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HARD PROCESSES IN QCD PERTURBATION THEORY

V. ALESSANDRINI

LPTHE, Orsay, France

ABSTRACT

We review the basic theoretical ideas underlying the applications of QCD
perturbation theory to hard inclusive processes. The physical origin and rele-
vance of mass singularities are discussed. Factorization and universality of
mass singularities are illustrated in the case of the calculation of quark

structure functions in deep inelastic scattering.

RESUME

Nous présentons ici les idées de base concernant 1l'application de la
théorie des perturbations en Chromodynamique Quantique aux processus inclusifs
"durs". En particulier, nous discutons l'importance et l'origine physique des
singularités de masse en théorie des perturbations. Les propriétés d'univer-
salité et de factorisation de ces singularités sont mises en évidence dans le

cas particulier du calcul des fonctions de structure des quarks.
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Much work has been carried out during the last couple of years concerning
the relationship between QCD perturbation theory and the naive quark-parton
model in hard processes caracterized by the presence of a large invariant mass
QZ. If the parton model results are interpreted as the zeroth order approxi-
mation in the expansion in terms of the strong coupling constant as, then it is
now quite well understood why radiative corrections associated, for example,
with gluon bremhstralung by the incoming or outgoing partons are responsible
for the logarithmic deviations from exact Bjorken scaling predicted by asymptotic
freedom. For spacelike Q2 the use of QCD perturbation theory reproduces of course
the well known asymptotic freedom results obtained by means of renormalization
group techniques(l). However, QCD perturbation theory can also be applied to
precesses with time-like invariant masses — like for instance the Drell-Yang
process - and one can therefore derive asymptotic freedom-like results in
these cases in which renormalization group techniques are not availablégz)

The purpose of this talk is to give an introduction to the theoretical ideas
underlying the use of QCD perturbation theory in hard processes. One starts by
accepting the basic hypothesis that has already gained a large concensus, namely,
that QCD is the correct underlying theory of strong interactions ; and therefore
partons are colored quarks, anti-quarks and gluons whose dynamical behavior is
governed by an SU(3)c gauge theory. Since real hadrons and the related confine-
ment problem are still out of the reach of our computational abilities, one
assumes further that they are described by soft wave functions which strongly
damp the invariant masses and the transverse momenta of partons. Finally, one
assumes that hard scattering cross sections off hadrons are obtained by convolu-
ting hadronic wave functions with hard scattering cross sections off partons.
These two postulates are of course the basic premises of any partons model.

One is therefore left with the problem of computing hard scattering cross
sections off partons. Since there is a large invariant mass available, Qz, one
can expect that they can be computed in an improved perturbation theory in the
running coupling constant GS(QZ). However, one must learn to tame large logarithms
logQ2 which show up due to divergencies of infrared nature and which invalidate
the improved perturbation theory. These logarithms are responsible for scale
breaking effects in QCD, and they are best understood in my opinion from the
point of view of mass singularities, as in Ref.(3)-(4), namely, infrared singu-
larities that occur in perturbation theory when the quark m goes to zero.

We discuss first the physical origin and the relevance of collinear (mass)
singularities in perturbation theory. We then proceed to discuss the applications
to QCD jets and to the calculation of scale breaking in deep inelastic processes.

Finally, the major results in the field are summarized in the last section



1 = The relevance and physical origin of mass singularities.

Let 0 be a hard scattering cross section off partons. It will depend in
. . 2 2 . .
general on the large invariant mass Q , the quark masses m , the renormalization
2 . . . 2
mass U, a set of Bjorken variables X and the strong coupling constant us(u ).

Because of dimensional reasons we can always write O as

2 2
(@’ e D) = L r & B x, o 0) m
Q W

where F is dimensionless. Since F is a physical observable, it must be independent

of the renormalization mass HZ. Therefore, one can think of choosing u2 = Q2 and

writing F in the form

2
F=F(, 5, xp, @) @

Q

where u(QZ) is the QCD running coupling constant. In the leading log approxima-
tion, where one sums all the powers of as(uz)log QZ’ the running coupling cons-—

tant is given by

2 ocs(uz)
a(Q”) = 5 7 (3)
1+bo (1) log (2
u
where
b=—" (v -2 (%)
c £
12m
NC, Nf being the numbers of colors and flavors, respectively.

