum index f(L) refers to sum over all (left handed) fermions and q to
sum over all quark species. Y is the hypercharge of the fermion and ε is minus
one for right handed and plus one for left handed fermions. Substituting the
hypercharges of the SM fermions we indeed see that each of the sums in equation
(2.35) indeed vanish. This should be noted as a nontrivial consistency check of
the SM itself.

The cancellation of these anomalies restricts the class of possible extensions
to the SM. First, to avoid the Witten anomaly, the total number of new weak
doublets added to the SM must be even. Second, the hypercharge of the new
fermions must be assigned correctly to cancel the axial current anomaly. One
could in principle entertain the thought of very exotic hypercharge assignments,
such as doubly or even fractionally charged fermions, but here we will be mainly
interested in models where the hypercharge assignments resemble either the
quarks or the leptons of the SM.

In [III] we present a list of anomaly free technicolor models, when the techni-
color sector has been chosen to consist of two flavors in the two index symmetric
representation of either SU(2) or SU(3). The idea goes as follows: we choose
a technicolor model that is expected to satisfy the constraints from existing
experimental data on electroweak precision measurements and flavor physics.
We restrict ourselves to consider only SM-like hypercharge for the techniquarks,
namely Y (QL) = ±1

2
or Y (QL) = ±1

6
. We then add extra generations of SM

like leptons or QCD quarks to cancel Witten and gauge anomalies. The idea of
anomaly cancellation between BSM fields, desingned for electroweak symmetry
breaking, and extra SM-like matter fields, was first proposed in the context of
adding one lepton doublet to a walking technicolor model in [21]. In [III] we
expand this idea to cover different models for the technicolor sector and different
settings of SM-like matter.

We fix the hypercharge of the right handed techniquarks as Y (UR) = Y (QL) + T3(UL)
and Y (DR) = Y (QL) + T3(DL). Denoting the number of new SM-like lepton
generations with Nl and the number of new QCD quark generations with Nq,
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the anomaly cancellation leads to conditions

Aabc1,1,1 = −3

4
(Nq −Nl) + d(R)(2Y 3(QL)− Y 3(UR)− Y 3(DR)) = 0,

Aabc1,2,2 = −1

2
(Nl −Nq) + d(R)Y (QL) = 0,

(2.36)

where d(R) is the dimension of the technicolor group representation. The anoma-
lies Aabc1,G,G and Aabc1,TC,TC vanish trivially. Equations (2.36) can be written as a
constraint for the difference of the number of new lepton and quark generations
∆N = Nl −Nq, yielding

∆N = 2d(R)Y (QL). (2.37)

Since we only consider Y (QL) 6= 0, as explained above, this implies a nonzero
number of new lepton or quark generations.

2.2.2 Minimal walking technicolor

The minimal walking technicolor (MWT) model consists of two flavors of tech-
niquarks in the adjoint representation of the technicolor gauge group SU(2). In
this model, the number of fermion doublets added to the SM is three, since the
dimension of the adjoint representation is d(R) = 3. Therefore the model suffers
from Witten anomaly, which must be cured by adding another odd number of
fermion doublets. The relative number of new lepton and QCD quark genera-
tions is controlled by equation (2.37). Choosing Y (QL) = ±1

2
would thus lead

to three new generations of leptons or QCD quarks. Such large amount of new
fermionic matter is not desirable, and we will not consider these scenarios fur-
ther. Instead, choosing Y (QL) = ±1

6
leads to only one additional lepton or quark

generation. The interesting scenarios are then MWT with Y (QL) = 1
6

accom-
panied by fourth generation leptons, and Y (QL) = −1

6
with fourth QCD quark

generation. We will consider the phenomenology of these models in chapter 4.

2.2.3 Next to minimal walking technicolor

The next to minimal walking technicolor (NMWT) model includes two techni-
flavors in the two index symmetric representation of SU(3). This representation
is six-dimensional, so there is no Witten anomaly. However, equation (2.37)
implies a nonzero ∆N and therefore we must add new leptons or quarks to can-
cell the gauge anomaly.2 Again, choosing Y (QL) = ±1

2
would result in six new

generations of quarks and leptons, which seems totally unacceptable. Hence
we are left with two possible scenarios: Y (QL) = 1

6
with two new lepton gen-

erations or Y (QL) = −1
6

with two additional generations of QCD quarks. The
phenomenology of these models will also be examined in chapter 4.

2Obviously, one may release the restriction on the techniquark hypercharge and allow
Y (QL) = 0. Then the NMWT model is anomaly free without any new SM-like matter fields.
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2.3 Unnatural origin of fermion masses

Before going into phenomenological analysis, let us go back to the issue of
fermion masses in technicolor. As was explained in section 2.1.2, dynamical
symmetry breaking from the technicolor sector is only capable of producing
masses for the electroweak gauge bosons, but leaves the fermions massless. This
is usually taken care of by the ETC interaction, whose details remain unknown.

The downside of this approach is that any phenomenology resulting from the
ETC sector remains uncalculable, since we do not have an effective description
of the dynamics of this sector. The simplest attempt to build such an effective
model is to assume that the Higgs-Yukawa sector of the SM describes these dy-
namics in the low energy regime. The role of the Higgs particle is then played
by the technicolor composite. This approach gives a simple and calculable de-
scription of the low energy sector of an extended walking technicolor model,
providing masses for the weak gauge bosons and fermions alike. However, this
description lacks any information about the interplay between the technicolor
sector and the sector responsible for fermion masses.

To gain an insight into this interplay, in [II] we study a model of bosonic
technicolor. In this model, the technicolor sector (which we have chosen to be
the next to minimal walking technicolor for simplicity) is accompanied by a SM
Higgs -like scalar particle. The existence of an elementary scalar would obviously
destroy almost completely the benefits of dynamical symmetry breaking. Thus
we assume that this scalar is really the low energy effective description of the
sector responsible for fermion masses, be that ETC or something else.

2.3.1 The model

The model we are considering consists of the SM accompanied by the techni-
color sector, here NMWT. The SM Higgs is now interpreted as a low energy
effective description of the sector responsible for fermion masses. The potential
of this scalar does not necessarily need to have the symmetry breaking form
with negative µ2, since the symmetry breaking occurs in the technicolor sector
regardles of the scalar potential. The scalar has Yukawa couplings with both
the SM fermions and techniquarks. The Lagrangian reads:

LUTC = LSM
∣∣∣
Higgs=0

+ LTC + LHiggs + LYukawa, (2.38)

where the Higgs sector has been separated from the SM and LYukawa contains all
the Yukawa couplings of the model. Here we consider non SM-like hypercharge
assignments for the techniquarks, Y (QL) = 0, since this configuration is anomaly
free without the need for new leptons or QCD quarks. However, the analysis
performed here is valid also in the case of extra generations. To construct the
effective low energy Lagrangian, we write the technicolor sector as

M =
1√
2

(sI2 + 2iπM), 〈s〉 = f, (2.39)
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where f is the technipion decay constant. The Higgs field is written in an
analogous form:

H =
1√
2

(hI2 + 2iπH), 〈h〉 = v. (2.40)

Here we used a short hand notation π = πiτi, where τi are the generators of
SU(2). The Higgs Lagrangian in (2.38) reads

LHiggs =
1

2
Tr
[
DH†DH

]− VH ,
VH =

1

2
m2
HTr

[
H†H

]
+
λH
4!

