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Abstract

The inspiral and merger of two black holes is among the most exciting and
extreme events in our universe. Being one of the loudest sources of gravita-
tional waves, they provide a unique dynamical probe of strong-field general
relativity and a fertile ground for the observation of fundamental physics.
While the detection of gravitational waves alone will allow us to observe
our universe through an entirely new window, combining the information
obtained from both gravitational wave and electro-magnetic observations
will allow us to gain even greater insight in some of the most exciting as-
trophysical phenomena. In addition, binary black-hole mergers serve as an
intriguing tool to study the geometry of space-time itself.
In this dissertation we study the merger process of binary black-holes in a
variety of conditions. Our results show that asymmetries in the curvature
distribution on the common apparent horizon are correlated to the linear
momentum acquired by the merger remnant. We propose useful tools for
the analysis of black holes in the dynamical and isolated horizon frameworks
and shed light on how the final merger of apparent horizons proceeds after
a common horizon has already formed. We connect mathematical theorems
with data obtained from numerical simulations and provide a first glimpse
on the behavior of these surfaces in situations not accessible to analytical
tools.
We study electro-magnetic counterparts of super-massive binary black-hole
mergers with fully 3D general relativistic simulations of binary black-holes
immersed both in a uniform magnetic field in vacuum and in a tenuous
plasma. We find that while a direct detection of merger signatures with
current electro-magnetic telescopes is unlikely, secondary emission, either
by altering the accretion rate of the circumbinary disk or by synchrotron
radiation from accelerated charges, may be detectable. We propose a novel
approach to measure the electro-magnetic radiation in these simulations
and find a non-collimated emission that dominates over the collimated one
appearing in the form of dual jets associated with each of the black holes.
Finally, we provide an optimized gravitational wave detection pipeline using
phenomenological waveforms for signals from compact binary coalescence
and show that by including spin effects in the waveform templates, the de-
tection efficiency is drastically improved as well as the bias on recovered
source parameters reduced.
On the whole, this disseration provides evidence that a multi-messenger
approach to binary black-hole merger observations provides an exciting
prospect to understand these sources and, ultimately, our universe.
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Amaro-Seoane, Constanze Rödig, Antoine Petitaeu, Andreas Donath and Nico Bude-
witz for many interesting discussions.

I thank my colleagues and most importantly friends Frank Ohme, Francesco Pan-
narale, Argelia Bernal, Juan Barranco, Daniela Alic, Jose-Luis Jaramillo and Rodrigo
Panosso Macedo for their support and presence during parts of the time I have spent
at the Albert-Einstein-Institute. You have made the time here the most pleasant one.

I acknowledge the Albert-Einstein-Institut and the Max-Planck-Gesellschaft for fi-
nancial support. I thank the California Institute of Technology, the Canadian Institute
for Theoretical Astrophysics, the Center for Computation and Technology at Louisiana
State University and the University of the Balearic Islands for hospitality in my nu-
merous visits.

Finally, I would like to thank Chao-Fen Wang for her love, support and simply
being there during the final write-up of this thesis.

Computations were performed at the Peyote, Belladonna, Damiana, Datura and
atlas clusters at the AEI, at QueenBee on LONI and at Kraken and Ranger on the
Teragrid.



ii



Contents

Preface ix
Binary black-hole mergers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
New Results achieved in this thesis . . . . . . . . . . . . . . . . . . . . . . . . x
Layout of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I GR: Foundations and Mathematical Theory 1

1 Binary black-hole space-times 3
1.1 The Einstein equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Asymptotic properties of space-times . . . . . . . . . . . . . . . . . . . . 5
1.4 Gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Gravitational waves in linearized theory . . . . . . . . . . . . . . 7
1.4.2 Energy linear and angular momentum carried by gravitational

waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 Detector response to gravitational waves . . . . . . . . . . . . . . 10

1.5 Binary black-hole mergers and their astrophysical environment . . . . . 13

2 Black hole geometry 15
2.1 Event horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Apparent horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Trapped surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Properties of apparent horizons . . . . . . . . . . . . . . . . . . . 18

2.3 Isolated and DHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Mass and angular momentum . . . . . . . . . . . . . . . . . . . . 20

3 Cauchy evolution systems 21
3.1 The ADM formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 3+1 decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Extrinsic curvature . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 The ADM equations . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 BSSNOK evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Conformal traceless 3+1 representation . . . . . . . . . . . . . . 27

3.3 Generalized harmonic evolution . . . . . . . . . . . . . . . . . . . . . . . 29

iii



CONTENTS

3.3.1 Constraint damping . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Gauge choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Geodesic slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Maximal slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.3 Hyperbolic slicing . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.4 Hyperbolic Γ̃i-driver condition . . . . . . . . . . . . . . . . . . . 35
3.4.5 Generalized harmonic gauge choices . . . . . . . . . . . . . . . . 36

3.5 Initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.1 Conformal transverse-traceless decomposition . . . . . . . . . . . 38
3.5.2 Bowen-York extrinsic curvature . . . . . . . . . . . . . . . . . . . 39
3.5.3 The puncture method . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.4 Initial black-hole parameters from PN evolution . . . . . . . . . 43

3.6 Dealing with space-time singularities . . . . . . . . . . . . . . . . . . . . 44
3.6.1 Puncture evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Einstein-Maxwell evolution systems 47
4.1 Maxwell’s equations in a GR . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 The potential vector . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 The electric and magnetic fields . . . . . . . . . . . . . . . . . . . 49
4.1.3 The EM stress-energy tensor . . . . . . . . . . . . . . . . . . . . 51

4.2 Source prescriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 Electro-vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 The force-free approximation . . . . . . . . . . . . . . . . . . . . 52

5 The Weyl and EM complex scalars: Gravitational waves and EM
radiation 55
5.1 Space-time asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Conformal representation and structure . . . . . . . . . . . . . . 55
5.1.2 Asymptotic simplicity . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.3 Asymptotic mass and momentum . . . . . . . . . . . . . . . . . . 57

5.2 The Weyl tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 The Newman-Penrose formalism . . . . . . . . . . . . . . . . . . 58
5.2.2 The Petrov classification and the Sachs-Peeling theorem . . . . . 60
5.2.3 Extraction of gravitational waves using Ψ4 . . . . . . . . . . . . 61

5.3 EM complex scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 The gravitational wave strain . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Radiated energy and momentum of gravitational waves . . . . . . . . . 63
5.6 Radiated energy and momentum of EM waves . . . . . . . . . . . . . . . 64

II Numerics and Implementation 67

6 Discretization of PDEs 69
6.1 Finite differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Finite difference operators . . . . . . . . . . . . . . . . . . . . . . 70
6.1.2 Dissipation operators . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 MoL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Stability and well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.1 Well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

iv



CONTENTS

6.3.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.3 von Neumann analysis . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.4 The CFL condition . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5 Consistency and Convergence . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5.1 Convergence testing . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Computational infrastructure 81
7.1 The Cactus computational toolkit . . . . . . . . . . . . . . . . . . . . . 82

7.1.1 Structural design . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.1.2 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.1.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.1.4 Memory management and message passing . . . . . . . . . . . . 84

7.2 AMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2.1 The Carpet mesh refinement driver . . . . . . . . . . . . . . . . . 85
7.2.2 Mesh refinement method . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.3 Time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Cauchy evolution systems: Implementation details 89
8.1 Discretization of the Cauchy evolution systems . . . . . . . . . . . . . . 89

8.1.1 The Numerical grid structure . . . . . . . . . . . . . . . . . . . . 90
8.1.2 Discretization of the evolution equations . . . . . . . . . . . . . . 90
8.1.3 The CTGamma code . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1.4 The HADM code . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Generation of puncture initial data . . . . . . . . . . . . . . . . . . . . . 91
8.3 Puncture tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.4 Apparent horizon finding . . . . . . . . . . . . . . . . . . . . . . . . . . 95

III Black-hole simulations 97

9 Dynamics of MOTS: Explaining the anti-kick in binary black-hole
mergers 99
9.1 The cross-correlation approach: an executive summary . . . . . . . . . . 101
9.2 Black-Hole spacetimes: Head-on collisions . . . . . . . . . . . . . . . . . 105

9.2.1 Mass multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.2.2 Numerical Setup and Results . . . . . . . . . . . . . . . . . . . . 106
9.2.3 Geometric quantities at the black-hole horizon: K̃eff

i (t) . . . . . . 108
9.2.3.1 Axisymmetric black-hole spacetimes . . . . . . . . . . . 110

9.2.4 Correlation between the screens . . . . . . . . . . . . . . . . . . . 113
9.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.4 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.5 Geometric evolution system on the horizon: the role of the Weyl tensor 124

9.5.1 The inner screen H . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.5.2 Effective curvature vector K̃eff

i . . . . . . . . . . . . . . . . . . . 125
9.5.3 Geometry evolution on black-hole horizons . . . . . . . . . . . . 127

9.5.3.1 Complete evolution system driving 2R . . . . . . . . . . 128
9.6 Fundamental results on Dynamical Horizons . . . . . . . . . . . . . . . . 129
9.7 News-like functions and Bondi-like fluxes on a dynamical horizon . . . . 132

v



CONTENTS

9.7.1 News-like functions: vacuum case . . . . . . . . . . . . . . . . . . 132
9.8 News-like functions: matter fields . . . . . . . . . . . . . . . . . . . . . . 133

9.8.1 Bondi-like fluxes on H . . . . . . . . . . . . . . . . . . . . . . . . 134
9.8.2 Relation to quasi-local approaches to horizon momentum and

application to recoil dynamics . . . . . . . . . . . . . . . . . . . . 135
9.9 Relevance of the 3+1 inner common horizon . . . . . . . . . . . . . . . . 137
9.10 Link to the Horizon viscous-fluid picture . . . . . . . . . . . . . . . . . . 138

9.10.1 The black-hole horizon viscous-fluid analogy . . . . . . . . . . . . 139
9.10.2 A viscous “slowness parameter” . . . . . . . . . . . . . . . . . . . 141

9.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10 Dynamics of MOTS: The pre-merger and merger phase 145
10.1 Uniqueness and stability of MOTS . . . . . . . . . . . . . . . . . . . . . 147

10.1.1 Stable and outermost MOTS . . . . . . . . . . . . . . . . . . . . 148
10.1.2 The maximum principle for MOTS . . . . . . . . . . . . . . . . . 149
10.1.3 Evolution of MOTS to MOTTs . . . . . . . . . . . . . . . . . . . 150
10.1.4 Approaching MOTS . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.1.5 Exterior osculation of MOTS . . . . . . . . . . . . . . . . . . . . 151
10.1.6 Interior Osculation . . . . . . . . . . . . . . . . . . . . . . . . . . 152

10.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.3 Initial configuration of the MOTS . . . . . . . . . . . . . . . . . . . . . . 154
10.4 Approaching MOTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
10.5 Exterior osculation of MOTS . . . . . . . . . . . . . . . . . . . . . . . . 155
10.6 Con-penetration in the MOTS . . . . . . . . . . . . . . . . . . . . . . . 156

11 EM counterparts of binary black-hole mergers 161
11.1 Physical and Astrophysical Setup . . . . . . . . . . . . . . . . . . . . . . 162
11.2 Isolated Black Holes in EV . . . . . . . . . . . . . . . . . . . . . . . . . 163
11.3 Binary black-hole merger simulations in EV . . . . . . . . . . . . . . . . 168

11.3.1 Initial Data and Grid Setup . . . . . . . . . . . . . . . . . . . . . 168
11.3.2 Binary Evolution and Spin Dependence . . . . . . . . . . . . . . 169
11.3.3 Astrophysical Detectability . . . . . . . . . . . . . . . . . . . . . 175
11.3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 179

11.4 Binary black-hole merger simulations in the force-free approximation . . 181
11.4.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.4.2 Luminosity measures . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.4.3 Impact on detectability . . . . . . . . . . . . . . . . . . . . . . . 188
11.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

IV Gravitational wave data analysis 189

12 Binary coalescence search algorithms 191
12.1 Searching for gravitational waves in detector output . . . . . . . . . . . 191
12.2 Digital matched filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

12.2.1 The discrete Fourier transform . . . . . . . . . . . . . . . . . . . 196
12.2.2 Discrete PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
12.2.3 Signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . 197

12.3 Template banks and parameter estimation . . . . . . . . . . . . . . . . . 198

vi



CONTENTS

12.4 χ2-veto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
12.5 Trigger recording and selection . . . . . . . . . . . . . . . . . . . . . . . 200
12.6 Gravitational wave data analysis using the CBC pipeline . . . . . . . . . 201
12.7 Signal injection and simulating detector noise . . . . . . . . . . . . . . . 201
12.8 Generation of inspiral triggers . . . . . . . . . . . . . . . . . . . . . . . . 202
12.9 Trigger coincidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

13 Improving detection statistics for spinning phenomenological wave-
form templates 205
13.1 Waveform models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
13.2 Creating spinning template banks . . . . . . . . . . . . . . . . . . . . . . 207

13.2.1 Approximation to the overlap using Fisher matrices . . . . . . . 209
13.3 Effects of spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

13.3.1 Bias on parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 213
13.4 Implications for future searches . . . . . . . . . . . . . . . . . . . . . . . 214

14 The big picture: Summary and conclusion 217
14.1 Explaining the anti-kick in binary black-hole mergers . . . . . . . . . . . 218
14.2 The merger of small and large black holes from a geometric perspective 219
14.3 Vacuum EM counterparts of binary black-hole mergers . . . . . . . . . . 219
14.4 On the detectability of dual jets from binary black-hole mergers . . . . . 220
14.5 Improving detection statistics for gravitational wave signals from binary

black-hole mergers including spin-effects . . . . . . . . . . . . . . . . . . 221
14.6 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A Constants and units 223

B Sensitivity curves 225

List of related publications 227

References 229

vii





Preface

Binary black-hole mergers

Binary black-hole mergers are among the most extreme and fascinating events in our
universe. The observation of such process would enable us to probe gravitational physics
in the strong field regime as well as study the properties and dynamics of some of the
most fundamental objects that exist in our universe, black-holes. The inspiral and
merger of a binary black-hole system provides an excellent candidate for the detection
of gravitational waves. Gravitational waves have been predicted by Einstein in his
theory of General Relativity (GR) and while indirectly measured already through the
accurate timing of pulsars, a direct detection of a gravitational wave has not yet been
achieved. In the case of a binary black-hole merger, up to 10% of the total system mass
may be radiated in gravitational waves. For supermassive black holes with masses up to
108M� this corresponds to a luminoity of 1057erg/s. The successful direct measurement
of gravitational waves would not only verify GR in this fundamental aspect but also
would open a completely new window to observing our universe. Gravitational waves
constitute an ideal tool for the observation of events which are not visible to other
observational tools. In the case of supermassive black-hole binaries another highly
interesting possibility of observation arises. As the binary forms as a result of a galaxy
merger, the two black-holes inspiral towards each other on ever shrinking orbits. During
the inspiral both black-holes are surrounded by their own accretion disc. However, as
gravitational wave emission becomes the driving mechanism of the orbital evolution,
a circumbinary disc is formed. The binary will be embedded in a low density gas
and/or plasma and the the magnetic field anchored at the magnetized circumbinary
disk will reach the region containing the black-holes. This environment provides a
fertile ground for fundamental physics as the black-holes orbit towards their ultimate
coalescence. One interesting possibility is offered by the interaction of the binary with
the surrounding electromagnetic (EM) fields and the plasma. The dynamics of the
black-holes distort the EM fields and perturb the plasma generating EM radiation in a
direct way as well as through secondary emission processes like synchrotron radiation
from accelerated charges. This EM radiation provides an alternative way of observing a
binary black-hole merger and a coincident detection of gravitational waves with an EM
counterpart signature would significantly increase our insight into the source as well as
allow the measuremnent of the redshift of the source enabling us to also determine the
cosmological setting of the event. Binary black-hole mergers also provide an excellent
system to study the geometry of space-time in the strong field regime. The formation
and interaction of black-hole horizons is a truly fascinating aspect of black-hole mergers
and their connection to the geometry of space-time opens the possibility of correlating
the dynamics of strong-field effects to observable signatures at large distances measured
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in terms of gravitational waves. On the whole, binary black-hole mergers are an ideal
probe of GR in the strong-field regime and provide an excellent candidate for testing
fundamental physics in our universe.

New Results achieved in this thesis

This thesis is concerned with novel aspects of binary black-hole mergers and their ob-
servational signatures. The results presented in this dissertation are in part reported
in [1, 2, 3, 4, 5, 6, 7, 8] and are the author’s genuine contribution. They have been ob-
tained through numerical simulations of binary black-hole space-times as well as using
a modified data analysis pipeline used for the search of gravitational waves from com-
pact binary inspirals. We acknowledge collaboration with Daniela Alic, Lars Anderson,
Jose-Luis Jaramillo, Badri Krishnan, Luis Lehner, Jan Metzger, Carlos Palenzuela,
Rodrigo Panosso Macedo, Luciano Rezzolla, Emma Robinson, Bela Szilágyi, Jeffrey
Winicour, and Olindo Zanotti. In what follows we briefly describe the describe the
results presented in this thesis.

We start with the anti-kick in binary black-hole mergers describes a phenomenon where
the linear momentum acquired by the remnant of the merger decreases before settling
down to a constant value. In this thesis we provide a thorough analysis of this pro-
cess for unequal-mass head-on binary black-hole simulations. We construct an effective
curvature parameter on the dynamical horizon of the merger remnant and correlate it
with the linear momentum carried away by gravitational waves measured at infinity.
In an additional step we investigate the relation of the effective curvature parameter
to other geometric quantities, e.g. the Bondi-flux at the inner horizon and at infinity
and introduce a number of meaningful geometric quantities that are of importance in
the analysis of black-hole space-times.
In a similar but distinct work we have performed numerical simulations of head-on
unequal-mass binary black-hole mergers using a generalized harmonic formulation of
Einstein’s equations with the emphasis of monitoring the evolution of the individual
apparent horizons in the very final moments of the merger after a common outer hori-
zon has already formed. Our results verify that apparent horizons can intersect in the
final moments of a binary black-hole merger and we were able to track the individual
apparent horizons to a stage when an overlap of up to 1/2 of the smaller apparent
horizon’s coordinate area is achieved. We find that as they approach each other the
small black hole produces a strong tidal effect on the larger black hole as indicated by
a localized growth of the mean curvature. As the two surfaces touch their mean curva-
ture is the same at the point of osculation. As the two horizons continue to interact,
the time evolution of the larger black hole shows discrete jumps in its coordinate shape
and area evolution.
Furthermore, we have performed the first simulations of binary black-mergers immersed
in a uniform magnetic field and when the two black holes are spinning. The space-time
dynamics impact the EM fields and our results show that spin effects introduce an
extra component of this distortion. The radiated energy becomes a function of the spin
magnitude as well as of the orientation angle and we find a close correlation between
the radiation in gravitational waves and the EM one. This is most evident for the
l = 2 = m-mode of the spherical harmonic decomposition where we show that both
phase and amplitude of the two kinds of emission are scaled by a simple factor only.



While we find that it is unlikely that the radiation signatures can be detected directly,
they might be observable through indirect processes by altering the accretion rate of
the circumbinary disc.
As a step towards a more realistic modeling, we have also performed simulations of
the above scenario including the effects of a tenuous plasma. We have introduced a
more consistent approach of measuring the radiation content in models where the mag-
netic field has non-compact support. More specifically, we find that this new measure
changes the angular distribution of EM signatures from binary black-hole coalescence,
as well as improves the overall emission efficiency by factors up to 100. The emission
in the form of jets associated with both black-hole is dominated by a non-collimated
one in the final orbits and through the merger and may restrict their detectability.
Finally, for the part of this thesis devoted to data analysis, we have developed a modi-
fied and extended compact-binary-coalescence data analysis pipeline that includes the
corrections introduced by the of the spin compact object. Our results show that the
inclusion of spin effects greatly improves the detection statistics of binary black-hole
inspiral signals. Systematic biases in the physical parameters of the recovered signals
are reduced or even eliminated.

Layout of this thesis

This is thesis is organized in four parts. Part one introduces the basic theoretical
concepts related to the presentation of the results in this thesis. More specifically,
chapter 1 reviews Einstein’s equations and binary black-hole space-times, while chapter
2 reviews the basic aspects of black-holes. Chapter 3 presents an overview of Cauchy
evolution in GR while chapter 4 highlights key aspects of the Einstein-Maxwell evolution
system. Chapter 5 reviews the basic concepts behind the extraction of gravitational
wave and EM signatures from binary black-hole simulations.

Part two reviews the computational methods that have been used to obtain the
results presented. Chapter 6 presents the discretization of partial differential equations
and the stability analysis of these systems, while chapter 7 reviews the computational
infrastructure used. Finally, chapter 8 presents the implementation of Einstein’s equa-
tions for Numerical Relativity simulations.

Part three contains a discussion of the core results obtained from the simulation
of binary-black hole mergers. Chapter 9 presents results explaining the ’anti-kick’ in
binary black-hole mergers and introduces useful tools to analyze the geometry of black-
holes. Chapter 10 discusses the time evolution of trapped surfaces in unequal-mass
head-on binary black-hole mergers and chapter 11 presents results for binary black-
hole mergers immersed in a magnetic field, and plasma, and discusses the astrophysical
relevance of the different emission processes evident in our simulations.

Finally, part four is devoted to searches for gravitational waves in simulated detector
data. Chapter 12 reviews the basic principles of matched-filtering in data analysis, while
chapter 13 gives an overview of an analysis pipeline and its implementation. Chapter
14 points out the importance of using templates including spin effects in searches for
spinning binary black-hole inspiral and merger signals.



Notation and Conventions

The system of untis used in is fixed by assuming c = G = M� = 1. For convenience, we
list conversion factors to CGS and geometric units (c = G = 1) and values of physical
constants in appendix A. We choose Greek indices running from 0 to 3 to indicate
4-vectors and 4-tensors. Latin indices running from 1 to 3 indicate spatial components.
We adopt the abstract index notation with sum convention. Unless noted otherwise,
we assume a space-like signature (−,+,+,+) and indicate 4-vectors and 4-tensors i in
abstract notation in bold letters. On the other hand abstract 3-vectors are indicated
by the standard vector symbol.
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GR: Foundations and
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Binary black-hole space-times

1.1 The Einstein equations

In his theory of Special Relativity [1] Einstein joined the concepts of space and time
to provide a description for the electro-dynamical effects of moving bodies. Instead
of viewing space and time as separate entities he suggested to view space and time
as one, a four-dimensional structure called space-time. To incorporate the effects of
gravity into his space-time picture Einstein proposed that the geometry of space-time
itself may be curved. He related the geometry of space-time to the presence of matter
and energy. Einstein’s field equations describe the interaction of matter, energy and
geometry and present the core component of his theory of GR [2, 3, 4].

Gµν = 8πTµν . (1.1)

Gµν is the Einstein tensor, defined as

Gµν = Rµν −
1

2
gµνR, (1.2)

and Tµν is the stress-energy tensor describing all forms of matter and energy. Rµν =
Rρµρν is the Ricci-tensor and R = Rρρ the Ricci-scalar, both contractions of the Rie-
mann tensor Rµνρσ, which provides a description for the curvature of space-time. Space-
time itself is described as a set (M, g), M being a four-dimensional manifold and g a
pseudo-Riemannian metric. The metric tensor provides a measure of proper distances
on M given by the invariant differential line element.

ds2 = gµνdx
µdxν . (1.3)

The Riemann-tensor is constructed as

Rµνρσ = Γµνσ,ρ = Γµνρ,σ + ΓµτρΓ
τ
νσ − ΓµτσΓτνρ, (1.4)

where Γµνρ are the connection coefficients of the metric, the Christoffel-symbols

Γµνρ =
1

2
gµτ (gρτ,ν + gντ,ρ − gνρ,τ ) . (1.5)

Einstein’s equations, while looking simple at first glance in tensorial notation, form
a set of ten coupled non-linear partial differential equations. Analytical solutions are
known only for the most idealized physical systems [5, 6]. For any scenario of interest
in astrophysics solutions are found by perturbation theory or obtained numerically.
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1. BINARY BLACK-HOLE SPACE-TIMES

1.2 Black holes

Black-hole space-times arise as a family of solutions to Einstein’s equations. The term
black hole describes a region of space-time containing a singularity, i.e. a point of space-
time, where the curvature tensor becomes infinite. Assuming space-time to be globally
hyperbolic, and keeping aside the possibility of the existence of naked singularities,
a singularity is surrounded by a part of space-time where all light-cones are directed
inwards, preventing any light-ray to escape from the region containing the singularity.
In a more technical definition no future directed null geodesic can escape to null in-
finity if originating in this region of space-time. The region inside is called a trapped
region, it is causally disconnected from the rest of the space-time manifold. The region
forming the boundary between inward and outward directed light-cones is called an
event-horizon. It practically ”shields” the singularity from the rest of space-time. The
simplest black-hole space-time is the Schwarzschild space-time, a spherical symmetric
solution first obtained by Karl Schwarzschild [6]. It’s line element reads

ds2 = −(1− 2M/r)dt2 +
dr2

1− 2M/r
+ r2(dθ2 + sin2 θdφ2), (1.6)

written in the standard spherical coordinates r, θ and φ. The Schwarzschild solution
is static, possesses a physical singularity at r = 0 and is asymptotically flat as it
approaches Minkowksi space-time for r → ∞. The event horizon is a sphere with
r = 2M and the the Schwarzschild solution is unique for static black holes, i.e. any
spherical symmetric solution to the Einstein field equations in vacuum is isometric
to the Schwarzschild solution locally. A more general black-hole solution is the Kerr
space-time, first obtained by Kerr [5], which is stationary, rotating and axisymmetric.
It is unique in describing stationary solutions to Einstein’s equations. It was later
generalized to include charge by Newman [7] and the Kerr-Newman line element in
Boyer-Lindquist coordinates is described by

ds2 =
∆

ρ2

(
dt− α sin2 θdφ

)2
+

sin2 θ

ρ2

((
r2 + α2

)
dφ− αdt

)2
+
ρ2

∆
dr2 + ρ2dθ2, (1.7)

with

∆ = r2 − 2Mr + α2 +Q2 (1.8)

ρ2 = r2 + α2 cos2 θ (1.9)

α = S/M. (1.10)

Here α denotes the angular momentum of the space-time S per unit mass M as mea-
sured by an observer at infinity and Q the electric charge. An additional quantity that
is often used is the dimensionless spin parameter a = α/M = S/M2. Assuming the
cosmic censorship conjecture [8] holds, one can put limits on the parameters of the
Kerr solution,

M2 ≥ Q2 + α2. (1.11)

It is very likely that for any astrophysically realistic black hole Q vanishes and thus
useful to explore those bounds for Q = 0. This yields −M ≤ α ≤ M or in terms of
the dimensionless spin parameter −1 ≤ a ≤ 1. This is a generic condition on the spin
parameter for any axisymmetric space-time and the case |a| = 1 can only be achieved
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1.3 Asymptotic properties of space-times

in the case of a Kerr-slice of space-time [9]. It is possible to characterize any classical
stationary black-hole space-time using the three parameters introduced above, the mass
M , the dimensionless spin-parameter a and the electric charge Q. Any realistic black
hole in nature would be surrounded by either an accretion disk or dust and thus would
not be able to carry a non-neglectable amount of charge Q since it would immediately
neutralize by interaction with the surrounding matter. Therefore the charge parameter
Q is often dropped in describing black-hole space-times. Turning to how black holes are
created in astrophysical scenarios one can restrict the mass-range they exist in. Stellar-
mass black-holes are formed by collapsing stars, which to form a black hole have to
at least have a mass of about 20M�. Stellar mass black-holes typically range in order
of magnitude from 10M� to 100M�. They typically are formed in globular clusters
containing many old stars and collapsed objects [10, 11]. Intermediate mass black-
holes are characterized by a mass of 100M� ≤ M ≤ 105M� and are expected to exist
in stellar clusters [12, 13]. Only recently proposed by theoretical considerations there is
very little observational evidence for intermediate mass black-holes to exist, hinting that
these objects may be very rare. Supermassive black-holes have masses ranging from
105M� to 109M� and are expected to exist at the center of most major galaxies, i.e.
there is strong observational evidence that the center of our own galaxy, the milky-way,
is host of a supermassive black-hole of about M = 4.1 106M� [14, 15, 16]. Theoretical
models suggest that they are the outcome of hierarchical galaxy-mergers, which are
accompanied by a merger of their central black holes. Thus the maximum mass of a
black hole being formed by this mechanism is bound by the number of merger-events
in a Hubble-time [16, 17, 18, 19, 20]. Currently these models do not support masses of
above 109M�. In summary the parameters of a black hole in vacuum are the mass M
and the spin a. The mass is constrained in its minimum by the mass a collapsing star
needs to have in order to form a black-hole remnant, and in its maximum by the number
of hierarchical merger events a galaxy can undergo during a Hubble time. This leads to
a possible mass range of 1.5M� ≤ M ≤ 109M�. The dimensionless spin parameter in
turn is constrained by assuming the cosmic censorship conjecture to hold and is thereby
limited to −1 ≤ a ≤ 1. Black-holes in general and especially in dynamical situations are
complex in their geometry but nonetheless some properties about black holes in general
can be stated. A black hole undergoing interaction with its environment will return to
a stationary state if no further interaction takes place. This is commonly described as
a black-hole ring-down. Any perturbation against spherical or axisymmetry is radiated
away in gravitational waves. A black hole of mass M and spin a rings down with unique
frequencies, the quasi-normal mode frequencies. It is therefore possible to accurately
determine a black hole’s mass and spin if one can measure its quasi-normal mode ring-
down [21, 22, 23]. In general the geometry of a black hole in a dynamic situation can be
very complex, so that it might be very difficult to define quantities like the black-hole
mass and spin parameters. In those situations quasi-local definitions of mass and spin
measured on the apparent or isolated horizon (these concepts will be discussed in more
detail in chapter 2) are often introduced which turn out to be very helpful in obtaining
the mass and spin of a very dynamical black hole.

1.3 Asymptotic properties of space-times

In GR one cannot generally define global integral conservation laws unless space-time
possesses Killing-symmetries. For any global integral conservation law to be formu-
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1. BINARY BLACK-HOLE SPACE-TIMES

lated one would typically need vanishing divergence of some flux-tensor related to the
quantity one is interested in. Typically this involves vector-valued tensorial equations,
e.g. conservation of momentum locally reads ∇µTµν = 0. Now in calculus on Rie-
mannian manifolds the addition of vectors at different points is not defined so that
it is impossible to construct a general global conservation law since one cannot define
an integral sum for expressing the integral. It is therefore often impossible to define
global properties like the mass of space-time or the energy carried away by gravita-
tional waves. Unfortunately this poses a fundamental problem since these are often
the very quantities one is interested in the most. It therefore would be ideal to look
at space-times that have the required symmetries. Although that is unlikely the case
for realistic systems of interest in astrophysics there is a way to circumvent missing
symmetries by imposing that space-time is asymptotically flat. This idea goes back to
work by Newman and Penrose [24, 25, 26] , and consists of representing the system
of interest as an isolated self-gravitating system. One basically assumes to have flat
Minkowski space-time at spatial infinity and therefore nearly Minkoswki far from the
region containing the gravitational source and therefore can characterize far-fields of
isolated systems by their conformal structure. Using this one now can make use of the
symmetries of Minkowski and in this way at least globally measure the quantities one
is interested in. We will discuss the asymptotic properties of space-times in detail in
chapter 5.

1.4 Gravitational waves

Gravitational waves can be thought of as ripples in space-time. They locally distort
space-time and travel at the speed of light, as will become clear later in this chapter.
The local distortions created by gravitational waves can be measured by detectors, i.e.
via laser interferometers. Gravitational waves carry energy, angular and linear momen-
tum away from their source. Thus the source of a gravitational wave is not preserved,
since it loses mass through the gravitational waves carrying away energy [27, 28]. This
is in contrast to electromagnetism, where i.e. the charge q as a source of EM radiation
is preserved. Additionally due to the highly non-linear dynamics of gravity it is very
difficult to distinguish near-field from far-field effects like in electromagnetism. Actually
gravitational radiation is only well defined at future null-infinity where space-time is
asymptotically flat, since only here it is possible to clearly distinguish the gravitational
wave signal as a perturbation on a flat background space-time metric. Gravitational
waves arise from accelerated masses, as EM waves arise from accelerated charges. How-
ever gravitational waves are quadrupolar in nature in contrast to the dipolar nature of
EM waves. This follows mainly from Birkhoff’s theorem which prevents radiation from
spherically symmetric space-times and thus prevent l = 0-modes, and from conserva-
tion of momentum which prohibits l = 1-modes. Given the very weak nature of gravity
compared to the other fundamental forces it is not surprising that the local distortions
in space-time caused by gravitational waves are very weak. Good sources of gravita-
tional radiation are therefore events that are highly relativistic in their dynamics and
involve very compact and heavy objects, like binary black-hole or binary neutron star
mergers. These systems form some of the most extreme events in the universe as they
radiated away tremendous amounts of energy (Erad ≈ 1055erg/s for some systems) and
are therefore ideal candidates for sources of strong gravitational radiation. However,
the gravitational wave distortion (or strain) of even these extreme events caused in a
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region far away from the source is very small, i.e. of the order of h ≈ 10−21m for a
100M�-mass binary black-hole system observed at a distance of 100Mpc. It is these
very small distortions that make the detection of gravitational waves a major exper-
imental challenge. While being indirectly measured and verified for the Hulse-Taylor
and other pulsars [29, 30] no direct detection of a gravitational wave has been claimed
so far. Once detected, gravitational waves however will open a new window to the
universe, allowing a exciting new perspective on some of the most fundamental events
in our universe. Observations of gravitational waves will not only allow direct mea-
surements of the gravitational interaction of stellar and galactic objects [31] but may
also shed light on the big-bang itself or help in choosing alternative candidate theories
of classical or non-classical gravity [32]. In this section we will introduce the basic
concepts of gravitational waves.

1.4.1 Gravitational waves in linearized theory

Given their weak nature gravitational waves can be described as perturbations on top
of a background metric. Furthermore assuming the background metric to be flat for
now (we later can extend this to metrics describing curved space-times) the metric can
be written in the form

gµν = ηµν + hµν , |hµν | � 1. (1.12)

Here ηµν denotes the flat Minkowski metric and hµν is a linear small perturbation on
top of the background metric. The connection coefficients of the metric can now be
expressed as

Γµνσ =
1

2
ηµρ (∂σhρν + ∂νhρσ − ∂ρhνσ)

=
1

2

(
∂σh

µ
ν + ∂νh

µ
σ − ∂µhνσ

)
, (1.13)

and using this the Riemann-tensor reads

Rµνσρ = ∂σΓµνρ − ∂ρΓµνσ
=

1

2

(
∂σ∂νh

µ
ρ + ∂σ∂

µhνρ − ∂ρ∂νhµσ
)
. (1.14)

From this the Ricci-tensor is constructed as

Rµν = Rσµσν =
1

2

(
∂σ∂νh

σ
µ + ∂σ∂µhνσ −�hµν − ∂µ∂νh

)
, (1.15)

where � = ∇2 − ∂2
t is the usual wave operator and h = hµµ is the trace of the metric

perturbation. Another contraction on the Ricci-tensor leads to an expression for the
Ricci-scalar, which reads

R = Rµµ = ∂σ∂
µhσµ −�h, (1.16)

which now can be used to construct the Einstein tensor

Gµν = Rµν −
1

2
hµνR

=
1

2
(∂σ∂νh

σ
µ + ∂σ∂µhνσ −�hµν − ∂µ∂νh

−ηµν∂σ∂ρhσρ + ηµν�h). (1.17)
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Recasting the metric perturbations in a trace-reversed form

h̄µν = hµν −
1

2
ηµνh (1.18)

we can simplify the expression for the Einstein tensor

Gµν =
1

2

(
∂σ∂ν h̄

σ
µ + ∂σ∂µh̄νσ −�h̄µν − ηµν∂σ∂ρh̄σρ

)
. (1.19)

Additionally using our gauge-freedom by choosing the Lorentz gauge

∂µh̄µν = 0, (1.20)

simplifies the expressions even further, yielding

Gµν = −1

2
�h̄µν . (1.21)

In a vacuum space-time this results in

�h̄µν = 0. (1.22)

Now (1.22) is just an ordinary wave equation for the metric perturbations h̄µν and we
can find solutions to it in the form of

h̄µν(x, t) = Re

∫
d3kAµν(kei(k·x−ωt). (1.23)

Here k is the wave-vector, ω = |k| and the amplitude coefficients Aµν(k) are a func-
tion of k. The Lorentz gauge, that we have chosen leads to the additional constraint
kµAµν = 0 with kµ = (ω,k). We already call the solutions h̄µν(x, t) gravitational waves
but can further restrict their form. Imposing asymptotic flatness, we can restrict the
perturbations to be being purely spatial,

htt = 0 = hti, (1.24)

and traceless,
h = hii = 0. (1.25)

Now the Lorentz gauge condition implies

∂ihij = 0, (1.26)

which leads to our metric perturbation h being purely transverse. We call the gauge-
conditions chosen to cast the metric perturbation into this form the
transverse − traceless(TT ) gauge. By choosing the TT gauge we have now used all our
gauge-freedom so that the metric perturbations hTT (sometimes quantities in the TT
gauge are written in the form ATT ) are fixed in their form and contain purely physical
information about the gravitational waves. One feature that becomes obvious in the
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1.4 Gravitational waves

TT gauge is that gravitational wave can have two polarizations. Considering a plane
gravitational wave which is a solution to �hTTij = 0 and travels along the z-direction

(hTTij = hTTij (t− z)) the Lorentz gauge ∂zh
TT
ij = 0 leads to hzj being constant. Asymp-

totic flatness implies that the only non-zero components of the metric perturbation are
hxx,hxy,hyx and hyy. Taking into account the trace-free and symmetry conditions we
can furthermore reduce this to only two independent components

h+ = hTTxx = −hTTyy (1.27)

h× = hTTxy = hTTyx . (1.28)

Figure 1.1: The two polarization states h+ (left) and h× (right) of gravitational waves
represent by their lines of force in affecting particles. Figure taken from [33].

As shown in [34] the metric components h+ and h× are the only pure radiative
degrees of freedom. They are the only components that obey a wave equation in
all gauges. All other components can be shown to form a set that obeys Poisson’s
equations. The fact that the non-TT part of the metric also satisfies a wave-equation
is an artifact in the TT -gauge. Figure 1.1 illustrates the differences between the two
polarization states h+ and h×. We can construct linear waves by superposing h+ and
h× in phase and circular or elliptical waves by superposing the two polarizations with
a phase shift of π/2.

1.4.2 Energy linear and angular momentum carried by gravitational
waves

Gravitational waves carry energy, linear and angular momentum. While in general it is
not possible to define energy and momentum in a global fashion in GR we can however
find approximations that work well under certain conditions. One such quantity in
this context is the Isaacson stress-energy-tensor [35, 36] which assumes the weak-field
nature of the gravitational field. Expanding the metric to second-order perturbations

gµν = gBµν + εhµν + ε2jµν + O(ε3), (1.29)
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where gBµν is the background-metric, hµν and jµν are perturbations to linear and second
order and ε is an expansion parameter with ε� 1. We now can equivalently expand the
Ricci- and Einstein-tensor and derive the Einstein equations in the same way as done
for the first-oder perturbations around a flat space-time metric as outlined in 1.4.1 to
linear order,

1

2
�Bhνρ +RBµρνλh

µλ = 0. (1.30)

The solutions to this set of equations can again be interpreted as gravitational waves,
but in contrast to the perturbations derived around a flat space-time in 1.4.1 there
exists a coupling to the Riemann tensor of the background metric and in addition
the wave-operator in respect to the background metric induces another coupling also
to the connections coefficients of the background metric. Now to identify the ’true’
gravitational waves from the background space-time we can use the fact that the length-
scales involved are very different. The wavelength of the gravitational waves λGW is
typically very small compared to the length-scale L over which the background metric
changes. We can therefore use the fact λGW � L and by averaging over a region
covering which covers a large amount of wavelength λGW but is still small compared
to the length-scale L of the background metric. This procedure (well known as the
short-wavelength approximation or geometric optics regime) [35, 36, 37] leads to the
gravitational wave perturbation being to first oder

εhµν = gµν − gBµν . (1.31)

Now including also the second-order perturbation we can derive an effective stress-
energy for gravitational waves. Inserting the metric perturbation to second order into
Einstein’s equations we get

Gµν =
1

4
〈∂µhTTij − ∂νhTTij 〉+ O(ε3) (1.32)

, where 〈〉 denotes an averaging procedure over multiple wavelengths. We can now
identify the effective stress-energy tensor of gravitational waves in the TT -gauge as

TGW,effµν =
1

32π
〈∂µhTTij − ∂νhTTij 〉. (1.33)

Due to the averaging over multiple wavelengths the first oder perturbations have dis-
appeared in (1.33) and all quantities in (1.33) except the effective gravitational wave
stress-energy tensor vary on length-scales related to the background metric gBµν . Thus
for when averaging over long length-scales the energy and momentum of gravitational
waves can now be computed from TGW,effµν .

1.4.3 Detector response to gravitational waves

Recently, it has become technically feasible to construct and operate gravitational wave
detectors whose sensitivity is high enough to possibly measure gravitational waves from

10
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distant sources on Earth [38, 39]. As shown in the previous section gravitational waves
appear as a perturbation around an asymptotically flat space-time. In order to measure
those perturbations here on earth we need to determine the effect the gravitational wave
perturbations have on our instrument. For simplicity assuming we are in a flat region of
space-time (i.e. neglecting the gravitational field of the source of the gravitational waves
and also neglecting the gravitational field of the earth itself) the only change induced
on top of our flat background metric can be caused by gravitational waves. Typical
modern gravitational wave detectors are laser-interferometers that measure changes in
the distance between two points with very high accuracy. The proper distance between
two points at x = 0 and x = Lp located at z = 0 is given by

L =

∫ Lp

0
dx
√
gxx, (1.34)

and a gravitational wave traveling along the z-axis passing the detector will change the
proper distance to

L =

∫ Lp

0
dx
√
gxx + hTTxx (t, z = 0)

=

∫ Lp

0
dx
√

1 + hTTxx (t, z = 0)

' Lp

(
1 +

1

2
hTTxx (t, z = 0)

)
. (1.35)

The change in proper distance as a result of the gravitational wave interacting with the
detector therefore is

δL

L
' 1

2
hTTxx (t, z = 0). (1.36)

A photon traveling between two mirrors in one arm of a laser interferometer interacting
with this gravitational wave would now require a phase shift of δφ = 4πδL/λ with λ
being the wavelength of the photon. A photon traveling in the other perpendicular arm
of the laser interferometer would not acquire any phase shift and the resulting difference
in phase can be measured by interference patterns when the two photons are in the
end super-positioned again. In practice however it turns out to be very complicated
and technically challenging to measure gravitational waves for a multitude of reasons.
First, the assumption that we are in an entirely flat region of space-time is not true due
to the gravitational field of the earth and other near-zone effects introducing noise into
the detector. Due to that it is not anymore possible to genuinely distinguish a gravi-
tational wave from the background space-time. Second, the detector itself introduces
extra sources of noise, that need to be taken into account. Seismic noise, i.e. noise
transmitted through ground vibrations from objects moving more or less in the vicinity
of the detectors (people walking around, trains passing by), needs to be isolated by
suspending the detector mirrors on very-advanced multi-stage pendula. Thermal noise
is noise generated by thermal fluctuations in the mirrors and other parts of the interfer-
ometer itself. Photon-shot noise is due to the quantum nature of light itself and leads
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1. BINARY BLACK-HOLE SPACE-TIMES

to statistical distribution of the interference pattern measured when combining the two
laser-beams. To minimize its effect we can increase the power in the laser-beam and
achieve a higher accuracy in the measurement of the position of the photons but on the
other hand introduce a higher uncertainty into the momentum measure which will lead
to higher fluctuations in the momentum transferred to the mirrors and in addition a
higher thermal noise. This however can be in turn minimized by using squeezed states
of light. One other source of noise possibly affecting the sensitivity of the detector is
gravity gradient noise which is cause by local fluctuations in the near-zone gravitational
field. This set serious limitations on the frequency range for earth-based gravitational
wave detectors and limits them to frequencies of above 1Hz. To circumvent this limi-
tation space-based missions and underground detectors are proposed which would have
access to this astrophysically highly interesting range of frequency. As we will discuss
in more detail in the next section we expect many supermassive black-hole systems to
generate gravitational waves in this frequency range. As a result of all these noise-
sources each detector has a unique sensitivity curve which is tuned to give maximum
sensitivity for a specific frequency range. This frequency range typically is chosen to
match the frequency range of the designated sources (i.e. binary black-hole or binary
neutron-star systems with chosen parameters). One such sensitivity curve for the cur-
rent and planned advanced laser interferometer gravitational-wave observatory (LIGO)
detector is shown in figure 1.2.

Figure 1.2: Initial LIGO interferometer sensitivity curve (in red) together with potentially
contributing noise curves. Seismic, thermal, and photo-shot noise mainly contribute limit
the sensitivity in the different frequency regions. In blue is shown the theoretically best
possible sensitivity curve achievable for a ground-based detector, limited by gravity gradient
noise and residual gas noise. Figure taken from [40].

Although one detector would be enough to measure a gravitational wave, to elim-
inate as much as possible the uncertainty of false-alarms related to noise affecting the
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measurement of the detector, one would like to achieve a coincidence detection between
at least two detectors located far away from each other. Additionally, two detectors
with different orientations would allow to measure both polarizations of a gravitational
wave. It should be noted that so far no gravitational wave has been measured. In a next
step current earth-based detector are receiving a technology upgrade to increase their
sensitivity and in addition multiple next-generation detectors (space- or earth-based)
are proposed.

1.5 Binary black-hole mergers and their astrophysical en-
vironment

The evolution of a black-hole binary system can be described in three stages: After
the formation of a binary system at some point the two black holes orbit each other on
nearly circular orbits [41]. This stage can last for multiple millions of years, depending
on the mass of the system and at first very little energy is radiated away from the
system in the form of gravitational waves. However as the separation becomes closer
and closer, the amplitude and frequency of the emitted gravitational waves increases
and thus the system looses energy more rapidly. At some point in the evolution this
effect becomes so strong, that a separation is reached after which no stable quasi-circular
orbit is possible anymore (the inner-most stable orbit (ISCO)). Hereafter the two black
holes first plunge and finally merge to form a single, excited black hole as a result of
the merger. This remnant first is deformed and after radiating away perturbations
which are present as a result of the recent merger, it evolves to an isolated, single black
hole. This process is called a ring-down as the excited black hole radiates away all
perturbations from axial- or spherical symmetry in the form of quasi-normal modes,
exponentially damped gravitational radiation. These quasi-normal modes have specific
frequency that can be identified with the mass and spin of the black hole and can
therefore if detectable be used to measure mass and spin of the remnant black hole.
The remnant is expected to evolve to a Kerr space-time [42, 43, 44, 45], however this
has not been proven mathematically yet. Detailed aspects of the ring-down process
and it’s signature in the linear momentum carried away by the gravitational waves are
illustrated in chapter 9.

While the orbits of the binary initially may be highly eccentric (depending on the
circumstances of its formation), it can be shown that due to radiation reaction damping
the eccentricity will be removed on a rather short time-scale of a few hundreds of orbits.
While the binary inspirals the emitted gravitational radiation is essentially sinusoidal
in nature, but with monotonically increasing amplitude and frequency. Current binary
black-hole simulations typically evolve 10-15 orbits before merger and therefore take
initial data with circular orbits for both black holes. This is justified by mentioned
eccentricity removal over the millions of orbits in the early inspiral phase. however
recent simulations of accretion disks have suggested that due to interaction of the binary
with an accretion disk in the late inspiral it may be possible to have highly eccentric
orbits also in the very late inspiral which so far has not been taken into account by
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1. BINARY BLACK-HOLE SPACE-TIMES

most numerical simulations. Eccentricity will add an additional modulation to the
gravitational wave signal emitted by the binary.

The parameter space of binary black-hole systems consists of the the mass-ratio and
the two spin-vectors and is therefore 7-dimensional. All the results scale trivially with
the total system mass. In practice however since we start our simulation at a finite
separation of the two black holes, we have to introduce as initial parameters also the
initial momenta of both black holes. While these 6 additional parameters effectively
increase our parameter space they are introduced only to mimic the behavior of the
binary at the chosen initial separation and such our results must be independent of the
chosen separation. One can therefore think of a binary black-hole merger simulation
as a mapping of the initial 7 parameters of the two individual black holes two the
properties of the final black-hole space-time,

(η,S1,S2)→ (vkick,SF ,MF ) (1.37)

where η is the mass-ratio of the binary, S1 and S2 are the spin vectors of both individual
black holes, and vkick is the boost velocity, SF the final spin and MF the final mass of
the remnant black hole. The parameters of the remnant are another interesting field
that can be explored by numerical simulations. As already obvious from (1.37) the final
black hole in general obtains a boost-velocity, the so-called kick due to asymmetries in
the emitted gravitational radiation. This kick depends on the initial parameters of the
binary and can be so large [46] that the remnant may escape its host galaxy. In addition
the time evolution of the kick velocities reveals a feature commonly referred to as the
’anti-kick’, a decrease in the the kick-velocity around the formation of the common
horizon of the remnant which will in detail describe in chapter 9. In addition to the
boost-velocity, the remaining parameters are the spin-vector and mass of the remnant
black hole. Since it is computationally very expensive to cover the whole parameter
space of binary black-hole mergers numerically it is desirable to have effective analytical
mappings of the initial parameters into the parameters of remnant, as presented i.e., in
[47, 48].
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2

Black hole geometry

Black holes play a crucial role in theory of GR as already seen in chapter 1. The
concept of a horizon can be used to determine the existence and characterize black
holes in a space-time. Horizons form the boundary of two regions of space-time which
are causally disconnected. Since the hyperbolic nature of GR implies causal relations
between events, horizons play a crucial role which events in a space-time can influence
others. Black-hole properties can be uniquely described by its event horizon (EH). The
EH is defined as the surface where null geodesics are neither in-going or outgoing, but
have null expansion. It therefore divides space-time into a region where all outwards
directed null geodesics will necessarily fall back into the black hole and a region where
outwards directed null rays can escape to infinity. Since the existence of an EH is a
global property of space-time we need to know the full evolution of our space-time
before being able to determine whether an EH has been formed or not during a typical
simulation. It can therefore not be used to find horizons during the course of a simula-
tion, which however is a highly interesting aspect of binary black-hole simulations. It
is therefore useful to introduce a local definition of horizons, the concept of an apparent
horizon. An apparent horizon can be found locally, as in on a single spatial hyper-
surface of space-time, and can thus be used to search for black holes in simulations
without knowing the global properties of space-time and its future time evolution. It
was shown [49, 50, 51] that the existence of an apparent horizon implies the existence
of an outer or coinciding EH and a singularly contained within if cosmic censorship [8]
is assumed to be true. On apparent horizons we can define quasi-local properties like
mass and spin of an apparent horizon (and hence a black hole) and we can make use
of this fact to measure properties of black holes during the course of our numerical
simulations. In addition one can also introduce the concept of isolated horizons [52]
and dynamical horizons (DH) [53]. Isolated horizons are horizons in equilibrium not
undergoing any interaction with other parts of space-time. For most of the inspiral and
also after ring-down we can regard the individual and later the common horizon in a
binary black-hole merger simulation as isolated (to our numerical accuracy). However
it is useful to generalize the concept of an isolated horizon to something called a DH.
A DH is a non-expanding horizon but allows for the time-evolution of the horizon and
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can also be used in the highly dynamical portions of a binary black-hole merger. In
the following sections we will review the basic definitions and concepts regarding event,
apparent, isolated and DHs as well as highlight some of their geometrical properties
which will be become relevant in chapter 10. The notations in chapters 9 and 10 vary
from the one presented here, as they are specifically adapted to the scenarios, that are
considered in these chapters.

Figure 2.1: Event horizon evolution in a binary black-hole merger simulation. The two
individual EHs merge and form a common EH as time proceeds from bottom to top of the
figure. Figure by Peter Diener.

2.1 Event horizons

An EHs is defined as the past causal boundary of future null infinity [49]. All outgoing
null geodesic on the EH form a set of closed geodesic curves. This automatically implies
the EH itself being a null hypersurface in space-time. The EH forms a causal boundary
between the interior and exterior space-time. No geodesic can escape from the interior
space-time to the exterior. We call the region inside the EH a trapped region of space-
time. Due to the non-locality of the definition of EHs, it is obvious that we have to
know the complete future of the global space-time to determine whether an EH has
formed or not. The main reason for that is the rate of exponential divergence of null
geodesics as we approach the horizon from future null-infinity. The closer we get to the
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horizon surface the slower this convergence goes. The global nature of their definition
makes EHs of limited use in standard Numerical Relativity. In most applications we
want to be able to determine the existence and properties of a black hole during the
time evolution of a dynamical space-time. Using EHs we necessarily would first need to
complete the whole evolution and then search ’backwards in time’ for the EH. However,
there exist implementations of EHs finders [54]. These EH finders typically work by
integrating back in time null geodesics using the fact that the EH acts as an attractor
of these null rays. For certain purposes, most importantly visualization of space-time
geometry, EHs provide as useful tool to probe space-time properties 2.1. More details
can be found in [55].

2.2 Apparent horizons

More practical for the use in numerical space-time simulations is the concept of an
apparent horizon. An apparent horizon is defined as the outer boundary of a trapped
region on a hypersurface of space-time. This definition already points out one of the
key aspects of apparent horizons. We can determine whether an apparent horizon is
present or not by evaluating data from only one spatial hypersurface, thus we are able
to use apparent horizons as a probe of black-hole existence and properties during the
course of a numerical simulation. Alternatively an apparent horizon can be defined as
the outermost marginally outer trapped surface (MOTS) on a given hypersurface. A
MOTS is defined as a closed 2-surface S with expansion of all future-directed outgoing
null geodesics being zero. This definition makes use of the notion of the expansion of
outgoing or in-going null geodesics, which is defined and illustrated next.

2.2.1 Expansion

In a hypersurface Σ consider a closed 2-surface S which is the boundary of a set Ω.
We can define its unit space-like normal Ra and unit time-like normal T a. We can now
construct outgoing and in-going null normals to S as

`a =
1√
2

(T a +Rb), (2.1)

and

na =
1√
2

(T a −Rb), (2.2)

where the normalization is given by the Cauchy slicing. Some of these quantities are
illustrated in figure 2.2. The Cauchy slicing also induces a metric qab on S and the
expansion along outgoing or in-going null geodesics is now defined as

θ(l) = qab∇alb (2.3)

and
θ(n) = qab∇anb. (2.4)

Using the expansion we can now characterize different surfaces S.
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2. BLACK HOLE GEOMETRY

Figure 2.2: World-tube as traced out by an apparent horizon S. Shown is the embedding
into the Cauchy hypersurface Σ with T a being the unit time-like normal to Σ and Ra the
outward pointing unit normal to S. la and na represent outgoing and in-going null vectors.
Figure taken from [56].

2.2.2 Trapped surfaces

A closed 2-surface S is called trapped, if

θ(l) < 0, θ(n) < 0. (2.5)

In this case both expansions are strictly negative and this leads to a substantially
different behavior of the 2-surface S when compared to a 2-surface in flat space, which
for comparison has

θ(l) > 0, θ(n) < 0. (2.6)

The existence of a trapped surface implies the existence of a singularity [49, 50, 51] A
closed 2-surface S is called marginally trapped if

θ(l) = 0, or θ(n) = 0, (2.7)

and is called marginally outer trapped if

θ(l) = 0. (2.8)

To recall, an apparent horizon is now defined as the outermost marginally trapped
surface contained in a hypersurface Σ.

2.2.3 Properties of apparent horizons

The existence of an apparent horizon implies that a singularity is contained within
future of the trapped region, as was shown in [49, 50, 51]. Assuming the cosmic cen-
sorship conjecture [8] to hold this also implies that an EH exists. Therefore apparent
horizons provide a useful tool to probe space-time geometry in a numerical simulation.

18



2.3 Isolated and DHs

We can determine whether an apparent horizon is present purely with data on one
hypersurface and can therefore use it to track and measure black holes during the time
evolution of our space-time. As a note of caution we should remark that apparent
horizons depend on the Cauchy slicing in their shape. For that reason it is in some cir-
cumstances difficult to determine if we really found the outermost marginally trapped
surface, since a multitude of those surfaces can appear at times during our simulation.
These jumps are presented in chapter 10. The time-series of apparent horizon surfaces
defines a world-tube, which can be null but does not have to be in general. In case it
is stationary, it can be shown that it is null and that the apparent and EH coincide.
This is for example the case for an (to our numerical precision) isolated single black
hole with no matter or radiation crossing the horizon. Once we have found an apparent
horizon we can use the isolated and DH definitions to determine it’s properties like
mass, area or spin.

2.3 Isolated and DHs

To measure properties of black holes like mass and spin, the formalism of isolated and
DHs [52, 57, 58] has proven to be very useful. To introduce the basic ideas behind this
formalism we first define a non-expanding horizon as a 3-hypersurface ∆ of a space-time
manifold (M, gab) if the following conditions hold:

• ∆ is S2 × R and null

• Θ(l) vanishes on ∆ where l is any null normal to N

• All equations of motion hold on ∆ and if Tab is non-zero, then −T ab lb is required
to be future directed and causal for any future directed null normal lb.

