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ABSTRACT 
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sixth order anomalous magnetic moment of the leptons. Our result 
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(ru/~)~ brings the theoretical prediction into agreement with the CERN 

measurements within the one standarddeviation experimental accuracy. 
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(0.36 * o,O4)(a/~)~. The theoretical errors represent the accuracy 

of the required seven-dimensional numerical integrations. 
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1. INTRODUCTION AND SUMMnIZY 

The anomalous magnetic moments of the electron and muon have played 

central roles in the testing of the validity of quantum electrodynamics and the 

search for possible differences in the basic properties of the leptons. The in- 

creasing precision of present and projected measurem,ents of the g-factor now 

promises a confrontation with the predictions of theory through sixth order in 

perturbation theory. In addition, the muon moment can provide a fundamental 

sum rule limit on the electromagnetic coupling to the entire spectrum of hadrons 

as well as a limit on the influence of weak interactions on the lepton field. ’ 

Unfortunately, the complete,calculation of the sixth order radiative correc- 

tions to the lepton vertex - especially those graphs which cannot be obtained from 

insertions of second or fourth order corrections to the photon and fermion propa- 

gators - is horrendous. There are two central problems: (1) the reduction of 

matrix elements with three loop integrations to Feynman parametric form, and 

(2) the multidimensional integration of the resulting integrand. 

In this paper we present a computation of the photon-photon scatteri.ng sub- 

diagram contribution to the sixth order magnetic moment of the electron and muon. 

In order to avoid computational errors in the reduction to parametric form we 

have carried out our calculation in two different ways: one follows the standard 

Landau techniques outlined in the book of Bjorken and Drell, ’ and the other is 

based on the method developed by Nakanishi3 and Iiinoshita.4 We have calculated 

most integrands including a.11 those that contribute to the ln(mP/me) term by hand. 

In the end, all of the trace algebra and substitutions were performed automati.cnlly 

using REDUCE, an algebraic computation program developed by A. C, Kearn. 5 

For the practical solution to the second problem we have resorted to numerical 

integration using a novel program (originally developed by G. Sheppey at CERN’ 
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and improved by one of us (AJD)) which on successive iterations improves the 

Riemann intcgration,grid through n random variable sampling technique. In the 

rest of this section we yrcscnt a comparison of theory ,uld experiment and outline 

the remainder of the paper 0 

The most recent CERN measurement of the nnom$ous part of the muon g- 

factor gives7 

a exp = (116616 rt 31) X lo+ . (10 1) 

The experimental error is about 7% of the (u/T)~ term in the theoretical prediction, 

Thus, for a serious confrontation of theory and experiment, the theoretical result 

must bc improved to ‘an accuracy of order 10 -7 or better, which requires knowl- 
3 edge of the a! radiative corrections, hadronic corrections, ahd possibly correc- 

tions due to weak intermediate bosons. * 

The theoretical result for the muon g-factor which has been calculated previous 

to this work from standard quantum electrodynamics is 

” (1/2)(&n) + 0.76578 (a/7Q2 + 3900 (c&r)3 0 (1.2) 

The fourth order term has been evaluated analytically up to and including terms 

of order (cr/~)~ (me/“;) 28 . The last term consists of two parts, one is the con- 

tribution to the lepton vertex which involves only one type of lcpton, and the other 

in which both lcptons appear. An estimate of the first contribution based on the 

technique of sidewisc dispersion relations gives 0.13 (a!/~) 39 D A term 0.055 (a/~)3 [ 1 
not included in the above estimate was obtained recently by an analytic calculntion 

of diagrams cont:linil, g fourth order vacuum polarization due to muon pairs. 10 

(These mass-indcpcndcnt contrib~Lions arc of COLU-se common to the electron 

g-factor.) The second pnrt is oblainctl by insertion of electron loops of Fourth 

and sc~cond order into the virlu.al photon lines of the second and fourth ordctr 
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electromagnetic v&ices of the muon, 11,12,13,14 This contribution can be 

written in the form 

[$ (fn(nlP/me))’ - 1.114 kl(mJlxe) + 2,44 I($)” = 2082(!)3 l (1.3) 

It was found that the coefficients of the logarithmic terms can be obtained simply 

by algebraic manipulation of the renormalization constant Z3 and the muon magnetic ,’ 

moment of the second and fourth orders. 11 Several terms contributing to the non- 

logarithmic terms in (1.3) have been calculated directly. 11,14 Although some 

non-logarithmic terms are still to be evaluated, they are at least estimated in 

Ref. 13.15 The error of this ‘estimate will probably not exceed f 0.5 (ol/Q3. l6 

The,latest estimate of the contribution from strong interactions (vacuum polar- 

ization due to hadrons) to the muon g-factor, based on the Orsay colliding beam. 

data for e’ + e-- p, w, and @ resonances, is 17 

ahaclrolls = (6.5 f 0.5) X 10B8 . (1.4) 

If one uses the value18 

a-l = 137.03608 f 0.00026 (1.5) 

for the fine structure constant, one obtains from (1.2) and (1,4) the theoretical 

prediction 

a = (116564 h 2) X low8 , (1.6) 

which disagrees s1ightl.y (1.7 standard deviations) with the experimental value (1.1) D 

The error interval in (1.6) reflects the uncertainty in the strong interacti.on cm- 

tribution 0.5 X 10 [ 
-8 1 , in the value of ar/27r [ 0.2 x 10 -8 1 , and in the sixth order 

correction (1.3) 
II 
0. G X 10 -8 1 . It does not take into account the uncertainty in the 

magn itudc of tho vacuum polarization contribution of higher mass hadrons 0 19 We 

have also not inch&d possi.blc weak interaction corrections to the muon moment, 20 

which could be expcotcd to be of order 1 x 1.0 -8 D 
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Also not included in the above error estimate is the contribution from the 

sixth order diagrams‘ containing photon-photon scattering sulxkagrams (Fig0 1). 

Of course this is because it has not been successfully calculated or estimated 

thus far. Earlier attempts 11,13,21 have been directed at finding out whether 

this contribution contains k(n;/me) terms or not. Unfortunately, it is not easy 

to detect the presence or absence of logarithmic terms without extensive calcu- 

lations. In fact, on the basis of general consideration of the mass singularity, 4 

it can be shown that the individual di‘agrams of Fig. 1 may contribute to the loga- 

rithmic terms o On the other hand, these terms might cancel each other when 

contributions from all six diagrams are put together. Indeed several arguments 

have been put forward indicating such a cancellation. 11 However-, since none of 

these arguments has been free from loopholes, we have been convinced that this 

question caimot be settled short of an all-out effort. Once we decided to settle 

the question of logarithmic terms by an extensive calculation, it was not much 

harder to evaluate the Feynman integrals for the graphs of Fig. 1 exactly, 

The result of our calculation of the contribution from the three photon ex- 

change diagrams turns out to be surprisingly large 

Aa photon-photon = (18.4 k 1.1) (CY/TI) 

= (23.0 f 1.4) X 1O-8 o 

This le‘ads us to a revised theoretical prediction 

atheory = (116587 f 3) x 10F8 

and 

(1.7) 

(1.8) 

a exp - “theory - (29 f 34) x 1o-8 

= (250 f 290) ppm. 
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Thus the addition of the photon-photon scattering contributi,on essentially elimi- 

nates the discrepancy mentioned above. The theoretical error in (1.8) includes 

the uncertainty due to the numerical integration of the contribution (1.7) II -81* 1,4 X 10 

This error could be reduced if necessary. We wish to emphasize that3 with the 

inclusion of the photon-photon scattering contribution (l-7), all of the Feynman 

diagrams from quantum electrodynamics which contribute to the difference of 

the muon and electron magnetic moments through sixth order have been calculated 

‘or estimated. 13 

The largeness of the contribution (1.7) is closely related to a logarithmic 

dependence on the muon and electron mass ratio. In fact, in the limit of large 

mP/me the result (L7) can be expressed in the form 

Aa’ photon-photon f 0.1) fn(lnP/me) + const. (a/*)3 \ ,I (1.10) 

.’ 

