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Abstract. Inverse bremsstrahlung (IB) heating, an important process in
the laser–matter interaction, involves two different kinds of interaction—the
interaction of the electrons with the external laser field and the electron–ion
interaction. This makes analytical approaches very difficult. In a quantum
perturbative approach to the IB heating rate in strong laser fields, usually
the first Born approximation with respect to the electron–ion potential is
considered, whereas the influence of the electric field is taken exactly in the
Volkov wave functions. In this paper, a perturbative treatment is presented
adopting a screened electron–ion interaction potential. As a new result, we
derive the momentum-dependent, angle-averaged heating rate in the first Born
approximation. Numerical results are discussed for a broad range of field
strengths, and the conditions for the applicability of a linear approximation for
the heating rate are analyzed in detail. Going a step further in the perturbation
series, we consider the transition amplitude in the second Born approximation,
which enables us to calculate the heating rate up to the third order of the
interaction strength.
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1. Introduction

Inverse bremsstrahlung (IB) heating is one of the most important heating processes governing
the interaction of laser radiation with matter. In dense plasmas produced by laser excitation, the
free electrons exchange photons with the laser field permanently. When they are accelerated in
the Coulomb field of the ions, the electrons emit photons, a phenomenon commonly known as
bremsstrahlung. In the presence of the external field, the electrons absorb laser photons as well.
In the time average, the absorption exceeds the emission, and the plasma is heated due to IB.
Since the IB heating results from electron–ion collisions in the plasma, the electron–ion heating
rate or the electron–ion collision frequency, which is also related to the dynamic conductivity,
are important quantities commonly discussed in this context.

There exists a variety of works considering plasmas in the presence of a linearly polarized
laser field. Considering classical plasmas, Dawson and Oberman [1] calculated the high-
frequency conductivity for fully ionized plasmas on the basis of the Vlasov–Poisson equations
in the framework of classical dielectric theory. Their work, in which collisional absorption
of the lowest order with respect to the laser field strength was taken into account, was later
extended by Decker et al [2] to the nonlinear case of arbitrarily strong fields. Rae and Burnett [3]
found similar results accounting for collective plasma effects but using the Mermin dielectric
function. Calculating the momentum loss of single electrons to stationary ions, the cycle-
averaged absorption has been investigated classically by Pert [4] and by Mulser et al [5, 6]
within the ballistic model. Shvets and Fisch [7] used a similar approach whose results—after
averaging with respect to a Maxwell distribution—were found to match the results of Decker
et al [2].

Expressions for the electron–ion collision frequency for laser fields in the nonlinear regime
were derived from classical kinetic equations by Silin [8] using a non-Markovian Landau
collision term and by Klimontovich [9] using a Lenard–Balescu collision term. The creation
of a non-Maxwellian distribution of electron momenta during the IB heating was predicted by
Langdon [10] and investigated, e.g., by Jones and Lee [11] and later by Hilse et al [12].

A first quantum mechanical treatment of IB in first order with respect to the electron–ion
interaction was due to Rand [13]. In seminal approaches performed by Bunkin and Fedorov [14]
and Kroll and Watson [15], transition rates and cross sections for the elementary absorption and
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emission processes were derived in the first Born approximation. Shima and Yatom [16] used
these expressions taking statistical averages with distribution functions for different plasma
conditions. A relativistic generalization of the transition rates was given by Schlessinger and
Wright [17]. Brehme [18] and Daniele et al [19] investigated in detail the cross sections
following the works [14, 15].

In the linear regime, a semiclassical approach was due to Cauble and Rozmus [20] by using
quantum pair potentials within a memory function kinetic formalism. A quantum statistical
T-matrix approach in the linear response regime was used by Reinholz et al [21] and Wierling
et al [22]. Krainov [23, 24] derived expressions for the absorption rate of a single electron in
the limiting cases of small and large electron momenta for small laser fields on the basis of the
quantum mechanical differential cross section for spontaneous IB.

A rigorous quantum kinetic approach to plasmas in strong laser fields was presented
by Kremp et al [25] using nonequilibrium Green’s function techniques. Based on these
results, Bornath et al [26] derived quantum statistical expressions for the electron-ion collision
frequency for high-frequency laser fields. Similar results were obtained by Kull and Plagne [27]
starting from the quantum Vlasov equation.

Nonlinear IB for solid-density quantum plasmas including correlations in the electronic
and ionic subsystems were investigated in [12, 28–30]. In an approach adopting a connection
between IB absorption and the stopping power for ions, a generalized expression for the
electron–ion collision frequency was obtained by Grinenko and Gericke [31].

We wish to mention that in the references mentioned so far, mainly linearly polarized laser
fields were investigated. Analytical expressions for circularly polarized fields were derived, e.g.,
in [7, 32, 33].

Several authors used classical molecular dynamics (MD) simulations to study IB
heating [12, 34–36]. In order to investigate the dependence of individual collision events on
certain quantitites such as the impact parameter in more detail, the numerical solution to the
classical equations of motion for the scattering of electrons on isolated ions in the presence
of a laser field was obtained by Fraiman et al [37]. This approach was extended by Brantov
et al [38] to derive the IB heating rate for weakly coupled, low-density plasmas, and recently
by Moll et al [39] for dense clusters in intense laser fields. In these classical simulations, it
was shown that rescattering events of an electron to the same ion play an important role and
that ‘straight line’ electron trajectories can be modified by the laser field significantly. These
simulations are numerically quite expensive and do not provide analytical results.

The analytical results for the IB heating rate listed above differ in certain points. Some are
obtained from kinetic equations and some from averaged probabilities for elementary absorption
or emission processes. Some results were derived classically for weakly coupled plasmas, while
with other expressions also degenerate quantum systems can be described or collective effects
are included. Besides the results from the T-matrix approach [21, 22] that are only valid in
the linear response limit, all analytical expressions follow from perturbative treatments where
perturbation theory is performed with respect to the electron–ion interaction potential.

