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ABSTRACT 

We review the basic theoretical ideas underlying the app lications of QCD 
perturbation theory to hard inclus ive processes . The physical origin and rele­

vance of mas s  singularities are discussed .  Factorization and universal ity of 
mass singularities are i l lustrated in the case of  the calculation of  quark 
structure functions in deep inelastic scattering. 

RESUME 

Nous presentons ici  les  idees de base concernant l ' app lication de la 
theorie des perturbations en Chromodynamique Quantique aux processus inc lusifs 

"durs " .  En particulier,  nous discutons l ' importance et l ' origine physique des 
s �ngularit€s de masse  en th€orie des perturbations . Les proprietes d ' univer­

salit8 et de factorisation de ces s ingularit8s sent mises en evidence dans le  
cas  part iculier du  calcul des  fonctions de structure des quarks . 
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Much work has been carried out during the last  couple of years concerning 

the relationship between QCD perturbation theory and the naive quark-parton 
model in hard processes  caractcrized by the presence of  a large invariant mass 
Q2 . If the parton model results are interpreted as the zeroth order approxi­
mation in the expansion in terms of the strong coupl ing cons tant a8 , then it i s  

now quite wel l  understood why radiative corrections associated , for examp l e ,  
with gluon bremhs tralung b y  the incoming or outgoing partons are responsible 

for the logari thmic deviations from exact Bj orken scaling predicted by asymptotic 
freedom. For spacelike Q2 the use of QCD perturbation theory reproduces of course 
the we l l  known asymp totic  freedom result s  ob tained by means of  renormalization 
group techniques ( ! ) . However ,  QCD perturbation theory can also be applied to 
precesses with time-l ike invariant mas ses - l ike for instance the Drel l-Yang 

process - and one can therefore derive asymp totic freedom-l ike result s  in 
these cases in which renormalization group techniques are not available � 2 )  

The purpose of thi s talk i s  to give an introduct ion to the theoretical ideas 
underlying the use of  QCD perturbation theory in hard processes . One s tarts by 
accepting the basic hypothesis  that has already gained a large concensus , namely , 
that QCD is the correct underlying theory of s trong interactions ; and therefore 
partons are colored quarks , ant i-quarks and gluons whose dynamical behavior i s  
governed by a n  SU (3 ) c gauge theory . Since real hadrons and the related confine­
ment prob lem are s t i l l  out of the reach of our computational abi l ities ,  one 
assumes further that they are described by sof t wave funct ions which s trongly 
damp the invariant mas ses and the transverse momenta of  partons . Finally , one 
assumes that hard scattering cross sections off hadrons are obtained by convolu­

ting hadronic wave functions with hard scattering cross  sections off partons . 
These two pos tulates are of course the basic premises of any partons model .  

One i s  therefore left  with the problem o f  comput ing hard scattering cross  
sections off partons . S ince there i s  a large invariant mass availab l e ,  Q2 , one 

can expect that they can be computed in an improved perturbation theory in the 
running coupling constant a (Q2 ) .  However , one mus t  learn to tame large logarithms s 
logQ2 which show up due to divergencies of infrared nature and which invalidate 
the improved perturbation theory . These logarithms are responsible for scale 
breaking effects in QCD , and they are best understood in my opinion from the 
point of view of mass s ingularitie s , as in Ref . (3 ) - (4) ,  namely,  infrared singu­
larities that occur in perturbation theory when the quark m goes to zero . 

We discuss first  the physical origin and the relevance of col l inear (mass)  
singulari ties in perturbation theory . We then proceed to d iscuss the app lications 
to QCD i e t s  and to the calculation of  scale breaking in deep inelastic processes . 
Finally ,  the maj or results in the field are summarized in the las t section 



I - The relevance and phys ical origin of mass s ingularities . 

Let o be a hard scattering cross  section off 
general on the large invariant mass Q2 , the quark 

partons . It wi l l  depend in 
masses  m2 , the renormalization 

2 mass µ , a set  of Bj orken variab les xi and the strong coupling constant 
Because of dimensional reasons we can always write a as 

a (µ2 ) .  s 

( I )  

where F i s  dimensionles s .  Since F i s  a physical observable ,  i t  mus t b e  independent 
of the renormalization mass µ2 • Therefore , one can think of choosing µ

2 
= Q2 and 

writing F in the form 

F 
2 

F ( l  
m N (Q2) )  , 2 '  XB ' � Q 

where a (Q2) is the QCD running coupling constant . In 
2 q2 

tion, where one sums all the powers of as (µ ) log -2 , 
tant is given by µ 

where 

b 

(2) 

the leading log approxima­
the running coupling cons-

(3 )  

(4)  

Nc ' Nf being the numbers of colors and f lavors , respectively .  