Since the running coupling constant decreases logarithmically as Q2 >
(the asymptotic freedom result) one can see immediately that in this case F
can be safely expanded in an improved perturbation theory in a(Qz) provided
that the zero mass limit m2 + 0 is regular. This will happen, as we shall
soon discuss in more detail, whenever there process under consideration is
fully inclusive in the sense that there are no well identified parton lines in
the initial or final state. A typical example is the ratio R of hadronic to

. . . + = . . .
leptonic yield in e e collisions, which can be expanded as
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Whenever there are well identified partons in the initial or final state, (as,
for example, in the calculation of deep inelastic structure functions or in
Drell-Yan processes) the zero mass limit m2 + 0 will not be regular in perturba-
tion theory in the sense that logarithmic singularities of thé form log 9% will
show up. In order to reestablish an improved perturbation theory, all m

. n, 2 n 93 .
leading powers fo the form a (Q°)log 5 have to be summed up, non leading po-
m

wers of logarithms of the form an(QZ)logn—g(gi) being a correction of order
m

aQ(Qz) with respect to the leading ones. This procedure constitutes the leading
log approximation.

The physical origin of mass singularities in perturbation theory is easily
understood by observing that a massless quark can emit or absorb a hard collinear
gluon and remain on its mass shell. Indeed, if we consider the process quark (p)~

~ quark(p') + gluon(k) we obtain for the virtual mass of the outgoing quark

p'? = (pi)” = -2p.k = -2p, k, (1-cos 6 ) (6)

6 being defined as the angle of emission of the gluon with respect to the di-
rection of the incoming quark. Clearly, if the emission is collinear (6 = 0) the
outgoing quark is on its mass shell. Therefore, collinear emission of hard gluons
induces dangerous propagators in perturbation theory, which are responsible for
the logarithmic mass singularities in transition probabilities.

Let us discuss a simple example in QED : photon bremsstrahlung by an elec-
tron in an external field. The transition amplitude corresponding to the diagram
(1.a), where the photon of momentum kU is emitted by the outgoing electron, is
given up to irrelevant factors by

2e.py
A= 2 @)

2 2
(k¥py)© = my
where EU is the polarization vector of the emitted photon. We have only exhibited
the electron propagator and the emission vertex £.p2 because they are the only

relevant factors to understand the mass singularity when mé ~+ 0. Taking into

- 2 ‘s .
account the mass-shell conditions k2 = 0 and p% =m, the transition amplitude
. 2
can be written, for m, << $§ , as
- >
€.p,

mez
2lpyl?

k ]Bé\(] - cos O + )
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We can see in this expression that the dangerous collinear singularity for

6 = 0 is in fact regulated by the finite electron mass. The factor k-I is of
course responsible for the usual infrared divergencies, due to the emission of
soft photons. If we neglect the electron mass, the denominator will behave like
62 for small values of 6. However, the numerator gives also a power of 6 in thig
limit because € is the polarization vector of a real photon and is therefore

perpendicular to K. We have then :

-
€.p, = |ﬁé[ sin 6 = |p2| 8 9

This vanishing of the emission vertex of a hard collinear gluon is simply under-
stood in terms of helicity conservation : a quark that emits a collinear gluon is
forced to flip its helicity. We then conclude that the amplitude A behaves both in

the infrared (k = 0) and collinear (6 = 0) regions as

A== (10)

The transition probability for photon bremsstrahlung is then obtained by inte-

grating over phase space,
)
fd_l? la]? :fk‘dk dcos 6 — 1 = g.if@ an
2K, K W 2o2 k g

which exhibits the infrared and collinear singularities, of the form

10g(|p2|/mY) .log(|p2|/me), m, being a fictition photon mass.