Thus earlier arguments 11 indicating a cancellation among the diagrams of Fig, 1 

. for the logarithmic terms are disproved. 

Since no approximations are made in the reduction of the Feynman integrals 

to parametric form, we can also obtain the photon-photon scattering contribution 

to the sixth order anomalous magnetic moment of the electron. Our result is 

(ke)photon-photon = (0.36 f 0.04) (a/$ 

= (0.45 f 0.05) x 1o-8 , (1.11) 

where the error limits represent the uncertainty in the required numerical inte- 

g-rations in seven dimensions. For completeness, the mass independent contri- 

bution (1.11) must be added into the muon result (1.8). 

Combining (1.11) with the previously calculated or estimated sixth order con- 

tributions given in Refs. 9 and 10, the theoretical prediction for the electron 
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moment is 

ae = (l/2)@!& - 0.32845 ((Y/q2 + 0.55 ((Y/q3 . (10 12) 

The last term is by no means the entire theoretical result for the sixth order coeIficient, 

since second order vacuum polarization insertions into the fourth order vortex 

have not been calculated and, in addition, the reliability of the estimate of Ref. 9 
. 

.lO is not certain. Note that the calculation of Mignnco and Remiddl corresponds 

to the contribution of three- and four-particle intermediate states in the sixth 

order Feynman diagrams containing fourth order vacuum polarization. The fact 

that this contribution is not so small casts some doubt on the validity of the two- 

p&tick approximation used in the dispersion-theoretical calculations 0 

The experimental value of the electron moment from the Michigan group is 22 

(ae)exp = (1159549 -I- 30) x 10’9 

= (lh)(a/n) - 0.32848 (CY/T+ - (7.0 f 2.4)(&)3, 

. where we have used the value of Q! from (1,5) and the fourth order theoretical pre’ 

diction to obtain an experimental dctermin.ation of the sixth order coefficient. It 

will be interesting to see whether future experiments and further development of 

the theoretical result will confirm the indicated discrepancy of sign and mqnitude 

of the sixth order coefficient. 

In the next sections we discuss the calcu.lation of the results (1,‘i’) and (loll). 

In Section 2 we introduce a method which enables us to extract the magnetic mo- 

ment contribution of the diagrams of Pig. 1 automatically. This leads us to the 

introduction of the set of four modified Feynman diagrams shown in Fig. 2. There 

are, of course, many ways of introducin g the Feynmnn parameters, and it is 

important to choose a method which gives as simple a result as possible, as well 

as exposing all the identities impl.icit in the formulas. &cause of its simplicity 
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and versatility we shall use the double parametric representation of Feynman 

amplitudes introduced a few years ago, 
4 

Its application to the diagrams of Fig. 2 

is given in Section 3. In Section 4 we cnsry out the trace calculations and other 

simplifying operations and present the exact form of the Feynman integra1.s using 

“currents” as auxiliary variables, which is perhaps the most tr,anspnrcnt and eco- 

nomical way of writing down these integrals. In Sect& 5 we discuss an alternate, 

more standard method which we have also used to derive the Feynman pnrametric 

‘integrals. The connections between the two reduction methods is discussed, and 

an imporkant identity, readily utilized by REDUCE, to simplify numerator expres- 

sions with high powers of loop momenta is given. In Section 6 we study the be- 

havior of the Feynman integrals in the limit where p = (m,/ltiP)2 tends to zero. 

The method of numerical integration used to evaluate the integrals ati well as the 

results of computation are discussed in Section 7. Some ,properties of the functions 
.’ . 

AiandB.. 
13 

are described in Appendix A. In Appendix B we give the unsimplified 

* output of REDUCE for graph IV. Some formulas needed in Section 6 are given in’ 

Appendix C. 
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2. EXTRACTION OF TI-?X MAGNETIC MOMENT TERM \ 

According to the Feynman-Dyson rules, we can write the contribution of the 

graphs of Fig, 1 in the form 
23 

<p’tSip, A> = -i(2r)4 a4(P’-P-A) & -2 eM , (2.1) 
Wo~~o~b) 

where 

e2 ,M=- t2q8 1 d4p 3 p-2 1 p-2 2 p-2 3 Ed n Kpo;u(-~l, ~~9 ~3, -4 

(2.2) 

X G(P’) ~K~(d4-mJ-1 #(&-mJ1 y” U(P), 

and n 
K Po%l 

is the polarization tensor of fourth rank representing the photon-photon 

scattering 

+ five other terms - regularization terms 
3 

. (2.3) 

As usual, all momenta are restricted by the energy-momentum conservation law 

at each vertex. As is well known, individual terms of n 
KPW 

are l.ogarithn~ically 

divergent for large p6, but the sum of all six terms is convergent and well defined 

if it is properly regularized. In the integral (2.2), each term may again diverge 

because of the photon-photon scattering subdiagrams. In addition each term may 

diverge logarithmically when all three momenta pl, p3, and p6 go to infinity simul- 

taneously, Nevertheless, it is expected that cancellation of ultraviolet divergences 

takes PIace, as in photon-photon scattering, and that there will be no real divergence 

problem as far as the magnetic moment term of (2.2) is concerned. 



Although it is not difficult to show by direct calculation that this is in fact 

the case, it would be convenient if the formula (2.2) could be rewritten so that the 

cancellation of ultraviolet divergences is manifestly evident from the beginning. 

This can be achieved by making use of the identity 

n KPcP(-pl, p2, p3, -A) = -A’ L’ n,,,, (-I’,, ~2,1’3’ -A) 
t3AP 

9 (2.4) 

which is easily obtained by differentiating the condition of gauge invariance 

Au n KP~v (-P,, P2’P3’ -A) = 0 

with respect to Ap,. regarding, e.g., A, pl, p3 as independent variables. 

Substituting (2.4) into (2.3) we obtain 

where 

M.= ecLAv ;(p’) M pv u(p) 

e2 M z-p 
PV 

W? 

(2.5) 

(2.6) 

(2.7) 

: XL n 
[ aAp 

KpcV (-PI, P2’ p3’ -A) YK (l44 -m&-l 4(d5-mJ1 Y” 0 1 
Now, when the differentiation with respect to Ap is carried out explicitly in (2.7), 

M can be regarded as a sum of the modified Feynman diagrams shown in Fig. 2. 

Since each diagram of Fig. 2 contains an electron loop with five vertices, it is 

clear that no ultraviolet divergences arise from integrations over internal momenta.. 

Thus no diagram of Fig. 2 requires subtraction or regularization any longer and 

each gives a well-defined and convergent contribution to the muon magnetic mo- 

ment. This means that each term can be evaluated separately by a straight- 

forward application of the techniques of Fcynman parametcrization. 
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Also since M in (2.6) is already proportional to A’, we can put A-20 in,M 
PV 

after differentiation to obtain the static magnetic moment. 24~ This simplifies the 

calculation considerably. 

In order to extract the magnetic moment term from the second rank tensor 

GM 
PV 

u, we note that, because of covariance under Lorentz transformati.ons, it 

can be expressed in ,the form 

3P’) M E.lv u(p) = $P’) Agpv + ~(~~y~- yv yc~) + CPpy, +DPv ycl + EP,& 1 ‘J(P) 

(2.8) 

where P = (p+p’)/2 and we have omitted terms containing A in (2.8) according to 

our remark in the preceding paragraph. 24 Since AvP V = 0, the D and E term.s do 

not contribute to the magnetic moment. The C term does not contribu.te either 

since Av~~v u = 0 by current conservation. The coefficient A must be equal to 

zero in order that (2.8) satisfy gauge invariance. Thus the only contribution to the 

magnetic moment arises from the B term and is equal to Aa = -4 mCIB. In order 

to project out the magnetic moment term in (2,6), we have only to multiply both 

sides of (2.8) by G(p) (~rv-~v #$ ~(1~‘) and sum over initial and final positive 

energy spin states of the muon. Thus we obtain 25 

Aa = -4 “IIB = & fim T$+mJ (‘s”Y” -TV f)(dv+mJ Mpv ) 0 
P PV-+P 

(2.9) 
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3. DOUBLE PARAMETRIC REPRESENTATION 

In introducing Feynman parameters in (2.9), it is important to chocse them 

so that the result can be expressed in as simple a form as possible. Otherwise 

problems of this complexity easily become unmanageable. We shall use the double 

parametric representation of Feynman amplitudes, 4 probably one of the simplest 

systematic methods. Further simplification is achieved by a judicious choice of 

,Feynman parameters common to all graphs of Fig. 2, enabling us to express the 

denominators of all integrands in identical form, and by introducing (as is shown 

in Section 4) auxiliary parameters, called “currents”, which simplify the form of 

numerators enormously. 