Condition 3 is satisfied by any matter fulfilling the null-energy condition and condition 2
implies that every cross-section of ∆ is marginally trapped. An non-expanding horizon
is for example modeled by a single black hole apparent horizon when it has settled
down to a stationary state and its world-tube traces out a non-expanding horizon. A
non-expanding horizon is invariant under choosing a different slicing of the space-time
manifold and as we will show in the following also the notion of mass and spin are
independent of the chosen slicing. In order to define the mass and angular momentum
of an apparent horizon we require ∆ to be not only a non-expanding horizon but also
that its intrinsic geometry doesn’t evolve. This is the definition of an (weakly) isolated
horizon [59, 60]. However in the end it turns out that the expressions derived of
mass and angular momentum are independent on requiring this extra structure on the
surface so we skip the details about isolated horizons and proceed towards the result
of the final expressions. Since we are often interested in measuring mass and spin of
black holes not only for isolated horizons we first generalize the concept of an isolated
horizons to a DH. As already implied in the definition itself, these surfaces can be used
in dynamical situations which is what we are interested in in most cases. The concept
of a DH generalizes a isolated horizon by not requiring the surface to be in equilibrium
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and null, but allowing for a space-like surface. A DH is defined as follows: A smooth,
three-dimensional sub-manifold ∆ of a space-time manifold (M, gab) is called a DH if
there exists a foliation of closed 2-manifolds such that

• on each leaf S Θ(l) of one null normal la vanishes

• Θ(n) of the other null normal na is negative.

A DH is a world-tube foliated by marginally trapped surfaces and is a quasi-local
quantity, since it does not require asymptotic flatness like the definition of the EH
does. While DHs are an extremely useful concept they do not describe black holes in
every situation since stationary space-times (i.e. an isolated Schwarzschild black hole)
do not admit DHs to be identified. In addition on space-times that are dynamical many
different DHs can be defined (all of them located within the EH of the black hole) so we
need to take some care in determining the DH coinciding with the apparent horizon.
Having determined the surface we can proceed and obtain expressions for mass and
angular momentum of the DH.

2.3.1 Mass and angular momentum

We can define the mass and angular momentum of an apparent horizon using the
isolated and DH frameworks, depending on if the apparent horizon is in equilibrium or
not, as described in the previous subsections. The expressions for mass and spin yield
the same result independent of if we use the isolated or DH framework. The angular
momentum JS on a cross-section S of an horizon ∆ with a 3-hypersurface is [59]

JS =
1

8π

∫
S

(φaRbKab)d
2V, (2.9)

and the integral is evaluated over S. S is required to be axi-symmetric to define angular
momentum at all and Rb is the unit outward pointing normal to S, Kab the extrinsic
curvature on S and φa a tangent rotational Killing vector of the induced metric qab
on S. The requirement on S to be axi-symmetric is necessary so that we are always
able to find a Killing vector φa on S. For details on the different procedures to find
these Killing vectors we refer to [56], but in most cases the Killing transport equation
is solved. If we evaluate JS at infinity it reduces to the ADM expression for the angular
momentum. Additionally to the angular momentum we are often interested in the mass
of a horizon which reads [59, 60]

MS =
1

2RS

√
R4
S + 4JS . (2.10)

RS = (AS/4π)1/2 here is the areal-radius, defined using the area of the horizon A,
and JS the angular momentum as defined before. This results is also found in Kerr
space-times [61, 62] . Now we can also define the irreducible mass of a horizon as [61, 62]

Mirr =
1

2
RS , (2.11)

which is the mass MS minus the rotational energy of the horizon.

20



3

Cauchy evolution systems

Einstein’s equations describe the full 4-dimensional dynamics of space-time. Neither
space nor time has a preferred meaning in the 4-dimensional space-time manifold.
To make use of numerical techniques for the treatment of Einstein’s equations it is
however useful to cast the equations into a form parameterized by an explicit ’time’
parameter. This allows us to numerically solve for the dynamics of space-times (i.e.
like binary black-hole merger systems) that at present can not be solved analytically.
We specify initial data on one hypersurface and then use a set of evolution equations
to determine the future development of the system. A problem that can be formulated
in this way is called an Cauchy initial value problem (CIVP). The solution on a future
hypersurface is generally obtained from evaluating data on past hypersurfaces only.
A CIVP is characterized by obtaining a solution to a hyperbolic partial differential
equation (PDE) in a subset of or the full future development. This set of the future
is parameterized by individual time-slices which are space-like [49, 63]. The solution
is obtained in the course of the evolution on every one of these time-slices. We can
call these surfaces Cauchy surfaces. A Cauchy hypersurface is defined as space-like
and every time-like or null curve only intersects the hypersurface once. On an initial
hypersurface Σ in a subset S the union of all causally connected events that are towards
the future of S and can be uniquely determined from evaluating data only on S form
the Cauchy future development or domain of dependence D+(S). Bounding the domain
of dependence is the future Cauchy horizon H+(S). It determines which events in
the future we can determine from a subset S on a initial hypersurface Σ. Figure 3.1
describes the concepts just introduced.

The Cauchy problem in GR forms a highly non-trivial system of equations due to
the non-linearity of Einstein’s equations. Furthermore a solution to Einstein’s equations
can only be determined up to gauge-invariance. That is solutions form a set of equiv-
alence classes and to determine one member explicitly we have to fix the 4 degrees of
gauge-freedom to a specific choice. It turns out that choosing an appropriate gauge for
Einstein’s equations is very difficult for numerical evolutions. More details on choosing
a proper gauge will be given in section 3.4 One of the first attempts to cast Einstein’s
equations into an CIVP was worked out by Arnowitt, Deser and Misner [65]and is there-
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3. CAUCHY EVOLUTION SYSTEMS

Figure 3.1: Initial data on a subset S of the initial hypersurface Σ determines the future
domain of dependence D+(S). Also shown is the past domain of dependence D−(S) and
the future and past Cauchy horizons H+(S) and H−(S). Figure taken from [64]

fore often called the ADM formulation of Einstein’s equations. In their approach the
4-dimensional space-time manifold is foliated into 3-dimensional spatial hypersurface
parameterized by a time-vector. This procedure is often referred to as a ’3+1’-split of
space-time. The ADM equations therefore are a reformulation of Einstein’s equations
into six evolution equations and four constraint equations. The constraint equations
determine the solution on a given hypersurface of the foliation and the evolution equa-
tions govern the time evolution of the solution from one hypersurface to the next. Using
the Bianchi identities one can show that once the four constraint equations are satis-
fied on the initial hypersurface, the evolution equations guarantee that the constraint
equations will also be satisfied on any other hypersurface obtained during evolution
for the continuum solution. Using the Bianchi identities one can actually show that
the nine 3-metric components actually reduce to only six independent ones, and thus
one only needs six of the nine equations to determine the system. These six equations
can now conveniently chosen to be the six evolution equations. The remaining four
constraint equations are then automatically satisfied. Numerical simulations based on
the ADM system were first performed in [66, 67]. Although the system looks very
appealing for numerical studies [68] it has the severe drawback of being only weakly
hyperbolic and therefore not necessarily stable for numerical simulations. It permits
exponentially growing modes that spoil any discretized evolution system based on the
ADM equations. For obtaining stable discretized evolution systems it is necessary to
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have a strongly hyperbolic continuum evolution system. For strongly hyperbolic evolu-
tion systems a well developed mathematical theory exists and can be used to discretized
the continuum evolution system. In the following sections we will concentrate on two
of the many strongly hyperbolic evolution systems for Einstein’s equations, namely the
BSSNOK and generalized harmonic systems. The BSSNOK system was first devel-
oped by Baumgarte, Shapiro, Nakamura, Shibata, Oohara, and Kujima [69, 70, 71].
In combination with choosing the right gauge, it represents a very robust discretized
evolutions system that is used in many of today’s applications of numerical evolutions.
The other class of evolution system we will pay close attention to in this thesis is the
generalized harmonic system [72]. Harmonic coordinates were already used in the first
studies of GR (Einstein himself used harmonic coordinates to analyze aspects of his
field equations) and reduce the principal part of the evolution equations to a set of
wave-equations for the space-time metric. A generalized harmonic system has also
been used for the first successful binary black-hole merger simulation [73, 74].

In the following sections we will first introduce the ADM decomposition of Einstein’s
equations and then continue to describe the BSSNOK and generalized harmonic classes
of evolutions systems in detail.

3.1 The ADM formulation

The ADM formalism decomposes the 4-dimensional Einstein’s equations and the space-
time geometry they describe into a set of 3-dimensional spatial hypersurfaces and their
embedding in the 4-dimensional space-time manifold. Space-time becomes foliated
along a time-like vector field. Figure 12.1 illustrates a foliation and its embedding into
the 4-dimensional space-time manifold. Many of the the calculations for the BSSNOK
and generalized harmonic systems are based on basic ADM quantities and we therefore
here first summarize the basic features of the ADM system. The text follows closely [75]

3.1.1 3+1 decomposition

Figure 12.1 two spatial hypersurfaces Σt and Σt+dt embedded into the 4-dimensional
space-time geometry. The 4-dimensional geometry can be described by the following
quantities: On a spatial hypersurface the geometry is described by the 3-metric γij
(indices i, j only range over 1,2,3). The time-like unit normal is defined as

nµ = −αgµν∇νt. (3.1)

Here gµν is the full 4-metric and t is a universal time function. The hypersurface Σi are
level sets of the time function t and α can be identified as the lapse function, defined
by

− α2 := −gµν∇µt∇νt. (3.2)

α is a gauge-function, it depends on the chosen foliation of time-slices. We can de-
termine the lapse of proper time from one hypersurface Σt to a successive on Σt+dt
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Figure 3.2: 3+1 decomposition of a space-time manifold into a series of spatial hypersur-
faces Σi. Lapse function α and shift-vector-field βi are schematically depicted as well as a
time-like vector-field tν .

by
dτ = α(t, xi)dt, (3.3)

where xi are the spatial coordinates on the hypersurface. In addition to the lapse we
can define a time vector field

tµ = αnµ + βµ. (3.4)

Here βµ is a purely spatial vector field βµ = (0, βi) which is commonly referred to as
the shift vector. This vector yields the change in the coordinates xi from one spatial
hypersurface to the next, as it describes the lines of constant spatial coordinates on
each slice,

xit+dt = xit − βi(t, xi)dt. (3.5)

By choosing lapse and shift we can now fully determine our four degrees of gauge-
freedom expressing the 4-metric line element using the ADM variables α, βi, γij

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt). (3.6)

The normal vector to the spatial hypersurface is given by

nµ = (−α, 0, 0, 0) , nµ =
1

α
(1,−βi), (3.7)

and using it we can express the 3-metric as

γµν = gµν + nµnν . (3.8)

With respect to the 3-metric we can now define a covariant derivate operating on the
spatial hypersurface and using this derivative operator can express geometric quantities

24



3.1 The ADM formulation

intrinsic to the spatial hypersurface, most importantly the 3-Riemann tensor. However,
in addition we need another quantity to fully determine the 4-geometry, the extrinsic
curvature tensor.

3.1.2 Extrinsic curvature

The extrinsic curvature is defined as

Kµν = −γσµγρν∇(σnρ). (3.9)

It describes the embedding of the spatial hypersurface Σt into the space-time manifold.
Kµν is symmetric and its only non-zero components are the spatial ones. We can also
write it using the Lie-derivative along the normal-vector to the spatial hypersurface nµ
Ln

Kµν = −1

2
Lnγµν . (3.10)

The extrinsic curvature measures the rate of change in the 3-metric on a hypersurface
Σ along the normal nµ. It therefore yields the time evolution of the 3-metric γij , given
that nµ can associated with the flow of time. Kµν acts as a time-derivative of γµν .

3.1.3 The ADM equations

The ADM equations are a reformulation of Einstein’s equations using the 3+1 quantities
α, βi, γij and Kij . The 3+1 decomposition of Einstein’s equations can be achieved by
using the Gauss, Codazzi and Ricci equations. As a result we get the ADM equations,
which are a set of constraint equations, which determine the solution on a spatial
hypersurface and a set of evolution equations which determine the evolution of the
solution in time, i.e. from one hypersurface Σt to the next one Σt+dt. The evolution
equations guaranty that if the constraints are fulfilled on the initial hypersurface, they
will automatically be fulfilled also at any later time 1. They constraint equations are

R+K2 −KijK
ij = 16πρ Hamiltonian constraint, (3.11)

DjK
j
i −DiK = 8πji momentum constraint, (3.12)

where Di is the derivative operator in respect to the spatial 3-metric γij , ρ is the total
energy density as measured by an normal observer nµ, defined as

ρ := nµnνTµν , (3.13)

and the momentum density jµ is defined as

jµ = −γνµnρTνρ. (3.14)

1This is true only for the continuum solution.
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3. CAUCHY EVOLUTION SYSTEMS

For vacuum space-times both the energy and momentum density are zero. The evolu-
tion equations are

∂tγij = −2αKij +Diβj +Djβi (3.15)

∂tKij = −DjDiαα(Rij − 2KikK
k
j +KKij)

−α8π(Sij −
1

2
γij(S − ρ))

+βkD)kKij +KikDjβ
k +KkjDiβ

k. (3.16)

Lapse and shift can be freely chosen as they are not determined by the ADM equations.
We can exploit the gauge-freedom to prescribe the lapse and shift. However it turns
out be not straight-forward to find suitable lapse and shift functions in order to obtain
stable numerical evolutions. For example singularities which are necessarily contained
inside black-hole horizons should be avoided by a suitable choice of coordinates. The
ADM formulation although used in the first attempts of numerical evolutions of black-
hole space-times turned out to be numerically unstable for long-term 3D evolutions,
so we will proceed to describe two other formulations of Einstein’s equations which in
practice turn out be more successful in obtaining stable numerical evolutions.

3.2 BSSNOK evolution

The ADM evolution equations, when discretized, lead to strong instabilities. This
renders them of little use for numerical evolutions of black-hole space-times. The main
reason for the instabilities are mixed second derivatives of the spatial metric that appear
in the Ricci tensor (mixed here refers to derivatives both in time and space). It was
shown that without these mixed terms the system would be hyperbolic since it could
be written as a set of wave equations for the spatial metric [76]. Having a system
that is hyperbolic is favorable because this guarantees the existence and uniqueness
of solutions. In addition, stability theorems for the discretized system can be applied,
making sure that the system yields stable numerical evolutions. Additionally one can
use the fact that hyperbolic systems have characteristic lines of propagation for the
solution, to construct proper boundary conditions which are another subtle and tricky
part of numerical evolutions on compact domains. Nakamura, Oohara and Kojima first
suggested to get rid of the mixed derivatives in the Ricci tensor [70] and later Shibata
and Nakamura [71] and Baumgarte and Shapiro [69] extended this work. We therefore
typically refer to systems based on their approach BSSNOK systems. In addition to
their initial work a number of improvements and modifications have been introduced
and we will describe the system here in its most up to date form [77, 78, 79]. The
BBSNOK systems are shown to be strongly hyperbolic and therefore possess superior
stability properties than the only weakly hyperbolic ADM system. While BSSNOK
systems are widely used for state-of the art binary black-hole simulations and yield
very robust discretized evolution systems, the reason as to why that is still being
analyzed [80, 81, 82].

26



3.2 BSSNOK evolution

3.2.1 Conformal traceless 3+1 representation

To eliminate mixed derivatives in the Ricci tensor we can introduce auxiliary variables.
First, we will conformally rescale the 3-metric by introducing a conformal factor Ψ =
e4φ. As a result we obtain the conformal metric

γ̃ij = e4φγij , (3.17)

where the conformal factor is chosen as φ = (ln(γ))/12 with γ = det(γij). This yields
a truly conformal metric γ̃ij with unit determinant γ̃. In a similar fashion we can first
split the extrinsic curvature into its trace and a trace-free part Aij and then apply a
conformal rescaling for the traceless part,

Ãij = e4φ(Kij −
1

3
K). (3.18)

Being a conformally rescaled quantity, indices of Ãij are raised and lowered with the
conformal metric γ̃ij , so that we obtain the inverse Ãij = e4φAij . By now taking the
trace of the ADM evolution equation for the 3-metric (3.15) and using ∂t ln γ = γij∂tγij
we obtain

∂t ln γ1/2 = −αK +Diβ
i. (3.19)

Taking the trace of the evolution equation of the extrinsic curvature (3.16) and using
the Hamiltonian constraint (3.11) we get an evolution equation for the trace of the
extrinsic curvature

∂tK = −D2α+ α(KijK
ij + 4π(ρ+ S)) + βiDiK. (3.20)

Further substituting for the extrinsic curvature, we get

∂tK = −γijDjDiα+ α(ÃijÃ
ij +

1

3
K2) + 4πα(ρ+ S) + βi∂iK. (3.21)

The evolution equation for the conformal factor can now be obtained in an analogue
way resulting in

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂iβ

i. (3.22)

The evolution equations for the trace-less quantities γ̃ij and Ãij then yield

∂tγij = −2αÃij + βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃kj∂iβ

k − 2

3
γ̃ij∂kβ

k. (3.23)

and

∂tÃij = e4φ(−(DiDjα)TF + α(RTFij − 8πSTFij ))

+α(KÃij − 2ÃilÃ
l
j)

+βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k. (3.24)
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3. CAUCHY EVOLUTION SYSTEMS

The superscript TF in the last equation denotes the trace-free part of tensors, as defined
already for the extrinsic curvature. The divergence terms of the shift vector field ∂iβ

i

arise due the conformal rescaling. The numeric factors in front of each of the last terms
in equations (3.21)-(3.23) correspond to φ being a tensor density with weight w = 1/6,
Ãij and γij being tensor densities with weight w = −2/3. We can continue and define
the conformal connection symbols

Γ̃i := γ̃jkΓ̃ijk = −γ̃ij,j , (3.25)

where Γ̃ijk are the connection coefficients associated with the conformal metric γ̃ij . We
can no rewrite the Ricci tensor in the form

R̃ij = −1

2
γ̃lmγ̃ij,lm + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k +

γ̃lm
(

2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

)
. (3.26)

All the mixed second derivatives of γ̃ij besides the Laplace operator γ̃lmγ̃ij,lm have
now been absorbed into first derivatives of Γ̃i. If we now treat the Γ̃i as independent
functions we need to obtain an evolution equation for them, too. We get

∂tΓ̃
i = −∂j

(
2αÃij − 2γ̃m(jβi),m +

2

3
γ̃ijβl,l + βlγ̃ij,l

)
. (3.27)

and using the momentum constraint (3.12) we can further expand this to

∂tΓ̃
i = −2Ãij∂jα+ 2α

(
Γ̃ijkÃ

kj − 2

3
γ̃ij∂jK − 8πγ̃ijSj + 6Ãij∂jφ

)
+βj∂jΓ̃

i − Γ̃j∂jβ
i +

2

3
Γ̃i∂jβ

j +
1

3
γ̃liβj,jlγ̃

ljβi,lj . (3.28)

Equations (3.22), (3.23), (3.20), (3.24) and (3.28) form an equivalent evolution system
and can be used instead of the ADM evolution equations. Because we have introduced
the conformal connection coefficients Γ̃i as independent variables, we have also intro-
duced their definition as one more constraint equation (3.25). The evolution variables
of the BSSNOK formulation are

φ, γ̃ab, K, Ãab and Γ̃a. (3.29)

In [78, 79] it has been found that a different choice for the conformal factor improves
the behavior of the numerical solution close to the singularity. We therefore here adept
this choice, using

φ̂k := (detγab)
(−1/κ), (3.30)

where κ > 0 is a parameter. It has been shown in [78] that the choice of χ := φ̂3

has the benefit of avoiding singularities in some evolution terms of Bowen-York initial
data (see next section for details on initial data). In addition the choice of W := φ̂6

provides the initial benefit of making sure that γ stays positive during the evolution [79].
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3.3 Generalized harmonic evolution

This condition needs to enforced for χ, since it can create instabilities in the evolution
system. Now the final set of evolution equations reads

∂tφ̂κ = −2

κ
φ̂καK + βi∂iφ̂κ −

2

κ
φ̂κ∂iβ

i. (3.31)

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃kj∂iβ

k − 2

3
γ̃ij∂kβ

k. (3.32)

∂tK = −γijDjDiα+ α(ÃijÃ
ij +

1

3
K2) + 4πα(ρ+ S) + βi∂iK. (3.33)

∂tÃij = (φ̂κ)κ/3(−(DiDjα)TF + α(RTFij − 8πSTFij ))

+α(KÃij − 2ÃilÃ
l
j)

+βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k (3.34)

∂tΓ̃
i = −2Ãij∂jα+ 2α

(
Γ̃ijkÃ

kj − 2

3
γ̃ij∂jK − 8πγ̃ijSj + 6Ãij∂jφ

)
+βj∂jΓ̃

i − Γ̃j∂jβ
i +

2

3
Γ̃i∂jβ

j +
1

3
γ̃li∂l∂jβ

j + γ̃lj∂l∂jβ
i (3.35)

A more detailed discussion on the BSSNOK systems can be found in [77, 78, 79]. The
discretization of this system will be discussed in chapter 8

3.3 Generalized harmonic evolution

In this section we present the basic equations used for a generalized harmonic system
formulated using the 3+1 variables. The formulation in generalized harmonic coordi-
nates xµ = (t, xi) was first described by Friedrich and Rendall [293]. (We in the pre-
sentation here make minor alterations in the notation of [293] to conform to standard
usage in numerical relativity.) This 3+1 foliation gives rise to the metric decomposition

gµν = −nµnν + hµν (3.36)

where

nµ = −α∂µt, α =
1√
−gtt

(3.37)

is the unit future directed time-like normal to the foliation. The evolution proceeds
along the streamlines of the vector field ∂t = αnµ∂µ + βµ∂µ determined by the lapse α
and shift βµ = (0, βi).

In this formulation the constraints are

Cµ := Γµ − Fµ (3.38)

where Γµ is related to the Christoffel symbols by Γµ = gρσΓµρσ and Fµ(g, x) are harmonic
gauge source functions.
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3. CAUCHY EVOLUTION SYSTEMS

When the harmonic constraints are satisfied, i.e. Cµ = 0, the Einstein equations
reduce to a system of quasi-linear wave equations for the spatial metric hij , shift βi

and lapse α which take the form [293]

− gµν∂µ∂νhij = Sij (3.39)

1

α2

(
∂t − βj∂j

)2
βi − hjk∂j∂kβi = Si (3.40)

1

α2

(
∂t − βj∂j

)2
α−DjD

jα = S, (3.41)

where Di is the covariant derivative associated with hij and the right-hand-side S-terms
do not enter the principle part. In detail, these terms are

Sij =
2

α2
Kij (∂tα− Lβα) +

2

α2
DiαDjα (3.42)

−2D(i

[
hj)kh

k
νF

ν
]

+
4

α3
D(iαhj)k

(
∂tβ

k − β`∂`βk
)

+
4

α2

(
∂(jβ

k
)
∂thi)k +

2

α2
h`(i

(
∂j)β

k
)(

∂kβ
`
)

− 2

α2

(
∂(jβ

k
)
Lβhi)k −

2

α2

(
∂(jβ

k
) (
∂`hi)k

)
+4KikK

k
j − 2KijK − 2γ`kihn`g

kmγnmj − 4γ`kmh
knh`(iγ

m
j)n +Bij

Si = 4
(
Ki` −Khi`

)
D`α (3.43)

−2α
(
Km` −Khm`

)
γi`m −

(
∂`β

i
)
γ`

+
(
∂`β

i
)
D` logα

+2αnνF
ν
[
γi −Di logα− hiνF ν

]
−2αKhiνF

ν −Di (αnνF
ν)−

(
∂t − βk∂k

) (
hiνF

ν
)

+Bi

S = −α
[
KijK

ij − 4KnνF
ν − 2 (nνF

ν)2 − 2K2

]
(3.44)

+
(
∂t − βk∂k

)
(nνF

ν) +B,

where γkij are the Christoffel symbols associated with Di, γ
k = hijγkij , Kij = (1/2α)(∂t−

Lβ)hij is the extrinsic curvature of the Cauchy foliation and the quantities B,Bi, Bij
are constraint modification terms defined in (3.56)-(3.58) which are used to stabilize the
constraint propagation system. With the addition of constraint modification, (3.39)-
(3.41) correspond to equations (2.33), (2.36) and (2.38). See [294] for further details.

Constraint preservation for the Cauchy problem follows from the system of ho-
mogeneous wave equations satisfied by the harmonic constraints (3.38). Constraint
propagation can be extended to the initial-boundary value problem by implementing
the hierarchy of Sommerfeld boundary conditions presented in [295, 296]. However, this
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3.3 Generalized harmonic evolution

has not yet been incorporated in the version of the code being used for the results pre-
sented in this thesis. For the simulations presented in chapter 10 we maintain constraint
preservation by causally isolating the region of interest from the outer boundary.

For the purpose of using the Method of Lines (MoL) to apply a Runge-Kutta (RK)
time integrator, we re-write the system (3.39)-(3.41) as first differential order in time
and second differential order in space by using the time-like vector

ñν =
1

α
(δν0 − wβν) (3.45)

to introduce the auxiliary variables

(3.46)

Π := Lñα = ñµ∂µα (3.47)

Πi := Lñβ
i = ñµ∂µβ

i − βk∂kñi (3.48)

Πij :=
1

2
Lñgij =

1

2
[ñµ∂µhij + giµ∂jñ

µ + gjµ∂iñ
µ] . (3.49)

Here the function w is chosen to be unity everywhere except near the boundary where
it smoothly goes to zero. Inserting equation (3.45) into equations (3.47)-(3.49) gives
the evolution equations for the lapse, shift and 3-metric,

∂tα = αΠ + wβi∂iα (3.50)

∂tβ
i = αΠi +

w

α
βiβk∂kα− βiβk∂kw (3.51)

∂thij = 2αΠij − α
[
ñk∂khij + giµ∂jñ

µ + gµj∂iñ
µ
]
. (3.52)

The evolution equations for the auxiliary Π-variables then follow from the first time
derivatives of (3.50)-(3.52), after using (3.50)-(3.52) and (3.39)-(3.41) to eliminate first
and second time-derivatives of the metric variables.

3.3.1 Constraint damping

We modify the evolution system by terms vanishing when the constraints are fulfilled,
based upon the results presented in [283]. For this purpose we set

Aµν = − a1√−gC
α∂α

(√−ggµν)+
a2C

α∇αt
ε+ eρσCρCσ

CµCν − a3√
−gtt

C(µ∇ν)t (3.53)

where ε is a small positive number, ai are positive parameters and

eρσ = nµnν + hρσ (3.54)

is a Euclidean 4-metric. In terms of

Ãµν = gµσgνρA
σρ − 1

2
gµνgρσA

ρσ (3.55)
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the B-terms added to (3.42)-(3.44) for constraint modification are

B =
1

α

(
−βiβjÃij + 2gijβ

jβkgilÃkl + 2gijβ
jgikÃtk

)
(3.56)

Bi = −2
(
βjgikÃkj + gijÃtj

)
(3.57)

Bij = −2Ãij . (3.58)

3.4 Gauge choices

GR is a gauge-invariant theory, that is no coordinate system is preferred over another
one. Space-times that only differ up to a diffeomorphic transformation are equivalent.
In order to perform a numerical evolution we however need to fix this gauge-freedom
and explicitly choose a coordinate system since we need to represent the space-time
variables on a computer. We already encountered the gauge-parameters α and βi in
the previous section in the 3+1 decomposition of Einstein’s equations. They can be
chosen freely, but proper care has to be taken in choosing appropriate functions as
lapse and shift in order to obtain stable numerical evolutions. The choice of a proper
gauge is crucial for the success of a numerical evolution, it has turned out. Choosing
the most naive gauge (geodesic slicing) and starting a black-hole evolution we would
find that our coordinates, after a short time, would fall into the singularity, making
further evolution impossible. In order to find a proper gauge for black-hole evolution
we desire a number of useful features:

• The gauge should adapt to the underlying symmetries of the space-time

• The formation of coordinate singularities should be avoided in any case. If in the
space-time a physical singularity is present, the gauge should make sure to avoid
this singularity.

• Gauge prescriptions should ideally be well behaved mathematically (in order to
not introduce problematic features into the evolution system themselves)

• The gauge should be formulated in a coordinate-independent way. One way to
ensure this is to apply covariance.

Practically formulating a gauge we can either prescribe conditions on the geometric
variables of our evolution system themselves or relate them to the gauge functions
by means of equations indirectly. This leads to gauge conditions ranging from simple
algebraic equations to more complicated hyperbolic or elliptic PDEs and evolution
equations and evolution equations. In this section we first review the basic gauge
conditions used for the BSSNOK systems and then continue to describe typical gauge
choices for the generalized harmonic system presented in the previous section.
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3.4 Gauge choices

3.4.1 Geodesic slicing

Geodesic slicing refers to the simplest gauge choice possible, i.e. α = 1 and βi = 0.
Using this slicing condition one can show that a point initially located on the throat
of a black will hit the singularity after proper time τ = t = πM [83]. Therefore a
numerical evolution code would also crash after that time because the entire numerical
grid would have fallen into the black hole. This makes geodesic slicing unusable for
numerical evolutions of black-hole space-times. A slicing condition that doesn’t have
this limitation is maximal slicing.

3.4.2 Maximal slicing

Maximal slicing prevents the computational grid to fall into the black hole by choosing
a lapse that approaches Minkoswki in the exterior of the black hole and approaches zero
as it gets close to the singularity contained in the black-hole horizon. It ’freezes’ time
close to the black hole and allows time evolution in the exterior region. In combination
with initial data where the singularity lies towards the future we can use maximal slicing
to evolve black-hole space-times without hitting the singularity contained within [68,
84, 85, 86, 87, 88]. The name maximal slicing was chosen because the slices have
maximal volume. They are characterized by

K := γijKij = 0 =
∂K

∂t
. (3.59)

By inserting this condition into the evolution equation for the trace of the extrinsic
curvature K (3.20) we obtain a condition for the lapse

DiDiα = αR, (3.60)

or using the Hamiltonian constraint

DiDiα = αKijKij . (3.61)

The result is an elliptic equation that needs to be solved at every time-step during
evolution to obtain the profile of the lapse and ensure maximal slicing. This is not
only computational expensive but also it has turned out that maximal slicing leads to
a phenomenon called slice-stretching, because it freezes time at the singularity. This
stretches the slice to such an extent that the numerical evolution will crash eventu-
ally [87, 89]. This slice stretching can be avoided by providing suitable conditions for
the shift vector-field βi. Singularity avoiding slicing examples are depicted in figure 3.3

3.4.3 Hyperbolic slicing

Before continuing towards gauge conditions that do not have the drawback of being
computationally very expensive we introduce a slightly modified condition on the extrin-
sic curvature, the K-driver condition. Considering again the maximal slicing condition
with K = 0 we easily see that any perturbation in the lapse, i.e. as introduced by
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3. CAUCHY EVOLUTION SYSTEMS

Figure 3.3: Singularity avoidance of a set of time-slices. The slices never hit the singu-
larity but will suffer severe slice-stretching in the region close to the singularity. Figure
taken from [90].

numerical error will yield K different from zero and the gauge condition in the way it is
formulated has no possibility to reach K = 0 again. Therefore the K-driver condition
has been introduced [91] which is of the form,

∂K

∂t
+ cK = 0, (3.62)

with c > 0 being constant in time. This condition will exponentially drive k to zero
and thus actively enforce K = 0 even if perturbations in the lapse are generated during
the evolution. Using the Hamiltonian condition we can again write this as a condition
for the lapse

DiDiα = βi∂iK + αKijKij , (3.63)

again a elliptic equation we can determine the lapse function from. Having to solve an
elliptic equation every time-step is very computationally expensive and it is therefore
desirable to find gauge prescriptions which yield parabolic or even better hyperbolic
equations for relating the gauge functions to the geometric variables. If we generalize
the idea of K-freezing and instead relate the first time derivative of the trace of the
extrinsic curvature to the first or second time-derivative of the lapse-function we can
achieve just that. We call the family of gauges the Bona-Masso-slicing conditions
as they were first introduced by Bona and Masso [92]. One member of this family
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3.4 Gauge choices

of gauges, the so called 1 + log-slicing, in particular has proven to very robust and
suitable for black-hole evolutions. In general for the Bona-Masso slicing family the
lapse is determined by

∂tα = −α2f(α)K, (3.64)

which for f > 0 is a hyperbolic equation since it can reduced to a wave equation for
the lapse with a propagation speed of vg = α

√
fγij along any spatial direction xi. The

particular choice of f = 2/α yields a solution of the form

α = h(xi) + ln γ (3.65)

with h(xi) being a positive time-independent function. This choice of slicing condition
is referred to as the 1 + log slicing condition. It was shown to be singularity avoid-
ing [84] and in general provides a very robust slicing condition for black-hole evolutions.
Generalizing the 1 + log condition to the form

∂tα− βi∂iα = −nα(K −K0), (3.66)

with K0 = K(t = 0) being the initial value of the trace of the extrinsic curvature, n a
constant usually chosen as n = 2 we obtain the form of slicing condition used in current
numerical evolution codes based on the BSSNOK formulation of Einstein’s equations.
The additional advection term was introduced in [93] to remove unphysical gauge modes
induced by the original form of the 1 + log-condition [94]. We have now obtained a
singularity-avoiding, numerically efficient to solve and robust slicing condition yielding a
prescription for the lapse-function α but still need to find a condition for the shift-vector
to cure the effect of slice-stretching. This is realized by introducing the Γ̃ − driver-
condition for the shift which is described in the next section.

3.4.4 Hyperbolic Γ̃i-driver condition

Both maximal and 1 + log-slicing conditions lead to the slice-stretching, that is the
numerical grid near the singularity will be extremely stretched leading to a resolution
loss around the black hole which ultimately will crash the numerical evolution scheme
used. To avoid this we need to find a shift-condition which effectively counteracts
this effect preventing slice-stretching to happen. We therefore need to find a outward-
pointing shift, that just matches the velocity at which the coordinates are falling into
the black-hole horizon. but since the evolution of black-hole space-times is very complex
we cannot just prescribe the shift in an explicit form but need a dynamically adapting
condition as we have found for the lapse in the previous section. This was achieved
by introducing the hyperbolic Γ̃-driver condition [95, 96], which yields a hyperbolic
equation for the shift vector. By setting ∂tΓ̃ = 0 and using the definition of the Γ̃i

evolution variable of the BSSNOK system we can easily find an elliptic equation that we
can solve for the shift. Setting ∂tΓ̃ = 0 is closely related to the well-known and studied
minimal distortion condition, which is a very natural way time impose a nearly constant
coordinate system. It minimizes the change in volume elements during the evolution

35



3. CAUCHY EVOLUTION SYSTEMS

but also leads to an elliptic equation for βi. It however possesses the properties we want
to achieve and even further results in the TT -gauge in the weak-field limit [97] which
will be a very useful property for the analysis of gravitational radiation. To circumvent
having to solve an elliptic equation every time-step, we effectively only approximately
solve it and use the fact that we do not have to find the exact solution due to our
gauge-freedom [91]. To solve elliptic equations one usually introduces a fictitious time-
coordinate and evolves the resulting parabolic equation until the solution reaches a
stationary state and the solution of the original elliptic equation is therefore obtained.
This problem can also be reformulated into an hyperbolic equation and we use this and
only use the first relaxation step since we desire only to find an approximate solution.
The hyperbolic driver condition can now be written as

∂tβ
i − βj∂jβi =

3

4
αBi (3.67)

∂tB
i − βj∂jBi = ∂tΓ̃

i − βj∂jΓ̃i − ηBi, (3.68)

with η being a damping factor which can be freely chosen. Recently it was shown that η
may play a crucial role for the success of unequal-mass binary black-hole simulations [98,
99, 100]. However these modification were not used in the simulations performed for
this thesis and thus we refer the reader to [98, 99, 100] for details. The advection terms
on the left-hand side of equations (3.68) were not present in the original proposed
form [95, 96] since in this work co-rotating coordinates were used. These terms are
however required for using standard coordinates [93, 101] and one can show that the
orbital motion of the punctures is actually completely induced by these terms. This can
be understood by the fact that the choice of the Γ̃-driver gauge condition is designed
to adapt to any dynamics induced in the geometry. This leads to the shift vector field
not only adapting to the coordinates trying to fall into the black-hole horizons but also
to the orbital motion of the binary black-hole system itself.

3.4.5 Generalized harmonic gauge choices

For the generalized harmonic system presented in section 3.3 gauge conditions in general
cannot be imposed by choosing a lapse function and shift vector as is done for the
BSSNOK system. The gauge variables α and βi in this formulation have to be evolved
according to (3.50) and (3.51) to keep the system in symmetric hyperbolic form (see
chapter 6 for details on hyperbolicity and its connection to stability). However, we
can specify the gauge source functions F ν(xµ) and by their choice acquire a specific
form for the lapse and shift. Different choices of gauge source functions have been
used [73, 74, 102, 103]. For the results in this thesis the pure harmonic gauge source
functions, i.e., F ν(xµ) = 0 have been used and for simplicity we do not discuss the
details of gauge choices for generalized harmonic systems here. For a detailed overview
on state of the art gauge source functions for generalized harmonic formulations of
Einstein’s equations we refer to [102, 103].
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3.5 Initial data

To start an evolution with the goal of solving an CIVP in GR we need to specify initial
data. This initial data needs to satisfy the four elliptic constraint equations, the three
momentum constraints and the Hamiltonian constraint. For binary black-hole merger
initial data we are in general interested to construct initial data containing multiple
black holes, which have initial spin and momenta such that they will follow in-spiraling
orbits and finally merge. A key aspect in the generation of black-hole initial data is
the treatment of the singularity contained within a black-hole horizon. For obtaining
black-hole initial data we usually introduce a suitable topology. The first to introduce
such a topology were Einstein and Rosen by creating what we call Einstein-Rosen-
bridges [104]. Building on their initial idea additional topologies of these wormhole-like
bridges were proposed [105, 106, 107, 108, 109]. The initial spatial slice of these bridges
consist of multiple copies of R3 with some regions (typically spherical) removed. One
then specifies boundary data on the inner and outer boundaries of the domain. In
this data several asymptotically flat regions are connected via ’throats’ or bridges with
their interior removed by excising a region around the singularity. This way the other
asymptotically flat-ends are removed, which is possible only because they are causally
disconnected. One can use different topologies and strategies to solve the constraint
equations. Misner type initial data [107] consists of two asymptotically flat spaces that
are connected by as many throats as black holes are present, and are isometric copies
of each other. To solve the equations outer and inner boundary conditions have to
complete the data on the computational domain. For Misner type initial data this can
be achieved by boundary conditions based on the isometry condition [106, 107]. Con-
formal imaging [110, 111, 112, 113, 114, 115] generalizes Misner initial data to construct
time-symmetric initial data solving the momentum and Hamiltonian constraints but
is unfortunately very complex. Since excision techniques induce additional boundaries
and are usually difficult to handle in practice one ideally would want to construct ini-
tial data without the need of excising regions in the interior of the domain. A method
to generate this type of initial data was first suggest by Brill and Lindquist [105],
which compactified the internal asymptotically flat region and we can use one single
domain of integration to solve the constraint equations [116, 117, 118]. This data is
constructed on R3. The compactification of the asymptotically flat regions into a single
point is called the puncture method with the singular points being identified as punc-
tures. Besides the benefit of having only one domain of integration and only needing
to specify outer boundary conditions punctures will turn out to be a suitable way to
deal with singularities in our computational domain. Because of all these combined
reasons puncture initial data is the method of choice in many of today’s numerical rel-
ativity binary black-hole simulations. The two main strategies for constructing initial
data are the conformal transverse-traceless decomposition of the metric on the initial
slice [119, 120, 121] and using Bowen-York extrinsic curvature to solve the momentum
constraints [111, 113]. An alternative route for constructing initial data provides the
thin-sandwich decomposition [122], which describes initial data on two nearby hyper-
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surfaces, which effectively determines the metric and its time derivative on the initial
slice. While this method can control the dynamics of the space-time quantities, it can
be shown that both methods are equivalent [123] and we choose to proceed with the
easier approach of the conformal transverse-traceless decomposition [124]. In addition
to the technical aspects of solving the constraint equations one needs to obtain the
black-hole parameters mass, spin and momenta to generate initial data yielding the
desired orbital configuration. This is typically done by first using a post-Newtownian
(PN) evolution code to evolve both black holes until the separation we want to start the
numerical evolution from is reached and then reading off the parameters as a result of
the PN evolution. This method has been shown to be superior to simpler methods, i.e.
effective potential based methods, in yielding low eccentricity orbits. All of the results
presented in this thesis for binary black-hole mergers on in-spiraling orbits have been
constructed using the method described in [125]. The details of the individual steps
needed for constructing black-hole initial data are described in the following sections.

3.5.1 Conformal transverse-traceless decomposition

The conformal transverse-traceless decomposition was first introduced by Lichnerowicz,
York and others [119, 120, 121] and consists of an Ansatz to prescribing initial data in
terms of the conformal 3-metric and the extrinsic curvature to solve the Hamiltonian
and momentum constraints. We again decompose the 3-metric γij by using a conformal
factor Ψ such that

γij = Ψ4γ̃ij (3.69)

with γ̃ij being conformally flat, i.e. γ̃ij = δij . We split the trace off the extrinsic
curvature and construct

Aij = Kij − 1

3
γijK, (3.70)

and then conformally rescale Aij in the way

Ãij = Ψ10Aij . (3.71)

Any symmetric traceless tensor can be split in the following way

Sij = Sij∗ + (LW )ij , (3.72)

with Sij∗ being a symmetric, traceless and transverse tensor (DjS
ij
∗ = 0), W i a vector

and L an operator defined as

(LW )ij := DiW j +DjW i − 2

3
γijDkW

k. (3.73)

(LW )ij is the conformal Killing form associated with W i and we call its contribution
in (3.72) the longitudinal part of Sij . If we now split Ãij accordingly we obtain

Ãij = Ãij∗ + (L̃W̃ )ij . (3.74)
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We now need to obtain Ãij∗ and we can construct it from any symmetric trace-free
tensor M̃ ij , casting Ãij into the form

Ãij = M̃ ij + (L̃Ṽ )ij , (3.75)

with V i being a vector related toW i. Details of this procedure can be found in [119, 126]
. Using the splitted form of Ãij we can cast the Hamiltonian and momentum constraints
into the form

8D̃2Ψ− R̃Ψ + Ψ−7ÃijÃ
ij − 2

3
Ψ5K2 + 16πΨ5ρ = 0, (3.76)

∆̃L̃Ṽ
i + D̃jM̃

ij − 2

3
Ψ6D̃iK − 8πΨ10ji = 0. (3.77)

We now have to solve these four equations for Ψ and Ṽ i, with data provided in the
form of γ̃ij , M̃

ij , K, and the energy and momentum densities ρ and j and reconstruct
the physical quantities as

γij = Ψ4γ̃ij , (3.78)

Kij = Ψ−10Ãij +
1

3
γijK. (3.79)

The next step is now to describe in detail how to solve equations (3.11) and (3.12).

3.5.2 Bowen-York extrinsic curvature

A simple way of solving equation (3.12) is to impose the condition of time-symmetry
(Kij = 0). This however is in practice not very useful since we are generally interested
in not stationary but dynamic situations, i.e. two merging black holes. A way to solve
equation (3.12) without imposing time-symmetry was first suggested by Bowen and
others [110, 111, 112, 113, 114, 115]. Of particular interest to us is the solution of the
momentum constraint known as Bowen-York extrinsic curvature [111, 113]. Considering
the momentum constraint (3.12) in vacuum (ρ = ji = 0), choosing maximal slicing
K = 0 and additionally choosing M̃ ij = 0, the momentum constraint reduces to

∆̃L̃Ṽ
i = D̃2Ṽ i +

1

3
D̃iD̃j Ṽ

j = 0. (3.80)

This equation can be solved analytically and a solution can be obtained in the form

Ṽ i = − 1

4r
[7P i + ninjP

j ] +
1

r2
εijknjSk, (3.81)

with P i and Si being constant vectors, ni the outward pointing unit radial vector, and
εijk the antisymmetric Levi-Cevita symbol in three dimensions. From Ṽ i we can now
construct the conformal trace-free extrinsic curvature

Ãij = (L̃Ṽ ) =
3

2r2
[niPj + njPinkP

k(ninj − δij ]

− 3

r3
(εilknj + εjlkni)n

lSk, (3.82)
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using Kij = Ψ−2Ãij . equation (3.82) is the definition of Bowen-York extrinsic curva-
ture [111, 113]. The vectors P i and Si represent linear and angular momentum, which
can be shown by using the Kij = Ψ2Ãij in combination with the definitions of ADM
linear and angular momentum

P i =
1

8π
lim
r→∞

∫
(Ki

l − δilK)nldS (3.83)

Si =
1

16π
lim
r→∞

∫
(εijkxjKkln

l)dS. (3.84)

Thus we can use P i and Si to prescribe the spin and linear momentum of a black hole
and since the momentum constraint equations are linear we can superpose multiple
solutions with different centers ri to obtain multiple particle or black-hole initial data
with clearly defined spin and angular momentum. One serious drawback of the Bowen-
York initial data becomes evident when we look at single black holes. While a black hole
with no linear and angular momentum reduces as expected to a Schwarzschild black
hole, a single black hole with zero linear but non-zero angular momentum does not
reduce to a Kerr black hole [127]. Bowen York black-hole initial data does not describe
a stationary solution as the Kerr solution is. In addition to the stationary part an
extra spurious gravitational radiation field is present. The same can be shown to be
true for a boosted single black hole with no spin which does not reduce to a boosted
single Schwarzschild black hole. The extra radiation present in this type of initial
data limits the applicability to more extreme scenarios. For example with Bowen-York
initial data it is not possible to construct maximally spinning (i.e. |a| = 1) black-hole
initial data since this case can only be realized by the Kerr solution [9]. The spurious
gravitational radiation field present in practice limits the spin to a value of about
|a| < 0.93. Kerr-Schild initial data does not have this limitation and has been used to
construct nearly maximally spinning black-hole initial data [128]. Since one in most
cases is not interested in very extreme cases and in all others the spurious radiation
does not interfere with the results of the simulation, Bowen-York initial data is widely
used in numerical simulations. After having solved the momentum constraints we still
need to find a effective way to solve the Hamiltonian constraint. The method which is
state of the art, the puncture method, is described in the next section.

3.5.3 The puncture method

We will now proceed to solving the remaining Hamiltonian constraint. In contrast to
the momentum constraint we cannot achieve this analytically anymore, since we have a
non-trivial extrinsic curvature term, that forces us to employ numerical methods. One
highly successful method was first introduced by Brandt and Bruegmann [118] and is
known as the puncture method. It works without the use of inner boundaries to shield
the singularity from the grid. This leads to the highly desirable feature of having one
numerical domain and not having the technical difficulties that come with introducing
inner boundary conditions like excision techniques do. We start by considering Brill-
Lindquist type initial data as presented in section 3.5. Considering a topology of a
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Schwarzschild space-time in quasi-isotropic coordinates, we can solve the constraint
equations on R3 neglecting the point r = 0 by

Ψ = 1 +
m

2r
, Kij = 0. (3.85)

m here is the mass of the space-time and r the isotropic radius. We can use the isometry

r → m2

4r
(3.86)

which maps the entire region exterior to the sphere of radius r = m/2 into that sphere
leaving the surface r = m/2 invariant. As a result of the isometry at r = 0 there must
exist a second asymptotically flat region. It is furthermore possible to represent this
solution by two copies of R3 with a sphere excised. If we want to generalize this solution
to multiple black holes we can again by the linearity of the momentum constraint write
the conformal factor as a superposition of the individual solutions

Ψ = 1 +
N∑
i=1

mi

2|r− ri|
, Kij = 0 (3.87)

for time symmetric initial data. mi denotes the mass of the ith black hole and ri the
location in the conformal flat 3-space. For N = 2 this results in a topology where
the two throats connect to independent asymptotically flat regions. The solution is
identical to the Brill-Lindquist solution [105]. For this initial data there is no isometry
anymore between lower and upper sheet, due to the fact that there are two lower sheets
and only one upper. Misner-type data however recovers the isometry between lower and
upper sheet again by using an infinite series expansion. The Misner solution reduces
to the wormhole solution also found by Misner [107] if the invariant spheres have the
same radius. This Misner type initial data together with excision techniques were used
for the first numerical simulations, but have mostly been replaced by Brill-Lindquist or
puncture-type initial data in the last years. Figure 3.4 illustrates the different initial
data topologies for some common scenarios.

For Brill-Lindquist initial data for every throat exactly one singular point ri exists
and we integrate the whole R4 due to the loss of an inner boundary caused by the
absence of the isometry between lower and upper sheets. To deal with the singularity
the basic idea driving the puncture approach is to explicitly separate the singular piece
of the conformal factor

Ψ = ΨBL + u, with ΨBL =
N∑
i=1

mi

2|r− ri|
. (3.88)

ΨBL is the conformal factor of Brill-Lindquist initial data with the 1 absorbed into the
function u and it has zero Laplacian on a ’punctured’ R3,i.e. R3 with the points ri
removed. Using (3.88) the Hamiltonian constraint reduces to

D2
flatu+ η

(
1 +

u

ΨBL

)
= 0, (3.89)
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(a) (b)

(c) (d)

Figure 3.4: Four different black-hole initial data types.(a): Two dimensional
Schwarzschild-Kruskal manifold when isometrically embedded into flat 3-space. The top
and bottom sheets represent the asymptotically flat regions of the manifold and continue
to infinity.(b):Brill-Lindquist [105] initial data where the two throats connect to a different
asymptotically flat regions at the bottom.(c): Misner [107] type initial data where the
three throats connect to the same asymptotically flat end at top and bottom.(d): Misner
wormhole topology [106] when both spheres in the construction of Misner type data have
the same radius. Figures from [105, 106, 107].

with D2
flat being the Laplacian in respect to the flat 3-metric and

η =
1

8Ψ7
BL

ÃijÃ
ij . (3.90)

By using the maximal slicing condition and conformal flatness we have now obtained
an equation we need to solve for u. To do so we impose boundary conditions, namely
at infinity we require u = 1 + k/r with k being a constant. For the boundary at the
puncture it turns out that we do not need to impose a boundary condition since in the
limit r→ ri η goes to zero and therefore the Hamiltonian constraint reduces to D2

flat =

0. It can be shown that requiring these conditions a unique solution u that is C2 exists to
the Hamiltonian constraint equations on R3. In practice we can therefore neglect the
puncture points when solving the Hamiltonian constraint by solving equation (3.89)
for u. A solution for u can be obtained using a single-domain spectral solver [124].
Additionally we have to provide initial data for the gauge quantities lapse and shift.
The shift we can simply choose as βi = 0 and for the lapse we typically choose a
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so-called pre-collapsed lapse [129]

α̃ =
1− (m1

2r1
+ m2

2r2
)

1 + m1
2r1

+ m2
2r2

, (3.91)

Now taking α = (1 + α̃)/2 provides an initial lapse profile with values in the interval
[0, 1]. Recently further work on puncture initial data and its evolution has shown that
it introduces unnecessary gauge dynamics since the initial throat topology evolves and
reaches a final state that is a trumpet-like topology [130]. It is therefore suggested
to already construct trumpet initial data which would minimize gauge dynamics by
already choosing the asymptotic topology for the initial data [131, 132]. The successful
application of trumpet initial data for binary black-hole simulations has however still to
be realized. The construction of our initial data has now been achieved by solving the
momentum and Hamiltonian constraints. What is left to be done, is choosing proper
parameter P i and Si for our space-time and the individual black holes in order to realize
the astrophysical scenario of the final orbits of binary black-hole mergers. Strategies
to obtain those parameters from PN evolution are presented in the next section.

3.5.4 Initial black-hole parameters from PN evolution

After having solved the constraint equations we now need to find parameters mi, P
i,

Si and ri that reflect a two black holes on in-spiraling orbits that are quasi-circular
and represent a as realistic astrophysical scenario as possible. To do so we start by
integrating the PN equations staring from a separation much larger than the one we
finally need the initial parameters for our numerical simulation. This is typically of
the order of d = 10M and we choose to start the PN evolution from a separation of
dPN = 40M . We then solve the PN equations of motion until we reach the desired
separation to read off the initial parameters for the individual black holes. This results
typically in thousands or more orbits which guarantees that the radiation-reaction
terms in the PN evolution equations successfully remove any left-over eccentricity still
present before the PN evolution. The integration of the PN equations of motion is
performed in the ADM −TT gauge [133] which agrees to 2PN order with the puncture
initial data as described in [134]. The conservative part of the Hamiltonian is given up
to 3PN order [133, 135] The PN equations of motion are a system of coupled ordinary
differential equations of the form (we here for simplicity report the form for the non-
spinning case)

dxi

dt
=
∂H

∂pi
, (3.92)

dpi

dt
= −∂H

∂xi
+ Fi, (3.93)

with H being the conservative part of the full PN-Hamiltonian, xi the separation vec-
tor and pi the momentum of a particle in the center-of-mass rest frame. We note that
the generalization to the spinning case is achieved by including additional evolution
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equations for the spin vectors of both black holes. Finally Fi represents the radiation-
reaction flux term, which can be calculated up to 3.5PN order [136, 137, 138]. By
numerically integrating those equations we obtain our initial data parameters to con-
struct the space-time for the numerical evolution from. The radiation reaction proves
to be very efficient in yielding low-eccentricity initial data as was shown in [125]. Other
ways of eccentricity reduction for binary black-hole initial data rely on iterative schemes
where one first obtains a set of parameters, performs a short numerical simulation to
measure the eccentricity and then iteratively corrects the initial parameters to coun-
teract the measure eccentricity until one finds a small enough eccentricity [139, 140].

3.6 Dealing with space-time singularities

When evolving black-hole initial data as prescribed in the previous section on a com-
puter we face the problem of how to treat the singularity contained within the black-hole
horizon. since we cannot represent infinite numbers on the computer we need to find
strategies to deal with singularities in our computer codes. One way that was first
introduced by Seidel and Suen was to simply remove the region containing the singu-
larity from the computational grid by a method described as black-hole excision [90].
Here one cuts out a spherical region containing the singularity (typically this region is
chosen to be inside the black-hole apparent horizon). This is possible since the interior
of the horizon is causally disconnected from the outer dynamics. This method is work-
ing successfully and straightforward in spherical symmetry but when going to three
dimensions most current computational domains are constructed using Cartesian coor-
dinates. This is cumbersome for construction of the excision surface since the topology
of the apparent horizon is spherical and we need to find methods to approximate this
on a Cartesian grid, i.e. LEGO excision. Now in addition we need to be able to move
the excised regions around on the grid to track the orbital motion of the black holes
and by doing so the technical treatment of black-hole excision becomes very compli-
cated. Another method for treating space-time singularities in computer codes is the
puncture evolution method. Here one conformally decomposes the 3-metric so that the
singularity and its dynamics are absorbed in the conformal factor. This is analogue to
what is done in the BSSNOK evolution system as discussed in section 3.2 and to the
construction of puncture initial data as described in section 3.5. Keeping the singular
part of the conformal factor static and in the form as prescribed by the initial data
also during the evolution is referred to as static puncture evolution [89, 141]. While
this method was used in the first attempts to evolve puncture initial data in [142, 143]
it turned out to have severe limitations as it was difficult to achieve more than one
orbit of inspiral motion. In a next step and by allowing the conformal factor to evolve
as the other evolution variables several groups achieved a big break-through yielding
multiple-orbit binary black-hole merger simulations [78, 101]. This method is called the
moving puncture approach. Since this is the method in use in most of todays numerical
evolution codes we describe it in more detail in the next section.
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3.6.1 Puncture evolution

Puncture evolutions [78, 101] are todays methods of choice for treating space-time
singularities in many computer codes. Combined with a BSSNOK evolution system
they provide a powerful tool for representing black holes on a computational grid. In the
static puncture evolution the irregular part of the metric is factored out analytically into
the conformal factor ΨBL. This conformal factor is then kept fixed during the evolution
which introduces artificial dynamics in the other space-time quantities. As the black
holes inspiral and move closer and their punctures are kept fixed on their location severe
stretching may occur on the spatial hypersurfaces. This can be overcome by introducing
appropriate coordinates like co-rotating coordinate systems. However this may lead to
other problems, like super-luminal coordinate speeds far away from the black holes and
additionally complicate the outer boundary treatment of the computational domain.
By allowing the punctures to move on the grid, i.e. keeping the full conformal factor
and evolving it like all the other space-time variables, one allows for the punctures to
move with the black holes and therefore does not have to address he issues presented in
the previous paragraph. This is typically achieved by making sure the singular part is
not located on a grid point to avoid numerical problems with treating infinities. Moving
punctures are achieved by modifying the hyperbolic Γ̃-driver condition for the shift to
the form

∂tβ
i =

3

4
αBi, ∂tB

i = ∂tΓ̃
i + βj∂jΓ̃

i − ηBi. (3.94)

Here a term of Ψ−2
BL that had been introduced to guarantee vanishing shift at the punc-

ture locations has been now neglected to allow the punctures to move on the grid. In
addition the term βj∂jΓ̃

i has been added to improve stability and accuracy of moving
puncture evolutions by eliminating a zero speed mode. Using the modified Γ̃-driver
condition [130] the singular part of the conformal factor quickly regularizes during the
evolution of a single black hole. It obtains a stationary regular interior solution that
results in a trumpet topology where the points close to the singularity are stretched
into an infinitely long cylinder. Due to the lack of resolution, the slice then terminates
close to but not at the singularity. The Γ̃-driver condition therefore acts as ’natural’
excision algorithm [144]. It however has the advantage of not having to impose an
inner boundary condition avoiding much of the complexity involved for that. Revis-
iting the idea of starting already from trumpet initial data it can be shown that in
that case some of the physical parameters link directly to physical parameters, i.e. the
puncture bare mass corresponds to the black-hole mass. The trumpet topology for a
single Schwarzschild black hole as obtained by the puncture solution during evolution
is shown in figure 3.5. To verify the validity of puncture evolutions comparisons against
excision based binary black-hole simulations have been performed [145] and by com-
paring invariant curvature scalars it has been found that the resulting space-times in
the two approaches are equivalent.
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Figure 3.5: Trumpet topology for a single Schwarzschild black hole. The bottom asymp-
totically flat end becomes an infinitely long cylinder as the initial puncture solution evolves
to the trumpet topology. Figure from [132]
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4

Einstein-Maxwell evolution
systems

So far we have focused on Einstein’s equations in vacuum, i.e. with no external matter
or radiation fields present. However in realistic scenarios one expects binary black-hole
mergers to take place in an environment where either an accretion disk or low-density
gas and magnetic fields are present. It is therefore highly interesting to model these
scenarios numerically. In a first step towards a more realistic modeling we consider
EM fields interacting with a binary black-hole merger space-time. The evolution of
the EM fields is governed by Maxwell’s equations in GR, i.e. on a curved space-time.
Maxwell’s equations can be formulated both in terms of the vector potential A or
directly in terms of the electric and magnetic fields Ei and Bi. Since in the results
presented in this thesis we have used a formulation using the electric and magnetic
fields directly, we will concentrate our focus towards these equations. We will first
present the evolution equations in a general form and then discuss different options
for considering source-terms included in Maxwell’s equations. Here we will focus on
two choices. First, Maxwell’s equations in electro-vacuum, i.e with no sources present.
Second, the force-free approximation, which models a plasma with charges and currents
present. Most of the presentation in the next sections follows closely [146]

4.1 Maxwell’s equations in a GR

Maxwell’s equation in general covariance take the form

∇νFµν = 4πIµ, (4.1)

∇νFµν = 0 (4.2)

with Fµν being the Maxwell tensor of the EM field, Fµν the Faraday tensor and Iµ

the electric 4-current vector. Taking the divergence of equation (4.1) leads to the
conservation law for the 4-current

∇µIµ = 0. (4.3)
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In EV or a highly-ionized plasma, where both electric and magnetic susceptibility of
the media vanish we can write the Faraday tensor simply as the dual of the Maxwell
tensor

Fµν =
1

2
εµναβFαβ, Fµν = −1

2
εµναβF

αβ. (4.4)

Here εµναβ is the Levi-Cevita pseudo-tensor which can be written as

εµναβ =
1√
γ
ηµναβ , and εµναβ = −√γηµναβ , (4.5)

where γ denotes the determinant of the 3-metric γij . Assuming equation (4.4) to hold
we can formulate the homogeneous equations (4.2) in terms of the Maxwell tensor

∇µFνα +∇αFµν +∇νFαµ = 0. (4.6)

We will now go on to discuss how to represent Maxwell’s equations as a set of evolution
equations.