It is very important to keep in mind how the infrared and mass singularities
are softened, that is to say, under what conditions the limit mY + 0 and
m, > 0 can safely be taken. This is summarized in the Kinoshira-Lee-Nauemberg
Theorem(5)$6%hich states essentially that infrared and mass singularities are
softened when total transition rates are computed between nearly degenerate ini-
tial and/or final states. In other words, individual transition probabilities
have infrared and mass singularities, but these singularities are cancelled
when inclusive cross sections are computed by suming over sets of states dege-
nerate in the appropriate zero mass limits. A typical example is again the case
of electron scattering by an external field. When radiative corrections are
computed by summing the Feynman diagrams of Fig.(2a,b,c,d) the result is, to

lowest order in o, the Born cross section times a factor of the form
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I—>| -
1 -acC log % 1ogl%| (12)
e Y

However, if one computes instead the total transition rate to a final state with
finite energy resolution A E, to the same order of perturbation theory one must
also consider the probability that a soft photon of energy k < AE 1is emitted
either by the incoming or by the outgoing electron. The transition amplitudes
correspond to the Feynman diagrams of Figs(l.a,b). When the inelastic cross
section is added to the elastic one, infrared divergences cancel and in the
final result the limit mY -+ 0 can be safely taken. One obtains a correction
factor of the form (12) except that the mass mY is replaced by the energy reso-
lution AE .

In the same way as infrared singularities are regulated by means of an

(5)

energy resolution, collinear singularities can, according to the KLN theorem s

be regulated by introducing an angular resolution § and by computing transition
rates to nearly degenerate states which include the charged particles plus an
arbitrary number of collinear photons, not necessarily soft. Only in this case
the limit m_ - O can he safely taken, and the total transition rate is free of
mass singularities(5)§6)

Exactly the same arguments work in QCD. Exclusive processes containing
colored partons in the initial or final state will exhibit in general mass sin-
gularities in perturbation theory. We then expect on general grounds the large
logarithms log 97 which invalidate perturbation theory as Q2 + o . unless the
conditions of tﬁe KLN theorem are met and the mass singularities are softened
because one is looking at an inclusive process which does not discriminate
against the collinear decay of massless partons in the final state, for example.
Such is the case of the ratio R of hadronic to leptonic yields in e+e_ annihi-
lation. It is not however the case of the quark structure functions or Drell-
Yan processes because we do not include in the calculation nearly degenerate
initial states containing the original partons plus an arbitrary number of hard
collinear gluons.

As in QED, infrared and mass singularities can be softened by introducing

energy and angular resolutions. A by now classical example is the Sterman-Weinberg

result(7) for the two-jet cross section in e+e_ annihilation. Let us call E the
total e+e_ energy, and 0(E,0,€,8) the cross section for all annihilation events
in which a fraction (1-E) of the total energy E is emitted within a pair of

oppositely directed cones of opening angle 2§ (see Fig.(3)). This means that a

fraction € E of the incident energy has been lost outside the cones. Then, the



cross—section ¢ is finite in the zero-mass limit and given by

1 30¢2 2
—5 0 (E,0,6,8) = — (1 + cos” 0) (13)
kice} 4E
2 AOLs: 1T3 5
? Qi (1 - 35—-(32n5 + 44n8 2n 2c + -3 ) ]

The reason why 0 is finite in the zero mass limit is again a consequence of the
KLN theorem. The O(QS) term originates from virtual corrections to the qa final

state and also from gluon bremsstrahlung by the outgoing q or a. If, after gluon

radiation by a quark emitted originally in the direction 6, one fo the decay pro-

ducts (quark or gluon) goes outside the cone, we know that it is neither colli-
near nor soft, since it has necessarily an energy €¢E. Therefore, one is not

missing any nearly degenerate state in the transition rate.

2 - The quark structure functions.