Tr2
[
H†H

]
,

(2.41)

where all contracted Lorenz indices have been omitted. The Yukawa terms
LYukawa in (2.38) are written as

LYukawa = −
∑
i=q,l,Q

Ψ̄L,iHY
iΨR,i , Y i = yiI2 + δyiσ3. (2.42)

where the sum is over all SM fermions and techniquarks. The Yukawa coupling
between techniquarks and the Higgs, −Q̄LHYQQR, is of special importance, since
it breaks the (SU(2)L × SU(2)R)2 symmetry arising from the Higgs sector and
the TC sector, down to SU(2)L × U(1)R, which is then broken further by the
electroweak gauging. Applying naive dimensional analysis [30], and omitting
terms of order O(Y 2

Q) and higher, the low energy effective Lagrangian of the
technicolor sector and its coupling with the scalar may be written as

LTC−Q̄LHYQQR → 1

2
Tr
[
DM †DM

]
+

1

2
(c3/α)Tr

[
DM †DHYQ

]− VM ,
VM =

1

2
m2
MTr

[
M †M

]
+
λM
4!

Tr2
[
M †M

]
− 1

2
(αc1)f 2Tr

[
M †HYQ

]− 1

24
(αc2)Tr

[
M †M

]
Tr
[
M †HYQ

]
− 1

24
(c4/α)Tr

[
H†H

]
Tr
[
M †HYQ

]
+ h.c.

(2.43)

The factors c1 . . . c4 are dimensionless quantities of order one, and are taken to
be real to preserve the CP symmetry.

The idea of bosonic technicolor is not new. It was originally presented by
Simmons [31], Kagan and Samuel [32], and Carone and Georgi [33], [34]. Re-
cently similar models have been studied in [35], [36], [37]. See also [38] and [39]
for work on related topics.

Compared to the previously existing literature on the topic we have per-
formed a more extensive analysis by including in the effective Lagrangian all
dimension four operators with at most one mixing between the two scalar sec-
tors. We have provided an extensive scan of the parameters of the model, not
limitting to any special case for the mass parameter of the fundamental scalar.
We have updated the comparison with measurements to up to date values of ex-
perimental data, and linked the dynamical sector with modern models of walking
technicolor, namely the NMWT model.
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2.3.2 Particle spectrum

The kinetic terms from equations (2.41) and (2.43) form a mixing Lagrangian
of the form

LKE =
1

2
Tr
[
DM †DM

]
+

1

2
Tr
[
DH†DH

]
+
c3

2α
Tr
[(
DM †DH +DH†DM

)
YQ
]
,

(2.44)
which is diagonalized by

(
M
H

)
=

1√
2

 1√
1−(c3/α)yQ

1√
1+(c3/α)yQ

− 1√
1−(c3/α)yQ

1√
1+(c3/α)yQ

( M−
M+

)
. (2.45)

Here the index ± is just a label and does not denote electric charge. The
fields M± are coupled to the electroweak gauge bosons via the usual covariant
derivative. Three out of the six Goldstone bosons of the model are absorbed as
the longitudinal components of the weak gauge bosons, and three remain in the
physical particle spectrum, accompanied with two scalars. The fields M± are
expressed in terms of the physical pions as

M± =
1√
2

(
s± + f± ∓ 2i

f∓
vw
π

)
, (2.46)

where

f± ≡ 1√
2
〈TrM±〉 =

√
1± (c3/α)yQ√

2
(f ± v) . (2.47)

The constants f± have to satisfy the condition f 2
+ + f 2

− = v2
weak in order to gen-

erate the correct mass for the W boson. It should be noted that due to the
kinetic mixing this condition does not hold directly for f and v, which may both
be large if one is negative and the other positive.

Finally, the physical scalars sp and hp are given as linear combinations of s
and h according to the mixing(

s
h

)
= Umix

(
sp
hp

)
, (2.48)

with the mixing matrix

Umix =
1

2

 1√
1−(c3/α)yQ

1√
1+(c3/α)yQ

− 1√
1−(c3/α)yQ

1√
1+(c3/α)yQ

( 1 −1
1 1

)(
cos θ sin θ
− sin θ cos θ

)
.

(2.49)
The rotation angle is given by

tan 2θ = − yQ√
α2 − y2

Qc
2
3

c4v
2 + (2c1 + c2)f 2α2 + c3(NH +NM)

NH −NM

, (2.50)
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where

NH = m2
H +

λHv
2

2
− yQfv c4

α
, NM = m2

M +
λMf

2

2
− yQfvc2α . (2.51)

We will consider the phenomenology of this model in chapter 4
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Chapter 3

Constraints

3.1 Detecting new physics

Assuming that there exists new physics beyond the SM, there are two ways
of detecting evidence of it in collider experiments. The new particles may be
observed via direct detection, i.e. by producing these particles in high energy
collisions and detecting either the particles or their decay products. This method
would enable a detailed study of the properties of the new particles, such as mass,
electric charge, spin and couplings to the SM particles. However, this kind of
detection is only possible if the production rate of these particles in collider
experiments is large enough, and/or the detection signal deviates enough from
the SM background. If this is not the case, the new particles could possibly
be detected indirectly, via their effects on known processes of the SM particles.
These kind of effects would typically arise as quantum corrections to tree level
SM processes.

Correspondingly, the lack of evidence of new physics, i.e. the good agree-
ment between experiments and SM predictions, may be used to constrain the
supposed models of new physics. Since there is no direct evidence of detecting
particles beyond the SM, any model that expands the SM must include only such
particles that may evade all existing direct search experiments. This implies that
either the masses of the new particles must be large enough so that the center
of mass (CMS) energy in current experiments is not enough to produce these
particles, or the couplings of these particles to the SM particles must be so weak,
that the expected production rate falls below the detectable limit. Another set
of constraints arises from the indirect effects of new physics. Some SM processes
have been measured with very high precision, so that even the quantum correc-
tions to these processes are constrained by experiment. These constraints may
be especially important when one considers models of technicolor.
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3.2 Oblique corrections

One of the most precise sets of measurements ever performed in the field of
particle physics is related to scattering of light leptons and muon decay. These
electroweak precision measurements have been carried out at the Z-resonance
energy in LEP and at low energies in various laboratories. The results of the
electroweak precision measurements generally agree quite well with the SM pre-
dictions, placing stringent constraints on new physics. These results are es-
pecially useful for constraining models of new physics that fulfill the following
conditions:

• The new physics does not expand the electroweak gauge sector of the SM.