It is the aim of this paper to take with analytical methods a step beyond the first-order
perturbation theory. To achieve this, we present in section 2 a derivation of the IB heating rate
for electrons with momentum p interacting with an external electric field in terms of scattering
quantities. Then we derive and discuss the momentum-dependent, angle-averaged heating rate
in the first Born approximation. In section 3, we go beyond this and derive—on the basis of the
transition amplitude in the second Born approximation—the heating rate containing additional

New Journal of Physics 14 (2012) 065010 (http://www.njp.org/)

http://www.njp.org/


4

correction terms in the third order of the electron–ion interaction. A discussion of numerical
results is given for weak fields. Finally, we draw some conclusions.

2. The inverse bremsstrahlung heating rate in the first Born approximation

2.1. General derivation of the heating rate

We consider the scattering of an electron on an atomic ion in the presence of a linearly polarized
laser field. The transition rate for the scattering process is defined as

wpi→pf = lim
t→∞

1

t
|Tfi|

2 (1)

with the transition amplitude

Tfi = 〈9−

f (t)|9+
i (t)〉. (2)

The functions 9+
i (t) and 9−

f (t) represent wave functions of the electron with initial momentum
pi and final momentum pf, respectively. Both wave functions 9+

i (r, t) and 9−

f (r, t) are solutions
to the Schrödinger equation (throughout this paper, we use Hartree atomic units with me = e =

h̄ = 1)

i
∂9

∂t
=

(
Ĥ (V ) + U

)
9. (3)

Here U is the electron–ion interaction potential. The Hamilton operator Ĥ (V ) is determined
by the operator of the electron momentum, p̂, and the vector potential of the laser field, A,
according to

Ĥ (V )
=

1

2

(
p̂ +

1

c
A(t)

)2

. (4)

The solutions to the unperturbed Schrödinger equation (that means for U = 0) are the Volkov
wave functions 9V

p , which will be given explicitly in section 2.2. The wave functions in (2)
obey the boundary conditions

9+
i (r, t) −−→

t→−∞
9V

pi
(r, t),

9−

f (r, t) −−→t→+∞
9V

pf
(r, t). (5)

According to (1), we need to calculate the transition amplitude

T +
fi = lim

t→∞
〈9−

f (t)|9+
i (t)〉. (6)

We consider here processes in which photons are absorbed or emitted by the electron, which
means processes with |pi| 6= |pf|. The Volkov wave functions represent a full orthogonal set of
wave functions. Hence, we can subtract from the right-hand side of (6) the Kronecker symbol
〈9V

pf
(t)|9V

pi
(t)〉 = δpfpi and with (5) we can write

T +
fi = lim

t→∞
〈9V

pf
(t)|9+

i (t)〉 − lim
t→−∞

〈9V
pf
(t)|9+

i (t)〉

=

∫ +∞

−∞

dt
∂

∂t
〈9V

pf
(t)|9+

i (t)〉. (7)
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By using the expansion of the wave function 9+
i (r, t) in terms of the Volkov wave functions,

9+
i (r, t) =

∑
p′′

api→p′′9V
p′′(r, t), (8)

we obtain

T +
fi =

∫ +∞

−∞

dt
∂api→pf

∂t
. (9)

Below we will see that the electron’s final energy is given as

p2
f

2
=

p2
n

2
=

p2
i

2
+ nω, (10)

which means during the scattering event the electron can absorb or emit a total number of n
photons. Due to this, the total transition rate (1) can be written as

wpi→pf =

∞∑
n=−∞

wpn , (11)

where wpn is a shorthand notation for wpi→pn . The rate Wn for the absorption or emission of n
photons in the plasma is given by the individual rates wpn multiplied by the number Ni of ions
in the volume V and by the density of final states V d3 pn/(2π)3, and by integrating with respect
to the respective final momentum pn

Wn = Ni
V

(2π)3

∫
d3 pn wpn = Ni

V

(2π)3

∫
d�pn

∫
dpn p2

n wpn . (12)

This rate depends on the initial momentum pi of the electron as well as on the angle between
pi and the electrical field strength vector F. The angle-averaged rate will be denoted by 〈Wn〉.
Then the IB heating rate is given as

dE

dt
=

∞∑
n>nmin

nω 〈Wn〉. (13)

In (13), terms with n > 0 correspond to the absorption of photons while terms with n < 0
correspond to photon emission. The number of photons that can be absorbed by the electron
is not limited from above; therefore n < ∞. The number of photons that can be emitted by
an electron having initially the energy p2

i /2 is limited due to energy conservation; therefore
nmin >−p2

i /(2ω).
In the following, we will evaluate the expressions (11)–(13) within a perturbation theory

with respect to the electron–ion potential.

2.2. Heating rate in the first Born approximation for arbitrary field strengths

In order to derive the IB heating rate in the first Born approximation, we start from the
Schrödinger equation (3) and consider for the electron–ion interaction the Debye potential

U (r) = −
Z

r
exp(−κr). (14)

Here Z is the mean charge of an atomic ion in the plasma. Screening due to the surrounding
plasma medium is taken into account in (14) via the inverse screening length κ . By setting
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U = 0 in (3), one obtains as solutions of the unperturbed Schrödinger equation the Volkov wave
functions

9V
p (r, t) =

1
√

V
exp

(
ip · r −

i

2

∫ t

−∞

dt ′

(
p +

1

c
A(t ′)

)2
)

(15)

with V being a normalization volume. Typically, the laser wavelength is much greater than the
atomic scale in the plasma such as the Bohr radius. Then the dipole approximation can be used
in which the vector potential is related to the electric field strength F of the linearly polarized
laser field according to

F(t) = −
1

c

∂

∂t
A(t), F(t) = F0 sin(ωt), (16)

where ω is the laser frequency and F0 is the field strength amplitude. We assume that the
electromagnetic field adiabatically disappears at t → −∞. Then the Volkov wave functions
can be written as

9V
p (r, t) =

1
√

V
exp

(
ip · r −

i

2
p2t −

i

ω2
p · F0 sin(ωt) −

i

2c2

∫ t

−∞

dt ′A2(t ′)

)
. (17)

Here the Volkov wave functions are given in the velocity gauge. If instead the length gauge was
used, the exponent of the Volkov wave functions would have a different form. However, for the
calculation of the free–free matrix element below, the choice of the gauge is insignificant. This
is in contrast to, e.g., bound-free matrix elements in the Keldysh–Faisal–Reiss theory where the
expression for the ionization rate is gauge dependent [40].

