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ABSTRACT
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(a/ 7.')3 iorings the theoretical prediction into agreement with the CERN
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(0.36 = 0,04)(a/ 7r)3., The theoretical errors represent the accuracy

of the required seven-dimensional numerical integrations.
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1. INTRODUCTION AND SUMMARY

The anomalous magnetic moments of the electron and muon have played
central roles in the testing of the validity of quantum electrodynamics and the
search for possible differences in the basie properties of the leptons. The in-
creasing precision of present and projected measurements of the g-factor now

promises a confrontation with the predictions of theory through sixth order in

perturbation theory. In addition, the muon moment can provide a fundamental

sum rule limit on the electromagnetic coupling to the entire spectrum of hadrons
as well as a limit on the influence of weak interactions on the lepton field. 1

Unfortunately, the complete calculation of ihe sixth order radiative correc-

_ tions to the lepton vertex — especially those graphs which cannot be obtained from

insertions of second or fourth order corrections to the photon and fermion propa-
gators — is horrendous. There are two central probleme: (1) the réduction of
rﬁatrix elemenf:s with three loop integrations to Feynman paramefric form, and
(2) the 1nu1tidiﬁ1ensional integration of the resulting integrand.

In this paper we present a computation of the photon-photon scattering sub-
diagram contribution to the sixth order Ihagne’eic moment of the electron and muon.
In order to avoid computational errors in the reduction to parametric form we
have carried out our calculation in two different ways: one follows the standard
Landau techniques outlined in the book of Bjorken and Drell, 2 and the other is
based en the method developed by Nakanishi3 and Kinoshita.4 We have calculated

most integrands including all those that contribute to the fn (m“ /m o) term by hand.

" In the end, all of the trace algebra and substitutions were performed automatically

using REDUCE, an algebraic computation program developed by A. C. Hearn. o
For the practical solution to the second problem we have resorted to numerical
integration using a novel program (originally developed by G. Sheppey at CERN6
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and improved by one of us (AJD)) which on successive iterations improves the
Riemann integration grid through a random variable sampling technique. In the
rest of this section we prescent a comparison of theory and experiment and outline
the remainder of the paper.
The most recent CERN measurement of the anomalous part of the muon g~
1
factor gives

_ -8
Boxp = (116616 £ 31 x 107 . (1.1)

The experimental error is about 7% of the (o/ 7r)2 term: in th(_»z theoretical prediction.,
Thus, for a serious confrontation of theory and.experiment, the theoretioal result
must be improved to an accuracy of order 1077 or better, thich requires knowl-
edge of the 013 radiative corrections, hadronic corrections, and possibly correc-
tions due to weak intermediate bosons. N

The theoretical result for the muon g-factor which has been célculated previous

to this work from standard quantum electrodynamics is
(1/2)(ee/ 7y + 0.76578 (oz/7r)2 + 3.00 (oz/7r)3 . (1.2)

The fourth order term has been evaluated analytically up to and including ferms
of order (a/ 7r)2 (me/ mu)z. 8 The last term consists of two parts, one is the con-
tribution to the lepton vertex which involves only one type of lepton, and the other
in which both leptons appear. An estimate of the first contribution based on the
technique of sidewise dispersion relations gives 0.13 (a/ 71)3. 9 A term [00055 (@/ n')3] »
not included in the above estimate was obtained recently by an analytic calculation
of diagrams containing fourth order vacuwum polarization due to muon pairs. 10
(These mass-independent contributions are of course common to the clectron
g-factor.) The second part is obtained by insertion of electron loops of fourth

and scecond order into the virtual photon lines of the second and fourth order
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11,12,13, 14

electromagnetic vertices of the muon, This contribution can be

written in the form
3

. 3
() -4 i mg 52 -2
[9 (ﬁn(m“/me)> 1,114 ﬂn(m“/me) + 2,44} =) =2.82 (1r . (1.3)
It was found that the coefficients of the logarithmic terms can be obtained simply
by algebraic manipulation of the renormalization constant Z3 and the muon magnetic
moment of the second and fourth orders. 11 Several terms contributing to the non-

11,14

logarithmic terms in (1. 3) have been calculated directly. Although some

non-logarithmic terms are still to be evéluated, they are at least estimated in
Ref. 13.,15 The error of this estimate will probabiy ﬁot exceed * 0.5 (o/7 3. 16

The latest estﬁnate of the contribution from strong interactions (vacuum polar-
_ization due to hadi-ons) to the muon g-factor, based on the Orsay colliding beam

. + - : . 17
data fore +e — p, w, and ¢ resonances, is

8

B drons = (6+5 £ 0.5) X 107 | (L
If one uses the vah;e18
a1 = 137.03608 = 0.00026 (1.5)

for the fine structure constant, one obtains from (1.2) and (1.4) the theoretical
prediction

a = (116564 + 2) x 107, | (1.6)

which disagrees slightly (1.7 sfandard deviations) with the experimental value (1. 1).‘
The error interval in (1. 6) reflects the uncertainty in the strong interaction con-
tribution [0. 5 x 10—8], in the value of a/2m [0. 2% 10_8} , and in the sixth order
correqtion (1.3) [O. 6 X 1()_8 . It does not take into account the uncertainty in the
magnitude of the vacuum polarization contribution of higher mass hadrons. 19 We

£

. . . , , 20
have also not included possible weak interaction corrections to the muon moment,

which could be expected to be of order 1 x 10—8.

-4 -




Also not included in the above error estimate is the contribution from the
sixth order diagrams containing photon-photon scattering subdiagrams (Fig. 1.
Of course this is because it has not been successfully calculated or estimated

11,13, 21 have been directed at finding out whether

thus far. Earlier altempts
this contribution contains !ln(m“/ m.) terms or not. Unfortunately, it is not easy
to detect the presence or absence of logarithmic terms without extensive calcu-
lations. In fact, on the basis of general consideration of the mass singul_arity,4
it can be shown that the individual diagrams of Fig. 1 may contribute to the loga-
rithmic terms. On the other hand, these terms might cancel each other when
contributions from all six diagrams are put together. Indeed several arguments
have been put forward indicating such a cancellation. 11 However, since none of
- these arguments has been Vfree from loopholes, we have been convinced that this
question cannot be settled short of an all-out effort. Once we decided to settle
fhe question of logarithmic terms by an extensive calculation, it was not much
harder to evaluate the Feynman integrals for the graphs of ‘f‘ig. 1 exactly.

’i‘he result of our calculation of thé contriblitio‘n from the three photon ex-

--change diagrams turns out to be surprisingly large

3
Aapho’con—photon =(18.4 = 1.1) (a/m

=(23.0 = 1.4) X 1078, (1.7
This leads us to a revised theoretical prédiction
- -8
Bneory = (116987 + 3) X 10 (1.8)
and
a__-a = (29 + 34) x 107°
exp theory N
= (250 £ 290) ppm. (1.9)




Thus the addition of the photon-photon scattering contribution essentially elimi~
nates the discrepancy mentioned above. The theqfetical error in (1.8) includes

the uncertainty due to the numerical integration of the contribution (1.7) [1.4 X 10—8].
This error could be reduced if necessary. We wish to emphasize that, with the

- inclusion of the photon-photon scattering contribution (i, 7), all of the Feynman
diagrams from quantum electrodynamics which contribute to the difference of

the muon and electron magnetic moments through sixth order have been calculated
‘or estimated. 13 | |

| The largeness of the contribution (1. 7) is closely related to a logarithmic .

dependence on the muon and electron mass ratio. In fact, in the iimit of large

m“/me the result (1.7) can be expressed in the form

. » " A k 3 N .
éaphoton-photon = [(6.4 + 0. 1) I’.n(mu/me) + const.] (»oz/ . | (1. 10)

. Thus earlier axjgumen’csl‘1 indicating a cancellation among the diagrams of Fig. 1
for the logarithmic terms are disproved. |

éince no approximations are made in the reduétion of the Feynman integ-rals.
-to parametric form, we can also obtain the photon-photonbscattering contribution

to the sixth order anomalous magnetic moment of the electron. Our result is

(Aa = (0.36  0.04) (a/7)°

e)photon—photon

= (0.45 £0.,05) X 1078, (1.11)

where the error limits represent the uncertainty in the required numerical inte-
grations in seven dimensions. For completeness, the mass independent contri-
bution (1.11) must be added into the muon result (1.8).