Let us first parameterize graph I whose lines are labeled as shown in Fig. 2. 

th We shall write the propagator for the i internal boson line of mass mi as 

Le (r i + 4i)2 
2 

I 

-1 
-mi+ic ¶ (3.1) 

where we have put pi = ri + %’ ri and qi representing variable and fixed momenta. 

We choose ri and 4i in such a way that they satisfy the separate “momentum con- 

servation laws” 

c f ri = 0, C* qi + external momenta = 0 

for each vertex, where + or - is chosen according as ri+qi is incoming or out- 

going. Other than that they are left indeterminate for the moment. If the ith line 

is a fermion line, the corresponding propagator is obtained by applying the operator 

(3.3) 

- 12 - 
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on (3.1) , where the sign + or - should be chosen according as 4i is in the direction 

of the arrow of the fermion lint or not., 

Noting that the D-operator (3.3) can be interchanged with the integration over 

the momenta rl, r3, 6 r in (2.7) because this intcgrnl is absolutely convergent, we 

can express the contribution of graph I to the anomalous magnetic moment of the 

muon (2.9) as follows: 26 . 

6 

% 
1 =- 

48m 
-?ieT FOFI J d4rl d4r3 d4r6 

iyl ((ri+qg2’- rn: +ie) 
, 

I-1 (2*) 
(3.4) 

- 

where 

F. = Tr C (ti+mJ C/y ’ -yv 7) (P+mp) yK (ti4 +mp) yp(B5+mp) $j (3.5) 

and 

FI = Tr [ rK (f16+n1e) yp tBfbme) 7, (D8+“& Y, (@g+me) ~pt~lo+me) 1 o 

(3.6) ’ 

Before we carry out the ri-integration, let us first collect all propagators 

whose integration momenta ri are identical and can be expressed by a common 

variable r cY” The set of all such propagators will be called a chain Q. For in- 

stance, the lines 1 and 4 have the s,ame integration momentum r = r 1 4’ and will 

constitute the chain o D Making use of the Feynman parameters x1 and x4 with 

x -t-x = 1, we shall combine the corresponding propagators into the form 27 
1 4 

(na!-l)! J -+p--y- , [ (ro+qo) -Vol(x) -i- ie Q! 1 (3.7) 

where 11~=2 is the number of lines in the ch:G.n OL and 

dx(o) = 6 (1-x1-x4) d.xI (lx4 , 

go! = Xlcll -I- X4(14 , (3.8) 

Va(x) = x& -‘- x4m; - “1x4(q1-q4)2~ 0 
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Expressions of the form (3.7) can be written down in the same fashion for the 

chains /3 = (3,5) and y = (8,9,10). Remaining lines form chains by themselves: 

A = (7), /A = (6), v = (2), 

Now the integrand of (3.4) is a product of factors of the form (3.7), which 

can be combined into a single denominator using the formula 

ni (ni-l)! 
ni-1 -1 

l-l - = (n-l)! J S(l-zl-. . .-zm) z1 dz10 D .znm dz m m 
i=l ni 

, 
a. 1 

(zlal + z2a2 +. e .+ zmam)n 

(3.9) 

where n = nl + n 2 I-. 0 .+ n m. The resulting expression can be integrated easily 

with respect to the ‘momenta r a!’ etc., and the integral in (3.4) can be expressed 

in the double parametric form 

31 i”r6 
/ 

dz . 
U2(z) [V(x,z) - ie14 ’ 

where the discriminant U(z) is a homogeneous polynomial of order 3 in z, 28 

V(x, z) = z&(x) -I-. . .-t zv vu (x) + v(x, z) , 

-wh z) U(z) = zfq.pat+zp+Zv) t~p-4ywh)2 

+ ~~zy~,t8$~+z,)~q~-~y+s,)2 

+ ~~“a”v’“y~~A+z~~!4~-ga-qv)2 

+ z~~pzv tz,+“pJt-4$4p+-4v~2 

+ z z z z (q -q -q -f-q J2 
@PAP Q! P A p 

+ 2 z z z 
Q! yhv (qQ,-q +q -q )2 

YhV 

+ ZBZy?yv tsp-9y+clp+cIv)2 , 

(3.10) 

(3.11) 

(3.12) 
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and 

dz = 6 (l-z cl! -. . e-zv) dz(a!):. .dz(v) , 

dz(cu) = z,” 
-1 

dz(, dx(a), etc. (3.13) 

Substituting (3.10) into (3.4), we finally obtai.n 

d”I 25GmP = -L- (f,” FoFI~U2(z)[V(~zz) _ iJ4 l 

, 

(3.14) 

Advantages in adopting this parameterization are twofold: (1) The discriminant 

U(z) is determined completely by the topological structure of the chain diagram and 

not by individual lines. Since all six graphs have the same chain structure, U(z) 

is common to all graphs if we name the chains in an appropriate manner. (2) The 

denominator function V(x,z) takes the most compact and explicit form for this 

parameterization. The formula for v(x,z) will be much more lengthy than (3.12) 

for any other way of parameterization. In addition, if we introduce chains in the 

other graphs so that they have the same chain structure as graph I, for instance . 

~1 =(1,4), @=(3,5), ?=(8,9), A=(7), ~=(6,10), v =(2)forgraphIV, wefind 

that not only U(z) but aIso v(x, z) given by (3.12) (and hence V(x, z)) are identical 

with those of graph I; the only differences between different graphs being contained 

in the explicit expressions for qQ, VoL(x), and dz(o) given by (3.8) and (3.13) D As 

is shown later, even these differences disappear in the end. 

Thus, at least formally, the contributions AaII, AaIII, AaIV to the muon mag- 

netic moment from the remaining graphs c&an be expressed by the formula (3.14) 

if only we replace FI by 

FII = Tr YC1(4j+“e) Yp(fi7+‘ne) Yc t@8+n1e) yK tDg+me) Y, tBlO+“e) 
[ 1 9 (3” 15) 

FIII - -Tr tDfi+me) yp (f17+me) ?‘pt$+me) -$, tP)lO+“e) ?‘& (D8+me) 1 9, (3.16) 



The factor -1 in Pm arises because Au flows in the opposite direction ardund the 

’ electron loop relative to the other three graphs. 

. 



4. TRACES AND D-OYERATIONS 

Our next task is to perform the trace calculation and determine the effect 

of D-operations explicitly. 

The trace calculation for graph I is simplified considerably if one notes that 

PI can be written as 

FI = (-~~Dl6 + me2 1 I$ -t the remainder , (4*1) 

where the remainder consists of terms which are either symmetric in h and v or 

proportional to D3 - D9 and D9 - Dl6 and thus give vanishing contribution to A;1 D 

Furthermore we have2’ 

where dz’ has the same form as dz defined by (3.13) except that dz(y) is replaced 

by 

dz’(?) = zy dzY dx3 dxg 6(1-x3-x9) e 

Using (4.1) and (4.3) we can therefore simplify (3.14) to 

(4.4) 

(4.5) 

In the same fashion AaII and AaIII can be expressed in the form (4.5) if we replace 

Fi by 

F$ =I 7-r r,,rclcp’c-~~,) Y, 3;) G7+me) 9; (D8+mc) 3 (4. f-9 
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and 

F;rI = -Tr ’ (4.7) 

and interpret dz’ somewhat differently. In the case of +, we.do not obtain too 

much simplification. But we write FIV as 

+ vanishing terms , 

and apply formulas similar to (4.3). 