Since the running coupling constant decreases logari thmically as Q2 
+ oo 

( the asymptotic freedom result) one can s ee immediately that in this case F 

can be safely expanded in an improved perturbation theory in a(Q2) provided 
that the zero mass l imit m2 + 0 is regular . This wi l l  happen , as we shall 
soon di scuss in more detail ,  whenever there process under consideration is 
fully inclusive in the sense that there are no well identified parton l ines in 
the initial or final s tate . A typical examp le is  the ratio R of hadronic to 
lep tonic yield in e+e- col lis ions , which can be expanded as 

R 
2 

N � Q� [ I + a (Q ) + . . .  ] C l l TT ( 5 )  

1 8 1  



1 82 

Whenever there are wel l  identified partons in the ini t ial or final s tate , (as , 
for example , in the calculation of deep inelastic s tructure functions or in 
Drell-Yan process e s )  the zero mass limit m2 + 0 will not b e  �egular in perturba­
tion theory in the sense that logarithmic s ingularities of the form log � wi l l  
show up . In order t o  rees tab l i sh an improved perturbation theory, all  m 

n 2 n � leading powers fo the form a (Q ) log 2 have to be summed up , non leading po-
rn 2 n 2 n-£ Q wers of logari thms of the form a {Q ) log {-z) being a correction of order 

m 
a£(Q2) with respect to the leading ones . This procedure cons t itutes the leading 
log approximation. 

The physical origin of mass singularities in perturbation theory is eas ily 
unders tood by observing that a massless  quark can emit or absorb a hard col linear 
gluon and remain on its  mass she l l . Indeed , if we consider the process quark (p)+ 

quark (p ' )  + gluon (k) we obtain for the virtual mas s of the outgoing quark 

, 2  p -2p . k  (6)  

8 being defined as the angle o f  emi s sion of the gluon with respect to the di­
rection of the incoming quark . Clearl y ,  if  the emi s s ion is  coll inear (8  = 0 )  the 
outgoing quark is on its  mass she l l . Therefore , coll inear emi ss ion of hard gluons 
induces dangerous propagators in perturbation theory , which are responsible for 
the logarithmic mass singularities in transi tion probab i l i ties . 

Let us discuss a s imple exampl e  in QED : photon bremss trahlung by an elec­
tron in an external field . The trans ition ampl itude corresponding to the diagram 
( 1 . a ) ,  where the photon of momentum k

µ 
is emitted by the outgoing electron, i s  

given up to irrelevant factors by 

A 2 m e 
( 7 )  

where E µ  i s  the polarization vector o f  the emi tted photon. We have only exhib i ted 
the electron propagator and the emi ss ion vertex s . p2 because they are the only 
relevant factors to understand the mass singularity when m2 + 0 .  Taking into e 
account the mass-shel l  condi t ions k2 = 0 and p� = m2 the transition amp l i tude 

2 +2 
e 

can be wri t ten, for me << Pz , as 
+ +  

A (8)  



We can see in this ,expression that the dangerous coll inear s ingularity for 
e = 0 i s  in fact regulated by the finite electron mass . The factor k- I  is  of 
course responsible for the usual infrared divergencies , due to the emission of 
soft photons . If  we neglect the e l ectron mas s ,  the denominator wi ll behave like 
e2 for small values of e. However ,  the numPrator gives also a power of e in th is 
l imi t becaus e  E is the polarization vector of a real photon and is  therefore 
perpendicular to k. We have then : 

(9)  

This vanishing of the emi ssion vertex of a hard collinear gluon is simply under­
stood in terms of hel i c i ty conservation : a quark that emits a co l linear gluon i s  
forced to f l ip its helici ty . W e  then conclude that the ampli tude A behaves both i n  
the infrared (�  � 0 )  and coll inear ( 8  � 0) regions a s  

A ( I  0)  
k8 

The transiti on probab i l i ty for photon bremsstrahlung is then obtained by inte­
grating over phase space ,  

which exhibits the infrared and collinear singularities , o f  the form 
log ( ! P 2 l /my) . lo g ( I P2 l /me) ,  my b eing a ficti tion photon mas s .  