• The new physics couple to the electrowek gauge bosons more strongly than
to the light SM fermions.

• The intrinsic scale of the new physics is large compared to the masses of
the electroweak gauge bosons

If all of the above holds, the effects of new physics may be expressed in terms of
the oblique corrections, the Peskin-Takeuchi parameters S, T and U . [40], [41]

In the electroweak precision measurements the observed particles are light
SM fermions, typically electrons or muons. This means that these measure-
ments test processes that can generally be described by the schematic diagram
presented in figure 3.1. Here the external fermion lines are the light SM fermions
that are measured by the experiment. They interact via an electroweak gauge
boson. If the assumptions stated above hold, then the electroweak gauge sec-
tor is that of the SM and hence this boson is one of the SM electroweak gauge
bosons. Furthermore, if new physics couple mainly to the electroweak gauge
bosons, then the fermion-gauge boson vertices remain unchanged and all the
corrections enter as radiative corrections to the gauge boson propagator. In the
figure the gray blob represents all radiative corrections to the gauge boson prop-
agator. The loop corrections may be calculated in the SM, and any deviations
from those values then indicate new physics. Correspondingly, the size of the
deviation may be used to constrain the new physics.

The last assumption that the intrinsic scale of the new physics is large com-
pared to the electroweak scale is needed for calculation of the radiative correc-
tions induced by the new physics. New physics introduce corrections to the
gauge boson vacuum polarization:

Πab(q
2) = ΠSM

ab (q2) + δΠab(q
2). (3.1)

Here ΠSM
ab is the SM contribution, including the radiative corrections due to SM

particles, and δΠab represents the corrections induced by the new physics. The
indices a and b refer to the electroweak gauge bosons a, b = γ,W±, Z. Since we
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Figure 3.1: Schematic drawing of an electroweak precision measurement. The ex-
ternal lines are light fermions and the wavy line represents an electroweak gauge
boson. The blob represents radiative corrections to the gauge boson propagator.

asume that the intrinsic scale of the new physics is large, we may expand in
orders of q2 and simply work in linear order:

δΠab(q
2) ≈ Aab +Babq

2. (3.2)

Now there are in total eight independent quantities Aab and Bab, with ab =
γγ, Zγ, ZZ or WW , that describe the effects of new physics at low energies.
Aγγ = δΠγγ(0) and AZγ = δΠZγ(0) are zero by gauge invariance and three other
may be fixed by the renormalization of the three SM input parameters, e.q.
α, MZ and GF . Thus all the effects of new physics are given by three linear
combinations of Aab and Bab. Traditionally these are chosen to be the Peskin-
Takeuchi parameters S, T and U , defined by

αS

4s2
wc

2
w

=
δΠZZ(M2

Z)− δΠZZ(0)

M2
Z

,

αT =
δΠWW (0)

M2
W

− δΠZZ(0)

M2
Z

,

αU

4s2
w

=
δΠWW (M2

W )− δΠWW (0)

M2
W

− c2
w

δΠZZ(M2
Z)− δΠZZ(0)

M2
Z

.

(3.3)

Here sw and cw are, respectively, sine and cosine of the Weinberg angle.
The data collected from various experiments may then be evaluated to form

a universal fit for the oblique corrections. This has been done by the PDG1 [5],
and the result is shown in figure 3.2. Since the SM Higgs has not been found,
its mass has to be taken as an input parameter to the fit. Figure 3.2 shows the
1 σ constraints for S and T assuming Higgs mass of 117 GeV and setting U to

1Similar fits are available also from other groups, such as the LEP electroweak working
group (LEPEWWG) [42] and Gfitter [43]. There are some differences between the different
groups in what data is taken into account in the fit, but the procedure is similar and the
obtained results are quantitatively compatible with each other.
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Figure 3.2: The 1 σ constraints for the electroweak precision parameters S and
T obtained from various measurements, assuming U = 0 and MH = 117 GeV,
and the 90% CL contours allowed by all data, for MH = 117 GeV (bottom
right), MH = 340 GeV and MH = 1000 GeV (top left). Figure from [5].

zero. The coloured ellipses are the 90% confidence limit contours allowed by all
data for Higgs masses of 117 GeV, 340 GeV and 1000 GeV, with Higgs mass
rising towards upper left corner.

In technicolor models the first two assumptions hold quite well: there are
no new electroweak gauge bosons, although there may be technimesons with
the same quantum numbers as the W and Z. Also the techniquarks do not
couple directly to the SM fermions, but are gauged under the electroweak gauge
group and hence couple primarily to the electroweak gauge bosons. The last
assumption about the heaviness of the technicolor scale is on a weaker ground.
To induce correct masses for the electroweak gauge bosons the technicolor scale
ΛTC must be of the order of the electroweak scale. However, as it turns out, S, T
and U are still usually applicable to constrain technicolor theories. For the model
studied in [II] we have checked this by computing the derivative d/dq2 δΠZZ(q2)
numerically in the range 0 < q2 < M2

Z and verified that the results agree with
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Figure 3.3: The SM diagram contributing to the ∆q = 2 FCNC processes, for
q = s, b.
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Figure 3.4: The diagrams contributing to the ∆q = 2 FCNC processes, for
q = s, b, in the bosonic technicolor model of [II]. The top quark loop contribution
is dominant over up and charm, due to the large Yukawa coupling and hence
large couplings to the physical pions.

the approximation obtained by the definition of equation (3.3). It is also possible
to discard the assumption of the heavy intrinsic scale. This leads to addition
of three other precision parameters, named V , X and W in [44]. Here we
have chosen not to calculate the corrections arising from these new parameters,
though we have checked that these values remain small in the area allowed by
S, T and U .

3.3 Flavor changing neutral currents

As was briefly explained in section 2.1.3, the flavor changing neutral current
processes are strongly suppressed in the SM. Any new physics that induce size-
able contributions to these processes would therefore be easily detected in FCNC
experiments. The most stringent constraints arise from processes where ∆s = 2
or ∆b = 2. In the SM these processes are forbidden in tree level and only arise
from loop diagrams, such as the one presented in figure 3.3.