According to (8), the solution to the full Schrödinger equation (3) for an electron having
initial momentum p is given as an expansion in terms of the Volkov wave functions. From (3)
and (8), it follows that the transition amplitudes ap→p′(t) obey the equation

i
∂ap→p′(t)

∂t
=

∑
p′′

ap→p′′(t) 〈9V
p′ (r, t)|U (r)|9V

p′′(r, t)〉. (18)

The initial state of the electron before the scattering process corresponds to the Volkov wave
function of an electron with momentum p; therefore in the zeroth approximation the amplitudes
are given as

a(0)

p→p′′(t) =

{
1 if p′′

= p,

0 if p′′
6= p (19)

and the transition amplitude in the first order, a(1)

p→p′(t), for the transition p → p′ is determined
from

i
∂a(1)

p→p′(t)

∂t
= 〈9V

p′ (r, t)|U (r)|9V
p (r, t)〉. (20)

Inserting the Volkov wave functions (17) and using the Jacobi–Anger expansion [41]

eiz sin θ
=

∞∑
n=−∞

Jn(z) einθ , (21)

to expand the exponent of the matrix element into a series of Bessel functions Jn, one obtains

i
∂a(1)

p→p′(t)

∂t
=

Up′p

V

∞∑
n=−∞

Jn

(
(p − p′) · F0

ω2

)
exp

[
i

(
p′2

2
−

p2

2
− nω

)
t

]
, (22)
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which contains the Fourier component of the electron–ion interaction potential

Up′p =

∫
d3r U (r) exp[i(p − p′) · r] = −

4π Z

|p − p′|2 + κ2
. (23)

With (1), (9) and (22), the transition rate for the scattering of electrons with initial momentum
p and final momentum p′ is in the first Born approximation given as

w
(1)

p→p′ =
1

τ

∣∣∣∣∫ ∞

−∞

dt
∂

∂t
a(1)

p→p′(t)

∣∣∣∣2
=

4π 2

τ

|Up′p|
2

V 2

∞∑
n,n′=−∞

Jn

(
(p − p′) · F0

ω2

)
Jn′

(
(p − p′) · F0

ω2

)

× δ

(
p′2

2
−

p2

2
− nω

)
δ

(
p′2

2
−

p2

2
− n′ω

)
, (24)

where τ → ∞ is the collision time. Only terms with n = n′ give a contribution in (24) because
it holds that δ(x)δ(y) = 0 if x 6= y. Now we use

δ2

(
p′2

2
−

p2

2
− nω

)
= δ

(
p′2

2
−

p2

2
− nω

)
δ(0) = δ

(
p′2

2
−

p2

2
− nω

)
τ

2π
. (25)

Then the transition rate is derived as

w
(1)

p→p′ =

∞∑
n=−∞

w(1)
pn

(26)

with

w(1)
pn

=
2π

V 2
|Upnp|

2 J 2
n

(
(p − pn) · F0

ω2

)
δ

(
p2

n

2
−

p2

2
− nω

)
. (27)

In (27), energy conservation for the absorption (n > 0) or emission (n < 0) of |n| laser photons
is provided by the relation p2

n/2 = p2/2 + nω. The rate for the absorption of n photons in
first-order perturbation theory with respect to the potential U is derived according to (12). By
introducing the number density of the ions ni = Ni/V , this rate can be written as

W (1)
n = ni p

∫
d�pn

dσ (1)
n

d�pn

(28)

containing the incident electron flux ni p and the differential cross section for the absorption of
n photons in the first Born approximation

dσ (1)
n

d�pn

=
dσ (1)(p → pn)

d�pn

J 2
n

(
(p − pn) · F0

ω2

)
,

p2
n

2
=

p2

2
+ nω, (29)

where
dσ (1)(p → pn)

d�pn

=
1

4π 2

pn

p
|Upnp|

2 (30)

is the cross section for inelastic scattering of an electron on an atomic ion. In the limit ω → 0,
equation (30) matches the elastic scattering cross section in the first Born approximation. In their
‘low-frequency approximation’, Kroll and Watson [15] stated that for small ω, equation (29) is
an exact relation even if the cross section in the first Born approximation (30) is replaced by
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the exact cross section. However, by considering semiclassical results of Bersons [42] it was
pointed out by Fedorov [43] that this statement is not correct and that relation (29) holds only
in the first Born approximation.

In the case of the Debye potential, the expression (23) for Upnp can be inserted into (28)
and the transfer momentum q can be introduced according to

q2
= |p − pn|

2
= p2 + p2

n − 2ppn cos χ, (31)

where χ is the angle between p and pn yielding∫
d�pn (· · ·) = 2π

∫ π

0
dχ sin χ (· · ·) =

2π

ppn

∫ p+pn

|p−pn |

dq q (· · ·). (32)

By introducing the angle θ between q and the electric field vector F, the rate (28) can be
averaged with respect to the field direction and one obtains

〈W (1)
n 〉 =

Zω2
p

p

∫ p+pn

|p−pn |

q dq

(q2 + κ2)2

∫ π

0
dθ sin θ J 2

n

(
q F0 cos θ

ω2

)
(33)

in which ωp = (4π Zni)
1/2 is the plasma frequency. With the substitution x = cos θ , the IB

heating rate in the first Born approximation for arbitrary field strengths in the non-relativistic
regime is determined as

dE (1)

dt
=

∞∑
n>nmin

nh̄ω 〈W (1)
n 〉

=
2Zω2

pωm2
ee2h̄

p

∞∑
n>nmin

n
∫ p+pn

|p−pn |

q dq

(q2 + h̄2κ2)2

∫ 1

0
dx J 2

n

(
eq F0x

meh̄ω2

)
. (34)

Here the quantities e, me and h̄ were written explicitly. For a given initial momentum p of the
electrons, the value nmin < 0 in (34) is defined from the relation pn = (p2 + 2menh̄ω)1/2. The
heating rate (34) has a nonlinear dependence on the electric field strength which is contained in
the Bessel functions. The terms in the sum with respect to n that formally originates from the
Jacobi–Anger expansion (21) can now be interpreted as the rates for the respective absorption
or emission processes of |n| laser photons.