( I I )  

It is very important to keep in mind how the infr ared and mass s ingularities 
are softened , that i s  to say ,  under what conditions the l imi t my + 0 and 
me + 0 can safely be taken. This i s  summarized in the Kinoshira-Lee-Nauemberg 
Theorem( S )  �6�hich states e ssentially that infrared and mass s ingulari ties are 
softened when total transi tion rate s are computed between nearly degenerate ini ­
tial and/or final s tates . In other words , individual trans i t ion probab i lities 
have infrared and mass s ingulari ties , but these s ingularities are cancel led 
when inclusive cross sections are computed by suming over sets of states dege­
nerate in the appropriate zero mass l imits . A typical example i s  again the case 
of electron scattering by an external field . When radiative corrections are 
computed by summing the Feynman diagrams of Fig . (2a , b , c , d) the result is , to 
lowest order in a, the Born cross sect ion times a factor of the form 
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( 1 2 ) 

However , if one computes instead the total transi tion rate to a final state with 
finite energy resoluti'on ti E ,  to the same order of perturbation theory one mus t  
a l s o  consider the probability that a soft photon of energy k < ti E i s  emitted 
either by the incoming or by the outgoing electron . The transition amp l i tudes 
correspond to the Feynman diagrams of Figs ( l . a ,b ) . When the inelastic cro s s  
section i s  added to the e l a s t i c  one , infrared divergences cancel and in the 
final result the l imit my + 0 can be safely taken . One obtains a correction 
factor of the form ( 1 2) except that the mass my is replaced by the energy reso­
lution ti E . 

In the same way as infrared s ingularities are regulated by means of an 
energy resolution, collinear singularities can , according to the KLN theorem(S) , 
be regulated by introducing an angular resolution o and by computing transi t ion 
rates to nearly degenerate s tates which include the charged particles plus an 
arbitrary number of collinear photons , not neces sarily soft . Only in this case 
the l imi t me + 0 can � e  safely taken, and the total transi t ion rate is free of 
mass s ingularities ( S ) �6)  

Exactly the same argument s  work in QCD . Exclusive processes containing 
colored partons in the initial or f inal state will exhibit in general mass sin­
gularities in pe�turbation theory . We then expect on general grounds the large 
logari thms log � which invalidate perturbation theory as Q2 + 00 , unless  the 
condi tions of tWe KLN theorem are met and the mass s ingularities  are softened 
because one is looking at an inclusive process which does not discriminate 
against the coll inear decay of massless  partons in the final s tate , for example . 
Such is the case of the ratio R of hadronic to leptonic yields in e+e- annihi­
lation. It is not however the case of the quark s tructure functions or Dre l l­
Yan processes because we do not include in the calculation nearly degenerate 
i�itial s tates containing the original partons plus an arbi trary number of hard 
collinear gluons . 

As in QED , infrared and mass s ingularities can be softened by introducing 
energy and angular resolutions . A by now class ical example is the S terman-Weinberg 
result ( J) for the two-j et cros s  section in e+e- annihi lation . Let us call E the 
total e+e- energy , and a(E , 6 , s , o )  the cross section for all annihi l ation event s 
in which a fraction ( 1 -E) of the total energy E is emitted within a pair of 
oppos i tely directed cones of opening angle 28 ( see F i g . ( 3 ) ) .  Thi s  means that a 
fraction E E of the incident energy has been lost  outs i de the cones . Then , the 



cros s-section CT is finite in the zero-mass l imi t and given by 

-1- CT (E ,8 ,E: , o )  
110 2 

3cx2 2 
-- ( I  + cos 8 )  
4E2 

4a 113 
� Q .  2 

[ 1 - _
s 

(3ho + 4,Q,no in Zs + -3 - � ) J 
i 1 311 2 

( 1 3 )  

The reason why o i s  finite in the zero mass l imi t i s  again a consequence of the 
KLN theorem. The O (as ) term ori3inates from virtual corrections to the qq final 
state and also from gluon bremsstrahlung by the outgoing q or q. If, after gluon 
radi ation by a quark emitted originally in the direction 8 ,  one fo the decay pro­
ducts (quark or gluon) goes outs ide the cone , we know that i t  i s  neither colli­
near nor sof t ,  since i t  has  necessari ly an energy EE . Therefore , one i s  not 
mi ssing any nearly degenerate state in the trans ition rate . 

2 - The quark structure functions . 