It is also convenient to write FO coming from the muon lines as 

This is obtained using the identities resulting from the mass shell condition 

p2 ;: =m 

(&n-y yK (04+mp) = (b+mJ Cr” JQ+2PK ) 9 
(4.10) 

where we have made use of the equations 

D1 =D4 - 1) , 

D3=D5-P 9 

which follow from (A. 3). I 

(4.11) 



In order to carry out the D-operation explicitly, it is convenient to introduce 
\ 

the functions 

(4.12) 

where the lines i and j belong to the chains a! and 8,. respectively. Then it is easy 

to see that the result of applying D-operators on l/v”, n being a sufficiently large 

positive integer, can be expressed in terms of Q’s and B’s as follows: 

Q. Q. ,’ g B.. 
Da’). ~=-Jv--.-!- -b!ii% 

WJyp p 2(n-1) uvn-l ’ 

D. D. D 1 = Q&QjvQkh 1 Qipgv hBjk + Qjv gphBd<+ Qk,O l, Bi. 
-- 

w YJ kh p Vn 2(n-1) uvn-l 
$ 

.o.... (4.14) 

As is shown in Appendix A, the quantity Qi satisfies the “Kirchhoff’s 1a~s.l’~ Thus 

it can be regarded as the “current” running through the th i line for given “external 

currents” p, p’ and given “resistances” (i.e. , given values of Feynman parameters) 

of internal lines. 

In our problem in which we put p’ = p eventually, all internal currents Q. 
w 

become proportional to pP and thus the proportionality coefficient Ai defined by 

*i Q- =FP~ 1P 
(4.15) 
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itself may be regarded as a current satisfying the Kirchhoff’s laws. The functions 

Ai and Bij are homogeneous polynomials of z~, z 
p zv’ Pee.9 Their explicit form 

and properties are discussed in Appendix A., 

We can now carry out the trace calculations and D-operations and write down 

. the integrals for AaI, e.. P AaIv explicitly in terms of Ai’s and Bij’s. We shall 
. 

write them as follows: 

3, =($ pI’a + Mph + M& + y*d], I’ = I, II, III, IV $ (4.16) 

where NT ta and h!TIrc are obtained from the first term of (4.9) and MItb and MI,d 

from the second term of (4; 9). Also $+a and IvI.I,~ are terms which arise from 

the me-independent part of the electron trace Fi’ , and MIlc and Mild represent 

the remainders . 

In these integrals it is trivial to carry out the x9 and xl0 integrations. After : . 
this is done, differences among V(x,z) of different graphs disappear coypletely, 

. as was mentioned in Section 3. We shall now introduce the new z variables as ’ 

follows : 

z1 =z x Q! 1’ z2=zv ¶ z3 = zpx3 , z4 = zax4 , 

(4.17) 
z5=zpx5, zs=zp, z7=Zh, zg=zy . . 

In terms of these variables U(z) can be written as 

U(z) - (z1+z4) (i3-+z5) (z6-+z7+z8) 

f (5%4) { 22 (z6+z7+z8) + ‘7 (‘6+‘8)) 

+ (z3+z5) {zz t z6+z7-tz8) f Z6 (z7+z8)j 

+ Z8 (Z2Z6 -I- z2z7 + Z6Z7) e 
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We shall also introduce the notation 

,and 

W = mm2 UV 
P ,.’ 

(4.19) 

(4.20) 

where V is given by (3.11) and (3.12). 

Since we have carried out all D-operations, we can now put p1 = p and A=0 in 

the denominator V. Then, after one puts the photon mass equal to zero, the func- 

tion W takes the very simple form 

-where 

and 

.W =‘a~; + bz; -I- ~(z4+z~)~ + p(z6+z7+z8) U , 

m 2 e 
P ZZ 

( i 
-, 
“cl 

(4P 21) 

(4,22) 

a = B47 - Bd6 = (z3+z5) (243+z7*z8) + z7z8 9 

b=B5.6-B57 = jZ1’Z4) (z6+z7+z8) -5 Z6Z8 , J 

c = B48 - B47 = BS8 - BS6 = z2 (z~+z.~+.z~) + z6zY ., 

Bij being given in Appendix A. 

We ,are now ready to write down our integrals: 

(& 23) 



/ 

dzO 
'. 

MIb = -3 u4w3 ‘8 A1A3A6A7A8’ 

+ +46(935*+*A*B57) +A1A3(**3367+4A7’36*) 1 

-2A6tB47B58-4B48.B57) 9 1 (4.25) 

MIIa=2 Z6(A7-A6)A6A7A8 

(4.26) 

/ (4.27) 

-2%(A8B67+A7B68 -A B 6 78 ) + 2A3tA~B67*A6B7f$ 1 
- $ ~~ ‘6 p56B78+2B58B67+B46B78-2B47B68-2B48B67] ’ 

- 22 - 
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MIIb = / 
dzO 

y&-3 Z6AlA3A6A7A8 

-+; j& z6 [A6*?*sB45-*3*8t2*6B47+A7B46) 

-*1(*~8B56~2*6*8B57+2*6*7B58) + AlA3(“6B7+7B66) 1 ’ . 
+;j- z6p. (B B 6 47 dB4sB73)+ A7(2B46B58+B48B56) +*3tB4 

+ Al(5B57B66+B56B67) +A3(B47B63-B43B67) 1 9 

Mac = 2pj-$ z6 ~l(A6-*7-A8) +A3(A6-A7+A8)] 

- $3 z6 CB46-B47-n4,+B56-3B57+3B58], 

Mad=P 
dzO - z A A (A U2w3 6 1 3 6 -3A7+A8) 

- $j& ‘6 [(3A,-A7-A8) B4fA1(5B57-Bg,) -3A3(B47-B48;1 , 

A% = AaII , 

MIVa = J &O 
- 
u3w2 

(B6’i’-z2z 8) (= 6*1*6+Z fi3A7) 

-3 
/ 

dzO 
- (B67-Z2Zfj) ("6B46+Z7B57) 9 
U3W 
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(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 



MI / 

dzO 
Vb = - u4w2 [ 

=8*p8(B6+3+Z2”8*7) + (z7A712 { (z1+=3 *1+=6*6}] 

de0 
+3 - J [ u4w Z8B48(A8B67 -* B 7 68 ) - z6z7B(j7{(z~+z4) *1”6*6} 1 Y (4.34) 

Tvc = -2P J dzO 
---$ z6(B46+z7z8) ’ 

.“IVd = p J dzg -zz(z-z) 0 uw2 47 6 8’ 

(4.35) 

(4.36) 

We have obtained all terms except MIVb by hand calculation. .The complete 

integrand was obtained with the help of REDUCE. 5 Also some of the formulas 

given in Appendix A have been used to simplify the integrands. For the benefit 

of those readers who wish to check our calculations, we shall give in Appendix B 

the integrals MIva, .c.., TVd in unsimplified form. 
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5, AN ALTERNATIVE METHOD 

As an alternative and check of the calculation presented in Section 3 and 

Section 4, we have also performed the reduction of the formula (2.2) to the para- 

metric form (formulas (4.24) - (4.36)) using the standard techniques outlined in 

Section 18.4 of Ref. 2. The required extension of these techniques to the graphs 
/ 

of Fig0 1 is discussed here. 

After the traces and index contractions are performed to project out Aa as in 

(2.9), and after some simplification with respect to the lines 9 and 10, our inte- 

grals can be reduced to the basic form 

d4Q1 d4Q2 d4Q3 F(pI, e. . ,p,) 
, (5.1) 

where F is a polynomial in pl, O.. , p8 and the denominator may be multiplied by 

another factor of p$-mf, j = 6, 7, or 8, depending on which graph of Fig. 2 we 
. 

are considering. Our labeling of loop momenta Ql, Q2, Q3 is shown in Fig. 3. In 

accordance with the prescription of Ref. 2, we shall write pj as 

3 
p. =‘kj + Qj = kj + 

3 c ‘ljrQr ’ 
r=l 

(5.2) 

where r). 
Jr 

is the projection (*l; 0) of pj along Qr. The kj can be any choice of 

fixed momenta (independent of Qr) such that four momentum conservation is satis- 

fied at the six vertices of Fig. 3. 

