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Abstract. In this talk we discuss black hole solutions in five dimensions in the context of Hořava-
Lifshtz gravity. There are several classes of solutions which are characterized by an AdS5, dS5 or
flat large distance asymptotic behaviour, plus the standard 1/r2 tail of the usual five-dimensional
Schwarzschild black holes. In addition there are solutions with an unconventional short or large
distance behaviour, and for a special range of the coupling parameters solutions which coincide
with black hole solutions of conventional relativistic five-dimensional Gauss-Bonnet gravity.

1. Introduction

A lot of attention has been addressed lately to Hořava-Lifshtz model of gravity [1],[2]. The
model is based on an anisotropy between space and time coordinates, which is expressed via the
scalings t → bzt and x → bx, where z is a dynamical critical exponent. In the particular model the
four-dimensional diffeomorphism invariance of general relativity is sacrificed in order to achieve
power-counting renormalizability. Instead we have foliation preserving diffeomorphisms

xi → x′i = x′i(xi, t), t → t′ = t′(t). (1.1)

The action contains a kinetic plus a potential term, which both respect a restricted (3 + 1)
diffeomorphism invariance. Due to (1.1) we can add higher order spatial derivative terms, which
improve the UV behavior, rendering the model power-counting renormalizable. However the
absence of full diffeomorphism invariance introduces an additional scalar mode which can lead to
strong coupling problems or instabilities [5], [6], [7], [8], [9].

Originally the potential term, [1] was formed under the so called ”detailed balance principle”.
An alternative way for constructing an action is to include all possible operators which are
compatible with the renormalizability of the model. This implies that all operators with dimension
less or equal to six are allowed in the action (for the exact form of the action see [3],[4]). There
are two versions which are known as projectable and non-projectable. In the projectable version
the lapse function N2 depends only on the time coordinate, while in the non–projectable version
N2 is a function of both the space and time coordinates.

Issues connected with broken Lorentz invariance were studied in the spherically symmetric
solutions of 4D HL gravity. In the case of detailed balance, such spherically symmetric solutions
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were found [10], but they exhibited an unconventional large distance asymptotic behaviour. The
correct Schwarzchild-flat asymptotic behaviour can be recovered if the detailed balance action is
modified in the IR by a term proportional to Ricci scalar, and the cosmological constant term is
considered to be zero [11]. A similar study, in the case of non-vanishing cosmological constant, has
also been carried out [12]. A generalization to topological black holes was obtained in [13]. Finally,
a systematic study of static spherically symmetric solutions of 4D HL gravity was presented in
[14],[17] where the most general spherically symmetric solution for λ 6= 1 and general coupling
parameters was obtained.

In this talk we present a full study of spherically symmetric solutions in the non-projectable
version of the five-dimensional Horava-Lifshitz gravity, for z = 4, [16]. For the construction of
the 5D action we do not use the ”detailed balance principle”, but we include all the terms which
are compatible with the renormalizability of the model. In particular, we can include all spatial
curvature terms with dimension less than or equal to eight. However, the large number of possible
terms, which are allowed in the action, leads to equation of motion of great complexity. For this
reason we restrict our study only to terms of up to second order in the curvature. Also, we
suppose that in the IR limit 5D the HL gravity reduces to the 5D General Relativity plus a bulk
cosmological constant. A class of spherically symmetric solutions of the 5D HL gravity has been
considered previously [15], but only for a very specific choice of the couplings.

2. Action and equations of motion

The 5D action of the model is constructed from a kinetic plus a potential term according to
the equation

S =
1

16πG5c

∫

dtddx
√

|g|N {LK + LV } (2.1)

in which d (D = d+1 = 5) is the spatial dimension and G5 is the five dimensional Newton constant.
The kinetic part in the above Lagrangian of Eq. (2.1) can be expressed via the extrinsic curvature
as:

LK = (KijKij − λK2), Kij =
1

2N
{−∂tgij + ∇iNj + ∇jNi} , i, j = 1, 2, 3, 4 (2.2)