In technicolor theories, there are two sources of FCNCs. First of all, the
ETC interactions inevitably contribute to the FCNC processes, as explained in
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section 2.1.3. These contributions are suppressed by the walking dynamics, and
the actual numerical values of these contributions remain uncalculable, except
for the naive estimates presented in section 2.1.3, as long as the details of the
ETC sector are unknown. Another source of FCNCs is in the technicolor sector
itself. As the techniquarks are confined at low energies, they form a zoo of
composite resonances, just as happens in QCD. Some of the vector mesons will
have the quantum numbers of the W boson, and hence mix with it. These
vector resonances will contribute to the diagram of figure 3.3. This effect may
be used to constrain the technicolor models, especially the masses of the vector
resonances, as presented in [45].

In [II] we presented a calculable model for the origin of fermion masses, as
opposed to the usual picture of an unknown ETC sector. In this case, the FCNC
contributions become perturbatively calculable as well. The leading contribution
comes from diagrams presented in figure 3.4. Here the pions are the physical
pions that remain in the mass spectum of the model, as explained in section 2.3.
We have calculated the values of these contributions and used them to constrain
the parameters of the model.
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Chapter 4

Results

4.1 Fourth generation fermions

As explained in section 2.2, the existence of a fourth generation of SM-like quarks
or leptons can be viewed as a natural consequence of anomaly cancellations in
walking technicolor models. Here we will study the effects of these new fermions
on particle phenomenology.

4.1.1 MWT and fourth generation of leptons

In some sense this is the most minimal set up. The matter content added to
the SM has exactly the same electroweak quantum numbers as a SM generation
of quarks and leptons. There are three techniquark doublets and one lepton
doublet. Here we will be interested in the phenomenology arising from the
leptons.

The Lagrangian

The question of neutrino masses in the SM still remains unanswered. It is not
clear whether the SM-neutrinos are Dirac- or Majorana particles. Here we will
take no prejudice in this matter. The technicolor sector is presented at low
energy by the chiral effective theory. Out of the many particles present in this
effective model, the composite Higgs H is the only one that couples directly
to SM matter fields. For the lepton masses we therefore consider the following
Lagrangian, including operators up to dimension five:

LMass =(yL̄LHER + h.c.) + CDL̄LH̃NR +
CL
Λ

(L̄cH̃)(H̃TL)

+
CR
Λ

(H†H)N̄ c
RNR + h.c.,

(4.1)

where H̃ = iτ 2H∗ and Λ is a cut off scale of the order of one TeV, below which
the effective theory is valid. y is a hypercharge parameter, y = 1

3
corresponding
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to the SM-like hypercharge assignment we are interested in. This Lagrangian
results in the usual Dirac mass term for the charged lepton E, and neutrino
mass term of the form

−1

2
n̄cLMnL + h.c., M =

(
ML mD

mD MR

)
, (4.2)

where nL = (NL, N
c
R)T , mD = CDv/

√
2 and ML,R = CL,Rv

2/(2Λ). This reduces
to Dirac mass if one removes the dimension five operators, and to pure left
handed Majorana mass if one removes the right handed field NR. Here we will
keep all of the terms, resulting in the most general mass structure for the neu-
trino. The mass eigenstates are two Majorana neutrinos, χ1 and χ2, associated
with the eigenvalues

λ1,2 =
1

2

(
(ML +MR)±

√
(ML −MR)2 + 4m2

D

)
. (4.3)

Since these may be positive or negative, we define the masses M1,2 = ρ1,2λ1,2,
where ρ1,2 = ±1, so that M1,2 > 0. This phase may be absorbed in the diago-
nalizing matrix

U =

( √
ρ1 cos θ

√
ρ2 sin θ

−√ρ1 sin θ
√
ρ2 cos θ

)
, (4.4)

where the mixing angle θ is given by tan(2θ) = 2mD/(MR −ML). The mass
eigenstates are given as

χ =

(
χ1

χ2

)
= U †nL + UTncL, (4.5)

The relevant interaction terms are the electroweak gauge interactions and the
effective interactions between the composite Higgs and the neutrino, which in
the mass eigenbasis read

W+
µ N̄Lγ

µEL =
cos θ√
ρ1

χ̄1LW
+
µ γ

µEL +
sin θ√
ρ2

χ̄2LW
+
µ γ

µEL,

ZµN̄Lγ
µNL = cos2 θZµχ̄1Lγ

µχ1L + sin2 θZµχ̄2Lγ
µχ2L

+
sin(2θ)

2
√
ρ1
∗√ρ2

Zµχ̄2γ
µ(α− βγ5)χ1,

LHiggs =C22hχ̄2χ2 + C11hχ̄1χ1 + C12hχ̄1(β + αγ5)χ2 +O(h2),

(4.6)
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where we have defined the following constants:

α =
1

2
(1− (

√
ρ1
∗√ρ2)2),

β =
1

2
(1 + (

√
ρ1
∗√ρ2)2),

C11 =
M1

v

(
1− 1

4
sin2(2θ)

(
1− (

√
ρ1
∗√ρ2)2M2

M1

))
,

C22 =
M2

v

(
1− 1

4
sin2(2θ)

(
1− (

√
ρ1
√
ρ2
∗)2M1

M2

))
,

C12 = −M2

4v

√
ρ1
√
ρ2
∗ sin(4θ)

(
1− (

√
ρ1
∗√ρ2)2M1

M2

)
.

(4.7)

We have neglected any interaction terms of order O(h2), since we are only in-
terested in the Higgs decays into neutrinos.

Parameter space

The parameters ML, MR and mD are simply coupling constants in our for-
mulation, and hence may be positive or negative. The parameter space is di-
vided into three domains, corresponding to ρ1 = ρ2 = ±1 and ρ1 = −ρ2 = 1.
In each domain, the physical masses M1 and M2 assume all positive values
and 0 ≤ sin θ ≤ 0.5. These domains are presented in figure 4.1, showing an
mD = constant -plane in the (ML,MR,mD)-parameter space. Here the hyper-
bolas correspond to surfaces m2

D = MLMR and the line in the middle corre-
sponds to the plane MR = −ML. The corresponding values of the ρ-parameters
are shown in the figure. The parameter space is symmetric with respect to the
plane MR = −ML with replacement M1 ↔M2. We may therefore restrict to the
upper half , corresponding to MR > −ML.

Typical special cases considered in the literature are Dirac neutrino (ML = MR = 0),
pure left Majorana neutrino (MR = MD = 0) and type I seesaw mass matrix
(ML = 0). Here we explore the whole parameter space. It should be noted, that
all of the special cases above correspond to setting either ML or MR to zero,
driving the model into the domain ρ1 = −ρ2 = 1. The domain ρ1 = ρ2 is only
accessible if both ML and MR are nonzero. Our analysis is therefore fully general
in the sense that we are not restricted to any of the domains of figure 4.1.