In the numerical evaluation of the heating rate (34), the absorption and emission rates (33)
have to be calculated individually for each photon number n. We want to address the issue of
how many terms have to be considered in the numerical computation. From the upper integration
limit in (33), p + pn, we obtain for the maximum value of the transfer momentum qmax > 2p.
The asymptotic expression for the Bessel functions in the case n � 1 is [41]

Jn(z) ∼
1

√
2πn

(
z exp(1)

2n

)n

. (35)

For large n, this expression decreases rapidly if n > 1.36z. Hence, by roughly estimating n ∼ z
and setting q > 2p, we obtain (in atomic units) for the photon number to be considered the
estimate

n ≈
2pF0

ω2
. (36)

This means that with increasing field strength F0, the electron can absorb a larger number of
photons. Formally, the number of photons to be considered increases not only with increasing
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field strength, but also with increasing initial electron momentum p. At this point, the balance
between photon absorption and photon emission comes into play. If one wants to calculate only
the total absorption rate, i.e. all terms with n > 0, or only the total emission rate, i.e. all terms
with n < 0, the number of terms to be considered is estimated according to (36). However,
because the probability of absorption is only a little larger than the probability of emission in
the plasma, the total absorption rate and the total emission rate cancel out each other to a large
extent.

A comment shall be made concerning the sign of the heating rate. Based on the
Kroll–Watson cross sections (30), Brantov et al [38] discussed for the Coulomb case (κ → 0)
the momentum-dependent heating rate in the special cases that the initial electron momentum
p is either parallel or perpendicular to the electric field vector F0. For such situations, the
sign of the heating rate depends on the magnitude of |p| and on the field direction in both
the classical [38, 39] and the quantum case [43]. We wish to point out that in this paper,
we performed an angular average with respect to the field direction. As can be seen from
the numerical results in section 2.4, the resulting heating rate (34) is positive for any fixed
momentum p which holds also in the classical case.

2.3. Heating rate for weak laser fields

To lowest order with respect to the field strength, the IB heating rate (34) appears to be
proportional to F2

0 . This is called the linear regime because the heating rate increases linearly
with the laser intensity I0 = cF2

0 /(8π). For arbitrary values of the laser field strength, the heating
rate has a nonlinear dependence on F0 via the Bessel functions. The linear dependence results
if the argument of the Bessel functions becomes much smaller than unity. Then it is sufficient
to consider only the absorption and emission of single photons, i.e. only terms with n = ±1
in (34) and to approximate J1(z) ≈ z/2. This will define a condition under which the field can
be considered to be weak; see below. Returning to the atomic system of units, the heating rate
becomes

dE (1)

dt
=

Zω2
p F2

0

6pω3

{∫ p+p1

|p−p1|

q3 dq

(q2 + κ2)2
−

∫ p+p−1

|p−p−1|

q3 dq

(q2 + κ2)2

}
. (37)

By expanding the integration limits according to

p + p±1 ≈ 2p ±
ω

p
−

ω2

2p3
±

ω3

2p5
, p − p±1 ≈ ∓

ω

p
+

ω2

2p3
∓

ω3

2p5
, (38)

one finally obtains in lowest order with respect to ω/p2:

dE (1)

dt
=

Zω2
p F2

0 p

6ω2

{
1

(p2 + κ2/4)2
+

ω4

p4(ω2 + κ2 p2)2

}
. (39)

In some special cases, the linear expression (39) can be simplified further. If κ � ω/p � p, it
yields

dE (1)

dt
=

Zω2
p F2

0

3ω2 p3
. (40)

This formula was found by Marcuse already in 1962 by applying a double perturbation theory
both with respect to the electron–ion interaction and to the laser field strength in the case of the
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Coulomb potential [43, 44]. Otherwise, for ω/p � κ � p, one finds that

dE (1)

dt
=

Zω2
p F2

0

6ω2 p3
. (41)

Finally, in the case of large screening, ω/p � p � κ , the heating rate becomes

dE (1)

dt
=

8Zω2
p F2

0 p

3ω2κ4
. (42)

We obtained the linear approximations (39)–(42) for the heating rate under the assumption that
the argument of the Bessel functions in (34) is much smaller than unity. From the maximum
value of the transfer momentum, qmax ≈ 2p, we can estimate that this condition is fulfilled only
for very small values of the field strength, namely

F0 �
meh̄ω2

ep
. (43)

Fedorov [43], who considered the non-averaged heating rate, pointed out that for special
collision geometries the condition for a linear behavior is fulfilled for larger field strengths than
those determined by (43), in particular if one considers small-angle scattering with q ≈ ω/p.
Such a condition can be found also in the present case of the angle-averaged heating rate. The
numerical results (see figure 1) show a linear behavior of the properly normalized heating rate
going far beyond the range given by (43). The condition for this will be derived in the following
for the case κ → 0, however, it is also valid for κ 6= 0; for numerical results, see section 2.4. We
consider a special form of Neumann’s addition theorem for the Bessel functions [41]

∞∑
n=−∞

J 2
n (z) einφ

= J0

(
2z sin

φ

2

)
, (44)

yielding for φ = 0 the result
∞∑

n=−∞

J 2
n (z) = 1. (45)

By subtracting (45) from (44), one obtains
∞∑

n=−∞

J 2
n (z)