Combining (1.11) with the previously calculated or estimated sixth order con-

tributions given in Refs. 9 and 10, the theoretical prediction for the electron
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moment is
a, = (1/2)(e/n) - 0.32848 (/TP + 0.55 (a/1)° . (1.12)

The last term is by no means the entire theoretical result for the sixth order coelficient,
since second order vacuum polarization insertions into the fourth order vertex
have not been calculated and, in addition, the reliabilityﬁ of the estimate of Ref. 9
is not certain. Note that the calculation of Mignaco an.d Re‘middilo correspondsk

to the contribution of three- and four-particle intermediate states in the sixth
order Feynman diagrams containing fourth order vacuum polarization. The fact
that this contribution is not so small casts some doubt on the validity of thé two~
particle approximatidn used in the dispersion-theoretical calculations.

The‘experimental value of the electron moment from the Michigzm group 1522
_ ! -9
(Cdexp = (1159549 = 30) x 10 |
= (1/2)(a /m) ~ 0.32848 (@/m? - (7.0 & 2.4)(a/1r)3, (1.13)

where we have used the value of o from (1.5) and the fourth order theoretical pre-
dictién to obtain an experimental determination of fhe sixth order coefficient. It
will be interesting to see whether future experiments and further development of
the theorctical result will confirm the indicated discrepancy of sign and magnitude
of the sixth order coefficient.

In the next sections we discuss the calculation of the results (1.7) and (1.11).
In Section 2 we introduce a method which enables us to éxtract_ the magnetic mo-
ment contribution of the diagrams of Fig. 1 automatically. This leads us to the
introduction of the set of four modified Feynman diagrams shown in Fig., 2. There
are, of course, many ways of introducing the Feynman parameters, and it is
important to choose a method which gives as simple a result as possible, as well

as exposing all the identities implicit in the formulas. Decause of its simplicity

-7 -




an smmraind Tl <

and versatility we shall use the double parametric representation of Feynman
amplitudes introduced a few years ago.,4 Its appliéation to the diagrams of Fig. 2
is given in Section 3. In Section 4 we carry out the trace calculations and other
simplifying operations and present the exact form of the Feynman integrals using
"currents' as auxiliary variables, which is perhaps the most transparent and eco-
nomical way of writing down these ix.m‘cegrals° In Section 5 we discuss an alternate,
more standard method which we have also used to derive the Feynman parametric
integrals. The connections between the two reduction methods is discussed, and
an important identity, readily utilized by REDUCE, to simplify namerator expres-
sions with high powers of loop momenta is given. In Sectién 6 We" study the be-~
havior qf the Feynman integrals in the limit where p = (me/ mM)2 tends to zero.

- The method of numerical integration used to evaluate the integrals as well as the

| results of computation are discussed in Section 7. Some properties of the functions
. ;Ai and Bij are described in Appendix A. In Appendix B we give the unsimplified
output of REDUCE for graph IV. Some formulas needed in Section 6 are given in’

Appehdix C.




2. EXTRACTION OF THE MAGNETIC MOMENT TERM

According to the Feynman-Dyson rules, we can write the contribution of the
graphs of Fig. 1 in the forn123

m

¢p'lslp, A = -i2n* 8%(p'-p-24) 75 €M, (2. 1)

/ 2
(2m) (2A0p Op 0)
where

2
BV 4 4 -2 -2 -2 u o
M=—p [d'p; d'pgp;"py by € M ( pl,pz,p3, -4)
(2

(2.2)

X l—l(p') 'YK'(F“I-m”)‘l 'Yp(lé5—m“)-1 'Yo- u(p),

~and [ K por is thé polarization tensor of fourth rank representing the photon-photon

scattering

4
4 1 -1
KP(TP-( pl,Pz,p3, -4) = Z;)‘Ifd Pg Tr [ny (166 m ) v (167 m ) (158-me) 'Yp.qéﬁ)—me)

+ five other terms - regularization terms] . (2. 3)

As usual, all momenta are restricted by the energy-momentum conservation law

at each vertex. As is well known, individual terms of HKPO'M are logarithmically
divergent for large p 6 but the sum of all six terms is convergent and well defined

if it is properly regularized. In the intégral (2.2), each term may again diverge
because of the photon-photon scattering subdiagrams. In addition each term may
diverge logarithmically when all three.momenta Py» Pgs and Pg 80 to infinity simul-
taneously. Nevertheless, it is expected that cancellation of ultraviolet divergences
takes place, as in photon~photon scattering, and that there will be no real divergence

problem as far as the magnetic moment term of (2. 2) is concerned.




Although it is not difficult to show by direct calculation that this is in fact
the case, it would be convenient if the formula (Z.é) could be rewritten so that the
cancellation of ultraviolet divergénces is manifestly evident from the beginning.
This can be achieved by making use of the identity

v & .
ok

I7 {-n n .n -A\:-/‘_\‘
Kpou' T1°F2°Fg3 TV

o~~~
>
~—

lrlr,{po.u (-pl’ PgrPgs -4) ,
which is easily obtained by differentiating the condition of gauge invariance

A

ro

4 4

—~~

with respect to AP , regarding, e.g., A, Pys Py as independent variables,

Substitdting (2.4) into (2. 3) we obtain

M= HA dpY) M, ulp) | (2.6)
where |

2
_ e (a4 -2 -2 -
M, 2’ fd Py d'Pg Py Py g
(2.7)
8

K -1 -1
X[_;Zﬁ HKPO'V(-pl’pz’p3’_A)’Y (ﬁ4-m”) ‘)/)(ﬁ5-n1u) 'Yo."

Now, when the differentiation with respect to A is carried out explicitly in (2.7),

M can be regarded as a sum of the modified Feynman diagrams shown in Fig. 2.
Since each diagram of Fig. 2 contains an electron loop with five vertices, it is

clear that no ultraviolet divergences arise from integrations over internal momenta.
Thus no diagram of Fig. 2 requires subtraction or regularization any longer and
each gives a well-defined and convergent contribution to the muon magnetic mo-
ment. This means that each term can be evaluated separately by a straight-

forward application of the techniques of Feynman parameterization,
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Also since M in (2. 6) is already proportional to A , we can put A=0 in'M .
after differentiation to obtain the static magnetic moment. 24 This simplifies the
calculation considérably. '

In order to extract the magnetic moment term from the second rank tensor
u M‘wu, we note ’;hat, becaus_e of covariance under Lorentz transfol‘mati.ons; it
can be expressed in the form

W) M, u(p) =" 45, + Byv,-7,%,) + CB,y, +DP,v, + TP .| up)

' ' (2.8)
where P = (p+p')/2 and we have omitted terms containing A in (2. 8) according to |
our remark in the précedmg paragraph. 24 Since AY Pv = 0, the D and E terms do
not contx;ibﬁte to the magnetic moment. The C term does not céntribu.te either
since A” ﬁ'yvu = 0 by current conservéfion. The coefficient A must be equal to
zero in order that (2.8) satisfy gauge ihvariance. Thus the only contribution to the
” niagnetic moment arises from the B term and is equal to Aa = -4 m B. In order
to project out the magnetic moment term in (2.6), we have only to multiply both
sides of (2.8) by u(p) (-,F 'yv—ryv 3/1 ) u(p') and sum over initial and final positive
.énergy spin states of the muon. Thus we obtain25

Aa = -4 muB = Zé}l-r-l; p%ij.np Tr((}f-!—m“) (’}}l’y” —'yV ')/l)(ﬁ'+m“) M“V) . (2.9)
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3. DOUBLE PARAMETRIC REPRESENTATION

In introduciné Feynman parameters in (2 9), it is important to chocse them
so that the result can be expressed in as éimple a form as possible. Otherwise
pfoblems of this complexity easily become uhma.nageab'le. We shall use the double
parametric representation of Feynman amplitudes,4 probably one of the simplest
systematic methods. Further simplification is achieved by a judicious choice of

 Feynman parameters common to all graphs of Fig. 2, enabling us to express the

denominators of all integrands in identical form, and by introducing (as is shown
in Section 4) auxiliary parameters, 'c'alléd "currents", which simplify the form of
nu.merat_ors enormbusly. | | |

Let us first parameterize graph I whose lines are labeled as shown in Fig. 2.
We shall write the propagator for the ith internal boson 1’ine of mass m, as

[(ri + qi)2 - miz + ie] B , (3.1)
where we have put p; =T; + 9 T, and q, representing variable and fixed momenta..
We choose T and qi in such a way that they satisfy the separate "momentum con~-

' servation laws"
2Er; =0, o+ q; + external momenta = 0 (3.2)

for each vertex, where + or - is chosen according as ri+qi is incoming or out-

going. Other than that they are left indeterminate for the moment. If the ith line

is a fermion line, the corresponding propagator is obtained by applying the operator

. 0
. _1 2 8
+ ]Di +m, with D'i =3 f drni 59 (3.3)
2 i
m, '




on (3.1), where the sign + or - should be chosen according as 9 is in the dircction
of the arrow of the fermion linc or not.