Nextwe introduce Feynman parameters zl, , . . ,z8, and rewrite (5,l) as 
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If we choose the such that 
8 

c 
z.k.q. = 0, 

J J Jr 
r = 1, 2, 3; 

j=l 

then the denominator in (5.3) has no k 0 Q cross terms: 

2Z.j (Py-my)=-D +A. u,+~ J$*Q~, 

j=l r , r’=l 

where 

D =kzj(rnyikf) 
j=l 

(5.5) 

(5.6) 

and 

8 
u = rr’ c 'j 77jr Tjrt ’ (5.7) 

j=l 

The fixed momenta kl, *. . , kg are subject to (6-l) linearly independent equa- 

tions (momentum conservation at each vertex, or Kirchhoff’s first law) and three 

equations (5.4) (Kirchhoff’s second law). Thus these momenta are completely and 

uniquely determined as functions of external momenta and Feynman parameters. 

Since Qj*s defined by (4.12) also satisfy the same set of equations as is shown in 

Appendix A, and since the solution is unique, kj must be identical with Q.e Note 
J 

that, although qj defined by (3.1) and kj defined by (5.2) look quite similar, they 

are in fact entirely different, The former does not satisfy Kirchhoff’s second law 

while the latter does. The former is a constant vector independent of Feynman 

parameter z while the latter is a function of z. 

Although kj is identical with Qj and is thus given explicitly in Appendix A, it 

will be instructive to see how they may be determined directly by the Kirchhoff’s 
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laws, Let us first write down the secorid law l5.4) explicitly 

zlkl i- z2k2 -t z k -z k =o , 44 66 

Z2k2 - Z3k3 - z5k5+ z7k7 = 0 , 

z6k6 -f- z7k7 -t- z8k8 = 0 . 

Making use of the first law (four-momentum conservation) 

k4 = kl + P, I~5 =k3+p, 

k2 = k4 - k5 = kl - kg , 

k, = kg - kl, k7 = kg - kg , 

we may rewrite (5.8) as 

(zl+z2+z4+z6) kl - z2k3 - z6k8 = -z4p , 

-z2kl t (z2tz3+z5+z7) k3 - z7k8 = -z5p , (5.10) 

-z6kl - z7k3 + (z6tz7tz8) kg = 0 0 

The solution Is, is given by 
.I. - 

kl= $ -25 4 -2 2 

-Z 5 z 2tz 3+z 5+z 7 

0 -Z 7 

=$A1=Q1, 

where A1 is given by (A. 7) and U by 

U(z) = det(lJrr,) , 

- 27 - 

-Z 6 

-Z 7 

z 6tz 7+z 8 

(5.8) 

(50 9) 

(5,ll) 

(5912) 



or, more explicitly, by (4.18). Other k.‘s can be determined in the same fashion, 
J 

confirming 

kj=(Aj/U)p=Qj) j=l, 2, e.0,8 a 

Substituting these kj’s in D of (5.0, we also obtain 

D =V=miW/U, * (5.14) 

where V is given by (3.11) and W is defined by (4.21). 

Now, when the substitution (5.2) is made in the integral (5.1)) and averaging 

over the direction of p is made, the integrand F(pl’ . . . , p,) becomes a polynomial 

in.P, . We are now.ready to carry out the integration over Q1, Q2, and Q3 0 The 

basic integration over loop momenta is 

71 

/ 

d4Ql d4Q2 d4Q3 

1 8 
=i3n61 (5.15) 

Urr, Qr l ‘Q,, U2D2 l 

2 2 Integrands of (5.1) containing extra denominator factor pk-mk can be integrated 

using parametric differentiation of (5.15) with respect to rni* Similarly, integrands 
: 
of (5.1) which contain numerator factors 11 j l Qk can be integrated3’ using parametric 

differentiation with respect to the Urr, . For example, 

3 
=- 

c 8 s, s’=l 

i37r6 = -- 
D2 

c 
s,s’ 
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I- 
We have defined 

i 

U ss’ for s = s9 , 

Qt = 
2uss’ for s # s’ , 

(5.17) , 

and 

(5.18) 

Notice that B,,, is the signed cofactor of Ussl in U. Consequently B,,,/U is the 

inverse of the matrix Uss,. Again the calculation of Bjk given here agrees with 

that of Appendix A in terms of z1,.o.,z8. 

In addition to quadratic terms, numerators with up to six powers of loop 

momenta Qr appear in the computation of graph IV, An important identity for re- 

ducing the required higher order derivatives is 

U 02U =B B ab cd - $ Bac$d - f Bad $c ’ 
dab au& 

(5*19) 

which holds for symmetric matrices Urr, = Urtr O To prove this, let us first 

assume that Urr, is not symmetric and all its elements are independent, and show 

that 

a2U 
’ OUab aUcd = Bab ‘cd - Bad $c ’ 

B =dU 
ab aUab ’ (5.20) 

holds for such a U. We start from the identity 

3 

c Uii Bci = Sic TT 
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Differentiating both sides with respect to Uab we obtain 

*aiBcb ’ x 'ij ,,“2u 
j abBu * CJ 

= SicBab . 

Multiplication by Bid on both sides and summation over i then yields (5.20). The 
. 

proof of (5.19) for the symmetric case is the same except 

auij 
“‘ab 

=+iaSjb + &,6ja . 
We note that Eqs. (5: 19) and (5.20) hold for matrices of any finite dimension 

n L 2. We also note that (5.19) is equivalent to (A. 26). 

As a consequence of (5.19)) we readily find 

i37r6 =-g- c c qasqbs’7crqdr’ 
ss’ rr’ 

’ BadBbc ’ Bat 

(5.23) 

(5.24) 
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i37r6 =--F c c c 77as77bst’crr)dr1riet77ft’ * 
ss’ rr’ tt’ 

’ 2Bac$dBef I- 2BadBbcBef ’ 2BaeBbfBcd ’ 2BafBbeBcd 

LB B B +LB Bb 1 
’ 2 ad be cf 2 ae dBcf ’ 2 BacBbfBde 

1 1 
’ $ BafBbcBde ’ 3 BadBbfBce “z BafBbdBce 

’ $ Bat% e Bdf + f BaeBbcBdf 1 ’ (5.25) 

In our calculation of Aa for the graphs of Fig. 2, REDUCE, after it performed the 

traces and index contractions, made substitutions including (5.24) and (5.2.5) to 

,c.omplete the reduction to parametric form. The result agrees exactly lvith 

Eqs. (4.24) - (4.3G). The final form given for MIv is obtained after algebraic 

reduction using the Rirchhoff’s laws given in Appendix A. 
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6. LOGARITHMIC TERMS 

We shall now study the behavior of ba in the limit where p = (me/mP)2 tends 

to zero. For this purpose we note that the denominator function W is positive 

everywhere within the domain of integration as is seen from (4.21) and (4.23). 

Therefore any singularity which the integrals (4.24) - (4.36) may have at p=O . 

can come only from the domain of integration in the neighborhood of the boundary 

defined by 

z4 = 0, z5 = 0 . 61) 

According to the general analysis of mass singularity, 4 this singularity at z4=z5=0 

is associated with the vanishing of photon and electron masses. The formula (4.21) 

also shows that W vanishes at 

z6=z7=z8=o . (6.2) 

However this takes place because U vanishes there and not because V va.nishes. 

Thus it is associated with the singularity at large virtual momentum of the electron 

loop 29 and does not lead to any singularity at p=O. 