Oblique corrections

The lepton loop diagrams contributing to S and T may be calculated in terms
of the physical mass parameters using equation (4.6). The resulting expressions
for S and T are presented in [I]. For the technicolor sector we use the naive
perturbative estimate S ≈ 1/(2π), T ≈ 0. We have chosen MR > −ML, and
hence M1 > M2. Therefore ρ1 is positive and the sign of ρ2 depends on the ratio
of m2

D and MRML, so that ρ2 is negative for m2
D > MRML. As it turns out,
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Figure 4.1: Schematic figure of the parameter space corresponding to a fixed
value of mD. The hyperbolas and the straight diagonal line correspond to sec-
tions of surfaces m2

D = MLMR and MR = −ML, respectively. The mD-axis is
perpendicular to the (ML,MR)-plane.

all our results are practically independent of the sign of ρ2, and hence we will
only consider the case ρ2 = −1. All of the results are applicable also in the case
ρ2 = 1, with only slight modifications.

As the new physics, i.e. the new leptons, might be comparably light, it
is questionable whether S and T are a good enough indication of the total
effects of new physics to electroweak precision measurements. This is equal
to asking, whether it is sufficient to approximate the effects of new physics to
only linear order in q2. We have checked this by comparing our results for
the S parameter using the finite difference formula of equation (3.3), and the
corresponding numerically calculated derivative. The differences in the total
value of S are at few percent level at worst. The expression of T is dependent
on a cut-off scale µ, due to the fact that the dimension five operator responsible
for the mass of the left handed Majorana state is not renormalizable. The
dependence is of the form of ∼ML log(µ). We fix the scale by the mass of the
heavier neutrino eigenstate µ ∝M1, and estimate the uncertainty resulting from
the choice of the constant of proportianality. We find that this uncertainty is
roughly on the level of O(10% . . . 30%) when µ is varied between 1.5M1 and
2M1. Keeping this in mind, we fix µ = 1.5M1 in what follows.

In total there are four physical parameters that enter the calculation for S
and T : the three masses of the leptons and the mixing angle θ. We vary these
parameters and calculate the resulting values for S and T . It turns out that S
is practically independent of θ, and in general less restrictive than T . The area
of the parameter space allowed by T is shown in figure 4.2. In this area S is
between 0.1 and 0.2. In the left panel we have chosen M2 = 0.5MZ , and in the
right panel M2 = MZ . The two sets of curves presented in each panel correspond
to sin θ = 0.1 and sin θ = 0.5. The x and y axis are the relative mass splittings
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Figure 4.2: Constant T -contours in the ((M1 −M2), (ME −M2))-plane for the
choice of masses M2 = 0.5MZ (left) and M2 = MZ (right). Within each panel,
the two sets of curves correspond to sin θ = 0.1 (left set) and sin θ = 0.5 (right
set).

(M1 −M2)/M2 and (ME −M2)/M2. From the figures we conclude that the mass
pattern allowed by the electroweak precision data is roughly ME ∼ 2M1 −M2.
The general features of this analysis hold also for larger values of M2, but in
the following we will be mainly interested in the phenomenology arising from
M2 ∼ 0.5MZ . . .MZ , since this mass range should be easily accessible in the
LHC.

We have also scanned the (ML,MR,mD)-space and searched for areas that
produce acceptable values for S and T . Especially we are interested in seeing
whether a certain hierarchial pattern of these parameters is favored by the elec-
troweak precision analysis, possibly suggesting a Dirac-mass or a seesaw-type
mass for the fourth generation neutrino. As it turns out, no such clue towards
a single paradigm is to be found. All different hierarchies between the mass pa-
rameters of the effective Lagrangian we considered, contained areas that produce
allowed values for S and T .

Production of new leptons

Production of the fourth generation leptons should give a visible signal in the
LHC experiment. Here we focus on the production of the new Majorana neutri-
nos, since these are expected to be lighter that the charged lepton. These may
be produced either through the neutral current, i.e. Z∗ → χχ, or the charged
current, i.e. W ∗ → l±χ, where l is a charged SM lepton. The neutral current pro-
cess may be enhanced by vector boson fusion mechanism, via V V → H → χχ,
depending on the mass of the composite Higgs boson and the mass of the neu-
trino. The production cross section of a neutrino pair in 14 TeV pp collision as
a function of the neutrino mass is shown in figure 4.3. The solid black line is the
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Figure 4.3: The production cross section of a χ1χ1-pair in 14 TeV pp collision
for sin θ = 0. The solid black line is the off-shell Z-boson channel, and the solid
green is the total cross section including the vector boson fusion channel for
Higgs mass of 100 GeV. The blue and red dotted lines are the corresponding
total cross sections for Higgs masses of 150 GeV and 200 GeV, respectively.

off-shell Z-boson channel, and the solid green is the total cross section including
the vector boson fusion channel for Higgs mass of 100 GeV. The blue and red
dotted lines are the corresponding total cross sections for Higgs masses of 150
GeV and 200 GeV, respectively.

Assuming that the neutrino mixes with the SM leptons, it should decay via
χ→ lW . Therefore the interesting final states following the pair production
of the neutrino are 2l + 4j or 3l + 2j + /E, where j stands for a jet and /E for
missing energy. In [I] we have tabulated some basic search strategies for the two
and three lepton final states with estimates for the signal to background ratio.
We find the three lepton final state to be the most promissing channel to look
for the new neutrino.

Higgs decay

The existence of a fourth generation of leptons could, depending on the relevant
masses, have a significant effect on the decay rates and branching ratios of the
composite Higgs boson. In the most interesting scenario the neutrinos are light
so that the composite Higgs may decay into pair of neutrinos. If the Higgs
mass and the neutrino masses happen to be in just the right range, the neutrino
channel could even be the dominant decay branch of the Higgs boson.

In general, the Higgs couples directly to the mass of a particle, and thus tends
to decay into the heaviest particles that are kinematically allowed. Therefore
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Figure 4.4: Left panel: The decay branching ratios of the SM Higgs boson.
Right panel: The decay branching ratios of a MWT composite Higgs particle,
assuming M2 = 50 GeV, M1 = 130 GeV, ME = 300 GeV and sin θ = 0.45.

the most interesting effects arise, if the Higgs is not heavy enough to decay into
two W bosons, and if the neutrino mass is light enough to allow for the decay
H → χχ. This effect is demonstrated in figure 4.4. The left panel of the figure
shows the familiar decay widths of the SM Higgs boson, as a function of the
Higgs mass. In the right panel we show the relative decay widths of the compos-
ite Higgs, assuming a fourth generation with neutrino masses of M2 = 50 GeV,
M1 = 130 GeV. The mass of the charged fourth generation lepton is chosen to
be ME = 300 GeV, and the mixing angle is sin θ = 0.45. This mass pattern is
allowed by the electroweak precision data, yielding (S, T ) = (0.17, 0.6). Obvi-
ously this pattern is chosen to produce maximally visible effects in the Higgs
decays, but even if the masses are not chosen as conveniently as here, one may
still see notable effects.