Noting that the D-operator (3.3) can be interchanged with the integration over
the momenfa rys Tos Ty in (2, 7) because this integral is absolutely cohvergent, we
can express the contribution of graph I to the anomalous magnetic moment of the

muon (2.9) as follows:26

4 4 4
1 2e® drydirgdir, ‘
Aa = g =S FT , , (3.4)
48m o 12 “0°1§ 10 9 9
#o(2m) n ((r,+q,) - m: +i€)
; i H i
i=1
where | ,
= , v..p 1 K P o
Fo= T [Brm)0Fy” o B ) o By ) v B 7] (.9
and | '

Py =T [y, Bgtmy) v (B ) 3 Bgrm) 4, Bgrm ) 7, Byt
(3.6)
Before we carry out the ri—i_ntegration, let us first collect all propagators
whose integration momenta r, are identical and can be expressed by a common
variable r, The set of all such propagators will be called a chain @¢. For in-

stance, the lines 1 and 4 have the same integration momentum r, =r,, and will

1 4

constitute the chain @. Making use of the Feynman parameters Xy and x 4 with

Xyt X 4= 1, we shall combine the corresponding propagators into the form27

dx(o ‘
(n,-1)! N 2( :} % (3.7
[(ra dg) - o™ 1]
where noz=2 is the number of lines in the chain o and
dx(a) = 8(1—x1—x4) d.xl dx4 ;
9 T %194 + X4<l4 s ' (3.8)

<

Q
X
i

v 2y o o e 22
xlml Fx4m4 ,xlx(l(ql q4) _ o
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Expressions of the form (3.7) can be written down in the same fashion for the
chains B=(3,5) and y = (8 9, 10) Remaining lines form chains by themselves:
A=(7), p=(6), v =( )~

Now the integrand of (3.4) is a product of factors of the form (3.7), which

can be combined into a single denominator using the formula

‘ ni—l nm-l
Iml (ni"l)! ( 1)' 8(1"2 1-. Y -Zm) Zl dzlo ° .Zm dZm
= (n=- 1 X 3
; . n
i=1 g i (z,2 + Zoly Fteest zmam)

i
(3.9)
where n = n, + n, +o0ot noe The resulting expression can be integrated easily
with respect to the momenta Ty etc., and the integral in (3.4) can be expressed

in the double parametric form

31137 f dz : (3.10)
v¥(2) [Vix, 2) - ie]*

28

where the discriminant U(z) is ahomogeneous polynomial of order 3 m Z,
Vix,z) = zZ, v (x) +ooot z, V (x) + v(x,2) , (3.11)
-v(x,2z)U(z) = Zg2.7 2Zq 2, v2 )(qﬁ q +q)\)
+ zaz'yz“(zﬁ+z>\+zv)(q ~-q +q )
zazﬁz (z +z +z )(qa-qﬁ qv)
‘+ zlzuzv(za’kz +z¢(—q +q +qv)2
B TS M 3

+zaz’yz Z (g -q +q -q )

vita ty A
+ .
ZBZ Z Z (qp qy+qp+qv) , (3.12)
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and

dz=6 (l—za-. .‘o—?u) dz(a)...dz{v) ,

na"'

1 ,
dz(a) = Zy dza dx(a), etc. | (3.13)

Substituting (3.10) into (3.4), we {inally obtain

3 ' . o
1 o dz . ]
Aa = z=i— (£) F F . (3.14)
417 256 " (1r) 0 IfUz(Z)[V(X’Z)__K]LL

Advantages in adopting.this parameterization afe twofold: (1) The discriminant
U(z) is determined completely by the topological structure of the chain diagram and
not by individual lines. Since all six graphsv have the same chain structure, U(z)
is common to all graphs if we name the chains in an appropriate manner. (2) The
denominator function V(x,z) takes the most compact aﬁd explicit form for this
parameterization. The fofmula for v(x,z) will be much more lengthy than (3.12)

) for any other way of parameterization. In addition, if we introduce chains in the
other graphs so that they have the same chain structure as graph I, for inétance
a=(1,4), B=(3,5), v=(8,9), A=(7), p=(6,10), v =(2) for graph IV, ‘we find
‘that not only U(z) but also v(x,z) given by (3.12) (and hence V(x,z)) are identical
with those of graph I; the only differences between different graphs being contained
in the explicit expressions for 9, Va(x), and dz(a) given by (3.8) and (3.13). As
is shown later, even these differences disappear in the end.

Thus, at least formally, the contributions AHII’ Aa’III’ AaI to the muon mag-

\Y
netic moment from the remaining graphs can be expressed by the formula (3. 14)

if only we replace FI by

Fp = Tr [yu(ﬁﬁﬂne) 'yp(ﬁ7+me) Y, Byrm ) v, (ﬁg-Fme) Y, (Jbloﬂne)] , (3.15)
i [V,{ (Pgtme) v, (Brrme) v, (Byrme) y, (By g )y (Bg+m e)] . (3.1
Fry = 1x [yK(Y)10+me) Bty v (B )y (Bgm )y, (Bytm e)] . (3.17)
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The factor -1 in FHI arises because A” flows in the opposite direction around the

electron loop relative to the other three graphs.

-16 -




4. TRACES AND D-OPERATIONS

Our next task is to perform the trace calculation and determine the effect
of D-operations explicitly.
The trace calculation for graph I is simplified considerably if one notes that

F. can be written as

I
F, = (—D D+ m2> F! + the remainder - (4. 1)
I 9710 " Me/ *1 ‘ ’ )
'w‘ith : :
F} =Tr [yK Bgtmg) v, (Bym) oy, (By-m,) .'YV] v (4.2)

where the remainder consists of terms which are either symmetric in 4 and v or
proportional to D g~ D9 and Dg - D1 0 and thus give vanishing contribution to Aa.[ .

Furthermore we have29

2 dz 1 dz!
(—DD +m )/——----.:-—/ , (4. 3)
9710 e U2V4 3 UZV ~

xlo-—O _

where dz' has the same form as dz defined by (3.13) except that dz(s) is replaced
by

dz'(y) = zy dz'y dx8 dX9 8(1-x8-x (4.4)

9
Using (4. 1) and (4.3) we can therefore simplify (3. 14) to
3

: _ 1 a ' dz? '
e T <1r> FoFxf 2. 3] - (4.5)
m U“v _
ST

In the same fashion AaH and Aam can be expressed in the form (4.5) if we replace

t
FI by

Pl =T - / ’ ]
I‘1'.[ Ir l:'yh,‘y“(DG me) ox (ﬁ7+me) o (y)8+me)] (4.6)
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and

¥y, = -Tr [VK(DGer AR (B,;-m) yuyo_(zssafme)] , (4.7

and interpret dz' somewhat differently. In the case of Aary,, We do not obtain too

much simplification.' But we write FIV as

Fry =Fry= Tr [YK NP 7"’0%]( Dgbd 1o+m2) (-Dgp 9”“2)
+2 Dg, Tr ['yxyuyp(p 7 v, B 9+?11e):] (-D 1 O+.m2)
+2Dg T [yK(zs 16T 7B 7rme) yayv] (-—D §Dg+m>)
+4D GuDSV Tr [—yK(JD 10+1‘ne) 'yp(JD gtm e) Yy (E9+me):l
+ vanishing terms , | . \ (4.8)

and apply formulas similar to (4.3).

It is also convenient to write FO comihg from the muon lines as

Fo=2m, Tr[( fl?)3 +p vﬁqﬁ){ﬁ(vﬂv e I Gy 3/‘)16]
e m, Tr [YB BT B0 P + o 8] (4.9)

This is obtained using the identities resulting from the mass shell condition

922 :
“.

(Bm ) o Bprm ) = @B )/ Br2n)

(4. 10)
Bgim )y (x4+m ) = (Byy"+20 )(xf+m )
where we have made use of the equations
D1 =D 4 P
(4.11)

which follow from (A. 3).