4.1.1 The potential vector

We can write the Maxwell tensor in terms of the 4-vector potential Aµ as

Fµν = ∇µAν −∇νAµ. (4.7)

Now due to the Bianchi identities the inhomogeneous equation (4.1) holds trivially, and
we obtain

∇νFµν = ∇ν(∇µAν −∇νAµ) = 4πIµ. (4.8)

For the time component of (4.1) we can now write

∇νF 0ν = ∇i(∇0Ai −∇iA0) = 4πI0, (4.9)

which is a first time-integral of the full system and we can treat it as a constraint
equation equivalently to the constraint equations obtained for Einstein’s equations. The
evolution of the potential Aµ is not fully determined since equation (4.9) introduces a
gauge-freedom. We can change

Aµ → Aµ + ∂µΛ (4.10)

with Λ being an arbitrary function. Specifically we can choose Λ such that the vector
potential satisfies the Lorentz gauge

∇µAµ = 0, (4.11)

and in this gauge we get

∇ν∇νAµ = 8π[T νµ −
T

2
δνµ]Aν − 4πIµ, (4.12)
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which is called the harmonic form of equation (4.9). This equation now is a sym-
metric hyperbolic evolution equation for the vector potential Aµ. It only couples in
non-principal terms to Einstein’s equations and acts as a wave equation. The Lorentz
gauge is analogue to the harmonic gauge for Einstein’s equations as discussed in chap-
ter 3. The constraint we exploited by choosing the Lorentz gauge will be satisfied by
our evolution equation at a continuum level but numerical error might develop in the
discretized version. To minimize the error being injected into the system in this way
by extending Maxwell’s equations to the form

∇ν(Fµν + gµνΨ) = −4πIµ − κnµΨ, (4.13)

with Ψ := ∇µAµ being a gauge-source function. We can get an evolution equation for
Ψ by considering the time component of (4.13)

∇µ∇µΨ = −κ∇µ(nµΨ). (4.14)

Now any gauge-constraint violation obtained during the evolution will propagate with
the speed of light and be damped exponentially by the term involving κ and thus
effectively minimized.

4.1.2 The electric and magnetic fields

It often is more intuitive to work with Maxwell’s equation represented in terms of
the standard electric and magnetic fields. We obtain the electric and magnetic field
expressions by the decomposing the Faraday tensor as

Fµν = uµEν − uνEµ + εµναβ Bα uβ (4.15)
∗Fµν = uµBν − uνBµ − εµναβ Eα uβ ; (4.16)

where uµ is the unit time vector associated with a generic normal observer to the
hypersurfaces. The vectors Eµ andBµ are the purely spatial (Eµtµ = 0 = Bµtµ) electric
and magnetic fields measured by such an observer. The expressions for the electric and
magnetic field however are observer-dependent but it is desirable to construct observer-
independent quantities. The simplest such scalars are

FµνF
µν = 4EµBµ, FµνF

µν = 2(B2 − E2). (4.17)

The electric current 4-vector can be decomposed into the 3+1 components

q := nνI
ν , Ji := Ii, (4.18)

and we denote q and Ji as the charge density and the electric current as measured by a
normal observer. We can now use these quantities to express the current conservation
as

(∂t − Lβ)q +∇i(αJ i) = αqK, (4.19)
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where the covariant derivatives are in respect to the spatial 3-metric γij . We can write
this in flux-conservative form

∂t[
√
γq] + ∂i[

√
γ(−βiq + αJ i)] = 0. (4.20)

We note that to close the system we need to specify a relation for current Ji and
Ei, Bi. This relation is commonly referred to as an Ohm’s law. We will discuss
the details of the different prescriptions for the current in the next section 4.2. To
obtain evolution equations for the electric and magnetic field we now adopt again the
extended version of Maxwell’s equations with two extra scalar fields Ψ and Φ which
lead to evolution equations for the EM constraints (∇iEi = 0 = ∇iBi) described by
damped wave equations analogue to what we have done for the vector potential in the
previous section. In terms of Eµ and Bµ the 3 + 1 version of (4.16)-(4.16) now reads

DtE
i − εijk∇j(α Bc ) + αγij∇j Ψ = αK Ei − 4παJ i, (4.21)

DtB
i + εijk∇j(αEc ) + αγij∇j Φ = αK Bi , (4.22)

Dt Ψ + α∇iEi = 4παq − ακΨ , (4.23)

Dt Φ + α∇iBi = −ακΦ . (4.24)

where Dt ≡ (∂t −Lβ) and Lβ is the Lie derivative along the shift vector β. Exploiting
that the covariant derivative in the second term of (4.22) - (4.24) reduces to a partial
one

εijk∇jBk = εijk(∂j + ΓckjBk) = εijk∂jBk, (4.25)

and using a standard conformal decomposition of the spatial 3-metric as prescribed in
chapter 3

γ̃ij = e4φγij ; φ =
1

12
lnγ (4.26)

we obtain the final expressions

DtE
i − εijk e4φ [ (∂j α ) γ̃ck B

c + α ( 4 γ̃ck ∂j φ + ∂j γ̃ck )Bc

+α γ̃ck ∂j B
c ] + α e−4φ γ̃ij ∇j Ψ = αK Ei − 4παJ i, (4.27)

DtB
i + εijk e4φ [ (∂j α ) γ̃ck E

c + α ( 4 γ̃ck ∂j φ + ∂j γ̃ck )Ec

+α γ̃ck ∂j E
c ] + α e−4φ γ̃ij ∇j Φ = αK Bi , (4.28)

Dt Ψ + α∇iEi = 4παq − ακΨ , (4.29)

Dt Φ + α∇iBi = −ακΦ . (4.30)

Notice that the standard Maxwell equations in a curved background are recovered for
Ψ = Φ = 0. The Ψ and Φ scalars can then be considered as the normal-time integrals
of the standard divergence constraints

∇iEi = 0 , ∇iBi = 0 (4.31)
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These constraints propagate with light speed and are damped during the evolution. By
considering the extended Maxwell equations we also obtain a modified characteristic
structure. Decomposing equations (4.16) and (4.16) along the direction of a normalized
spatial vector n belonging to a tetrad {l,m,n} we obtain the eigenfield

• Constraint eigenfields:

Ψ± En, Φ±Bn (4.32)

• Light eigenfields: These represent physical EM waves, which are perpendicular
to their direction of propagation k.

El ±Bm, Em ∓Bl (4.33)

The local characteristic speed for all cases is −βn ± α.

4.1.3 The EM stress-energy tensor

The coupling between the Einstein and Maxwell equations is performed via the inclusion
of the EM stress-energy tensor, which is given in terms of the Faraday tensor

Tµν =
1

4π

[
F λµFνλ −

1

2
gµνF

λσFλσ

]
(4.34)

and we can decompose it into its 3+1 components

τ =
1

8π
(E2 +B2) , Si =

1

4π
εijkE

jBk , (4.35)

Sij =
1

4π

[
−EiEj −BiBj +

1

2
γij (E2 +B2)

]
. (4.36)

where E2 ≡ EkEk and B2 ≡ BkBk. The scalar component τ can be identified with the
energy density of the EM field (i.e. ρADM in [147]) and the energy flux Si is the Poynting
vector. The conservation of the stress-energy tensor leads to evolution equations for
the Poynting vector Si and the charge density q, which can also be obtained directly
from Maxwell’s equations. Note that however the conservation of the EM stress energy
tensor leads to the conservation law

∇νTµν = −FµνIν , (4.37)

which is only strictly conserved for the case of no EM sources are present (i.e. Iν = 0).
If currents are present (Iν 6= 0) it is possible to transfer energy from the EM fields
to the fluid and vice versa. In this scenario we need a generalized conservation law
also taking into account the contribution from the fluid. This is realized by taking the
divergence of the stress-energy tensor incorporating contribution from both the EM
fields and the fluid itself.
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4.2 Source prescriptions

Maxwell’s equations (4.16)- (4.16) contain the source terms q and J i. In order to
describe the dynamics of the EM fields in black-hole space-times we need to find pre-
scriptions for these source terms that are suitable for the astrophysical scenario we want
to model. There are may choices for modeling these source terms, and they depend on
highly different numerical techniques. We will describe in detail in the next sections
two choices for the source terms, which are rather simple to implement numerically, but
also well suited to the study binary black-hole mergers when the system is immersed in
a uniform magnetic field or plasma. The first is EV, where no EM sources are present
and the second is the force-free approximation which models a tenuous plasma and
includes charges and currents as source for EM fields.

4.2.1 Electro-vacuum

The EV treatment does not include any EM source, i.e. it requires q = 0 and Ji = 0
and therefore purely allows for EM fields on a vacuum space-time.

4.2.2 The force-free approximation

When modeling matter and EM fields we need to consider contributions to the stress-
energy tensor coming from both components, i.e.

Tµν = Tµνfluid + TµνEM + ... (4.38)

However turning our attention to the case where the magnetic field strength is large
and the fluid density is low, the stress energy tensor is dominated by the EM part

Tµν ≈ TµνEM . (4.39)

Now taking the conservation law for Tµν implies that the Lorentz force is negligible,

∇νTµν = −FµνIν = 0. (4.40)

and this approximation is commonly referred to as the force-free approximation. The
spatial projection of this last equation, in terms of Eulerian observers, can be written
as

EkJk = 0 (4.41)

qEi + εijkJjBk = 0. (4.42)

In the force-free approximation, the magnetic field evolution is performed by the stan-
dard Maxwell equations, however the electric field evolution equation now cannot be
performed due to the presence of the current term on the right hand side, which still
remains undetermined. One route is to evolve the Poynting vector (4.35) and the
reconstruct the electric field from

Ei = − 4π

B2
εijkS

jBk. (4.43)
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Alternatively we can try to find a prescription for the current Iµ and then use the evo-
lution equation of the electric field as obtained from the standard Maxwell ’s equations.
Computing the scalar and vectorial product of the equations (4.42) with the magnetic
field Bi, we obtain

EkBk = 0 (4.44)

J i = q
εijkEjBk

B2
+ JB

Bi

B2
, (4.45)

with JB being the component of the current parallel to the magnetic field. Using the
Maxwell equations to compute ∂t(E

iBi) = 0, we can derive a relation for JB [148],

JB =
1

α
(Biε

ijk∇j(αBk)− Eiεijk∇j(αEk)) (4.46)

Using this prescription for the current we can use the evolution equation for the electric
field. While this approach successfully imposes the force-free constraint equation (4.44)
initially, it fails to succeed during later parts of the time evolution. To make sure
that the evolution of the EM field remain in the regime covered by the force-free ap-
proximation we can enforce the force-free constraints during the evolution. Multiple
approaches have been suggested and used. In [149] equation (4.45) was used for the
current together with JB = 0. However to ensure that the force-free approximation is
still fulfilled the electric field needs to be modified after each time step, such that it
satisfies equation (4.44),

Ei = Ei − (EkBk)
Bi

B2
(4.47)

and equation (4.45),

Ei = Ei((1−Θ) +

√
B2

√
E2

Θ), (4.48)

Here, Θ = 1 when B2 − E2 < 0, accounts for the role that the resistivity would play.
An alternative approach to enforce the constraints (at a continuum level) during the
evolution was introduced first in [148, 149, 150] and consists of using a suitable Ohm’s
law. In this approach the parallel component JB can be computed from an Ohm’s law
of the type

JB = σBE
kBk, (4.49)

where σB is the anisotropic conductivity along the magnetic field lines. This extra term
in the current enforces the constraint equation (4.44) in a time scale 1/σB, as

∂t(E
iBi) = ...− ασB(EiBi). (4.50)

For σB sufficiently large, one can insure that the force-free constraint equation (4.44) is
satisfied. While this approach is elegant in terms of not modifying the electric field by
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enforcing extra conditions, but rather driving it to the right solution, it introduces a stiff
term on the right hand side, that requires more complex computational methods (i.e.
a implicit-explicit (IMEX) Runge-Kutta evolution scheme (see chapter 7 for details)).
Enforcing the constraints for the current, the force-free approximation can still break
down during the evolution in regions, where

E2 −B2 > 0. (4.51)

We call these regions current sheets. The Alfven wave-speed becomes complex and the
system of force-free electrodynamics is not longer hyperbolic [150]. A solution to this
problem was introduced in [151], where the velocity of the drift current was modified
such, that is always smaller than the speed of light,

J i = q
εijkEjBk
B2 + E2

+ JB
Bi

B2
. (4.52)

Additionally an alternative approach was presented in [152], which consists in adding
another term to Ohm’s law in order to account for the in-anomalous isotropic resistivity,

J i = q
εijkEjBk

B2
+ σB(EkBk)

Bi

B2
+ σB(E2 −B2)Ei

E2

B2
. (4.53)

Here the added third term acts as a damping term in regions where E2 − B2 > 0 and
acts in similar way as the second term. The approach realized by equation (4.53) is
more elegant as it uses no ad-hoc assumptions to realize a suitable Ohm’s law
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5

The Weyl and EM complex
scalars: Gravitational waves and
EM radiation

The asymptotic properties of space-time are a crucial aspect of the analysis of the
radiative properties of binary black-hole space-times. In order to properly define grav-
itational and EM radiation the idea of a conformal representation of space-time was
introduced by Penrose [24, 25, 26]. The conformal representation of space-time makes
it then possible to define the asymptotic properties of space-time and derive key re-
sults like the Peeling theorem which is essential for analyzing radiation in black-hole
space-times. Ultimately, we can then also define quantities like total mass and an-
gular momentum of asymptotically flat space-times. We will review these ideas and
definitions in the next sections.

5.1 Space-time asymptotics

5.1.1 Conformal representation and structure

We can use a conformal rescaling of space-time to place infinity at a finite distance.
We transform the physical metric g̃ to an unphysical metric g by introducing

g̃µν → gµν = Ω2g̃µν . (5.1)

with Ω ≥ 0 being a smooth function which is designed to approach zero towards spatial
infinity. This transformation preserves angles and null vectors, which is important
for the structure of our space-time metric. We now want to exploit the conformal
transformation in such a way that all points at infinity in the physical metric get
mapped to a finite distance in the unphysical metric. The three points I+, I− and
I0 are of special importance. All future directed time-like geodesics will terminate
at future time-like infinity I+, and respeticvely all past directed time-like geodesics
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will terminate past time-like infinity I−. All space-like geodesic will approach space-
like infinity I0. Additionally the two hypersurfaces I+ and I− are future and past null
infinity. I+ will be reached by all radially outgoing null geodesics and I− is the origin of
all radially in-going null geodesics. Especially I+ is of great importance when analyzing
gravitational or EM radiation since both quantities are strictly only well defined at I+.
The main aspects of these considerations can be captured in the definition of asymptotic
simplicity.

5.1.2 Asymptotic simplicity

The behavior of asymptotically flat solutions to Einstein’s equations at infinity can be
characterized in terms of geometric quantities, as introduced by Penrose’s definition of
asymptotic simplicity [25, 26, 63, 153, 154]

Definition 5.1.1 A smooth space-time (M̃, g̃) is asymptotically simple if there exists
a smooth, oriented, time-oriented, causal space-time (M, g) and a smooth function Ω
on M such that

1. M is a manifold with boundary I := δM

2. Ω > 0 on M ∪ I and Ω = 0, dΩ 6= 0 on I

3. an embedding Φ of M̃ onto Φ(M̃) = M I exists that is conformal such that
Ω2Φ−1∗g̃ = g

4. every null geodesic of (M̃, g̃)has two distinct end points on I.

We call (M̃, g̃) the physical and (M, g) the unphysical space-time.
This definition determines the conformal structure of (M, g). The set I = I+ ∪ I−

is called the conformal boundary of (M̃, g̃) at null infinity. Definition (5.1.1) does
not include black-hole space-times since they are not geodesically complete. To find a
suitable definition that we can also use in black-hole space-times we require it to only
hold in a neighborhood of Ω = 0.

Definition 5.1.2 (M̃, g̃) is weakly asymptotically simple if an asymptotically simple
space-time (M̃

′
, g̃
′
) and a neighborhood Ũ

′
of I

′
in M̃

′
exist such that Ũ

′ ∩ M̃ ′
is

isometric to an open subspace Ũ of M̃ .

Based on these definitions Penrose suggested

Proposal 5.1.1 Penrose proposal: Far fields of isolated gravitating systems behave like
that of (weakly) asymptotically simple space-times in the sense that they can be smoothly
extended to null infinity after suitable conformal rescalings.

To now make use of this proposal we will try to find solutions of Einstein’s equations
that fulfill the requirements of Definitions (5.1.1),(5.1.2).
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5.1.3 Asymptotic mass and momentum

In many scenarios it is also useful to determine the asymptotic mass and angular
momentum of a space-time. It is possible to express these quantities in terms of a 3+1
splitted space-time as presented in [65, 155]. To define the total mass and momentum
of an isolated system we assume the metric far away from the source to be written in
the form of gµν = ηµν + hµν with |hµν | � 1, i.e. a flat space-time plus a perturbation.
We now define the total mass and angular momentum through the effects of the system
on far-away test-masses. By evaluating the expression at spatial infinity I0 we ensure
that weak-field limit holds. The expressions for the total mass and momentum were
first obtained by Arnowitt, Deser and Misner in [65] and are therefore called the ADM
mass MADM , linear momentum P iADM and angular momentum J iADM . The expressions
read

MADM =
1

16π
lim
r→∞

∮
S

(δij∂ihjk − ∂kh)dSk, (5.2)

P iADM =
1

8π
lim
r→∞

∮
S

(Ki
j − δijK)dSj , (5.3)

J iADM =
1

8π
lim
r→∞

∮
S

(εijkxjKkl)dS
l, (5.4)

with dSi = sidA and si being the outward-pointing normal vector to the surface S
and dA the standard area element. These expression contain only quantities inherent
to a spatial hypersurface of our space-time foliation and can therefore be evaluated
locally in time. As these quantities represent global properties of the space-time the
results obtained at different times must coincide. In the numerical evolution of space-
times however we typically have to choose a finite domain of computation and can
therefore not evaluate the expressions (5.4) at spatial infinity but instead have to use
a finite distance away from the source. This introduces an intrinsic error into the
calculation. In practice nevertheless the expression are widely used since the assumption
of a Minkowski space-time plus a perturbation is shown to hold already at a finite
distance of the source, such that the error by evaluating (5.4) at finite distances away
from the source is minimal.

5.2 The Weyl tensor

The Weyl tensor plays a crucial role in the extraction of gravitational waves from
(weakly) asymptotically simple space-times. We can identify the different components
of the Weyl tensor with in- and outgoing gravitational radiation at I+ and the wave
extraction methods presented in this section are based on this property (note that there
are other ways to extract gravitational waves, like Cauchy characteristic extraction
or the extraction via gauge-independent perturbations around a Schwarzschild black-
hole space-time). In four dimensions the Riemann tensor contains more independent
components that the Ricci tensor. Decomposing the Riemann tensor Rµνλσ into the
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Ricci tensor Rµν requires the introduction of an additional object, the Weyl tensor

Cµνλσ := Rµνλσ − [gµ[λRσ]ν = gν[λRσ]µ] +
1

3
gµ[λgσ]νR. (5.5)

The Weyl tensor has vanishing trace

Cµλµσ = 0, (5.6)

possesses the same symmetries as the Riemann tensor and has 10 independent compo-
nents. In vacuum, it coincides with the Riemann tensor since the Ricci tensor vanishes.
The Weyl tensor also is invariant under conformal transformations, i.e.

C̃µνλσ = Cµνλσ, (5.7)

which is an important property for the following steps. The Weyl tensor therefore
is sometimes also called the conformal Weyl tensor. We can define the electric and
magnetic components of the Weyl tensor as

Eµν := kαkβCαµβν (5.8)

Bµν := kαkβC∗αµβν , (5.9)

with kν being a time-like unit vector field and C∗αµβν the dual of the Weyl tensor Cαµβν
defined as

C∗αβµν :=
1

2
Cαβλσε

λσ
µν . (5.10)

with ελσµν being the completely anti-symmetric Levi-Cevita symbol. We can now
express the Weyl tensor as

Cµνλσ = 2
[
lµ[λEσ]ν − lν[λEσ]µ − k[λBσ]αε

α
µν − k[µBν]αε

α
λσ

]
, (5.11)

with lµν := gµν + 2kµkν . This will become important in section 5.2.3, where we will
calculate Bµν and Eµν on a given hypersurface from ADM quantities only and use these
two components to construct the Weyl tensor.

5.2.1 The Newman-Penrose formalism

The analysis of asymptotic properties of space-times is commonly more easily achieved
by working in a null frame. One can reduce the complexity of the equations involved by
representing tensor quantities as spinors and spin-weighted scalars. This procedure is
often referred as the Newman-Penrose formalism as it was first introduced by Newman
and Penrose in [24]. By contracting tensor components with a suitable null tetrad we
obtain a set of pseudo-scalars that then have specific transformation properties when
we change the tetrad. We introduce a tetrad (l,n,m, m̄) of null vectors

lµlµ = nµnµ = mµmµ = m̄µm̄µ = 0, (5.12)
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and we call the tetrad a Newman-Penrose null tetrad if the vectors satisfy

lµn
µ = −mµm̄µ = 1. (5.13)

We can then construct the metric from the tetrad vectors

gµν = 2l(µnν) − 2m(µm̄ν), gµν = 2l(µnν) − 2m(µm̄ν), (5.14)

and also use the tetrad to construct scalars from tensors by contracting all components
with elements of the null tetrad

η = mµ...mνm̄λ...m̄σ...lα...lβnγ ...nδnµ...νλ...σα...βγ...δ. (5.15)

The 2-parameter subgroup of the Lorentz group preserving the two null directions lµ

and nµ and the product lµn
µ introduces a two-dimensional gauge-freedom. We can

generate this group by applying a boost

lµ → rlµ, nµ → r−1nµ, (5.16)

and a spatial rotation of the form

mµ → eiθmµ. (5.17)

Here r and θ are two real parameters. A transformation that can be a accomplished
by applying a boost (5.16) and a rotation (5.16) form the class of spin-boost trans-
formations. Defining λ2 = reiθ we can express any spin-boost transformation of η
as

η → λpλ̄qη. (5.18)

Here the superscripts p and q denote simple powers and we call η a scalar with spin-
weight s = 1

2(p− q) and boost-weight b = 1
2(p+ q). Whenever we change the tetrad the

scalar is transformed according to (5.18). We can also contract purely spin-weighted
scalars by only contracting with m, m̄. These scalars will be of special interest since
by using m,m̄ we can represent the intrinsic metric of a space-like 2-surface. We can
now employ this formalism to represent the 10 independent components of the Weyl
tensor by five complex spin and boost-weighted scalars, that are referred to as the Weyl
scalars:

Ψ0 := Cµνλσl
µmν lλmσ (5.19)

Ψ1 := Cµνλσl
µnν lλmσ (5.20)

Ψ2 := Cµνλσl
µmνm̄λnσ (5.21)

Ψ3 := Cµνλσl
µnνm̄λnσ (5.22)

Ψ4 := Cµνλσn
µm̄νnλm̄σ. (5.23)

The Weyl scalars are tetrad-dependent as is obvious from there definition and transform
according to (5.18). The two other classes of tetrad transformations that maintain
orthonormality of the null tetrad are null rotations of class I

lµ → lµ, mµ → mµ + alµ, m̄µ → m̄µ + ālµ,

nµ → nµ + āmµ + am̄µ + aālµ, (5.24)
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and null rotations of class II

nµ → nµ, mµ → mµ + bnµ, m̄µ → m̄µ + b̄nµ,

lµ → lµ + b̄mmu + bm̄µ + bb̄nµ. (5.25)

The complex parameters a and b are the transformation parameters of the class I and
class II transformation group. Together with the parameters r and θ of the class III
null rotations (which for briefness we will not report in detail on) they form the 6
degrees of freedom contained in the tetrad, namely a rotation in space in combination
with a Lorentz boost. In the next section we will see that the characterization of these
transformation plays an important role in the interpreting the physical meaning of the
Weyl scalars.

5.2.2 The Petrov classification and the Sachs-Peeling theorem

The Petrov classification [63, 126] provides a way of analyzing the algebraic structure
of the Weyl tensor along null directions of a space-time. We have seen in the previous
section that by defining the Weyl scalars we can completely determine the Weyl tensor
components. By then applying null rotations of the form (5.25) we can analyze the
behavior of the Weyl scalars under theses transformations. Applying a class II null
rotation we find

Ψ0 → Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4, (5.26)

Ψ1 → Ψ1 + 3bΨ1 + 3b2Ψ2 + b3Ψ3, (5.27)

Ψ2 → Ψ2 + 2bΨ3 + b2Ψ4, (5.28)

Ψ3 → Ψ3 + bΨ4, (5.29)

Ψ4 → Ψ4. (5.30)

By choosing b as the complex roots of

Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4 = 0, (5.31)

Ψ0 vanishes and lµ in turn becomes

lµ → lµ + bmµ + bm̄µ + bb̄nµ. (5.32)

The null vectors obtained by taking the roots of (5.31) are called the principal null
directions of the Weyl tensor. The space-time is called algebraically special if we can
find that some of these roots coincide. We can now classify space-times by analyzing
the roots of (5.31), which is called the Petrov classification: Petrov type I: All four
roots b1, b2, b3, b4 are distinct. In this case we can always find a null tetrad such that
(Ψ1,Ψ2,Ψ3) are non-vanishing. Petrov type II: Two roots coincide, b1 = b2, b3, b4, the
others are distinct. In this case a null tetrad exists such that (Ψ2,Ψ3) are non-vanishing.
Petrov type III: Three roots coincide, b1 = b2 = b3, b4. Only Ψ3 does not vanish. Petrov
type N: All four roots coincide, b1 = b2 = b3 = b4. Only Ψ4 s non-zero. Petrov type D:
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Two pairs of roots coincide, b1 = b2, b3 = b4. We can find a null tetrad, such that only
Ψ2 s non-zero. Petrov type O: The Weyl tensor vanishes, the space-time is conformally
flat.

In the Petrov classification a space-time is characterized from the most general case
of a Petrov type I space-time to more special cases of Petrov type II to Petrov type
O. the classifications can also be expressed in terms of spinor calculus as presented
in [63]. Another way of classifying the behavior of the Weyl scalars is given by the
Sachs-Peeling theorem. It classifies the fall-off behavior with respect to large radii of
the individual Weyl scalars [24, 26, 63, 154, 156, 157]. The fall-off depends on the spin
and boost of the scalar and it is found to be

Ψn ≈
1

r5−n , (5.33)

if we choose a null tetrad that corresponds to the choice of a Bondi frame. The Bondi
frame represents the choice of one specific gauge at I, but because we can choose the
conformal factor freely we obtain a gauge-freedom at I since we can multiply by any
positive real scalar field without changing the property of our conformal rescaling. We
can therefore choose a frame, that is adapted to the topology of I, which is R×S2. The
Sachs-Peeling theorem can also be expressed using the previously introduced Petrov
classification

Cµνλσ =
[N ]

r
+

[III]

r2
+

[II]

r3
+

[I]

ri4
+ O(r−5). (5.34)

(5.34) now implies that far away from an isolated system the asymptotic field in
asymptotically simple space-times corresponds to type N Petrov space-time. Ψ4 is
therefore the only non-vanishing component and represents outgoing gravitational radi-
ation. However, the Sachs-Peeling theorem is only applicable to weakly asymptotically
simple space-times that extend smoothly to I. It is not a priori clear that a binary
black-hole space-time satisfies these requirements and the fall-off behavior of Einstein’s
equations in these space-times might be different in consequence. It is however evident
by now that non-trivial solutions like black-hole space-times satisfy the properties of
the Sachs-Peeling theorem [158, 159].

5.2.3 Extraction of gravitational waves using Ψ4

Using the Weyl scalar Ψ4 we can now obtain the outgoing gravitational radiation gen-
erated by an isolated source. To evaluate Ψ4 in a numerical evolution it is convenient to
first define an orthonormal basis (r̂, θ̂, φ̂) centered on the Cartesian grid center and ori-
ented with poles along ẑ. Using the normal to the 3 hypersurfaces to define a time-like
vector t̂ we can construct a null frame

l =
1√
2

(̂t− r̂), n =
1√
2

(̂t + r̂), m =
1√
2

(θ̂ − iφ̂). (5.35)

We an now calculate Ψ4 using a reformulation of (5.23) only using ADM quantities on
a 3-hypersurface [160] using the decomposition into electric and magnetic part of the
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Weyl tensor (5.5)
Ψ4 = Cijm̄

im̄j , (5.36)

with
Cij := Eij = iBij = Rij −KKij +Kk

i Kkj = iεkli ∇lKjk. (5.37)

We can also compute the remaining four Weyl scalars in a similar way

Ψ3 =
1√
2
Cijm̄

iejr, (5.38)

Ψ2 =
1

2
Cij ē

i
re
j
r, (5.39)

Ψ1 = − 1√
2
Cijm

iejr, (5.40)

Ψ0 = Cijm̄
imj (5.41)

with ejr := r̂ being the unit radial vector.

5.3 EM complex scalars

In the Newman Penrose formalism we not only can define complex scalars representing
the ten independent components of the Weyl tensor, but also define complex scalars
as contractions of the Faraday tensor (as defined in chapter 4) [161]. The Faraday
tensor contains the information about EM fields present in the space-time and we can
by contracting it with a suitable null tetrad define the three spin- and boost-weighted
complex scalars corresponding to the 6 independent components of the Faraday tensor

Φ0 := Fµν l
µmν (5.42)

Φ1 :=
1

2
Fµν(lµnν + m̄µmν) (5.43)

Φ2 := Fµνm̄
µnν . (5.44)

The fall-off behavior of the EM complex scalars is given by

Φn ≈
1

r3−n , (5.45)

obtained using the Sachs-Peeling theorem. We can now identify Φ0 with in-going EM
radiation and Φ2 with outgoing EM radiation for r →∞.

5.4 The gravitational wave strain

Having obtained Ψ4 as quantity representing outgoing gravitational radiation we are
now interested in relating this to the actual gravitational wave strain, i.e the dimen-
sionless displacement in space caused by a gravitational wave. The gravitational wave
strain h is related to Ψ4 by [34, 83, 161]

1

2

(
ḧ+ − ḧ×

)
= lim

r→∞
Ψ4. (5.46)
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”+” and ”×” here denote the two polarizations of the gravitational wave strain and¨
refers to a double time derivative. As this result is obtained from the linearized theory
it is only valid far away from the source and in the TT-gauge we can find additionally
a close relationship between the linearized Riemann tensor and the gravitational wave
strain

Ritjt = −1

2
ḧTTij . (5.47)

In practice it is often useful to compute the gravitational wave strain in terms of spin
weighted spherical harmonic modes of Ψ4,

h+ − ih× = 2 lim
r→∞

∑
l,m

∫ t

0
dt
′
∫ t′

0
dt
′′
Ψlm

4 −2Ylm. (5.48)

5.5 Radiated energy and momentum of gravitational waves

Binary black-hole systems radiate up to 10 percent of their mass in form of gravita-
tional waves. For supermassive black-hole binaries this accounts to copious amounts of
energies. Using the gravitational wave strain computed in the previous section we can
also find expressions for radiated energy, radiated linear and radiated angular momen-
tum. Once we have obtained the expression in terms of the strain h we can then easily
express them in terms of Ψ4. An expression for the radiated energy in terms of the
gravitational wave strain was found in, derived by evaluating the Isaacson stress-energy
tensor in the TT -gauge [35, 36]

Tµν =
1

32π
〈∂µhTTij ∂νhTTij 〉. (5.49)

By exploiting the expression for hTijT in terms of h+ and h× by introducing H :=
h+ − ih× we can write the Isaacson stress energy tensor as

Tµν =
1

16π
Re〈∂µH∂νH〉, (5.50)

and using the asymptotic property ∂rh ≈ −∂th for outgoing waves we can integrate the
components T 0i over a 2-surface located at infinity, we obtain

dE

dt
= lim

r→∞
r2

16π

∫
S2

|Ḣ|2dΩ, (5.51)

with dΩ = sin θdθdφ and S2 being a 2-surface at infinity. We can now also write the
radiated energy flux in terms of the Weyl scalar Ψ4 [28, 161, 162]

dE

dt
= lim

r→∞
r2

4π

∫
S2

dΩ

∣∣∣∣∫ t

−∞
dt̃Ψ4

∣∣∣∣2 . (5.52)

The radiated linear momentum in binary black-hole mergers is of interest since a net
linear momentum carried away by gravitational waves leads to a recoil effect of the
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remnant black hole of merger 9. We will first derive an expression for the radiated
linear momentum in terms of the strain h and then use this to find an direct expression
for the linear momentum in terms of the extraction quantity Ψ4. Taking into account
the components T ir of the Isaacson stress energy tensor and assuming ∂iH ≈ (xi/r)∂rH
in a region far away from the source, we get [36, 163]

dPi
dt

= lim
r→∞

r2

16π

∫
Ω
li||̇H|2dΩ, (5.53)

with li the radial unit vector in flat space. Writing the linear momentum in terms of
Ψ4 we find [162]

dPi
dt

= lim
r→∞

r2

16π

∫
S2

dΩli

∣∣∣∣∫ t

−∞
dt̃Ψ4

∣∣∣∣2 d. (5.54)

Additionally we can also evaluate the radiated angular momentum by relating it to
the strain h and Ψ4. In the case of angular momentum special care has to be taken
when using the short-wave-length approximation to obtain the Isaacson stress-energy
tensor, because by averaging over a number of wavelength and also neglecting angular
derivatives we will ignore the main contributions to the angular momentum carried by
gravitational waves. An expression for the angular momentum flux was first introduced
by DeWitt in 1971 and later presented in [37]. The expression reads

∂Ji
∂t

= − lim
r→∞

r2

16π
Re

∫
S2

ĴiH∂tH̄dΩ, (5.55)

using the angular momentum operators Ĵi given by

Ĵx =
1

2

(
Ĵ+ + Ĵ−

)
, (5.56)

Ĵy = − i
2

(
Ĵ+ − Ĵ−

)
, (5.57)

Ĵz = ∂φ, (5.58)

where J+ and Ji are the usual angular momentum ladder operators. Writing now the
angular momentum in terms of Ψ4 we obtain [162]

dJi
dt

= − lim
r→∞

r2

16π
Re{

∫
S2

(∫ t

−∞
Ψ̄4dt

′
)
× Ĵi

(∫ t

−∞

∫ t
′

−∞
Ψ4dt

′′
dt
′
)
dΩ}. (5.59)

5.6 Radiated energy and momentum of EM waves

Similarly to the expressions for the gravitational wave energy and momentum flux
we can obtain expressions for the energy flux for EM waves in terms of the complex
scalars Φ2 and Φ0. This is of great interested when comparing the power emitted by a
binary black-hole merger system in gravitational waves and EM radiation as presented
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in detail in chapter 11. The flux of energy carried by EM waves in general is given by
the pointing flux Si defined as

Si =
√
γεijkE

jBk, (5.60)

with the εijk being the completely anti-symmetric Levi-Cevita symbol and Ei and Bi

the electric and magnetic fields. Since Ei and Bi are gauge-dependent it is desirable
to express the Poynting flux in terms of the gauge-independent (but however tetrad-
dependent) quantities Φ2 and Φ0. In general we can write [161]

dE

dt
= lim

r→∞

∫
r2
(
|Φ2|2 − |Φ0|2

)
dΩ. (5.61)

Now we have found an expression of the radiated energy by EM waves in terms of
the net flux of outgoing EM radiation Φ2 and in-going radiation Φ0. We note that in
scenarios that model a compact source the in-going term can be neglected. However,
since for some of the results obtained in this thesis 11 this assumption does not hold
we present here the general expression.
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6

Discretization of PDEs

To put us in place to perform numerical simulations of Einstein’s equations we need to
formulate the equations for the evolution systems as presented in chapter 3 in a dis-
cretized form. While this is often a simple task for ordinary differential equations, the
non-linearity of Einstein’s equations poses a major problem. The analytical analysis
of discretized non-linear PDEs is very difficult and practical only for simple systems.
Therefore a detailed analysis of the stability properties of the different formulations of
Einstein’s equations in a discretized form poses a major problem. One of the key aspects
in this analysis is the hyperbolicity of the equations. For certain classes of hyperbolic
equations mathematical theorems can be obtained that guarantee the stability of the
equations even in a discretized form. In the case of Einstein’s equations, for example,
it can be shown that the generalized harmonic formulation are symmetric hyperbolic
and yield stable evolution in the discretized scheme. In addition also the BSSNOK
formulation of Einstein’s equations yield stable numerical evolutions. In general not
all combinations of equations with different discretization schemes lead to stable dis-
cretized equations. A crucial tool for the analysis of discretized systems is the von
Neumann stability analysis. The MoL is used to split the discretization of space and
time components of the equations, making the stability analysis considerably easier and
allowing for a greater flexibility in choosing a suitable discretization scheme for the two
different components. Convergence is crucial for any numerical approximative solution
to be meaningful. It guarantees the numerical error of the solution to be bounded and
the solution in the limit of infinite resolution of the discretized scheme to converge to
the continuum one. In the next sections we will briefly review these concepts.

6.1 Finite differences

The main aspect of formulating a set of discretized equations as an approximation to
the continuum case is the treatment of derivatives,

f ′(x) := lim
h→0

f(x+ h)− f(x)

h
, (6.1)

69
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as we have to find a way to approximate the limit h→ 0 in this equation. The easiest
and most straightforward choice is just to replace h → 0 with a certain choice of h.
This approximation is called finite differences. For the evaluation of the finite difference
expression we now only need the function values fi := f(xi) at a set of discrete points
xi and then taking derivatives reduces to additions and subtractions. The set of points
xi represents our numerical domain. In the case of finite differences they are usually
uniformly spaced in their sampling of the numerical domain. In the case of binary
black-hole merger simulations such a uniform sampling (with the addition of adaptive
mesh-refinement which we will introduce in section 7.2) is suitable but in the case of
more complicated topologies different schemes are more appropriate. Other methods,
for example finite volumes or discontinuous Galerkin [164] are used instead since they
allow for non-uniformly and even unstructured grids that can be very well adapted
to any physical topology. In addition to the structure of the numerical grid finite
difference methods assume the solutions to be continuous functions of a certain class of
differentiability Cq. This is necessary for any derivative to be well-defined, but is not
applicable in situations where discontinuous solutions, such as shock-fronts in hydro-
dynamical simulations, may arise. In those scenarios one therefore transforms the PDEs
into a integral equations by the help of test-functions and again can use finite volume
or discontinuous Galerkin methods to solve these equations. Luckily, in the case of
binary black-hole space-times, the vacuum Einstein equations can be easily discretized
using finite differences. However, there is also an effort in using spectral methods to
achieve more accurate solutions. This effort is mostly carried out by the Caltech-Cornell
group, which have developed a spectral-method base code and provide highly accurate
numerical simulations of binary black-hole mergers [45, 103]. We will now proceed and
provide a quick overview of the finite-difference scheme used to produce the results in
the thesis.

6.1.1 Finite difference operators

Finite difference operators are used to approximate partial derivatives. The simplest
choice of such an operator is

f ′(x) :=
f(x+ h)− f(x)

h
+ O(h2). (6.2)

This operator is first-order accurate, so the error will decrease linearly with increase in
resolution (decreasing h). We can obtain a more accurate operator by using a Taylor
expansion around x to obtain

f ′(x) :=
f(x+ h)− f(x− h)

2h
+ O(h3) (6.3)

with

f(x+ h) = f(x) + f ′(x)(x+ h) +
1

2
f ′′(x)(x+ h)2 + O(f3), (6.4)

f(x− h) = f(x) + f ′(x)(x− h) +
1

2
f ′′(x)(x− h)2 + O(f3). (6.5)
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This operator now is second-order accurate, we have taken terms up to second order
in the Taylor expansion of f(x). Another crucial difference between the first order
operator (6.2) and the second order one, is that the first one is one-sided, while the
second one is centered in respect to the point of evaluation x. In numerical evolutions it
turns out that the use of one-sided or centered finite difference operators has a strong
impact on the stability of the discretization scheme. In practice we use fourth- or
eight-order accurate finite difference operators as they can be extended to arbitrary
high-order q [165] as long as the functions are Cq. The use of higher-order schemes
provides a higher accuracy and less high-frequency noise at a given resolution and the
solution converges faster to the continuum solution. Any extra high-frequency noise
present in our solution can be cured by applying artificial dissipation operators which
we will discuss in the next section.

6.1.2 Dissipation operators

Any finite difference operator introduces spurious high-frequency noise due to its in-
ability to resolve higher-frequency components of the solution. This additional error
introduced in the computational domain can cause simulations to crash since it in-
fluences the numerical scheme in an non-linear manner. To weaken the impact of
high-frequency noise finite-difference operators are usually bundled in application with
artificial dissipation operators which are designed to damp high-frequency oscillations
in the numerical grid. A typical choice of these dissipation operators is the Kreiss-
Oliger dissipation as introduced in [166]. For a finite difference scheme of order q and
of the form

un+1
m = nnm + ∆tS(unm), (6.6)

where n is the time-level at which the solution u is represented, m the grid-point where
it is evaluated, and S(unm) a spatial finite-difference operator, we extend this to the
form

un+1
m = nnm + ∆tS(unm)− ε∆t

∆x
(−1)N∆2N

x (unm). (6.7)

Here ε > 0 and N ≥ 1 is an integer and ∆2N
x (unm) is a difference operator of order

2N . It now can be shown [126] that the extra term damps effectively frequencies of the
same length-scale as the grid spacing ∆x, while leaving longer wavelengths unaffected.
In the continuum limit equation (6.7) reads

∂tu = S(u)− ε(−1)N (∆x)2N−1∂2N
x u, (6.8)

and the extra term introduced and acting in a dissipative way vanishes in the limit
∆x → 0. To preserve the overall order of accuracy of our finite difference scheme the
dissipation operator needs to fulfill 2N − 1 ≥ q, i.e., it has to be one order higher than
the finite difference operator itself to yield the same accuracy.
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6.2 MoL

By using MoL [167] we can use independent discretization schemes for the spatial and
time components of our PDEs. It allows us to disentangle the discretization scheme in
time from the spatial one. This allows us to study the stability of the time discretization
for a given spatial discretization and vice versa. After having chosen a discretization
scheme in space S we typically proceed by splitting the time derivatives of our PDEs
into a first-order form. Now the MoL performs an averaging in space that reduces u
to only be a function of the form u(t). This procedure allows to use standard ordinary
differential equation (ODE) integrators, for example a RK scheme, to perform the time
integration. To highlight the discretization in time performed by using the MoL we
assume to have a continuum differential operator S and can write an evolution equation
for our solution u in the form

∂tu = S(u). (6.9)

We now discretize in time by introducing a sampling tn and denote the solution at a
given time-level as un = u(tn). For illustrative purposes we now choose a very simple
scheme, the Euler step scheme, which is first-order in accurate to obtain

un+1 = un + ∆tS(tn, u
n), (6.10)

which enables us to obtain the time evolution of our solution u. However it turns out
that this very simple approximation does not lead to stable evolution [167] in time and
a better approximation for the time discretization is given by the RK scheme, which
we describe next. The standard scheme used in binary black-hole simulations is the
fourth-order accurate RK scheme, which consists of evaluation of successive sub-steps
to obtain the solution at next time-level. We can write it as

k1 = S(tn,u
n−1), (6.11)

k2 = S

(
tn−1 +

∆t

2
,un−1 +

∆t

2
k1

)
, (6.12)

k3 = S

(
tn−1 +

∆t

2
,un−1 +

∆t

2
k2

)
, (6.13)

k4 = S
(
tn−1 + ∆t,un−1 + ∆tk3

)
, (6.14)

un = un−1 +
∆t

6
(k1 + 2k2 + 2k3 + k4) + O

(
∆t5

)
. (6.15)

The evaluation at a number of intermediate sub-steps ensures a higher accuracy of
this scheme. The discretization order in time should be of the same order of accuracy
as the discretization in space so as to not limit the overall accuracy of the numerical
implementation. However in practice it turns out that the error introduced by a lower
order time discretization scheme (i.e., a fourth-order RK method in combination with
a 8th-order spatial differencing scheme) is sub-dominant in binary black-hole merger
simulations, thus making the choice of a fourth-order RK method the standard one
used in our simulations. We note that some time-discretization schemes do not lead
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to stable evolutions. In practice we can analyze the Fourier modes of the discretized
PDE [167] to determine the stability properties of the time discretization scheme. In
the next section we will give a brief overview over the stability and well-posedness of
solutions to PDEs.

6.3 Stability and well-posedness

Well-posedness and Stability are two properties of major importance when analyzing
PDEs. While well-posedness ensures that a PDE problem at the continuum level is
posed in mathematically consistent way, while stability requires the discretized form
of the equation to behave in an analogue way. A well-posed continuum problem does
not necessarily lead to a stable discretized problem as this depends on the choice of
discretization. We refer to a stable numerical scheme, if the continuum problem is
well-posed and the discretization scheme prevents late-time exponential growth of the
numerical solution. The von Neumann analysis [167, 168, 169] provides a useful tool
to analyze the stability properties of a discretized PDE by transforming the analysis
into the Fourier domain. In addition to these key aspects we will also review the
Courant-Friedrichs-Levy (CFL) condition [170] which determines the maximum time-
step depending on the grid-spacing used in the spatial part of the domain. We will
briefly state these concepts in the next sections.

6.3.1 Well-posedness

Well-posedness requires a problem to be formulated in a way, that it has a solution u,
that this solution is unique, and that it depends continuously on the initial data of the
problem. For a system of PDEs, we can pose a initial value boundary problem on the
domain x ∈ [0, 1] by

ut = P

(
x, t,

∂

∂x
,
∂

∂x2
, ...

)
u + F, t ≥ t0, (6.16)

u(x, t) = f(x), (6.17)

L0

(
t,
∂

∂x
,
∂

∂x2
, ...

)
u(0, t) = g0, (6.18)

L1

(
t,
∂

∂x
,
∂

∂x2
, ...

)
u(1, t) = g1, (6.19)

with L0 and L1 being differential operators and F a forcing function. We can now
define well-posedness for a homogeneous boundary conditions (F = g0 = g1 = 0) [167].

Definition 6.3.1 The problem (6.19) with F = g0 = g1 = 0 is well-posed if, for every
f ∈ C∞ that vanishes in a neighborhood of x = 0, 1, it has a unique solution that
satisfies

||u(·, t)|| ≤ Keα(t−t0)||u(·, t0)||, (6.20)
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with K and α not depending on f and t0.

For inhomogeneous boundary data we extend (6.3.1)

Definition 6.3.2 The problem (6.2) is strongly well-posed if it is well-posed and the
solution that satisfies

||u(·, t)|| ≤ K(t, t0)

(
||u(·, t)||+

∫ t

t0

(||F(·, τ)||2 + |g0(τ)|2 + |g1(τ)|2)dτ

)
, (6.21)

with K(t, t0) is a bounded function in every finite interval, i.e., ∞ > ||K(t, t0)||∞ and
does not depend on the data.

6.3.2 Stability

Stability is the discrete analogue of well-posedness and determines the ability of a
discretized set of PDEs to allow for long term evolutions. In the case where the dis-
cretized system is unstable exponentially growing modes can develop and cause the
error to grow without bounds. We can write a general finite difference approximation
of a linear system of PDEs as [167]

Q−1u
n+1 =

q∑
σ=0

Qσu
n−σ, n = q, q + 1, ... (6.22)

uσ = f (σ), σ = 0, 1, ..., q. (6.23)

where the Qσ are finite difference operators and q denotes the number of time-levels
evaluated. If we in addition now assume that Q−1 is uniformly bounded and its inverse
Q−1
−1 is too in the limit of grid and time step h, k → 0, we can evolve the solution step

by step in time. For simplicity, we restrict ourselves in this section to the case of q = 0,
thus we only evaluate the current and next time level. The general expressions can be
found in [167]. By reformulating (6.23)

un+1 = Q(tn)un, n = 0, 1, ... (6.24)

u0 = f (6.25)

with Q(tn) = Q−1
−1Q0 and f defining the data on the initial time-level t0, we can write

the discrete solution as
un = Sh(tn, tν)uν . (6.26)

We can now obtain

Definition 6.3.3 Given the constraints αS, C and KS, the difference approximation
is said to be stable for h ≤ h0, if for all h the discrete operator in its norm satisfies

||Q−1
−1||h ≤ C, ||Sh(tn, tν)||h ≤ KSe

αS(tn−tν). (6.27)
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From Definition (6.3.3) we can now get an estimate on the growth on the norm of the
solution un as

||un||h ≤ K(tn)||f ||h, K(tn) = KSe
αStn . (6.28)

This estimate states that the norm of the solution vector at later times is bounded by
the initial data. Solutions that are exponential in nature are accounted by including
the exponential factor into this estimate. In specialized cases where no exponentially
growing modes are present in the continuum problem, more restrictive forms of (6.3.3)
might be used, for example neglecting the exponential factor. In practice we often use
a slightly different definition of stability, which reads

Definition 6.3.4 Suppose the continuous solution operator S(t, t0) is bounded in the
form

||S(t, t0)||op ≤ Keα(t−t0). (6.29)

We then call a finite difference approximation strictly stable if in addition to (6.3.3) it
satisfies

||Sh(tn, t0)||h ≤ KSe
αS(tn−t0), (6.30)

with αS ≤ α+ O(k).

6.3.3 von Neumann analysis

A particularly useful analysis technique for discretized PDEs is the von Neumann sta-
bility analysis which is using a Fourier mode analysis technique. By exploiting the MoL
it first transforms the semi-discretized PDE in space to Fourier space, i.e., the spatial
finite difference operators are applied to Fourier modes ûj = Ψeiωhxj with Ψ being the
amplitude, ω the wave number, h the grid spacing and j the index of the grid point.
This yields for a centered finite difference operator D approximating ∂x

D̂0ĥj = Ψeiωhxj i
sin(ωh)

h
. (6.31)

We can now solve the Fourier-transformed PDE

∂tû = Q̂û (6.32)

to obtain solutions of the form

û = eλt, Re(λ) = 0, (6.33)

with λ denoting the eigenvalues of Q̂. A necessary condition for stability now can be
found in the expression

|λ| ≤ eαSk, (6.34)

which is the von Neumann condition. An ODE method now is stable if the λk lie
within the methods region of stability. To determine this regions of stability is beyond
what we can present in this section but we refer to [167, 168] for details. Besides the
von Neumann stability analysis there exist other methods for analyzing the stability
properties of PDEs. One example is the energy method [167], which operates in physical
space and uses a suitable norm such that the growth of the solution in every sub-step
is bounded by an exponential factor.
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6.3.4 The CFL condition

The CFL condition [170] states that the numerical domain of dependence of a solu-
tion should always incorporate the mathematical domain of dependence. It is another
necessary condition for the stability of numerical evolution schemes. The basic idea is
depicted in figure 6.1. It can be derived as a consequence of the von Neumann stability
analysis for explicit time evolution schemes. Formulated in a different way it states,
that the largest characteristic speed vmax along every direction ni cannot exceed the
corresponding numerical speed

vmax < niv
i
num, vinum =

s∆xi

∆t
. (6.35)

Here s denotes the stencil width of the difference operator. Effectively the CFL con-
dition sets a limit on the maximal time-step we can choose and that still yields stable
evolutions

∆t ≤ C∆x, (6.36)

with C = s
vnum

. To overcome this limit one can use implicit schemes for the time

Figure 6.1: Two example representations of theoretical and numerical domains of depen-
dence. In the left panel, the numerical domain of dependence includes the theoretical one
while in the right the opposite is true. Figure from [64].

discretization, which do not have the limitation of the CFL condition.

6.4 Hyperbolicity

In this section we will briefly review the concept of hyperbolicity, since it is of crucial
importance when trying to find a formulation of Einstein’s equations that yields stable
numerical evolutions for black-hole space-times. Hyperbolicity reflects a condition on
the coefficients of a system of PDEs, which ensures that given suitable initial data
on an initial hypersurface, a unique solution can be obtained in neighborhood of the
hypersurface and that the solution depends on the initial data in a continuous way [171].
In addition finite propagation velocities follow as a consequence of hyperbolicity. To
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state the concept of hyperbolicity in a more formal and precise way we investigate a
first order system of evolution equations

∂tu+M i∂iu = 0, (6.37)

with the M i being n × n characteristic matrices of the PDE and the index i denotes
an index in spatial dimensions only. Using a contraction with a unit vector ni we can
construct the principal symbol

P (ni) := M ini. (6.38)

which we can now use to classify PDEs in terms of their hyperbolic properties. We
call a system of PDEs strongly hyperbolic if P has real eigenvalues and a complete set
of eigenvectors for all ni. A system of PDEs for which P has real eigenvalues, but
for which a complete set of eigenvectors for all ni cannot be obtained is called weakly
hyperbolic. If a system of PDEs is strongly hyperbolic and in addition all M i are
symmetric matrices, we call it symmetric hyperbolic. Last a strictly hyperbolic system
has only real eigenvalues of its principal symbol P and all of these eigenvalues are
distinct for all ni. In case the P has only imaginary eigenvalues the system is called
elliptic and in the case of both real and imaginary eigenvalues the set of equations is
said to be parabolic. For symmetric and strongly hyperbolic systems we can always find
a positive definite Hermitian matrix H(ni) that satisfies

HP − P THT = HP − P TH = 0, (6.39)

with T denoting the transpose of any matrix. H is called the symmetrizer and we can
use it to construct an inner product and a norm on the space of solutions of a given
PDE. For two solutions of a given system of PDEs u, v we define

〈u, v〉 := u†Hv, (6.40)

||u||2 := 〈u, u〉, (6.41)

where u† denotes the adjunct of u. The norm introduced in (6.41) is usually called an
energy norm and the symmetrizer H acts as a metric tensor on the space of solutions
to the system of PDEs. We can now exploit the energy norm to obtain the growth over
time of the a solution u. We first transform u into Fourier space

u(x, t) = ũ(t)eikxn, (6.42)

and now use equation (6.42) in combination to obtain the time-derivative of the energy
norm

∂t||u||2 = ∂t(u
†Hu) = ∂t(u

†)Hu+ u†H∂t(u)

= ikũT
(
P TH −HP

)
ũ = 0. (6.43)

Now Eq. (6.43) demonstrates that for symmetric and strongly hyperbolic systems the
energy norm does not grow in time, which ensures well-posedness of the system of
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PDEs. The generalized harmonic formulation of Einstein’s equations is a symmetric
hyperbolic system of equations and therefore an ideal candidate for a stable numerical
evolution system. In addition it can be shown that the BSSNOK formulation is strongly
hyperbolic while the ADM system of equations is only weakly hyperbolic, making it un-
suitable for long stable numerical evolutions. A detailed account on various hyperbolic
properties of different formulations of Einstein’s equations can be found in [126].