(
einφ

− 1
)
= J0

(
2z sin

φ

2

)
− 1. (46)

For φ → 0, it follows from (46) by a Taylor expansion of the exponent and of the Bessel function
J0 that

−
φ2

2

∞∑
n=−∞

n2 J 2
n (z) = −

z2φ2

4
(47)

and therefore

1

2

∞∑
n=−∞

n2 J 2
n (z) =

∞∑
n=1

n2 J 2
n (z) =

z2

4
. (48)

The nonlinear heating rate (34) can be written as

dE (1)

dt
=

2Zω2
pω

p

∞∑
n=1

n

{∫ p+pn

|p−pn |

dq f (q) −

∫ p+p−n

|p−p−n |

dq f (q)

}
, (49)
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where f (q) is the same integrand as in (34). In contrast to section 2.3, we now take into account
not only single-photon absorption and emission, but multiphoton processes. By expanding
the integration limits under the condition that nω � p2 and by rearranging the integrals, the
expression in the curly brackets of (49) becomes

{. . .} ≈

∫ 2p+nω/p

2p−nω/p
dq f (q) +

∫ nω
p + n2ω2

2p3

nω
p −

n2ω2

2p3

dq f (q). (50)

In (50), the first term describes backscattering of electrons with the transfer momentum q ≈ 2p,
whereas the second term indicates small-angle scattering with q ≈ nω/p. We can approximate
these integrals by using∫ Q+δq

Q−δq
dq f (q) ≈ 2δq f (Q) (51)

and in the limit κ → 0, the heating rate becomes

dE (1)

dt
=

2Zω2
pω

p

∞∑
n=1

{
n2ω

4p4

∫ 1

0
dx J 2

n

(
2pF0x

ω2

)
+

1

ω

∫ 1

0
dx J 2

n

(
nF0x

pω

)}
. (52)

By using for the first term the relation (48) and for the second term the relation [41]
∞∑

n=1

J 2
n (nz) =

1

2

(
1

√
1 − z2

− 1

)
, (53)

we obtain

dE (1)

dt
=

2Zω2
pω

p

{
F2

0

12p2ω3
+

p

2F0

(
arcsin

(
F0

pω

)
−

F0

pω

)}
. (54)

Expression (54) was derived under the condition nω � p2. The maximum value of n that gives
a significant contribution can be estimated according to (36). Hence, the condition under which
the linear approximation (54) for the heating rate can be used is

F0 � ωp. (55)

The condition (55) is the well-known classical condition for small laser fields, namely that the
oscillatory quiver velocity vos = eF0/(meω) of the electrons is much smaller than the electron
velocity v = p/me. In the opposite case, non-perturbative effects such as multiple scattering
become important. With the condition (55), (54) can be simplified further, and one obtains in
lowest order with respect to the parameter F0/(ωp)

dE (1)

dt
=

2Zω2
pω

p

{
F2

0

12p2ω3
+

F2
0

12p2ω3

}
=

Zω2
p F2

0

3ω2 p3
, (56)

which is the same as the Marcuse result (40). It should be noted that according to (50) and (56),
half of this result originates from the scattering at large angles (backscattering), while the other
half is due to small-angle scattering.

We want to stress that according to (43), the argument of the Bessel functions is
much smaller than unity only for very small fields F0 � ω2/p. Only for such small fields,
multiphoton absorption and emission do not occur and the heating is solely determined by
single-photon processes. Nevertheless, the more general condition for the applicability of the
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linear approximation for the angle-averaged heating rate is F0 � ωp, which is fulfilled even
for considerably larger field strengths when multiphoton absorption and emission processes are
involved. Apparently, as long as (55) is fulfilled, the multiphoton processes cancel out each other
in such a way that it seems as though the plasma heating is determined only by single-photon
absorption and emission.

2.4. Numerical results in the first Born approximation

By substituting the transfer momentum q in (34) by y = qp/ω, the nonlinear heating rate can
be written as

dE (1)

dt
=

2Zω2
p p

ω

∞∑
n>nmin

n
∫ (p2+ppn)/ω

|p2−ppn |/ω

y dy(
y2 +

(
κp
ω

)2
)2

∫ 1

0
dx J 2

n

(
xy

pos

p

)
. (57)

We will discuss the heating rate as a function of the dimensionless parameter pos/p appearing
in the Bessel functions where pos = F0/ω is the quiver momentum. Throughout this paper, we
will use ni = 0.0024 au = 1.6 × 1022 cm−3 as a typical value for dense plasmas. In general, the
inverse screening length κ is derived from the electron temperature Te and the chemical potential
of the electrons µe according to [45]

κ2
=

8π

kBTe33
e

I−1/2

(
µe

kBTe

)
, 3e =

(
2π

kBTe

)1/2

, (58)

where I−1/2(z) is a Fermi integral and only screening due to the electrons was taken into account.
In the classical limit, (58) reduces to κ2

= 4πni Z/(kBTe). In the following, we will treat κ as a
free parameter where 1 au corresponds to 1a−1

B .
In figure 1, the heating rate normalized to the product ω Upond is shown as a function of

pos/p where Upond = F2
0 /(4ω2) is the ponderomotive energy of the electrons. The upper curves

show results for p = 2 au and the lower curves indicate results for p = 4 au, corresponding
to energies E = p2/2 = 54.4 eV and E = 217.6 eV, respectively. A weak plasma screening
(κ = 0.03 au, full dark curves) and a stronger screening (κ = 0.3 au, dashed dark curves) are
considered for ω = 0.0553 au, which corresponds to infrared laser radiation with the wavelength
λ = 825 nm. The dashed bright curves show results from the linear expression (39) in the case
of κ = 0.3 au. For small values of pos/p, condition (55) is fulfilled, and the normalized heating
rate is constant. It shows a maximum at pos/p ∼ 1 and decreases with increasing field strength
for large values of pos/p. The linear expression (39) is a good approximation up to pos/p ∼ 0.5,
compare the bright and the full dashed lines. For the larger momentum p (lower curves), the
heating rate yields lower values than for the smaller initial momentum (upper curves). This
means that slower electrons can absorb more energy from the laser field than fast electrons.
A larger plasma screening yields a reduction of the heating rate (compare the dashed and the
full dark curves).