For the construction of the potential term we will follow the approach, according to which
the potential term is constructed by including all possible renormalizable operators, that have
dimension smaller or equal to eight, hence we write

LV = LR + LR2 + LR3 + L∆R2 + LR4 + L∆R3 + L∆2R2 . (2.3)

where the symbol ∆ is defined as ∆ = ∂i∂i (i = 1, 2, 3, 4).
The dimensions of the various terms in the Lagrangian read

[R] = 2, [R2] = 4, [R3] = [∆R2] = 6, [R4] = [∆R3] = [∆2R2] = 8 . (2.4)

In this work we are mainly interested in the lowest order operator LR and the operator LR2 ,
which contains contributions of second order in the curvature:

LR = η0a + η1aR, LR2 = η2aR
2 + η2bR

ijRij + η2cR
ijklRijkl . (2.5)

Note that in the case of three spatial dimensions the term RijklRijkl is absent, as the Weyl tensor
in three dimensions automatically vanishes. However, in four spatial dimensions this term cannot
be omitted from the action.
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The first term LR is necessary in order to recover 5D general relativity with a cosmological
constant in the IR limit. The second term LR2 , includes all possible quadratic terms in curvature,
and becomes important in the short distance regime of the theory. Moreover, η0a plays the role
of the cosmological constant, while η1a, η2a, η2b, and η2c are dimensionful coupling constants with
dimensions

[η1a] = 6, [η2a] = [η2b] = [η2c] = 4 . (2.6)

In the present analysis we ignore higher order Lagrangian terms, of dimension six and eight.
If this model is to make sense, it is necessary that the 5D general relativity (with a cosmological

constant in our case) is recovered in the IR limit. Although there is no theoretical proof for this
difficult question, we will assume that the renormalization group flow towards the IR leads the
parameter λ to the value one (λ = 1), hence 5D general relativity is recovered. Also, to obtain
the Einstein-Hilbert action

SEH =
1

16πG5

∫

dx0d4x
√

gN
(

K̃ijK̃
ij − K̃2 + R + η0a

)

, (2.7)

we have to set η1a = c2, and

K̃ij =
1

2N

{

−∂0gij + ∇i

(

Nj

c

)

+ ∇j

(

Ni

c

)}

. (2.8)

where the time-like coordinate x0 is defined as x0 = ct.
We will present 5D spherically symmetric solutions of the Horava-type gravity model. We use

the following ansatz for the metric

ds2 = −N(r)2dt2 + f−1(r) dr2 + r2dΩ2
k , (2.9)

in which r is a radius coordinate that corresponds to the extra dimension, and dΩ2
k is the metric

of a 3D maximally symmetric space, where k is the spatial curvature of 3D hypersurfaces and for
k = 1,−1, 0 we have a sphere, hyperboloid or 3D torus topology correspondingly. In what follows
it is convenient to perform the transformation

f(r) = k + r2Z(r) . (2.10)

Then the action of the model to second order in curvature terms is

S =
1

16πG5

∫

dtddx
√

|g|N
(

KijKij − λK2 + η0a + η1aR + η2aR
2 + η2bR

ijRij + η2cR
ijklRijkl

)

(2.11)
can be put into the form

S

[

N(r), Z(r),
dZ(r)

dr

]

=

∫ +∞

0
dr L

[

N(r), Z(r),
dZ(r)

dr

]

, (2.12)

after we integrate out the angular coordinates, where

L

[

N,Z,
dZ

dr

]

∼ r3

√

N2

f

(

P

(

r
dZ

dr

)2

+ M(Z)

(

r
dZ

dr

)

+ Q(Z)

)

(2.13)

and

P = 3(3η2a + η2b + η2c) ,

M(Z) = 6(12η2a + 3η2b + 2η2c)Z − 3η1a ,

Q(Z) = 12(12η2a + 3η2b + 2η2c)Z
2 − 12η1aZ + η0a . (2.14)

The solutions come from the Euler-Lagrange equations of the aforementioned Lagrangian.
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3. Solutions