6.5 Consistency and Convergence

A numerically obtained solution to a PDEs is meaningless without estimates for the
errors in the approximation. Without error estimates we cannot determine if we are
approaching the continuum solution (which the numerical solution is an approximation
to) or still far away. Consequently we need to find tools to estimate the error of a
numerical solution. Starting from a differential equation in the form

Lu = 0, (6.44)

where L is a differential operator and u a function, we write its discretized form as

L∆u∆ = 0. (6.45)

Here ∆ is used to represent the step-size of the discretization scheme. To obtain an
error estimate for the solution to the discretized system u∆ we need to relate it to the
continuum one, u. A useful quantity in this context is the truncation error of our finite
difference approximation defined as

τ∆ := L∆u, (6.46)

which is a measure for the residual of applying L to the continuum solution u. The
truncation error should vanish in the limit of infinite resolution, i.e.,

lim
∆→0

τ∆ = 0. (6.47)

If the discretized version at every grid-point approaches the continuum PDE, we call
our finite difference approximation consistent. Consistency is a fundamental property of
any finite difference approximation. Otherwise we will be unable to obtain the correct
solution of the continuum problem in the limit of infinite resolution. For a consistent
finite difference approximation the truncation error will approach zero as a function
which is a power of the discretization parameter ∆. The order n of the finite difference
approximation is then defined from

lim
∆→∞

τ∆ ≈ ∆n. (6.48)

Consistency is a local property as it determines whether the finite difference approx-
imation locally reduces to the PDE in the continuum limit. In order to classify the
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global property of an numerical approximation we need to introduce another concept,
convergence. We first introduce the solution error

ε∆ := u− u∆, (6.49)

where again the subscript ∆ denotes the quantities obtained from finite difference
approximation to the continuum problem. The solution error measures the difference
between the continuum solution and the numerical solution of the discretized version
of the PDE. An approximation is said to be convergent if the solution error ε∆ vanishes
in the limit of infinite resolution. A consistent approximation can still fail to converge
and even diverge. The Lax equivalence theorem relates the properties of consistency
and convergence.

Theorem: Given an initial value problem that is mathematically well-posed and
a finite difference approximation that is consistent, then stability is a necessary and
sufficient condition such that the approximative solution converges to the continuum
one.

Stated differently, if we can show that our numerical scheme is stable, then our
solution to the discretized problem will converge to the continuum solution. For fur-
ther details on the convergence and consistency of the numerical implementation of
Einstein’s equations we refer to [172].

6.5.1 Convergence testing

To test simulations for their convergence in practice we have to perform the same
simulation for at least two resolutions to put us in position to make any statement
about its error properties. A solution obtained from the discretized system behaves
like the solution to the continuum problem plus error terms if the numerical scheme is
stable

u∆(t, x) = u(t, x) + ∆e1(t, x) + ∆2e2(t, x) + ..., (6.50)

where the ei(t, x) denote the error functions to order i. Depending on the accuracy
order of the numerical scheme used we expect some of these error functions to vanish,
i.e., for a second order scheme the first and second order error functions should be
present, but the higher order terms should vanish. For determining the convergence
properties of a discretized problem where a continuum solution is known (actually that
is not the case for binary black-hole mergers) we can now with a set of two simulations
at different resolutions ∆1 and ∆2 construct the convergence factor as

c :=
||e∆1 ||
||e∆2 ||

, (6.51)

where e∆1 and e∆2 refer to the solution errors for the two different resolution refer to
the solution errors for the two different resolutions. Using expression (6.51) we can now
extrapolate and find

lim
∆→0

c =

(
∆1

∆2

)n
:= rn. (6.52)
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In a scenario where a continuum solution is not known, we need to perform a certain
simulation at least at three resolutions to determine whether the approximate solution
is convergent. For three resolutions ∆1 > ∆2 > ∆3 we can define the convergence
factor as

c :=
||u∆1 − u∆2 ||
||u∆2 − u∆3 ||

. (6.53)

In the continuum limit this results to

lim
∆→0

=
∆n

1 −∆n
2

∆n
2 −∆n

3

. (6.54)

In addition to considering the norms in Eq. (6.53) we can also determine the convergence
factor for every grid point. The remaining solution error can now be evaluated using
two resolutions and the Richardson expansion (6.54)

u∆1 − u∆2 = en (∆n
1 −∆n

2 ) + O(∆n+1)

= en∆n
2 (rn − 1) + O(∆n+1)

≈ ε∆2(rn − 1), (6.55)

with ε∆2 is the solution error estimation for the highest resolution. By writing (6.55)
as

ε∆2 ≈
1

rn − 1
(u∆1 − u∆2) , (6.56)

we can now estimate the error in the numerical solution.
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Computational infrastructure

Performing numerical simulations requires state-of-the-art computational infrastruc-
ture to handle the complexity involved in performing parallel computations on modern
supercomputers. To name a view of the aspects that are key components handled by
the computational infrastructure we mention I/O, parallelization, and memory manage-
ment. Representing the numerical grid structure of a typical binary black-hole merger
simulation alone is a highly complicated task as it involves nesting multiple grids with
different resolutions, splitting the domain over many processors, handling boundary
and overlapping zones and organizing the communication between the different pro-
cessors. This is commonly done via the concepts of adaptive-mesh refinement (AMR)
or fixed-mesh refinement (FMR). The tools used to perform these tasks on computer
systems are of crucial importance to the success and efficiency of modern numerical
relativity codes. The Cactus computational toolkit [173, 174, 175] is at the heart of
most of today’s finite difference based evolution codes for binary black-hole space-times.
It handles input/output, memory management, provides tools for managing the flow
in a computation and greatly simplifies the task of implementing a Einstein equations
based evolution code. It is designed to be used as a general toolkit for solving PDEs.
Another key component of the codes used to produce the results in this thesis is the
Carpet [176, 177] AMR driver. It handles the nesting of grids with different resolu-
tions, takes care of the resulting refinement-level boundaries and generally allows us
to treat different regions of our computational domain (i.e., the regions containing the
black holes) with different resolutions. It is the AMR that makes modern long binary
black-hole simulations feasible. We will in this chapter briefly review the main aspects
of these core components of the computer codes we use. Finally, we mention that while
recent additions like multi-block schemes improve the computational infrastructure used
for binary black-hole mergers in terms of improving the accuracy of long simulations
they were not used for the results in this thesis and we therefore will not describe them
in detail here.
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7.1 The Cactus computational toolkit

The Cactus computational toolkit [173, 174, 175] is an application framework for the
development of computer code for solving PDEs on large-scale supercomputers. It in-
troduces an abstraction layer that provides functions that perform common tasks such
that the application programmer does not have to deal with the detailed implementa-
tion of these functions. This becomes more and more important as current computer
codes become more complex and the hardware infrastructure develops at a rapid pace.
The main goal of a application framework like Cactus now is to provide the technical
implementation for the interaction with different hardware platforms as well as soft-
ware platforms and making sure that it stays up to date and adepts to changes in
the platforms. In this way the application programmer can solely focus on the task
of implementing for example a PDE solver for Einstein’s equations, while a computer
science oriented programmer can purely focus on the abstracted functionality of the
toolkit itself. In the next section we will briefly describe the main components of the
Cactus computational toolkit. For further details on Cactus we refer to [173, 174, 175].

7.1.1 Structural design

The core components of Cactus are the ’flesh’ and ’thorns’. The flesh is the backbone
of the toolkit and executes the main program, controls the overall flow, hands over
control to thorns for specific tasks and reads parameters to the program. Thorns
are the part of Cactus where any actual calculation is done and user-functionality
is implemented. Thorns form the basic (independent) modules of Cactus. Different
thorns can communicate with each other via the flesh application programming interface
(API), which handles the connection and communication of individual thorns to the
flesh. A program based on Cactus in the end consists of a thorn-list defining which
thorns to be included in the program. At execution the program then reads a parameter
file that determines options handed over to the program altering its flow in a specific
way. Cactus is therefore a very flexible toolkit for application development as we can
easily change the components included into an application. The main program flow of
a typical Cactus based application is depicted in figures 7.1 and 7.2.

7.1.2 Modularity

The thorns of Cactus come with their own namespace and any variables or parameters of
a thorn are defined in its namespace. The user can decide which variables or functions of
a thorn should be available to others. Two quantities that are at the heart of most thorn
implementations are grid variables and implementations. Grid variables are variables
defined on the whole computational grid and are i.e., commonly used for the evolution
variables of a formulation of Einstein’s equations. The grid variables are accessible by
all thorns, can be modified and updated. Grid variables can be of the type of scalar,
grid function and grid array. A grid scalar is a scalar quantity defined at every point
of the computational grid, a grid function an array with a fixed size, and a grid array
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Figure 7.1: Main work flow schematics for the Cactus flesh. Figure taken from [175].

Figure 7.2: Evolution action item as processed in the Cactus scheduler. Figure taken
from [175].

an array with an adaptable size. The visibility of variables to other thorns is controlled
via its scope, which can be private, protected or public. A functionality provided by a
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specific thorn in turn is denoted as an implementation. A thorn provides a functionality
to the other thorns through the flesh API. Thorn parameters are handled similar to grid
variables. The execution of a specific functionality or routine from a thorn is controlled
by the Cactus scheduler, which controls the basic work-flow of the program.

7.1.3 Scheduling

Calling routines that are provided by thorns is handled by the Cactus scheduler. The
scheduler is a component of the flesh and controls when and how a routine is called. It
uses the concept of time-bins to call routines in a desired order. The scheduler typically
loops over a finite number of time-bins and routines can therefore be called in the right
order. i.e., in a typical evolution step of an Einstein evolution code the update of the
evolution variables is performed in a time-bin called CCTK Evol, while any analysis
quantities like the constraint are calculated at CCTK Analysis. Inside one time-bin
the order of a number of routines to be called can be controlled by conditional state-
ments. By using the concept of control inversion the Cactus scheduler then determines
the order in which routines should be executed. In this way the independence of the
individual components is ensured.

7.1.4 Memory management and message passing

On current large-scale supercomputer evolution codes are run on a large number of
processors in parallel. By running the program in parallel we can ideally split the
computational domain into n subsets that are each handled by one of the n proces-
sors cores assigned to perform the computation. This leads, at least in principle, to a
speed-up of the computation of a factor of n. However since most large-scale computer
systems do not provide shared memory between all processor cores (typically only the
cores contained within one node (≈ 16) have access to the same memory) we need to
split the computational domain in memory. However, since the typical finite difference
schemes involve high stencil widths every processor not only needs to know data on
its sub-domain, but also on part of the domains of neighboring processors. To obtain
this, a copy operation from one processor to the other is necessary and this complicates
the computation. The regions which hold copies of the domain assigned to different
processors are called interprocessor boundary zones and their updating introduces a
substantial amount of communication among processors. Performing this communica-
tion in an efficient way is crucial to the performance of numerical evolutions and are
handled by an abstraction layer. The most commonly used one is the message passing
interface (MPI) standard [178]. It defines standard routines for copying, updating and
many other common communication tasks while running one MPI processes on each
processor core. When using higher-order accurate finite difference approximations the
amount of data in the interprocessor boundary zones can be enormous. To circumvent
this bottleneck OpenMP [179] can be used which makes use of the shared memory
within a processor by running multiple threads on each of the cores of a processor. In
this way there is one MPI process per processor and then multiple threads running on
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every core. The amount in memory saved by the fact that no interprocessor boundary
zones have to be setup between the threads on different processor cores can be sub-
stantial. Together with additionally reducing the communication between the threads
this leads to a advantage both in memory allocation and results in a speed-up of the
program execution. The main parts of Cactus support OpenMP parallelization. This
functionality in Cactus is handled by the concept of drivers. A driver handles for ex-
ample memory allocation, parallelization and other low-level tasks. One such driver,
the Carpet mesh refinement driver is described in the next section.

7.2 AMR

In black-hole simulations large gradients are present in a small region close to the sin-
gularity. On the other hand the solution in most of the rest of the computational grid
does not show heavy variations or dynamics in time, but we need to allow for a large
computational domain to perform analysis task like gravitational wave extraction which
is only meaningful far away from the source. It is therefore desirable to have different
resolutions in different regions of the numerical grid. This provides the benefit of sav-
ing computational costs while obtaining a high resolution in the regions that require
it. The savings in cost compared to a uniformly space grid throughout the whole com-
putational domain can be drastic. The practical implementation of this non-uniform
computational domain is achieved by using a method called mesh refinement. Mesh-
refinement can be achieved in two different flavors. In FMR the location of the nested
grids in respect to the overall computational domain is fixed in the time evolution. In
the approach of AMR [180] we allow the nested grids with higher resolution to move
around. In this way we can enable them to track the physical dynamics in our system.
In practice, for binary black-hole simulations we enable the nested grids to track the
orbital dynamics of the black holes as the high spatial resolution is required in the
vicinity of them. A example of the grid structure for a basic binary black-hole simula-
tion at a fixed time is presented in figure 7.3. Adaptive mesh refinement was used since
a long time for fluid dynamics [181, 182] simulations and in 3D numerical relativity
FMR was introduced in [177], and later expanded to moving FMR. In the next sec-
tion we will describe the essential aspects of the implementation of a mesh-refinement
infrastructure.

7.2.1 The Carpet mesh refinement driver

Carpet [176] is a mesh-refinement driver for Cactus that has been developed by Schnet-
ter and collaborators [177]. Due to the scheduler design and specifically the property of
control-inversion it is straightforward to use Carpet within Cactus instead of another
grid driver. Any application level functionality like user thorns only have to adjusted
in minor ways to account for the more complicated grid topology. i.e., the update of
the evolution variables now has to be performed on each refined grid, while other cal-
culations, for example interpolation operations need not be changed. To enable these
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Figure 7.3: AMR. Shown is the lapse function α on a 2D-slice of our computational
domain. The black meshes illustrate the nested grid structure centered around the two
black holes. Figure taken from [64].

distinction Carpet uses the techniques describe in the next sections.

7.2.2 Mesh refinement method

Carpet employs Berger-Oliger mesh refinement [180], specifically minimal Berger-Oliger
mesh refinement [180]. The computational domain and all sub-domains are rectangular
Cartesian grids, and the boundaries of the coarsest grid are aligned with the grid lines.
The boundaries of the refined regions are not required to be on a grid point and an
example of the resulting grid topology is depicted in figure 7.4. The computational
grid is grouped into a set of refinement levels Lk. Each refinement level contains a
number of grids Gkj with grid spacings ∆xk (for simplicity we restrict ourselves here to
the one-dimensional case). The grid spacings of the different grids are now related by

∆xk = ∆xk−1/Nrefine, (7.1)

with Nrefine being the integer refinement factor. For all our simulation we always have
Ninteger = 2. L0 is called the coarse level and covers the entire computational domain
while the Lk with k 6= 0 represented the refined regions. They have to be properly
nested, any Gkj must be contained within the set of grids of the next coarser refinement

levels Lk−1. The extent and location of the refined regions within the computational
domain has to be specified by the user or a user application. We in practice track the
evolution of the either the black-hole apparent horizon or the puncture and adjust the
nested grids according to that information.

86



7.2 AMR

Figure 7.4: Grid alignment in an AMR/FMR nested grid structure. Figure taken
from [177].

7.2.3 Time evolution

The time evolution in our mesh-refinement framework is performed according to the
Berger-Oliger AMR scheme [180]. First, the coarse grid data is evolved in time, then
any refined grids are updated and evolved in time. This guarantees that we can use the
coarse grid evolved in time data as boundary data for the refined regions. In practice
this is achieved by prolongation, i.e., polynomial interpolation in time and space to
acquire the data at the position and time needed for the refined region. In case both
refinement levels exist at the time, the data can simply be copied from one refinement
level to the other. In general, for hyperbolic systems the time-step needs to be adjusted
on a refined grid to match the CFL condition given the higher spatial resolution. The
time-step needs to be reduced by the same refinement factor Nrefine as the resolution.
We therefore need to perform Nrefine time-steps on a level k to match one time-step
on the next coarser level k + 1. In the case of many refinement levels this procedure
is carried out from coarsest to finest in a recursive manner until all refinement levels
have been advanced in time. This scenario is illustrated in figure 7.5.

Since most of the higher-order accurate time integration schemes like Runge-Kutta,
consist of multiple sub-steps in time, the prolongation and restriction operations have
to be performed multiple times for updating one time-step. Providing boundary condi-
tions on refined grids can be done in different ways. In [177] no boundary condition was
specified but instead the boundary zones enlarged such that boundary points could be
calculated like regular interior grid points. This of course was only applied to prolon-
gation of the refinement region boundaries, the outer boundaries of the computational
domain were handled by providing boundary conditions. The use of these so called
buffer zones may be computationally more expensive depending on the cost of the
alternatively to be applied boundary condition.
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(a) (b)

(c)

Figure 7.5: AMR logic for updating points from buffer zones.(a) describes the prolonga-
tion operation in 1+1 dimensions for a two-level grid. Red circles represent data on the
coarse grid, while green circles (filled) refer to points on the fine grid. Arrows indicate in-
terpolation operations to obtain boundary data for the fine grid.(b) shows a time evolution
scheme in 1+1 dimensions. Again, red circles refer to the coarse grid data points while
green ones refer to the fine level data. The numbers indicate the steps in the algorithm:
1) coarse grid evolution step 2) and 3) fine grid evolution steps 4) restriction from fine to
coarse grid. (c) illustrates the ”buffer” zones used during time integration. The empty
green circles represent data near the boundary where no boundary condition is provided.
Since these points are left out in the time integration sub-steps data is provided after an
prolongation operation. Figure taken from [177].
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Cauchy evolution systems:
Implementation details

After having described the computational infrastructure that is used in our evolution
codes in the previous chapter we now continue by presenting the details of how the
evolution systems for Einstein’s equations are discretized and solved. We will focus on
the two formulations of Einstein’s equations that were used to obtain the results in this
thesis, namely the BSSNOK and generalized harmonic evolution systems. In addition
we will also describe the implementation of some key components of our evolution codes
such as the generation of puncture initial data, puncture tracking and horizon finding.
Puncture initial data is obtained using a single-domain spectral method [124]. Puncture
tracking is a technique to determine the location of punctures in our numerical grid. It
enables us to move the refined regions according to the motion of the black holes which
can be approximated by the motion of the punctures. Searching and finding apparent
horizons in black-hole simulations in turn serves mainly two purposes. First, we can
use it to track the motion of the black holes independent of the punctures (i.e., this
is important in cases where the punctures are excised from the grid). Second, the
apparent horizon surface is a excellent tool for the analysis of quasi-local properties
related to the black holes itself. We use it to determine the mass and spin of black
holes as well as to analyze the geometric properties of a binary black-hole space-time
which is one of the key results in this thesis and is presented section 10. We will in the
next sections briefly discuss all these aspects in the following sections.

8.1 Discretization of the Cauchy evolution systems

The two evolution codes used in this thesis are based on two different formulations of
Einstein’s equation as already detailed in chapter 3. Nevertheless they are build using
the same computational infrastructure and share many analysis tools. The CTGamma
code is based on a BSSNOK formulation of Einstein’s equations and is a 3D Cartesian
AMR code. It can use up to 8th order finite differencing operators. The HADM code
is based on a 3+1 generalized harmonic formulation of Einstein’s equations. It uses the
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standard spatial 3-metric as an evolution variable and is a 3D Cartesian evolution code
that can use up 4th order accurate finite difference operators. We will now first describe
the common aspects of the two evolution systems and then continue to describe each
of them in detail in the next sections.

8.1.1 The Numerical grid structure

The underlying structure of the numerical grid in both formulations is the same. We
use a 3D Cartesian computational domain employing AMR. The grid is indexed by i,j,
and k and in the case of the simplest scenario, where we only have one uniform grid,
the coordinates xµ are labeled as

xli = xl0 + (i− 1)h, with i = 1...Nl. (8.1)

xl0 denotes the lower boundary of the domain in coordinate direction l, and Nl the
number of grid points. We can now label a grid function u as

uijk := u(xµijk) := u(xi, yj , zk). (8.2)

If we however have multiple nested grids, this labeling is far from simple, and needs
to be done with proper care. In Cactus this is realized in the Carper AMR driver, as
discussed in chapter 7 and the user application only has to deal with one uniform grid.
This is realized in Cactus by splitting the AMR grid into a number of uniform sub-grids
that are then handled locally, i.e., any calculation routine is scheduled locally on all
sub-grids, and the whole grid is later reassembled by Carpet.

8.1.2 Discretization of the evolution equations

Using the MoL allows us to treat the discretization of space and time separately. We
therefore proceed and discretize the evolution equations first. The right hand sides
(RHS) of the equations are fully expanded in terms of the evolution variables, which
are available as grid functions in the Cactus framework. Any additional temporary
variables are calculated locally, i.e., at every grid point. Examples are the derivatives
of a evolution variable or any intermediate variable needed in a calculation. Next the
RHSs of the evolution equations need to be evaluated at every grip point. This is
performed by a simple loop over all grid points, and the resulting expressions are then
passed to the time integrator. The time integrator now evolves the evolution variables
to the next time-level using the previously obtained RHS expressions. As an example
we give the evolution equation for the conformal factor φ in the BSSNOK system in its
discretized form and note that all other equations are discretized in the same way.

(φ̂RHS)nijk =
2

κ
(φ̂κ)nijkα

n
ijkK

n
ijk +

[
(βh)nijkDh

]
(φ̂κ)nijk =

2

κ
(φ̂κ)nijk

(
Dh(βh)nijk

)
(8.3)

Here n specifies the current time-level, ijk the position in the grid index and Di is a
finite difference operator in the three spatial directions i = x, y, z. Depending on the
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position index ijk these operators may either be using a centered or off-centered stencil
to obtain the finite difference expressions. Dissipation will be added as an extra term
in an additional step after the RHS is obtained to ensure that high-frequency noise is
kept at a minimum. The dissipation coefficients determining the amount of dissipation
can be varied both depending on the refinement level and on the position in the grid
index ijk. As an example in the HADM code we typically apply a higher amount of
dissipation in the vicinity of the apparent horizon, while we try to minimize the amount
of dissipation in the rest of the computational domain. After the time-integrator has
completed all sub-steps to obtain the evolution variable at the next time-level, the
evolution variables are transformed back to the ADM variables to perform extra analysis
steps as the calculation of the constraints or any other quantities of interest. These
steps constitute the main stages of one evolution step and the procedure is repeated
until the designated end-time of the simulation is reached.

8.1.3 The CTGamma code

CTGamma is a BSSNOK evolution system based 3D Cartesian AMR code. It supports
different choices for the conformal variable as presented in section 3.2. Additionally it
can use different finite difference accuracy orders and provides the option of including
a multi-block domain. The accuracy of the evolution is monitored by evaluating the
Hamiltonian and momentum constraints. The gauge condition for lapse and shift are
specified in the form of specific condition, i.e., the hyperbolic Γ̃-driver condition for the
shift in combination with the 1+log slicing for the lapse.

8.1.4 The HADM code

HADM is a generalized harmonic formulation based code. It is formulated using the
standard 3+1 variables α, βi and gij as evolution variables. This minimizes the effort
spent on transforming back to ADM variables after each evolution step. As CTGamma,
HADM is also a 3D Cartesian AMR code and shares most of the infrastructure. It allows
for the use of up to fourth-order accurate finite difference operators. The accuracy
of the evolution is monitored by using the generalized harmonic constraints. Gauge
conditions are chosen by evolving the gauge quantities lapse and shift according to their
evolution equations in the generalized harmonic evolution scheme. Specific gauges can
be indirectly chosen by providing suitable gauge source functions Fµ(xν) as presented
in section 3.3.

8.2 Generation of puncture initial data

In this section we will focus on the detailed implementation of the calculation of punc-
ture initial data as it is most commonly used to obtain black-hole initial data for our
evolution codes. The method used was introduced in [124] and is implemented in
a Cactus thorn TwoPunctures. To obtain black-hole initial data with angular and
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linear momentum one has to solve the Hamiltonian and momentum constraint equa-
tions (3.11), (3.12). A procedure for solving these equations is a conformal decom-
position of the space-time and then solve the reduced Hamiltonian constraint for the
conformal factor only. The momentum constraint can be solved by using the Bowen-
York extrinsic curvature (3.82). Using puncture initial data it is possible to solve
the Hamiltonian constraint equation without the need to specify inner boundary con-
ditions at the singularity. These equations are elliptic in nature and are commonly
solved using pseudo-spectral methods with collocation points for the derivatives and a
preconditioned biconjugate gradient stabilized Krylov subspace based method for the
linear system of equations. By introducing a special set of coordinates mapping R3

including the puncture points and spatial infinity into a single rectangular domain it
is possible to obtain C∞ at the punctures allowing us to fully exploit the exponential
convergence property of spectral methods. However we need to note that Bowen-York
extrinsic curvature is only C4 [183] in the limit r → ∞ and thus limits the overall ac-
curacy of the spectral scheme to sixth-order in the continuum limit. We need to solve
an elliptic equation of the form

f(u) := ∆u+ σ(u) = 0. (8.4)

∆ denotes the Laplace operator and σ(u) is a source-term that may depend on u. We
can solve this equation numerically for u on a set of grid points (Ai, Bj , φk) where the
coordinates (A,B, φk) are specified in their range by

A ∈ [0, 1], B ∈ [−1, 1], φk ∈ [0, 2π). (8.5)

We now introduce U = u/(A − 1) and can represent this on the gridpoints of the
numerical domain as

Uijk = U(Ai, Bj , φk), (8.6)

where the indices i, j, k are specified as

0 ≤ i < nA, 0 ≤ j < nb, 0 ≤ k < nφ. (8.7)

We next have to represent the function U by the discrete values at every gridpoint by
using a pseudo-spectral collocation method. Using an infinite series expansion of the
Uijk we obtain

U =
∑
ijk

UijkTiTjFk, (8.8)

where we have used Chebyshev polynomial expansions TnA(1 − 2x) and TnB (−x) as
the basis functions for A and B and a Fourier expansion F = sin(nφφ) as the basis
function for φ. The gridpoint locations are then chosen such that

Ai = sin2

[
π

2nA

(
i+

1

2

)]
(8.9)

Bi = − cos

[
π

nB

(
j +

1

2

)]
(8.10)

φk = 2π
k

nφ
. (8.11)
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We can now calculate derivatives by differentiating the basis functions. Since the infinite
series expansion in practice has to be stopped at a finite number of included terms, it
limits the accuracy of the method. By substituting the vector

~U = (U000, ..., U(nA−1)(nB−1)(nφ−1))
T (8.12)

with
~f(~U) = (f000, ..., f(nA−1)(nB−1)(nφ−1))

T , (8.13)

where the f(u) are evaluated at the grid points (Ai, Bj , φk), we have now transformed
the elliptic equation into a set of non-linear algebraic equations of the type

~f(~U) = 0. (8.14)

The Uijk can be decomposed by using a Newton-Raphson iteration scheme as

~U = lim
N→∞

~UN , (8.15)

~UN+1 = ~UN − ~VN (8.16)

with ~VN satisfying the linear equation

JN ~VN = ~bN , (8.17)

using

JN =
∂ ~f

∂~U
(~UN ), ~bN = ~f(~UN ). (8.18)

The linear set of equations is now solved using a biconjugate gradient stabilized (BICGSTAB)
method, where the preconditioning scheme chosen is crucial to maintain the overall ac-
curacy of the solution. The preconditioned used in this case is based on solving (8.14)
in linearized form applying finite difference techniques on a uniform grid. After having
provided a strategy of solving the system of equations we need to specify the coordi-
nate mapping for A,B, nφ. The choice of coordinates covers the whole domain including
spatial infinity and the puncture point itself. Regularity of u at the punctures is guar-
anteed by using analytic functions for the distance r to the punctures which enables us
to obtain puncture initial data that is C∞ [183]. For creating initial data containing
two punctures we use the mapping (details on the coordinate transformation can be
found in [124])

(A,B, φ) → (ξ, η, φ)→ (X,R, φ)→ (x, ρ, φ)

→ (x, y, z). (8.19)

The choice of this transformation is motivated by achieving: 1) regularity of r (function
of the distance to the puncture) at both punctures 2) mapping the entire (x, y, z)
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coordinate space into a rectangular domain in R3. The final transformation reads

x = b
A2 + 1

A2 − 1

2B

1 +B2
(8.20)

y = b
2A

1−A2

1−B2

1 +B2
cosφ (8.21)

z = b
2A

1−A2

1−B2

1 +B2
sinφ. (8.22)

As a last step we have to also provide boundary conditions at infinity (r → ∞) to
equation (8.4) as

lim
r→∞

u = 0. (8.23)

We ultimately need to obtain the solution on the Cartesian coordinates of the evolution
code. This is possible, since the representation of the solution in terms of Chebyshev
polynomials is close to a polynomial of best approximation for a continuous function,
and we can therefore, knowing the coefficients Uijk of the Chebyshev polynomial, obtain
the function everywhere in the domain.

Figure 8.1: Coordinate patches for two-puncture initial data. (a) shows equidistant
coordinate lines in the coordinates (A,B), (b) shows the same in the coordinates (ξ, η). (c)
depicts the coordinate lines in coordinates (X,R) and (d) in the coordinates (x, ρ). The
punctures are indicated by the filled black circles. The black lines indicate sections of the
x-axis, the x = 0-plane and spatial infinity (A = 1). Figure taken from [124].
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8.3 Puncture tracking

We track the punctures during the course of our BSSNOK evolutions to adjust the
refinement regions to the motion of the black holes. The location of the punctures in
the grid can be determined by solving the coordinate equations of motion

∂tx
i = −βi. (8.24)

The RHS is given by the shift vector, which completely determines the motion of the
punctures in the grids by the choice of the hyperbolic Γ̃-driver gauge condition. The
discretization of equation (8.24) reads

xin = xin−1 −∆tβin(xin−1), (8.25)

where again n denotes the current time-level, ∆t the time-step and βin(xin−1) is the
shift vector evaluated at the puncture location of the previous n − 1 time-level. We
can use this equations and the initial data where we know the puncture locations to
track their motion during our evolution. Since it is not guaranteed that the puncture
locations coincide with grid points in general we need to interpolate the value of the
shift vector in order to evaluate expression (8.25).

8.4 Apparent horizon finding

Finding an apparent horizon and determining its shape in a numerical simulation rep-
resents a highly useful analysis tool for the space-time geometry. On the S2 shape of
the apparent horizon we can use the isolated horizon framework to calculate various
quasi-local properties such as the mass or the spin of the black hole. In addition we
can construct a number of useful curvature measure, i.e., the mean curvature or the
signature of the determinant of the induced 2-metric. These quantities will become
important in chapters 9, 10. where we will use them and other quantities to draw con-
clusions about the space-time geometry in the head-on black-hole merger space-times.
Furthermore, apparent horizon can also be used to move the refinement regions along
with the motion of the black holes when puncture locations are unknown or cannot
be tracked. We recall that an apparent horizon is defined as the outermost marginally
trapped surface, and we can use the expansion, which has to be zero to find the ap-
parent horizon in a numerical simulation. We can write the expansion in terms of the
ADM variables and use the fact that it has to vanish for an apparent horizon to obtain

θ(l) := ∇ini +Kijn
inj −K = 0. (8.26)

Here ni is the outward pointing unit normal to the 2-surface S and Kij the extrinsic
curvature. We can now use equation (8.26) to find MOTS in a space-time obtained by
numerical simulation and then select the outermost one as the apparent horizon. In
practice we follow the procedure of first providing an initial guess for a point inside
the apparent horizon [184]. Initially this is easy to obtain as it is known from initial
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data and in the consequent evolution steps we can take the data from the previous
time-level as a guess. We next construct the radius r := [

∑
i(x− xi)2]1/2 as a function

of the angular coordinates ρ, σ as r = h(ρ, σ). With the assumption of the apparent
horizon being a star-shaped region we can rewrite Eq. (8.26) in terms of the horizon
shape function h(ρ, σ)

θ(l)(h, ∂uh, ∂uvh, gij , ∂kgij ,Kij) = 0, (8.27)

with ∂u and ∂uv denoting first and second derivatives along angular coordinates. This
equation is an elliptic PDE for h on S2. We can now discretize S2 (we use an inflated
cube six-patch coordinate system) and approximating the partial derivative with finite
differences obtain a set of Nang algebraic equations for h which we can solve using a
Newton-Raphson method. The exact strategy is presented in [184] which we refer the
interested reader to.
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Black-hole simulations
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9

Dynamics of MOTS: Explaining
the anti-kick in binary black-hole
mergers

Understanding the dynamics of colliding black holes is of major importance. Not only
is this process one of the main sources of gravitational waves, but it is also responsible
for the final recoil velocity (i.e., “kick”) of the merged object, which could play an
important role in the growth of supermassive black holes via mergers of galaxies and
on the number of galaxies containing black holes. The recoil of black holes due to
anisotropic emission of gravitational wave has been known for decades [185, 186] and
first estimates for the velocity have been made using approximated and semi-analytical
methods such as a particle approximation [163, 187, 188], post-Newtonian methods [189,
190, 191, 192] and the close-limit approximation [193, 194]. However, it is only thanks
to the recent progress in numerical relativity that accurate values for the recoil velocity
have been computed [195, 196, 197, 198, 199, 200, 201, 202].

Indeed, simulations of black holes inspiraling on quasi-circular orbits have shown, for
instance, that asymmetries in the mass can lead to kick velocities vk . 175 km/s [195,
197], while asymmetries in the spins can lead respectively to vk . 450 km/s or vk .
4000 km/s if the spins are aligned [199, 200, 202] or perpendicular to the orbital angular
momentum [196, 203, 204] (see [205, 206] for recent reviews).

In addition to a net recoil, many of the simulations show an “antikick”, namely, one
(or more) decelerations experienced by the recoiling black hole at late times. In the case
of merging black holes, such antikicks seems to take place after a single apparent horizon
has been found [207] (see figure 8 of [202] for some examples). An active literature has
been developed over the last few years in the attempt to provide useful interpretations
to this process [207, 208, 209, 210, 211]. Interestingly, some of these works do not
even require the merger of the black holes. As pointed out in [212] when studying the
scattering of black holes, in fact, the presence of the common apparent horizon is not
a necessary condition for the antikick to occur. Furthermore, as highlighted in [213],
it is also possible to describe this process without ever discussing black holes and just
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using the mathematically properties of the evolution of a damped oscillating signal1.

Although the presence of a common apparent horizon is not a necessary condition for
the appearance of an antikick (which could indeed be produced also by the scattering
of a system involving one or two neutron stars), when a common apparent horizon
is present through the merger of black-hole binary, we can use information on the
latter to gain insight in the physical mechanisms behind the antikick2. We believe
that constructing an intuitive picture of the dynamics of general relativity in a region
of very strong field is not only interesting but also useful to explain this process. In
[214], in fact, a new conjecture was suggested in which the antikick produced in the
head-on collision of two black holes with unequal masses was understood in terms of the
dissipation of the apparent horizon intrinsic deformation. As shown in the schematic
cartoon in figure 9.1, the kick and antikick can be easily interpreted in terms of simple
dynamical concepts. Initially the smaller black hole moves faster and linear momentum
is radiated mostly downwards, thus leading to an upwards recoil of the system [stage
(1)]. When a single apparent horizon is formed at the merger, the curvature is higher
in the upper hemisphere of the distorted black hole and linear momentum is radiated
mostly upwards leading to the antikick [stage (2)]. The black hole decelerates till
a uniform curvature is restored on the apparent horizon [stage (3)]. The qualitative
picture showed in the cartoon, was then investigated by exploiting the analogy between
this process and the evolution of Robinson-Trautman space-times [215, 216] and by
showing that a one-to-one correlation could be found between the properties of the
apparent horizon perturbation and the size of the recoil velocity [214].

In this chapter we provide further support to the conjecture proposed in [214] by
extending our considerations to more generic initial data, but also by investigating in
detail how the analysis made in [214] is validated in numerical space-times describing
the head-on collision of two black holes with unequal masses. To do this we introduce a
cross-correlation picture in which the dynamics of the space-time can be read-off from
two “screens” represented at least ideally by the black-hole event horizon and by future
null infinity I+. In practice, using the standard 3 + 1 approach in numerical relativity,
we replace these screens with effective ones represented respectively by a dynamical
horizon H+ and by a time-like tube B at large spatial distances. We then define a
phenomenological curvature vector K̃eff

i (t) in terms of the mass multipoles of the Ricci
scalar curvature 2R at H+ and show that this is closely correlated with a geometric
quantity (dPB

i /dt)(t), representing the variation of the Bondi linear momentum in time
on I+. This construction, which is free of fitting coefficients and valid beyond the
axisymmetric scenario considered here, correlates quantities on the apparent horizon
with quantities at large distance, thus providing us with two important tools. Firstly,
it allows us to confirm the conjecture that the antikick can be associated with the
dissipation of anisotropic distribution of curvature on the apparent horizon. Secondly,

1Of course, if an exponentially-damped oscillating signal is present, this is indeed a signature of
the presence of a black hole ringing down.

2We will actually show in this chapter show that even when an horizon is not present, the consid-
erations made here can be extended on a suitably defined 2-surface.

100



9.1 The cross-correlation approach: an executive summary

it opens a new route to the analysis of strong-field effects in terms of purely local
quantities evaluated either on the apparent horizon or on other suitable surfaces.

PGW

P"CM"

PGW

P"CM"
P"CM"

(1) (2) (3)

Figure 9.1: Generation of the antikick in the head-on collision of two unequal-mass
Schwarzschild black holes as described in [214]. Initially the smaller black hole moves faster
and linear momentum is radiated mostly downwards, thus leading to an upwards recoil of
the system [stage (1)]. At the merger the curvature is higher in the upper hemisphere of
the distorted black hole (cf. red-blue shading) and linear momentum is radiated mostly
upwards leading to the antikick [stage (2)]. The black hole decelerates till a uniform
curvature is restored on the apparent horizon [stage (3)].

The first part of this chapter is organized as follows. section 9.1 introduces an
executive summary, where the main concepts are summarized for those not wishing to
enter into the mathematical details. section 9.2 is then used to apply the concepts and
the diagnostics to black-hole space-times representing the head-on collision of unequal-
mass black holes. In this section we also develop the mathematical tools necessary
to measure the relevant quantities on the two screens and we show how they closely
correlate. Finally, the conclusions are discussed in section 9.11.

In the second part of this chapter we present a more detailed discussion of the
mathematical aspects of our framework. In particular, we revisit there the evolution of
relevant geometric objects on the apparent horizon and introduce preferred null normals
on a dynamical horizon. In our discussion of a news-like function on the dynamical
horizon and its relation to the problem of quasi-local linear momentum, we also stress
the importance of the inner horizon when evaluating fluxes across the horizon. The
presentation in this chapter follows very closely the one in [217, 218].

9.1 The cross-correlation approach: an executive sum-
mary

This section is meant to provide a general summary of the results and methodology
presented in this chapter, focusing mostly on the conceptual aspects and leaving aside
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the mathematical details, which can instead be found in the corresponding main texts.

We start by recalling that [214] suggested an approach to study the near-horizon
nonlinear dynamics of the gravitational fields based on the systematic analysis of the
deformations in the black-hole horizon geometry. In particular, it was shown how
the gravitational dynamics responsible for the antikick after a binary merger can be
understood in terms of the anisotropies in the intrinsic curvature of the apparent horizon
of the resulting merged black hole. Considering a Robinson-Trautman space-time, the
kick velocity constructed from the Bondi momentum (a geometric quantity at null
infinity) was put in a one-to-one correspondence with a quasi-local geometric quantity
constructed on the horizon, namely, with the effective curvature parameter Keff . This
geometric parameter Keff encodes the part of the apparent horizon geometry whose
dissipation through gravitational radiation can be related to the final value of the kick.
Stated differently, very different binary systems, e.g with very different mass ratio, give
rise to the same final kick velocity as long as they share the same value of the Keff

parameter.

The following criteria were employed in [214] for the construction of the curvature
parameter Keff : i) Keff should not depend on how the apparent horizon is embedded
in the space-time; ii) Keff should change sign (i.e., it should be an odd function) under
reflection with respect to a plane normal to a given axis. From the first requirement,
Keff was constructed in terms of the intrinsic geometry of the apparent horizon, namely
as a functional on the Ricci scalar 2R associated with the induced metric on the apparent
horizon. The Ansatz for Keff in [214], compatible with requirement ii) above and within
axisymmetry, had the following structure

Keff = feven (M2`)× fodd (M2`+1) , (9.1)

where M`’s are the so-called isolated-horizon mass multipoles associated with a spherical
harmonic decomposition of 2R in the axisymmetric case [219, 220]. The odd part fodd

accounts for the directionality of the kick, whereas the even part feven controls its
intensity.

While the focus in [214] was on expressing the difference between the final kick
velocity v∞ and the instantaneous kick velocity vk(u) at an (initial) given time u, in
terms of the geometry of the common apparent horizon at that time u, we here focus
on geometric quantities that are evaluated at a given time during the evolution. More
specifically, we will consider the variation of the Bondi linear momentum vector in time
(dPB

i /du)(u) as the relevant geometric quantity to monitor at null infinity I+. To this
scope, we need first to construct a vector K̃i

eff(v) (function of an advanced time v) as
a counterpart on the black-hole horizon H+. Then, we need to determine how K̃i

eff(v)
on H+ correlates to (dPB

i /du)(u) at I+.

In the Robinson-Trautman case, the causal relation between the white-hole horizon
H− and null infinity I+ made possible to establish an explicit functional relation be-
tween dvk/du and K ′eff(u). In the case of generic black-hole horizon, however, such a
direct causal relation between the inner horizon and I+ is lost (see figures. 9.2 and 9.3).
However, since their respective causal pasts partially coincide, non-trivial correlations
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are still possible and expected. This can be measured through the cross-correlations
of geometric quantities hinn(v) at H+ and hout(u) at I+, both considered here as two
timeseries1. In particular, we will take K̃i

eff(v) as hinn(v) and (dPB
i /du)(u) as hout(u).

i0

I +H+

i−

I −

r = 0

u

i+

r
=
0

v

Figure 9.2: Carter-Penrose diagram illustrating the scattering approach to near-horizon
gravitational dynamics in a generic spherically symmetric collapse. The event horizon H+

and null infinity I+ provide spacetime canonical screens on which geometric quantities,
respectively accounting for horizon deformations and wave emission, are defined. Their
cross-correlation encodes non-trivially information about the bulk spacetime dynamics.

This approach to the exploration of near-horizon gravitational dynamics resembles
therefore the methodology adopted in scattering experiments. Gravitational dynamics
in a given spacetime region affects the geometry of appropriately chosen outer and inner
hypersurfaces of the black-hole spacetime. These hypersurfaces are then understood as
test screens on which suitable geometric quantities must be constructed. The correla-
tions between the two encodes geometric information about the dynamics in the bulk,
providing information useful for an inverse-scattering approach to the near-horizon dy-
namics. As a result, in asymptotically flat black-hole spacetimes, null infinity I+ and
the (event) black-hole horizon H+ provide preferred choices for the outer and inner
screens. This is nicely summarized in the Carter-Penrose diagram in figure 9.2, which
illustrates the cross-correlation approach to near-horizon gravitational dynamics. The
event horizon H+ and null infinity I+ provide spacetime screens on which geometric

1Note that the meaningful definition of timeseries cross-correlations requires the introduction of
a (gauge-dependent) relation between advanced and retarded time coordinates v and u. In an initial
value problem this is naturally provided by the 3 + 1 spacetime slicing by time t.
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Figure 9.3: Carter-Penrose diagram for the scattering picture in a Cauchy initial value
approach. The dynamical horizon H+ and a large-distance time-like hypersurface B pro-
vide inner and outer screens. Note that a the dynamical horizon is split in two portions:
outer and inner (solid and dashed blue lines, respectively) and that the 3 + 1 slicing sets a
common time t for cross-correlations.

quantities, respectively accounting for horizon deformations and wave emission, are de-
fined. Their cross-correlation encodes information about the bulk spacetime dynamics.

Although the picture offered by figure 9.2 is quite simple and convincing, it is not
well adapted to the 3+1 approach usually adopted in numerical studies of dynamical
spacetimes. Indeed, neither the black-hole event horizon nor null infinity are in general
available during the evolution1. However, we can adopt as inner and outer screens
a dynamical horizon H+ (future outer trapping horizon [221, 222, 223]) and a time-
like tube B at large spatial distances, respectively. In this case, the time function t
associated with the 3 + 1 spacetime slicing provides a (gauge) mapping between the
retarded and advanced times u and v, so that cross-correlations between geometric
quantities at H+ and B can be calculated as standard timeseries hinn(t) and hout(t).
This is summarized in the Carter-Penrose diagram in figure 9.3, which is the same as
in figure 9.2, but where the 3 + 1 slicing sets an in-built common time t for cross-
correlations between the dynamical horizon H+ (i.e., the inner screen) and a large-
distance time-like hypersurface B (i.e., the outer screen).

Within this conceptual framework it is then possible to define a phenomenological
curvature vector K̃eff

i (t) in terms of the mass multipoles of the Ricci scalar curvature 2R

1The latter would properly require either characteristic or a hyperboloidal evolution approach.
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at H+ and show that this is closely correlated with a geometric quantities (dPB
i /dt)(t),

representing the variation of the Bondi linear momentum time on I+. How to do this
in practice for a black-hole spacetime is the subject of the following sections.

9.2 Black-Hole spacetimes: Head-on collisions

9.2.1 Mass multipoles

Given a closed 2-surface S, the invariant content of its intrinsic geometry is encoded in
the Ricci scalar curvature 2R associated with the induced metric qab on S. Moreover, if
S is an axisymmetric surface, with φa as the axial Killing vector, a preferred coordinate
system (θ̃, ϕ̃) can be constructed such that qab has the form [219, 220]

qabdx
adxb = R2

H

(
f−1sin2θ̃ dθ̃2 + f dϕ̃2

)
, (9.2)

where f(θ̃) = qabφ
aφb/R2

H
, with RH the areal radius (A =

∫
S
dA = 4πR2

H
). The

coordinate θ̃ is determined by

Daζ̃ =
1

R2
H

2εbaφ
b, (9.3)

where the coordinate ζ̃ is defined by ζ̃ ≡ cosθ̃ and 2εba is the alternating symbol. In
addition, the normalization condition

∮
H
ζ̃dA = 0 must be imposed. We note that the

Ricci scalar 2R on S can be written as [219]

2R = − 1

R2
H

d2f

dζ̃2
(ζ̃) , (9.4)

and that regularity conditions on the metric impose

lim
ζ̃→±1

f(ζ̃) = 0 , lim
ζ̃→±1

df

dζ̃
(ζ̃) = ±2 . (9.5)

A crucial feature of this coordinate system is that the associated expression for the
area element is proportional to that of the “round sphere” metric dA = R2

H
sinθ̃ dθ̃dϕ̃.

This provides the appropriate measure on S to define the standard spherical harmonics
Y`,m=0(θ̃) with the standard orthonormal relations∮

S

Y`,0(θ̃)Y`′,0(θ̃)dA = R2
H
δ``′ , (9.6)

so that the dimensionless geometric multipoles I` can be introduced as the spherical
harmonics components of the Ricci scalar curvature 2R [219]

I` ≡
1

4

∮
S

2R Y`,0(θ̃) dA , 2R =
4

R2
H

∞∑
n=0

I`Y`,0(θ̃) . (9.7)
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The mass multipoles M`’s are then defined as an appropriate dimensionful rescaling of
the geometric I`’s

M` ≡
√

4π

2n+ 1

MH(RH)`

2π
I` , (9.8)

where MH denotes an appropriate quasi-local mass for the surface S. Because we
will consider here initial data with with zero angular momentum, MH will denote the
irreducible mass Mirr =

√
A/(16π) = RH/2. For later convenience, we introduce the

rescaled geometric multipoles Ĩ`

Ĩ` ≡
1

M2
irr

I` =
4

(RH)2
I`, (9.9)

with dimensions [Ĩ`] = [length]−2. The Ricci scalar curvature can then be written as

2R =
∞∑
`=0

Ĩ`Y`0 . (9.10)

A crucial remark for the discussion in section 9.2.3 is the vanishing of the ` = 1 mode,
i.e., Ĩ1 = 0, which can be interpreted as a choice of center of mass frame of the apparent
horizon in [219]. This follows by first inserting expression (9.4) into the definition of
Ĩ1, so that Ĩ1 ∝

∫ 1
−1 f

′′(ζ̃)ζ̃dζ̃, and then by making use of regularity conditions (9.5)
after integrating by parts.

9.2.2 Numerical Setup and Results

The numerical solution of the Einstein equations has been performed using a three-
dimensional finite-differencing code solving a conformal-traceless “3 + 1” BSSNOK for-
mulation of the Einstein equations (see [224] for the full expressions) using the Einstein
Toolkit [225], the Carpet [226] adaptive mesh-refinement driver, AHFinderDirect [227]
to track the apparent horizons, and QuasiLocalMeasures [228] to evaluate the mass
multipoles associated with them. Recent developments, such as the use of 8th-order
finite-difference operators or the adoption of a multiblock structure to extend the size
of the wave zone have been recently presented in [159, 224]. Here, however, to limit the
computational costs and because a very high accuracy in the waveforms is not needed,
the multiblock structure was not used. Also, for compactness we will not report here
the details of the formulation of the Einstein equations solved for the form of the gauge
conditions adopted. All of these aspects are discussed in detail in [224], to which we
refer the interested reader.

Our initial data consists of head-on (i.e., zero angular momentum) Brill-Lindquist
initial data with a mass-ratio of q = 1/2. The initial separation of both black holes is
10M and they are initially located at (0, 0, 6.6666) and (0, 0,−3.3333) to reflect their
center-of-mass offset. Both black holes have no angular nor linear momentum initially.
We use a 3D Cartesian numerical grid with 7 levels of mesh-refinement for the higher
mass and 8 levels of mesh-refinement for the lower mass black hole. The resolution of our
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finest grid is h = M/64, while the angular grid used to find the apparent horizons and
evaluate any property on these 2-surfaces has a resolution of 65 points in ϕ-direction and
128 points in θ-direction. The extraction of gravitational waves is performed calculating
Ψ4 at finite-radius detection spheres with radii of r1 = 60M , r2 = 85M and r3 = 145M
and then extrapolating to infinity.

Figure 9.4: Evolution of the velocity (red curve) measured with the flux of momentum
carried out by the gravitational waves. Note the antikick at about t/M ≈ 145 that decel-
erates the system before the final kick velocity is reached. The gravitational wave signal is
instead shown in the inset, namely the dominant Ψ2,0

4 multipole (blue curve).

Some of the most salient results of the numerical simulations are summarized in
figure 9.4, which reports the evolution of the recoil velocity (red curve) measured with
the flux of momentum carried out by the gravitational waves. Note the development
of the antikick at about t/M ≈ 145 (followed by several smaller oscillations) that
decelerates the black hole before the final kick velocity is reached. Also shown in the
inset is gravitational wave signal in its larger multipolar component Ψ2,0

4 (blue curve).
Similarly, figure 9.5 provides a realization of the cartoon in figure 9.1 with numerical
data from a simulation of head-on collision with mass ratio q = 1/2. Shown with a color
code is the mean curvature on the apparent horizons, which shares the same qualitative
properties, and in particular the anisotropic behaviour, of the intrinsic curvature. As
intuitively described in figure9.1, once the common horizon is formed, the curvature
is stronger in the region of the smaller black hole and is dissipated as the evolution
proceeds. Note that the curvature distribution is anisotropic already at the beginning,
as the black holes are tidally distorting each other.
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Figure 9.5: Realization of the cartoon in figure 9.1 with numerical data from a simulation
of head-on collision with mass ratio q = 1/2. The color code shows the mean curvature on
the apparent horizons, which has the same anisotropic behaviour of the intrinsic curvature.
As described in figure9.1, once the common horizon is formed, the curvature is stronger in
the region of the smaller black hole and is dissipated during the evolution.

9.2.3 Geometric quantities at the black-hole horizon: K̃eff
i (t)

When considering standard 3 + 1 numerical solutions of black-hole spacetimes, we
study the near-horizon dynamics responsible for the black-hole recoil in terms of the
time cross-correlations between a vector (dPB

i /dt)(t) at a large-radius hypersurface B

and an effective curvature vector K̃eff
i (t) constructed from the intrinsic geometry on

the dynamical black-hole horizon H+. The vector (dPB
i /dt)(t) on B approximates the

Bondi linear momentum flux (dPB
i /dt)(t) at I+. From now on we will systematically

refer to (dPB
i /dt)(t) (and to I+ instead of B), understanding that we are actually using

an approximation.

The construction of K̃eff
i (t) at H+ is based on the following two guiding lines: a)

K̃eff
i (t) is built out of the intrinsic geometry Ricci scalar curvature 2R on H+ sections;

b) the functional form of (dPB
i /dt)(t) in terms of the geometry at I+ guides the choice

of the functional dependence of K̃eff
i (t) on 2R. The first requirement is motivated by

the success in the Robinson-Trautman case, whereas the second one aims at preserving
those basic structural features of the specific function to be cross-correlated.

Following these guidelines, we start by expressing the flux of Bondi linear momen-
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tum at null infinity. In terms of a retarded time u parameterizing I+, its Cartesian
components can be written as

dPB
i

du
(u) = lim

(u,r→∞)

r2

8π

∮
Su,r

si |N(u,Ω)|2dΩ , (9.11)

where r parameterizes the large radius spheres Su,r along a u = const. hypersurface,
r2dΩ is the area element on Su,r, s

i is its normal unit vector with Cartesian components
si = (sin(θ)cos(ϕ), sin(θ)sin(ϕ), cos(θ)), and the news functions N(u) can be expressed
in terms of the Weyl scalar Ψ4 as

N(u,Ω) =

∫ u

−∞
Ψ4(u′,Ω)du′ . (9.12)

In our 3 + 1 setting with an outer boundary at a finite spatial distance we need to
express the flux with respect to the time function t parameterizing the spatial slices
Σt, so that we replace Su,r with St,r

dPB
i

dt
(t) = lim

r→∞
r2

16π

∮
St,r

si

∣∣∣∣∫ t

−∞
Ψ4(t′,Ω)dt′

∣∣∣∣2 dΩ , (9.13)

and where we can think of t (related to u by u = t− r near I+) as parameterizing the
cuts of I+ by hyperboloidal slices or, alternatively, the cuts of the time-like hypersurface
B approximating I+ at large r. We can now rewrite expression (9.13) in terms of a
generic vector ξi transverse to Su,r (i.e., with a generically non-vanishing component
along the normal to Su,r), so that the component of the flux of Bondi linear momentum
along ξi is

dPB[ξ]

dt
(t) = lim

r→∞
r2

16π

∮
St,r

(ξisi)

∣∣∣∣∫ t

−∞
Ψ4(t′,Ω)dt′

∣∣∣∣2 dΩ .

(9.14)

We take this expression as the starting point for the construction of K̃eff
i . It pro-

vides the functional form of the Bondi linear momentum flux in terms of the relevant
component of the Riemann tensor at I+, namely Ψ4. Then, the two above-mentioned
guidelines for the construction of K̃eff

i can be met by considering a heuristic substitution
of Ψ4 by 2R in expression (9.14).

It is important to note that in the same way in which the outgoing null coordinate
u parameterizes naturally I+, the ingoing null coordinate v, which runs along I−, is a
natural label to parameterize the horizon H+. However, within our 3 + 1 setting, we
use equation (9.14) as the Ansatz leading to the following proposal for the component
K̃eff [ξ](t) of K̃eff

i (t) along a vector ξi (tangent to the slice Σt) transverse to the section
St of H+

K̃eff [ξ](t) ≡ − 1

16π

∮
St

(ξisi)
∣∣∣Ñ(t,Ω)

∣∣∣2 dA , (9.15)
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with

Ñ(t,Ω) ≡
∫ t

tc

2R(t′,Ω)dt′ + Ñtc(Ω) . (9.16)

In the equations above, dA is the area element of St, the global negative sign
accounts for the relative change of the orientation of outgoing vector normal to inner
and outer boundary spheres, si are the components of the unit normal vector to St
tangent to Σt, and Ñtc(Ω) is a generic function on the surface to be fixed.

Some remarks are in order concerning expressions (9.15) and (9.16). First, there is a
clear asymmetry between expressions (9.14) and (9.15) when substituting the complex
quantity Ψ4 at I+ (encoding two independent modes corresponding to the gravitational
wave polarizations) by the real quantity 2R on the inner horizon (a single dynamical
mode). Inspection of equation (9.14) immediately suggests an alternative to 2R by the
natural inner boundary analogue of Ψ4, i.e., Ψ0. However, this strategy must face the
issue of identifying an appropriate null tetrad at H+ for the very construction of Ψ0.
Second, the lower limit in the time integration, t→ −∞, appearing in equation (9.14)
must be replaced by the time tc of first appearance of the common horizon, when quan-
tities as 2R(t,Ω) start to be well defined. However, there is still a deeper difference
between N(t,Ω) and Ñ(t,Ω). Even though one can construct the former as in equa-
tion (9.12), i.e., as the time integral of Ψ4, the definition of the news function is local
in time depending only on quantities on St and not requiring the knowledge of the past
history of H+. The latter though is here defined as the time integral of 2R and there
is no reason to expect the same local-in-time behavior, specially as t→∞. Therefore,
we fix the function Ñ tc(Ω) by imposing lim

t→∞
Ñ(t,Ω) = 0.

All the points raised above are addressed in detail in the second part of this chap-
ter and we adopt here a purely effective approach to K̃i

eff(t), since 2R represents an
unambiguous geometric object that captures the (possibly many, if matter is included)
relevant dynamical degrees of freedom in a single effective mode. Ultimately, this
heuristic proposal for the effective curvature is acceptable only as long as it can be
correlated with dPB

i /dt, and this is what we will show in the following.