We shall therefore examine the behavior of our integrals in the neighborhood 

of z4=z5=Oe It is then easy to see by counting the power of z4 and z5 in the numerators 

and denominators that the integrals MIlb, MItc, MI,d, I’ = I, II, III, IV, are all con- 

vergent as p-0, and only the integrals MIta, I’ = I, II, III, IV, may have a logarith- 

mic singularity in p. In order to determine the coefficients of llnp in these integrals, 

we may carry out the integration with respect to z 
4 

and z 
5 over a small domain in 

the neighborhood of z4=z5 =O. For this purpose let us consider the integral 

/ 

dz4 dz5 

OS z4tz5< K W , 
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where W is given by (4.21) and K is a small fixed positive number satisfying 

p <<I( << 1 such that the terms of order (z~+z*)~ in W can be ignored. The inte- 

gration in (6.3) can be easily perform.ed giving 

/ 
dz4dz5 = 

W 
- f (J!np)G + nonlogarithmic terms , (6.4) 

OS z4+z51K 
. L 

where 

G = G(ao,bo, co) 

i 

"0 bO = * tan-l 5 + tan:” T 

) 

9 

A0 = aObO + aoco + bOcO 

= (z6+z7+z8) uo ’ 

(6.5) 

(6.6) 

and ao, bo, co are a, b, c defined by (4.23) evaluated at z4=z5=00 Similarly U. 

is U of (4.18) evaluated at z4=z5=0. Differentiating both sides of (6.4) with respect 

to ao, bo, and co , we can obtain further relations of the type (6.4), They are given 

in Appendix C. 

We may now express the Ai’s in terms of z4, z and the Biji s as given by (A, 16) 5 

in the integrals (4.24)) (4.28)) and (4.33), and carry out the z4 and z5 integrations 

with the help of formulas (6.4)) (C. l), . . *, (C. 5). After a straightforward but 

lengthy calculation we find that 

MIa + yIa + yIIa = ; NW) 
s “zb’ 

z*Py7 y Zg(Z2+“jN 

312 
+ .e. , (6.7) 

uoAo 
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and 

where 

dz; E s (1-z1-z2-z3-z6-“7-z~) 

. 

x dzl dz2 dz3 da6 dz7 dz3 . (6.9) 

‘In deriving (6.7) and (6.8)) we have made extensive use of the “Kirchhoff’s laws” 

discussed in Appendix A, the identity 

tar? aO -+tan -1 bO 

If- 
- -!-tan -1 =o fl 

d--- 
-=‘i: ’ 
J- 

(6.10) 

AO AO AO 

as well as the symmetry of the integrals in (6. ‘7) and (6.8) under the transformations .’ 

i) z1-z3 y 

ii) z2-z3, 

y---7, z2 s z8 unchanged , 

z-z 6 8’ ‘l’“7 unchanged , 

iii) zl-z2 , Zf-Z8 9 ‘3 ’ ‘6 unchanged . 

Clearly the leading term of (6.8) is positive definite since B46 is negative 

everywhere. On the other hand, the leading term of (6.7) has both positive and 

negative contributions and its sign cannot be determined by inspection. However, 

in view of the fact that the pairs (z,, z7) and (z,, ~3) are more or less equivalent 

according to the symmetry iii), it is plausible that (6.7) is also positive. This is 

in fact confirmed in Section 7 by numerical integration. 

. 
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7. NTJME’RICAL INTEGRATION 

It is obviously beyond our capability to evaluate the seven-fold integrals 

(4.24) - (4.36) analytically. We have therefore resorted to the method of numeri- 

cal integration. This was greatly facilitated by the availability of a multiple inte- 

gration program written by G. Sheppey, 6 which could be readily modified to suit 

our need. 

We are primarily interested in the values of Aa at p = (1/2O7)2 (muon moment) 

and p=l (electron moment). However, in view of the results of Section 6, we are 

also interested in examining numerically the functional dependence of Aa on p, 

Sheppey’s program is essentially a simple Riemann summation combined with 

a sampling technique which produces an efficient grid by successive approximations. 

At the start of the iteration process the domain of integration is divided up into a 

number of hypercubes by the user’s specification of the number and size of the 

integration intervals along each axis. (Initial specification can be somewhat arbi- 

trary because on successive iterations the program will automatically readjust 

all interval sizes based on the relative errors it associates with each.) Two points 

xi and xz are selected at random within each hypercube n as points for the evalua- 

tion of the integrands - rather than choosing the cenkal value. The arithmetic 

average of the two values is used for the Riemann sum estimate 

I = 1 AVn s (7.1) 

where “IV, is the n-th hypercube volume. A variance for each cube is defined 

as the square of one-half the difference between the random estirnates of the inte- 

grand value e The associated error for the Riemann sum is the square root of the 



sum of all variances multiplied by 1.82. to give a 91% confidence level: 

u2 = (1.s2)2 
cl 

- Sx~~ 2 
2 (AVJ2 *. (7.2) 

n 

Upon completion of such an iteration, those cubes which are found to contain the 

greatest relative variance are reduced in size along each edge in proportion to 
. 

that dimension’s :contribution to the error, and the process then cycles through 

another iteration based on this new set of intervals. 

The successive iterated values of the integral Ii and error ui , i= 1’2, . . . , N, 

are accumulated under the assumptionthat they are normally distributed (verified 

independently by histograms). Weights (W$ for each iteration are calculated as 

wi = (Ii/q2 

,which gives the most probable (weighted mean) value of the integral: 

.E IiWi 

T = i1 
C wi 
i=l 

V-3) 

(7.4) 

with a standard deviation 

The result of each iteration Ii was found in practice to overlap with i within the 

error cri more than 90% of the time. 

The integration package was tested on many multidimensional integrals, some 

of which were five dimensional parametric forms similar to the function analyzed 

in this paper, but with known analytic solution. Full confidence in the utility of 

the program was obtained before it was applied to the problem at hand, 
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In applying this program to our problem, we instructed REDUCE to punch out 

the result of trace calculation and D-operations described in Section 4 in a FORTMN- 

compatible form so that it can be directly fed into the integration program. The 

integrand takes the form of a ratio of polynomials times a theta function and is 

well-behaved everywhere in the domain of integration for p > 0. 

In Fig. 4 we show the anomalous magnetic moment contribution Aa arising 

from the graphs of Fig. 1 divided by (cx/~)~ as a function of X = loglo (p-l) 

= foglo (mP/me2’ The error bars indicate a better than 91% confidence interval. 

Typical points required 10 minutes of computation time on the SLAC IBM 360/91, 

after an initial 30 minutes had been used to obtain a distribution of the 50,000 

hypercubes which would be approximately valid for all X. 

The result (1.7) for the special case p = (1/2O7)2 represents the result of more 

extensive effort and was obtained after about 30 iterations (about 1 per minute) with 

up to 90,000 hypercubes. Results consistent with (1.7) were also obtained with 

grids constrained to have a minimum of five points per axis. But results with 

smallest rri were those on which no such constraints were imposed. A typical 

result for an iteration is (apart ‘from the factor ((Y/T)~) 

Ii = 17.7 ) ai = 2.1 
(7. f-3) 

with 2, 4, 2, 22, 25, 2, 6 intervals along the seven axes, respectively. 31 We have 

found that largest number of points are concentrated along the z4 and z5 axes, which 

is not surprising in view of consideration of Section 6. 

A convergent value for p=l proved much more difficult to obtain, partly be- 

cause the integrand is not peaked in any particular regions of the variable space 

and partly because the theta function constraint on the variables occurs where the 

integrand is not small. The latter problem could be avoided and eliminated by a 



change of variables 

z7 = (1-z1-z2-” D CZ6) (x7 , 

Z6 = (l-zl-z2-* 0 .-z,) a6 , 

(7.7) . . 
9 
. 

. 
=o! z1 1’ 

which turns the integral into the form 

/l da1 J ‘da2 . . ./ ’ dcx7 f(z)(l-zl)(l-zl-z2). o *(l.-zl-z2-. o .-z6) 0 

0 0 0 
,’ ‘. (7.8) .., 

It was also found convenient to switch z2 and z8. Using this form and 600,000 

hypercubes, the integral gave consistent results with small error in a one-hour 

run (5 iterations) on the IBM 360/91. The two best individual iterations gave 

Ii = 0.34 , u i= 0.06, 

(7.9) 
Ii = 0.37 , u i=o.09 0 

The cumulative result is given by (lo 11) D All other runs including those without the 

change of variables (7.7) overlapped with this result. On the best run the grid 

chosen had 583,200 cubes consisting of 12, 45, 4, 6, 3, 3, 5 intervals along each 

of the axes [Y~ through CY~. 32 

As was shown in Section 6, the analytic dependence of the photon-photon scat- 

tering contribution on p = (me/mP)2 for small p is of the form 

h(P) = ($ [cl NJ + c2] , p<<l . (7.10) 
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The coefficient Cl as given by (6.7) and (6.8) was numerically integrated over a 

five dimensional space, giving 

c,= - 3.19 Et 0.04 (7.11) 

and the result (1: 10). As a consistency check we ,have also integrated (6. ‘7) and 

(6.8) separately. They gave approximately equal contributions and their sum 

agreed with the above result, The result (7.11) for Cl is not inconsistent with a 

linear fit to the points of Fig. 4 for small p . 
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APPENDIX A 

KIRCHHOFF’S LAWS FOR Ai’S AND Bij’S 

The quantity Qy defined by (4.12) satisfies the “Kirchhoff’s laws”, namely, 

the sum of ‘%urrents Qy” entering any vertex v is conserved 

. 