3.1. No quadratic terms, η = 0 and ̺ = 0
If we set η = ̺ = 0 we find the simple solution

f(r) = k + r2Z = k +
η0a

12
r2 +

C̃µ

3r2
, (3.1)

where C̃µ is a constant of integration and N(r)2 = f(r). If we set

Λeff = −η0a , µ = − C̃µ

3
, (3.2)

the above equation takes the well-known form

f(r) = k − Λeff

12
r2 − µ

r2
, (3.3)

which is the standard AdS5 (for Λeff < 0) or dS5 (for Λeff > 0) or asymptotically flat (for
Λeff = 0) Schwarzschild black hole solution of 5D general relativity with a cosmological constant.

3.2. η = 0 and ̺ 6= 0
If η = 0 then P = 0, then the equation for Z reads as

r
dZ

dr
= −η0a − 12Z + 12̺Z2

−3 + 6̺Z
. (3.4)

Integration of this equation yields:

3̺Z2 − 3Z +
η0a

4
+

C̃µ

r4
= 0 , (3.5)

where C̃µ is an integration constant which is related to the mass of the black hole. The algebraic
equation (3.5) gives two solutions

Z(r) =
1

2̺
+ σ

√

3(3 − ̺η0a)r4 − 12̺C̃µ

6̺ r2
, (3.6)

where σ is a sign (σ = ±1), so for the function f(r) = k + r2Z we obtain

f(r) = k +
r2

2̺



1 + σ

√

(

1 − ̺η0a

3

)

− 4̺C̃µ

3r4



 . (3.7)

In what follows we will assume that ̺C̃µ < 0, because for ̺C̃µ > 0 the range of radius r has a
lower bound (r > rmin).

The Euler-Lagrange equations for N(r) yield

N(r)2 = f(r) . (3.8)

This solution is in direct connection with the solutions for black holes in Gauss-Bonnet theory
which take the following form

f(r) = k +
r2

4â

[

1 + σ

√

1 − 8ân2 + 8
aµg

r4

]

, σ = ±1 , (3.9)
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in which µg is a constant of integration which is related with the mass of the black hole, and the
parameter n2 = −2Λ corresponds to a negative bulk cosmological constant.

If we replace

â → ̺

2
, n2 → η0a

12
, µg → −Cµ

3
(3.10)

in equation (3.9), we recover the black hole solution of Eq. (3.7), for the specific case η = 0 and
̺ 6= 0 of the previous section.

Note, that the condition η = 3η2a+η2b+η2c = 0 is satisfied in the case of GB coefficient η2a = â,
η2b = −4â and η2c = â, but there are other different combinations of the coupling parameters
η2a, η2b, η2c which give η = 0 and ̺ 6= 0. This is a very interesting result which merits further
investigation. Note also that the relation 1 − ̺η0a

3 = 0 corresponds to the Chern-Simons limit of
GB gravity.

3.3. ̺ = 0 and η 6= 0
Substituting ̺ = 0 and η 6= 0 we find for the function f(r) = k + r2Z(r)

f(r) = k +
η0a

12
r2 +

r2

16η

(

W 2
L

(

C̃µ

r4

)

+ 2WL

(

C̃µ

r4

))

. (3.11)

where WL(x) is the Lambert function, which is defined as the real solution of the equation
eWL(x)WL(x) = x. The large r asymptotic behaviour of Eq. (3.11) is found to be

f(r) = k +
η0a

12
r2 +

C̃µ

8ηr2
+ O

(

1

r6

)

. (3.12)

The function N(r)2 can be expressed in the following closed form

N(r)2 = f(r)Ñ(Z(r))2 =
C̃2

µf(r)

r8

(

W 2
L

(

C̃µ

r4

)

+ WL

(

C̃µ

r4

))2 . (3.13)

In the large r regime we find, from the above equation, that:

N(r)2 = f(r)

(

1 +
C̃2

µ

r8
+ O

(

C̃3
µ

r12

))

, (3.14)

hence in the large distance limit we recover the standard asymptotic behavior N(r)2 ≃ f(r).