9.2.3.1 Axisymmetric black-hole spacetimes

As a first application of the Ansatz (9.15), we consider the axisymmetric case of the
head-on collision of two black holes with unequal masses. We adopt therefore a co-
ordinate system (r, θ, ϕ) adapted to the horizon H+ so that r = const. characterizes
sections St and we can write si = MDir, with M−2 = DirD

ir (i.e., M−2 = γrr).
Then, taking advantage of the axisymmetry, we adopt on St the preferred coordinated
system (θ̃, ϕ̃) discussed in section 9.2.1 and consider the Cartesian-like coordinates con-
structed from (r, θ̃, ϕ̃) by standard spherical coordinates relations: x = r sinθ̃ cosϕ̃, y =
r sinθ̃ sinϕ̃, z = r cosθ̃. In these coordinates we have si = M(sinθ̃ cosϕ̃, sinθ̃ sinϕ̃, cosθ̃).
Assuming the z-axis to be adapted to the axisymmetry, we choose ξi in equation (9.15)
as (ξz)

i = M−1(∂z)
i, so that (ξz)

isi = cosθ̃. Inserting expression (9.10) in equa-
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tions (9.15) and (9.16) we obtain

K̃eff
z (t) ≡ K̃eff [ξz](t) = (9.17)

= − 1

16π

∮
St

(cosθ̃)

( ∞∑
`=0

Ñ`(t
′)Y`,0(θ̃)dt′

)2

dA,

with

Ñ`(t) ≡
∫ t

tc

dt′Ĩ`(t
′) + Ñtc

` , (9.18)

being the coefficients of a multipolar expansion of equation (9.16). Inserting the form
dA = R2

Hsinθ̃dθ̃dϕ̃ of the area element on St and performing the angular integration we
finally find

K̃eff
z (t) ≡ −R

2
H

16π

∑
`=2

Ñ`

(
D

(0)
`,0 Ñ`−1 +D

(0)
`+1,0Ñ`+1

)
, (9.19)

with

D
(0)
`,0 ≡ `√

(2`+ 1)(2`− 1)
. (9.20)

As for the definition of Keff in the Robinson-Trautman case, equation (9.19) is quadratic
in the (geometric) mass multipoles, i.e., the spherical harmonic components of the
intrinsic curvature Ricci scalar curvature 2R, although it involves a time integration.
Also, it is an odd function under reflection with respect to z = const. planes and it
involves only products of odd and even multipoles, precisely one of the criteria for the
construction of Keff leading to the Ansatz in equation (9.1)1. In essence, expression
(9.19) for K̃eff

z fulfills the two basic requirements for the curvature parameter Keff with
the added value that it is fully general and no phenomenological parameters need to
be fitted. An additional and crucial feature is that terms involving ` = 0, 1 are absent,
due to the vanishing2 of Ĩ1 as discussed after equation (9.10).

The quantity K̃eff
z at the horizon H+ is to be correlated with the component

(dPB
z /dt)(t) of the flux of Bondi linear momentum at I+, which is useful to express

in its multipolar expansion. First, we decompose Ψ4 in its multipoles

Ψ4 =
∑

`≥2,m≤|`|
Ψ`,m

4 −2Y
`,m(θ, ϕ) , (9.21)

where −2Y
`,m(θ, ϕ) are the spin-weighted s = −2 spherical harmonics. The explicit

expression for the component of (dPB
i /dt)(t) along the z-axis (e.g., Ref. [229]) then

becomes

dP zB
dt

(t) = lim
r→∞

r2

16π

∑
`≥2,m≤|`|

N`,m ×
(
C

(−2)
`,m N̄`,m + D

(−2)
`,m N̄`−1,m +D

(−2)
`+1,mN̄

`+1,m
)
,(9.22)

1Note that expression (9.19) cannot be factorized as a product of even and odd functions, as
proposed in (9.1).

2Neither the function Ñtc(Ω) in equation (9.16) introduces ` = 1 modes.
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with

N`,m ≡
∫ t

−∞
dt′Ψ`,m

4 (9.23)

being the corresponding multipolar components of the news functions introduced in

(9.12), with the coefficients C
(−2)
`,m and D

(−2)
`,m given by

C
(−2)
`,m ≡ 2m

`(`+ 1)
, (9.24)

D
(−2)
`,m ≡ 1

`

√
(`− 2)(`+ 2)(`−m)(`+m)

(2`− 1)(2`+ 1)
. (9.25)

The axisymmetric reduction of expression (9.22) is obtained by setting m = 0 in the
expressions above. Note that Ψ4 is purely real in this case1. The resulting coefficients
are therefore

C
(−2)
`,0 = 0 , (9.26)

D
(−2)
`,0 =

√
(`− 2)(`+ 2)

(2`− 1)(2`+ 1)
, (9.27)

and we can write equation (9.22) as

dPB
z

dt
(t) = lim

r→∞
r2

16π

∑
`≥2

∫ t

−∞
dt′Ψ`,0

4

∫ t

−∞
dt′′
(
D

(−2)
`,0 Ψ`−1,0

4 +D
(−2)
`+1,0Ψ`+1,0

4

)
. (9.28)

Expression (9.28) has obvious similarities with equation (9.19) for K̃eff
z (t). First,

the (real) modes Ψ`,0
4 play a role analogous to those of the mass multipoles Ĩ`. The

common geometric nature of the underlying quantities Ψ4 and 2R as curvatures, in
particular their dimensions as second derivatives of the metric, is indeed at the heart
of the definition of the geometric multipoles Ĩ`’s by equations (9.9) and (9.10) as the

correct analogues of Ψ`,0
4 . Second, modes ` = 0, 1 are absent in both expressions. This

is nontrivial since the reasons underlying each case are different: the s = 2 spin-weight
of Ψ4 in equation (9.28) and the vanishing of Ĩ1 in (9.19), respectively. This is a crucial
feature for its directly impacts the determination of the mode dominating the dynamical
behavior and, therefore, singles out the Ricci scalar 2R as a preferred quantity to be
monitored instead of any other (spin-weighted s 6= 2) function that could measure in
some way the deformations of the horizon (for instance, the mean curvature). Besides
the similarities, there are also differences between expressions (9.28) and (9.19). First,

the coefficients D
(s)
`,0 in (9.20) and (9.26) differ due to the different spin-weight of 2R

and Ψ4. Therefore, the correlation between (dPB
z /dt)(t) and K̃eff

i encodes information

1For instance, the gravitational wave cross polarization h× vanishes: Ψ4 = −ḧ+ + iḧ×.
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about the relative weight of the different couplings. Second, the lower time-integration
bound (t→ −∞) is well-defined for (dPB

z /dt)(t), whereas K̃eff
z (t) can be measured only

after the formation of the common horizon. Finally, due to the absence in the general
case of a preferred coordinate system on St and their associated spherical harmonics,
there is no natural multipolar expression for K̃eff

i in the non-axisymmetric case and one
must resort to the full expression (9.15).

9.2.4 Correlation between the screens

The effective curvature vector K̃eff
i introduced in previous Section can now to be used

as a probe of the degree of correlation between the geometry at the horizon and the
geometry far from the black hole. More specifically, we aim at assessing the correlation
between hinn(t) = K̃eff

z (t) at the horizon and hout(t) = (dPB
z /dt)(t) at large distances,

considering these two quantities as timeseries. As discussed in section 9.1, the use
of a common time variable t for functions hinn and hout assumes a (gauge) mapping
(cf. footnote 2 in section 9.1) between the advanced v and retarded u times, parame-
terizing H+ and I+, respectively. The 3+1 slicing by hypersurfaces {Σt} provides such
a mapping, though an intrinsic time-stretching ambiguity between the signals at the
two screens is present, due to the gauge nature of the slicing. This will be discussed in
more detail later in this section.

To quantify the similarities in the timeseries we employ the correlation function
between timeseries h1(t) and h2(t), C(h1, h2; τ), defined as

C(h1, h2; τ) =

∫ ∞
−∞

h1(t+ τ)h2(t)dt . (9.29)

The structure of C(h1, h2; τ) encodes a quantitative comparison between the two time-
series as a function of the time-shift τ (referred to as “lag”) between them. This
correlation function encodes the frequency components held in common between h1

and h2 and provides crucial information about their relative phases. Because the time-
series are intrinsically different by a time lag, we measure the correlation between h1

and h2 as

M(h1, h2) = max
τ

(
C(h1, h2; τ)

[C(h1, h1; 0)C(h2, h2; 0)]
1
2

)
. (9.30)

This number is confined between 0 and 1 (where 1 indicates perfect correlation, and 0
no correlation at all) and provides the maximum matching between the timeseries h1

and h2 obtained by shifting one with respect to the other in time, and then normalized
in frequency space. Besides providing a measure of the correlation, expression equa-
tion (9.30) also gives a quantitative estimate of the coordinate time delay τmax between
the two signals.

Note that one should not expect a perfect match between (dPB
z /dt)(t) at I+ and

K̃eff
z (t) at H+, even if the latter results to be a good estimator of the former. Indeed,

(nonlinear) gravitational dynamics in the bulk spacetime affect and distort the possible
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Figure 9.6: Effective curvature K̃eff
z defined at the horizon via equation (9.15) (red

dashed curve) and flux of momentum (dPB
z /dt) evaluated at an approximation of I+ with

equation (9.11) (blue dotted and solid curves). These quantities encode respectively the
information of the common horizon deformation and the flux of momentum carried away
by gravitational waves in the head-on collision of black holes with mass ratio 1/2. Note, at
panel (a), the qualitative agreement between those curves, which allows us to distinguish
the momentum radiated before (blue dotted curve) and after (blue solid curve) the merge.
Panel (b) and (c) compares the same quantities for latter times, where one can still see the
good agreement.

relation between both quantities. Furthermore, given the related but different nature
of 2R and Ψ4 it is not obvious that a correlation should be found at all.

In order to assess the validity of the approach, we construct K̃eff
z (t) and (dPB

z /dt)(t)
from the numerical simulations described in section 9.2.2. Note that because Ĩ1 vanishes
identically, the contributions Ñ0Ñ1 and Ñ1Ñ2 are absent in the expression for K̃eff

z (t).
Furthermore, since higher-order multipoles Ĩ` become increasingly difficult to calculate,
we truncate expression (9.19) at ` = 6; in our case, this has little influence on the overall
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results as we will show that the lowest (i.e., ` = 2, 3) modes are by large the dominant
ones.

The values for (dPB
z /dt) and K̃eff

z as functions of the time t, and corresponding
to the numerical simulations described in the previous section 9.2.2, are presented in
figure 9.6. The signals have been normalized with respect to their maximum value (a
global rescaling does not affect the cross-correlations properties of two functions h1(t)
and h2(t)). In figure 9.6 (a), the quantity K̃eff

z is shown from the time tc ≈ 49.2M of
first appearance of the common horizon (red dashed line). After time tmax ≈ 120M
the error in the calculation of the Ĩ` multipoles becomes comparable with the value of
the multipoles, spoiling the evaluation of the integrals in (9.18). Hence, we set K̃eff

z to
zero for t > tmax. Similarly, the flux of Bondi linear momentum (dPB

z /dt) as computed
by an observer at 100M from the origin, is split in a part before the appearance of
the common apparent horizon (blue dotted line) and in one which is to be compared
with K̃eff

z (blue dashed line). In panels (b) and (c) of figure 9.6 we show instead K̃eff
z

and (dPB
z /dt) separately and in different time intervals for a better emphasis of the

similarities.

Some interesting remarks on figure 9.6 can be made already at a qualitative level.
In particular, it is clear that K̃eff

z succeeds in tracking key features of (dPB
z /dt). This

is apparent in the relative magnitude of the three first positive peaks in the two sig-
nals and the qualitative agreement is maintained in time. As expected, some specific
features of (dPB

z /dt) are not faithfully captured in K̃eff
z , such as the magnitude of the

negative peak around t ≈ 148M relative to the neighbouring peaks. However given
the heuristic character of K̃eff

z and the fact that its geometric definition does not leave
room for any tuning, the overall qualitative agreement with (dPB

z /dt) at I+ already
represents a remarkable result, shedding light on the near-horizon dynamics. This
agreement between (dPB

z /dt) and K̃eff
z is indeed the main result of this section and

the ultimate justification for the introduction of K̃eff
z . It is also worth stressing that

attempts employing other quantities (e.g., a blind application of the methods used for
Robinson-Trautman spacetimes) would not lead to such a clear matching.

From a quantitative point of view, the correlation analysis for the time intervals
shown in figure 9.6 (b) and (c) indicates that the two signals yield a typical correlation
M ≈ 0.93 and a time lag τ = 97M (we recall that the observer is at 100M and
that the common apparent horizon has the size of a couple of M). However, as one
tries to extend the analysis to the very first time of the formation of the apparent
horizon, the correlation drops significantly. The reason for this drop is related to the
stretching of the time coordinate between the two screens. In addition to the obvious
time delay between the (dPB

z /dt)(t) and K̃eff
z (t) due to the finite (coordinate) speed of

light, in fact, the dependence of the two signals in coordinate time t is not the same
and is stretched between the two screens. This effect is the result of the in-built gauge
mapping between sections of I+ and the horizon H+ defined by the spacetime slicing,
but also of the physical blueshift (redshift) of signals at the inner (outer) boundaries
in the black-hole spacetime.

Although approaches to disentangle the physical and gauge contributions can be
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derived, for instance by introducing proper-times of suitably-defined observers, this
goes beyond what we choose o present. Rather, we opt here for a more straightforward
approach in which only comparisons based on sequences of (absolute values and signs
of the) maxima and minima in the signals hinn(t) and hout(t) are considered significant,
since the relative shape of hinn(t) and hout(t) can be subject to a time reparametrization.
This association is possible when the quantities which are compared are scalars, so that
the values of maxima and minima are well defined and independent of coordinates. This
is possible in the case of axisymmetry as it gives a privileged direction along which to
contract the effective curvature vector K̃eff

i . In a more generic configuration one would
need to build an appropriate frame to produce scalars by contraction with tensorial
quantities. Once the correspondence between maxima and minima in the two signals
hinn(t) and hout(t) is established, a mapping tout = tout(tinn) can be easily constructed.
With this matching, the calculation of the correlation parameter gives typically values
M > 0.9 for any chosen time interval 1.

It is worth stressing that while the very high matching numbers found between
the two quantities (i.e., M > 0.9) are already a strong indication of the correlation
between the two screens, no tuning is possible to increase such a correlation. In fact, if
the sequences of maxima and minima in the two signals do not correspond to each other
“naturally”, it is virtually impossible to obtain a good matching. At the same time,
however, it is also true that the nature of the signals is such that the first couple of
maxima and minima play a dominant role in the estimate, possibly shadowing the role
of the smaller peaks appearing at later times. To address this point and weight equally
all parts of the signals, we model them as exponentially decaying periodic functions,
i.e., hκinn(t) ≡ eκinnthinn(t) and hκout(t) ≡ eκoutthout(t), finding

κinn = 0.179± 0.005 , κout = 0.181± 0.006 , (9.31)

through a least-square fitting. The resulting functions hκinn(t) and hκout(t) after the
exponential decay has been subtracted are shown in figure 9.7. Once again it is apparent
that the two timeseries are very similar and indeed the matching computed even without
introducing any time mapping is M(hκinn, h

κ
out) = 0.87 and thus remarkably high.

The main reason behind the good correlation also of the undamped signals is
that the next-to-leading-order term, i.e., term Ñ3Ñ4 and the corresponding ` = 3
and ` = 4 coupling in equation (9.28), are much smaller than the leading-order term
N2N3. Indeed, we have found that it is possible to express to a very good approxi-
mation K̃eff

z ≈ Ñ2Ñ3 and (dPB
z /dt) ≈ N2N3. This is confirmed by the corresponding

power spectra, which are shown in figure 9.8 and are dominated in both cases by
two frequencies: Ωinn

1 = 0.22 ± 0.04, Ωinn
2 = 0.98 ± 0.05 for the signal hinn(t), and

Ωout
1 = 0.22± 0.04, Ωout

2 = 0.97± 0.04 for the signal hout(t).

1Interesting information can also be gained by studying in more detail the properties of the mapping
tout = tout(tinn). More specifically, we have found that the derivative dtout/dtinn is not constant and
starts as being larger than unity (indicating that initially the coordinate time at I+ runs faster than
the time at H+), but then oscillates around unity at late times. This is consistent with the fact that
as stationarity is approached, the evolution vector ta adapts to the time-like Killing vector.
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Figure 9.7: Quantities on H+ (red dashed line) and I+ (blue solid line) as shown in
figure 9.6 but without an overall exponential decay in time. The close similarity in the
signals is confirmed by the very large correlation which is M = 0.87, obtained without a
time mapping.

These frequencies are closely related to the quasi-normal modes of the merged black
hole, interfering to lead to a beating signal. To see this, we model each function Ñ`

and N` as an exponentially damped sinusoid, i.e., Ñ` ∼ e−κ
Ñ
` tsin(ΩÑ

` t+ ϕÑ) and N` ∼
e−κ

N
` tsin(ΩN

` t + ϕN). Then, under the approximation K̃eff
z ≈ Ñ2Ñ3 and (dPB

z /dt) ≈
N2N3 it follows

ΩÑ
`=2 =

Ωinn
2 − Ωinn

1

2
, ΩÑ

`=3 =
Ωinn

2 + Ωinn
1

2
, (9.32)

at H+, whereas

ΩN
`=2 =

Ωout
2 − Ωout

1

2
, ΩN

`=3 =
Ωout

2 + Ωout
1

2
, (9.33)

at I+, consistent with the “beating” behaviour shown by the power spectra in figure 9.8.
Similarly, the decay timescales are then given by

κinn = κÑ`=2 + κÑ`=3 , κout = κN`=2 + κN`=3. (9.34)

These frequencies and timescales match very well the real (ωR
` ) and imaginary (ωI

`)
parts of the fundamental (n = 0) quasi-normal-modes (QNM) eigenfrequencies of a
Schwarzschild black hole [230]. A detailed comparison is presented in Table 9.1, whose
first six columns report the properties of the signals hinn(t) and hout(t) in their con-
stituent frequencies ΩN

`=2,3 defined in equations (9.32)–(9.33), and compare them with
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Figure 9.8: Normalized power spectrum for Keff
z (Ω) (red dashed line) and (dPz/dt)(Ω)

(blue solid line) as measured at H+ and I+, respectively (cf. figure 9.7). Both spectra
are dominated by two frequencies: Ωinn

1 = 0.22± 0.04 and Ωinn
2 = 0.98± 0.05 (red dashed

line) and Ωout
1 = 0.22 ± 0.04 and Ωout

2 = 0.97 ± 0.04 (blue solid line) which are linear
combinations of the quasi-normal ringing modes of the merged black hole (cf. Table 9.1).

the corresponding real parts of the eigenfrequencies of a Schwarzschild black hole,
ωR
`=2,3. The close match in the oscillatory part is accompanied also by a very good corre-

spondence in the decaying part of the signal. Defining, in fact, the overall decay time in
terms of the imaginary parts of the QNM eigenfrequencies, i.e., as κdecay ≡ ω`=2

I +ω`=3
I ,

it is easy to realize from the last three columns in Table 9.1, that this decay time is
indeed very close to the one associated to the signal at the two screens, i.e., equa-
tion (9.34).

This role of QNMs is not entirely surprising for a measure at I+, but it is far
less obvious to see it imprinted also for a quantity measured at H+. This indicates
that the bulk spacetime dynamics responsible for the recoil physics is a relatively mild
one, so that a QNM ringdown behaviour dominates the dynamics of the deformed
single apparent horizon and imprints the properties of the radiated linear momentum.
It is interesting that a purely (quasi-)local study of the apparent horizon geometric
properties permits to read the behaviour of quantities which are intrinsically defined
at infinity, thus confirming the main thesis in [214].

As a concluding remark for this section, we make use of our results, and in particular
on the spectral and decaying properties of our measures on the screens, to make contact
with the analysis carried out in [213]. More specifically, we can define a characteristic

decay time τ ≡ (2π)/κinn/out and an oscillation characteristic time T ≡ 2π/Ω
inn/out
1 ,
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Table 9.1: The first six columns offer a comparison between the properties of the signals
hinn(t) and hout(t) in their constituent frequencies ΩN

`=2,3 defined in equations (9.32)–
(9.33), with the corresponding real parts of the eigenfrequencies of a Schwarzschild black
hole, ωR

`=2,3. The last three columns show instead a comparison between the damping times
κinn,out defined in equation (9.34), with the corresponding decay time κdecay computed from
the imaginary parts of the eigenfrequencies. In all cases, the close match is remarkable and
not at all obvious for quantities measured at H+.

MΩN
`=2 MΩÑ

`=2 MωR
`=2 MΩN

`=3 MΩÑ
`=3 MωR

`=3 Mκinn Mκout Mκdecay

0.38± 0.04 0.37± 0.04 0.37367 0.60± 0.04 0.59± 0.04 0.59944 0.181± 0.006 0.179± 0.005 0.18166

from which to build our equivalent of the “slowness parameter” P ≡ T/τ introduced
in [213]. The specific case discussed above then yields τ ' 34.9M , T ' 28.6M and
thus P ' 0.82. As detailed in [213], small antikicks should happen when the two
timescales are comparable, i.e., for P . 1, thus corresponding to an oscillation which
is over-damped. This expectation is indeed confirmed by the recoil velocity shown in
figure 9.4, where the relative antikick is only ∼ 30% and thus compatible with the
slowness parameter that we have associated to our process. This qualitative agree-
ment with the phenomenological approach discussed in [213] is very natural. While
we here concentrate on modeling the local curvature properties at the horizon, [213]
concentrates on the spectral features of the signal at large distances. Since we have
demonstrated that the two are highly correlated, it does not come to a surprise that
the two phenomenological approaches are compatible. Looking at the local horizon’s
properties has however the added value that it provides a precise framework in which to
predict not only the strength of the antikick, but also its directionality. Furthermore,
such an approach permits an interpretation of black-hole dynamics in terms of viscous
hydrodynamics, as we will discuss in detail in section 9.4 . In particular, we shall show
there that the horizon viscous analogy naturally leads to a geometric prescription for
an (instantaneous) slowness parameter P , in terms of timescales τ and T respectively
related to bulk and shear viscosities.

The logic developed above for the calculation of the slowness parameter can be
brought a step further by assuming that the final black hole produced by the merger
of a binary system in quasi-circular orbit can be described at the lowest order by an
oscillation and decay times

τ ≡ 2π

ωI
`=2 + ωI

`=3

, T ≡ 2π

ωR
`=3 − ωR

`=2

, (9.35)

to which corresponds a slowness parameter defined as

P ≡ T

τ
=
ωI
`=2 + ωI

`=3

ωR
`=3 − ωR

`=2

. (9.36)
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Using the semi-analytic expressions derived for estimating the spin of the final black
hole, e.g., [231, 232, 233], it is possible to predict the values of τ and T for any binary
whose initial spins and masses are known, and thus predict qualitatively through P
the strength of the antikick which will be produced in any of these configurations.
We have tested this idea by considering the data presented in Ref. [202] both for the
kick/antikick velocities and for the final spin of the merged black hole. This conjecture
about the predictability of the antikick in terms of the slowness parameter is indeed
supported by the example data collected in figure 9.9. More specifically, the left panel in
figure 9.9 shows the correlation between the slowness parameter P = T/τ as computed
in equation (9.36) and the dimensionless spin of a black hole afin produced, for example,
in the merger of a binary system (expressions to estimate the QNM eigenfrequencies
for rotating black holes can be found in a number of works which are collected in the
review [230]). The mid panel shows instead the good correlation between the relative
antikick velocity ∆v/vfin ≡ (vmax − vfin)/vfin = vk/vfin and the dimensionless final
spin as computed from the data taken from [202] (indicated with error bars are the
estimated numerical errors). Finally, the right panel combines the first two and shows
the correlation between the antikick velocity and the slowness parameter. All in all, this
figure confirms also for the case of binaries in quasi-circular orbits the suggestion [213]
that the smaller the slowness parameter P gets, the larger is the expected value of the
antikick. Large antikicks should then be expected for P � 1 [213]. Furthermore, it
highlights that it is indeed possible to predict qualitatively the antikick merely on the
basis of the initial properties of the black holes when the binary is still widely separated.

9.3 Conclusions

We have demonstrated that qualitative aspects of the post-merger recoil dynamics at
infinity can be understood in terms of the evolution of the geometry of the common
horizon of the resulting black hole. This extends to binary black-hole spacetimes the
conclusions presented in [214] based on Robinson-Trautman spacetimes. More impor-
tantly, we have shown that suitably-built quantities defined on inner and outer world-
tubes (represented either by dynamical horizons or by time-like boundaries) can act as
test screens responding to the spacetime geometry in the bulk, thus opening the way
to a cross-correlation approach to probe the dynamics of spacetime.

The extension presented here is however nontrivial and it involves the construction
of a phenomenological vector K̃eff

i (t) from the Ricci curvature scalar 2R on the dynam-
ical horizon sections, which then captures the global properties of the flux of Bondi
linear momentum (dPB

i /dt)(t) at infinity, namely (proportional to) the acceleration of
the black hole. At the same time, the proposed approach involves the development of a
cross-correlation methodology which is able to compensate for the in-built gauge char-
acter of the time evolution on the two surfaces. A proper mapping between the times
on the two surfaces is needed and its gauge nature highlights that the physical infor-
mation encoded in the surface quantities is not in its local (arbitrary) time dependence,
but rather in the global structure of successive maxima and minima.
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Figure 9.9: Predictability of the antikick in terms of the slowness parameter and the
antikick. The left panel shows the correlation between the slowness parameter P = T/τ as
computed in equation (9.36) and the dimensionless spin of a black hole afin. The mid panel
shows instead the good correlation between the relative antikick velocity ∆v/vfin = vk/vfin

and the dimensionless final spin, using the data taken from [202] (indicated with error bars
are the estimated numerical errors). Finally, the right panel combines the first two and
shows the correlation between the antikick velocity and the slowness parameter.

By analyzing Robinson-Trautman spacetimes, [214] proposed that when a sin-
gle horizon is formed during the merger of two black holes, the observed decelera-
tions/accelerations of the newly formed black hole can be understood in terms of the
dissipation of an anisotropic distribution of the Ricci scalar curvature on the horizon.
The results presented here confirm this picture, although through quantities which are
suited to black-hole spacetimes. Being computed on the horizon, these quantities reflect
the properties of the black hole and in particular its exponentially damped ringing. The
timescales associated with this process, which are inevitably imprinted in our geometric
variables, provide also a natural connection with the approach discussed in Ref. [213],
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where the antikick is explained in terms of the spectral features of the signal at large
distances. Because we have shown that the latter is closely correlated with the signal
at the horizon, we can adopt the same slowness parameter introduced in Ref. [213] to
predict qualitatively the magnitude of the antikick from the merger of black-hole bina-
ries with spin aligned to the orbital angular momentum, finding a very good agreement
with the numerical data.

As a final remark we note that looking at the horizon’s properties has the added
value that it provides a precise framework in which to predict not only the strength of
the antikick, but also its directionality. Furthermore, our geometric (cross-correlation)
framework presents a number of close connections with (and potential implications
on) the literature developing around the use of horizons to study the dynamics of
black holes, as well as with the interpretations of such dynamics in terms of a viscous
hydrodynamics analogy. Much of the machinery developed using dynamical trapping
horizons as inner screens can be extended also when a common horizon is not formed
(as in the calculations reported in Ref. [212]). While in such cases the identification
of an appropriate hypersurface for the inner screen can be considerably more difficult,
once this is found its geometrical properties can be used along the lines of the cross-
correlation approach discussed here for dynamical horizons.

9.4 Geometry

In the previous sections a cross-correlation methodology for studying near-horizon
strong-field physics was outlined. Spacetime dynamics was probed through the cross-
correlation of timeseries hinn and hout defined as geometric quantities on inner and
outer hypersurfaces, respectively. The latter are understood as test screens whose ge-
ometries respond to the bulk dynamics, so that the (global) functional structure of the
constructed cross-correlations encodes some of the features of the bulk geometry. This
is in the spirit of reconstructing spacetime dynamics in an inverse-scattering picture.
In the context of asymptotically flat black hole (black-hole) spacetimes, the black-hole
event horizon E and future null infinity I+ provide natural test hypersurfaces from a
global perspective. However, when a 3 + 1 approach is adopted for the numerical con-
struction of the spacetime, dynamical trapping horizons H provide more appropriate
hypersurfaces to act as inner test screens. In the application of this correlation strategy
to the study of black-hole post-merger recoil dynamics, an effective curvature vector
K̃eff
i (v) was constructed [234] on H as the quantity hinn to be cross-correlated with

hout, where the latter is the flux of Bondi linear momentum (dPB
i /du)(u) at I+ (here,

u and v denote, respectively, advanced and retarded times1). We now explore some
geometric structures underlying and extending the heuristic construction in [234] of
this effective local probe into black-hole recoil dynamics.

The adaptation of geometric structures and tools from I+ to black hole horizons
is at the basis of important geometric developments in black-hole studies, notably the

1Cross-correlation of quantities at H and I+ requires the choice of a gauge mapping between the
advanced and retarded times u and v.
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quasi-local frameworks of isolated and dynamical trapping horizons [221, 222, 223]
(see also [235, 236]). In this spirit, the construction of K̃eff

i (v) on the horizon H

partially mimics the functional structure of the flux of Bondi linear momentum at I+.
In particular, (dPB

i /du)(u) can be expressed in terms of (the dipolar part of) the square
of the news function N on sections of I+, whereas the definition of K̃eff

i (v) involves the
(dipolar part of the) square of a function Ñ constructed from the Ricci scalar 2R on
sections of H. However, the functions N and Ñ differ in their spin-weight and, more
importantly, they show a different behaviour in time: whereas N(u) is an object well
defined in terms of geometric quantities on time sections Su ⊂ I+, nothing guarantees
this local-in-time character of Ñ(v) [see equation (9.40) below]. The latter is a crucial
characteristic of the news function, so that Ñ(v) cannot be considered as a valid news-
like function on H.

These structural differences suggest that, in spite of the success of K̃eff
i in capturing

effectively (at the horizon) some qualitative aspects of the flux of Bondi linear momen-
tum (at null infinity), a deeper geometric insight into the dynamics of H can provide
hints for a refined correlation treatment. In this context, the specific goals in the fol-
lowing sections: i) to justify the role of K̃eff

i as an effective quantity to be correlated
to (dPB

i /du), suggesting candidates offering a refined version; ii) to explore the intro-
duction of a valid news-like function on H, only depending on the geometry of sections
Sv ⊂ H; iii) to establish a link between the cross-correlation approach in [234] and other
approaches to the study of the black-hole recoils based on quasi-local momentum.

This part of this chapter is organized as follows. section 9.5 introduces the basic
elements on the inner screen H geometry and revisits the effective curvature vector
developed in the previous sections. Aiming at understanding the dynamics of the latter,
a geometric system governing the evolution of the intrinsic curvature along the horizon
H is discussed, making apparent the key driving role of the Weyl tensor. In section 9.6
some fundamental results on dynamical horizons are discussed, in particular a rigidity
structure enabling a preferred choice of null tetrad on H. Proper contractions of the
latter with the Weyl tensor leads in section 9.7 to news-like functions and associated
Bondi-like fluxes on H providing refined quantities on the horizon to be correlated with
Bondi fluxes at I+, as well as making contact with quasi-local approaches to black-
hole linear momentum. In section 9.9 we emphasize the physical relevance of internal
horizons when computing fluxes along H and in section 9.10 our geometric discussion
is related to the viscous-fluid analogy of black-hole horizons, providing in particular a
geometric prescription for the slowness parameter P in [213]. Conclusions are presented
in section 9.11. We use a spacetime signature (−,+,+,+), with abstract index notation
(first letters, a, b, c..., in Latin alphabet) and Latin mid-alphabet indices, i, j, k...,
from space-like vectors. We also employ the standard convention for the summation
over repeated indices. All the quantities are expressed in a system of units in which
c = G = 1.
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ha

H

sa

nala
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Figure 9.10: Worldtube H foliated by closed space-like surfaces {St} as the result of a
3 + 1 space-like foliation {Σt}. The evolution vector ha (tangent to H and normal to {St})
transports the slice St to St+δt. The normal plane at each point of St can be spanned by
the outgoing and ingoing null normal vectors `a and ka or by na, the unit time-like normal
to Σt, and sa, the space-like outgoing normal to St and tangent to Σt.

9.5 Geometric evolution system on the horizon: the role
of the Weyl tensor

9.5.1 The inner screen H

Let us consider a black-hole spacetime (M, gab), with associated Levi-Civita connection
∇a, endowed with a 3+1 space-like foliation {Σt}. Let us consider an inner hypersurface
H, to be later identified with the black-hole horizon, such that the intersection of the
slices Σt with the worldtube H defines the foliation of H by closed space-like surfaces
{St}. We consider an evolution vector ha along H, characterized as that vector tangent
to H and normal to the slices {St} that transports the slice St onto the slice St+δt. The
normal plane at each point of St can be spanned in terms of the outgoing null vector
`a and the ingoing vector ka, chosen to satisfy `aka = −1. Directions of `a and ka are
fixed, though a rescaling freedom remains (see figure9.10). In particular, and without
loss of generality in our context, we can write [237]

ha = `a − Cka, (9.37)

so that haha = 2C. Therefore: ha is, respectively, space-like if C > 0, null if C = 0,
and time-like if C < 0.

Regarding the intrinsic geometry on St, the induced metric is denoted by qab, its
Levi-Civita connection by 2Da and the corresponding Ricci curvature scalar by 2R. The
area form is 2ε =

√
qdx1 ∧ dx2 and we will denote the area measure as dA =

√
qd2x.
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The infinitesimal evolution of the intrinsic geometry along H, i.e., the evolution of the

induced geometry qab along ha, defines the deformation tensor Θ
(h)
ab

Θ
(h)
ab ≡

1

2
δhqab = σ

(h)
ab +

1

2
θ(h)qab , (9.38)

where the trace θ(h) = Θ
(h)
ab q

ab, referred to as the expansion along ha, measures the
infinitesimal evolution of the St element of area along H, whereas the traceless shear

σ
(h)
ab controls the deformations of the induced metric . Here δh can be identified with

the projection on H of the Lie derivative Lh. Before reviewing the effective curvature
vector K̃eff

i , let us discuss the time parameterization of H.

We recall that jumps of apparent horizons are generic in 3 + 1 evolutions of black-
hole spacetimes. The dynamical trapping horizon framework offers a spacetime insight
into this behaviour by understanding the jumps as corresponding to marginally trapped
sections of a (single) hypersurface bending in spacetime, but multiply foliated by spatial
hypersurfaces in the 3 + 1 foliation {Σt} [220, 238, 239, 240, 241]. In the particular
case of binary black-hole mergers this picture predicts, after the moment of its first
appearance, the splitting of the common apparent horizon into two horizons: a growing
external common horizon and an shrinking internal common horizon [220, 240]. It is
standard to track the evolution of the external common horizon, the proper apparent
horizon, but to the internal common horizon as physically irrelevant.

In figure 9.11 we illustrate this picture in a simplified (spherically symmetric) col-
lapse scenario that retains the relevant features of the discussion. On one side, the rele-
vant outer screen boundary (namely, null infinity I+) is parameterized by the retarded
time u, something explicitly employed in the expression of the flux of Bondi momentum
in equations ( (33) and (34)). On the other side, from the 3+1 perspective, the moment
tc of first appearance of the (common) horizon corresponds to the coordinate time t at
which the 3 + 1 foliation {Σt} firstly intersects the dynamical horizon H. For t > tc, Σt

slices intersect twice (multiply, in the generic case) the hypersurface H giving rise to
the external and internal common horizons (cf. H in figure 9.11). Therefore, the time
function t is not a good parameter for the whole dynamical horizon H. An appropriate
parameterization of this hypersurface H is given in terms of an advanced time, such
as v, parameterizing past null infinity I−. More precisely, (for a space-like worldtube
portion of H) we can label sections of H by an advanced time v starting from an initial
value v0 corresponding to the first v = const null hypersurface hitting the spacetime
singularity, i.e., H =

⋃
v≥v0

Sv.

9.5.2 Effective curvature vector K̃eff
i

In the previous sections the effective curvature vector K̃eff
i was introduced using the

parameterization of H by the time function t associated with the spacetime 3 + 1
slicing. In particular, K̃eff

i (t) was defined only on the external part of the horizon H,
for t ≥ tc. We can now extend the definition of K̃eff

i to the whole horizon H (more
precisely, to a space-like worldtube portion of it) by making use of its parameterization
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Figure 9.11: Carter-Penrose diagram (corresponding, for simplicity, to a generic spher-
ically symmetric collapse) illustrating the time parameterization of the outer and inner
screens. The outer boundary given by I+ is properly parameterized by the retarded time
u, whereas an advanced time v runs along inner boundaries, in particular the dynamical
horizon H. Given a 3 + 1 foliation {Σt}, tc denotes the time t at which the horizon first
appears. For t > tc, Σt slices intersect multiply the hypersurface H, giving rise to inter-
nal and external horizons. On the contrary, the advanced coordinate v provides a good
parameterization of H from an initial v > v0.

by the advanced time v adapted to the 3 + 1 slicing of H. Given a section Sv ⊂ H, we
consider a vector ξi transverse to it (i.e., generically not tangent to Sv) and tangent
to the 3-slice Σt that intersects H at Sv (i.e., Sv = H ∩ Σt). Then, the component
K̃eff [ξ](v) is expressed as1

K̃eff [ξ](v) ∝ −
∮
Sv

(ξisi)
(
Ñ(v)

)2
dA , (9.39)

where si is the space-like normal to Sv and tangent to Σt, and

Ñ(v) ≡
∫ v

v0

2R(v′)dv′ + Ñv0 , (9.40)

where 2R is the Ricci curvature scalar on (Sv, qab) and Ñv0 is an initial function to be
fixed. As commented above, in spite of the formal similarity with the news function

1For avoiding the introduction of lapse functions related to different parameterizations of H, we
postpone the fixing of the coefficient to section 9.7. We note that a global constant factor is irrelevant
for cross-correlations.
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N(u) at I+ (cf. equation (34)), definition (9.40) does not guarantee the local-in-time
character of Ñ(v) since it is expressed in terms of a time-integral on the past history.

In order to study the dynamics of K̃eff
i , we consider the evolution of the Ricci scalar

curvature 2R along the worldtube H . In terms of the elements introduced above, the
evolution of the Ricci scalar curvature 2R along ha has the form

δh
2R = −θ(h) 2R+ 2 2Da2Dbσ

(h)
ab − 2∆θ(h) , (9.41)

where 2∆ = qab2Da
2Db denotes the Laplacian on St. Expression (9.41) is a fundamental

one in our work and it applies to any hypersurface H foliated by closed surfaces St.
Contact with black holes is made when H is taken as the spacetime event horizon or
as the dynamical horizon associated with the foliation {Σt}.

9.5.3 Geometry evolution on black-hole horizons

We briefly recall the notions of black-hole horizon relevant here. First, the event horizon
(EH) E is the boundary of the spacetime region from which no signal can be sent to
I+, i.e., the region in M not contained in the causal past J−(I+) of I+. The EH is
a null hypersurface, characterized as E = ∂J−(I+) ∩M. Second, a dynamical horizon
(DH) or (dynamical) future outer trapping horizon (FOTH) H is a quasi-local model
for the black-hole horizon based on the notion of a world-tube of apparent horizons.
More specifically, a FOTH H is a hypersurface that can be foliated by marginally
(outer) trapped surfaces St, i.e., H =

⋃
t∈R St with outgoing expansion θ(`) = 0 on St,

satisfying: i) a future condition θ(k) < 0, and ii) an outer condition δkθ
(`) < 0. In the

dynamical regime, i.e., when matter and/or radiation cross the horizon (namely when
δ`θ

(`) 6= 0), the outer condition is equivalent to the condition that H is space-like [242]1.
Therefore, for dynamical trapping horizons we have C > 0 in equation (9.37).

For both EHs and DHs, an important area theorem holds: δhA =
∮
St
θ(h)dA > 0.

In the case of an EH, Hawking’s area theorem [244, 245] guarantees the growth of the
area, whereas in the case of a DH, the positivity of δhA = −

∮
St
Cθ(k)dA is guaranteed

by its space-like character (C > 0) together with the future condition θ(k) < 0.
We make now contact with equation (9.41) and interpret the elements that deter-

mine the dynamics of 2R. The growth of the area of a black-hole horizon guarantees the
(average) positivity of θ(h). This offers a qualitative understanding of the dynamical
decay of 2R: the first term in the right hand side drives an exponential-like decay of
the Ricci scalar curvature. More precisely, non-equilibrium deformations of the Ricci
scalar curvature 2R in black-hole horizons decay exponentially as long as the horizon
grows in area. Regarding the elliptic operators acting on the shear and the expansion
[second and third terms in the right hand side of equation (9.41)] they provide dissi-
pative terms smoothing the evolution of 2R. Indeed, in section 9.10 we will review a

viscosity interpretation of θ(h) and σ
(h)
ab , in particular associating with them respective

decay and oscillation timescales of the horizon geometry.

1This property actually substitutes the outer condition in the DH characterization [221, 243] of
quasi-local horizons.
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9.5.3.1 Complete evolution system driving 2R

A further understanding of equation (9.41) requires a control of the dynamics of the

shear σ
(h)
ab , of the expansion θ(h) and of the induced metric qab, the latter controlling the

elliptic operators 2Da2Db and 2∆. Therefore, we need evolution equations determining

δhqab, δhθ
(h) and δhσ

(h)
ab :

i) δhqab: definition of the deformation tensor. The evolution of qab is dictated by

σ
(h)
ab and θ(h) [cf. equation (9.38)].

ii) δhθ
(h): focusing or Raychadhuri-like equation. The evolution of θ(h) involves the

Ricci tensor Rab, i.e., the “trace part” of the spacetime Riemann tensor Rabcd, thus
introducing the stress-energy tensor Tab through Einstein equations.

iii) δhσ
(h)
ab : tidal equation. The evolution of σ

(h)
ab is driven by the Weyl tensor Cabcd,

i.e., the traceless part of the spacetime Riemann tensor, thus involving dynamical
gravitational degrees of freedom but not directly the Einstein equations.

The structural feature that we want to underline about these equations is shared by
evolution systems on EHs and DHs, although the explicit form of the equations differ
in both cases. More specifically, whereas for EHs the evolution equations for 2R, qab,

θ(h) and σ
(h)
ab form a “closed” evolution system, in the DH case additional geometric

objects (requiring further evolution equations) are brought about through the evolution

equations δhqab, δhθ
(h) and δhσ

(h)
ab . Moreover, an explicit dependence on the function C,

related to the choice of 3 + 1 slicing as discussed later [cf. equation (9.49)], is involved
in the DH case. For these reasons, and for simplicity, in the rest of this subsection
we restrict our discussion to the case of an EH, indicating that the main qualitative
conclusion also holds for DHs, whose details will be addressed elsewhere.

The EH E is a null hypersurface generated by the evolution vector ha, a null vector
in this case: ha = `a. The null generator `a satisfies a pregeodesic equation `c∇c`a =
κ(`)`a. Choosing an affine reparametrization such that `a is geodesic, i.e., κ(`) = 0, the

evolution equations for 2R, qab, σ
(h)
ab and θ(h) close the evolution system

δ`
2R = −θ(`) 2R+ 2 2Da2Dbσ

(`)
ab − 2∆θ(`) , (9.42)

δ`qab = 2σ
(`)
ab + θ(`)qab , (9.43)

δ`θ
(`) = −1

2
(θ(`))2 − σ(`)

ab σ
(`)ab − 8πTab`

a`b , (9.44)

δ`σ
(`)
ab = σ

(`)
cd σ

(`)cdqab − qcaqdbClcfd`l`f . (9.45)

Once initial conditions are prescribed, the only remaining information needed to close
the system are the matter term Tab`

a`b in the focusing equation and qcaq
d
bClcfd`

l`f

in the tidal equation. Using a null tetrad (`a, ka,ma,ma) they can be expressed in
terms of Ricci and Weyl scalars: 8πTab`

a`b = Rab`
a`b = 2Φ00 and qcaq

d
bClcfd`

l`f =
Ψ0mamb + Ψ0mamb. The complex Weyl scalar Ψ0 and the Ricci scalar Φ00 drive the
evolution of the geometric system (9.42)–(9.45) on the horizon. Being determined in
terms of the bulk dynamics (Ψ0 relates to the near-horizon dynamical tidal fields and
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incoming gravitational radiation, whereas Φ00 accounts for the matter fields), fields Ψ0

and Φ00 act as external forces providing (modulo initial conditions) all the relevant
dynamical information for system (9.42)–(9.45) on E.

In the DH case, although the evolution system is more complex, the qualitative
conclusions reached here remains unchanged. More specifically, the differential system
on H governing the evolution of 2R is also driven by external forces given by particular
combination of Weyl and Ricci scalars1.

In the present cross-correlation approach, these dynamical considerations strongly
support Ψ0 as a natural building block in the construction2 of the quantity hinn(v) at
H, to be correlated in vacuum to dPB

i /du at I+. This is hardly surprising, given the
dual nature of Ψ0 and Ψ4 on inner and outer boundaries, respectively.

Particularly relevant are the following remarks. First, in the presence of matter,
the scalar Φ00 plays a role formally analogous to that of Ψ0. Therefore, in the general
case, it makes sense to consider Φ00 on an equal footing as Ψ0 in the construction of
hinn(v). Second, equation (9.42) is completely driven by the rest of the system, without
back-reacting on it. For this reason, although Ψ0 (and Φ00) encodes the information
determining the dynamics on the horizon, at the same time the evolution of 2R is
sensitive to all relevant dynamical degrees of freedom, providing an averaged response.
This justifies the crucial role of 2R in the construction of the effective K̃eff

i

A serious drawback for the use of Ψ0 and Φ00 in the construction of a quantity
hinn(v) at H is their dependence on the rescaling freedom of the null normal `a by an
arbitrary function on S. We address this point in the following section.

9.6 Fundamental results on Dynamical Horizons

The introduction of a preferred null tetrad on the horizon requires some kind of rigid
structure. We argue here that DHs provide such a structure. We point out that the
presentation in this section has a certain overlap with the one found in section 10.1,
which states some of the concepts introduced here in a slightly different and more
detailed context. We first review two fundamental geometric results about DHs

a) Result 1 (DH foliation uniqueness) [246]: Given a DH H, the foliation {St} by
marginally trapped surfaces is unique.

b) Result 2 (DH existence) [247, 248]: Given an outer stable marginally trapped
surface S0 in a Cauchy hypersurface Σ0, for each 3 + 1 spacetime foliation {Σt} con-
taining Σ0 there exists a unique DH H containing S0 and sliced by marginally trapped
surfaces {St} such that St ⊂ Σt.

These results have the following important implications:

i) The evolution vector ha is completely fixed on a DH (up to a time reparametriza-
tion). By Result 1 any other evolution vector h′a does not transport marginally trapped

1In a DH, the leading term in the external driving force is indeed given by Ψ0, but corrections
proportional to C also appear.

2Constructed as in equations (9.39) and (9.40) but substituting 2R by Ψ0.
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Σt1

t2

Σ
t ′
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S ′

S0

Σ0
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Σt2

St2

St1

H1

Figure 9.12: Worldtubes H1 (blue) and H2 (red) respectively associated with two differ-
ent 3+1 slicing {Σt1} and {Σt2} and providing evolutions from a given marginally trapped
surface S0 in an initial Cauchy hypersurface Σ0. They illustrate the non-unique evolution
of apparent horizons into DHs. The foliation {St1} (resp. {St2} ) by marginally trapped
surfaces is defined by the intersections of H1 with {Σt1} (resp. H2 and {Σt2}). Note
that, from the DH foliation uniqueness Result 1 [246], surfaces S′t2 = H1 ∩ Σt2 are not (in
general) marginally trapped surfaces.

surfaces into marginally trapped surfaces.

ii) The evolution of an apparent horizon into a DH is non-unique. Let us consider
an initial apparent horizon S0 ⊂ Σ0 and two different 3 + 1 slicings {Σt1} and {Σt2},
compatible with Σ0. From Result 2 there exist DHs H1 =

⋃
t1
St1 and H2 =

⋃
t2
St2 ,

with St1 = H1 ∩ Σt1 and St2 = H2 ∩ Σt2 marginally trapped surfaces. Let us consider
now the sections of H1 by {Σt2}, i.e., S′t2 = H1 ∩ Σt2 , so that H1 =

⋃
t2
S′t2 . In the

generic case, slicings {S′t2} and {St1} of H1 are different (deform {Σt2} if needed).
Therefore, from Result 1, S′t2 cannot be marginally trapped surfaces. Reasoning by
contradiction, we then conclude that H1 and H2 are different hypersurfaces in M, as
illustrated in figure9.12.

The two results above establish a fundamental link between DHs and the 3 + 1
approach here adopted. We denote the unit time-like normal to slices Σt by na and the
space-like (outgoing) normal to St and tangent to Σt by sa (see figure9.10). We denote
by N the lapse associated to the spacetime slicing function t, i.e., na = −N∇t. Given
a marginal trapped surface S0 in an initial slice Σ0, and given a lapse function N , let
us consider the (only) DH H given by Result 2. Then the unique evolution vector ha

on H associated with Result 1 can be written up to a time-dependent rescaling1 as

ha = Nna + bsa , (9.46)

where b is a function on St to be determined in terms of N and C [see equation (9.49)
below]. Certainly such a decomposition of an evolution vector compatible with a given

1This applies, strictly, to the external part of the horizon discussed in section 9.5.1. For the internal
part one must reverse the evolution with respect to that defined by the 3+1 foliation: ha = −Nna+bsa.
The following discussion goes then through.
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3 + 1 slicing {Σt}, in the sense ha∇at = 1, is valid for any hypersurface but, in the case
of a DH and due to Result 1, the evolution vector ha determined by equation (9.46)
has an intrinsic meaning (up to time reparametrization, which is irrelevant in a cross-
correlation approach) as an object on H not requiring a 3 + 1 foliation. On the other
hand, equation (9.37) provides the expression of vector ha in terms of the null normals.
More specifically, equation (9.37) links the scaling of `a and ka to that of ha by imposing
ha → `a as the DH is driven to stationarity (C → 0 ⇔ δ`θ

(`) → 0). Writing the null
normals at H as `a = (f/2)(na + sa) and ka = (na − sa)/f , for some function f ,
expressions (9.37) and (9.46) for ha lead to

`aN =
N + b

2
(na + sa) , kaN =

1

N + b
(na − sa) , (9.47)

where the subindex N denotes the explicit link of H to a 3 + 1 slicing. In order to
determine b, we evaluate the norm of ha and note that the function C in equation (9.37)
is expressed in terms of N and b as

C =
1

2

(
b2 −N2

)
. (9.48)

On the other hand, for a given lapse N , the trapping horizon δhθ
(`) = 0 condition

translates into an elliptic equation for C

−2∆C + 2Ω(`)
c

2DcC − C
[
−2DcΩ(`)

c + Ω(`)
c Ω(`)c − 1

2
2R

]
= σ

(`)
ab σ

(`)ab + 8πTabτ
a`b . (9.49)

Therefore, for a given DH H associated with a 3+1 slicing with lapseN , equations (9.49)
and (9.48) fix the value of b. Prescription (9.47) provides preferred null normals on a
DH H compatible with the foliation defined by N . Completed with the complex null
vector ma on St, we propose

(`aN , k
a
N ,m

a,ma) , (9.50)

as a preferred null tetrad (up to time reparametrization) on a DH. To keep the notation
compact, hereafter we will denote the preferred `aN and kaN simply as `a and ka and
omit the symbol N from all quantities evaluated in this tetrad. The tetrad (9.50) then
leads to a notion of preferred Weyl (and Ricci) scalars on the horizon H. In particular,

Ψ0 = Cabcd `am
b`cmd , (9.51)

Φ00 =
1

2
Rab `

a`b . (9.52)

In summary: we have introduced preferred null normals on a DH H by: i) linking the
normalization of `a to that of ha by requiring ha → `a in stationarity; and ii) fixing
the normalization of ha (up to a time-dependent function) by the foliation uniqueness
result on DHs (Result 1). The latter is the rigid structure needed to fix a preferred
null tetrad on H. In the particular case of constructing H in an Initial Value Problem
approach (Result 2 on DHs), the free time-dependent function is fixed by the lapse N
of the given global foliation {Σt}.
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9.7 News-like functions and Bondi-like fluxes on a dynam-
ical horizon

9.7.1 News-like functions: vacuum case

In section 9.5 we have identified the Weyl scalar Ψ0 as the object that encodes (in
vacuum and for C = 0) the relevant geometric information on the black-hole horizon
understood as an inner screen. Then in section 9.6 we have introduced a preferred
scaling for Ψ0 on DHs. With these elements we can now introduce the following vectorial
quantity on H

K̃[ξ](v) ≡ − 1

8π

∮
Sv

(ξisi)
∣∣∣Ñ(`)

Ψ (v)
∣∣∣2 dA , (9.53)

where

Ñ
(`)
Ψ (v) ≡

∫ v

v0

Ψ0(v′)dv′ , (9.54)

where we make use of an advanced time v parameterizing H (cf. section 9.5.1 and
figure 9.11) and adapted to the 3 + 1 slicing at H (namely, we choose ha∇av = 2).

The quantity K̃i could be used as a refined version of K̃eff
i for the correlation with

dPB
i /du at I+. However, whereas K̃eff

i is explicitly understood as an effective quantity
and, consequently, one can relax the requirement on the Ñ constructed out of 2R in
(9.40) to be mathematically equivalent to a news function, the situation is different
for K̃i in (9.53): the geometric dual nature of Ψ4 and Ψ0 would call for a news-like

function character for Ñ
(`)
Ψ in (9.54).

Whereas expressions for the flux of Bondi momentum and the news function at
I+ (cf. equations (33) and (34)) are valid under the (strong) conditions enforced by
asymptotic simplicity at null infinity and in a given Bondi frame, no geometric structure

supports the “a priori” introduction of quantities K̃i and Ñ
(`)
Ψ on H. In particular, the

news function N(u) is an object well defined in terms of geometric quantities on sections
Su ⊂ I+, that can be expressed as a time integral [cf. equation (34)] due to the key
relation ∂uN = Ψ4 holding for Bondi coordinate systems at I+. On the contrary, the

quantity Ñ
(`)
Ψ defined by time-integration of Ψ0 is not an object defined in terms of the

geometry of a section Sv (justifying the use of a “tilde”). Such a local-in-time behaviour
is a crucial property to be satisfied by any valid news function. Therefore, one would

expect additional terms to Ψ0 (with vanishing counterparts at I+), contributing in Ñ
(`)
Ψ

to build an appropriate news-like function on H.
In the absence of a sound geometric news formalism on H, we proceed heuristically

by modifying Ñ
(`)
Ψ so that it acquires a local-in-time character. Such a property would be

guaranteed if the integrand in definition (9.54) could be expressed as a total derivative
in time of some quantity defined on sections Sv. The scalar Ψ0 in equation (9.54) does
not satisfy this property. However, with this guideline, inspection of (9.45) suggests
some of the terms to be added to Ψ0 [system (9.42)–(9.45) applies to the EH case] so
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that they integrate in time to a quantity on Sv, namely the shear. Considering first,
as an intermediate step, the EH case and using a tensorial rather a complex notation1,

let us introduce a news-like tensor2 (N
(`)
Ψ )ab whose time variation is

(Ṅ
(`)
Ψ )ab =

1√
2

(
qcaq

d
bClcfd`

l`f − σ(`)
cd σ

(`)cdqab

)
, (9.55)

that is, such that (Ṅ
(`)
Ψ )ab = −1/

√
2δ`σ

(`)
ab (the global factor 1/

√
2 is required for the

correct coefficient in the leading-order contribution). Upon time integration (9.54) and
setting vanishing initial values at early times, this choice leads to

(N
(`)
Ψ )ab = − 1√

2
σ

(`)
ab . (9.56)

If we write

(N
(`)
Ψ )ab =

1√
2

∫ v

v0

(
qcaq

d
bClcfd`

l`f − 2N
(`)
cd N

(`)cdqab

)
dv′ , (9.57)

and substitute (N
(`)
Ψ )ab iteratively in the right hand side, we can express the news-

like function (N
(`)
Ψ )ab in terms of Ψ0 so that the lowest-order term is indeed given by

expression (9.54).
This identification, in the EH case, of a plausible news-like tensor as the shear along

the evolution vector suggests the following specific proposal for the news-like tensor for
DHs

N
(H)

ab ≡ −
1√
2
σ

(h)
ab . (9.58)

This proposal has a tentative character. Once identified the basics, we postpone a
systematic study to a forthcoming work.