Let us now consider the calculation of non-singlet flavor components in

deep inelastic scattering such as, for example
vV W, (up quark) - v wz(down quark)

whose practical advantage lies in the fact that only diagrams of the kind exhi-
bited in Fig.(4.a,b), where the electromagnetic current couples directly to the
valence quark, do not cancel, since the electromagnetic charges of the up and
down quark are different. Diagrams in which the electromagnetic current couples
to the sea quarks, as in Fig. (4c), cancel in the difference of the two struc-
ture functions. Many authors have considered this problem in great detail
(see References (2)-(4) 3 (8)-(17)) and we shall limit ourselves to sketch the
main lines of ‘the calculation, following the methods of Ref.(4).

Consider first the case of physical gluon bremsstrahlung by the incoming
quark (Fig. 5.a). If we call 6 the angle of emission of the gluon with respect

to the incoming quark, the amplitude behaves as

1
A= — -8 (14)
02

and therefore phase space integration will give

185



186

2
fdcose|A|2 :fede 92 22:‘[@:1030_2 (15)
€] 6 0 m

where the last result follows from the fact that when a small quark mass is

retained the angular integration (see Eq.(8)) the angular integration gives
2
1og(2: 2), and that a simple kinematical analysis shows that |6|2 is proportio=-

pl
2 . . . . .
nal to Q. The constant of proportionality is of course irrelevant when one is

interested in computing the leading mass singularities. We must also worry -about
the possibility that the gluon is radiated by the final quark. Interference dia-
grams of the type showed in Fig.(5.b) give a finite result. Indeed, if the gluon
is collinear to the incoming quark it cannot be collinear to the outgoing one
due to the hard nature of the process under consideration. Therefore, one finds

for the interference diagrams

/de- 6—2 = finite (16)
9

In the same way it is easy to see that the emission of n gluons from the in-
coming quark, exhibited in Fig. 6, gives rise to a leading mass singularity of
2 . P . . s

the form (log SL)“. In this case it is much more convenient to trade the emission

m

angle 0 by the invariant mass t of the quark running up the multiperi-

pheral ladder. As shown in Fig. 7.

t = p'2 = (pk)2 = - 2p.k = - 2|p|.k(i-cos 6) (17)
then
a _ Kldkdeos 6 | 1 dk .. dz.dt (18
2, (2m)3 k2.2 162 |pl 1672

where we have written k = zp. This is due to the fact that in extracting the
. . P . .. 2
leading mass singularities one will explicitly extract from ‘Anl the 6 -~ or t -

distributions responsible for the leading logs and set whatever structure is left
in |An]2 in the collinear configuration k = zp. The variable z is therefore the
fraction of the incoming momentum carried away by the emitted gluon. Each gluon

-1/2

emission will give rise to a behavior of the form 8;] > t, in the production

i
amplitude An. Moreover, it follows from simple kinematical considerations that

the invariant masses ti are ordered :
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o< el o< gl << [tnng2

(19)

Therefore, the angular part of the phase space integration yields a factor of

the form
Q t3 to
0 dtn dt2 dt1 o QZ
n
a - ... —£ — =2 (log % 2
s/t /t2 t ar (1og =) (20)
n 2 1 m
m2 m2 m

where g is the strong coupling constant - not yet running - because for the
moment we are computing the simplest diagrams arising from gluon radiation by
the incoming quark and virtual corrections that make the coupling constant run
are not yet included. It is also important to recognize that, although the or-
dering of invariant masses Itil follows from kinematics, the ledaing mass singu-
larity arises from a region of integration where the Zi are strongly ordered, in

the sense that ltil << 'ti+1| << Qz. Indeed, the same result at the leading log

level is obtained if 'til is only integrated up to € |t. |, where € is an arbi-

+
trarily small but fixed number. o
Equation (20) does not exhaust the phase space integration since |An|2 still
depends on the zi's, the fraction of the momentum of the parent quark carried out
by the ith gluon. The z-dependence of the matrix elements is computed in detail
in the literature and we shall not describe it here (see, for example, Refs.
(3),(18)). Calling Om(p) the spin averaged total cross—section for an incoming