3.4. Static solutions in the generic case (η 6= 0 and ̺ 6= 0)
For the generic case where η 6= 0 and ̺ 6= 0 we will expose the main features of the solutions. For
more details can be found in [16]. First we define the following constants

A ≡ −3η0aη +
9η

̺
, B ≡ ̺(̺ − 4η) . (3.15)

Case (i): B ≥ 0 and |
√

B/̺| < 1 , A > 0
In this case we have in general two branches of solutions for function f(r) where both of them

have AdS5, dS5 or flat large distance behavior. In the case of k = 0 one of the solutions exhibits
a naked singularity. On the other hand we can see that the large distance behavior of N(r)2 , is
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identical with that of f(r). In the case where A < 0, the radius r must have an upper bound and
the function f(r) has no large distance limit. This case lacks of physical interest.

Case (ii): B ≥ 0 and |
√

B/̺| > 1 , A > 0
Here we have only one branch for the function f(r). However there is an even more significant

difference, as this class of solutions does not have regular AdS5, dS5 or flat asymptotic behavior.
Furthermore we see that N(r)2 vanishes for large values of r. For A < 0 the solutions behave
similarly.

Case (iii): B > 0 and A = 0

Setting A = 0, we obtain for the functions f(r) and N̂(r) :

f(r) = k +
r2

2̺
− C0

3
r
2
√

B+̺
√

B−̺ (3.16)

and

N̂(r) =
C̄N

C2
0

√
B|̺ +

√
B|

r
−4

√

B+̺
√

B−̺ . (3.17)

As we see the above solutions exhibit an unconventional asymptotic behaviour which is not of the
type AdS5, dS5 or flat 5D Schwarzschild form.

Case (iv): B < 0 and A > 0
Here if B < 0 then A must always be positive. Function f(r) has several branches of solutions.

In contrast with the previous case (B > 0) the range of radius r terminates at a lower non-zero
bound. Solutions for function f(r) have normal AdS5, dS5 large distance behavior. Again there
are solutions where naked singularities occur.

Case (v): B = 0
Finally for B = 0 we have the following solutions

f(r) = k +

(

1

2̺
+

σ
√

A

3̺

)

r2 ± C̃µ

3̺r2
. (3.18)

This has the standard form of a AdS5, dS5 or flat solution. For N(r)2 we get,

N(r)2 =
1

f(r)
. (3.19)

4. Conclusions

We presented static spherically symmetric solutions in the framework of the 5D Horava-Lifshitz
gravity. We considered an action consisting of terms up to second order in the curvature and we
solve the theory with a non-projectable spherically symmetric ansatz for the metric. The black
hole spectrum we found is controlled by three parameters η, ̺ and η0a, where η0a is a cosmological
constant.

More specifically, there are three main sets of solutions: the two special cases (η = 0, ̺ 6=
0), and (η 6= 0, ̺ = 0) and the generic case (η 6= 0, ̺ 6= 0). In all cases we obtained analytic
black hole solutions which have the standard AdS5, dS5 of flat asymptotic behaviour, plus the
well-known 1/r2 tail. However, we also obtained solutions with an unconventional short and
large distance asymptotic behaviour. Also, in many cases we obtained solutions with a naked
singularity.

We also found static solutions which, after a proper identification of coupling parameters,
coincide with static black hole solutions of relativistic gravity theories with quadratic curvature
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correction terms. One class of these solutions consists of the Schwarzschild-AdS black hole
solutions of five-dimensional Lanczos-Lovelock gravity theories. Another class of solutions contains
the well-known Gauss-Bonnet black hole solutions. The interesting result we obtained in our
investigation is that the non-relativistic solutions of the HL gravity corresponding to the Gauss-
Bonnet solutions can be obtained for various combinations of the coupling parameters η and ̺
and not just the standard Gauss-Bonnet combination. This may be attributed to the fact that
the HL static solutions are insensitive to the coupling parameter λ, so they hold even if λ 6= 1
(the value which signals the breaking of Lorentz invariance).
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