9.8 News-like functions: matter fields

As discussed in section 9.5, in system (9.42)–(9.45) the Ricci scalar Φ00 plays a role
analogous to that of Ψ0. From this perspective, in the matter case, it is reasonable to
define as in (9.54)

Ñ
(`)
Φ (v) ≡ αm

2

∫ v

v0

Φ00(v′) dv′ , (9.59)

such that K̃i in (9.53) is rewritten

K̃[ξ](v) ≡ − 1

8π

∮
Sv

(ξisi)

[∣∣∣Ñ(`)
Ψ (v)

∣∣∣2 +
(
Ñ

(`)
Φ (v)

)2
]
dA . (9.60)

1We write complex numbers as 2 × 2 traceless matrices.
2Note that we remove now the “tilded” notation to emphasize its news-like local-in-time character,
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The parameter αm is introduced to account for possible different relative contributions
of Ψ0 and Φ00 (distinct choices for αm are possible, depending on the particular quantity

to be correlated at I+). However, also the function Ñ
(`)
Φ is affected by the same issues

discussed above for Ñ
(`)
Ψ , namely it lacks a local-in-time behavior. As in the vacuum

case, we proceed first by looking at EHs. We then complete Φ00 with the terms in

equation (9.44), so that Ṅ
(`)
Φ (v) = −(αm/2)δ`θ

(`). That is

Ṅ
(`)
Φ (v) =

αm

2

(
8πTcd`

c`d +
1

2
(θ(`))2 + σ

(`)
cd σ

(`)cd
)
,

so that N
(`)
Φ = −(αm/2)θ(`). This matter news-like function can be equivalently ex-

pressed in tensorial form as follows

(N
(`)
Φ )ab = − αm

2
√

2
θ(`)qab . (9.61)

As in vacuum, the passage from EHs to DHs is accomplished by using the natural
evolution vector ha along H for the expansion. Then, combining the tensorial form
(9.61) with (9.58), we can write a single news-like tensor as

N
(H)

ab = − 1√
2

(
σ

(h)
ab +

αm

2
θ(h)qab

)
. (9.62)

Interestingly, if αm = 1 the complete news tensor acquires a clear geometric meaning
as the deformation tensor along ha, i.e., as the the time variation of the induced metric

N
(H)

ab = − 1√
2

Θ
(h)
ab = − 1

2
√

2
q̇ab . (9.63)

9.8.1 Bondi-like fluxes on H

The motivation for introducing K̃eff
i and K̃i in equation (9.53) [or, more generally, K̃i

in equation (9.60)] is the construction of quantities on H to be correlated to quantities
at I+, namely the flux of Bondi linear momentum. We have been careful not to refer
to them as to “fluxes”, since they do not have an instantaneous meaning. However,
once the news-like tensor N

(H)

ab has been introduced in (9.62), formal fluxes can be
constructed by integration of the squared of these news. More specifically, we can
introduce the formal fluxes on H

dE
(H)

dv
(v) =

1

8π

∮
Sv

N
(H)

ab N
(H)abdA , (9.64)

dP
(H)

[ξ]

dv
(v) = − 1

8π

∮
Sv

(ξisi)
(
N

(H)

ab N
(H)ab

)
dA , (9.65)

where their formal notation as total time derivatives is meant to make explicit its local-
in-time nature. The purpose of quantities dE

(H)
/dv and (dP

(H)
[ξ]/dv) is to provide im-

proved quantities at H for the cross-correlation approach. In particular, (dP
(H)

[ξ]/dv)
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provides a refined version of the effective K̃eff
i , to be correlated with (dPB

i /du)(u) at
I+. In this context, K̃i in equation (9.53) has played the role of an intermediate stage
in our line of arguments.

Of course, we can introduce formal quantities E
(H)

and P
(H)

i on H, by integrating
expressions in (9.64) along H. However, in the absence of a physical conservation
argument or a geometric motivation, referring to them as (Bondi-like) energies and
momentum would be just a matter of definition1. Thus, we rather interpret them simply
as well-defined instantaneous quantities leading ultimately to a timeseries hinn(v).

It is illustrative to expand the squared of the news in (9.64) as

N
(H)

ab N
(H)ab =

1

2

[
σ

(h)
ab σ

(h)ab +
αm

2
(θ(h))2

]
, (9.66)

to be inserted in the expression for dE
(H)
/dv and (dP

(H)
/dv)[ξ]. The relative weight of

the different terms as we depart from equilibrium can be made explicit by expressing

the evolution vector as ha = `a − Cka [cf. equation (9.37)], with associated σ
(h)
ab =

σ
(`)
ab − Cσ

(k)
ab and θ(h) = −Cθ(k). We can then write

N
(H)

ab N
(H)ab =

1

2

[
σ

(`)
ab σ

(`)ab − 2Cσ
(`)
ab σ

(k)ab

+C2
(
σ

(k)
ab σ

(k)ab +
αm

2
(θ(k))2

)]
. (9.67)

On a DH, terms proportional to αm only enter at a quadratic order in C. Two values
of αm are of particular interest. First, the case αm = 0, corresponding to an analysis
of pure gravitational dynamics. Second, the case αm = 1 where [cf. (9.63)]

dE
(H)

dv
(v) =

1

8π

∮
S

N
(H)

ab N
(H)abdA =

1

16π

∮
S

Θ
(h)
ab Θ(h)abdA

=
1

32π

∮
S

1

2
(q̇ab)

2dA , (9.68)

that admits a suggestive interpretation as a Newtonian kinetic energy term of the
intrinsic horizon geometry.

9.8.2 Relation to quasi-local approaches to horizon momentum and
application to recoil dynamics

As emphasized in the previous section, the essential purpose of dE
(H)
/dv and (dP

(H)
[ξ]/dv)

in (9.64) is to provide geometrically sound proposals for hinn(v) at H. Having said this,
it is worthwhile to compare the resulting expressions, for specific values of αm, with
DH physical fluxes derived in the literature. This provides an internal consistency test

1For instance, the leading-order contribution from matter to the black-hole energy and momentum
should come from the integration of the appropriate component of the stress-energy tensor Tab, an
element absent in (9.64) where matter contributions only enter through terms quadratic in Tab.
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of the line of thought followed from K̃eff
i to equations (9.64). In particular, for αm = 0

we obtain

dE
(H)

dv
(v) =

1

8π

∮
S

N
(H)

ab N
(H)abdA =

1

16π

∮
S

σ
(h)
ab σ

(h)abdA =
1

16π

∮
S

[
σ

(`)
ab σ

(`)ab − 2Cσ
(`)
ab σ

(k)ab + C2σ
(k)
ab σ

(k)ab
]
dA .

(9.69)
Expression (9.69) allows us to draw analogies with the energy flux proposed in the

DH geometric analysis of [221, 249]. In particular, the leading term in the integrand

of this expression, σ
(`)
ab σ

(`)ab, is directly linked (cf. equation (3.27) in [221]) to the term
identified in [250, 251] as the flux of transverse gravitational propagating degrees of

freedom1. The DH energy flux also includes a longitudinal part depending on Ω
(`)
a Ω(`)a,

absent in quantities in equation (9.64). In this sense, dEN/dv provides a quantity
hinn(v) accounting only for the transverse part of gravitational degrees of freedom [251,
253, 254] at H and therefore particularly suited for cross-correlation with (dPB

i /du)(u),
which corresponds to (purely transverse) gravitational radiation at I+.

Motivated now by the resemblance of (9.69) with the flux of a physical quantity, we
can consider a heuristic notion of Bondi-like 4-momentum flux through H. Considering
the (time-like) unit normal τ̂a to H

τ̂a =
τa√
|τ bτb|

=
1√
2C

(`a + Cka) =
1√
2C

(bna +Nsa) , (9.70)

we can introduce the component of a 4-momentum flux (dP τi /dv) along a generic 4-
vector ηa, as

dP τ [η]

dv
≡ − 1

8π

∮
Sv

(ηcτ̂c)
(
N

(H)

ab N
(H)ab

)
dA

= − 1

16π

∮
Sv

(ηcτ̂c)
(
σ

(h)
ab σ

(h)ab
)
dA , (9.71)

that has formally the expression of the flux of a Bondi-like 4-momentum. The corre-
sponding flux of energy associated with an Eulerian observer na is

dEτ

dv
(v) ≡ dP τ [na]

dv
=

1

16π

∮
S

b√
2C

(
σ

(h)
ab σ

(h)ab
)
dA ,

(9.72)

where b√
2C

=
√

1 +N2/2C. Analogously, the flux of linear momentum for ξa tangent

to Σt would be

dP τ [ξ]

dv
= − 1

16π

∮
Sv

N√
2C

(ξisi)
(
σ

(h)
ab σ

(h)ab
)
dA. (9.73)

1We note that
∮
S
σ

(`)
ab σ

(`)abdA was used in [252] as a practical dimensionless parameter to moni-
tor horizons approaching stationarity. Here they would correspond to a vanishing flow of transverse
radiation.

136



9.9 Relevance of the 3+1 inner common horizon

Near equilibrium, i.e., for C → 0, we have σ
(h)
ab σ

(h)ab ∼ C on DHs so that the integrands

in expressions (9.72) and (9.73) are O(
√
C), therefore regular and vanishing in this limit.

Considering (dP τ [ξ]/dv) as an estimate of the flux of gravitational linear momentum1

through H, the quantity P τi would provide a heuristic prescription for a quasi-local
DH linear momentum, a sort of Bondi-like counterpart of the heuristic ADM-like linear
momentum introduced for DHs in Ref. [255], by applying the ADM expression for the
linear momentum at spatial infinity io to the DH section St

P [ξa] =
1

8π

∫
St

(Kab −Kγab) ξasb dA . (9.74)

In this sense, the cross-correlation methodology we propose here and in paper I, can
be formally compared with the quasi-local momentum approaches in [255, 256] to the
study of the recoil velocity in binary black-holes mergers, showing the complementarity
among these lines of research.

However, attempting to derive in our context a rigorous notion of quasi-local mo-
mentum on H would require the development of a systematic news-functions framework
on DHs, in particular considering the possibility of longitudinal gravitational terms as
in the DH energy flux (cf. [257, 258, 259, 260] for important insights in this topic). Such
a discussion is beyond our present heuristic treatment, and we stick to our approach of
considering the constructed local fluxes on H as quantities encoding information about
(transverse) propagating gravitational degrees of freedom to be cross-correlated to the
flux of Bondi momentum at I+.

9.9 Relevance of the 3+1 inner common horizon

In this section we emphasize the role of the inner horizon present in 3+1 slicings of black-
hole spacetimes, and discussed in section 9.5.1, when considering the time integration
of fluxes along the DH history. This is of specific relevance to the discussion made in
the previous subsection, but it also applies to more general contexts.

Given the flux F (v) through H of a physical quantity Q(v), we can write

Q(v) = Q(v0) + sign(C)

∫ v

v0

F (v′)dv′ , (9.75)

and this requires a good parameterization of H by the (advanced) coordinate2 v, as
well as an initial value Q(v0). Finding such an initial value is in general non-trivial and
this is precisely the motivation to consider in this section the evaluation of the fluxes
along the whole spacetime history of H, though from a 3 + 1 perspective.

Given the 3 + 1 slicing {Σt}, we can split the integration along the DH into an
external and an internal horizon parts, as discussed in section 9.5.1. Denoting by vc

1A related alternative prescription for a DH linear momentum flux would be given by angular
integration of the appropriate components in the effective gravitational-radiation energy-tensor in [251].

2The coefficient sign(C), +1 for space-like and −1 for time-like sections of H, corrects the possibility
of integrating twice (null) fluxes through H, when time-like sections of the trapping horizon H occur.
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the advanced time associated with the moment tc of first 3+1 appearance of the horizon,
H is separated into the inner horizon Hint labeled by v0 ≤ v ≤ vc and the outer horizon

Hout labeled by vc ≤ v ≤ ∞: H = Hint ∪Hext =
(⋃

v0≤v≤vc Sv
)
∪
(⋃

vc≤v≤∞ Sv

)
. We

can then rewrite equation (9.75) as

Q(v) = Q(v0) + sign(C)

∫ v

v0

F (v
′
)dv
′

= Q(v0) + sign(C)

∫ vc

v0

F
int

(v
′
)dv
′

+ sign(C)

∫ v

vc

F
ext

(v
′
)dv
′

(9.76)

= Q(v0) + sign(C)

∫ 2vc−v0

vc

F
int

(2vc − v′′)dv′′ + sign(C)

∫ v

vc

F
ext

(v
′
)dv
′
, (9.77)

where F int and F ext denote, respectively, the flux of Q along the internal and external
horizons. Note that in the second term in (9.77) we have inverted the integration limits
in order to have an expression which is ready to be translated for an integration in t.

The coordinate v is not usually adopted in standard 3+1 numerical constructions of
spacetimes. Because of this, we employ the time t defining the slicing {Σt}. Although
the t function is not a good parameter on the whole H, it correctly parameterizes the
evolution of both the inner Hint and outer Hext horizons separately: H = Hint∪Hext =(⋃

t≥tc S
ext
t

)
∪
(⋃

t≥tc S
int
t

)
. Considering the splitting in equation (9.76), the use of t

in the flux integration is perfectly valid as long as the t-integration includes both the
standard external horizon part and an internal horizon part.

From equation (9.77) we write

Q(t) = Q0 + sign(C)

∫ ∞
tc

F int(t′)dt′ + sign(C)

∫ t

tc

F ext(t′)dt′

= Q0 + sign(C)

∫ t

tc

F int(t′)dt′ + sign(C)

∫ t

tc

F ext(t′)dt′ + Res(t) , (9.78)

where Q0 is a constant and the error Res(t)

Res(t) =

∫ ∞
t

F int(t′)dt′, (9.79)

must be taken into account, since we cannot integrate up to t → ∞ during the 3 + 1
evolution. This error satisfies Res(t) → 0 as t →∞, so that the evaluation of Q(t) by
ignoring Res(t) in equation (9.78) improves as we advance in time t (cf. figure 9.11).
Of course, this approach requires a good numerical tracking of the inner horizon, some-
thing potentially challenging from a numerical point of view (see [261] for a related
discussion).

9.10 Link to the Horizon viscous-fluid picture

The basic idea proposed in [214] is that certain qualitative aspects of the late-time
black-hole recoil dynamics, and in particular the anti-kick, can be understood in terms
of the dissipation of the anisotropic distribution of curvature on the horizon. This
picture in which the black-hole recoils as a result of the emission of anisotropic grav-
itational radiation in response to an anisotropic curvature distribution suggests that

138



9.10 Link to the Horizon viscous-fluid picture

the interaction of the moving black hole with its environment induces a viscous dissi-
pation of the gravitational dynamics. In particular, one can consider a fluid analogy
in which the distorted common apparent horizon can be replaced by a distorted and
flexible membrane immersed in an ambient fluid. If the spherical shape represents that
of equilibrium for the membrane, it will attain it after dissipating part of the energy in
the deformation in the form of sound waves emitted in the ambient fluid. These sound
waves will carry linear momentum and, for the conservation of the total linear momen-
tum, the distribution of the deformations on the membrane will dictate the direction
in which it will recoil.

In the black hole case, radiation is of course not emitted from horizon surface, which
is causally disconnected from distant observers. However, the geometry of the horizon
indeed reacts to the dynamics of the environment, so that horizon anisotropies can
be used effectively to monitor the gravitational dynamics in the near-horizon region,
in particular those aspects responsible of the recoil. With this picture in mind of the
horizon as a test screen subject to viscous dynamics we have developed, a systematic
framework based on a cross-correlation approach to probe near horizon dynamics in the
spirit of an inverse-scattering problem. Starting from an effective quantity constructed
on the intrinsic geometry of horizon sections, namely the Ricci scalar 2R, our analysis

has led us in section 9.7 to the identification of the shear σ
(h)
ab and of the expansion

θ(h) as the underlying relevant geometric objects, in particular interpreted in terms
of news-like functions at H. This identification permits to cast naturally the viscous-

fluid picture into a gravitational framework, exploiting the fact that θ(h) and σ
(h)
ab have

indeed an interpretation in terms of a bulk and shear viscosities. Stated differently, the
cross-correlation approach offers a realization of the idea proposed in [214], expressing
it in terms of more sound geometrical quantities. This result can already be appreciated
explicitly in equation (9.41), but acquires a sound basis in the context of the membrane
paradigm that we review below.

9.10.1 The black-hole horizon viscous-fluid analogy

Hawking and Hartle [262, 263, 264] introduced the notion of black-hole viscosity when
studying the response of the event horizon to external perturbations. This leads to a
viscous-fluid analogy for the treatment of the physics of the EH, fully developed by
Damour [265, 266] and by Thorne, Price and Macdonald [267, 268], in the so-called
membrane paradigm (see also [269, 270]). In this approach, the physical properties of
the black hole are discussed in terms of mechanical and electromagnetic properties of
a 2-dimensional viscous fluid. A quasi-local version of some of its aspects, applying for
dynamical trapping horizons, has been developed in [271, 272, 273, 274].

In the fluid analogy of the membrane paradigm, dissipation in black hole dynamics
is accounted for in terms of the shear and bulk viscosities of the fluid. The viscosity
coefficients are obtained in the dissipative terms appearing in the momentum and energy
balance equations for the 2-dimensional fluid. These equations are identified from the
projection of the appropriate components of the Einstein equations on the horizon’s
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worldtube, namely evolution equations for θ(`) and Ω
(`)
a . For an EH these equations

are [272]

δ`θ
(`) − κ(`)θ(`) = −1

2
θ(`)2 − σ(`)

ab σ
(`)ab − 8πTab`

a`b ,

δ`Ω
(`)
c + θ(`) Ω(`)

a = 2Da

(
κ(`) +

θ(`)

2

)
− 2Dcσ

(`)c

a

+8πTcd `
cqda . (9.80)

The first one (i.e., the Raychaudhuri equation (9.44) not assuming a affine geodesic
parameterization, so that κ(`) 6= 0) is interpreted as an energy dissipation equation. In
particular, a surface energy density is identified as ε ≡ −θ(`)/8π. The second evolution

equation for the normal form Ω
(`)
a provides a momentum conservation equation for the

fluid, a Navier-Stokes-like equation (referred to as Damour-Navier-Stokes equation),

once a momentum πa for the 2-dimensional fluid is identified as πa ≡ −Ω
(`)
a /(8π) [note

that Ω
(`)
a is associated with a density of angular momentum. Dividing equations (9.80)

by −8π and applying these identifications we obtain

δ`ε+ θ(`)ε = − κ

8π
ε− 1

16π
(θ(`))2 +

1

8π
σ

(`)
cd σ

(`)cd + Tab`
a`b , (9.81)

δ`πa + θ(`)πa = −2Da(
κ

8π
) +

1

8π
2Dcσ(`)

ca −
1

16π
2Daθ

(`) − qcaTcd`d . (9.82)

Writing the null evolution vector as `a = ∂t+V a, for some (velocity) vector V a tangent

to St, one can write: θ(`) = DaV
a + ∂tln

√
q and 2σ

(`)
ab =

(
2DaVb + 2DbVa

)
− θ(`)qab +

1
2∂tqab. Then one can identify a fluid pressure P ≡ κ/(8π), a (negative) bulk viscosity
coefficient ζ = −1/(16π), a shear viscosity coefficient µ = 1/(16π), an external energy
production rate Tab`

a`b and external force density fa ≡ −qcaTcd . See also [275] for a
criticism of this interpretation.

The analogue equations in the dynamical trapping horizons are obtained from the

equations δhθ
h and Ω

(`)
a . These can be written as [271, 273, 274](

δh + θ(h)
)
θ(h) = −κ(h)θ(h) + σ

(h)
ab σ

(τ)ab +
(θ(h))2

2
− 22DaQa + 8πTabτ

ahb − θ(k)

8π
δhC ,(9.83)(

δh + θ(h)
)

Ω(`)
a = 2Daκ

(h) − 2Dcσ(τ)
ac − 2Daθ

(h) + 8πqbaTbcτ
c − θ(k)2DaC .(9.84)

with Qa = 1
4π

[
CΩ

(`)
a − 1

2
2DaC

]
and κ(h) = −kahb∇b`a. Then, by introducing a DH

surface energy density ε̄ ≡ −θ(τ)/(8π) = θ(h)/(8π) and keeping the definition for πa,
we can write for DHs (see [273, 274] for a complete interpretation of these equations)

δhε̄+ θ(h)ε = − κ

8π
θ(h) +

1

8π
σ

(h)
ab σ

(τ)ab +
(θ(h))2

16π
− 2DaQa + Tabτ

ahb − θ(k)

8π
δhC ,

δhπa + θ(h)πa = −2Da

( κ
8π

)
+ 2Dc

(
σ

(τ)
ac

8π

)
+

2Daθ
(h)

16π
− qbaTbcτ c +

θ(k)

8π
2DaC .(9.85)
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We can now justify the viscosity interpretation of θ(h) and σ
(h)
ab by remarking that from

the equations above, θ(h) represents the expansion of the fluid appearing in the bulk

viscosity term [with positive bulk viscosity coefficient ζ = 1/(16π)]. Similarly, σ
(h)
ab

corresponds to the shear strain tensor and σ
(τ)
ab /(8π) to the shear stress tensor. Note

that σ
(τ)
ab /(8π) and σ

(h)
ab are not proportional in the strict dynamical case, C 6= 0, and

therefore one cannot define a shear viscosity coefficient µ (In other words, a DH is not
a Newtonian fluid).

Finally let us consider the observer given by the (properly normalized) time-like
normal to H and let us define the 4-momentum current density associated with this
observer: pa ≡ −Tabτ b. Then we note that the components of pa are fixed by equations
(9.85) together with the trapping horizon defining constraint equation (9.49). Indeed,
pah

a = −Tabτ bha corresponds to the energy ε̄ balance equation, while pbq
b
a = −Tbcτ cqba

gives the momentum πa conservation equation, and paτ
a = −Tabτ bτa is a linear com-

bination, using τa = 2`a − ha, of the energy dissipation equation and the trapping
horizon condition (δhθ

(`) = 0) depending on Tabτ
a`b. Given the fundamental role of

the latter in the geometric properties of the DH, in particular in the derivation of an
area law under the future condition θ(k) < 0, this suggests the possibility of using the
component paτ

a to define a balance equation for an appropriate entropy density. This
point echoes the discussion of a hydrodynamic entropy current discussed in the context
of a fluid-gravity duality [276, 277, 278, 279].

9.10.2 A viscous “slowness parameter”

The viscosity interpretation outlined in the previous subsection allows us now to make
contact with the slowness parameter P introduced in [213]. We recall that the parameter
P is constructed in terms of two dynamical timescales: a decay timescale τ and a
oscillation timescale T

P =
T

τ
. (9.86)

In our fluid analogy, the bulk viscosity term θ(h) controls the dynamical decay, whereas

the shear viscosity term σ
(h)
ab is responsible for the (shape) oscillations of the geometry.

Given their physical dimensions [θ(h)] = [σ
(h)
ab ] = [Length]−1, averaging over horizon

sections we can build instantaneous timescales1 at any coordinate time t as

1

τ(t)
≡ 1

A

∮
St

(ξitsi)θ
(h)dA , (9.87)

1

T (t)2
≡ 1

A

∮
St

(ξitsi)
(
σ

(h)
ab σ

(h)ab
)
dA , (9.88)

where ξit is the unit vector in the instantaneous direction of motion of the black hole.
The term (ξitsi) in the definitions (9.87) - (9.88) is needed for giving a timescale asso-
ciated with a change in linear momentum [if not, we would be dealing with a timescale

1These are not the only possibility to define τ and T , and therefore P , from viscosity scales. All
variants should though give the same qualitative estimates.
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for a change in energy, cf. (9.64)]. In other words, it is needed to account for the
dissipation and oscillation of anisotropies in the geometry and not for spherically sym-
metric growths. This is consistent with the beating-frequency behaviour found in the
timeseries developed for the head-on collision of two black holes. Note that equa-
tions (9.87)-(9.88) provide geometric prescriptions for the instantaneous timescales at
the merger of a binary, a problem pointed out in [213]. Combining equations (9.86)

and (9.87)-(9.88), and denoting |σ(h)|2 = σ
(h)
ab σ

(h)ab, we get

P (t) =

∮
St

(ξitsi)θ
(h)dA[

A
∮
St

(ξitsi)|σ(h)|2dA
] 1

2

. (9.89)

As a consistency check we can verify for DHs that in situations close to stationarity
(i.e., C → 0), the following scaling holds θ(h) ∼ C and |σ(h)|2 ∼ C, so that P ∼ 1, as
suggested in the analysis of [213].

9.11 Conclusions

The analysis of spacetime dynamics is a very hard task in the absence of some rigid
structure, such as symmetries or a preferred background geometry. However, this is
the generic situation in the strong-field regime described by general relativity. In this
context, (complementary) effective approaches providing insight into the qualitative
aspects of the solutions and suggesting avenues for their quantitative modeling are of
much value. In this spirit, we have discussed a cross-correlation approach to near-
horizon dynamics. Other schemes, such as the curvature-visualization tools suggested
in [280], share some aspects of this methodological approach.

In particular, we have argued that, in the setting of a 3 + 1 approach to the black-
hole spacetime construction, the foliation uniqueness of dynamical horizons provides a
rigid structure that confers a preferred character to these hypersurfaces as probes of
the black-hole geometry. Employed as inner screens in the cross-correlation approach,
this DH foliation uniqueness permits to introduce the preferred normalization (9.47) of
the null normals to apparent horizon sections and, consequently, a preferred angular
scaling in the Weyl scalars on these horizons. The remaining time reparametrization
freedom (time-stretch issue) does not affect the adopted cross-correlation scheme, where
only the structure of the respective sequence maxima and minima is of relevance in the
correlation of quantities defined in outer and inner screens.

Although this natural scaling of the Weyl tensors on DHs has an interest of its own,
we have employed it here as an intermediate stage, linking the effective curvature vector

K̃eff
i (t) to the identification of the shear σ

(h)
ab , associated with the DH evolution vector

ha, as being proportional to a geometric DH news-like function N
(H)

ab in equation (9.58)

[see also the role of θ(h), in the more general N
(H)

ab in equation (9.62)]. On the one

hand, this identification provides a (refined) geometric flux quantity (dP
(H)
/dv)i(v) on

DH sections to be correlated to the flux of Bondi linear momentum (dPB/du)i at I+
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(these DH fluxes also share elements with quasi-local linear momentum treatments in

the literature). On the other hand, given the role of σ
(h)
ab and θ(h) in driving the Ricci

scalar 2R along H, equation (9.41) and system (9.42)-(9.45), this analysis justifies the
use of K̃eff

i (t) as an effective local estimator at H of dynamical aspects at I+.
The cross-correlation analysis has also produced two important by-products. First,

we advocate the physical relevance of tracking the internal horizon in 3 + 1 black-hole
evolutions. This follows from the consideration of the time integration of fluxes along
the horizon and its splitting (9.78) into internal horizon and external horizon inte-
grals. Such expression is fixed up to an early-times integration constant, controlled by
dynamics previous to the formation of the (common) DH (and possibly vanishing in
many situations of interest). Second and most importantly, from the perspective of a
viscous-horizon analogy we have identified a dynamical decay timescale τ associated
with bulk viscosity and an oscillation timescale T associated with the shear viscosity.
This is particularly relevant in the context of black-hole recoil dynamics, where the
analysis in [213] shows that the qualitative features of the late time recoil can be ex-
plained in terms of a generic behaviour controlled by the relative values of a decay and
an oscillation timescales. The viscous picture meets the rationale in [214] and offers an
understanding of the relevant dynamical timescales from the (trace and traceless parts
in the) evolution of the horizon intrinsic geometry, in particular providing instanta-
neous dynamical timescales at the merger and a geometric prescription for the slowness
parameter P = T/τ introduced in [213].

As a final remark we note that while the material presented here places the argu-
ments made in [214] on a much more robust geometrical basis, much of our treatment
is still heuristic and based on intuition. More work is needed for the development of a
fully systematic framework and this will be the subject of our future research.
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Dynamics of MOTS: The
pre-merger and merger phase

An unexpected feature has been observed in the simulation of binary black holes fol-
lowing their inspiral and merger [281]. After formation of a common apparent horizon,
as the two MOTS, corresponding to the individual black holes continued to approach,
they eventually touched and then penetrated each other. This con-penetration was
surprising because it had not been expected from analytical discussions and had not
been observed in prior simulations of binary black hole mergers. In retrospect, it is
tempting to speculate in some heuristic sense that should a small black hole enter a
very large black hole, the latter would hardly notice its presence. In fact, it has been
been conjectured on the basis of the equivalence principle that a very small black hole
should, in some appropriate sense, fall into the large one along a geodesic. However,
such a perturbative picture is unreliable in the interior of the event horizon surround-
ing the two black holes, where the MOTS exist. Here we use an independent evolution
code to first confirm that the individual MOTS do con-penetrate following a binary
black hole merger and we analyze some of the highly interesting features revealed by
the simulations. The presentation follows closely [4]

The simulations which first demonstrated the con-penetration of the individual
MOTS were carried out with a code which was based upon Fock’s treatment [282] of
the harmonic formulation in terms of the densitized metric

√−ggµν and which had
been developed for the purpose of studying outer boundary conditions [283, 284]. By
incorporating adaptive mesh refinement and a horizon tracker available in the CACTUS
toolkit [285], the code was further developed to simulate a binary black hole inspiral
using excision to deal with the internal singularities. The simulations presented in the
present section are based upon an independent harmonic code based upon standard 3+1
variables and treating the singularities via punctures [286] rather than excision [287].
The evolution system is describe in section 3.3.

The work of Hayward [288] and Ashtekar and Krishnan [289] has led to a very rich
mathematical theory of the dynamical horizons traced out by the evolution of MOTS, as
reviewed in [290]. This theory has provided insight into both the classical and quantum
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properties of black holes. In particular, the subject has strong bearing on numerical
relativity because a MOTS can be identified quasi-locally by the vanishing expansion
of its outward directed null rays, whereas the identification of an event horizon requires
global information which is not available at the early stages of a simulation. Thus
MOTS play a central role in the preparation of initial data sets for black holes and
in tracking their subsequent evolution. A numerical study of MOTS has been carried
out [291, 292], which confirmed the main features expected from the theory regarding
the early stages of a binary inspiral. Recently, there has been substantial new theoretical
development centered around the uniqueness and stability of MOTS [302, 303, 304, 307].
This recent theory has important bearing on how MOTS approach each other and
penetrate. We review the main mathematical results and their relevance to the binary
black hole problem in section 10.1.

The simulations presented in this chapter confirm the results observed in [281] and
significantly extend the degree of con-penetration of the MOTS. There are five distinct
stages as the MOTS approach and penetrate.

• The large separation of the individual MOTS. The properties of this stage are
mainly determined by the choice of binary black hole initial data.

• Formation of a common apparent horizon as the MOTS approach.

• The initial osculation of the two MOTS.

• The con-penetration of the two MOTS.

• The ultimate fate of the individual MOTS.

The original simulation showing the con-penetration of two MOTS [281] and the
numerical study of MOTS in the early stages of a binary black hole [292] were confined
to the case of equal mass black holes. Here we consider the unequal mass case, with
the goal of shedding light on what happens in the extreme mass ratio regime. Because
of the computational cost in resolving different length scales, we limit ourselves to the
case of a mass ratio msmall/mlarge = 1/4. In order to better understand the geometry
of the merger, we also restrict ourselves to the simplest case of a head-on collision.
Already in this case, there are quite complicated geometrical effects.

Our simulations are based on time symmetric initial data for the two black holes.
The time symmetry introduces some non-intuitive features of the initial MOTS, partic-
ularly when they are close together, which emphasize the importance of looking at their
invariant geometrical properties rather than their coordinate description. We repeat,
for the unequal mass case, the simulation of the head-on collision carried out by Kr-
ishnan and Schnetter [292] for equal mass black holes. They simulated this equal mass
case with a code based upon a 3 + 1 formulation of Einstein’s equations (a BSSNOK
formulation close to th one present in section 3.2), which is quite different than the
harmonic formulation used here. As a check on our code, we find qualitative agreement
with the results of [292] for the early stages before the individual MOTS touch. We then
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continue the simulation of the head-on collision to the later stage where the individual
MOTS penetrate, which could not be treated in [292] because of loss of accuracy. The
original simulations of the con-penetration in [281] were limited by the excision region
inside the individual MOTS. The simulations presented in this chapter are performed
with a code that is able to track the con-penetration to a much further stage, essentially
until the small MOTS has penetrated halfway into the large MOTS. At that stage its
interior puncture is close to the large MOTS and the horizon tracker breaks down.

We demonstrate by numerical simulation that before the individual MOTS make
contact a common outer apparent horizon forms, in accord with the theory described
in section 2.2. When the two MOTS first touch, the expectation is that their mean
surface curvatures agree at the point of osculation. Consistent with this expectation,
our simulations show that the small MOTS produces a very strong tidal effect that
causes the mean curvature of the large MOTS to rapidly grow, i.e. its curvature radius
rapidly shrinks. On the other hand, as might be expected, the large MOTS has only
a small tidal effect on the small one. We track this growth of mean curvature of the
large MOTS as the con-penetration proceeds further. If the small black hole were
to con-penetrate the large one completely a dramatic consequence of the underlying
uniqueness theorems for MOTS would ensue. At the time where the back of the small
MOTS enters the front of the large one, the theorems imply that the two MOTS must
identically merge, either through shrinkage of the large MOTS or expansion of the
small MOTS. Although our simulations cannot proceed to this stage, they provide
some glimpse of how it might proceed.

10.1 Uniqueness and stability of MOTS

In this section we review some analytical results obtained for the uniqueness and stabil-
ity of MOTS and time evolution. We will first present analytical results for the stability
and uniqueness of the outermost MOTS in a given space-time. In a next step we will
introduce the maximum principle as useful tool to probe the behavior and properties
of MOTS. Last, we will cover some results obtained for the time evolution of MOTS
and properties of MOTTs. Again consider a 3+1 foliation xα = (t, xi) with metric
decomposition

gµν = −nµnν + hµν (10.1)

where nµ is the unit future directed time-like normal to the foliation. In a slice Mτ =
{t = τ} consider a 2-surface S which is the boundary of a set Ω. We define its outward
unit space-like normal Ni to point out of Ω. If S is defined as the level set of a function
s, then

Ni =
1√
D
∂is (10.2)

with

D = hkl(∂ks)(∂ls). (10.3)

147



10. DYNAMICS OF MOTS: THE PRE-MERGER AND MERGER
PHASE

Setting Nµ = hiµNi (so that Nµ∇µt = 0), this leads to the further decomposition

hµν = NµNν + sµν . (10.4)

The outgoing null direction normal to S is

`µ = nµ +Nµ, (10.5)

where the normalization is determined by the Cauchy slicing. Its expansion is

θ+ = P +H (10.6)

where

H = sµν∇µNν (10.7)

is the mean curvature of S in the Cauchy slicing,

P = sµν∇µnν (10.8)

is the 2-trace of the extrinsic curvature of the Cauchy slicing and ∇ is the covariant
derivative with respect to g.

S is a MOTS if θ+ = 0, i.e. P +H = 0. Similarly,

θ− = P −H (10.9)

is the expansion of the in-going null direction

kµ = nµ −Nµ (10.10)

normal to S. The MOTS S is marginally trapped if θ− < 0. Since θ− = θ+−2H = −2H
for a MOTS, the trapping condition is equivalent to H > 0.

10.1.1 Stable and outermost MOTS

For a given slice Mτ and a MOTS S ⊂Mτ one can consider the normal graphs Su of a
function u ∈ C∞(S), i.e. the surface parameterized by

Fu : S→Mτ : p 7→ exp(uN i) (10.11)

where exp denotes the exponential map of Mτ . The operator Θ+ : C∞(S) → C∞(S)
that maps a function u to the pull-back of the value of θ+ on Su to S has linearization
given by

Lf = −∆f − 2sABSA∂Bf + f(1
2RS − SASA +DASA − 1

2χ
ABχAB −Gµν`µkν) (10.12)

with ∆ the surface Laplacian of S, Sµ = ∇µnνNν , RS denotes the scalar curvature of
S, χµν = ∇µ`ν , Gµν denotes the Einstein tensor of the space-time and capital letters
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refer to intrinsic coordinates xA for S. In particular sAB denotes the inverse of the
tangential projection of sµν to S.

Although L is not self-adjoint, there exists a real eigenvalue λ(S) ∈ σ(L), which is
the unique minimizer for the real part in the spectrum σ(L) of L. This eigenvalue is
simple, and the corresponding eigenfunction φ can be chosen with a definite sign. If
λ(S) ≥ 0 we say that S is stable, if λ(S) > 0 it is called strictly stable. We refer to
[303, 304] for further details.

For the following, we require the surfaces S in question to be either bounding,
S = ∂Ω, or bounding with respect to an interior boundary ∂M, that is S = ∂Ω\∂M. In
both cases, we write S = ∂+Ω or refer to S being an outer boundary in this situation.
In the scenario considered here, the inner boundary exists and is formed by trapped
surfaces enclosing the punctures.

A MOTS S = ∂+Ω is called outermost if for all other MOTS S′ = ∂+Ω′ with Ω′ ⊃ Ω
it follows that Ω′ = Ω. In other words, there are no MOTS on the outside of S.

In [306] it was shown that if Mτ contains bounding outer trapped surfaces, as is
the case if Mτ is asymptotically flat, then there exists an outermost MOTS Sout that
bounds the trapped region in Mτ . This means, that it is the enclosure of the region
that contains outer trapped surfaces. Note that Sout is not necessarily connected. All
components of Sout are stable, and Sout has area bounded uniformly from above by
a constant depending only on the geometry of the slice Mτ . Furthermore, it has the
property that there exists a positive δ > 0, again depending only on the geometry of
the slice Mτ , such that any geodesic starting on Sout in direction of its outward normal
N i does not intersect Sout within distance δ. In particular, two distinct components
of Sout have distance at least δ. The constants mentioned depend in particular on an
intrinsic curvature bound and on bounds for the second fundamental form ∇µnν and its
derivatives. For the details of these estimates and all the dependencies of the constants
we refer to [306]. Similar results have also been derived in [308, 309]. In the situation
considered here, Galloway [310] established that Sout is a union of topological spheres.
In [305] it has been furthermore established that the second fundamental form ∇iNj

of a stable MOTS S is bounded in the supremum norm, provided the geometry of the
slice is bounded.

10.1.2 The maximum principle for MOTS

A useful tool in the analysis of MOTS is the strong maximum principle. To state it,
assume that Sα for α = 1, 2 are two connected C2-surfaces with outer normals N i

α.
Assume further that there is a point p such that S1 and S2 touch at p. If the outer
normals agree, N i

1 = N i
2, at p and S2 lies to the outside of S1, that is in direction of

N i
1, and furthermore

sup
S1

θ+[S1] ≤ inf
S2

θ+[S2] (10.13)

then S1 = S2. This version can be found in [306, Proposition 2.4] or in [307]. It implies
in particular that two distinct MOTS S1 and S2 can not touch in such a way that their
normals point in the same direction and one is enclosing the other.
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The strong maximum principle provides an interpretation of strict stability. Assume
that S is a strictly stable MOTS with outward normal N i. Let φ be the principal
eigenfunction of L. Deforming S in direction of the vector field φN i then yields a
foliation of a tubular neighborhood U of S with the following properties. First U \ S =
U− ∪ U+ where N i points into U+. Moreover, U+ is foliated by surfaces with θ+ > 0
and U− is foliated by surfaces with θ+ < 0. The maximum principle then implies
that there are no surfaces S′ ⊂ U+ which bound relative to S and have θ+[S′] ≤ 0.
Furthermore, there is no MOTS in U with outward normal aligned with that of S.

10.1.3 Evolution of MOTS to MOTTs

Regarding the evolution of MOTS there are different approaches. In [303] it was shown
that a strictly stable MOTS S can locally be continued to a smooth space-time track
of MOTS, i.e. a marginally outer trapped tube (MOTT). More precisely, for a given τ̄
such that Mτ̄ contains a strictly stable MOTS Sτ̄ there exists ε > 0 such that for all
τ ∈ (τ̄ − ε, τ̄ + ε) there is a stable MOTS Sτ in Mτ such that the Sτ form a smooth
space-like manifold. To emphasize the role of the stability operator in this picture, we
recall the argument from [303]. Assume that Sτ is a smooth family of MOTS passing
through Sτ̄ . Then we can parameterize this tube by a map

Fµ : (τ̄ − ε, τ̄ + ε)× Sτ̄ →
⋃

τ∈(τ̄−ε,τ̄+ε)

Mτ (10.14)

such that ∂Fµ

∂τ = V µ, where V µ is perpendicular to Sτ at each point along the tube.
Note that V µ can be decomposed

V µ = αnµ + γNµ = α(nµ +Nµ) + (γ − α)Nµ = α`µ + fNµ (10.15)

where as before α denotes the lapse function of the slicing. Calculating the change of
θ+ under the deformation by V µ at time τ̄ , we thus obtain

δV µθ+[Sτ̄ ] = δα`µθ+[Sτ̄ ] + δfNµθ+[Sτ̄ ] = −αW + Lf (10.16)

where the first contribution is calculated via the Raychaudhuri equation with

W = χABχAB +Gµν`
µ`ν , (10.17)

and the second part is just the definition of the stability operator. Since V µ is tangent
to a MOTT we have δV µθ+[Sτ̄ ] = 0 and thus

Lf = αW. (10.18)

The operator L and the function W are given by the geometry of Sτ̄ and the space-
time geometry of Mτ̄ , whereas f is a function determined by equation (10.16). If Sτ̄ is
strictly stable then L is invertible. Thus the previous calculation can be turned around
to conclude the existence of the desired MOTT. The causal structure of the tube follows
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by the observation that the null energy condition implies W ≥ 0. From stability one
then obtains f ≥ 0 via equation (10.18) as in [303, Lemma 3].

A similar argument was used in [302] to construct a MOTT through Sτ̄ in the case
it is stable but not strictly stable assuming W ≥ 0 and W 6≡ 0. A different approach is
to take the outermost MOTS Sout

τ of all slices Mτ and define the apparent horizon of
the slicing as H =

⋃
τ S

out
τ . In generic space-times H is smooth up to a discrete set of

outward jumps. See [302] for the details and the particular notion of generecity used
therein. The same reference also provides the causal character of H, namely that H is
achronal. Moreover, if Ωτ denotes the interior of Sout

τ , then J+(Ωτ ) ∩Mσ ⊂ Ωσ for all
τ < σ. Here J+(Ωτ ) denotes the causal future of Ωτ . In particular, if there is a MOTS
at an initial time τ̄ , then it will persist for all times.

10.1.4 Approaching MOTS

Assume that the space-time and the slicing are completely regular. Then the constant
δ, the bound for the area, and the length of the second fundamental form of Sout remains
uniformly controlled. If in this situation two components of a MOTS are closer than δ,
none of these two components can be part of Sout. In particular, the evolution of Sout

will be discontinuous at some stage of the evolution. By the causality of H, the jump is
outward, and a new outermost MOTS has formed outside the tubes of the two original
ones. Generically, after the jump time the jump target will split into two branches of
MOTTs, a stable branch traveling outward and an unstable branch traveling inward.
For a complete discussion of this jump in the outermost MOTS, we refer to [302]. An
important fact to point out is that if two MOTS are close to each other then there is
no reason to expect that they be stable, in contrast to the stability of Sout.

Note that it is not known whether the area is of Sout is monotonic across the jumps.
For jumps of MOTS other than Sout, it is not even clear whether monotonicity of area
should be expected along smooth pieces.

10.1.5 Exterior osculation of MOTS

The following considerations pertain to the collision between the MOTS of a large and
small black hole as they first touch. Note that this situation is not prevented by the
strong maximum principle. However, at the time of first contact, a common horizon
already has formed according to the previous section 10.4.

In (10.6), the contribution to θ+ from P is common to both MOTS, so that at a
common point of osculation we must have

H(small) = H(large). (10.19)

Here the two mean curvatures are defined with respect to the respective outer normals,
which in this case have opposite orientations. Thus the two MOTS do not share the
same outgoing null direction `. As a result of (10.19), the mean extrinsic curvature
radius of the large and small MOTSs must match at the point of osculation. This can
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be deceiving in terms of a coordinate picture of the MOTS since the connection of the
Cauchy slice enters into the mean curvature. We have

H = sij∂iNj − sijΓkijNk. (10.20)

At the point of osculation Ni(small) = −Ni(large) so that the second term has the same
magnitude but opposite sign for the small and large MOTS. Hence (10.19) implies

sij∂iNj(small) = sij∂iNj(large) − 2sijΓkijNk(large) (10.21)

or
D
−1/2
(small)s

ij∂i∂js(small) = D
−1/2
(large)s

ij∂i∂js(large) − 2sijΓkijNk(large). (10.22)

This relates the coordinate curvatures ∂i∂js of the functions describing the MOTS,
as provided graphically by the code output. More geometrically meaningful output
are plots of H during the evolution of the large and small MOTS, plots of the time
dependence of their surface area, at a sequence of times elapsed during the evolution.
An important property is whether H > 0 so that the MOTS are trapped.

In Thornburgh’s apparent horizon finder [300, 301], s = r − h(yA), where r is a
standard radial coordinate measuring Euclidean distance from some point xi0 and yA

are spherical coordinates arising from a six-patch treatment of the unit sphere. Then

∂is =
xi

r
− ∂ih. (10.23)

In the axisymmetric case corresponding to the head-on collision of black holes, we
must have ∂ih = 0 on the symmetry axis and therefore also at the points where an
osculation can occur. Thus, at an an osculation point, we have ∂is = (xi − xi0)r−1 and
D = hij(x

i − xi0)(xj − xj0)r−2 = hzz, where we align the symmetry about the z-axis.
Thus Dsmall = Dlarge at the point of osculation and (10.22) reduces to

sij∂i∂js(small) = sij∂i∂js(large) − 2sijΓkij∂ks(large), (10.24)

where ∂ks(large) = −∂ks(small).

10.1.6 Interior Osculation

If the MOTS of the small black hole were to remain intact and continue to completely
penetrate the large one then there would again be a point of osculation between them
just as the small one completely passes inside. At this second contact point p, the
two outer null directions have the same orientation. Thus θ+(p) = 0 for the common
outgoing null direction `(p). The strong maximum principle implies in the present case
that the two MOTS coincide globally. Thus the mean curvatures of the large and small
MOTS must adjust dramatically to match each other unless full con-penetration is
prevented by a singularity or some other feature.

According to section 10.1.2, it is impossible in this case that either of the two
osculating MOTS is strictly stable up to the time of coincidence. In fact, the normal
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separation of one MOTS above the other, yields after linearization at the time where
they coincide a function in the kernel of the stability operator. If the approach is fast
enough, this function is non-zero and changes sign. This implies instability of the two
individual MOTS shortly before and at the time of coincidence.

If the two individual inner MOTS do coalesce to a single one, this raises the pos-
sibility of a scenario in which the two MOTTs traced out by the individual MOTS
merge and then connect via the unstable branch of the forming common horizon to the
MOTT traced out by the apparent horizon, as described in section 10.4 and depicted
in figure 10.1. Although this figure looks highly suggestive, there is no reason to be-
lieve that it is actually valid. What currently is known is that there always exists an
outermost MOTS, that it can jump, and that at the time of the jump there are two
branches emanating from the jump target. The current state of the analytic theory is
not such that it is able to determine how long the unstable MOTS continue to exist.
See [302] for a related discussion.

Figure 10.1: A possible scenario for the evolution of the trapped tubes. The outermost
MOTS are drawn in bold. The common outermost MOTS develops before the first time
of contact. After the separate MOTTs penetrate, the diagram illustrates the speculative
scenario that they merge and join with the unstable branch from the jump. This speculative
part of the figure is indicated by the dashed part .

10.2 Simulation results

We present the results of the simulation of the head-on collision of two black holes with
initial masses M and M/4. Besides outputting the coordinate shapes of the MOTS
detected by the horizon finder, in order to analyze their intrinsic geometrical structure
we also output the time dependence of their total area, surface plots of their mean
curvature H and surface plots of the determinant Q of the intrinsic 2-metric qab of the
MOTT which they trace out. As the theory implies that a stable MOTS traces out a
space-like 3-surface, this requires that Q > 0 uniformly on the surface, i.e. the MOTT
must have positive signature. Thus Q provides a useful numerical tool for monitoring
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when a MOTS has become unstable [292].

10.3 Initial configuration of the MOTS

We use the same time symmetric Brill-Lindquist data to initiate an axisymmetric head-
on-collision as in [292] with the exception that the black holes now have the unequal
masses M and M/4. The conformal flatness of the initial 3-metric provides a natu-
ral choice of Euclidean coordinates (x, y, z). We choose the z-axis to be the axis of
symmetry. The punctures corresponding to the two black holes are initially located at
z1 = 0.8M and z2 = −0.2M , with a displacement of a half grid-step off the axis of
symmetry in order to avoid numerical problems. This configuration reduces the initial
tidal distortion of the black holes.

As the initial data sets are time-symmetric, the MOTS condition reduces to H = 0,
i.e. from (10.20)

sij∂i∂js = sijΓkij∂ks. (10.25)

Then for a sequence of initial data for which the two black holes approach each
other, (10.22) implies

sij∂i∂js(small) → −sij∂i∂js(large) (10.26)

at the point of closest approach. Thus if one MOTS appears convex at the point of
closest approach then the other must appear concave with the exact same magnitude
of curvature.

Another feature of the sequence of time symmetric data sets is that the MOTS
do not touch as their initial separation is made smaller. This is also a consequence
of the uniqueness theorem for MOTS. In the time symmetric case both MOTS satisfy
θ+ = θ− = 0. If they were to touch, at the common point the outer null normal to one
MOTS would be the same as the inner null normal to the other. But since both null
directions have vanishing expansion, this would violate the uniqueness theorem. Note
that in the time symmetric case, a MOTS is also a minimal surface so that this result
also follows from the uniqueness theorem for minimal surfaces. For a more detailed
study of a sequence of initial data sets we refer the interested reader to [240].

10.4 Approaching MOTS

As the individual MOTS approach, a common outer horizon (apparent horizon) forms
before they touch at t = 0.384M , in accord with the theory described in section 10.4.
Figure 10.2 shows the MOTS before and just after the appearance of the common
horizon at time t = 0.384M and T = 1.452M .

Surface plots, on the 6-patch system of the horizon finder, of the mean curvature H
of the individual MOTS at times 0.384M and 1.452M are shown in figure 10.3. Initially,
these mean curvatures are zero, as a result of the time symmetry. At t = 0.384M , they
are fairly uniform on the scale shown (if we were to choose a refined scale we would
see that indeed already at this stage small anisotropies are present) and have roughly
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the 4 to 1 ratio of the initial masses. At t = 1.452M , the larger MOTS has significant
tidal distortion due to the the smaller one.

Figure 10.2: Coordinate shapes of both individual apparent horizons at times t = 0.384M
(left) and t = 1.452M (right).

Figure 10.3: Mean curvature H of both individual apparent horizons at times t = 0.384M
(left) and t = 1.452M (right) shown as a function of the ’laid-out’ angular coordinates ρ
and σ of the horizon finder.

Figure 10.4 provides surface plots of the determinant Q at times 0.384M and
1.452M , for the two individual MOTS and the unstable inner branch of the common
outer MOTS.

10.5 Exterior osculation of MOTS

At t = 1.974M the front-sides of the approaching MOTS touch, as portrayed by their
coordinate representations shown in figure 10.5. At this time, figure 10.6 shows surface
plots of the mean curvatures of the individual MOTS. Now the tidal distortion has
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Figure 10.4: Determinant Q of both individual apparent horizons at times t = 0.384M
(left) and t = 1.452M (right) shown as a function of Θ.

increased so that their mean curvatures are equal at their common point, as required
by (10.19).

Figure 10.5: Default (left) and zoomed-in view (right) of the coordinate shapes of both
individual apparent horizons at time t = 1.974M .

Figure 10.7 shows the determinant Q of the intrinsic two-metric induced on the
horizon.

10.6 Con-penetration in the MOTS

As the MOTS continue to approach we continue to monitor the shapes of the two indi-
vidual apparent horizons. Figure 10.8 shows the coordinate shapes of both individual
MOTS as they start to overlap. The left panel of figure 10.8 shows the two individual
MOTS at t = 2.179M . We clearly see a region of overlap and we observe the coor-
dinate shape of the larger MOTS being affected by the smaller one penetrating. The
right panel of figure 10.8 illustrates the coordinate shapes at a later time t = 2.538M .
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Figure 10.6: Mean curvature H shown as a function of the ’laid-out’ angular coordinates
ρ and σ of the horizon finder of both individual apparent horizons at time t = 1.97384M .
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Figure 10.7: Determinant Q shown as a function of Θ for both individual apparent
horizons at time t = 1.97384M .

At this time the smaller MOTS has entered half-way into the larger MOTS and the
puncture of the smaller MOTS might interfere with the shape of the 2-surface of the
larger MOTS. As our simulation progresses further we loose the larger MOTS. If this
is due to the horizon finder breaking down for numerical reasons or simply the MOTS
ceases to exist is only a matter of speculation. In addition to the coordinate shapes
figure 10.9 shows surface-plots of the mean-curvature of both individual MOTS at the
same times t = 2.179M and t = 2.538M . In the left panel of figure 10.9 we see the
mean curvature at the front end of the larger MOTS continuing to grow and actually
obtain larger values then the mean curvature of the smaller MOTS. In the right panel
of figure 10.9 we see the evolution of the mean curvature in the region located towards
the smaller MOTS decrease in its value and show an oscillatory behavior. Again this
easily could be attributed to the smaller MOTS puncture interfering with the results
obtained on the larger MOTS’ 2-surface. To highlight the effect the tidal-distortion
on the larger MOTS caused by the smaller MOTS figure 10.11 now shows the mean
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Figure 10.8: Zoomed-in view of the coordinate shapes of both individual apparent hori-
zons at times t = 2.179M (left) and t = 2.538M (right).

Figure 10.9: Mean curvature H shown as a function of the ’laid-out angular coordinates
ρ and σ of the horizon finder of both individual apparent horizons at times t = 2.1785M
(left) and t = 2.538M (right).

curvature only evaluated at the front-end points of both individual MOTS (front-end
here being the closest point being located towards the other MOTS) as they approach
each other. This provides a time-series of the interaction of the MOTS at the points
where they first touch. While we see the mean curvature at the front-end of the smaller
MOTS grow initially, it starts to settle down to a constant value as the solution adapts
to the chosen gauge. In contrast to that the time evolution of the mean curvature at
the front-end point of the larger MOTS shows a steep increase as the smaller MOTS
approaches. At time t = 2.179M , and as already presented in figure 10.5, we see the
values of both mean curvatures agree as expected from (10.19). After that the two
MOTS begin to overlap, and the mean curvature at the front end point of the larger
MOTS continues to grow before it suddenly shows a jump and drops to a much smaller
value. This jump is not a result of our chosen spatial or time resolution (i.e. the time-
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Figure 10.10: Determinant Q shown as a function of Θ for both individual apparent
horizons at time t = 2.1785M .
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Figure 10.11: Mean curvature of the front end points of both apparent horizons Hfront

shown as a function of time.

step chosen in our simulations) as we can reproduce it by at different resolutions. It
can be attributed to our chosen time-slicing intersecting with two MOTS and as the
jump appears the horizon finder jumps from one surface to the other. This jump is also
visible in figure 10.12, which shows the time evolution of the area A of both individual
MOTS. Again, while we only see a minimal growth in the area of the smaller MOTS
which is caused by numerical error, the larger MOTS shows a discontinuous jump in
the area evolution.
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11

EM counterparts of binary
black-hole mergers

In this chapter we present results from performing simulations of binary black-hole
mergers immersed in a uniform magnetic field. Part of binary black-hole systems are
expected to be formed as the consequence of galaxy mergers, where both galaxies
are the host of supermassive black holes at their center. As those galaxies merge an
accretion disc is formed for both black holes when still far apart. As the black holes
get closer and closer in their separation eventually the time-scale of the gravitational
wave energy loss will become shorter than the viscous time-scale. At this point most
of the remnant gas will be ejected from the vicinity of the two black holes and a
circumbinary disc will be formed [311, 312, 313]. In the final stage of coalescence the
binary black-hole system will now be immersed in a low-density gas or plasma, and
since most of the circumbinary discs are believed to be magnetized, a magnetic field
anchored at the circumbinary disc at a radius of 100M − 1000M will also be present
in the region containing the black-hole binary. Since the gas or plasma can now also
radiate electromagnetically these systems form an ideal candidate for a detection of an
EM counterpart signal accompanying the gravitational waves emitted. Detecting such
an EM counterpart will benefit greatly the characterization of the source in both its
parameters and sky localization and additionally provides an excellent verification for
the detected gravitational wave signal.

As a first step towards a systematic modeling of the electromagnetic (EM) emission
from an inspiraling and merging black hole binary we present results from a simple
scenario in which the binary moves in a uniform magnetic field assumed to be anchored
to a distant circumbinary disc. We study this system by solving the Einstein-Maxwell
equations as detailed in chapter 5 in which the EM fields are chosen with strengths
consistent with the values expected astrophysically and treated as test-fields. We study
these systems in various approximations, first when the system is in an EV, i.e. no
sources are present and only EM fields exits in our space-time. After presenting a
number of tests performed for single black holes to assess the accuracy and validity
of our simulations, we perform a set of spin-aligned or anti-aligned equal-mass binary
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black-hole simulations and show that in this scenario the EM radiation in the lowest
` = 2,m = 2 i multipole accurately reflects the gravitational one, with identical phase
evolutions and amplitudes that differ only by a scaling factor. We also compute the
efficiency of the energy emission in EM waves and find that it scales quadratically with
the total spin and is given by Erad

EM
/M ' 10−15

(
M/108 M�

)2 (
B/104 G

)2
, hence 13

orders of magnitude smaller than the gravitational energy for realistic magnetic fields.
Although, unlikely to be detected directly and simultaneously with the gravitational-
wave one, we propose the possibility that this radiation can be detected through indirect
processes, driven by changes in the EM fields. If the accretion rate of the circumbinary
disc is small and sufficiently stable over the timescale of the final inspiral, then the EM
emission may be observable indirectly as it will alter the accretion rate through the
magnetic torques exerted by the distorted magnetic field lines. In a second step we
perform simulations in the force-approximation, i.e. the black holes are now immersed
in a tenous plasma and we allow for electric currents to be present additionally to the
EM fields itself (see section 11.4 for details). As the binary evolves it now not only
interacts with the EM fields but also with the plasma, accelerating particles. Palenzuela
and collaborators showed that a dual-jet structure will be formed in addition to an
non-collimated emission [149, 314]. However it is not straight- forward in the modeling
of these systems to determine genuine EM radiation because of the presence of the
background magnetic field. We have therefor in detail investigated different measure
for the EM luminosity. It is of great importance to use a proper measure to accurately
determine the chances of observing the emission in both the jets and the non-collimated
emission with realistic telescopes. We present a detailed assessment of the chances of
detecting an EM counterpart from a binary black-hole system and accurately depict the
structure of the emission in EM waves and the effect on the plasma in the vicinity of the
black holes. In addition we present results on the treatment of the force-free equations.
We compare different methods to enforce the system to stay in the force-free regime and
show that by using a suitable Ohm’s law prescription in combination with a suitable
treatment of regions where current sheets can form (see chapter 4) we achieve lower
violations of the force-free constraints and therefor more accurate simulations. The
presentation in this chapter follows closely the work in [2, 3].