The dependence of the heating rate on the screening parameter κ is shown in figure 2
for the electron momentum p = 3 au and for ω = 0.2 au corresponding to laser radiation with
λ = 275 nm. A strong laser field (pos/p = 5, full bright curve) and a small field (pos/p = 0.1,
full dark curve) are considered where the dashed dark curves show results from the limiting
cases (40)–(42) for weak fields. For small values of κ , the normalized heating rate is constant,
and decreases with increasing plasma screening. This is because the screening reduces the
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Figure 1. Heating rate normalized to ω Upond as a function of the parameter
pos/p for Z = 1, ω = 0.0553 au and for different values of the momentum p
in the case of weak screening (κ = 0.03 au, full curves) and stronger screening
(κ = 0.3 au, dashed curves). The bright dashed lines show the results from the
linear expression (39) for κ = 0.3 au.

0,01 0,1 1 10
κ  [a.u.]

10
-4

10
-3

10
-2

10
-1

dE
(1

) /d
t  

[ω
 U

po
nd

]

p
os

/ p = 0.1
p

os
/ p = 5

Eq. (40)
Eq. (41)

Eq. (42)

Figure 2. Heating rate normalized to ω Upond as a function of the screening
parameter κ for p = 3 au, ω = 0.2 au and Z = 1. The dashed lines show the
results from the limiting cases (40)–(42) for small fields.

electron–ion interaction and therefore the deflection of the electrons which is responsible for
IB. In the case of the small laser field (dark curve), the normalized heating rate shows a plateau
for intermediate values of κ where the limiting case (41) is reached. This plateau is absent in
the strong field case (bright curve). The reason for this is high-order multiphoton processes

New Journal of Physics 14 (2012) 065010 (http://www.njp.org/)

http://www.njp.org/


14

occurring for strong fields, which yield a ‘smoothening’ of the heating rate as a function
of κ .

3. The second Born approximation

In order to go beyond the calculations of section 2.2, we now consider the transition amplitude
in the second Born approximation. According to (18), this amplitude is given as

i
∂a(2)

p→p′(t)

∂t
=

∑
p′′

a(1)

p→p′′(t) 〈9V
p′ (r, t)|U (r)|9V

p′′(r, t)〉

= −

∑
p′′

Up′p′′Up′′p

V 2

∞∑
m,m′=−∞

Jm[p, p′′]Jm′[p′′, p′]
exp

[
i
(

p′2
−p2

2 − (m + m ′)ω
)

t
]

p′′2

2 −
p2

2 − mω − iλ
.

(59)

Here the matrix element was given from (20) and (22), a(1)

p→p′′(t) was obtained from the
integration of (22) with respect to the time and λ → +0 is a small quantity to account for the
poles of (59). In order to shorten the notation we introduced the abbreviation

Jn[p1, p2] := Jn

(
(p1 − p2) · F0

ω2

)
, (60)

where p1 and p2 are arbitrary momenta and F0 is the electric field strength amplitude. The
transition rate is derived according to

w
(2)

p→p′ =
1

τ

∣∣∣∣∫ ∞

−∞

dt

(
∂

∂t
a(1)

p→p′(t) +
∂

∂t
a(2)

p→p′(t)

)∣∣∣∣2 . (61)

By taking into account both transition amplitudes (22) and (59) and setting n = m + m ′, we
obtain for the transition rate in the second Born approximation

w
(2)

p→p′ =

∞∑
n=−∞

w(2)
pn

(62)

with

w(2)
pn

=
2π

V 2

∣∣∣∣∣∣−Upnp Jn[p, pn] +
1

V

∑
p′′

∞∑
m=−∞

Upnp′′Up′′p Jm[p, p′′] Jn−m[p′′, pn]
p′′2

2 −
p2

2 − mω − iλ

∣∣∣∣∣∣
2

× δ

(
p2

n

2
−

p2

2
− nω

)
. (63)

In this expression, energy conservation is guaranteed via the relation p2
n/2 = p2/2 + nω. By

replacing

1

V

∑
p′′

→
1

(2π)3

∫
∞

0
dp′′ p′′2

∫
d�p′′, (64)
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one finally obtains the rate for the absorption (n > 0) or emission (n < 0) of |n| photons

W (2)
n =

Zω2
p pn

π

∫
d�pn

∣∣∣∣∣∣
Jn

(
(p−pn)·F0

ω2

)
|p − pn|

2 + κ2
+

Z

2π 2

∫
∞

0
dp′′ p′′2

∞∑
m=−∞

∫
d�p′′

×

Jm

(
(p−p′′)·F0

ω2

)
Jn−m

(
(p′′

−pn)·F0

ω2

)
(

p′′2

2 −
p2

2 − mω − iλ
) (

|pn − p′′|2 + κ2
)(

|p − p′′|2 + κ2
)
∣∣∣∣∣∣
2

. (65)

The absorption rate (65) contains not only the initial and the final momentum p and pn, but also
an intermediate momentum p′′. The heating rate including terms from the transition amplitudes
in both the first and the second Born approximation is given as

dE (2)

dt
=

∞∑
n>nmin

nω 〈W (2)
n 〉. (66)

Here, 〈· · · 〉 denotes averaging of (65) with respect to the direction of the electric field vector
of the laser. In order to obtain the heating rate (66), six integrations and two summations
with respect to Bessel functions have to be performed. Unfortunately, in the case when the
condition (55) for low fields is not fulfilled, the number of terms to be considered in the
summations estimated from (36) is quite large.