In order to carry out the D-operation explicitly, it is convenient to introduce

\

the functions

N’ 1 oV
Q=g 2L (4.12)
i 2xiza aqiu
' 2
U 8
g 2V ’ (4" 13)

1wy ij 2}_(izaszl3 6q"jt aq:)
- J

where the lines i and j belong to the chains ¢ and B, respectively. Then it is easy
to see that the result of applying D-operators on 1/Vn», n being a sufficiently large

positive integer, can be expressed in term.s of @'s and B's as follows:

1 _ WY 1 By
n P _ ()
oy m v® 2(n-1) gv® 1

b o o Lo%w%% 1 st %8Pt Ul By
vt n 2(n-1) a gt T

| (4.14)

As is shown in Appendix A, the quantity Q; satisfies the "Kirchhoff's laws,,"2 Thus
it can be regarded as the "current' running through the 'ith line for given "external
currents" p, p' and given "resistances" (i.e., given values of Feynman parameters)

- of internal lines.
In our problem in which we put p' = p eventually, all internal currents Qi#
become proportional fo p# and thus the proportionality coefficient Ai defined by
A,

Q=P

" “ (4. 15)

-19 -




itself nﬁay be regarded as a current satisfying the Kirchhoff's laws. The functions
Ai and Bij are homogeneous pdlynomials of 2,0 2 B', ceesZ e Their explicit form
and properties are discussed in Appendix A,
We can now carry out the trace calculations and D-operations and write down
. the integrals for AaI, co's ,‘AaIV explicitly in terms of Ai's and Bij's. We shall
write them as follows: | | |
3

Aa-I! =(%) [MI'a + NLI'b + MI'C + MI'd] ’ I" =1, II, HI, v, (4:. 16)

where My, and M, are obtained from the first term of (4 9) and M'I'b and MI’ d

from the second term of (4. 9) Also M,_and M‘I'b are terms which arise from

T'a
the m e.—mdependent part of the electron trace F I' , and MI' and M__[, d represent

the remainders.

In these integrals it is trivial to carry out the Xq and x.  integrations. After

. 10
- this is done, differences among V(x,z) of different graphs disappear completely,

as was mentioned in Section 3, We shall now introduce the new z variables as

follows:
2y =2,% Zo =% = ZgXg Zy=2,%y
: (4.17)
Zg = ZgXg z6=z“, Zg =2, z8=zy .
In terms of these variables U(z) can be written as
U(z) = (zy2,) (2g+25) (2o42,470)
+ (212 {2z, (2 gt t2g) + 2q (2420}
(4.18)

+ (z3+z5){z2 (2g+2772g) + 2g (2,+2g)}

+2zg (ZZZ6 + ZoZn + z6z7) .
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We shall also introduce the notation o S
' v 8 _ ‘
dz, =5(1 - 2 z; L{l dz, (4.19)

W= m;z w, (4. 20)

]

and

where V is given by (3.11) and (3.12).
Since we have carried out all D-operations, we can now put p' = p and A=0 in
the denominator V. Then, after one puts the photon mass equal to zero, the func-

tion W takes the very simple form

2, ., 2 : :
W= az, + bz5 + c.(z 5) + plz gtz +z8) U, - (4.21)
where "
m, \2
p = | 5:-1- 1 (-4. 22)
, M | ;
a= .B47 ={(z +z5) (z +z7+z8) + z‘7-z}8. ,
b= B5'6 - = (z. +z4) (z +2 +z8) + ZgZg 3 p (4.23)
¢ =Byg = Byy= Bgg =~ Byg =2y (g2 +Z8) trghy o

Bij being given in Appendix A.

We are now ready to write down our integrals:

-d-z_0
- A A A A
USWS Zg M1 6 78

[3A7A8 g6+ AglAgByy + AB,g) + 2A (A B, +A8B67)]

Zg [23 47Pes * B 481367] , (4.24)
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dzo'
M =-3/—-—-——-z AA A A A
b U4W3 8 136‘78

e |
1 0 |
*3 _/ 78 [A6A7ASB45 * 2A1A6(A7B58+8A8B57)+A1A3(A8B67+4A7B68)]

1 % .
2 f w8 [2A1(B56B78+5357B68) * 3Ag(By5Bert5By6Bs7)
—-2A6(B47B58—4B48-B57)] , (4. 25)
| g
%c =4 f owe st

- [ 92,

- dZO :
| 'M'Id = p/———-—U2W3 z8A1A3(A6+A7+A8)

i | |
14 0 - - - .
+8 f =3 % [(2A7 3Ag) B, ~2A. (5B, 1356)] , (4.27)

S5 ’
M, =2 [ ——= z (A -A)A A A
Ila Pws 6T e e s

dz .
1 [ %o
*2 f BZ [A7A8(‘356-B46) *38gAg(BgyByg) +Aghy(Byg=3B )

~2A,(AgBgy+ABeg-AgByg) + 2A3(A8B67+A6B78)]

dz
1 %0 | ~
2 _[ P 6 [B5eB78+2358BG7+B46378'2347368'2348367]’ (2.28)
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fdzo
My, =f —= 2z A A_A A A
Ob U4W3 61736778

dz
1 0 .
+y f 13 %g .[AaA7ASB45-‘A3A8(2A6]347+A7B46)

U'w
-A (A A B, G+2A 6A8135 TH2AgAgByg) + A A(A 6B78'2A7Bes)]
1 [ 9% | |
+"fT z6[BA.G(B47B58-B45B78)+A7(2B Beo+B, B ) +A(B, B, +2B, B

57 I )
Utw 4658 48756 46 47756

+A1(5Bs7368"'358367)+A3(B47368“B48367)] » | (4.29)

L, dz
=9, 90 A - -
My = 2% f 2z, [Al(AG Ag-Ag) +Ag (A, A7+A8)]
W
o dz0 o
-8 [—F 2, [B 46-B47-B48+B56—3B57+3B58] , (4. 30)

dz
= 0 - ,
Mg =° f 73 ZetiftglhgSArrAy)

v*w
P dzO |
-5 _/ 27 % [(3A6‘A7“A8) B, (5B,~B o) ~3A,(B 47-1348)] ., (4.31)
Sm ™ . | (4.32)

dz
} 0 )
Myyg = f B (Bgp=2gZg) (ZgA Atz AlA,)

dz
0
3./‘_1;5;;7— (Bgr=ZyZg) (ZgByet2yBsn) | (4. 33)
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“ the integrals MIVa’ voes M‘I

dz
Y N 2
Mpyp = 'J[ A [ZSAIAS(B67A3+ZZZ8A7) *(zgAg) {272y A1+7‘6A6}]

dz | |
‘ 0 |
+3/“*4 [ZSB48(ASBG7'A7BGS) - 242, Ber {212 Al-z6A6}] , (4.34)

U'w _
) "
' MIVC = —ij ——-'Uwz Z6(B46+Z7Z8) . ) (4. 39)
dz0
NLIVd = pf;-“-;z- Z4Z7(Z6-Z8) e (4.36)

Vb by hand calculation. The complete .

integrand was obtained with the help of REDUCE.5 Also some of the formulas

We have obtained all terms except M

given in Appendix A have been used to simplify the integrands. For the benefit

_bf those readers who wish to check our calculations, we shall give in Appendix B

vd in unsimplified form.
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5, AN ALTERNATIVE METHOD

As an alternative and check of the calculation presented in Sectioﬁ 3 and
Section 4, we have also performed the reduction of the formula (2.2) to the para-
metric form (formulas (4.24) — (4. 36)) using the standard techniques ouflined in
Section 18.4 of Ref. 2. The requil;ed extension of thgse techniques to the graphs
of Fig. 1 is discussed here. |

After the traces and index contractions are performed to project out Aa as in
(2.9), and after some simplification with respect to the lines 9 and 10, our inte-
grals can be reduced to the_ basic form
| 4 4

4 ,
d7¢; d78, d7lg F(pyse«-sPyg)

1= 2 : (5.1)

. n)

where F is a polynomial in Pyse«esPg and the denominator may be multiplied by

2

another factor of p;.z-mj » =6, 7, or 8, depending on which graph of Fig. 2 we

are considering. Our labeling of loop momenta 121, !22, 23 is shown in Fig. 3. In
.accordance with the prescription of Ref. 2, we shall write pj as
g
p, =k, + 4 =k, + ; "jr’lr ) | (5.2)

where njr is the projection (*1,0) of p]. along ﬂr. ’.[‘hekj can be any choice of
fixed momenta (independent of ﬂr) such that four momentum conservation is satis~-
fied at the six vertices of Fig. 3.