Le t us now consider the calculat ion of non-s inglet f l avor components in 
deep inelastic scat tering such as , for example 

V w2 (up quark) - v w2 (down quark) 

whose practical advantage lies in the fact that only diagrams of the kind exhi­
bited in Fig . ( 4 . a ,b) , where the electromagnetic current couples directly to the 
valence quark , do not cancel ,  s ince the elec tromagnet i c  charges of the up and 
down quark are different . Diagrams in which the elec tromagnetic current couples 
to the sea quarks , as in F i g .  (4c) , cancel in the di fference o f  the two struc­
ture func tions . Many authors have considered thi s  problem in great detai l 
(see References ( 2) - (4 )  ; (8) - ( 1 7 ) )  and we sha l l  limit ourselves to ske tch the 
main l ines of the calculation , following the methods of Ref . (4) . 

Consider first the case of physical gluon brems strahlung by the incoming 
quark (Fig . 5 . a) . If we call 8 the angle of emi s s ion of the gluon with respect 
to the incoming quark , the amp l i tude behaves as 

A I • 8 � ( 1 4 )  

and therefore phase space integration wi l l  give 
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"/ e de Q2 
los 2 

m 
( 1 5 )  

where the last result fol lows from the fact that when a smal l quark mass i s  
retained the angular integration (see Eq . (8) ) the angular integration gives 

2 
log(� 2) ,  and that a simple k inematical analysi s  shows that l rl 2 is proportio-

I P I 
nal to Q2 . The constant of proportionality is of course irrelevant when one i s  
interested in computing the leading mass singulari ties . We must also worry about 
the possib i l i ty that the gluon is radiated by the final quark. Interference dia­
grams of the type showed in F ig . (5 . b )  give a finite resul t .  Indeed , if the gluon 
is collinear to the incoming quark it cannot b e  col l inear to the outgoing one 
due to the hard nature of the process under consideration. Therefore , one finds 
for the interference diagrams 

finite ( 1 6) 

In the same way it is easy to see that the emission of n gluons from the in­
coming quark , exhibited 
the form (log Q2) n . In 

in Fig . 6 ,  gives rise to a l eading mass singularity of 
this case i t  i s  much more convenient to trade the emission 

angle e by m2 the invariant mass t of the quark running up the mul tiperi-
pheral ladder . As shown in Fig . 7 .  

- 2p . k  

then 

- 2 1 P" I . k < 1 -cos e )  

dz . dt 
1 6112 

( 1 7 ) 

( 1 8) 

where we have written k = zp .  This is due to the fact that in extracting the 
leading mass singulari ties one wil l  explicitly extract from I A  1 2 the 8 - or t -n 
dis tributions responsible for the leading logs and set whatever structure is left 
in [A 1 2 in the collinear configuration k = zp . The variable z is therefore the n 
fraction of the incoming momentum carried away b y  the emi tted gluon . Each gluon 
emiss ion wi l l  give rise to a behavior of the form ei 1 ti

- 1 1 2 in the production 

ampl itude An . Moreover,  it  follows from simple kinemat ical considerations that 
the invariant masses t .  are ordered : 1 



( 1 9) 

Therefore, the angular part of the phase space integration yields a factor of 
the form 

2 
Q dt f n 

tn 
m2 

t2 

{ m 

2 
( log Q

2 ) n 
m 

(20) 

where as i s  the s trong coupling constant - not yet running - because for the 
moment we are computing the s implest diagrams arising from gluon radiation by 
the incoming quark and virtual corrections that make the coupling constant run 
are not yet inc l uded . It is also important to recognize tha t ,  although the or­
dering o f  invari ant masses l ti l follows from kinematics , the ledaing mass singu­
larity ari ses from a region of integration where the Z .  are s trongly ordere d ,  in 

2 1 
the sense that ! t i ! << ! t i+ ! I << Q . Indeed , the same resul t at the leading log 

level i s  obtained i f  ! ti ! i s  only integrated up to E l ti+ I  I , where E is an arbi­
trarily small  but fixed number . 