In the case of low laser fields, (65) can be simplified significantly (for the derivation, see
the appendix) and the heating rate is given as

dE (2)

dt
= ω

(
〈 W (2)

1 〉 − 〈 W (2)

−1 〉

)
(67)

with

〈W (2)

1 〉 =
ni Z 2 p1

2

∫ π

0
d21 sin 21

4π

3

(
|A|

2 + |B|
2
)

= 〈W (2)

−1 〉 |ω↔−ω,p1↔p−1, (68)

where the quantities A and B are lengthy expressions given as (A.19) and (A.20) in
the appendix. For the calculation of the heating rate in the case of low fields, (67), only two
integrations have to be carried out numerically.

Care must be taken concerning the correct perturbation order. The Born series represents
an expansion of the exact transition amplitude with respect to the interaction potential U , hence
with respect to Z . The transition rate is derived from the absolute square of the sum of transition
amplitudes according to (61). The heating rate in the first Born approximation, (34), is of the
order of Z 2. In contrast to this, the heating rate (66) contains terms up to the order Z 4. However,
in the sense of a perturbation theory with respect to the interaction potential, the second Born
approximation is not ‘complete’ because some terms of the order Z 4 are missing. These terms
are contained in the third Born approximation term, which is too cumbersome to calculate.
Therefore, in order to stay within a correct perturbation theory with respect to Z , we will in the
following consider only the terms up to the order Z 3 in the heating rate.

In figure 3, the heating rate in the first Born approximation, corresponding to the order Z 2,
is compared to the heating rate containing the additional correction terms of the order Z 3. Again
the numerical results are normalized to ω Upond. For the ion charge, the values Z = 1 and Z = 2
are considered. In the case of very large electron momenta, the results of the orders Z 2 and Z 3

almost coincide. This means that the correction terms of the order Z 3 do not significantly change
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Figure 3. Heating rate normalized to ω Upond as a function of the electron
momentum p for ω = 0.0553 au, κ = 0.03 au and pos/p = 0.01. For Z = 1 and
Z = 2, results are shown containing terms of the order Z 2 and terms up to Z 3.

the results in the first Born approximation as it should be expected. With decreasing p, the Z 3-
correction terms lead to a reduction of the heating rate. For small momenta, the perturbation
theory starts to lose its validity and correction terms of higher order become important. For
values of p that are too small, the model breaks down. Because the terms in the perturbation
series scale in orders of Z , the breakdown is more apparent for Z = 2 than it is for Z = 1; see
the dashed line in figure 3.

4. Conclusion

There have been several attempts to derive analytical expressions for the IB heating rate
for both classical and quantum plasmas. Most approaches are based on either the first
Born approximation or its classical analogue, the ‘straight line path’ approximation. These
perturbative calculations take into account only single scattering events of an electron to the
same ion with scattering mostly into small angles. Classical simulations including multiple
scattering are time-consuming and cannot provide analytical expressions for the heating rate.

In this paper, a momentum-dependent expression for the heating rate has been derived in
the first Born approximation for the Debye potential taking into account plasma screening. In the
calculations, an angular averaging with respect to the field direction was performed. For small
laser fields, simple analytical results were obtained. The conditions for the applicability of a
linear approximation for the angle-averaged heating rate have been analyzed in detail. The linear
approximation for this quantity is valid even for field strengths for which the total absorption
rate as well as the total emission rate contain high-order multiphoton processes. In the heating
rate—which results from the difference of absorption and emission—these multiphoton terms
cancel out to a large extent. The heating rate as a function of the Debye screening parameter κ

shows a plateau for small fields which is absent for strong laser fields.
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In the double perturbation theory both with respect to the laser field and the electron–ion
interaction, we considered—as a further new result—the transition amplitude in the second
Born approximation. In the weak field case, it has been evaluated numerically. A consistent
perturbative correction to the heating rate in the first Born approximation could be obtained
in the order Z 3 where Z is the ion charge. These correction terms yield a reduction of the
heating rate compared to the first Born approximation. Due to the correction terms, the scope
of applicability of the perturbative approach could be extended to the region of smaller electron
momenta, hence smaller electron energies.
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Appendix. Absorption rate in the second Born approximation for small fields

In the case of arbitrary laser field strengths, the absorption rate including terms from the
transition amplitude in the second Born approximation is given as (65) in section 3. In order to
consider low fields, we take into account only the terms with (n = 1, m = 0) and (n = 1, m = 1).
By using J1(z) ≈ z/2 and by taking the average with respect to the direction of F (denoted as
〈· · · 〉), we obtain

〈W (2)

1 〉 =
ni Z 2 p1

2ω4

∫ π

0
d2 sin 2

∫ π

0
d21 sin 21

∫ 2π

0
dφ1

×

∣∣∣∣ pF0 cos 2 − p1 F0 cos θ1

p2 + p2
1 + κ2 − 2pp1 cos 21

+
Z

π2
I

∣∣∣∣2 , (A.1)

where

I =

∫
∞

0
dp′′ p′′2

∫ π

0
d2′ sin 2′

∫ 2π

0
dφ′

1

(|p1 − p′′|2 + κ2)(|p − p′′|2 + κ2)

×

{
p′′F0 cos θ ′

− p1 F0 cos θ1

p′′2 − p2 − iλ
+

pF0 cos 2 − p′′F0 cos θ ′

p′′2 − p2 − 2ω − iλ

}
. (A.2)

The angle 2′ in (A.1) and (A.2) is defined below in (A.6), whereas the notation of the other
angles is taken from figure A.1.