&ay=-c * (external currents) , (A* 1) 
v V L ’ 

where + or - is chosen according as Qi is incoming or outgoing, and the sum of 

“voltage drops” around any closed loop C is zero 

C’liCxiz~ ~ =O ¶ (A* 2) 
C 

where the Feynman parameter x z i Q! is regarded as the “resistance” of the line i 

of chain CY, and qiC is the projection (+l, -1) of qi along C. 

The first law (A. 1) follows from 

/ 

d4rId4r3d4r6 

= ‘.D((r j + q#2-mf) 
? (A.3) 

where qi are fixed momenta satisfying (3.2) e The second law (A, 2) is a consequence 

of the fact that V(x,z) is invariant under the simultaneous transformation of all q. l(C) 

‘i(C)- ‘i(C) + ?iCqc , (A. 4) 

where q. 
l(C) 

represents qi belonging to the closed loop C and qc is an arbitrary 

constant 4-vector common to all lines of the loop C. 
4 This invariance leads us to 

( c rl. BV 

) 
qc=o , 

C lc 8qi(C) 
(A. 5) 

which is equivalent to (A. 2) as is easily seen from the definition (4.12). 



In our problem in which the only external current is pc” (since A=O), all in- 

ternal currents are proportional to pP. Thus the proportionality coefficients Ai 

defined by 

may themselves be regarded as currents satisfying the Kirchhoff’s laws. In this 

Appendix we shall write down the explicit forms of’Ai and Bij and show that these 

functions of z in fact satisfy the Kirchhoff’s laws. 

Let us first calculate Airs for graph I from the definitions (4.12) and (A. 6). 

Although they are functions of xlza! t 0 0 b , xloz 
Y 

, it is sufficient for ,our purpose to 

write them down for the case 

x9 =xlo = 0 . (A. 7) 

Then, in terms of the new z variables defined by (4.17), they can be written down 

as follows i 

Al = -z4 (z3+z5)(z6”z7+“8) + 2728 > 
- (z4+z5) z2(z6+z7+zs) + 2627 9 

A2 = -24 (z3+z5)(z6+z7+z8) + Z7Z8 (z~+z4)@6.+z7+z8) + ZGZ8 ’ 

A3 = -25 (zl-tZ4)(Z6+i7+z8) + z6z8 22 (‘6+‘7+‘8) + “6’7 ’ 

A6=z 4 Z*(Z2+Z7) + - z7@I+z4) * 

z8(Z2+z6) -t- (sG+s8)(z1+z4) ‘2’8 - ‘&“3*‘5) ’ 

Z6(Z2-kZ3+Z5+z7) +‘Z2Z7 s7(z~~z2’z4”“~) + ‘2’6 (A* 8) 

We have not ‘written down A4, A5, Ag, and Alo explicitly since they are easily 

obtained from others making use of the current conservation at external vertices 

(i.e., vertices to which at least one external line is attached): 

A4 -Al=U , 

A5 -A3 =U , (A. 9) 

Ag=Ai0=A8 o 
_^ 
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It is now easy to check the current conservation at internal vertices: 

Al+A6’-Alo= ‘0 , 

A2+A6-A7=0 , 

A2 -A4+A5=0 , 

A3+A7-As=0 . ’ (A. 10) 

Similarly the second Kirchhoff’s law can be checked: 

z6A6 + z 7A 7 +z8A8 =0 , 

zlA1 -I- z2A2 -I- z4A4 - z6A6 = 0 , (A. 11) 

z2A2 -z A 3 3-~5A5+~,IA,=0 o 

Next we shall examine Bij defined by (4.13). Since Bij is symmetric in i and 

j, there are 55 Bij’s altogether. However they are related to each other by various 

identities. For instance, it is obvious from the definition (4.13) that 

: 

Bli = B4i 

. 
B3i = Bsi 

ifi# lor4 , 

ifi# 3or5 , 

B8i = Bgi = BIOi if i # 8, 9, or 10, 

B89 = B8, 10 = B9, 10 l 
(A. 12) 

From (4.13), (3. ll), and (3.12) we see that Bij are second derivatives of V, 

which is quadratic in the q., with respect to the q.. 
3 

Since the derivatives are taken 
J 

before the qj are fixed, Bij cannot depend on the external momenta or their routing, 

but only on the topological structure of the graph. In order to find further properties 

of Bij let us note that q can be expressed as a linear combination of B.. 
1J 

10 

UQ;=-x ’ ‘j xj ‘aj B ij’ i=l,2, . . . . 10 , (A. 13) 

j=l 
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where a5 is the chain to which the line j belongs. The qj are arbitrary constant 

momenta subject only to the 4-momentum conservation law (3.2); we need not 

restrict ourselves to Qy proportional to p’. This equation follows from definitions 

(4.12)) (4.13) and the fact that V(x, z) is quadratic in qj. If we choose 

q4 =q5 =PI all other q’s = 0 
. 

in (A. 13), which is consistent with (3.2), we obtam 

UQf =(-z~B~~- z5B5i) p’ e (A. 15) 

Since A=0 for this choice of q., we may use (A. 6) to get 
J 

Ai = -z4Bqi- z5Bgi . 

(A. 14) 

Substituting (A. 16) into (A. 9) or (A. 15) into (A. 1) for external vertices, and 

taking (A. 12) into account, we get equations involving diagonal B.. 
1J 

B14 - B44 = u/z4 , 
(A. 17) 

. B35 - B55 = u/z5 . 

Relaxing condition (A. 7) and choosing different qi and external momenta co.nsistent 

with (3.2), we get equations similar to (A. 15). Substituting these into (A. 1) for 

external vertices and using (A. 12) we get the general relation 

B.. - B.. 11 13 
= U/ZaiXi , (A. 18) 

where lines i and j belong to the same chain cy. D 
1 

Similarly, substitution of (A. 16) into (A. 10) and of expressions like (A. 15) into 

(A. 1) for internal vertices yields 

Bli -I- Bsi - BIOi = 0 v 

B2i’B6i-B7i=0 , 

(A. 19) 

B2i - B4i -I- BSi = 0 , 

BQi + B7i - B8i = 0 , 
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if none of the Bij are diagonal. Otherwise we need a slight modification. For 

instance 

B22 + B26 - B27 = - u/z2 . (A. 20) 

These relations may be regarded as Kirchhoff’s first law for B.. e 
1J 

In order to obtain the second law for B ij, ke substitute (.A. 16) into (A. 11) and 
. 

expressions like (A. 15) into (A. 2) S Again using x9 = xl0 = 0, we find 

Z6B6i + z~B~~ + z8BSi = 0 ¶ 

‘lBli + z2B2i -i- z B 4 4i - 6 61 z B ‘. = 0 , (A. 21) 

zB ,2 2i - z3B3i - z5Bgi + z,B7i F 0 q 

Finally we.give some Bij explicitly in terms of new z variables defined by 

(4.17) which corresponds to putting x9 = Xi0 = 0: 

B45 = z2(z6+z7+z8) -I- Z6Z7 , 

. 