11.1 Physical and Astrophysical Setup

The astrophysical scenario we have in mind is motivated by the merger of supermas-
sive black holes binaries resulting from galaxy mergers. More specifically, we consider
the astrophysical conditions that would follow the merger of two supermassive black
holes, each of which is surrounded by an accretion disc. As the merger between the
two galaxies takes place and the black holes become close, a “circumbinary” accretion
forms and reaches a stationary accretion phase. During this phase, the binary evolves
on the timescale of the emission of gravitational radiation and its separation progres-
sively decreases as gravitational waves carry away energy and angular momentum from
the system. This radiation-reaction timescale is much longer than the (disc) accretion
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timescale, which is regulated by the ability of the disc to transport outwards its an-
gular momentum (either via viscous shear or magnetically-mediated instabilities). As
a consequence, for most of the evolution the disc slowly follows the binary as its orbit
shrinks. However, as the binary separation becomes of the order of ∼ 105− 106M , the
radiation-reaction timescale reduces considerably and can become smaller than the disc
accretion one. When this happens, the disc becomes disconnected from the binary, the
mass accretion rate reduces substantially and the binary performs its final orbits in an
“interior” region which is essentially devoid of gas [311, 312, 313]. This represents the
astrophysical setup we place our simulations into.

We introduce a coupling between the binary and the disc via a large-scale magnetic
field which we assume to be anchored to the disc, whose inner edge is assumed to be
at a distance of ∼ 103M and is effectively outside of our computational domain, while
the binary separation is only of ∼ 10M , where M is the total gravitational mass of the
binary. We note that although the large-scale magnetic field is poloidal, it will appear as
essentially uniform within the “interior region” where the binary evolves and which we
model here. As a result, the initially magnetic field adopted has Cartesian components
given simply by Bi = (0, 0, B0) with B0M = 10−4 in geometric units or B0 ∼ 108

G for a binary with total mass M = 108M�. We note that although astrophysically
large, the initial magnetic field considered here has an associated EM energy which is
several orders of magnitude smaller than the gravitational-field energy. As a result,
any effect from the EM field dynamics on the space-time itself will be negligible and so
the EM fields are treated here as test-fields. The case of stronger magnetic fields and
their consequent impact on the space-time is an interesting aspect on its own but has
not been investigated in this thesis.

11.2 Isolated Black Holes in EV

We first study isolated black holes, both as a check of our implementation and to
analyze the interaction of the chosen external initial magnetic field with the space-time
curvature generated by the black holes. The initial magnetic field in all simulations is
uniform with strength B0 and aligned with the z-axis, while the initial electric field is
zero everywhere. Although this solution satisfies the Maxwell equations trivially, it is
not a stationary solution of the coupled Einstein-Maxwell system for the chosen black
hole initial data. The solution thus exhibits a transient behavior and evolves towards
a time-independent state given by a solution first found by Wald [315]. One important
feature of Wald’s solution is that in the case of spinning black holes, a net charge (and
hence a net electric field) will develop as a result of “selective accretion” and whose
asymptotic value is simply given by Q = 2B0J . Although this charge is astrophysically
uninteresting, being limited to be Q/M ≤ 2B0M ' 1.7× 10−20B0(M/M�) G [315] for
a Kerr black hole with J/M2 ≤ 1, it i represents an excellent testbed for our numerical
setup.

To validate the ability of the code to recover this analytic solution we have per-
formed several tests involving either a Schwarzschild black hole or Kerr black holes
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Figure 11.1: Recovery of Wald’s solution for an isolated Kerr black hole with dimension-
less spin a = 0.7. Shown in the top panel are the values of the electric field as measured
at different distances from the origin; since Er2 ∼ B0J , the different lines should overlap
at late times if the magnetic field is uniform which is evident in the figure. Shown in the
bottom panel is the ratio of the electric and magnetic fields which is proportional to the
black hole spin only. Note the transitory state until t ≈ 70M , when the solution reaches a
stationary state.

with dimensionless spin parameters a = J/M2 = 0.7 (this value chosen as it is close
to the final spin values resulting from the merger simulations covered in section 11.2).
In this latter case, the spin vector was chosen to be either parallel to the background
magnetic field, i.e., with J i = (0, 0, J) or orthogonal to it, i.e., with J i = (J, 0, 0).
As expected, the early stages in the evolution reveal a transient behavior as the EM
fields rearrange themselves and adapt to the curved space-time reaching a stationary
configuration after about ∼ 70M . The electric field, in particular, goes from being
initially zero to being nonzero and decaying radially from the black hole.

Although the original solution found by Wald was expressed in Boyer-Lindquist
coordinates, there is a simple way to validate that our gauge is sufficiently similar (at
least at far distances) and that the numerical solution approaches Wald’s one for an
isolated black hole in a uniform magnetic field. This is shown in figure 11.1, which
reports the time evolution of the EM fields E and B for a simulation of the Kerr black
hole with spin a = 0.7M aligned with the magnetic field. In particular, the top panel
shows the time evolution of the electric field when the latter is rescaled by the radial
positions where it is measured, i.e., Er2 with r = 4M, 8M, 16M and 24M . Because of
E ∝ BoJ/r2, one expects the different lines to be on top of each other. This is clearly
the case for the data extracted at r = 16M and 24M , but it ceases to be true for the
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Figure 11.2: Left panel: Magnetic (blue) and electric field (red/magenta) field lines at
t = 200M for a Schwarzschild black hole. Central panel: the same as in the left panel
but for a Kerr black hole with spin a = J/M2 = 0.7 aligned with the magnetic field,
i.e., J i = {0, 0, J}. Right panel: the same as in the center panel but for a Kerr black hole
with spin a = J/M2 = 0.7 which is orthogonal to the magnetic field, i.e., J i = {J, 0, 0}.
Indicated with black surfaces are the apparent horizons.

data at r = 4M, 8M , for which the magnetic field and gauge structure are strongly
influenced by the black-hole geometry. Interestingly, however, in this strong-field region
near the black hole another scaling can be found and which is closely related to one
expressed by Wald’s solution. In particular, the radial dependence of the magnetic field
can be factored out by considering the ratio of the electric and magnetic field which,
in Wald’s solution, should be proportional to the black-hole spin only. The bottom
panel of figure 11.1 shows therefore the evolution of (E/B)r2 ∼ J which is indeed a
constant at all the radial positions as shown by the good overlap among the different
curves. We find that this scaling can be used as an effective test which is valid at all
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radial positions. These observations, together with the clear approach to a stationary
configuration indicate the asymptotic (in time) behavior is indeed described by Wald’s
solution.

Figure 11.3: Left panel: Large-scale magnetic and electric field lines on the plane y = 0
and at t = 200M for a Kerr black hole with spin J/M2 = 0.7 aligned with the magnetic
field, i.e., along the z-axis. Indicated with blue circles are the apparent horizons. Right
panel: The same as on the left panel but on a smaller scale to highlight the fields structure
in the vicinity of the black hole.

Figure 11.4: Left panel: Large-scale magnetic and electric field lines on the plane y = 0
and at t = 200M for a Kerr black hole with spin J/M2 = 0.7 orthogonal to the magnetic
field, i.e., along the x-axis. Indicated with blue circles are the apparent horizons. Right
panel: The same as on the left panel but on a smaller scale to highlight the fields structure
in the vicinity of the black hole.

In order to obtain a more intuitive picture of the different solutions for isolated black
holes, we now turn our attention to the structure of the electric and magnetic fields
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themselves. While those field lines are gauge-dependent, they can be used to determine
the effect of the spin orientation of the black holes on the solution. Figure 11.2 shows
therefore the three-dimensional (3D) EM field configurations at late simulation times
when the solution has settled to a stationary state for either a Schwarzschild black
hole (left panel), or for Kerr black holes with spin aligned (central panel) or orthogonal
to the magnetic field (right panel). Note that in all of the panels, the magnetic field
lines are bent by the black hole geometry. The appearance of toroidal electric field in
the case of a non-spinning black hole does not contradict Wald’s solution, for which
it should be identically zero. It is due to the non-vanishing radial shift vector which,
when coupled with the vertical magnetic field, leads to a toroidal magnetic field [316].
Finally, note that whenever the black hole is rotating, together with the gauge-induced
toroidal electric field, there appears also a poloidal component which is induced by the
gravitomagnetism (or frame-dragging) of the rotating black hole and whose detailed
geometry depends on the relative orientation of the spin with respect to the background
magnetic field. For compactness we do not report here the EM field configuration for
a rotating black hole with spin anti-aligned with respect to the magnetic field. It is
sufficient to remark that the solution shows the same behavior as the aligned case, with
a simple reversal in the direction of the spin-induced effects.

Figure 11.5: Electric field lines on the plane y = 0 for the r0, s0 and s6 configurations
at t = 123, 155 and 246M , respectively. Left panel: Large-scale structure of the EM fields
around the apparent horizons (blue circles). Right panel: The same as on the left but on
a smaller scale to highlight the field structure in the vicinity of the black holes. Note that
an additional magnification is applied to the black hole “on the right” so as to highlight
the change of sign in the electric field near the horizon, i.e., at x ' 3M .

To gain some insight on the influence of the black hole spin and orientation on the
EM field lines, it is useful to exploit the phenomenological description offered by the
“membrane paradigm” [267]. In such approach, the horizon of a rotating black hole is
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seen as a one-way membrane with a net a surface charge distribution which, for the
case of aligned spin and magnetic field, has negative values around the poles while
positive ones around the equator. The resulting behavior is therefore the one shown
in figure 11.3, where the magnetic and electric field lines for the Kerr black hole with
spin aligned with the magnetic field are presented on the y = 0-plane. The left panel,
in particular, offers a large-scale view of the EM fields, which is however magnified
on the right panels to highlight the behavior of the fields near the apparent horizons.
Finally, shown in figure 11.4 are the magnetic and electric-field lines on the y = 0-plane
for the Kerr black hole with spin orthogonal to the the magnetic field, i.e., along the
x-axis. Note that while the differences in the magnetic field configurations in figure 11.3
and 11.4 are small and difficult to observe even in the zoomed-in version of the figures,
the differences in the electric fields are instead significant and related to the different
spin orientations.

11.3 Binary black-hole merger simulations in EV

We next extend the considerations made in the previous section to a series of black-hole
binaries having equal masses and spins that are either aligned or anti-aligned with the
orbital angular momentum.

11.3.1 Initial Data and Grid Setup

We construct consistent black-hole initial data via the “puncture” method (see chapter 3
for details) as described in [124]. We consider equal mass binaries with four different
spin configurations belonging to the sequences labeled as “r” and “s” along straight
lines in the (a1, a2) parameter space, also referred to as the “spin diagram” [317, 318].
These configurations allow us to cover the basic combinations for the alignment of the
spin of the individuals black holes with respect to the magnetic field, while keeping
the dimensionless spin parameter of the single black holes constant among the different
binaries considered. Furthermore, it allows us to study the impact that the final black
hole spin has on the late stages of the merger.

To obtain the orbital parameters of the black holes initially we perform PN evolu-
tions following the scheme outlined in [125] and as described in detail in in section 3.5.4,
which provides a straightforward prescription for initial-data parameters with small ini-
tial eccentricity, and which can be interpreted as part of the process of matching our
numerical calculations to the inspiral described by the PN approximations. The free
parameters of the puncture initial data we fix are: the puncture coordinate locations
Ci, the puncture bare mass parameters mi, the linear momenta pi, and the individual
spins Si. The initial parameters for all of the binaries considered are collected in Ta-
ble 11.1. The initial separations are fixed at D = 8M with the exception of the s−6

binary having an initial separation of D = 10M . Here M is the total initial black hole
mass, chosen as M = 1 (note that the initial ADM mass of the space-time is not exactly
1 due to the binding energy of the black holes), while the individual asymptotic initial
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Table 11.1: Binary sequences for which numerical simulations have been carried out, with
various columns referring to the puncture initial location ±x/M , the mass parameters
mi/M , the dimensionless spins ai, the initial momenta and the normalized ADM mass

M̃ADM ≡ MADM/M measured at infinity. (See . [317, 318] for a discussion of the naming
convention).

±x/M m1/M m2/M a1 a2 (px, py)1 = −(px, py)2 M̃ADM

s−6 5.0000 0.4000 0.4000 −0.600 −0.600 (0.001191,−0.100205) 0.9873
r0 4.0000 0.4000 0.4000 −0.600 0.600 (0.001860,−0.107537) 0.9865
s0 4.0000 0.4824 0.4824 0.000 0.000 (0.002088,−0.112349) 0.9877
s6 4.0000 0.4000 0.4000 0.600 0.600 (0.001860,−0.107537) 0.9876

black hole masses are therefore Mi = 1/2. In addition, we choose the initial parameters
for the EM fields to be Bi = (0, 0, B0) with B0 ∼ 10−4/M ∼ 108(108M�/M) G and
Ei = 0. The setup for the numerical grids used in the simulations consists of 9 levels
of mesh refinement with a fine-grid resolution of ∆x/M = 0.02 together with fourth-
order finite differencing. The wave-zone grid has a resolution of ∆x/M = 0.128 and
extends from r = 24M to r = 180M , in which our wave extraction is carried out. The
outer (coarsest) grid extends to a spatial position which is 819.2M in each coordinate
direction.

Figure 11.6: Electric (red/magenta) and magnetic field lines (gray) in 3D for the s6

binary during inspiral when both black holes are still far separated at time t = 328M (left
panel), and after the merger at t = 690M (right panel).

11.3.2 Binary Evolution and Spin Dependence

As mentioned in the previous subsection, we consider configurations where both black
holes have equal mass and the individual black hole spins are either aligned or anti-
aligned with the magnetic field (and orbital angular momentum). We thus consider a
set of three different spinning binaries, as well as a non-spinning binary, which we take
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Figure 11.7: Left panel: gravitational waves as computed from the (2, 2) mode of Ψ4 for
the different binaries reported in Table 11.1. Right panel: The same as in the left panel
but for the EM waveform as computed from Φ2.

as a reference (cf. Table 11.1).

One feature of our simulations, that was already analyzed for single black holes in
section 11.2, and is of even greater interest for binaries, is the structure of the EM field
lines induced by the space-time dynamics around the black holes. The field line config-
urations, in fact, change considerably throughout the course of our simulations. When
there is a large separation between the orbiting black holes, the electric field structure
in both non-spinning and spinning binary systems is dominated by the orbital motion
of the individual black holes. In particular, an inspection of the electric field vector
along a line joining their centers indicates an outward radial dependence. This can
be understood from the phenomenological interpretation suggested by the membrane
paradigm and has been observed already in [316]. Namely, as the black holes move in a
direction which is essentially orthogonal to the magnetic field, an effective quadrupolar
charge separation develops on the horizons with effective positive charges at the poles
and negative ones on the equator, thus inducing an electric field emanating from each
black hole. This induced quadrupolar electric field is therefore reminiscent of the one
produced by a conductor moving through a uniform magnetic field as the result of the
Hall effect.

It is interesting to note that while the differences in the magnetic field lines among
the various binaries considered are rather small, the differences in the electric fields show
significant variation across the spin configurations. This is illustrated in figure 11.5,
which shows the electric field lines at different scales of interest with respect to the
black holes for two spinning binary black hole systems and the non-spinning binary on
the y = 0-plane. Here we choose to concentrate on the configurations with the spins
up/up (i.e., s6) and with the spin up/down (i.e., r0) since the configuration with the
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Figure 11.8: Amplitude and phase evolution of the main ` = m = 2 modes for the Weyl
scalar Φ2 and the first time integral of Ψ4 (i.e., Ψ̃4), relative to the s6 configuration. The
plots show the data in retarded time t− r for a detector located at r = 100M . While the
` = m = 2 modes show the same amplitude (up to a scale factor) and phase evolution, this
does not apply to modes with higher `. For the ` = 3,m = 2 and ` = 4,m = 2 modes,
the phase evolution is still identical but the amplitude no longer does not differ only by a
constant scale factor.

spins down/down (i.e., s−6) shows the same field-line structure as the up/up case. In
particular, the left panel of figure 11.5 reports the field-line structure on a scale which is
much larger than that of the horizons and that clearly shows the quadrupolar nature of
the field. At the same time, the right panel offers a magnified view of the same binaries
on scales which is comparable with those of the horizons. In this way it is possible to
find the properties of the electric field already discussed in sect 11.2 for isolated black
holes also in case of binary black holes. Additionally the various spin configurations
lead to different small-scale properties of the field. More specifically, while the field
lines of the r0 and s0 configurations have a similar structure even in the magnified
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Figure 11.9: Im(Φ2) and Im(Ψ4) shown as an iso-surface volume rendering for the s6-
binary at two different snapshots in time. The top panel shows the binary during the early
inspiral at t = 160.8M while the bottom panel shows the time t = 460.8M , shortly after
merger.

plot, the binary with the aligned spins s6 shows a more complex structure in which
the electric field changes sign near but outside the horizon, namely at x ' 3M and
which corresponds approximately to a distance d ∼ 2rAH , with rAH the mean radius
of the apparent horizon. This additional property of the electric field could be related
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to the location of the ergosphere (which has not been computed in these simulations)
and may be seen as a response of the electric field to the additional charge separation
induced on the black hole horizon and which leads to a greater distortion and twisting
of the field lines in this region.

Although it is not trivial to disentangle how much of this behavior of the electric
field depends on the gauges used, the complex structure of the electric fields, and which
varies considerably through the late inspiral and the merger of the binary, may lead
to interesting dynamics and to the extraction of energy via acceleration of particles
along open magnetic field lines or via magnetic reconnection. To better illustrate the
complex field structure, figure 11.6 offers 3D views of both the electric and magnetic
fields for the s6 binary. In particular, in the left panel of figure 11.6 we show the
electric and magnetic field lines as well as the apparent horizons when the binary is
inspiraling (i.e., at t = 328M) and again observe the superposition of two effects: the
overall orbital motion of the black holes causing the large scale structure of the electric
field lines (highlighted in a magenta color); and the effect of the black hole spin (in
red), which causes additional dragging in the electric field lines close to the apparent
horizons. In the right panel, on the other hand, we present the late-time (i.e., at
t = 690M) state of the solution which, as expected, agrees well with the field line
configurations presented for the Kerr black hole with spin aligned with the magnetic
field in section 11.2.

Figure 11.10: The total energy flux per unit solid angle in terms of gravitational wave
waves (left panel) and of EM waves (right panel); clearly they differ only up to a scaling
factor. The different lines refer to the different binaries reported in Table 11.1.

We next switch our attention to discussing how the different black-hole spin con-
figurations affect the emission of EM radiation. This requires a careful analysis of the
radiative properties of the solution in both the EM and gravitational channels. Fig-
ure 11.9 provides a qualitative picture of the emission in the two channels. It shows
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3D volume renderings of the imaginary parts of both Ψ4 and Φ2 at two different times
during the inspiral and after merger. The similarity of the two signals in their 3D struc-
ture is obvious. To quantify our analysis we first focus on the two types of waveforms
and figure 11.7 illustrates the correlation between the two emissions by showing the
time-retarded waveform of the principal mode, i.e., the ` = m = 2 of the spin-weighted
spherical harmonic basis (note that Ψ4 and Φ2 have spin weight −2 and −1, respec-
tively), for all different spin configurations to compare gravitational and EM waveforms
directly. While both EM and gravitational wave radiation show the same characteris-
tics in the dominant mode, we note that small differences arise when comparing the
waveforms of the individual spin configurations more carefully with each other in the
two channels. Note that the waveform for the binary s−6 has a larger number of cycles
only because it merges very rapidly (the total angular momentum is smaller because
the total spin is anti-parallel to the orbital angular i momentum) and thus it has been
evolved from a larger initial separation D = 10M ; all the other binaries have the same
initial separation D = 8M . A closer inspection of figure 11.7 reveals that the ampli-
tude evolution of the ` = m = 2-mode for the different spin configurations differs when
compared in the two channels. As an example, while in the gravitational wave channel
the amplitude in the ` = 2,m = 2-mode decreases when going from the r0-configuration
over to the s0 and s−6 configurations, the amplitude remains nearly constant in the
EM channel. This reveals that there are additional contributions in the EM emission
coming from the higher-order modes (see figure 11.10 and the discussion below).

To further evaluate the correlation between the EM and the gravitational radiation,
we now turn our attention to the amplitude and phase evolution of the main contribut-
ing spherical harmonic modes. Since radiated energy fluxes are given by Φ2 and the
time integral of Ψ4 we here compare Φ2 with Ψ̃4 ≡

∫ t
∞Ψ4dt

′. For briefness we only high-
light the results obtained for the s6 configuration, since this shows the highest amount
of energy being radiated in both EM and gravitational waves, and because our remarks
apply also to the other configurations. Since the main contributions to the radiated
energy in the EM channel arise from the ` = 2, 3, 4, m = 2-modes, we limit our analysis
in this section to those modes only. In order to obtain a better understanding of the
correlation in the radiation coming from the two channels, we analyze the amplitude
and phase of the main contributing modes individually. Figure 11.8 shows the ampli-
tude and phase evolution of the ` = 2, 3, m = 2-modes in both channels. Clearly, the
` = m = 2 modes show the same phase evolution (cf. the left panels) in the two forms
of radiation, as expected given that the EM emission is essentially driven by the orbital
motion of the binary. Furthermore, the amplitude evolution in the ` = 2,m = 2 modes
of both emissions are also simply related by a constant, time-independent, factor.

Although a simple scaling factor in the evolution of Ψ̃4 and Φ2 appears for all of
the different binary configurations considered here, this factor is not the same across
different spin configurations. However, because the ` = m = 2 represents by and
large the most important contribution to the radiation emitted in the two channels
and because the gravitational wave-emission from binaries with spins aligned/anti-
aligned with the orbital angular momentum has been computed in a number of related
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works [199, 231, 232, 233, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329], the
results found here allow us to simply extend all of the phenomenology reported so far
for the ` = 2,m = 2 gravitational wave-emission from the above cited works also to the
EM channel.

Unfortunately, the tight correlation found in the amplitude evolution of the lowest-
order mode disappears for higher-order modes. This is reported in the bottom panels
of figure 11.8, which indicate that while the phase amplitude remains the same (cf. the
bottom right panel), the evolution of the amplitude in the two channels does not differ
only by a simple constant scaling factor (cf. the bottom left panel). A similar behavior
is found for lower-order modes such as the ` = 4,m = 2 one but is not reported here
for compactness. Overall, these results suggest that although the main (and lowest-
order) contribution to the EM emission does indeed come as a result of the dragging of
the EM fields by the orbital motion of the binary, additional contributions arise from
higher-order modes which are not directly related to the orbital motions. These are
likely to be the result of the complex interactions among the EM fields, discussed in
figure 11.5 and whose investigation, although of great interest, goes beyond the scope
of this paper.

Another interesting quantity to consider in our analysis is the energy carried away
from the systems in the two emissions, which can be computed from the mode decom-
position of the emission, where we have taken into account modes up to ` = 4. Despite
the differences between the EM and gravitational waves discussed already, when look-
ing at the emission in the lowest-order modes that can be associated to the different
multipolar decomposition of the two emissions (cf. figure 11.7), we find that the overall
energy fluxes are extremely similar and differ essentially only by a constant (but large)
factor. This is shown in figure 11.10 which reports both the gravitational wave (left
panel) and the EM radiated energy fluxes (right panel) when integrated over a sphere
located at r = 100M for all the binary sequences considered here. Once again, the
fact that FEM basically mimics FGW , underlines that the emission in the EM channel
is intimately tied to the emission in gravitational wave, so that the observation of one
of the two would lead to interesting information also about the other one. As a final
comment it is worth noting that although the energy fluxes from the binaries s0 and r0

show a different evolution, the total emitted energy, namely the area under the curves,
is extremely similar and is reported in Table 11.2. This provides yet an additional
confirmation of the results already presented in [231, 232, 233, 317, 329] for binaries
with aligned spins and yields further support to the conjecture that when the initial
spin vectors are equal and opposite and the masses are equal, the overall dynamics of
the binary is the same that of the corresponding non-spinning binary.

11.3.3 Astrophysical Detectability

As discussed in the previous sections, the EM and gravitational radiation are tightly
coupled and evolve on exactly the same timescales and with the same spectral distribu-
tion in frequency. The rates of loss of energy and angular momentum, however, are very
different. This is summarized in Table 11.2 which reports the total energy radiated dur-
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Table 11.2: Relative emitted energies in EM waves and gravitational waves (Erad
EM
/M ,

Erad
GW
/M , respectively), and emitted angular momentum in gravitational waves (J rad

GW
/M2),

for the magnetic field B0M = 10−4.

model Erad
EM
/M Erad

GW
/M J rad

GW
/M2

s−6 1.562E− 7 0.0243 0.216
r0 2.040E− 7 0.0357 0.213
s0 2.055E− 7 0.0354 0.243
s6 3.412E− 7 0.0590 0.380

ing the inspiral and merger in either EM waves or gravitational waves (i.e., Erad
EM
/M ,

Erad
GW
/M) and the angular momenta radiated in gravitational waves (i.e., J rad

GW
/M2).

From the values obtained, two interesting observations can be made. The first one is
that the radiated EM energy is higher for binaries which lead to a more highly spin-
ning final black hole. This is a consequence of these binaries merging with increasingly
tighter orbits and at higher frequencies,which leads to stronger EM and gravitational
wave fluxes. The second one has already been mentioned in the previous section and
reflects the fact that the binaries r0 and s0 lead to the same energy emission (and to
the same final black-hole spin [231, 232, 233, 329]) despite the s0 binary has black holes
with non-zero individual spins.

Note also that, in contrast with the losses in the gravitational wave emission, those
in the EM one do not depend just on the masses and initial spins of the black holes
but also on the strength of the initial magnetic field. This dependence must naturally
scale quadratically with the magnetic field, so that we can write

Erad
EM

M
= k1(a1, a2,M1,M2)B2

0 (11.1)

= 1.43× 10−32k1

(
M

M�

)2( B

1 G

)2

, (11.2)

where we have used the following relation

B [G] = 8.36× 1019

(
M�
M

)
B [geom. units] . (11.3)

to convert a magnetic field in geometric units (B [geom. units]) into a magnetic field
expressed in Gauss (B [G]).

As discussed before, the EM emission is closely related via simple scaling factors
to the gravitational wave one and whose efficiency has been discussed in detail in
section VB of . [317]. In particular, it was shown there that the radiated gravitational
wave energy depends quadratically on the total dimensionless spin (see equation. (24)
in [317]) and the corresponding coefficients p̃i were presented in equation. (25) in the
same reference. Hence, at least in the case of equal-mass binaries, it is trivial to
express k1(a1, a2,M1,M2) in terms of the suitably rescaled coefficients p̃i in [317]. Here,
however, because we are interested in much simpler order-of-magnitude estimates, we
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will neglect the dependence of k1 on the spins and simply assume that k1 ∼ 10−7, so
that

Erad
EM

M
' 10−15

(
M

108 M�

)2( B

104 G

)2

, (11.4)

where we have considered a total black hole mass of 108M� and a magnetic field of 104

G as representative of the one possibly produced at the inner edges of the circumbinary
disc [330] (see [331] for a recent discussion on the strength of magnetic fields in active
galactic nuclei (AGN)).

It should be noted that only when an extremely strong magnetic field of ∼ 1011 G
is considered, does the EM efficiency become as large as Erad

EM
/M ' 10−1 and thus com-

parable with the gravitational wave one. For more realistic magnetic fields, however,
and assuming for simplicity that Erad

GW
/M ∼ 10−2 for all possible spins, the ratio of the

two losses is
Erad

GW

Erad
GW

' 10−13

(
M

108 M�

)2( B

104 G

)2

. (11.5)

That is, for a realist value of the initial magnetic field, the gravitational wave emission
is 13 orders of magnitude more efficient than the EM one. More importantly, however,
the frequency of variation of the EM fields is of the order

fB ' (40M)−1 ' 10−4

(
108M�
M

)
Hz (11.6)

and therefore much lower than what is accessible via astronomical radio observations,
which are lower-banded to frequencies of the order of ∼ 30 MHz. As a result, it is very
unlikely that a direct observation of the induced EM emission would be possible even
from this simplified scenario.

Nevertheless, in the spirit of assessing whether this large release of EM radiation
can lead to indirect observations of an EM counterpart, it is useful to compare Erad

EM

with the typical luminosity of an AGN. To fix the ideas let us consider again a black
hole of mass M = 108M� ' 1041 g ' 1061 erg, so that the luminosity in EM waves for
B0 = 104 G will be

LEM ≡
Erad

EM

τ
' 1041

(
B

104 G

)2

erg s−1

' 108

(
B

104 G

)2

L� ,

' 10−4

(
B

104 G

)2

LEdd , (11.7)

where we have assumed a timescale τ ' 103M ' 105 s ' 1 d and where L�, LEdd are the
total luminosity of the sun and the Eddington luminosity LEdd = 3.3×104 (M/M�)L�,
respectively. While this is a rather small luminosity (distant quasars are visible with
much larger luminosities of the order 1047 erg s−1), it is comparable with the luminosity
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of nearby AGNs and that is of the order of 1041 erg s−1. More important, however, is
the comparison between the EM emitted by the merging binary and the one coming
from the accretion disc. Using (11.7) it is straightforward to deduce that the binary
EM luminosity is comparable with that of an AGN accreting at 10−4 the Eddington
rate. Hence, unless the accretion rate is rather small (namely, much smaller than 10−4

the Eddington rate with the extreme case being the non-accreting scenario) the EM
emission from the binary would be not only restricted to very low-frequencies but also
just a small fraction of the total luminosity. Under these conditions it is unlikely that
such emission could have an observable impact on the overall luminosity of the accreting
system.

As a final consideration it is useful to estimate whether the inspiraling binary could
nevertheless imprint a detectable effect on the disc via the perturbations in the magnetic
field it can produce. To assess whether this is the case we first compare the frequency
fB with the typical plasma frequency

fP =
ωP

2π
=

(
nee

2

πme

)1/2

' 1014
( ne

1021 cm−3

)
Hz , (11.8)

where ne is the electron number density, or with the electron cyclotron fC frequency

fC =
ωC

2π
=

eB

2πmec
' 1010

(
B

104 G

)
Hz . (11.9)

Clearly, the magnetic field varies with a frequency fB that is is between 14 and 18 orders
of magnitude smaller and hence that the electrons and protons in the disc are always
able to “adjust” themselves to the changes in the magnetic fields, which are extremely
slow when compared with the typical timescales in the plasma. Stated differently, the
EM radiation produced by the inspiral cannot penetrate the disc and will be effectively
reflected over a skin depth of λ = c/ωe ' 8× 10−6 cm.

Finally, we consider whether the perturbed magnetic magnetic field can have im-
pact on the transport of angular momentum in the disc and hence modify its accre-
tion rate in a detectable way. It is worth remarking, in fact, that there is consider-
ably large EM energy flux reaching the accretion disc and that is FEM ' LEM/r

2
in ∼

1011(B/104 G)2 erg s−1 cm−2, where rin ∼ 102 rg is the inner radius of the disc and
rg ' 1015 cm is the gravitational radius for a black hole of 108 M�. A crude way to
estimate the perturbation on the disc is by considering the ratio between the viscous
transport timescale τV and the magnetic transport timescale induced by the oscillat-
ing magnetic field, τB. Should this ratio be of the order of unity (or larger), then
the magnetic-field perturbation may be transmitted to the disc in the form of Alfvén
waves. In practice we estimate this by considering the (inverse) ratio between the
viscous and magnetic torques, with the first one being expressed in terms of the av-
erage pressure p and sound speed cs as fφ,V ' αp ' αρc2

s and the second one as
fφ,B ' rδBφBzα/(8π) ' rβB2

0/(8π); here α is the standard alpha-disc viscosity pa-
rameter and β is a measure of the perturbation induced in the background magnetic
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field (i.e., δBφ ∼ βB0, B
z ∼ B0). We therefore obtain

τV
τB

=
fφ,B
fφ,V

(11.10)

' 10
β

α

(
r

10−2 rg

)(
10−2g cm−3

ρ

)(
B0

104 G

)2( c

cs

)2

,

where 10−2 rg is the typical length scale over which magnetic torques could operate.
Assuming now α ' 0.1 − 0.01, β ∼ 10−2 and cs 0.1 − 0.01 c as reference numbers,
the rough estimate (11.10) suggests that it is indeed possible that τV > τB and hence
that the perturbations in the magnetic field, albeit small and rather slow, can induce
a change in the viscous torque and hence induce a change in the accretion rate if the
latter is sufficiently stable. Determining more precisely whether this modulation in the
magnetic field can effectively leave an imprint on the accretion flow would require a
more accurate modeling of the accretion disc and is clearly beyond the scope of this
simple estimate. It is however interesting that this possibility is not obviously excluded.

In summary, the analysis carried out in this section shows that it is highly unlikely
that the EM emission associated with the scenario considered in this paper can be
detected directly and simultaneously with the gravitational wave one. This is essentially
because the EM is too inefficient for realistic values of the magnetic fields and because it
operates at frequencies which are well outside the ones accessible to astronomical radio
observations. However, if the accretion rate of the circumbinary disc is sufficiently
stable over the timescale of the final inspiral and merger of the black-hole binary, then
it may be possible that the EM emission will be observable indirectly as it will alter
the accretion rate through the magnetic torques exerted by the distorted magnetic
field lines. A firmer conclusion of whether this can actually happen in practice will
inevitably have to rely on a more realistic description of the accretion process.

As a final comment we stress that our analysis and discussions in this section have
not included the role of gas or plasmas around the black hole(s) nor have we considered
resistive scenarios. Both of these ingredients, when coupled to the EM fields behavior
described here, could induce powerful emissions by accelerating charged particles via
the strong fields produced (e.g., in a manner similar to the Blandford-Znajek mech-
anism [332]) or by affecting the gas/plasma dynamics or via the reconnection of the
complex EM fields produced during the inspiral and merger. We present results includ-
ing the plasma effects in the next section where we perform binary black-hole merger
simulations while the black holes are immersed in tenous plasma.

11.3.4 Concluding Remarks

We have analyzed the phenomenology that accompanies the inspiral and merger of
black-hole binaries in a uniform magnetic field which is assumed to be anchored to
a distant circumbinary disc. Our attention has been concentrated on binaries with
equal masses and equal spins which are either aligned or anti-aligned with the orbital
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angular momentum; in the case of supermassive black holes, these configurations are
indeed expected to be the most common ones [333, 334]. Furthermore, this choice
allows us to disentangle possible precession effects and concentrate on the EM fields
dynamics as affected by the orbital motion of the binary. Overall, the simulations reveal
several interesting aspects in the problem:

• The orbital motion of the black holes distorts the essentially uniform magnetic
fields around the black holes and induces a quadrupolar electric field analogous
to the one produced by the Hall effect for two conductors rotating in a uniform
magnetic field. In addition, both electric and magnetic fields lines are dragged by
the orbital dynamics of the binary. As a result, a time variability is induced in
the EM fields, which is clearly correlated with the orbital behavior and ultimately
with the gravitational wave-emission. The EM fields become, therefore, faithful
tracers of the space-time evolution.

• As a result of the binary inspiral and merger, a net flux of electromagnetic energy
is induced which, for the ` = 2,m ± 2 modes is intimately tied, via a constant
scaling factor in amplitude, to the gravitational energy released in gravitational
waves. This specular behavior in the amplitude evolution disappears for higher-
order modes, even though the phase evolution remains the same for all modes.

• Because the tight correlation between the EM and the gravitational wave-emission
has been found for all of the cases considered here, we expect it to extend to all
possible binary configurations as long as the EM fields are playing the role of “test
fields”. Hence, the modeling of the gravitational wave emission does in practice
provide information also on the EM one within the scenario considered here.

• Although the global large-scale structure of the EM fields is dictated by the orbital
motion, the individual spins of the black holes further distort the EM field lines
in their vicinities. These small-scale fields may lead to interesting dynamics and
to the extraction of energy via acceleration of particles along open magnetic field
lines or via magnetic reconnection.

• The energy emission in EM waves scales quadratically with the total spin and
is given by Erad

EM
/M ' 10−15

(
M/108 M�

)2 (
B/104 G

)2
, thus being 13 orders of

magnitude smaller than the gravitational energy for realistic magnetic fields. This
EM emission is at frequencies of ∼ 10−4(108M�/M) Hz, which are well outside
those accessible to astronomical radio observations. As a result, it is unlikely that
the EM emission discussed here can be detected directly and simultaneously with
the gravitational wave one.

• Processes driven by the changes in the EM fields could however yield observable
events. In particular we argue that if the accretion rate of the circumbinary disc
is small and sufficiently stable over the timescale of the final inspiral, then the EM
emission may be observable indirectly as it will alter the accretion rate through
the magnetic torques exerted by the distorted magnetic field lines.
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All of these results indicate that the interplay of strong gravitational and EM fields
represents a fertile ground for the development of interesting phenomena. Although
our analysis is incomplete as the effects on plasmas are not taken into account, we
believe that the main properties of the EM dynamics described above should hold as
long as the energy in the black holes dominates the energy budget. A more precise
estimate of the possible emissions and of the observational signatures calls for further
studies which would necessarily have to include additional physics. This work, however,
together with those in . [316, 335, 336, 337, 338, 339, 340], constitute interesting first
steps in this direction. In the next section we will generalize our setup by including
plasma effects into our evolutions and determine the impact on the radiation generated
in our simulations.

11.4 Binary black-hole merger simulations in the force-
free approximation

The inspiral and merger of supermassive black holes will represent a secure source for
the planned space-borne gravitational-wave detectors. Together with the gravitational
wave signal, this process is expected to be accompanied either before [341, 342] or
after [343, 344] the merger by the emission of electromagnetic (EM) radiation, thus
providing a perfect example of multi-messenger astronomy. Should a “simultaneous”
detection take place, this would not only help to localize the gravitational wave source
and provide its redshift, but also address a number questions in astrophysics and cos-
mology [345, 346].

As the merger between two galaxies takes place and the black holes get closer, a cir-
cumbinary accretion disc is expected to form. Because the radiation-reaction timescale
over which the binary evolves is much longer than the accretion timescale, the disc
will slowly follow the binary as its orbit shrinks. However, as the binary separation
becomes ∼ 105M , where M is the mass of the binary, the radiation-reaction timescale
reduces considerably, becoming smaller than the accretion one. When this happens, the
disc evolution disconnects from the binary, the accretion rate reduces, and the binary
performs its final orbits in an inner region poor of gas [347, 348].

This basic picture represents the astrophysical backdrop of a simple model which
has been used by a number of authors to model the EM emission from the black-
hole binary. More specifically, assuming that the disc is threaded by a coherent and
large-scale magnetic field which is anchored to the disc, this will also permeate the
“evacuated” region where the binary is rapidly shrinking and provide an effective way
of coupling the binary’s orbital motion to the generation of an EM signal. This scenario
has been considered both for space-times EV [316, 339, 349] and for space-times filled by
a tenuous plasma in the force-free approximation [314, 350, 351]. In [349], in particular,
has considered a series of spinning black-hole binaries and studied the dependence of
the gravitational and EM signals with different spin configurations. All in all, it was
found that EM radiation in the lowest ` = 2,m = 2 multipole accurately reflects the
gravitational one. Furthermore, the efficiency of the energy emission in EM waves was
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found to scale quadratically with the total spin and to be ∼ 13 orders of magnitude
smaller than the one in gravitational waves for realistic magnetic fields. However, the
prospects of detecting an EM counterpart have become larger when it was pointed out
in [351] that during the inspiral in a force-free plasma, a dual-jet structure forms, as a
generalization of the Blandford-Znajek process [332] to orbiting black holes, where the
EM energy flux is concentrated along the magnetic-field lines. Under these conditions,
the EM energy can accelerate electrons and lead to synchrotron radiation.

We extend here the investigations made in [349] by considering the evolution in a
force-free regime and properly computing the EM emission as the net result of ingoing
and outgoing radiation. We confirm in this way the presence of a dual-jet structure, but
also find that this is energetically sub-dominant with respect to a non-collimated and
predominantly quadrupolar emission. Hence, if the simplified scenario considered here
is realized in astrophysical configurations, it will be difficult to reveal the emission from
the dual jets, but it will also be easier that an EM counterpart to binary black-hole
mergers can be detected.

11.4.1 Simulation setup

As mentioned above, we assume the magnetic field to be anchored to the disc, whose
inner edge is at a distance of ∼ 103M and is effectively outside of our computational
domain, while the initial binary separation is only D = 8M . Although the large-scale
magnetic field is poloidal, it is set to be initially uniform within the computational
domain, i.e., Bi = (0, 0, B0) with B0 ∼ 10−4/M . We note that although astrophysically
large, such initial magnetic field has an EM energy which is several orders of magnitude
smaller than the gravitational-field energy, so that the EM fields can be treated as test-
fields and all the results can be scaled trivially with B0. The electric field Ei is initially
zero, but it rapidly reaches a consistent solution [349]. As black-hole initial data we
consider binaries with equal masses but with two different spin configurations: namely,
the s0-binary (both black holes are non-spinning) and the s6-binary (both black holes
have spins aligned with the orbital angular momentum with (J/M2)1 = a1 = a2 =
0.6; see [233, 317] for details). These two configurations allow us to study both the
contributions coming from the binary’s orbital motion, but also those related to the
spins of the two black holes. The setup for the numerical grids used in the simulations
consists of 9 levels of mesh refinement with a fine resolution of ∆x/M = 0.02. The
wave-zone grid has a resolution of ∆x/M = 0.128 and extends from r = 24M to
r = 180M , while the outer (coarsest) grid extends to 819.2M . Our implementation of
the force-free equations is based on a novel approach that is fully driven by evolution
equations and does not require corrections “by-hand” to enforce the force-free condition
or to avoid inconsistent EM fields; our approach will be presented in [152].

11.4.2 Luminosity measures

The calculation of the EM and gravitational radiation generated during the inspiral,
merger and ringdown is arguably the most important aspect of this chapter as it allows
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us to establish what are the characteristics of the emissions in two channels. For the
gravitational wave sector, we compute the emission via the Newman-Penrose curvature
scalar Ψ4 as detailed in . [202, 349]. In practice, we define an orthonormal basis in
the three space (r̂, θ̂, φ̂), with poles along ẑ. Using the normal to the slice as time-like
vector t̂, we construct the null orthonormal tetrad {l,n,m,m}, with the bar indicating
a complex conjugate

l =
1√
2

(t̂+ r̂), n =
1√
2

(t̂− r̂), m =
1√
2

(θ̂ + iφ̂) , (11.11)

by means of which we project the Weyl curvature tensor Cαβγδ to obtain Ψ4 = Cαβγδn
αm̄βnγm̄δ.

For the EM sector, instead, we use two equivalent approaches to cross-validate our mea-
sures. The first one uses the Newman-Penrose scalars Φ0 (for the ingoing EM radiation)
and Φ2 (for the outgoing EM radiation), defined using the same tetrad [352]

Φ0 ≡ Fµν lνmµ , Φ2 ≡ Fµνmµnν . (11.12)

It is always useful to remark that by construction quantities such as Ψ4,Φ0,Φ2 are well-
defined only at very large distances from the sources. Any measure of these quantities
in the strong-field region risks to be incorrect. As an example, the EM energy flux
does not show the expected 1/r2 scaling when Φ0,Φ2 are measured at distances of
r ' 20M [314, 351], which is instead reached only for r & 100M .

Since our choice of having a uniform magnetic field within the computational domain
has a number of drawbacks (e.g., nonzero initial Φ2 ,Φ0), great care has to be taken
when measuring the EM radiation. Fortunately, we can exploit the linearity in the
Maxwell equations to distinguish the genuine emission induced by the presence of the
black hole(s) from the background one. Following [352], we compute the total EM
luminosity as a surface integral across a 2-sphere at a large distance

LEM = lim
r→∞

∫
r2
(
|Φ2 − Φ2,B|2 − |Φ0 − Φ0,B|2

)
dΩ , (11.13)

where Φ2,B and Φ0,B are the values of the background scalars induced by the asymp-
totically uniform magnetic field solution in the time dependent space-time produced by
the binary black-holes. The choice of Φ2,B and Φ0,B will be crucial to measure correctly
the radiative EM emission.

The background values of the Newman-Penrose scalars Φ2,B,Φ0,B to be used in (11.13)
are themselves time dependent and cannot be distinguished, at least a-priori, from the
purely radiative contributions. However, a first reasonable approximation can be made
if we assume these background values to be time independent and to be those at the
initial time, i.e.,

Φ2,B = Φ2(t = 0) , Φ0,B = Φ0(t = 0) . (11.14)

A second prescription involves instead the removal of those multipole components of
the Newman-Penrose scalars which are not expected to be radiative, namely all those
associated with the m = 0 multipoles, i.e.,

Φ2,B = (Φ2)`,m=0 , Φ0,B = (Φ0)`,m=0 , (11.15)

183



11. EM COUNTERPARTS OF BINARY BLACK-HOLE MERGERS

-100
-60

-20
 20

 60
 100 -100

-60
-20

 20
 60

 100
 0

 25

 50

 75

 100
z [M]

FF; t=251 M

x [M] y [M]

z [M]
-1.00e-09

1.20e-09

3.40e-09

5.60e-09

7.80e-09

1.00e-08

-100
-60

-20
 20

 60
 100 -100

-60
-20

 20
 60

 100
 0

 25

 50

 75

 100
z [M]

FF; t=461 M

x [M] y [M]

z [M]
-1.00e-08

1.20e-08

3.40e-08

5.60e-08

7.80e-08

1.00e-07

-100
-60

-20
 20

 60
 100 -100

-60
-20

 20
 60

 100
 0

 25

 50

 75

 100
z [M]

FF; t=594 M

x [M] y [M]

z [M]
-1.00e-09

1.20e-09

3.40e-09

5.60e-09

7.80e-09

1.00e-08

-100
-60

-20
 20

 60
 100 -100

-60
-20

 20
 60

 100
 0

 25

 50

 75

 100
z [M]

s0-FF; t=251 M

x [M] y [M]

z [M]
1.00e-09

3.20e-09

5.40e-09

7.60e-09

9.80e-09

-100
-60

-20
 20

 60
 100 -100

-60
-20

 20
 60

 100
 0

 25

 50

 75

 100
z [M]

s0-FF; t=461 M

x [M] y [M]

z [M]
1.00e-08

3.20e-08

5.40e-08

7.60e-08

9.80e-08

-100
-60

-20
 20

 60
 100 -100

-60
-20

 20
 60

 100
 0

 25

 50

 75

 100
z [M]

s0-FF; t=594 M

x [M] y [M]

z [M]
1.00e-09

3.20e-09

5.40e-09

7.60e-09

9.80e-09

Figure 11.11: Snapshots of the EM energy flux during the inspiral and merger of the bi-
nary s0. The two row shows the fluxes as measured with the expression (11.13) with (11.14)
and (11.15), respectively. Note that (11.14) yields negative values which will cancel out
when integrated over one orbit.

where (Φ2,0)`,m=0 refer to the m = 0 modes of the multipolar decomposition of Φ2,0

(` ≤ 8 is sufficient to capture most of the background). Note that, because the
m = 0 background is essentially time-independent (after the initial transient), the
choice (11.15) is effectively equivalent to considering as background the final values
of the Newman-Penrose scalars as computed in an EV calculation of the same binary
system.

While apparently different, expressions (11.14) and (11.15) lead to very similar es-
timates and, more importantly they have a simple interpretation in terms of the corre-
sponding measures made with. We recall, in fact, that the EM luminosity is customarily
computed via the integral over a 2-sphere of the Poynting flux Si =

√
γεijkE

jBk, which
is again just the flux of the stress-energy tensor as measured now by observers on the
spatial hypersurface. Of course also this measure is adequate only far from the binary
and it suffers equally from a background non-radiative contribution. However, because
of the linearity in the Maxwell equations, the non-radiative contributions can also be
removed by introducing background values of the EM fields EjB, B

j
B and computing the

Poynting vector as Si =
√
γεijk(E

j − EjB)(Bk − Bk
B). In this context, then, expres-

sions (11.14) and (11.15) correspond respectively to setting EkB = 0, Bk
B = Bk(t = 0)

and EkB = Ek`,m=0, B
k
B = Bk

`,m=0. We have verified that the measures of the EM lumi-
nosity obtained using (11.14) or (11.15) reproduce well the corresponding ones obtained
with the Poynting flux. As a final remark we note that the EM flux in (11.13) is not
always positive everywhere on the 2-sphere. The negative contributions, however, av-
erage to zero over one orbit and do not represent a radiative field. This point was
remarked in [316], where a toy model within the membrane paradigm was used for the
binary.

Using expression (11.13) with either the prescription (11.14) or (11.15) we find that
the EM radiation generated during the late inspiral and merger does contain a dual-jet
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Figure 11.12: Map views of the EM energy flux computed using (11.13) with (11.15).
The first row refers to the binary s0, while the bottom one to the binary s6 and has a
larger emission from the dual jets.

structure, but also that the total energy flux is dominated by a non-collimated emission
of quadrupolar nature. This is shown in figure 11.11, which reports snapshots at dif-
ferent times of the EM energy flux on a 2-sphere of radius r = 100M for the s0-binary.
The first row shows the fluxes as computed with (11.14) and with a (non-radiative)
component that enhances two lobes of the signal and decreases the other two. Al-
though there are regions with negative values which will average to zero over one orbit,
the corresponding EM fields could nevertheless induce motion in the plasma and sec-
ondary radiation which we cannot account for here. The second row refers to fluxes as
computed with (11.15), where the time dependent background solution is almost com-
pletely subtracted, so that only the (positive) radiative part remains, showing a fairly
symmetric four-lobe structure. Within both approaches, the extended quadrupolar dis-
tribution is accompanied by the presence of dual jets during the inspiral, and of a single
jet from the spinning merged black hole. The energy flux in the jets is essentially the
same in the two cases (both during the inspiral and after the merger), but that in the
non-collimated part is different. In spite of this, the total luminosities are very similar,
as most of the differences cancel when integrated over one orbit (cf. fig 11.14). How-
ever, because the Poynting-flux structure is different in the two measures [(11.14) has
a non-radiative part missing in (11.15)], it could lead to a different secondary emission
as the EM fields interact with the plasma; this is an aspect that cannot be investigated
within our force-free approach but that deserves further study. Figure 11.13 finally
provides a 3D volume rendering view of the mission for the s0-binary during shortly
before merger during the inspiral at time t = 300.8M . The dual-jet structure is twisted
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by the orbital motion of the black holes and the non-collimated emission is shown in
terms of measure (11.13) with a background choice (11.14).

Figure 11.13: Poynting flux S shown as an iso-surface volume rendering for the s0-binary
at time t = 300.8M shortly before merger.

The corrections introduced by the spin of the black holes are shown in figure 11.12,
which reports map views of the EM emission for the binaries s0 and s6 as computed
through (11.15). Both the collimated and the non-collimated emission are very similar
qualitatively, although there is a slight (i.e., 50%) enhancement of the radiation in the
spinning case, both in the total and in the collimated emission. This is not surprising
since most of the radiation is produced by the interaction between the black-hole orbital
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motion and the background magnetic field. Indeed we find the emission in the EV
evolution to be comparable to the force-free one (this is different from what reported
in [314, 351]).

A more quantitative assessment of the different contributions is shown in figure 11.14,
which reports the evolution of the EM luminosity during the inspiral and merger of the
binary s0 (left panel) and of the spinning binary s6 (right panel). Shown with (blue)
solid lines is the total luminosity as computed through (11.15), while the (red) dashed
lines refer to the luminosity integrated over a polar cap with an half-opening angle of
5◦ and thus representative of the emission from the two jets. Also shown with (ma-
genta) dotted lines are the corresponding luminosities as computed through (11.14):
the differences are small and hardly visible for the collimated part.

Figure 11.14: Evolution of the EM luminosity at 100M for the binary s0 (left) and for
the spinning binary s6 (right), when M = 108M� and B0 = 104 G. Using (11.15), (blue)
solid lines show the total luminosity, while (red) dashed lines refer to the luminosity in a
polar cap of 5◦. Shown with (magenta) dotted lines are the measures with (11.14); note
the presence of a small eccentricity for the binary s6.

An accurate measure of the evolution of the collimated/non-collimated components
is crucial to predict the properties of the system when the two black holes are widely
separated. This, in turn, requires a reliable disentanglement of the collimated emission
from the non-collimated one and from the background. The non-collimated emission
measured with (11.15) matches well the growth expected if the EM emission is mostly
quadrupolar and hence with a dependence that is the same as the gravitational wave
one and, at the lowest order, scales as Lnon−coll

EM
≈ Ω10/3 [316, 349]. On the other hand,

a smaller scaling is found when the approach (11.14) is adopted; at present it is difficult
to determine which one is the most reliable scaling. At the same time, the frequency
evolution for the collimated emission coincides in the two approaches, but it does not
follow the scaling Lcoll

EM
≈ Ω2/3 suggested in [351] for boosted black holes; rather, it
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scales as Lcoll
EM
. Ω5/3−6/3. We suspect the accelerated motion of the black holes to be

behind this difference and longer simulations are needed to draw robust conclusions.

11.4.3 Impact on detectability

Assessing the detectability of the EM emission discussed above is of course of great
importance and using the results of [314, 351], . [353] has estimated that the short
timescales associated to the merger will limit the detectability in the radio band to less
than one per year. As reported in figure 11.14, the peak of the collimated emission is
∼ 100 times smaller than that of the total emission, making the detection of the dual
jets at the merger unlikely. Unfortunately, even if the energy flux is ∼ 8 − 2 times
larger near the jets, the lack of knowledge about the Lorentz factor of the reprocessed
plasma does not allow us to say whether the beaming in the jet will be larger than
that in the extended emission and thus help its detection. That said, because the
total luminosity at merger is ∼ 100 times larger than in [351], the detection should be
overall more likely if the assumptions in [353] are realized in practice. In addition, the
dual jets emission could be dominant in the early inspiral (especially if the black holes
are spinning). Assuming the scalings for the collimated and non-collimated emissions
are different and go respectively like Ω10/3 and Ω6/3 (Ω5/3), the two components of
the luminosity would become of the same order at a separation of ∼ 16 (24)M , but
obviously smaller (the collimated will be smaller of a factor ∼ 10). Determining more
precisely when and if this happens requires an accurate frequency scaling which is not
available yet. As a note of caution we stress that luminosities LEM ∼ 1045 erg/s are
also typical of radio-loud galaxies, and the determination of an EM counterpart can be
challenging if such sources are near the candidate event.

11.4.4 Conclusions

We have investigated the suggestion that dual jets can be produced during the inspiral
and merger of supermassive black holes immersed in a force-free plasma threaded by
a uniform magnetic field. We have found that the energy flux does have a dual-jet
structure but is predominantly quadrupolar, with the non-collimated emission being
about 10 − 100 times larger than the collimated one. Our findings set restrictions on
the detectability of dual jets from coalescing black-hole binaries, but also increase the
chances of detecting an EM counterpart for astrophysical conditions similar to those in
this simplified scenario.
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12

Binary coalescence search
algorithms

The search for gravitational waves in detector output represents a major challenge due
to the extremely small distortions that need to be detected. Since the possible signal we
eventually want to detect is smallcompared to the many noise sources influencing the
detector output, statiscal analysis methods need to be used to say with some certainty
level that a gravitational wave has been detected. The method that has been used in this
thesis is known as matched-filtering and is widely used for the search for gravitational
waves from compact-binary coalescence. It uses an a-priori prediction of the signal that
we expect to detect to compute the inner product between signal and detector noise,
which normalized by the power spectral density (PSD) of the detector noise acts as our
basic measure to decide whether a gravitational wave has been detected or not. In this
chapter we will review the basics of probability theory to construct a matched-filter for
the use in a binary inspiral search pipeline. The presentation follows closely [354]. For
a more thorough discussion of the relevant concepts see [355, 356].