Next we introduce Feynman parameters ZyseessZgs and rewrite (5.1) as

‘ 8 d4!ll d4£2 d4;z3 F(p)
1=718(1- 2 2 ) da .. ey [ — — . (5.9)
k=1 E 7 (p2__m2)
R\
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If we choose the kj such that

8 o ' . .
Ezjkj =0, r=1,23, (5.4)
j:l .

then the denominator in (5. 3) has no k- £ cross terms:

i 2 2 .
-’ = - . ° 5,
zj (pj mj) D + E U Qr Rr' (5.5)

j=1 r,r'=1
where
p=$ 2 (m2k2) (5. 6)
yA A e V)
51
and
8 |
Upgr = D 2y Mg Ty - (-7
=1

The fixed momenta kl, oo ,k8 are subject to (6~1) linearly independent equa-~

tions (momentum conservation at each vertex, or Kirchhoff's first law) and three

equations (5.4) (Kirchhoff's second law). Thus these momenta are completely and

uniquely determined as functions of external momenta and Feynman parameters.

Since Qj's defined by (4.12) also satisfy the same set of equations as is shown in
Appendix A, and since the solution is unique, k, must be identical with Qj“ Note
that, although qj defined by (3.1) and kj defined by (5. 2) look quite similar, they
are in fact entirely different. The former does not satisfy Kirchhoff's second law
while the latter does. The former is a constant vector independent of Feynman
parameter z while the latter is a function of z.

Although kj is identical with Qj and is thus given explicitly in Appendix A, it

will be instructive to see how they may be determined directly by the Kirchhoff's
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laws., Let us first write down the second law (5.4) explicitly

z.k +z2k +z4k4-z6k6=0 ,

11 2

- - o+ = 5
ke, - 2gfy = Zghy+ 2k =0 (5.8)

Z9 33 7

Z6k6 + z.7k7 + Z8k8 =0

Making use of the first law (four-momentum conservation)

k, =k, + D, k =kg+p
ky =k, -k, =k -k, (5.9)
ke =kg -ky, ky=kg -kg,

we may rewrite (5.8) as
(Zl+Z2+Z4+ZS) k1 - zzk3 - ZGkS =-Z,P,

V—zzk1 + (z2+z3+z5+z7) k3 - Zgkg = -Z:D s ; (5.10)

—zek1 - z7k3 + (2512520) k8 =0 .

The solution kl is given by

=B - - -
kl =T Z, Zg Zg
~Zg . 2ot ate Ty ~Zy
_ (5.11)
0 ~Zn z6+z7+28
=2 A =
U Al Ql }
where A1 is given by (A.7) and U by
U(z) = dczt(Urr,) R ' (5,12)
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or, more explicitly, by (4.18). Other kj's can be determined in the same fashion,

confirming
ki=(A/0p=Q;, ~ j=12...,8. (5.13)

Substituting these kj’s in D of (5. 6), we also obtain

D=V=m;fW/U, . (5.14)
where V is given by (3.11) and W is defined by (4.21).

Now, ‘when the substitution (5.2) is made in the integral (5.1), and averaging
over the direction of p is made, the integrand F(pl, cae ,pS) becomes a polynomial
in -!Zr . We are now ready to carry out the integration over 21, 9.2, and 113 . The
basic intégration over loop momenta is
aty, dby, d*,

3.6 1
maE

T 3 g !

UD
-D + U .2 -2
o+ Ty e

Integrands of (5. 1) containing extra denominator factor pﬁ—mﬁ can be integrated

7!

(5.15)

using parametric differentiation of (5.15) with respect to mﬁ. Similarly, integrands
of (5.1) which contain numerator factors Qj . ﬂk can be integrated30 using parametric

differentiation with respect to the Urr' . For example,

( nk)d;z d!l d!l

B v

4 4, 4
dﬂld !sz 23




We have defined

~ —_ al
U fors=s' ,

= | (5.17)
2Uss' fors #s' ,

and

% ou
Bjk - sz:s' njsnks' Bogr = szs' N3sMks! * (5.18)
?

Notice that B, is the sigﬁed cofactor of Uyt in U. Consequently By s'/ U is the
inverse of the matrix Uss" Again the calculation of B jk given here agrees with
that of Appendix A in terms of ZyseocesZge |

In addition to duadratic terms, numefators with up to six powers of loop
momenta !Zr appear in the computation of graph IV. An important identity for re-
ducing the required higher order derivatives is |

82y 1 1

° 55 o0 . BpBed "2 BacBpa "2 Bad Bpe (5.19)
ab ~ “cd |

which holds for symmetric matrices Urr' = Ur'r . To prove this, let us first

assume that Urr' is not symmetric and all its elements are independent, and show

that
8%y au
U 3535 = Bap Bog = Badg Bpe ? B, = , (5. 20)
9U_1, U 4 gb cd Tad“be ab  dU,;,

holds for such a U. We start from the identity

3 .
Z; Uji By = 950 U - (5. 21)
= ,

- 29 -




Differentiating both sides with respect to Uab we obtain
5B 4+ .U _..._5_2_U.____=53 (5. 22)
al cb I ij aUab ach | ic"ab

Multiplication by Bi q°on both sides and summation over i then yields (5.20), The

proof of (5.19) for the symmetric case is the same ex.cept

—-——laﬁ =3 Biaajb + 5 aib 8ja . (5.23)
ab :

We note that Eqs. (5.19) and (5. 20) hold for matrices of any finite dimension
‘'n > 2, We also note that (5.19) is equivalent to (A. 26).

As a consequence of (5.19), we readily find

4 A .4
dy d, g 0, - 402 1)

10
[’D +2Urr' I Rr']
= DI e (1
Noa Mt an? 1""“""—""'— ("")
as 'bs!' Yer'/dr aUss' 8U By 2

9!

ss' rr' U

.3 _6
iw

B p2ut [4BabBcd * BagBoc * BacBbd] _ (5.24)
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and

4 .4 4
d 'Ql d ﬁz d 23 (!Za° !Zb)(ﬁc . !Zd)(fle !Zf)

- 10
[0 42 U 8 L]

9!

3.6 |
=17 E E E N Ma Mg T M (———1)
= - 1 1M My .~ — -

D as 'bs' ‘er'dr! et 'ft | aUss' 5T 87,., U2

ss' rr! tt! '

.3_6

='-—-1—-1£—[8B B .B .+2B.B +2B.,.B B

5 abDed et ctPed T 2B Be Byr

u’D ab

* 2B, BpaBet * 2BaaBpeBet * 2PaePhtPoa T #PatPreBod

1 \ 1 1.
* 5 BoaBreBes T 5 BaeBraPer T 2 BacPoilde

1 1 1 :

* 3 BatPreBae T 3 BaaPotPee T 2 ParPoatee

+1m B,.++B_B_B (5. 25)
2 acBbe df 2 .aeB'bc df ) ° "

In our calculation of Aa for the graphs of Fig. 2, REDUCE, after it performed the
traces and index contractions, made substitutions including (5.24) and (5.25) to
complete the reduction to parametric form. The resull agrees exactly with

Egs. (4.24) - (4.36). The final form given for MIV is obtained after algebraic

reduction using the Kirchhoff's laws given in Appendix A,
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6. LOGARITHMIC TERMS

to zero. For this purpose we note that the denominator function W is positive
everywhere within the domain of integration as is seen from (4.21) and (4.23).
Therefore any singularity which the integrals (4. 24). - (4.36) may have at p=0
can come only from the domain of integration in the neighborhood of the boundary

| We shall now study the behavior of Aa in the limit where p = (m e/mu)z tends
| defined by

=0 =0

? Zs .

o~
ot
~

%4
According to the ge‘néral analysis of mass singularity, 4 this singularity at z Pl 5=0
is associated with the vanishing of photon and electron masses. The formula (4.21)

also shows that W vanishes at

=z, =2,=0 , (6.2)

However this takes place because U vanishes there and not because V vanishes.
Thus it is associated with the singularity at large virtual momentum of the electron
» "loong and does not lead to any singularity at p=0.‘

We shall therefore exainine the behavior of our integrals in the neighborhood
of z 477 5=0. It is then easy fo see by counting the power of z 4 and z 5 in the numerators
and denominators that the integrals Mty Mprgs Mpgs I'=1, O, III, IV, are all con-
vergentas p—0, and only the integrals M’I'a’ I'=1, O, OI, IV, may have a logarith-
mic singularity in p. In order to determine the coefficients of fnp in these integrals,
we may carry out the integration with respect to z 4 and z 5 OVer a small domain in
the neighborhood of z 472 5=0. For this purpose let us consider the integral -

dz4 d25
W ’ (6. 3)

0<z,+z.<K
J

4
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where W is given by (4.21) and K is a small fixed positive number satisfying
p << K << 1 such that the terms of order (z I 5)3" in W can be ignored. The inte-~
- gration in (6. 8) can be easily performed giving

Vad

dz,dz, | -
W "3 (fnp)G # nonlogarithmic terms ; = (6.4)
0<z,+z. <K
4°5
where
G = G(ao,b’o,co)
a 4+ b
=L [tan? & 4 tant L), (6.5)
VA VA VA,
0 20 0
AO = a.ob0 + a5Cq * boco
= (zgt2Z,%2g) Uy s (6. 6)
and a,, b, ¢, are a, b, ¢ defined by (4.283) evaluated at z 4=z‘5=0, Similarly U, '

is U of (4.18) evaluated at = 45

to g b‘o, and o> We can obtain further relations of the type (6.4). They are given

=0. Differentiating both sides of (6.4) with ¥espect

in Appendix C.