quark of momentum p, the final result is

1 %g Q2 m
Om(p) = E! [CF Ej”‘ log I—n? T - (21)
1
’/Adz1 dz“_l P(Z]) e P(zm) OO((I—ZI).(]—zm)p)
0

where CF = (Ni—l)/ZNc,and P(7) are the Altarelli-Parisi probabilities

2
S U € r ) - 1
P(2) —z qu(x) , X -2 (22)

which are the spin averaged probabilities of a collinear decay of a quark into
quark plus gluon. In Eq.(21) 0, represents the Born approximation to the hard

process, in which no gluons are radiated by the incoming quark. The same arguments
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based on counting powers of Gi given before can be used to show that interference
diagrams or ladder diagrams with crossed gluon legs do not give leading mass
singularities.

The calculation leading to Eq.(21) takes into account only a small subset of
diagrams contributing to the quark qtructure functions, and the power counting
arguments worked only because the gluons emitted were transversely polarized
physical gluons. (remember that the transverse polarization was essential to
obtain a power of 6 in the numerator in Eq.(8)). In general one has to deal with
all possible diagrams contributins to the discontinuity of the forward Compton
amplitude quark (p) + Y (q) = quark (p) + Y (q). Even if one restricts oneself
to gluon emission by the incominz quark, the gluons emitted can be off shell,
with invariant mass kiz, and can further decay into massless partons. The problem
of extracting leading mass singularities from QCD perturbation theory has been

(2-4),(8-17)

fully analysed by the authors mentioned before . We shall again outline

the steps leading to the general result, following Ref.(4).

19

a) As first noticed by Lipatov , a clever choice of gauge helps to mini-
mize the number of diagrams contributing to the leading log approximation. Such

a gauge is the axial gauge, defined by

" Au(a) =0 n’n < 0 (23)

In this gauge, the power-counting arguments work again, and one is left with the
contribution of dressed ladder diagrams exhibited in Fig. (8.a). The dotted lines
and vertices represent dressed propagators and vertices. Diagrams like those ex-
hibited in Figs (8,b,c) do not contribute to the leading lag approximation.

b) Ward identities in the axial gauge together with the observation that
leading mass singularities arise from the strongly ordered region
Itii >> lti—ll’ ki2 (see Fig.(6)) allows one to prove that virtual corrections
to a quark propagators cancel against virtual corrections to the vertex below it,
at least in what concerns the calculation of leading mass singularities. One is
then left with ladder diagrams containing dressed gluons and vritual corrections
only to the external quark lines, as indicated in Fig.(9). Then the previous
equation (21) is essentially correct, provided one is able to modify it by
dressing the gluons and the external quark lines

c) Let us now discuss the effect of dressing the gluons. At the leading

log level, the relation between the bare axial vector propagator Dsg)(kz) and

the dressed one Duv(kz) is given by



2y _ 2,,(0) . 2
Duv(k ) = ak )Duv (€3] (24)

This relation is of course only true in the axial gauge, in which only virtual
corrections to the gluon propagator contribute to the running coupling constant
in the leading log approximation. This is clearly related to the cancellation of
virtual corrections to the quark propagators and vertices. The net result of

dressing the gluons according to Eq.(24) is to effect the following replacement
in Eq.(21)

%s
— log
2T

2
(N %h,g _<m> ] (25)

m? a(@®)

The reason for this replacement is sketched in Fig.(10). One has on the left
the strong coupling constant oy and a dressed gluon of mass k2. When one wrltes
the dressed propagator accordlng to Eq.(24) the running coupling constant a(k )
shows up. However, one still has to compute the discontinuity in k2 in order to
obtain the cross section, and a careful analvsis(a) shows that the net result is
to replace a(kz) by a(tn), as indicated on the right of Fig. (10). Therefore, the
running coupling constant has to be kept in the phase space integrations, and