Equation (20) does not exhaus t  the phase space integration since I A  1 2 s t i l l  n 
depends on the zi ' s ,  the frac tion of the momentum of the parent quark carried out 
by the i th gluon . The z-dependence of the matrix elements i s  computed in detail 
in the l i terature and we sha l l  not describe it here (see,  for example , Ref s . 
( 3) , ( 1 8) ) .  Cal ling am(p)  the spin averaged total cross-sect ion for an incoming 
quark of momentum p ,  the final result i s  

where CF 

am(p) = m! 
I f d z1 • • •  d zm 

0 
(N2- I ) /2N , and P (� )  c c are the Altarelli-Parisi  probabil ities 

P (  z) 
2 + ( 1 - z) = ) 

z 
pqq (x , x 1 - z  

( 2 1 )  

(22)  

which are the spin averaged probab i l i ties o f  a collinear decay of a quark into 
quark plus gluon . In Eq . (2 1 )  a0 represents the Born approximation to the hard 
proces s ,  in which no gluons are radiated by the incoming quark . The same arguments 
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based on counting powers of e i given before can be used to show that interference 
diagrams or ladder diagrams with cro s sed gluon legs do not give leading mass 
singularities . 

The calculation leading to Eq . ( 2 1 )  takes into account only a small subset of 
diagrams contributing to the quark qtructure functions , and the power counting 
arguments worked only because the gluons emitted were transversely polarized 
physical gluons . (remember that the transverse polarization was essential to 
obtain a power of 8 in the numerator in Eq . (8) ) .  In general one has t o  deal with 
all possib le diagrams contributin,". to the discontinuity of the forward Compton 
amp l i tude quark (p) + y (q) � qu<erk (p) + y (q) . Even if one restricts oneself 
to gluon emis s ion by the incomin.?, quark , U1e gluons emi tted can be off shell , 
with invariant mass k . 2 , and can further decay into massless  partons . The problem 1 
of extracting leading mass s ingularities from QCD perturbation theory has been 
fully analysed by the authors mentioned before < 2-4) , ( s- i 7) . We shall again outline 
the steps leading to the general resul t ,  following Ref . (4) . 

a) As first noticed by Lipatov( I 9) , a clever choice of gauge helps to mini­
mize the number of diagrams contributing to the leading log approximation . Such 
a gauge is the axial gauge , defined by 

n\J A (a)  
\J 

0 (23 )  

In this gauge , the power-counting arguments work again , and one i s  l e f t  with the 
contribution of dres sed l adder diagrams exhibited in Fig . ( 8 . a) . The dotted l ines 
and vertices represent dres sed propagators and vertices . Diagrams l ike those ex­
hibited in Figs ( 8 ,b , c )  do not contribute to the leading lug approximation. 

b )  Ward identities in the axial gauge together with the observation that 
leading mass s ingularities ari s e  from the strongly ordered region 
I t , [ >> [ t . 1 ! .  k . 2 ( see Fig . (6) ) allows one to prove that virtual corrections ..... 1- 1 
to a quark propagators cancel against virtual corrections to the vertex below i t ,  
a t  least i n  what concerns the calculation of leading mass s ingularities . One i s  
then left with ladder diagrams containing dressed gluons and vritual corrections 
only to the external quark l ines , as indicated in F i g . (9) . Then the previous 
equation ( 2 1 )  is essentially correct , provided one is able to modify i t  by 
dressing the gluons an d the external quark l ines 

c) Let us now discuss the effect of dre s s ing the gluons . At the leading 
log level , the relation between the bare axial vector propagator D (O) (k2 ) and \JV 
the dressed one D (k2) is given by \JV 



(24) 

This relation i s  of course only true in the axial gauge , in which only virtual 
corrections to the gluon propagator contribute to the running coupling constant 
in the leading log approximation. Thi s  is  clearly related to the cancellation of 
virtual correct ions to the quark propagators and vertices . The net result of 
dre s s ing the gluons according to E q . (24) is to effect the fol lowing replacement 
in E q .  (2 1 )  

(25)  

The reason for this repl acement i s  sketched in F i g . ( 1 0) . One has on the left 
the s trong coupling constant as and a dressed gluon of mass k2 . When one writes 
the dressed propagator according to E q . (24)  the running coupling constant a (k2) 
shows up . However ,  one s t i l l  has to compute the discontinuity in k2 in order to 
obtain the cross section , and a careful analys i s (4) shows that the net result is 
to replace a (k2 ) by a ( tn) ,  as indicated on the right of Fig. ( I O) .  Therefore , the 
running coupling 

a 
instead of s log 

constant has to be kept in the phase space integrations , and 
Q2 2 one gets 

21T m 

Q2 

� dt a ( t)  a t 
m 

b 

s 

Q2 

I d ( logt) 

2 I + ba log 
m s 

log [ 
2 a(m ) J 

a(Q2) 

whi ch is the result announced in ( 25 )  