We may now express the Ai's in terms of z ,, z  and the Bijfs as given by (A. 16)

4’ 75

in the integrals (4.24), (4.28), and (4.33), and carry out the z 4 and z 5 integrations

with the help of formulas (6.4), (C.1),...,(C.5). After a straightforward but
lengthy caleulation we find that
28177 =255 ))

U A3/2 + ece g (607)
070

\ = .1!.. "
Mg + My, + Mpp, =5 Unp) f dzg
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and

Z.%
"‘"—'(ﬂnp)‘/'dzu 1 3 6 426 + e ’ . (6.8)
where
1 -
dz!' = 6(1l-z 9 %g g%y 8
x dz, dz, dz dz gdzy dzg (6.9)

In deriving (6.7) and (6.8), we have made extensive use of the "Kirchhoff's laws"

discussed in Appendix A, the identity

. a - C
tan™t —2 1L gt 2 =1, (6. 10)

VA, Va, A

as well as the symmetry of the integrals in (6.7) and (6.8) under the transformations

i) Zy—Zg s z6---—>z,7 . Zg s z8 unchanged ,
ii) Zo+Zg s ZgZg s L Zys 2 unchanged ,
iii) Zi+—>2g s i7<——z8 R Zgs Zg unchanged .

Clearly the leading term of (6.8) is positive definite since B 46 is negative
everywhere. On the other h_and, the leading term of (6. 7) has both positive and
negative contributions and its sign cannot be determined by inspection. However,
in view of the fact that the pairs (Z1» 20q) and (z o9 zg) are more or less equivalent
according to the symmetry iii), it is ,plaﬁsible that (6.7) is also positive. This is

in fact confirmed in Section 7 by numerical integration.
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7. NUMERICAL INTEGRATION

It is obviously beyond our capability to evaluate the seven-fold integrals
(4.24) - (4.36) analytically. We have therefore resorted to the method of numeri-
cal integration. This was greatly facilitated by the availability of a multiple inte-
~ gration program written by G. Sheppey, 6 which could be readily modified to suit
our need.

We are primarily interested in the values of Aa at p = (1/ 207)2 (muonvmdment)
and p=1 (electron moment). However, in view of thé fesults of Section 6, we are
also interested in examining numerically the functional dependence of Aa on p.

Sheppey's progi'am is essen_"cially a simple Riemapn summation corﬂbined with
a sampling techhique which produces an efficient grid by successive approximations.
At the start of the‘ iteration pfocess the domain of integration is divided up into a
number of hypercubes by the user's specification ofrthe number and size of the
integration intérvéls along each axis, (Initial specificafion can be somewhat arbi—-‘
trary because on successive iterations the program will automatically readjust
all interval sizes based on the relative errors it associates with each.) Two points
xI]; and xrzl are selected at random within each hypercube n as points for the evalua-
tion of the integrands — rather than choosing the cen.trallvalue. The arithmetic

averége of the two values is used for the Riemann sum estimate
} Z 1L, o2 |
I= - 5 [f(xn) + I(xn)] AVn R : (7.1)

where AV is the n-th hypercube volume. A variance for each cube is defined
as the square of one-half the difference between the random estimates of the inte-

grand value. The associated error for the Riemann sum is the square root of the




sum of all variances multiplied by 1.82 to give a 91% confidence level:

oo’ 2 |

Upon completion of such an iteration, those cubes which are found to contain the

fx) - f(x )
(av y? (7.2)

greatest relative variance are reduced in size along each edge 1n proportion to
that dimension's contribution to the error, 'a‘nd the ‘process then cycles through
another iteration based on this new set of intervals.
| The successive iterated values ;)f the integral Ii and error oy i=1,2,...,N,
are accumulated under the assumption thai’c they are normally distributed (verified

independently by histograms). Weights (Wi) for each iteration are calculated as
0 (7.3)
i i
:'which gives the most probable (weighted mean) value of the integral:

2 IIWl

- i=1

1= (7.4)
% W,
i=1
with a standard deviation
T = -—-—————7—T X | 7.5
- N 1/2 ° ( . )
(& )
=1 |

The result of each iteration Ii was found in practice to overlap with T within the
error 0 more than 90% of the time.

The integration package was tested on many multidimensional integrals, some
of which were five dilnellsiohal parametric forms similar to the function analyzed

in this paper, but with known analytic solution. Full confidence in the utility of

the program was obtained before it was 'applied to the problem at hand.
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In applying this program to our problem, we instructed REDUCE to punch out
the result of trace calculation and D~operations deécribed in Section 4 in a FORTRAN-
compatible form so that it can be directly fed into the integration program. The
integrand takes the form of a ratio of polynomials times a theta function and is
well-behaved everywhere in the domain 6f. integration for p > 0,

In Fig. 4 we show the anomalous magnetic moment contribution Aa arising
from the graphs of Fig. 1 divided byr(oz/1r)3 aé a funcﬁon of X = iog,lo (p-l)
=_£°g10 (mu/me)z, The error bars indicate a better than 91% confidence interval.
Typical pdints required 10 minutes of computation time on the SLAC IBM 360/91,
after an initial 30 minutes had been used to obtain a distribution of the 50, 000
hypercubes which would be approximately valid for all X. |

The result (1.7) for the special case p = (1/ 20‘7)2 represents the result of more
extensive effort and was obtained after about 30 iterations (about 1 per minute) with
- up to 90,000 hypercubes. ‘Results consistent with (1.7) were also obtained with
grids constrained to have a minimum of five points per axis. | But results with
smallest o, were those on which no such constraints were in.aposed° A typical

result for an iteration is (apart from the factor (a/ 1r)3)
L =177, o, =2.1 (7. 6)

with 2, 4, 2, 22, 25, 2, 6 intervals along the seven axes, reSpec’civelya31 We have
found that largest number of points are concentrated along the z 4 and z 5 2xes, which
is not surprising in view of consideration of Section 6.

A convergent value for p=1 proved much more difficult to obtain, partly be-
cause the integrand is not peaked in any partiéular regions of the variable space
and partly because the theta function constraint on the variables occurs where the

integrand is not small. The latter problem could be avoided and eliminated by a

- 37 -




change of variables

Zg = (l-zl-zz-, o .,—z6) oz7 ,

(7.7

which turns the integral into the form

1 1 1 . :
/ d0!1 f doz2 f da, f(z)(l-zl)(l-zl—zz)...(1—z1-z2-...-ze) .
0 0 0 ;

(7.8)

It was also found convenient to switch Zg and z e Using this form and 600, 000
hypercubes, the integral gave consistent results with small error in a one-hour

- run (5 iterations) on the IBM 360/91. The two best individual iterations gave

1.=0.34, o, =0,06,
1 1
(7.9)

Io=0.37, o-.=00090

i i .
The cumulative result is given by (1.11). All other runs including those without the
change of variables (7.7) overlapped with this result. On the best run the grid
chosen had 583, 200 cubes consisting of 12, 45, 4, 6, 3, 3, 5 intervals along each

of the axes o, through o

1 7"
As was shown in Section 6, the analytic dependence of the photon-photon scat-
tering contribution on p = (me/m”)2 for small p is of the form

Aa(p) = (%)3 [Cl Inp + Cz] , pK1l , ' (7.10)
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The coefficient C1

five dimensional space, giving

as given by (6.7) and (6.8) was numerically integrated over a

C,=-3.19 = 0.04 (7.11)

1

and the result (1.10). As a consistency check we have also integrated (6.7) and
(6.8) separately. They gave approximately equal contributions and their sum

agreed with the above result. The result (7.11) for C, is not inconsistent with a

1

linear fit to the points of Fig. 4 for small p .
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APPENDIX A
KIRCHHOFF'S LAWS FOR Ai'S AND Bij'S

The quantity Q’; defined by (4.12) satisfies the "Kirchhoff's laws', namely,

the sum of '"currents Q‘i‘ " entering any vertex v is conserved

Z:I: d; ==Y # (external currents) , (A.1)
v v

~

where + or - is chosen according as Q, is incoming or outgoing, and the sum of

"yoltage drops' around any closed loop C is zero

anc 1oz =0, (A.2)

_Where the Feynman paraméter X2, is regarded as the '"resistance" of the line i
"of chain ¢, and M is the projection (+1, -1) of q, along C.