. a Q2
instead of _S log =5 omne gets

A m
2
2 Q
Q 2,2
it d(logt) g 1+ba g log Q"/u
WO T ey | SRR s gpleg| Sy
9 2 1+ buslog = ]+bus log m" /u
™ b
=Lt 0‘(’“ ). q (26)
b a(Q )

which is the result announced in (25)

d) Finally, the effect of virtual correcticas to the external lines is to
multiply Om(p) by the wave function renormalization constant 22. Therefore, when
the sum over m - the number of emitted gluons - is performed, one obtains the
final result tor the cross-section for the reaction quark + Y(q) * anything,

which can be written in the form

1

2 2
o = [ axris G 10 e 27
5 woou
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0 . . .

where 0( )(xp) is the naive parton model cross section for a quark of scaled
momentum xp and F can be interpreted as the probability of finding a quark in a
quark carrying a factor x of the parent's momentum. From the previous results it

is clear that the result for F is

m
2 2 ® C 2
F(x, QE s Ef ) = Z2 { §(1-x) + L 1 [ £ log ﬁiﬂil]
u u m=1 m! 21b a(Q?)
1-€ (28)
m m
f m odx., f(x.) § (x —.7 x.) }
. i i i=) 1
0 i=1
where X, = I_Zi’ and f(xi) is the Altarelli-Parisi function
2
£y = 12X (29)
1 - x

Notice that the phase-space integration over x; cannot be carried out all the
way up to x = | because f(x) is singular at this point. In this case the emitted
quark carries all the momentum of the parent quark, and therefore the emitted
gluon is soft. This divergence is therefore the usual infrared divergence, which
eventually cancelled by the contribution of virtual processes included in 22.
Keeping for the moment an energy cutoff € in Eq.(28), it is clear that the

moments of F(x) exponentiate in a simple way. Indeed, if one considers

1
2 2 2 2
Q. m,y . n-l Q m
&G 5 = [ e re, G5 (30)
H U 0 H i
and defines
1-€
R n-1
AL = CFf dx x £(x) (31)
0
it follows from Eq.(28) that
1 R
— A
2
Q2 - . a(mz) 21b "n
"0 Co e TR G2
u H a(Q™)

e) It remains to compute the leading mass singularities in the wave function
renormalization constant 22. This is done in Ref. (4) by a clever application of
the KLN theorem, by relating the virtual gluon corrections to the uncoming quark

propagators to processes involving gluons absorbed by the quark. The result is



1 \
N A
z, = g_ﬂi (33)
a(Q™)
where
I_
§ 1+x2
AV = CFf dx —— (34)
D I-x

Putting Eqs. (32) and (33) together, the result is infrared finite and the limit

€ - 0 can be taken. One obtains for the moments
1

-

2 21b n

u @) = [O‘%)] 35)
a(@?)

where An is the usual anomalous dimension of lowest twist operators given by :

1~x

’ 2
N AL Xt ICE (36)
4]

Eqs. (35) and (36) are the usual results of asymptotic freedom in QCD. It is cus-

tomary to write the anomalous dimension An as the moments of a regularized Alta-

relli-Parisi probability(ls)
P o =, (A an
aq Fog

which is itself a distribution in the sense that

1 2 1 2
fdx [ ), 80 = f ax () (gx) - g(1) (38)

1- -
pd X 0 1-x

From Eq.(35) it is clear that there is a natural "evolution" variable in QCD.
Indeed, by replacing Q2 by Y defined as :
2

v= b log [1+2wb a_ log (O (39)
2 s 2
b u

then the moments of the structure functions at two different values of Q2 are

given by

191
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Al Y-y
M (Y) = e M (Y) (40)

an

and this equation is just the solution of the Altarelli-Parisi equations for
the non-singlet components of the structure functions.
f) Finally, it is not difficult to generalize the calculation to _include the
mixing of sea and gluons. In this case the structure function Fab(x,gi, EE)
M u
represents the probability of finding the parton b in parton a, carrying a frac-
tion x of the parent's momentum. There are four Altarelli-Parisi probabilities

corresponding to the four basic processes indicated in Figs.(11,a,b,c,d)