0'1,' ] I ["'", log 
b log 

m2;µ
2 ! l +ba log 2 s 

µ 

(26)  

d) Final ly,  the effect o f  virtual correct ic:is to the external l ines i s  to 
mul t iply om(p) by the wave funct ion renormali zat ion constant z 2 . Therefor e ,  when 
the sum over m - the number of emitted gluons - is performed , one obtains the 
final result tor the cro ss-sec tion for the react ion quark + y (q)  ->- anything , 
which can be wri tten in the form 

o (p) fl Q2 m2 (O) dx F ( x ;  
1
12 ,

1
1 2  ) o  (xp) 

0 

( 27 )  
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where cr (O) (xp) is the naive parton model cro s s  section for a quark of scaled 
momentum xp and F can be interpreted as the probab i l ity of finding a quark in a 
quark carrying a factor x of the parent ' s  momentum . From the previous results i t  
is c lear that the result for F is  

where x.  l 

2 
F (x ,  Q 2 m 

z 2 { o ( l -x) + l: [ CF 
2 '  2 - log 
)J )J m= l m !  211b 

1 -E 

f m 
- .W x . )  } 11 dx . f (xi ) 6 (x 

i= l l l= l l 
0 

1 -z i , and f (xi) is the Altarel li-Pari si funct ion 

f (x) 1 + x2 

1 - x 

m 
a (m2 ) ] 
a ( Q2) 

(28)  

(29)  

Notice that the phase-space integration over xi cannot b e  carried out all the 
way up to x because f (x) is singular at this point . In this case the emit ted 
quark carries all the momentum of the parent quark , and therefore the emit ted 
gluon is sof t . This divergence is  therefore the usual infrared divergence , which 
eventual ly cancelled by the contribution of virtual processes included in z 2. 
Keeping for the moment an energy cutoff E in Eq . (28) , it is clear that the 
moments of F (x) exponentiate in a simple way . Indee d ,  if one considers 

Q2 2 1 
Q2 m

2 ) =! dx n- 1 F (x ,  Mn (Z ' x 2 )J )J 0 )J 

and defines 
1 -E 

A'!.. CF f dx n- 1 f (x) x n 
0 

it fol lows from Eq . (28)  that 
_l _ AR 

Z 
[a (m2) J 211b n 

2 a(Qz) 

2 m 
'2 (30) 

)J 

(3 1 )  

(32)  

e) It remains to compute the leading mass singularities in the wave function 
renormalization constant z2 . This is done in Ref . (4)  by a clever application o f  
the KLN theorem, b y  relating the virtual gluon corrections t o  the uncoming quark 
propagators to processes involving gluons absorbed by the quark . The result is 



[·'·"r _I_ AV 
21Tb 

z2 a(Q2 ) 
(33)  

where 
1 -E: 

2 
Ay CF f dx l +x 

0 1 - x  
(34) 

Putting Eqs .  (3 2) and (33) together,  the result is infrared finite and the l imi t 
E: ->- 0 can b e  taken. One obtains for the moments 

- _I_ A [ 2 J 21Tb n M (Q2 ) = a�) 
n ct(Q2) 

(3 5 )  

where An is  the usual anomalous dimension of lowest twis t  operators given by 

A n 
? 

dx (�-) ( xn- l - I )  
J - x  

(36)  

Eqs .  (35) and (36)  are the usual results of asymptotic freedom in QCD . It  is cus­
tomary to wri t e  the anomalous dimension An as the moments of a regularized Alta­
rel l i-Parisi probab i l i ty ( I S) 

P qq (x) 

which is itself  a dis tribution in the sense that 

2 
(�) g (x) 

1 -x + 1' 
0 

2 
dx (�) (g (x) - g ( I ) )  

1 -x 

(37)  

(38)  

From Eq . (35)  i t  is  c lear that there is  a natural "evolution" variable in QCD . 
Indeed,  by replacing Q2 by Y defined as : 

y Q2 
log [ 1 +21Tb as log --z ]  

21Tb µ 
(39)  

then the moments of the s tructure functions at two different values o f  q2 are 
given by 
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(40) 

and thi s  equation i s  j us t  the so lution of the Altare l l i -Parisi  equations ( ! ! ) for 
the non-singlet components of the structure functions . 

f) Finally , it is not difficult to general ize the calculation to include the 
ab n2 m2 

mixing of sea and gluons . In thi s  case the s tructure func tion F (x,"'2, -zl 
]J ]J 

represents the probab i l i ty of finding the parton b in parton a ,  carrying a frac­
t ion x of the parent ' s  momentum. There are four Altare l l i-Parisi probab i l i ties 
corresponding to the four basic processes ind i cated in Figs . ( !  I , a , b , c , d) 

2 
CF (�) ( 4 1  . a) 

1 - x  + 
CF 

l + ( l -x) 2 (4 1 .b) x 
Nf c x2 + ( 1 - x) 2 J ( 4 '  . c )  

l -x l Nf 2CA [- + (�) + + x( l -x) - - o (x- l )  ] - - o (x- l ) x J -x 1 2 3 

and , if the anomalous dimension matrix Aba is defined as n 

the 

A ba 
n 

evolution of 

Mba 
n 

the 

(Y) 

3 - General resul t s . 