We introduce the abbreviations

a = |p1 − p′′
|
2 + κ2, b = |p − p′′

|
2 + κ2 (A.3)

and

P =
1 − t

2
p +

1 + t

2
p1, z2

= κ2 + p2
1

1 + t

2
+ p2 1 − t

2
. (A.4)

By using the ‘Feynman trick’

1

ab
=

1

2

∫ 1

−1
dt

[
a

1 + t

2
+ b

1 − t

2

]−2

, (A.5)
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Figure A.1. Definition of the angles from the momenta and the field strength
vector. The initial electron momentum p has been fixed and the angles φ1 and φ′

are obtained from the projections of p1 and p′′ on the plane perpendicular to p.

we obtain

1

ab
=

1

2

∫ 1

−1

dt

(z2 + p′′2 − 2p′′ P cos 2′)2
= −

1

2

∫ 1

−1
dt

1

2z

∂

∂z

1

z2 + p′′2 − 2p′′ P cos 2′
, (A.6)

where 2′ is the angle between p′′ and P. Hence, (A.2) becomes

I = −
F0

4

∫ π

0
d2′ sin 2′

∫ 2π

0
dφ′

∫ 1

−1
dt

1

z

∂

∂z

∫
∞

0
dp′′ p′′2 1

z2 + p′′2 − 2p′′ P cos 2′

×

{
p′′ cos θ ′

− p1 cos θ1

p′′2 − p2 − iλ
+

p cos 2 − p′′ cos θ ′

p′′2 − p2
1 − iλ

}
. (A.7)

Here the angles are connected according to

cos θ ′
= cos 2′ cos 2P + sin 2′ sin 2P cos φ′,

cos θ1 = cos 2 cos 21 + sin 2 sin 21 cos φ1 (A.8)

and cos 2P is given via

P cos 2P =
1 − t

2
p cos 2 +

1 + t

2
p1(cos 2 cos 21 + sin 2 sin 21 cos φ1). (A.9)

By inserting the first equation of (A.8) into (A.7), the integration with respect to φ′ can be
carried out. Substituting p′′

→ −p′′ and 2′
→ π − 2′ allows us to change the integration limits

according to ∫
∞

0
dp′′ p′′2(· · ·) →

1

2

∫
∞

−∞

dp′′ p′′2(· · ·). (A.10)

For the further simplification of (A.7), we consider expressions of the form

Tn(ξ) =

∫
∞

−∞

dp′′ p′′2 (p′′)n−1

(p′′2 − ξ 2 − iλ)(z2 + p′′2 − 2p′′ P cos 2′)
(A.11)

New Journal of Physics 14 (2012) 065010 (http://www.njp.org/)

http://www.njp.org/


19

with n = 1, 2 and ξ = p or ξ = p1, respectively. By closing the contour with a semicircle in the
upper half plane, these expressions are evaluated with residue theory and yield

Tn(ξ) =
iπξ n

z2 + ξ 2 − 2ξ P cos 2′
+

π(P cos 2′ + iW )n+1

W [(P cos 2′ + iW )2 − ξ 2 − iλ]
, (A.12)

where W =
√

z2 − P2 cos2 2′. Now we introduce the abbreviation 1 =
√

z2 − P2 and make
use of

1

z

∂

∂z
(· · ·) =

1

1

∂

∂1
(· · ·) (A.13)

to consider expressions of the form

Rn(ξ) =
1

21

∂

∂1

∫ π

0
d2′ sin 2′[cos 2′]n−1Tn(ξ). (A.14)

Then (A.7) can be written as

I = −
F0π

2

∫ 1

−1
dt {[R2(p) − R2(p1)] cos 2P − R1(p)p1 cos θ1 + R1(p1)p cos 2} . (A.15)

In (A.15), the curly brackets can be evaluated explicitly to yield

{· · ·} =
π cos 2P

P1

[
z2

− ip1

(p + i1)2 − P2
−

z2
− ip11

(p1 + i1)2 − P2

]

+
iπ cos 2P

2P2

[
ln

(
p + P + i1

p − P + i1

)
− ln

(
p1 + P + i1

p1 − P + i1

)]

+
π

1

[
p cos 2

(p1 + i1)2 − P2
−

p1 cos θ1

(p + i1)2 − P2

]
. (A.16)

With the connection between the angles, (A.8) and (A.9), the absorption rate (A.1) can be written
in the form

〈W (2)

1 〉 =
ni Z 2 p1

2

∫ π

0
d21 sin 21

∫ π

0
d2 sin 2

∫ 2π

0
dφ1|A cos 2 + B sin 2 cos φ1|

2

=
ni Z 2 p1

2

∫ π

0
d21 sin 21

4π

3
(|A|

2 + |B|
2), (A.17)

where the quantities A and B (given below) are independent of 2 and φ1. By introducing the
final abbreviations

91 =
1 − t

2
p +

1 + t

2
p1 cos 21, 92 =

1 + t

2
p1 sin 21, �± = κ2

± ω + ωt, (A.18)

the real and imaginary parts of the quantities A and B in (A.17) are given as(
ReA

ReB

)
=

(1
0

)
pF0 − p1 F0

(cos 21

sin 21

)
ω2(2p2 + 2ω + κ2 − 2pp1 cos 21)

−
F0 Z

2ω2

∫ 1

−1
dt

1

P21

×

{(
91

92

)
(2p212

− z2�+) + P2 p1

(cos 21

sin 21

)
�+

�2
+ + 4p212

−

(
91

92

)
(2p2

11
2
− z2�−) +

(1
0

)
P2 p�−

�2
− + 4p2

11
2

−

(
91

92

)
1

2P

[
atan

(
2P1

�+ − 212

)
− atan

(
2P1

�− − 212

)]}
, (A.19)
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(
ImA

ImB

)
= −

F0 Z

2ω2

∫ 1

−1
dt

1

P2

{(
91

92

)
4P

ln

[
(p2 + z2 + 2pP)(p2

1 + z2
− 2p1 P)

(p2 + z2 − 2pP)(p2
1 + z2 + 2p1 P)

]

+

(
91

92

)
p(�+ − 2z2) + 2pp1 P2

(cos 21

sin 21

)
�2

+ + 4p212
−

(
91

92

)
p1(�− − 2z2) +

(1
0

)
2pp1 P2

�2
− + 4p2

11
2

}
. (A.20)

In the brackets
(
···

···

)
of (A.19) and (A.20), the upper value belongs to the quantity A, whereas the

lower value belongs to B. The emission rate 〈W (2)

−1 〉 is derived from (A.17) after the substitution
of ω → −ω and p1 → p−1 into A and B.
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