The first law (A. 1) follows from

p,op\\ (4 4 4
d4r d4r d4r (Zi(ri+qi)) d rld r3d re
° . 1" "3 "6 _ \ V ‘
(Z *Di> 5B\ ' 73 s A
v Jn <(__rj+qj) - m) 1 <(rj *+q) mi)

where q; are fixed momenta satisfying (3.2). The second law (A.2) is a consequence

of the fact that V(x,z) is invariant under the simultaneous transformation of all q, ©)

C

where 9, ©) represents q, belonging to the closed loop C and qC is an arbitrary

constant 4-vector common to all lines of the loop C.4= This invariance leads us to

c _ ' -
(Z nlC aq;[(C)) q =0 ’ (A.J)

which is equivalent to (A.2) as is easily seen from the definition (4. 12). |
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In our p‘r'oblemrin which the only external current is p“ (since A=0), all in-
ternal currents are proportional to p H. Thus the 1§roportionzdity coefficients Ai
defined by |

Ai ,

Q;it =5 P” (A. 6)
may themselves be regarded as currents satisfying the Kirchhoff's laws. In this
Appendix we shall write down the explicit fo?ms Ofl-A,i and Bij and show that these
functions of z in fact satisfy the Kirchhoff's laws.

Let us first calculate Ai's for graph I from the definitions (4.12) and (A. 6).
Although they are fu‘nc'tions of X2, ,.,x z , it is sufficient for our purpose to

10'y

write them down for the case

X =x10='0 . (A.7

9
Then, in terms of the new z variables defined by (4.17), they can be written down

ba-s follows:

= z4<(z §725) (2 672.72g) +z728> (2,+2,) ( 2,(2 54242 )+z6z7> ,
= -z, ((z5+2.)(z gHat2 )4—z728)+- ((z1+z4xz6+z +2 )4—z6z8).,
= 25((zl+z4)(z6+z +z )’”6‘8) < (242 +2g) + 2g20) »
A =z4(28(zz Zo) + (@ ))+ ( z7(-z1+z4)) .
A z5( +z6) +(z6+z8)(z )4— < z6(z3+:z5)>, >
A8 =‘-z4<z6(z +z3+z5+z7) +'z‘2z7) - Zg (27(zl+zz+z4+z ) + =z2z6> . (A.8)

We have not written down A 4 A5, A9, and AlO explicitly since they are easily
obtained from others making use of the current conservation at external vertices

(i.e., vertices to which at least one external line is attached):

A=A =U
Ag-Ag=U , A (A.9)
Ag=Aj =Ay .
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l
l

It is now easy to check the current conservation at internal vertices:

Aj+A-A = 0,

6~ “10

A2'+A6-A7=0 ,

Ay-A +A =0,

Ag+A -Ag=0 . | (A.10)

Similarly the second Kirchhoff's law can be checked:

<z6A6 + z,7A7 + ZSAS =0 ,
z1A1‘+ z2A2-Fz4A4 -z AL =0, (A.11)
22A2 - z3A3 - z5A5 + z7A7 =0 .
Next we shall examine By, defined by (4.13). Since Bj; is symmetric in i and
j, there ére 55 Bij's altogether. However they are related to each other by various

identities. For instance, it is obvious from the definition (4. 13) that

B,, = B, . ififlor4d ,

By, = Bg; ifi#3o0r5 ,

By, = By, =B, if'i 8,9, or 10,
'Bss=Bs,1o=Bs,1o' : | (A.12)

From (4.13), (3.11), and (3.12) we see that Bij are second derivatives of V,
which is quadratic in the qj, with respect to the qj. Since the derivaﬁves are taken
before the q:.l are fixed, Bij cannot depend on the external momenta or their routing,
but only on the topological structure of the graph. In order to find further properties

of Bij let us note that Q’: can be expressed as a linear combination of Bij

UQ’;=-Z dixz, By,  1=1,2,..,10 , (A3
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where aj is the chain to which the line j belongs. The qj are arbitrary constant

momenta subject only to the 4—’mpménfum conservation law (3. 2); we nee_d not

14

restrict ourselves to Q‘; proportional to p”, This equation follows from definitions

(4.12), (4.13) and the fact that V(x,z) is quadratic in qj" If we choose

= _— ‘ * 1 =
q4 = Qg =P, all other ¢'s. .O
in (A.13), which is consistent with (3.2), we obtain
= (- - B
UQf =(2,By - 2B P .
Since A=0 for this choice of qj, we-may use (A.6) to get

A= 2By 258y

(A. 14)

(A. 15)

(A.16)

Substituting (A.16) into (A.9) or (A.15) into (A.1) for external vertices, and

taking (A.12) into account, we get equations involving diagonal Bij

B,,-B,, =U/z

14 ~ Bag 4
Bgg = By = U/zg

(A.17)

Relaxing condition (A.7) and choosing different qi and external momenta consistent

with (3. 2), we get equations similar to (A,15). Substituting these into (A.1) for

external vertices and using (A.12) we get the general relation

By - By =U/z,% s

where lines i and j belong to the same chain a, .

(A.18)

Similarly, substitution of (A.16) into (A.10) and of expressions like {A.15) into

~ (A.1) for internal vertices yields

Byi+ Bgi ~Bygi =0
Boit Bgi = By =0
B = By + B =0,
Bajt By~ Bg; =0
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if none of the Bij are diagonal, Otherwise we need a slight modification. For
instance

B,,+B,.-B

09 * Bog =-U/z, . (A. 20)

27
These relations may‘be regarded as Kirchhoff's first law for Bij .
In order to obtain the second law for Bij’ we substitute (A.16) into (A.11) and

‘expressions like (A.15) into (A.2).A Again using Xy = %10 = 0, we find

ZgBgi + ZyBy; +2gBg; =0

21813+ 2pBp; +2,By; - 268 =0 (A.21)

;szi—z3B3 z5B5 +Z7B7i 0 .

Finally we give some Bij explicitly in terms of new z variables defined by

(4.17) which corresponds to putting Xg =Xy = 0:

B4 2(z +z +z8) +tZeZy

B, Zg(Zot2 o7 42

46~ " 7 " Zqg*g)
B47 =ZG(Z +z5) = ZyZg
B48 = zs(zz+z3+z5+z7) + ZZ,

277

B56 =z7(z1+z4) -2z ZS "
B57 = 8(z +z +z +z 6) 6(z1+z 4) .
B +2 47 47

58 = ZqlZytEgtR T Be) T 2ok
B67 = zz(zl+z +z4+z +28) + (z 1+z4)(z3+z5) ’
(z1+z 4)(z +2 g2 +z7) + zz(z3+z5)

B78 = (z +z5)(z +z2+z +z6) +z2(zl+z4) . » (A. 22)
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Other formulas of great use can be derived from the observation that, aside .
o . )
from the _termzz o > -ximiz> » the denominator function V(x, z) ‘can be regarded
o i '
as the "'power" burned up in the network. 2 This leads us to a set of equations29

-Qiz+m12=aV/aZi, | i=1, 2,‘00-, 8 [} (A.23)

where Q is defined by (4.12). With the help of (A. 6) and (4.20) this can be trans-
formed into | | |

Af = W(aU/azi)‘ - U(aw/azi) + piU2 . (A. 24)
where |

0 fori=1, 2, 3,

1 for i =4, 5, (A. 25)

©
i

P fori=6, 7, 8.