J dxn- l P ( a  

0 
moments M ba 

n 
An (Y-Y0) 

[e \ c  

b (x) + c ( l -x) ) 

i s  given 

M ca (Y ) n o 

by the matrix 

(4 l .  d) 

(42 ) 

relat ion 

(43) 

We have discussed in the previous sect ion how mass singularities can be 
handled , in the leading log approximation ,  in the case o f  a quark initiated hard 
process . One of the most important results is the one shown in E q . (27 ) , where i t  
can be seen that mass singularities factorize away from the narve parton model 



cross section , s ince they are ent irely included in the multiplicative factor 

� � F (x , 2 , -z ) .  Moreove r ,  they are universal in the sense that the funct ion F 
µ µ 

is independent of the particular hard proces s  under consideration . Had we consi­
dered an arbitrary process with several non collinear partons in the ini tial 
state , we would have obtained a mul tipl icative factor containing a l l  mass s ingu­
lari ties which is j sut the product of F functions , one for each parton l ine . 

The s ame result is true for hard processes containing wel l  identified partons 
in the final s tate . In this case the universal functions that factorize the mass 
singulari ties are interpreted as parton decay funct ions , namely,  the probability 
that a parton of momentum xp decays into a parton of momentum p .  At the leading 
log leve l ,  structure and decay functions are the same except for the different 
kinematical limits for the x variable . 

Parton cross sect ions as given for example by Eq . ( 27 ) must still  be convo­
luted with hadronic wave func tions . Because of factorization , the effect of mass 
singularities can be folded into Q2 dependent hadron structure functions , and 
the naive parton model resul ts are recovered . The Q2 dependence of hadronic s truc­
ture func tions is of course known from the previous results . 

The probl em of factorizat ion beyond the leading log approximation has been 
investigated in Refs . ( 4) , ( I J )and ( 1 6 ) .Mass singularities do indeed factorize in 
the same way as before in the scaling part of parton cross sections . However ,  
beyond the leading log approximation structure and decay functions are no t neces ­
sari ly the s ame . The residual cross sect ion a (O) can be expanded in an improved 
perturbat ion theory in a (Q2 ) .  

Finally , i t  mus t  be mentionned that a large amount of work has been done in 
analysing t'ti� structure o f  quark and g luon j ets in the leading log approximation. 
These results  are discussed at length by other speakers at this Conference (20) ,  
(2 1 ) '  (2 2 ) . 

1 93 



REFERENCES 

I . 

2 .  
3 .  

IJ . J .  Gross and F .  Wi lckzek , Phys . Rev . DB , 3633 ( 1 97 3 ) ; Phys . Rev .Q_� , 980 ( J 974)  
This idea first put forward by H .  Pol i t zer , Nuc l . Phys . B l 2 9 ,  30 1 ( 1 97 7 ) . 
D .  Amati , R. Petronzio and G .  Veneziano , Nuc l .  Phys . B l 40 ,  5 4  ( 1 978) . 

4 .  D .  Amati , R .  Petronzio and G .  Veneziano , Nuc l . Phy s .  B l 46 ,  29 ( 1 978) . 
5 . T .  Kinoshita, Journal of Math . Phys . 1_, 650 ( 1 962) . 
6 .  T . D .  Lee and M .  Nauemberg , Phys . Rev . _!_ll, 1 549 ( 1 964) . 
7 .  G .  S terman ani S .  Weinberg , Phys . Rev . Lett . �. 1 43 6  ( 1 97 7 ) . 
ll . C .  Sachraj da, Phys . Lett . 73B,  1 85 ( 1 978) and Phys . Lett .  76B,  J OO ( 1 978) . 
9 .  C .  Llewel lyn f,mi th , Schladming Lee tu res ,  1 978 (Oxford Univers ity preprint 

47 /78)  ; C . H .  Craig and C .  Llewellyn Smith , Phys . Lett . 72B,  349 ( 1 978) . 
J O .  Yu . L .  Dokshi tzer , D . I .  D ' yakonov and S . I .  Troyan, Proc . XIII Winter School 

of LNPI , Lenin�rad ( 1 978) , vol .  I ; (English Translation SLAC-TRANS- 1 83 
( 1 9 78) . 

l l .  R . K .  Ellis , H .  Georgi , M. Machacek , H . D .  Pol itzer and G . C .  Ross , Phys . Lett . 
78B,  2 8 1  ( 1 978) and GALT . 68-684 ( 1 978) . 