B46 = -Z8(Z2+z3+z5+z7) - z7(z3+25). 9 

B47 = z6(z3+z5) - 2228 s 

B48 = z6(z2+z3+z5+z7) + z2z7 , 

B56 = z7(z1+s4) - 2228 9 

B57= -“8(zI+z2+z4+z6) - z6tz1+z4) 9 

B58 = z7(zl+z24-z4+z6) + Z2Z6 , 

B67 = “2(“1+‘3 4 5 8 l-z +z -l-z ) -i- (z1+z4)(z3+z5) , 

_I 
B68 = (~,‘s4)(z2sz3+z5*z7) + z2(z3cz5) > 

B7* = (z3+z5)(zl+z2$“4+z6) + z2(z1+z4) * (A. 22) 
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Other formulas of great use can be derived from the observation that, aside 

from the terrnTs@@ ximf) i ’ the denominator function V(x, z) ‘can be regarded 

as the “power” burned up in the network 

2 

This leads us to a set of equations 29 

-Qf + rnf = 8V/Bzi, i= 1, 2, O.., 8 , (A.23) ” 

. 
where Qi is defined by (4.12). With the help of (A. 6) and (4.20) this can be trans- 

formed into 

A2 i = W(nJ/8zi) - U(SW/8Zi) + piu2 ) (A.24) 

where 

1 

0 for i = 1, 2, 3, 

pi= 1 for i = 4, 5, (A. 25) 

P for i = 6, 7, 8. 

,. ‘-Suppose we express W and Ai in (A. 24) in terms of Bij and z4 and z5. Then, com- 

paring the coefficients of z4 and z5 in the resulting expression and using the 

Kirchhoff’s law (A. 19) repeatedly, we can write down an enormous number of for: 

mulas quadratic in B. .‘s. Some of themare shown below: 
U 

B46B57 - B47B56 = ‘8’ ’ 

B48B56 - B46B58 = ‘7’ ’ 

B47B58 - B48B57 = ‘6’ ’ 

B45B67 - B47B56 = B48B67 - B47B68 = B58B67 - B56B78 

=B67Bk8 - B68B78 = B48B78 - B47B;8 = B58B68 - B56Bk8 

=B45B;18 - B4*B5* = Z2u , 
. . 

Bb6Bk8 - Be8Bs8 = B4*Bs8 - B46B;8 = (z2tz3Cz5+z7) U , 

B;7B;8 - B7*B7* = B5*B7* - B57B;J8 = (zl+z2+z4-tz6) U , 

B’c6”78 - B&&j = @3+z5) u s 

Bk6B5* - B56B6* = (z2+z7) u s (A, 26) 
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where Bii is the polynomial part of Bii which may also be written as 8U/azi . 

We note that (A. 26) is equivalent to the result (5.19). 

Formulas such as (A. 11)) (A. 21), and (A. 26) are extremely useful in simpli- 

fying the numerators of Feyntnan integrals. Although the usefulness of Kirchhoff’s 

laws for the study of analytic properties of Fejinman integrals (which are derived 

from the properties of denominators of the integrands)‘is well-known, it appears 

. that their use in the simplification of Feynman integrals has not been emphasized 

thus far. 

It will be obvious that the above results are also applicable to other graphs 

of Fig. 2 if we interpret Ag, AIo, Bgi, and B10 i in an appropriate fashion. I 
a 

. 
‘.’ 

. 

, 
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APPENDIX B 

UNSIMPLIFIED INTEGRANDS FOR GRAPH IV 

For the benefit of readers who wish to check our calculations, we give here 

the unsimplified output of REDUCE for graph IV. Simplification of these integrands 

with the help of the identities given in Appendix A leads us to the formulas (4.33) - 

(4.36). As is defined in (A.26), Bfi is the polynomial part of Bii and is equal to 

.8U/8Zi . 

+ ho J [ - u3w2 ’ 6(AlA6B67 - A3A7Bb6) - Z8A3A7B;j8 3 
+ 

/ 
dzO 

- A3A7 v2w2 

+ $& ’ 88 [B48(B67B68-B;6B78) ’ B47 b6B:8-B:8)+ 5B46(B67Bb8-B68 

2 -B’ B’ ) f 3B56(B68B78-B67B;$ + 3Bs8(Bs7B&-B;&~) 66 88 I 

1 ho +‘z & J [ Z6(3B57B;;6 + 3B56B67 - B47B;6 - 5B46B67) 

+ Z8t3B5&8 + 3B5*B7* - B47B;38 + BJ$+& 1 



%vb = $&“628 blA3 IA6(B68B78-B67B~8)~A7(B~6B~8-B~8)~A8(~78B~6-B67B68~) 

+ A1 I A~A7(B58B68-B56B;)~)+A6A8(B58B67-B56B78)+A,A8(B5~B68-B~8B;;6) 

+A3 A6A7(B46B~8-B46B68)+A6A8(B48B67-B46B78)~A7A~(B46B68-B48B;;d I 
. 

+A6A7A8(B48B56-B46B58) 3 

1 +31 J &O 
&-zAlAQA7 

+~~~z6z8[SA1(BSGB67B;8-B58Bb6B78~ I 

+ A3' 2B47(B:8-Bb6Bb8) 1 
-B46(B67B~8~2B68B78)+B48(4B.67;B68-B’66B78) 

+A6 1 B45(B67Bi18-B68B78)+3B46B58B78 

2 -B’ B’ )-B46(2B56B;18+B58B68)+B48(4135~B~6-B56B6g) 66 88 I 

B45(Bii6B78-B67B68)+B46(2B56B78+B58B67) 

+ 2B47(B~6Bs8-B56B6s)-3B48Bfj6B67 

-I- 
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+fj-2%[- ‘, 3A1B56Bi7+A3(2B47B'66+F46B67) , 
-A6(2B47Bg6+B45B67)+A7(2B46Bg6+B45B’66) I 

+A7(B45Bi8 -4B48B58)-A8(B45B78+2B47B58) 1 

. hdIvc = 43) ‘6’8 [cB48B67-B46B78)+(B56B6~-B58B~6~ 

: +(B46B;J*-B4*B6*~+(B5*B6*-B56B'88) . 1 
. 

ZfJB5fjM6(B56-B46) 1 ’ (B* 3) 

.,=f/& z6z8[(A6+A7+A8~~B46B58-B48B56' 

+A1 (B56B;18-B58B68)+(B56B68 I 
-B B' 58 66 ) + tB&+f-B58Bs7) 

I 

I 
+A31(B48B68 -B46B;8)"(B48B;i6-B46B68)+(B48B67 

-B B ) 46 78 II 
+f ho J [ ‘w Z(j(A3B.@-AIB5($ + z&A1B58-A3B48) ’ 

I 
(B.4) 
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APPENDIX C 

FORMULAS DERIVED FROM (6.4) 
. 

Differentiating both sides of (6,4) with respect to a, b, and c, where we have 

omitted the suffix 0 in ao, etc., we obtain further relations . 

. 

(b+c)G +... , 

“J z4z5 dz4 dz5 = m 

W2 
4A (-l+cG) f . . . , 

O- 

(C.1) 

/ 

ztdz4dz5 
=.Qlp 

W3 1611; 
-3(b+~)~G 

> 
+... , 

.’ 
J 

z3z dz dz 
45 4 5-fnP 

2Ao+3c2 

W3 
+ a , . , 

. . a-kc 

J z2z2dz dz 45 4 5= hP 

W3 
16A2 (3c - (Ao+3c2) G) I- .ee e 

0 

(C. 3) 

(C.4) 

KJ.5) 

The domain of integration is 0 < z4 + z5 < K in all cases. Similar formulas for 

the integrals 

,J 2 ‘5 dz6 dz5 z 45 z3,dz 4 dz 5 
z4 dz dz 

5 4 5 w2 ’ J 

w3 ’ / W3 

are obtained from (C. 1), (Co 4)) and (C. 3) by interchanging a and b. 
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Feynman diagrams containing subdiagrams of photon-photon scattering type* 

The heavy, thin, and dotted lines represent the muon, electron’, and photon, 

respectively. There are three more diagrams obtained by reversing the 

direction of the electron loop. 
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Feynman diagrams obtained from those of Fig. 1 by differentiation with respect 

to Ah. The crosses represent differentiation vertices. The external momenta 

are routed so that A always flows through the middle photon line, 
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