12.1 Searching for gravitational waves in detector output

We want to detect a gravitational wave embedded in the output of the interferometer
s(t). The output of the detector contains instrumental noise n(t) and possibly a sig-
nal h(t). The noise arising from random processes can be described by a probability
distribution function and the detector output in the two cases can be describe as

s(t) =

{
n(t) + h(t), if a signal is present

n(t), if no signal is present.
(12.1)

The filter outputs a probability P (h|s) that a signal h(t) is present in the detector
output s(t) (the probability that no signal is present is P (0|s) = 1 − P (h|s)). To
construct the filter we recall some basics of elementary probability theory. For two
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events A and B the conditional probabilities can be related by

P (A|B) =
P (A,B)

P (B)
=
P (A)P (B|A)

P (B)
, (12.2)

using P (A,B) = P (A)P (B|A) = P (B)P (A|B), the probability for the two events to
occur. Now given a set of mutually exclusive events A1, A2, ..., AK , and an event B
that can only occur if one of the Ak occurs, the probability that B occurs is

P (B) =
K∑
k=1

P (Ak)P (B|Ak). (12.3)

Equation (12.3) is the total probability formula. The probability for an eventAk allowing
B to happen now can be obtained as

P (Ak|B) =
P (Ak)P (B|Ak)

P (B)
=

P (Ak)P (B|Ak)∑
j=1KP (Aj)P (B|Aj)

, (12.4)

known as Bayes’ theorem. P (Ak) is the a-priori probability of Ak occurring and
P (Ak|B) is the a-posteriori probability that Ak allowed the outcome of B happen-
ing. The conditional probability P (B|Ak) is called the likelihood. Assuming that the
set of events Ak contains only the two members, ”signal present” or ”signal not present”
and for B being the output of the interferometer, the probability for the signal being
present in the detector output is given by

P (h|s) =
P (h)P (s|h)

P (s)
. (12.5)

Here

P (s) =
P (s|h)/P (s|0)

[P (s|h)/P (s|0)] + [P (0)/P (h)]
(12.6)

is the probability of obtaining the detector output and P (s|h) the likelihood function.
Using the likelihood ratio

Λ =
P (s|h)

P (s|0)
(12.7)

we can write equation (12.5) as

P (h|s) =
Λ

Λ + [P (0)/P (h)]
. (12.8)

The probability for the signal not being present is

P (0|s) =
P (0)/P (h)

Λ + [P (0)/P (h)]
, (12.9)

and we can express the ratio as

P (h|s)
P (0|s) = Λ

P (h)

P (0)
. (12.10)
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As a decision rule we can now conclude that if P (h|s) is large (close to one) the signal
is present, and if P (h|s) is small (close to zero) the signal is not present. For making
a decision in practice we can construct a threshold for making this decision:

P (h|s) ≥ PT , a signal is present

P (h|s) < PT , no signal is present (12.11)

Given the decision rule (12.11), we can define the false alarm rate F and false dismissal
rate F ′. Equation (12.8) indicates that we need the a priori probabilities P (h) and P (0)
to obtain P (s|h). However since P (h)/P (0) is constant and P (h|s) a monotonically
increasing function of the likelihood we can define or optimal filter to output the likeli-
hood ratio given the detector output s(t). To make our filter optimal we now maximize
over the false alarm rate F . We now need to calculate Λ for real detector data s(t) and
signal h(t). We assume the noise n(t) to be Gaussian with zero mean value 〈n(t)〉 = 0.
The single-sided PSD Sn(|f |) of the noise is given by

〈ñ(f)ñ(f ′)〉 =
1

2
Sn(|f |)δ(f − f ′), (12.12)

with ñ(f) being the Fourier transform of n(t). We now re-express the likelihood-ratio
by using probability densities

Λ =
P (s|h)

P (s|0)
=
p(s|h)ds

p(s|0)ds
=
p(s|h)

p(s|0)
. (12.13)

The probability density for a specific configuration of detector noise is

p(n) = κe−
1
2

(n|n), (12.14)

with the inner product

(a|b) :=

∫ ∞
−∞

df
ã∗(f)b̃(f) + ã(f)b̃(f)

Sn(|f |) . (12.15)

The probability density of the interferometer output without any signal present is
equivalently

p(s|0) = p(s) = κe−
1
2

(s|s). (12.16)

Finally

p(s|h) = p(s− h) = κe−
1
2

(s−h|s−h) (12.17)

describes the probability density for obtaining s(t) in case of a present signal s(t) =
n(t) + h(t). Using equations (12.16) and (12.17) we get the likelihood ratio as

Λ =
p(s|h)

p(s|0)
=
e−1 1

2
(s−h|s−h)

e−
1
2

(s|s)

= e(s|h)− 1
2

(h|h). (12.18)
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Now we can set a threshold on s(h) instead of on the probabilities directly, since the Λ
is a monotonically increasing function of (s|h):

(s|h) ≥ xT , signal is present

(s|h) < xT , signal is not present (12.19)

We can use the fact that both the gravitational wave detector output s(t) and the
inspiral signals h(t) are real functions, casting the inner product in equation (12.15)
into the form

(a|b) = 4

∫ ∞
0

dfRe[
ã(f)b̃∗(f)

Sn(|f |) ]. (12.20)

In the absence of a signal the mean of (s|h) over an ensemble of detector outputs
becomes

〈(s|h)〉 = 〈(n|h)〉 =

∫ ∞
−∞

〈ñ(f)〉h̃∗(f)

Sn(|f |) = 0 (12.21)

and using the PSD definition (12.12) we obtain its variance as

〈(s|h)2〉 = (h|h). (12.22)

In the case of a signal being present we get

〈(s|h)〉 = 〈(n+ h|h)〉 = (〈n〉+ h|h) = (h|h), (12.23)

and the variance

〈(s|h)2〉 = 〈[(s|h)− (h|h)]2〉 = 〈[(n|h)]2〉 = (h|h). (12.24)

So (h|h) is the output of the optimal filter (s|h) and we define

σ2 := (h|h). (12.25)

The amplitude of the signal depends on the distance we are away from the source.
While we assume the type of source by the choice of the waveform model h(t) we do
not a-priori know the distance from the source and therefore the expected amplitude of
the signal. Thus in realistic situations we have to substitute in the above calculations
h(t) → A h(t) to account for an arbitrary amplitude. In the analysis we can then
extract a parameter for the distance to the source, the effective distance. Substituting
h(t)→ A h(t) leads to the expression for the likelihood ratio

Λ = eA(s|h)− 1
2
A2(h|h), (12.26)

which is still monotonic in (s|h) and we can use the decision rules derived above. Now
considering a gravitational wave signal of the form

h(t) =
A(t)

D
cos(2φ(t)− θ), (12.27)
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with

A(t) = −2Gµ

c4
[πGMf(t)]

2
3 (12.28)

with the effective distance

D =
r√

F 2
+(1 + cos2 i)2/4 + F 2

× cos2 i
. (12.29)

where i is the inclination angle of the source and the phase angle θ given by

tan θ =
f×2 cos i

F+(1 + cos2 i)
(12.30)

the likelihood ratio can be expressed as

Λ′(θ) = p(θ) exp

(
D−1(s|A(t) cos[2φ(t)− θ])− 1

2
D−2(h|h)

)
, (12.31)

where φ(t) denotes the orbital phase of the signal. We can express the (s|A(t) cos[2φ(t)−
θ]) using cos(φ− θ) = cos θ cosφ+ sin θ sinφ as

(s|A(t) cos[2φ(t)− θ]) = |z| cos(φ− θ), (12.32)

with x = |z| cosφ = (s|A(t) cos(2φ(t))), y = |z| sinφ = (s|A(t) sin(2φ(t))) and |z| =√
x2 + y2. Assuming now the the unknown phase is uniformly distributed between 0

and 2π,

p(θ) =
1

2π
(12.33)

we can calculate the likelihood ratio as

Λ =

∫ 2π

0
Λ′(θ)dθ =

1

2π

∫ 2π

0
exp

(
D−1|z| cos(φ− θ)− D−2

2
(h|h)

)
dθ

= I0(D−1|z|)e−D−2 1
2

(h|h). (12.34)

Here I0 is the modified Bessel function of the first kind at zero order. Since I0(D−1|z|)
is a monotonically increasing function of |z| we can put our threshold on |z|. We can
express the two different polarizations of the gravitational waveform by the orthogonal
phases

hc(t) =
2

c2

(
µ

M�

)
[πGMf(t)]

2
3 cos[2φ(t)− 2φ0], (12.35)

hs(t) =
2

c2

(
µ

M�

)
[πGMf(t)]

2
3 sin[2φ(t)− 2φ0] (12.36)

and continue to calculate |z| as

z =
√

(s|hc)2 + (s|hs)2. (12.37)
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In the absence of a signal |z|2 is summing two squares of independent Gaussian random
variables with zero mean and a variance of σ2 = (hc|hc) = (hs|hs). Since x and y
are independent random variables, we can introduce a normalized signal-to-noise ratio
(SNR)

ρ2 =
|z|2
σ2

. (12.38)

ρ2 is χ2-distributed with the two degrees of freedom for Gaussian detector noise. In
addition to determining whether a gravitational wave signal is present or not, in case
it is present we also want to accurately determine its occurrence in time. The end-
time parameter te of the waveform can used to determine the time of arrival. In the
discussion above we have assumed to have te = 0, but allowing for an unknown end
time te we can write h(t− te) and get

(s|hc)(te) = 2

∫ ∞
−∞

dfe2πifte s̃(f)h̃∗c(f)

Sn(|f |) . (12.39)

The SNR for a signal ending at time t now becomes

ρ(t) =
1

σ

√
(s|hc(t))2 + (s|hs(t))2 (12.40)

and we can find (s|hc(t)) and (s|hs(t)) by inverse Fourier transforms. By allowing for a
unknown end time te the statistic ρ has become a function of time ρ(t). In the context
of Newman-Pearson optimal detection we need to integrate our signal over all possible
end times to apply the threshold for deciding if a signal is present or not. To also
determine the arrival time of the signal we can maximize the likelihood [356] in time
and use the value of maximum likelihood as the most probable value for the arrival
time. So in case of a detection we can after maximizing over the likelihood conclude
that we have detected a signal at the time, where the likelihood is maximal. We have in
this section now described the basic strategy for detecting a gravitational wave signal
in detector noise, and have constructed a optimal filter, which we commonly denote as
a matched filter.

12.2 Digital matched filtering

In practice the output of the detector is a sampled quantity with discrete values and an
sampling interval ∆t. The digital matched filter works on a single segment of detector
output data with N sampling points of the data vj = v(tj). The length of a segment is
T = n∆t and we use the subscript j to denote discrete quantities in the time domain
and k to denote discrete quantities in the frequency domain.

12.2.1 The discrete Fourier transform

For a discrete data set vj with sampling interval ∆t the sampling theorem says, that
vj is bandwidth limited to frequencies −fNy ≤ f ≤ fNy with the Nyquist frequency
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fNy = 1
2∆t . To prevent power from frequencies above fNy affecting the signal in the

range −fNy ≤ f ≤ fNy, we remove frequency above fNy by applying low-pass filters
first and can approximate the Fourier transform of the band limited signal vj by

ṽ(fk) ≈
n−1∑
j=0

∆tv(tj)e
−2πifatj = ∆t

n−1∑
j=0

vbe
−2πilk/n, (12.41)

with −(n/2 + 1) ≤ l ≤ N/2 and ≈ describing the discretized version of the Fourier
transform. In a similar way we can approximate the discrete inverse Fourier transform

vj =
1

n∆t

n−1∑
k=0

ṽke
2πijk/n. (12.42)

12.2.2 Discrete PSD

To obtain the discrete PSD we substitute ñ(fk) with the discrete quantity ñk = ñ(fk)
leading to

〈ñkñ∗k〉 =
n

2∆t
Sn(|fk|)δkk′ , (12.43)

with δkk′ being the discretized Kronecker δ-function. Equation (12.43) can be shown
to be equivalent to

Sn(|fk|) =


∆t
n 〈|ñ0|2〉 k = 0,

∆t
n 〈|ñN/2|2〉 k = N/2

∆t
n 〈|ñk|2 + |ñn−k|2〉 otherwise

(12.44)

with the normalization satisfying

∆t

n−1∑
j=0

|vj |2 =

n/2∑
k=0

Sb(fk). (12.45)

As an example the power spectrum of white Gaussian noise is constant with value

Sn(|fk|) = 2∆tς2 (12.46)

with ς being the variance of the noise.

12.2.3 Signal-to-noise ratio

Having obtained the discrete Fourier transform and the discrete PSDs we can now
continue to calculate the SNR according to (12.17). To do so we need to calculate the
time series

x(t) = 2

∫ ∞
−∞

dfe2πift s̃(f)h̃∗c(f)

Sn(|f |) (12.47)

y(t) = 2

∫ ∞
−∞

dfe2πift s̃(f)h̃∗s(f)

Sn(|f |) , (12.48)
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and the normalization constant σ by

σ2 = 2

∫ ∞
−∞

df
h̃∗c(f)h̃c(f)

Sh(|f |) = 2

∫ ∞
−∞

df
h̃∗s(f)h̃s(f)

Sh(|f |) . (12.49)

The SNR is normalized according to [357] so that for Gaussian noise we have averaged
over an ensemble of detectors

〈ρ2〉 =
1

σ2
〈x2 + y2〉 = 2. (12.50)

12.3 Template banks and parameter estimation

In order to search for a inspiral signal in a matched filter algorithm we need to provide
a target waveform. We call the target waveform a template. In practice we not only
want to search for one template but for many different templates. To realize this
we construct a template bank, a discrete subset of the waveform family that we want
to search for and that covers the parameter space we are interested in. Ideally we
would like to search for waveforms with any kind of parameters, but need to sample
the parameters space with a set of discrete points. Choosing an appropriate spacing
between the sample points is of one the key aspects in constructing a template bank.
If we place the templates too far apart from each other in the parameter space we will
loose a large percentage of signals as they do not match the parameters of the nearest
template anymore accurately enough. At the same time we need to ensure that the
choice of the template bank still leads to an efficient performance of the matched-filter.
The spacing between templates is determined by the mismatch, the fractional loss in
SNR when the template does not exactly match the inspiral signal. The mismatch M

is defined as

M = 1− O = 1− (h|s)√
(h|h)(s|s)

, (12.51)

where O := (h|s)√
(h|h)(s|s)

denotes the overlap. For a uniformly spaced template bank

the number in events lost due to the mismatch is approximately M3. We commonly
construct non-uniform template banks allowing for a mismatch of a maximum of 3%,
leading to a loss in event of about 10%. The number of templates scales with the
parameters of the bank and is also a function of the PSD of the interferometer since
the sensitivity determines how many cycles of an inspiral signal can be potentially
detected. Due to this we need to adjust the template bank to every individual data
segment using its PSD profile.

We are interested in determining in an accurate fashion the parameters of a detected
signal. The physical parameters of the signal are encoded into a parameter vector θ
and we attempt to determine those in terms the parameter vector of the template
family λ. In the construction of template banks two different concepts, a physical
template bank or a phenomenological template bank, can be employed. While a physical
bank is constructed from a well-motivated physical model, a phenomenological bank
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is constructed ad hoc. In case of a physical bank θ and λ consist of the same set
of physical parameters, a phenomenological bank often uses a set of parameters λ
that can be larger or smaller in number then the physical parameters. A mapping
of the phenomenological parameters to the physical parameters is then introduced to
determine the physical parameters of a signal. The detection efficiency of a template
bank is typically measure by a threshold SNR that is larger than a certain minimum
value while smaller than a desired value for the false-alarm rate (typically 1%). This
threshold value depends on the number of independent templates and the fitting factor
defined as

FF (h,θ) := max
λ

M(s(θ, h(λ)) = M(s(θ, h(θmax)), (12.52)

where s(θ) is a family of waveforms with parameter vector θ and h(λ) a family of
templates. A template bank with a high fitting factor is called effectual. We associate
every point θ ε Θ in the physical space with the best-match point λmax ε Λ, which
results in the mapping P : Θ→ Λ defined as

P (θ) = λmax. (12.53)

We will assume that this mapping is single-valued, and for a physical template bank we
can identify the best-match parameter θmax as the estimation of the original parameter
θ. This will result in the bias

∆θ = θmax − θ = P (θ)− θ. (12.54)

We call a bank with small bias faithful. As long as there is no uncertainty in the
true waveforms, then as long as we require p o be invertible, we can always convert
non-faithful bank into a faithful one by the reparametrization

hfaithful(θ) := h(P (θ). (12.55)

For a physical bank it is quite intuitive, that if the bank does describe the physical
parameters well, P is invertible. For a phenomenological bank this is in general not
true as P can be a many-to-one map with P (θ1) = P (θ2) for θ1 6= θ2. In this case the
set of parameters P−1(λmax) is the best knowledge we can obtain about the physical
parameters of the signal.

12.4 χ2-veto

In the previous discussion we have assumed that the noise affecting the detector is
Gaussian. In reality this condition does not hold as the various noise sources influence
the detector in a different way. It is however crucial that we have a tool to decide if a
signal is a true gravitational wave from an inspiral event since transient events in the
detector data may lead to false alarms in our matched filter implementation. These
transient events typically appear with a high SNR and we consequently need a different
theoretical tool to distinguish true signals from transient events. We have found that a
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time-frequency veto, the χ2-veto, first suggested in [358] is very effective in performing
this test. We briefly describe the key points of χ2-veto in this section and refer the
interested reader to [358] for more details. For u and v being two orthonormal time
series describing the two phases of a inspiral signal hc(tj) and hs(tj) we divide u and v
into p frequency intervals ul and vl with l = 1...p such that

(ul|um) =
1

p
δlm (12.56)

(vl|vm) =
1

p
δlm (12.57)

(ul|vm) = 0. (12.58)

We can now obtain

x =

p∑
l=1

xl = (h|u) (12.59)

y =

p∑
l=1

yl = (h|v), (12.60)

using xl = (s|ul) and yl = (s|vl) with s being the detector output and imposing
ρ2 = (x2 + y2)/σ2. For ∆xl = xl − x

p and ∆yl = yl − y
p we can define

χ2 =
p

σ2

p∑
l=1

[(∆xl)
2 + (∆yl)

2]. (12.61)

In both cases of only Gaussian noise present in our detector output (s = n) or Gaussian
noise plus an inspiral signal (s = n+h) χ2 is χ2-distributed, but a small value of χ2 for
a high SNR indicates it is a true inspiral signal while high values indicate a transient
event. We therefore apply an additional χ2 threshold on high SNR events. In principle
we are interested in applying the χ2-veto to all events, but in practice only apply the
χ2-veto to high SNR events to limit the computational cost of our algorithm.

12.5 Trigger recording and selection

The times when our matched filter tells us that an inspiral signal was detected are
called inspiral triggers. For any trigger event, we record the time, mass and parameters
of the template as well as the value of σ2 of the data segment, the trigger was found
in. However a trigger can be a false alarm, and as described in the previous section we
perform an additional χ2-test to distinguish between real inspiral triggers and transient
events. For any trigger event the SNR must exceed the threshold value ρ2 > ρ2

T and the
χ2-statistic must be below the threshold value χ2

T /(p
2
ρδ

2). It may happen that multiple
triggers are present in one data segment. Additionally, one inspiral event will likely
have many sampling points corresponding to the full signal. To group triggers for one
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event we require any trigger that belongs to a different template to have a difference
in coalescence time that is different by at least the length of the template waveform.
This algorithm is also called maximizing over a chirp. The final output of our matched
filer search algorithm is a list of triggers and their parameters as well as the GPS time.
After these lists have been generated and vetoed we can test for coincidence between
different detectors and apply additional analysis. All of these steps combined constitute
a data analysis pipeline and we will describe the pipeline used for the search for compact
binary coalescence (CBC) in the next section.

12.6 Gravitational wave data analysis using the CBC pipeline

In the previous sections we have described the core functionality of a matched filter
algorithm used to search for gravitational wave signals in detector output data. The
basic features and equations have been described for a search in one segment of detector
data. For current gravitational wave searches this functionality is embedded in a more
complex data analysis pipeline that handles all the other tasks necessary to analyze
a stream of detector data and perform additional analysis steps that go beyond the
matched filtering algorithm. This includes generating a template bank, managing the
analysis of all the detector output data segments, grouping triggers, determining the
coincidence properties of triggers between independent detectors. In analysis pipelines
operating on real detector output additional data quality cuts are applied to determine
whether the data collected was obtained during stable operation of the interferometer.
However since all the results presented in this dissertation were obtained with simu-
lated noise instead, we neglect this aspect of analysis pipelines in the following and
concentrate on the relevant core components. In this section we will briefly describe
a modification of the standard CBC pipeline that allows for a more general filtering
algorithm and that was developed to perform the analysis presented in chapter 13.

12.7 Signal injection and simulating detector noise

Beyond the search for real gravitational wave inspiral signals it may be useful to inject
’fake’ signals into the detector noise output or even simulate detector noise output with
injected signals. This becomes especially useful for testing new functionality of the
analysis pipeline in a more limited and simple setting. There are various different noise
profiles that can be easily generated, most commonly colored (i.e., the noise values are
correlated in some fashion) Gaussian noise is used. While this is not comparable to
realistic detector output it provides an excellent testing setup. In addition to the noise
spectrum being generated we can inject signals from analytically modeled waveform
families into the noise or detector output. The waveform families available range from
simple PN inspiral only waveforms to the very advanced phenomenological waveform
families that include spin effects and have been constructed using PN theory for the
inspiral and data from Numerical Relativity simulations for merger and ring-down
phase.
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Figure 12.1: Schematic work-flow of a simple pipeline using input data from two detectors
IFO 1 and IFO 2. Figure taken from [354].

12.8 Generation of inspiral triggers

For both the construction of the template bank and for the generation of the inspiral
triggers several parameters can be tuned to achieve minimum false alarm and false
dismissal rates. We require a calibrated PSD and the inspiral trigger generation is
coupled to the length of the data segments in the analysis output. The parameters in
the construction of the data segments that determine the characteristics of the PSD
are tuned in a procedure called data conditioning. In the following we give a quick
overview about these parameters. For a more detailed discussion we refer the reader
to [359].
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• The number of sample points in a data segment, n, determines the length of the
segments and the overlap between data segments noverlap = n/2.

• The number of data segments in a chunk of data Nsegments determines the number
of segments in an analysis chunk.

• The sample rate is 1/∆t.

• The number of non-zero points in the square root of the inverse power spectrum
in the time domain, Ninvspectrum.

Additionally the parameters that control cut-offs for the time and frequency domain
filter used in the matched filtering algorithm are

• The high-pass filter cut-off frequency fhigh applied to the analysis chunks before
PSD estimation and inspiral trigger generation.

• The low-pass filter cut-off frequency flow to exclude low frequencies in the matched
filter and χ2-analysis.

The parameters used in the generation of the inspiral triggers are

• The SNR threshold ρT .

• The χ2 threshold χ2.

• The number of bins used in the χ2-analysis p.

• The parameter δ2 used to describe the mismatch of signal and template in the
χ2-analysis as described in section 12.4.

These parameters are tuned to the specific search that is carried out.

12.9 Trigger coincidence

Detecting a trigger in coincidence in two or more independent detectors greatly de-
creases the chances of a false alarm. To say a trigger is in coincidence between two
or more detectors we must define a time interval δt in which we say we have a coin-
cidence detection. To determine δt we must take into account the accuracy in which
we can measure the time of the trigger, which for current detectors is approximately
1ms. If the two detectors are not located in the same site we must also also allow for
the difference in arrival time of the signal in the two different detectors. For the two
LIGO detectors in Washington and Louisiana this accounts to 10ms so that we have
in combination for a coincidence between LIGO Livingston Observatory (LLO) and
LIGO Hanford Observatory (LHO) a δt = 11ms. If a trigger is present in both detec-
tors within that time interval we have a coincident trigger. In addition to the temporal
coincidence a inspiral signal detected in coincidence should also be recovered with the
same signal parameters. However since detectors have different antenna patterns and
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other specifics in the detector channels may influence the trigger generation, we must
allow for a difference in the signal’s parameters. For example we allow for a param-
eter coincidence in the two masses m1 and m2 for an interval δm. If we obtain the
parameters between triggers in different detectors within δm we say we have parameter
coincidence. Besides the time and parameters of the trigger, the amplitude and phase
of a trigger will differ between different detectors due to the different antenna pattern.
In extreme cases this can lead to a trigger generated in one of the detectors while not
generated in the other. Thus we can use the effective distances and their differences
between the two detectors not in alignment, to perform an amplitude cut.
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13

Improving detection statistics for
spinning phenomenological
waveform templates

Currently, three major detectors are in operation (more specifically currently one of
them is in an upgrade process and not performing scientific measurements). The GEO
detector is a German-British effort with its detector being located close to Hanover,
Germany. It has an arm-length of about 600m and tries to incorporate the latest
detector hardware and techniques. The Virgo detector is operated in Italy has an arm-
length of approximately 3km. The LIGO detectors are located in the U.S.A., one in
state of Washington, and one in Louisiana. Both interferometers have an arm-length of
4km and to date have achieved the highest sensitivity in their respective noise curves.
The basic principle of these detectors is simple: If a gravitational wave passes by, it
will change the arm-length of the detectors. By construction the arms are oriented to
each other with an angle of 90 degrees and taking into account the polarizations states
of gravitational waves (see chapter 1), the photons traveling through one arm would
need to travel a longer distance than the other, leading to an interference pattern in the
detection screen. This interference pattern is measured and is the basic output of the
detector. However, due to the many noise sources that influence the detector and due
to the vanishingly small nature of a possible gravitational wave distortion changing the
detectors arm-lengths, sophisticated techniques for filtering the expected signal from
the detector noise are needed. For a certain class of gravitational wave sources we can
accurately predict the signal, and we can use this in combination with data analysis
techniques for statistically analyzing the detector output. There are many ways in
which this analysis can be done but in this thesis the approach of matched-filtering was
used to obtain the results presented in this chapter.

A gravitational wave signal from the merger of two compact objects provides an
ideal candidate for detection. The most probable types of these systems are formed
by two neutron stars or black holes. Mixed binary systems may also be detected but
at the moment it is unclear how likely these source are and they play a minor role in
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the effort of current gravitational wave data analysis. Binary systems consisting of two
inspiraling black holes can be modeled analytically very well by the use of PN expansion
theory for the inspiral phase and perturbation theory for the ring-down. Recently, also
the gravitational wave signature of the merger can be predicted very well by Numerical
Relativity simulations. Historically, the search for gravitational waves from CBC was
carried out using templates in the matched filtering techniques that only consisted
of the pre-merger part of the signal. But the radiated energy reaches its maximum
during the merger and thus it is desirable to include the full waveform in constructing
the templates for a matched-filtering pipeline. Recently, hybrid waveform models have
been suggested [360, 361, 362] which combine PN theory and numerical relativity to
construct waveforms covering the very long inspiral as well as the merger by stitching
the two models together. The use of these inspiral-merger-ringdown (IMR) waveforms
is currently the state-of the art in CBC detection pipelines.

Astrophysical binary black-hole systems can be characterized by the mass of the
two black holes (or the mass-ratio) and the spin vectors of the two individual black
holes (see section1.5 for more details). As we do not precisely know which systems we
can expect to detect we need to in principle search every possible combination of the
7-dimensional parameter space. This however is too expensive to carry out in practice.
In most searches up to now the spin of the black holes was mainly ignored and non-
spinning waveform models were used as this greatly reduces the parameter space to
sample as well as simplifies the modeling considerably. With the construction of IMR
waveforms however models for including spin effects have been suggested.

In this chapter we first present the basic concepts and techniques used in modified
version of the CBC pipeline. It has been extended to included phenomenological wave-
form models for the matched filter. We focus our presentation on the waveform models
we use, the construction of a spinning template bank, and the heart of the detection
pipeline, the matched-filtering algorithm. We provide first results on searching for CBC
signals with templates constructed from IMR waveforms using aligned or anti-aligned
spins with respect to the orbital angular momentum of the binary. We provide ba-
sic comparisons between non-spinning waveforms and waveforms including spin effects
and determine the effect on the detection statistics of CBC signals. Finally we present
results obtained using injected waveforms in simulated detector noise to estimate the
improvement on detection statistics and parameter estimation for CBC sources. The
presentation here follows closely [363].

13.1 Waveform models

Searches for CBC signals in data from ground-based detectors have long used PN
approximate waveforms as templates (e.g. [364, 365]). However, these waveforms are
only applicable in the pre-merger regime. Numerical Relativity simulations allow an
exploration of the merger and ring-down regimes, but the computational resources
needed to produce even short waveforms prohibit using Numerical Relativity waveforms
for template searches. In recent years, there have therefore been several efforts to
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develop full (semi-)analytic IMR waveforms, which can be computed quickly enough
to be used for template searches, for example effective one-body/Numerical-Relativity
(EOBNR) templates [366].

The first such phenomenological model was fitted using just mass and mass ratio
to hybrids of non-spinning numerical waveforms and TaylorT1 2PN[360]. This model
was extended to spinning waveforms in two separate studies, one carrying out the
hybridization in the time domain[361] and one in the frequency domain [362]. These
latter waveforms are used in this thesis. They were fitted to numerical waveforms from
several groups, and made use of a 3.5PN expansion of the phase, including incomplete
spin terms at 3PN and 3.5PN, and a 3PN expansion of the amplitude. They also
depend on three intrinsic physical parameters, M , η and χ. We use these waveforms
to investigate the effects of including and/or neglecting spin when using the findchirp
search.

Phenomenological waveforms are produced by matching PN approximate waveforms
to several Numerical Relativity waveforms. These hybrid waveforms are fitted with
functions, dependent on several phenomenological parameters. These are, in turn,
functions of the physical parameters characterizing the two black holes. The two black
holes are characterized by their masses, mi, and the magnitude of their spins,

Si = |χi|m2
i , i = 1, 2. (13.1)

The physical parameters that are used to create the waveforms are the total mass,
M = m1 +m2, the symmetric mass ratio,

η =
m1m2

(m1 +m2)2 , (13.2)

and the mass-weighted total spin of the system,

χ =
1 + δ

2
χ1 +

1− δ
2

χ2, (13.3)

where δ = (m1−m2)/M . We integrate up to the Lorentzian ringdown (LRD) frequency,
which is mass and mass-ratio dependent, but does not depend on the spin,

fLRD = 1.2
1− 0.63(1− 3.4641016η + 2.9η2)0.3

2π(1− 0.057181η − 0.498η2)M
. (13.4)

13.2 Creating spinning template banks

In order to efficiently search the parameter space, template banks are created. In the
case of a two-dimensional search (i.e. η-Mchirp) the optimal spacing is a hexagonal
lattice, with the lattice determined using the metric. In fact, often the τ0-τ3 space is
used, as the parameter space is flatter.

When we extend to a three-dimensional search, including the χ parameter, the
simplest approach is to construct a two-dimensional lattice in η-Mchirp or τ0-τ3 space,
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Figure 13.1: Plot showing the waveforms from a binary at 500 MPc, with “average”
sky position. The waveforms have mass ratio η = 0.25 and total mass M = 40M�. The
solid line shows the waveform with spin χ = 0, the dashed line has spin χ = −0.5 and the
dotted line has spine χ = 0.5. The waveform stays in band for longer for higher spins. The
upper cutoff is given by the LRD frequency, Equation (13.4). The solid black line shows
the advanced LIGO spectrum for comparison.

then replicate this at regular intervals in χ space (we call this a stacked bank. This,
has been used in some limited cases, however it does not allow for the possibility of
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the metric varying significantly with χ. In order to construct an optimal template
bank, we could choose to construct a lattice on the metric using an optimal spacing
(e.g. body-centered cubic). However, this is not a trivial approach. It has been shown
that, at low dimensionality, it is similarly efficient to construct a stochastic template
bank [367]. We compare the use of a stacked bank with a stochastic bank, and show
that the stochastic method is an efficient way to construct a template bank.

13.2.1 Approximation to the overlap using Fisher matrices

In order to form a template bank, we must place templates such that the minimum
overlap between any waveform in the parameter space and any waveform in the bank is
0.97 (or whatever we choose). In order to do this efficiently, we use a metric constructed
with Fisher matrices. The Fisher matrix has elements given by

Γij =

(
∂h̃(f ;θ)

∂θi

∣∣∣∣∣∂h̃(f ;θ)

∂θj

)
, (13.5)

where θ is the parameter vector of the injected waveform. In order to approximate the
ambiguity function, we must use the normalized Fisher matrix,

Γ̂ij =
Γij(

h̃(f ;θ)|h̃(f ;θ)
) . (13.6)

We approximate the overlap with a Gaussian function with a covariance matrix
equal to the inverse of the Fisher matrix

A(θ,θ′) = max
t′c,φ′c

[
exp

(
−1

2
(θ′ − θ)T · Γ · (θ′ − θ)

)]
, (13.7)

Here θ′ is the vector of parameters of the search waveform, and the function is max-
imized over the extrinsic parameters – time and phase of coalescence – of the search
waveform. The maximization of a Gaussian can be done analytically, and we find the
maxima at

tc =

∑3
i=η,χ,M (ΓitcΓφcφc − ΓiφcΓtctc)(θ

′
i − θi)

Γ2
φctc
− ΓφcφcΓtctc

(13.8)

φc =

∑3
i=η,χ,M (ΓiφcΓtctc − ΓitcΓφctc)(θ

′
i − θi)

Γ2
φctc
− ΓφcφcΓtctc

. (13.9)

Figure 13.2 shows the actual overlap and its approximation using Fisher matrices for a
particular waveform. We see that the Fisher Matrix approximation is a little narrower
that the actual overlap, so its use gives us a slightly overpopulated template bank.

The stacked bank contained 154 templates, while the stochastic bank contained only
89. This indicates that the stacked bank is intrinsically less efficient than a stochastic
bank. If we plot the template points, we also see that the density of points depends on
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Figure 13.2: Plot of the 2d overlap contours using the (maximized) overlap and the
Fisher Matrix approximation

the spin – higher values of χ seem to require higher densities of points. If we compare
the biases obtained for the three parameters, we see that they are comparable for both
banks. The stochastic bank is much more efficient, containing slightly over half the
number of templates, but giving similar biases.

13.3 Effects of spin

Until now, it has been assumed that the use of non-spinning templates for a match-
filtered search will decrease detection efficiency within acceptable limits (below 10%).
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Figure 13.3: Plots showing the templates in two banks with minimal match 0.97. Red
stars are the stacked bank, blue crosses the stochastic bank

We investigate the effect that introducing a spin contribution has on the detection effi-
ciency of a search, along with the bias that it may introduce on the recovered parame-
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ters. We use the full spinning IMR waveforms as our fiducial target waveform, and use
the non-spinning versions (i.e. χ = 0) as our search waveforms. The results presented in
this section were obtained running in simulated detector output using data segments of
a length of 4096. Signal were injected using waveforms of the phenomenological family
including spin effects presented in 13.1. Filtering was first performed using waveforms
modeled by inspiral only waveforms as a reference to what was previously used in data
analysis pipelines. Next we present the improvements in the detection statistic when
we in contrast filter with the same phenomenological templates as injected including
spin effects. The results in terms of the detection statistics are presented in figures ??
and 13.5.

Figure 13.4: Detection statistics overview for injected signals in Gaussian detector noise.
The left panel shows the results when filtering with non-spinning inspiral only templates,
while the right panel presents results obtained when filtering with a templates constructed
from a phenomenological waveform family including spin effects. Coincidence properties
of the recovered triggers are indicated by the different symbols explained in the legend in
the top-right corner of the respective plots. H1 represents the Hanford LIGO detector, L1
the Livingston LIGO detector, and V1 the Virgo detector.

Figure ?? shows an overview over the detection statistic achieved by filtering with
non-spinning templates in contrast to filtering with phenomenological templates includ-
ing spin. The top panel uses Schwarzschild ISCO waveforms used in typical searches in
current pipelines. Shown is the effective distance as recovered in the H1 detector versus
the end-time of the recovered signal. The missed signals are obvious and constitute a
good portion of the total number of injected signals. In contrast in the lower panel of
this figure we show the same plot but now in the case when we filter with templates
including spin effects. We find that only a few signals are missed, indicating that the
detection statistic is superior in its ability to efficiently detect spinning inspiral signals.

Figure 13.5 presents data illustrating the recovery of the degenerate spin parameter
χ. In the top panel the recovered spin parameter χ is plotted against the injected one.
It is evident that we use five point in sampling the range in χ and signals are recovered
with these values. The lower panel shows a histogram version of the fractional error in
χ including a fit to the data and the fit parameters.
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Figure 13.5: Injection and recovery in the degenerate spin parameter χ of the binary as
obtained for the H1 LIGO detector. The left panel shows recovered versus injected χ. The
right panel shows a histogram view of the fractional error (blue bars) in χ in the recovered
signals when compared with the injected ones. In addition a Gaussian fit is included (red
curve).

If we were to search with only non-spinning waveforms, this would severely reduce
our detection efficiency. It would also introduce a bias on the value of η′ and M ′ that
maximize the overlap.

13.3.1 Bias on parameters

In addition to missing signals due to filtering with non-spinning waveform templates
only, we will also introduce a bias for the parameters for the successfully recovered
signals. To estimate the bias figure 13.6 shows the ambiguity function predicted bias
on the parameter η of the recovered inspiral signal. We show the ambiguity function
predicted bias in η for three choices of η corresponding to mass ratios 1 : 1,1 : 2, and
1 : 3. We clearly see a predicted bias on the spin parameter χ.

To make our analysis more quantitative we continue to compare the predicted bias
on η with the bias obtained in simulated detector data. The data is colored with the
LIGO spectrum and we first carry out a search using non-spinning templates. The top
panel of figure 13.7 shows the predicted bias for different values of η as solid lines and
the actual relative error in recovered versus injected signal parameters. The results
from the simulation clearly follow the predicted trend with an additional statistical
distribution around these curves. When in contrast performing the search with tem-
plates including spin effects, we do not see a trend following the predicted bias for
non-spinning waveforms. This is illustrated in the bottom panel of figure 13.7, which
again shows the relative error in η of recovered versus injected signals. It is evident
that in this case we only see a statistical distribution of values around zero.
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Figure 13.6: Plot showing the relative bias on η corresponding to the maxima of the
(approximate) ambiguity function. The target waveforms have mass ratio 1:1 (solid), 2:1
(dashed) and 3:1 (dotted), and have total mass equal to 40M�. The line becomes horizontal
for high spin as the symmetric mass ratio is constrained to be physical (η ≤ 0.25).

13.4 Implications for future searches

We have taken the first steps in investigating the effects of using spinning waveform
models in a matched-filtering based CBC analysis pipeline. We have found that by
constructing spinning template banks and using phenomenological waveform models
in the matched filter we can considerably increase the ability of our detection pipeline
to detect injected spinning signals in simulated detector data. In addition we have
analyzed the bias on recovered signal parameters and provide an example study of the
mass-ratio parameter η. We have investigated how the predicted bias relates with the
bias obtained from searches in simulated data and found good agreement. Additionally
we have shown that this bias mostly vanishes when using spinning waveforms when
filtering. In combination these results indicate that by the inclusion of spin effects in
CBC pipelines we can expect to improve the detection statistics for spinning signals as
well as reduce the bias in the recovered signal parameters when compared to searches
using non-spinning templates. The inclusion of spin in the search for inspiral signal
from CBC sources ensures a much better detection efficiency, as well as reduces bias
on estimated parameters.
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Figure 13.7: Plots showing the predicted relative bias on η corresponding to the maxima
of the ambiguity function, for target waveforms with mass ratio 1:1 (blue), 2:1 (purple)
and 3:1 (yellow). Also the bias obtained when carrying out a search in data colored with
LIGO spectra, when the search was carried out with non-spinning templates (a) and with
spinning templates (b).
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14

The big picture: Summary and
conclusion

Binary black-hole mergers are undoubtedly one of the most exciting events in our
universe. Observing such events would enable us to gain insight into gravity in a
highly dynamical strong field regime. Furthermore, in the case of supermassive black
holes these mergers will not take place in an isolated setting and their interaction with
surrounding gas and matter will be a fertile ground for exciting new physics. More
specifically, as the gravitational wave emission becomes the dominant mechanism of
energy loss of the inspiraling black holes, the binary will probably be surrounded by a
circumbinary, likely magnetized, accretion disk. The interior region then will be mostly
devoid of matter, and the binary immersed in a low-density gas and a plasma. If the
disk is magnetized, the magnetic field will also reach the region containing the black
holes. This setting provides an exciting possibility of studying various observational
signatures of binary black-hole mergers.

Gravitational waves from binary black-hole mergers are among the prime sources
for current earth-based as well as planned future space-based detectors. In the case of
supermassive black holes the possibility of detecting an EM counterpart to the gravita-
tional wave signature is particularly important as it would allow for the measurement
of the red-shift and would boost our understanding of the source by an enormous
amount. In this way, we would be able to determine not only the sky position with
much more accuracy, but also learn about the surrounding matter, the host galaxy and
the cosmological setting.

Apart from the observational prospects binary black-hole mergers also provide an
interesting setting to study the geometry and structure of space-time itself. By studying
the geometry in this highly dynamical and non-linear setting we can learn a lot about
the merger process and even connect geometric quantities to measurable ones, like the
radiated angular momentum. This opens a completely new way of analyzing binary
black-hole mergers in terms of quantities defined in the near-field region.

In this dissertation we have reported on our work towards modeling a variety of as-
pects regarding binary black-hole merger simulations and the closely connected analysis
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of their gravitational wave signature. First, we have performed numerical simulations of
head-on unequal mass binary black holes and shown a correlation between the effective
curvature anisotropies and the radiated linear momentum in gravitational waves. Addi-
tionally we have introduced a number of geometric quantities constructed on dynamical
and isolated horizons which may serve as valuable tools in the analysis of black-hole
mergers. In a further step we have investigated the time evolution of the individual
apparent horizons in an unequal-mass head-on collision of two black holes and provided
the first systematic analysis of the evolution of these surfaces. In a second part of this
thesis, we have investigated the possible EM signatures of supermassive binary black-
hole mergers, when immersed in a magnetic field or plasma. We have carried out the
first simulations of spinning black-hole mergers in a uniform magnetic field, determined
the effect of the spin on the EM field and the radiation that is generated, and have
assessed the relevance of the processes for astrophysical detectability. In a second step,
we have extended our model to include plasma effects and have proposed a new way
of measuring the radiation content of space-times when dealing with sources of non-
compact support. We have shown an overall improved efficiency in the radiated energy
but also have found restrictions on the visibility of the collimated emission. Third,
we have investigated the effect of using spinning waveform templates in state-of-the-
art data analysis pipelines for the search of gravitational waves from binary black-hole
mergers. In this way we have demonstrated an overall improved detection statistics
and reduced bias when recovering source parameters of spinning signals.

In the following we summarize the results found in this dissertation, draw quanti-
tative and qualitative conclusions based on current knowledge and provide an outlook
towards possible future research.

14.1 Explaining the anti-kick in binary black-hole mergers

We have demonstrated that qualitative and quantitative aspects of the post-merger
recoil dynamics at infinity can be understood in terms of the evolution of the geometry
of the common horizon of the resulting black hole. More importantly, we have shown
that suitably-built quantities defined on inner and outer world-tubes can act as test
screens responding to the space-time geometry in the bulk, thus opening the way to a
precise cross-correlation approach to probe the dynamics of space-time. We have con-
structed a phenomenological vector K̃eff

i (t) on the dynamical horizon sections, which
captures the global properties of the flux of Bondi linear momentum (dPB

i /dt)(t) at
infinity, namely (proportional to) the acceleration of the black hole. At the same time,
we have developed a cross-correlation methodology which is able to compensate for the
gauge character of the time evolution on the two surfaces. The effective curvature vec-
tor reflects the properties of the black hole and in particular its exponentially damped
ringing. The timescales associated with this process, which are inevitably imprinted
in our geometric variables, provided also a natural connection with the approach dis-
cussed in [213], where the anti-kick is explained in terms of the spectral features of the
signal at large distances. In the setting of a 3+1 approach to the black-hole space-time
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construction, the foliation uniqueness of dynamical horizons provides a rigid structure
that confers a preferred character to these hypersurfaces as probes of the black-hole
geometry. Employed as inner screens in the cross-correlation approach, this DH foli-
ation uniqueness permits to introduce the preferred normalization of the null normals
to apparent horizon sections and, consequently, a preferred angular scaling in the Weyl
scalars on these horizons. We have linked the effective curvature vector K̃eff

i (t) to the

identification of the shear σ
(h)
ab , associated with the DH evolution vector ha, as being

proportional to a geometric DH news-like function N
(H)

ab . This identification provides

a (refined) geometric flux quantity (dP
(H)
/dv)i(v) on DH sections to be correlated to

the flux of Bondi linear momentum (dPB/du)i at I+. We have advocated the physical
relevance of tracking the internal horizon in 3 + 1 black-hole evolutions and from the
perspective of a viscous-horizon analogy we have identified a dynamical decay time-
scale τ associated with bulk viscosity and an oscillation time-scale T associated with
the shear viscosity.

14.2 The merger of small and large black holes from a
geometric perspective

We have given independent confirmation of the penetration of individual MOTS re-
ported in [281] and furthermore presented the first detailed analysis of the time evo-
lution and ultimate fate of the individual and common inner apparent horizons in a
head-on unequal-mass binary black-hole merger. The larger apparent horizon produces
a strong tidal effect in its mean curvature localized towards the line of approach of the
two black holes. As the two horizons touch for the first time their mean curvatures
match at the point of osculation. We have obtained a maximum overlap that accounts
to about 1/2 of the coordinate area of the smaller apparent horizon. The time evolu-
tion of the area and of the determinant of the induced metric on the apparent horizon
exhibits a discrete jump during the stage when both apparent horizons are overlapping.

14.3 Vacuum EM counterparts of binary black-hole merg-
ers

We have analyzed the phenomenology that accompanies the inspiral and merger of
black-hole binaries in a uniform magnetic field which is assumed to be anchored to
a distant circumbinary disc. Our attention has been concentrated on binaries with
equal masses and equal spins which are either aligned or anti-aligned with the orbital
angular momentum; in the case of supermassive black holes, these configurations are
indeed expected to be the most common ones [333, 334]. The simulations reveal sev-
eral interesting aspects. The orbital motion of the black holes distorts the essentially
uniform magnetic fields around the black holes and induces a quadrupolar electric field
analogous to the one produced by the Hall effect for two conductors rotating in a uni-
form magnetic field. In addition, both electric and magnetic fields lines are dragged
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by the orbital dynamics of the binary. As a result, a time variability is induced in the
EM fields, which is clearly correlated with the orbital behavior and ultimately with
the gravitational wave emission. The EM fields become, therefore, faithful tracers of
the space-time evolution. As a result of the binary inspiral and merger, a net flux
of EM energy is induced which, for the ` = 2,m ± 2 modes is intimately tied, via a
constant scaling factors in phase and amplitude, to the gravitational energy released in
gravitational waves. This specular behavior in the amplitude evolution disappears for
higher-order modes, even though the phase evolution remains the same for all modes.
Although the global large-scale structure of the EM fields is dictated by the orbital
motion, the individual spins of the black holes further distort the EM field lines in
their vicinities. These small-scale fields may lead to interesting dynamics and to the
extraction of energy via acceleration of particles along open magnetic field lines or via
magnetic reconnection. The energy emission in EM waves scales quadratically with the
total spin and is given by Erad

EM
/M ' 10−15

(
M/108 M�

)2 (
B/104 G

)2
, thus being 13

orders of magnitude smaller than the gravitational energy for realistic magnetic fields.
This EM emission is at frequencies of ∼ 10−4(108M�/M) Hz, which are well outside
those accessible to astronomical radio observations. As a result, it is unlikely that the
EM emission discussed here can be detected directly and simultaneously with the grav-
itational wave one. Processes driven by the changes in the EM fields could however
yield observable events. In particular we argue that if the accretion rate of the cir-
cumbinary disc is small and sufficiently stable over the time-scale of the final inspiral,
then the EM emission may be observable indirectly as it will alter the accretion rate
through the magnetic torques exerted by the distorted magnetic field lines. All of these
results indicate that the interplay of strong gravitational and EM fields represents a
fertile ground for the development of interesting phenomena. The results presented in
this dissertation, constitute interesting first steps in this direction.

14.4 On the detectability of dual jets from binary black-
hole mergers

Dual jets are produced during the inspiral and merger of supermassive black holes
immersed in a force-free plasma threaded by a uniform magnetic field. These dual
jets are furthermore accompanied by a non-collimated emission. The energy per unit
angle in the jets is dominant throughout the whole course of our simulation but the
total energy flux is predominantly quadrupolar in nature, with the non-collimated
emission being about 10−100 times larger than the collimated one. The non-collimated
emission is composed of two contributions. A truly EM radiation part arises due to
perturbation in the electromagentic fields of the kind ~dE × ~dB in the Poynting flux.
In addition, a contribution due to the presence of non-vanishing background EM fields
needs to be properly accounted for as it does not correspond to genuine electromagentic
radiation. Extrapolating the luminosity dependence back in time it may or may not
be possible that in the earlier inspiral the jets become the dominant feature. On the
whole, our findings set restrictions on the detectability of dual jets during the merger
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14.5 Improving detection statistics for gravitational wave signals from
binary black-hole mergers including spin-effects

stage of coalescing black-hole binaries due to the presence of a dominant non-collimated
emission. However the strong non-collimated emission in combination with the dual jet
structure makes it overall more likely to detect an EM counterpart to the gravitational
wave signature of supermassive black-hole binaries if astrophysical conditions similar
to those in this simplified scenario are realized.

14.5 Improving detection statistics for gravitational wave
signals from binary black-hole mergers including spin-
effects

By constructing spinning template banks and using phenomenological waveform models
in a matched-filtering based data analysis pipeline we have considerably increased the
ability of our pipeline to detect injected spinning signals in simulated detector data.
In addition, the bias on recovered signal parameters is reduced. More specifically,
a systematic bias in the evaluation of the mass ratio, that arises in searches with
non-spinning template, is eliminated. The inclusion of spin effects ensures a much
better detection efficiency, reduces drastically the number of missed signals due to
inappropriate waveform templates and reduces the bias on estimated parameters of the
source.

14.6 Conclusion and outlook

All of the material discussed above highlights the importance of binary black-hole
mergers as a candidate for both observations and the geometric analysis of non-linear
dynamics in the strong field regime of GR. With the advent of the advanced generation
of detectors within the next five years, the scenarios considered in this thesis, may
become reality.

In the future we plan to investigate in a deeper fashion the space-time geometry
in binary black-hole mergers. We plan to extend our analysis to more generic situa-
tions by the inclusion of spin and allowing for inspiraling orbits. The modeling of EM
signatures of binary black-hole mergers and assessing their detectability with current
and future EM telescopes is of great importance. The models presented in this disser-
tation are very simple and provide only a first, although promising and exciting, step
towards understanding the signatures of these events. We plan to extend our models
and perform simulations including both matter and plasma effects in addition to the
presence of EM fields. This results in a major redesign of the codes presented in this
dissertation, but offers a fascinating opportunity to explore new physics.

Our future goal is to model each of the aspects explored in this thesis in a more
realistic and accurate fashion capturing all the relevant physical effects in the prob-
lem.The space-time structure of binary black-hole mergers needs to be understood to
unravel the driving mechanisms behind the signatures of the merger. In addition, bi-
nary black-hole merger simulations need to be extended to allow for the most realistic
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modeling of their environment and we need to have a data analysis pipeline that covers
the parameter space with accurate templates in an efficient way. The combination of all
of these aspects will put us in the position to gain the maximum insight, once we start
making observations of these systems. Furthermore, connecting gravitational wave sig-
nals with measurements of EM telescopes will boost significantly our understanding of
black-hole coalescence and of their environments.
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Appendix A

Constants and units

In General Relativity it is common to use geometric units, i.e., G = 1 = c. The mass
unit M in vacuum space-times can be chosen arbitrarily. This results in mass, time and
spatial distance being measured in units of meters m. We here report the conversion
factors to the CGS system. A solar mass can be expressed as

1M� = 1.9891 · 1030 kg = 1476.63m = 4.92549 · 10−6 s. (A.1)

The constants used in these conversions are c = 299792458 m/s and G/c2 = 7.4247 ·
1028 m/kg. Table ?? shows a selection of quantities and their dimensions in the geo-
metric and CGS unit systems.

Quantity Symbol Unit[Geom] Unit[CGS]

Time t M s
Distance d M m

Mass M M kg
Energy E M J

Frequency f 1/M Hz
Angular momentum J M2 Js

Table A.1: Geometric and CGS units of a selection of useful quantities.

223



A. CONSTANTS AND UNITS

224



Appendix B

Sensitivity curves

We here report the sensitivities profiles that can be used to compute PSDs and SNRs
in the data analysis devoted part of this thesis. As the results were targeted at the
ground-based detectors LIGO and Virgo, we restrict the presentation to these sensitiv-
ity curves only.

LIGO:

Sh(f) = S0

[(
4.49f

f0

)−56

+ 0.16

(
f

f0

)−4.52

+ 0.52 + 0.32

(
f

f0

)2
]
, (B.1)

with
S0 = 9 · 10−46 and f0 = 150Hz.

Virgo:

Sh(f) = S0

[(
7.87f

f0

)−4.8

+
6

17

(
f

f0

)
+

(
1 +

(
f

f0

)2
)]

, (B.2)

with
S0 = 10.2 · 10−46 and f0 = 500Hz.
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[142] B. Brügmann, W. Tichy, and N. Jansen, “Numerical Simulation of Orbiting Black Holes,” Physical Review
Letters, vol. 92, pp. 211101–+, May 2004. 44

[143] P. Diener, F. Herrmann, D. Pollney, E. Schnetter, E. Seidel, R. Takahashi, J. Thornburg, and J. Ventrella,
“Accurate Evolution of Orbiting Binary Black Holes,” Physical Review Letters, vol. 96, pp. 121101–+,
Mar. 2006. 44

[144] J. Brown, “Puncture Evolution of Schwarzschild Black Holes,” Phys.Rev., vol. D77, p. 044018, 2008. 45

[145] J. Thornburg, P. Diener, D. Pollney, L. Rezzolla, E. Schnetter, E. Seidel, and R. Takahashi, “Are moving
punctures equivalent to moving black holes?,” Classical and Quantum Gravity, vol. 24, pp. 3911–3918,
Aug. 2007. 45

[146] C. Bona, C. Palenzuela-Luque, and C. Bona-Casas, Elements of Numerical Relativity and Relativistic
Hydrodynamics: From Einstein’ s Equations to Astrophysical Simulations. Springer Publishing Company,
Incorporated, 2009. 47

235



REFERENCES

[147] L. Baiotti, B. Giacomazzo, and L. Rezzolla, “Accurate evolutions of inspiralling neutron-star binaries:
Prompt and delayed collapse to a black hole,” Phys. Rev. D, vol. 78, p. 084033, Oct. 2008. 51

[148] S. Komissarov, “Multi-dimensional Numerical Scheme for Resistive Relativistic MHD,”
Mon.Not.Roy.Astron.Soc., 2007. 53

[149] C. Palenzuela, L. Lehner, and S. L. Liebling, “Dual Jets from Binary Black Holes,” Science, vol. 329,
p. 927, 2010. 53, 162

[150] S. Komissarov, “Electrodynamics of black hole magnetospheres,” Mon.Not.Roy.Astron.Soc., vol. 350,
p. 407, 2004. 53, 54

[151] S. Komissarov, “Observations of the Blandford-Znajek and the MHD Penrose processes in computer
simulations of black hole magnetospheres,” Mon.Not.Roy.Astron.Soc., vol. 359, pp. 801–808, 2005. 54

[152] D. Alic and others in preparation, 2011. 54, 182

[153] e. Frauendiener, J. and e. Friedrich, H., “The conformal structure of space-time: Geometry, analysis,
numerics,” 2002. 56

[154] R. Penrose and W. Rindler, “SPINORS AND SPACE-TIME. VOL. 2: SPINOR AND TWISTOR METH-
ODS IN SPACE-TIME GEOMETRY,” 1986. 56, 61

[155] N. O Murchadha and J. W. York, “Gravitational energy,” Phys.Rev., vol. D10, pp. 2345–2357, 1974. 57

[156] R. Sachs, “Gravitational waves in general relativity. 6. The outgoing radiation condition,”
Proc.Roy.Soc.Lond., vol. A264, pp. 309–338, 1961. 61

[157] R. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,”
Proc.Roy.Soc.Lond., vol. A270, pp. 103–126, 1962. 61

[158] I. Hinder, B. Wardell, and E. Bentivegna, “Falloff of the Weyl scalars in binary black hole spacetimes,”
Phys.Rev., vol. D84, p. 024036, 2011. 61

[159] D. Pollney, C. Reisswig, N. Dorband, E. Schnetter, and P. Diener, “The Asymptotic Falloff of Local
Waveform Measurements in Numerical Relativity,” Phys.Rev., vol. D80, p. 121502, 2009. 61, 106

[160] L. Gunnarsen, H. Shinkai, and K. Maeda, “A ‘3+1’ method for finding principal null directions,” Class.
Quantum Grav., vol. 12, pp. 133–140, 1995. 61

[161] S. A. Teukolsky, “Perturbations of a rotating black hole. 1. Fundamental equations for gravitational
electromagnetic and neutrino field perturbations,” Astrophys.J., vol. 185, pp. 635–647, 1973. Ph.D. Thesis
(Advisor: Kip S. Thorne). 62, 63, 65

[162] M. Ruiz, R. Takahashi, M. Alcubierre, and D. Nunez, “Multipole expansions for energy and momenta
carried by gravitational waves,” Gen.Rel.Grav., vol. 40, p. 2467, 2008. 63, 64

[163] M. Favata, S. A. Hughes, and D. E. Holz, “How black holes get their kicks: Gravitational radiation recoil
revisited,” Astrophys.J., vol. 607, pp. L5–L8, 2004. 64, 99

[164] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and
Applications. Springer Publishing Company, Incorporated, 1st ed., 2007. 70

[165] B. Fornberg, “Generation of Finite Difference Formulas on Arbitrarily Spaced Grids,” Mathematics of
Computation, vol. 51, no. 184, pp. 699–706, 1988. 71

[166] H. Kreiss and J. Oliger, Methods for the approximate solution of time dependent problems: Global Atmo-
spheric Research Programme (GARP) ; WMO-ICSU Joint Organizing Committee. GARP publications
series, Genf, 1973. 71

[167] B. Gustafsson, H. O. Kreiss, and J. Oliger, “Time dependent problems and difference methods,” 1996.
72, 73, 74, 75

236



REFERENCES

[168] J. G. Charney, R. Fjörtoft, and J. von Neumann, “Numerical Integration of the Barotropic Vorticity
Equation,” Tellus, vol. 2, pp. 237–+, Aug. 1950. 73, 75

[169] J. Crank, P. Nicolson, and D. R. Hartree, “A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type,” Proceedings of the Cambridge Philosophical
Society, vol. 43, pp. 50–+, 1947. 73
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