4.1.2 MWT and fourth generation of QCD quarks

Another possibility is to replace the fourth lepton generation with a fourth gen-
eration of QCD quarks. This requires choosing Y (QL) = −1

6
for the hypercharge

of the techniquarks, instead of Y (QL) = 1
6
.

Oblique corrections

Since the new QCD quarks are Dirac particles, the contributions to S, T and U
may be calculated analytically. The required formulae are presented e.g. in [46].
For the techiquarks, we again use the naive perturbative estimate S ≈ 1/(2π),
but here we include a reduction that is expected to result from the walking
behavior of the technicolor coupling constant [47]. We estimate this reduction
to be of the order of 30%.

We vary the masses of the fourth generation quarks independently of each
other, i.e. we do not require the new up-type quark to be heavier than the
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Figure 4.5: Left panel: The (S, T )-spectrum of a fourth generation of QCD
quarks, and the allowed 3σ-region. Right panel: Masses (in GeV) of the fourth
generation quarks, allowed by the electroweak observables.

down-type quark, and calculate the resulting values of S, T and U . The (S, T )-
spectrum of the model is shown in the left panel of figure 4.5. The gray ellipsis is
the 3σ-allowed region obtained from the LEPEWWG global fit [42]. The right
panel shows the points of the (mU ,mD)-space that result in S and T inside
the ellipse. The LEPEWWG fit assumes U = 0, and here we have required
U < 0.05, so that no large deviations from the fit at U = 0 should be expected.
We note that the mass scale of the quarks is not restricted by the electroweak
observables, but the mass difference is limited by the T parameter to the range
of mU −mD ∼ 50− 75 GeV.

Higgs production

The existence of a fourth generation of QCD quarks would enhcance the coupling
of the composite Higgs to gluons. This effective coupling is generated by a quark
loop with two external gluon legs and one Higgs leg. Since the Higgs coupling
to quarks is directly proportional to the mass of the quark, the contribution of
light guark loops is negligible. Thus, in the SM, the Higgs gluon coupling is
dominantly generated by the top loop. Adding new heavy quarks would thus
enhance this coupling dramatically. The heavier the quarks in the loop are, the
larger is the coupling to Higgs, but, correspondingly, the larger is the off-shellness
of the quarks. These effects approximately cancel and thus any new heavy quark
gives approximately the same contribution to the effective coupling as the top.
For a new quark generation one would thus expect an enhancement of the order
of three to the Higgs gluon coupling, yielding an enhancement of the order of
nine to the Higgs production cross section in gluon fusion channel, as well as to
the Higgs partial decay width to the two gluon channel. Since gluon fusion is the
dominant production channel for the Higgs boson in the LHC, this effect would
dramatically enhance the Higgs production in the LHC, and correspondingly
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Figure 4.6: Left panel: The enhancement factor σ4(gg → H)/σSM(gg → H)
as a function of the Higgs mass for quark masses (mU ,mD) = (250, 300) GeV
(blue solid line), (400, 400) GeV (green dashed line), (500, 500) GeV (red dotted
line), (800, 850) GeV (purple dashed line) and (∞,∞) (black solid line). Right
panel: The Higgs decay branching fraction Γ(H → gg)/Γ(H → X) with fourth
generation quark masses (500, 500) GeV (green solid line) and (800, 850) GeV
(red dashed line), and in the SM (blue solid line).

lower the required integrated luminosity for detection of the Higgs.
The actual value of the enhancement factor depends on the masses of the

new quarks and on the Higgs mass. The enhancement factor is plotted as a
function of the Higgs mass in the left panel of figure 4.6, for various choices for
the quark masses. The right panel of the figure shows the Higgs decay branching
fraction to two gluons in the SM, and in presence of fourth generation quarks.
A more detailed analysis for the effects of a fourth generation of QCD quarks
on Higgs boson searches in the LHC is presented in [48].

CP violation

A fourth QCD quark generation would change the physics of CP violation in
the quark sector. In the case of three generations, there is only one CP-violating
phase in the CKM matrix. This phase has to be fitted to explain all CP vio-
lation in the quark sector of the SM. However, if there is a fourth generation,
the resulting four by four CKM matrix has in total three CP violating phases.
This leaves a lot more freedom to the physics of CP violation. This in turn may
be adequate to explain the origin of baryonic matter, i.e. the matter-antimatter
asymmetry of the universe, through the electroweak baryogenesis. The addi-
tional CP violation would also explain the recently observed anomalies in the
B-meson decays, as has been shown in [49] and [50], assuming quark masses in
the range of 400-600 GeV.
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4.1.3 NMWT and two new lepton generations

If the technicolor gauge group is SU(3) instead of SU(2), and we choose Y (QL) = 1
6

for the hypercharge of the techniquarks, then we need to add two new lepton gen-
erations to the SM. The techniquarks transform under two-index symmetric, i.e.
sextet representation of the gauge group SU(3) and thus, from the electroweak
viewpoint, the particle content of the model looks like two new generations of
quarks and leptons.

Oblique corrections

Here we restrict to the case of Dirac neutrinos, for simplicity. If one wishes
to include the possibility of Majorana mass for the fourth and fifth generation
neutrinos, one may simply follow the procedure presented in [I] for the fourth
generation neutrino. The most important difference between Majorana and
Dirac neutrinos in terms of the oblique corrections is, that for Dirac particles T
is positive definite, but Majorana particles may produce negative contributions
to T . As the precision data seem to suggest a small positive value for T , this
feature is generally not that important. But in case there are other beyond SM
fields besides the new leptons, that produce large positive contributions to T ,
one may wish for a negative contribution from the leptonic sector to cancel this
effect.

Restricting to the Dirac case, there are total of four mass parameters that
enter the calculation of the oblique corrections from the leptonic sector. For
the TC sector we use the naive estimate S ≈ 1/π, and apply a reduction of
30% due to walking dynamics. In terms of the fermion masses, the fourth and
fifth generations may or may not be hierarchial, i.e. the fifth generation leptons
may both be heavier than both of the fourth generation leptons, or not. Another
question is, whether the charged lepton is always heavier than the corresponding
neutrino. We examine wether there is a clue towards any of these scenarios in
electroweak precision data.