“Suppose we express W and A, in (A.24) in terms of Bij. and z, and z 5.' Then, com-

4 5
Kirchhoff's law (A.19) repeatedly, we can write down an enormous number of for-

- paring the coefficients of z , and z_ in the resulting expression and usixig the

mulas quadratic in Bij's. Some of them are shown below:

ByeBs7 = ByrBsg = 28U »

BygBgg =~ BygBsg = 27U »

BynBsg = BygBgry =24V »

B,.B..-B,.,B..=B

45867 = ByrPBse Bgy = By7Bgg = BggBgy ~ BygB

48Bg7 ~ 68 = BsgBg7 ~ BseBrsg

B,.,B..,-B, Bl =B_B,., - B..B!

=B 48878 ~ BarBgg = BsgBgg = B5eBgs

B B..B

LA =
67788 68778

=B

r . =
45Bhg = BigBrg =2z,U

48758 2

1 1 - = - V, L =
BgeBss ~ BegBes = BygBgs ~ BygBag = (25125725427 U
1 @ L - o R
Br7Bgg = BrgBrg = BgBrg = BgyBgg = (21¥25%24129 U

' - =
BgePrg ~ BgyBgg = (23+25) U

1 - - : -
B66B58 B56Bb‘8 (z2+z7)U , (A.26)

- 45 -




where Bii, is the polyn‘dmial part of Bii which may also be written é.s 8U/8 Zj
We note that (A.26) is equivalent to the result (5. 1:9).

Formulas such as (A.vll), (A.21), and (A.26) are extremely useful in simpli-
fying the ntimerators of Feynman integrals. ‘Although the usefulness of Kirchhoff's
laws for the study of analytic properties of Feynman infegrals (which'ére derived
~ from the properties of denominators of the integrands)' is well-known, it appears
. that theixf use in the simpliﬁcation of Feynman integrals has not been emphasized
thus far, |

It will be obviong that the above results are also applicable to other graphs

of Fig. 2 if we interpret A9, Alo’ B9i’ and BlO,i in an appropriate fashion.
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APPENDIX B

UNSIMPLIFIED INTEGRANDS FOR GRAPH v

For the benefit of readers who wish to check our calculations, we give here
the unsimplified output of REDUCE for graph IV. Simplificatiori of these integrands
. with the help of the identities given in Appendix A leads us to the formulas (4.33) -
(4.36), As is defined in (A.26), B}, is the polynomial part of B,; and is equal to
.8u/ oz,

dz . 2
Mryva = f I 32 Zazs.[AlAe(BssB'zs ~ BorBae) * A3A7<B'663§8“B68>]

Uw

dz :
0 - 1y - J
+ f B [ZG(A1A6B67 AghrBee Z8A3A7B88]

+

dz 0 ‘
Pt Fo

i ‘
1 -9 _n! R 2 Y
*2 f Ay 268 [B48(BG7B68 366B78)+B47(B66B88 Bgg)* 5B,46BgrBhsBsPre

2

~R! ). - L > !
+ 385 (B55Bl6Bh) + 3B56BosBrsBerPhs) * *Bs(BarBes BGGB78)]

dz '
1 0
+1 ] 0 ' - B B -
P f . [26(3B57366+ 3B56Bg7 ~ ByrBee ~ °BasBer

' _ nt
+ 2g(3BgyBgg + 3BggByg ~ BygBgg + B48B78)]

1‘/'_dzo
= | 2 [B - 3B ] B.1
2) 2w L47 57]° (B. 1)
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dz ‘ .
3 =1 0 - ' ( t nt B2 J4A (B B! -
My, =3 f RECAL [AlAsgAe(BesB'zs BgrPga) *7\BgeBas Bs)+4(BrgBlsBarBes

- RS A
+A13A6A7(B BygBg oBho)ltA (Ag(Be B HALA(B

. i ,. - '
58568 B5658 67" Bsely 56568 358366)$

245 )

L = - A A. )
+A3;A6A7(B Blg~B,gBeg)tA gAg(BygBen=B,oBro)tAr AL (B, Boo~B, Br )

46888 BagBg 48Be7"BagBy
+ A6A7A8(B48356-B46358)}

P | _
l _.__0__ . ; _ ' a _ A \
*3 f 7.7 "% [AlAs(AeBm ArBge) *hghlfyBsg AsBzm)]

'-]; ] _.-—...0—- A A ( t A A tA T 13RS
*2 f . zs[ A1A3(A"7B88+A8B78)+A7A8(A3B48+A1‘B"5?8‘)}

+.;1-‘/-—idf—()—-AAA
2 ) BoZ C1tsh

+1 -EZ—-(-)-zz 3A (BB, B -B..B! B_)
2J oy 678 | **1'%5667 88586618

- .  ' y: {47
)1346(13 Bl +2B B, )+B, (4B

, 2 ot o
+A '32347(1368 BgeB 67588+ 2Bgg By

3 66588 67568 PgeBrg)

=
+Ag 3B45(B67388 BggBrg)+3B,BrgBrg

* 2B47(BggBggB55B68)*Bs(P5657s 4.3533-67).,2

2_',:>_ R » n om N
+ A73345(B68 BgeBss) By6(2B5¢Bgst BygBgg)t Bag(4Bsg BBy 6Bes)

-B67368)+B46(ZB B, +B

56578 T BsgBg7)

1
* Ag gB45(B66378

1 = N— L :
* 2B47(BeeB557B5668) 2 P15 B56567 i]

— 48 -




N | |
14 0, 1. : oy ' :
*3 _[ Ay "6[ 38185686774 3(2B47Bg6" By6Pg7)

- . \ ]
Ag(2B,qB5 6+B45367)+A7(2346356+B45366)]

dz
17 0 , '
*3 f Ay 8 [3A1B58B78+A3(2B47B88+B48B78)

to. -
* Aq(BysBag4By5B5e) As(B4sB78+ZB47358)]

+1 %4 [-ZAB AB.] | | (B.2)
2 ) Py L st 745]’ .

& . C.
} 0 o " S
Mpye = P f A [(B4BB67 B, B78)H(B56Bgs~BssBee)
1 o : -  §
+(B,BggBygBgg) T (BggBeg B56B88)]

dz
0
+of — [28358“6(356"346)] , (B.3)

dz

. =20 -
Myva~2 f B 68 [(A6+A7+A8)(B46358 B4gB50

| . -B B! -
+A1;(B56B88 B5gBee)* (BgeBesPssBee * (PrePrs B58B67)§

(o ' '
+ A3 1(BygPesBagPas) * (BugBogPasBes) * (PasBer Pa6”79

L 0 AR -
+ 5 f_—FUz [26(A3B46 A1B56) + 28(A1B58 A3B48)] . (B.4)
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APPENDIX C

FORMULAS DERIVED FROM (6.4)

Differentiating both sides of (6. 4)' with respect to a, b, and ¢, where we have

omitted the suffix 0 in 24 etc., we obtain further relations:

zidz4dz5 _mp ( o ‘ ' ’
- (b+0) G) + o0 ’ (C'l)
W2 4A0 ate
z,z.dz, dz '
475 24 5_ f/l;p Cl+cG) + .u. : (C.2)
w 0 . o
4 ‘ 2 '
z,dz, dz c{BA_ +3c
i 1 5. g < (52, 5 >—3(b+c)2G>+... ; (C.3)
W 16A5 \ (atc) | /
3 ‘ 2
z,z. dz dz ; 2A,.+3c
5t 5. Mo <- °+c + 3c(b+e) G> Feee s (C.4)
W 164, 2 :
2 2
z,Z dz dz
25 2 5. Mg (3c-(A0+3c2) G) Feee (C.5)
w 16A0
The domain of integration is 0 £ z 4t 25< K in all cases. Similar formulas for
the integrals
z dz dz zz3'dz dz : 4d d
475 74 ™5 Zg G2y C2g
w? T W

are obtained from (C..l), (C.4), and (C.3) by interchanging a and b,
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Fig. 1

- Feynman diagrams containing subdiag:_r_'ams of photon-photon scattering type.
The heavy, thin, and dotted lines represent the muon, electron, and photon,

respectively. There are three more diagrams obtained by reversing the

direction of the electron loop.




Fig. 2

Feynman diagrams obtained from those of Fig. 1 by differentiation with respect
to A. The crosses represent differentiation vertices. The external momenta

are routed so that A always flows through the middle photon line.
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Fig. 3
A diagram indicating the labeling of loop momenta ﬁl, 12, [
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