1 2 .  J .  Frenkel ,  M. Shai ler and J . C .  Taylor, Oxford Univ. Preprint 26/78 , Nucl . 
Phys . B ,  to be pub l i shed . 

1 3 .  S . B .  Libby and G .  Sterman , Phys . Lett . 788 , 6 1 8  ( 1 978)  
G .  Sterman , Phys . Rev . Q.!.Z_, 2778 and 2789 ( 1 978) . 

1 4 .  W . R .  Frazer and J . F .  Gunion, Univ. of California preprint UCSD·-1 0  P I 0- 1 94 
( 1 978) . 

1 5 .  W . J .  St irl ing , Nuc l .  Phys . 8 1 4 5 ,  477  ( 1 978) . 
1 6 .  A . H .  Mueller,  Phys . Rev . Q.!_!l_, 3 705 ( 1 9 78) . 
1 7 .  Yu . L .  Dokshitzer,  Leningrad preprint , 330 ( 1 97 7 )  and JETP Z!:._, 1 2 1 6  ( 1 97 7 ) . 
1 8 .  G .  Altarelli  and G .  Pari s i ,  Nuc l .  Phys . 8 1 26 ,  298 ( 1 97 7 ) , and G .  Pari s i ,  

Pro c .  XIth Rencontre d e  Moriond , ed . J .  Tran Thanh Van . 
1 9 .  L . N .  Lipatov , Yadernaya fizika �. 1 8 1 ,  ( 1 974) .  
2 0 .  K .  Konishi , talk given at thi s  Conference . 
2 1 . D .  Amati , talk given at thi s  Conference ; CERN preprint TH 2650 . 
2 2 .  M. Ciafaloni , talk given at thi s  Conference ; Orsay preprint LPTHE 7 9/ 1 4 .  



' k/� 
� �  

I )( 

( a ) 

Fi g . 1 
( b )  

Fig . I .  Lowe s t-order Feynman diagrams for radiation b y  an e lectron in the 
presence of an external field 

v v v YFig . 2  
� le * I )( 

( a ) ( b )  ( c )  ( d )  
Fig . 2 .  Lowes t  order radiative corrections to electron scat tering by an 

external field . 

Fi g . 3  
e 

Fig . 3 .  The two opposing cones of half-angle o used in the derivation of 
the S terman-Weinberg cross-section .  
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F F f Fi g . 4 

( a ) ( b )  ( c )  
F i g .  4 .  A sample set of diagrams which contribute to the deep inelas tic 

structure functions o f  a quark . 

' I 

ffi 
' I Ph Fi g .  5 

( a )  ( b )  

F i g .  5 .  Some lowest-order diagrams contributing to the non flavor singlet 
components of the deep inelas tic s tructure of a quark . 

\ 2 

F i g . 6  

F i g .  6 .  Contribution of gluon radiation by the incoming quark to the hard 
cross sect ion quark + y � anything . 

p-
k 

p 

Fi g . 7  

Fig . 7 .  Kinematical variab les in the vertex for gluon radiation . 



\ / \ / \ / 

Fi 9 . 8 

( a )  ( b )  ( c )  
F i g .  8 .  A sample set of diagrams which contribute to forward Compton 

scattering . Dotted lines and vertices represent dress ed propa­
tors and vertices . 

\ / 

Fi g .  9 

Fig . 9 .  Diagrams which contribute to the quark s tructure function in the 
leading log approximation . Dotted l ines represent dre ssed propa­
gators . 

2 2 

- Fi g . 1 0  
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Fig . 1 0 .  Schematic representation o f  the effect of dressing the gluon pro­
pagator . 

r r r r Fi g . 1 1  

(a ) ( b )  ( c )  ( d )  
Fig .  I I .  The four basic processes associated with the Altarel li-Parisi 

probab i l i t i es Pab (x) . 