The (S, T )-spectrum of the model is presented in the left panel of figure 4.7.
The green points correspond to the hierarchial case, where the fifth generation
is heavier than the fourth. The blue crosses are points of the parameter space,
where at least one of the fourth generation leptons is heavier that at least one
of the fifth generation leptons. We conclude that both the hierarchial and non-
hierarchial scenario produce values of S and T inside the experimentaly allowed
region. The right panel of the figure shows the points allowed by S and T ,
and with U < 0.05, in the plane defined by the mass differences between the
charged lepton and the neutrino in each generation. This plot does not show
the absolute scale of the masses, but we have checked that practically any values
between ∼ 100 GeV to a couple of TeV are allowed. As is seen from the plot,
the maximal mass difference between the charged lepton and the neutrino of
a single generation is around 120 GeV, and can be either positive or negative,
implying that either the charged lepton or the neutrino may be the heavier
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Figure 4.7: Left panel: The (S, T )-spectrum of two new SM-like lepton families.
The green points correspond to the hierarchial case, where the fifth generation is
heavier than the fourth, and the blue crosses correspond to the non-hierarchial
case. Right panel: the mass differences (in GeV) of the charged lepton and the
neutrino within each family, allowed by S, T and U .

lepton of a given generation. However, the maximal allowed mass difference of
a given generation if affected by the mass difference of the other. If there is a
large mass splitting in one of the new lepton generations, the other one must
have nearly degenerate masses. Moreover, both of the mass differences are not
allowed to be negative at the same time. This implies that at least one of the
charged leptons must be heavier than the corresponding neutrino. If stabilized
by additional symmetry, such neutrino could provide a dark matter candidate
as discussed in [51].

Collider signals

The collider signatures are expected to resemble those described in section 4.1.1.
Depending on the masses, the fifth generation may or may not contribute sub-
stantially. The new neutrinos may have a significant effect on decays of the
composite Higgs, as explained in section 4.1.1. If one of the charged leptons
is lighter than the corresponding neutrino, the only decay channel available for
the charged lepton is mixing with the lighter generations. Depending on the
strength of the mixing, this could lead to a comparably long lifetime for the
charged lepton, and interesting collider signals.

4.1.4 Unification

The fourth generation of SM-like fermions, together with the technicolor sector,
may also play a role in achieving the unification of the SM gauge couplings.
As is presented in [III], in some of the scenarios considered here unification is
achieved to some degree, if we allow for the existence of additional Weyl fermions,
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transforming under the adjoint representation of SU(3) color and SU(2)L.
However, one must bear in mind that here we only consider the unification

of the three gauge couplings of the SM. In the context of walking technicolor
theory, there are two additional gauge couplings: the technicolor coupling αTC
and the coupling constant of the ETC interaction αETC . To form a complete
grand unified theory (GUT) in the context of technicolor, one should aim at
the unification of all the coupling constants of the model. Therefore too much
emphasis should not be placed on this observation. One may, however, state that
unification of the SM couplings is not exclusively a property of supersymmetric
theories, but is achieved quite naturally also in some scenarios of technicolor
theory.

Besides the cases considered here, one may relax the requirement of SM-
like hypercharge assignments for the techniquarks, and possibly even consider
additional leptons with exotic charges such as a charged neutrino and a doubly
charged lepton. We have outlined such a scenario in [III], and obviously there are
many more possibilities. The cases presented here are in a way the most minimal
scenarios, and therefore should serve as a starting point for searches of this type
of new physics. We want to point out, that the story of the possible fourth
matter generation may be much richer that the typically considered sequential
one.

4.2 Bosonic technicolor

In section 2.3 we presented a model framework [II] for the origin of fermion
masses in technicolor, where a SM Higgs-like scalar boson is added to the usual
technicolor sector to produce the Yukawa terms responsible for fermion masses.
Here we will study the phenomenology and constraints of such a model.

4.2.1 Oblique corrections and FCNCs

As explained in section 2.3, the low energy spectrum of the model consists
of three massive pions and two Higgs-like scalars. We calculate the oblique
corrections resulting from these particles, as well as the contributions to flavor
changing neutral current processes. The Feynman diagrams relevant for FCNCs
are presented in figure 3.4, and those relevant for the calculation of the oblique
corrections are shown in figures 4.8 and 4.9

We then scan the parameter space of the model by varying the parameters
of the underlying Lagrangian (2.38), independently of each other. From these
we calculate the masses of the physical particles and the mixing angle θ, which
in turn enter the calculation of the oblique corrections and the FCNCs. An
additional restriction comes from direct Higgs boson search experiments, which
limits the low mass range of the scalars of the model. The limits obtained
for SM Higgs boson may be alleviated, depending on the mixing angle θ, by
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Figure 4.10: Left panel: The (S, T )-spectrum of the model, and the 90% confi-
dence limit. The light red diamonds are ruled out by direct search limits. All
points pass the FCNC tests. Right panel: The masses (in GeV) of the scalars of
the model. The black triangles correspond to points inside the 90% confidence
limit of the left panel, and the blue circles correspond to points inside the larger
ellipse. The red diamonds are ruled out by S and T .

the weakened coupling of the light scalar and the Z boson. For details of the
calculations to obtain these limits see [II].

4.2.2 Results

The (S, T )-spectrum of the model is shown in the left panel of figure 4.10. The
inner ellipse is the 90% confidence limit contour. All of these points pass the
FCNC constraints, but the light red diamonds are ruled out by direct search
experiments. The leftmost set of points are achieved by the perturbative calcu-
lation performed with the physical particle spectrum of the low energy effective
theory. The rightmost set is achieved by adding a naive estimate for the nonper-
turbative contribution of the technicolor sector. Since the contribution of the
technipions, that are assumed to be the lightest particles of the TC sector, is
already included in the calculation of the leftmost points, the rightmost points
include some amount of double counting and therefor tend to exaggerate the
value of S. On the other hand, the leftmost points completely ignore the effect
of higher resonances, and the actual values may lie between these two data sets.
In the following analysis we concentrate on the leftmost values, however.

The right panel of figure 4.10 shows the corresponding parameter space points
in (mh,ms)-plane. Here the black triangles correspond to the points inside the
90% confidence limit contour, the blue circles correspond to triangles in the
left panel that are inside the larger ellipse and the red diamonds correspond to
triangles even farther out. All the points in the right panel pass the direct search
and FCNC limits.