2
P () = c, (X (41.2)
aq Fo_g '+
2
1+(1-%)
P = C 41.b
gq(X) F N, ( )
N
f
P o) = — [+ (102 ] (41 .c)
ag )
1-x x 1 N¢
P (x) = 2, [—+ (—), + x(-x) - 5, S(x-1) ] - — &(x-1)
88 A X 1-% + 12 3
(41.4d)
and, if the anomalous dimension matrix Aza is defined as
]
a2 =f a7 Pla > b(x) + c(1-x)) (42)
0
the evolution of the moments Mnba is given by the matrix relation
A (Y=Y )
ba _ n o ca
M (Y = [e Toe My (Y,) (43)

3 - General results.

We have discussed in the previous section how mass singularities can be
handled, in the leading log approximation, in the case of a quark initiated hard
process. One of the most important results is the one shown in Eq.(27), where it

can be seen that mass singularities factorize away from the naive parton model
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cross section, since they are entirely included in the multiplicative factor
2 m2

F(x, 97 — ). Moreover, they are universal in the sense that the function F
u

is independent of the particular hard process under consideration. Had we consi-
dered an arbitrary process with several non collinear partons in the initial
state, we would have obtained a multiplicative factor containing all mass singu-
larities which is jsut the product of F functions, one for each parton line.

The same result is true for hard processes containing well identified partons
in the final state. In this case the universal functions that factorize the mass
singularities are interpreted as parton decay functions, namely, the probability
that a parton of momentum xp decays into a parton of momentum p. At the leading
log level, structure and decay functions are the same except for the different
kinematical limits for the x variable.

Parton cross sections as given for example by Eq.(27) must still be convo-
luted with hadronic wave functions. Because of factorization, the effect of mass
singularities can be folded into Q2 dependent hadron structure functions, and
the naive parton model results are recovered. The Q2 dependence of hadronic struc-
ture functions is of course known from the previous results.

The problem of factorization beyond the leading log approximation has been
investigated in Refs. (4),(11)and (16) .Mass singularities do indeed factorize in
the same way as before in the scaling part of parton cross sections. However,
beyond the leading log approximation structure and decay functions are not neces-

0

sarily the same. The residual cross section O can be expanded in an improved

. . 2
perturbation theory in a(Q").
Finally, it must be mentionned that a large amount of work has been done in
analysing Eﬁa structure of quark and gluon jets in the leading log approximation.

These results are discussed at length by other speakers at this Conference(zo)’

(21),(22).
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Fig. 1. Lowest-order Feynman diagrams for radiation by an electron in the
presence of an external field .
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(a) (b) (c) (d)

Fig. 2. Lowest order radiative corrections to electron scattering by an
external field.

Fig.3

Fig.3. The two opposing cones of half-angle § used in the derivation of
the Sterman—-Weinberg cross-section.
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— Fig. 4

(a) (b) (c)

Fig. 4. A sample set of diagrams which contribute to the deep inelastic
structure functions of a quark.

Fig.5

(a) (b)

Fig. 5. Some lowest-order diagrams contributing to the non flavor singlet
components of the deep inelastic structure of a quark.

Fig.6

Fig. 6. Contribution of gluon radiation by the incoming quark to the hard
cross section quark + Yy - anything.

Fig.7

Fig. 7. Kinematical variables in the vertex for gluon radiation.
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(a) (b) (c)

Fig. 8. A sample set of diagrams which contribute to forward Compton
scattering. Dotted lines and vertices represent dressed propa-
tors and vertices.
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Fig.9

1

Fig. 9. Diagrams which contribute to the quark structure function in the
leading log approximation. Dotted lines represent dressed propa-
gators.

2 2

Fig.10

tia

Fig. 10. Schematic representation of the effect of dressing the gluon pro-
pagator.
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(a) (b) (c) (d)

Fig. 11. The four basic processes associated with the Altarelli-Parisi
probabilities Pab(x).