From these figures we conclude that most of the parameter space of the model
is ruled out by experiment. The points of the parameter space that produce the
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Figure 4.11: Left panel: The FCNC constraints on the pion mass as a function
of the scalar vacuum expectation value v. The black triangles pass the FCNC
tests, and the red diamonds are ruled out. Right panel: The allowed values of
f and v, after taking all constraints into account.

most acceptable values for S and T correspond to a very light scalar, hence ruled
out by direct search experiments. Correspondingly, the points that produce large
values for both scalars are ruled out by S and T . However, there are corners of
the parameter space that survive all experimental tests, and hence the model is
viable, though heavily restricted. A clear prediction of the model is the existence
of one light and one heavy Higgs-like scalar.

The left panel of figure 4.11 shows the points in the (v,mπ)-plane that are
consistent with the 90% confidence limit of S and T , and pass the direct search
limits. The red diamonds are ruled out by the FCNC limits, and the black
triangles are allowed by all data. We conclude that the pion mass may have
practically any value from couple of hundred GeV to a few TeV. The right panel
of the figure shows the points in the (v, f)-plane that are allowed by all data. The
relative size of v and f reflects the relative strength of the symmetry breaking
in the fundamental and composite sector. As is seen in the figure, a very wide
area of this plane is covered by the allowed points, implying that the origin of
the electroweak symmetry breaking in this model may originate either mostly
from the composite sector, or mostly from the fundamental scalar. Or it might
be an even combination of both. This balance is then reflected on the mixing
angle and on how the physical pions are composed of the technipions and the
Goldstone bosons of the fundamental scalar sector.
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Chapter 5

Conclusions

5.1 Technicolor and fourth generation of fermionic

matter

Walking technicolor is a simple and natural way to address the intrinsic problems
of the SM Higgs sector. The basic idea of technicolor theory is to incorporate
the mechanism of dynamical symmetry breaking, a process already observed in
nature in QCD and in the phenomena of superconductivity, to act as the origin of
electroweak symmetry breaking and gauge boson masses. A simple copy of QCD
is, however, not capable of producing the observed masses of the weak gauge
bosons while evading the limitations from electroweak precision tests and flavor
physics. This problem is cured by walking, i.e. nearly conformal dynamics of the
technicolor coupling constant, which is achieved by putting the technifermions
in a non fundamental representation of the technicolor gauge group.

To avoid the global and gauge anomalies associated with the technicolor
sector, a non sequential fourth generation of SM-like fermionic matter may nat-
urally arise. We have studied the scenarios where one or two new generations
of SM-like leptons appear as a consequence of cancelling the anomalies of a
technicolor sector, but there are no new quarks charged under QCD color, and
complementary to that, also the scenario where a new QCD generation arises,
without a new lepton generation. We have found each of these possibilities viable
in light of all existing electroweak and flavor precision data.

These models can be considered natural from many viewpoints. The natu-
rality and fine tuning problems of the SM Higgs are trivially avoided as a result
of the dynamical origin of electroweak symmetry breaking. Also the existence of
the new, non sequential fermion generations is a natural consequence of anomaly
cancellation. The new QCD quarks, if they exist, may help to explain some re-
cent observations of deviations from the SM predictions on CP-violating physics
in the B meson experiments, and they may even play a role in explaining the
matter-antimatter asymmetry, the origin of all baryonic matter in the universe.
On the other hand, the fourth generation neutrino could be a viable WIMP
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candidate, hence helping to solve the long lasting puzzle of dark matter. All
these effects arise naturally, without invoking any additional global symmetries
or adding new fields ad hoc.

The existence of a fourth generation of matter, be it leptons or quarks, would
be detectable in the LHC experiment. We have outlined some basic search
strategies, and more detailed studies in the context of a sequential fourth SM
generation have been carried out by other groups. The physics of the Higgs
particle is also sensitive to the fourth generation. A fourth generation of quarks
would dramatically enhance the production rate of the Higgs through gluon
fusion, whereas a fourth lepton generation could significantly alter the decay
channels of the Higgs. From our point of view, the most interesting would
be the detection of a non sequential generation of fermionic matter. As there
are currently no other schemes that suggest that we should only find leptons
but not quarks, or vice versa, this kind of observation would strongly point
towards the idea of dynamical electroweak symmetry breaking and technicolor.
As the collider signals of the technicolor sector itself could be more difficult
to distinguish from other model building paradigms, the existence of a non
sequential fourth generation could be the single most striking evidence towards
this direction.

5.2 The origin of fermion masses

Technicolor models do not provide an explanation of fermion masses. In the SM,
the Higgs boson acts as a source for both the gauge boson and fermion masses.
Technicolor models generate the correct gauge boson masses, but leave the SM
fermions massless. Typically one assumes that fermion masses are generated by
an ETC gauge symmetry, broken at a very high scale, resulting in a low energy
effective theory that resembles the Yukawa sector of the SM.

We have explored a simple model framework where the technicolor sector
is accompanied by a fundamental scalar boson, much like the SM Higgs. This
scalar sector is taken to represent the low energy effective model of an ultraviolet
complete ETC theory. This framework allows well defined perturbative calcula-
tions of the particle masses and their effects on electroweak and flavor precision
experiments. We find the model to be allowed, although heavily restricted, by
all existing data. The model predicts the existence of one light and one heavy
Higgs-like scalar. On top of that, there are massive pions and other resonances,
which may or may not be light enough to be observed in the early years of the
LHC experiment.

5.3 Outlook

In this work we have considered a dynamical explanation for the origin of elec-
troweak symmetry breaking and some simple nontrivial implications this would
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have on flavor physics. Our simple framework for the origin of fermion masses
is yet void of any explanation for the hierarchial nature of the SM generations:
Why are there exactly three generations of fermionic matter and why are their
masses arranged as they are? Interestingly, we find that the mechanism of dy-
namical electroweak symmetry breaking might naturally induce new generations
of fermionic matter, as a result of anomaly cancellation. If the fermion masses
are generated by effective Yukawa couplings to the scalar Higgs sector, represent-
ing the yet unkown ETC sector at low energies, then fermion masses of the order
of the electroweak symmetry breaking scale vweak appear most natural, since this
implies Yukawa couplings of order one. It is the lighter SM fermions that need
a richer explanation than just simple Yukawa couplings. The full gauge theory
of electroweak symmetry breaking, including ETC to generate fermion masses,
could also include a dynamical mechanism for generating the hierarchy of the
effective Yukawa couplings, resulting in fermion mass hierarchy.

As the LHC generates more data we will begin to see deeper into the mech-
anism behind electroweak symmetry breaking. If this mechanism indeed turns
out to be technicolor, then the next task will logically be to understand the ori-
gin of fermion masses. Hopefully this understanding will also give us an answer
to the long lasting puzzle of fermion mass hierarchy.
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