
SLAC-PUB-5577 
June 1991 

CT) 

Dressed Skeleton Expansion in 1 + 1 

Dimensional Field Theory Models * 

HUNG JUNG Lu 

Stanford Linear Accelerator Center 

Stanford University 

Stanford, California 94309 

ABSTRACT 

We discuss the implementation of the Dressed Skeleton Expansion (DSE) and 

analyse various features of this perturbative calculational method in simple field 

theory models in 1 + 1 dimension. In particular, we investigate issues concerning 

loop skeleton diagrams, renormalization in the massive case, and the usage of DSE 

for vertices involving matrix structures. 

Submitted to Physical Review D 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515. 



In a previous paperjwe have pointed out that the Dressed Skeleton Expansion 

(DSE) offers a calculational method in perturbative quantum field theories without 

scale ambiguity problem. In particular, we illustrated the usage of the method for 

+3 theory in six dimensions. The basic motivation in choosing this theory resides 

in its resemblance with Quantum Chromodynamics (&CD) in the aspects of both 

being renormalizable theories and presenting asymptotic freedom. However, the 

high dimensionality of the theory hampered the discussion of higher order skeleton 

graphs. 

In this paper we study the application of the DSE to field theories models 

in 1 + 1 dimension. Our purpose is to analyse and discuss the various features 

and technical details for the implementation of the DSE method, by using simple 

models as testground. It is not our goal to obtain new results in these simple field 

theory models, for there exists abundant literature on the subject.2’3 

This paper is organized in the following five sections. 

In section I, we review briefly the general scale setting problem in quantum 

field theories, and present the DSE as a scale-ambiguity-free calculational method. 

In section II we apply the DSE method to massless Gross-Neveu model in 

leading l/N expansion, and show that DSE leads to exact four-fermion vertex 

function, no matter whether we choose to dress up the charged two-point function 

or the three-point function. 

In section III we apply the DSE method to the massless Thirring model. Here 

we offer an explicit example of a non-trivial loop skeleton diagram, showing that 

‘it indeed can be done and yields a finite result, despite the singularity of the 
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coupling vertex at the Landau pole. We give an argument for the insensitivity of 

loop skeleton diagrams to the infrared behavior of vertex functions. 

In section IV we apply the DSE method to the super-renormalizable massive 

Yukawa model in l+l dimension. This is an example where the vertex function has 

a non-trivial matrix structure, and special attention is required to select a coupling 

function that assures continuity of the off-shell to on-shell transition. Also, in this 

example, we show how to isolate the mass renormalization from particle propa- 

gators and absorb all renormalization effects of two-point functions into effective 

wavefunction renormalization constants. 

Finally, in section V, we make some comments and summarize the main con- 

clusions. 

I. Scale Setting Problem and the Dressed Skeleton Expansion 

Much of the material in this section has been exposed in ref. 1. However, we 

have included this section here to complete our presentation. 

Perturbative calculations in quantum field theories are usually expressed as 

power series in a fixed coupling constant. At high transferred squared momentum 

the fixed coupling constant must be replaced by a running coupling constant. This 

procedure is usually referred as the renormalization-group-improved perturbation, 

which leads to the absorption of the large logarithmic terms into the running 

coupling constant. In simple words, given a truncated series of a physical quantity 

expanded in powers of a coupling constant in a given scheme: 

& = ~s(p)[rO + r&+(p) + . . . + fn(p>~n(p)] , (1) 
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the coupling scale ~1 must be chosen appropriately for the perturbative series to 

be useful. The unknown dependence of the truncated series on TV is commonly 

referred as the coupling scale ambiguity problem. There is also another source of 

ambiguity in the perturbative expansion arising from the freedom in the choice of 

the renormalization scheme. However, in our previous paper we have argued that 

the scale ambiguity is a more fundamental problem than the corresponding scheme 

ambiguity, in the sense that if one is able to solve the general scale setting problem, 

then there is no ambiguity in how to implement different schemes. 

Several methods have been proposed to solve the coupling scale ambiguity. 

Among them we shall mention: 

1. Fastest Apparent Convergence (FAC): 4’5 

The idea behind FAC is that one should choose the coupling scale that makes 

the series look like most convergent. Frequently it is defined as the condition 

of a vanishing second order term (i.e., next to tree level) coefficient. A related 

topic is the “effective charge”4 or the “Renormalization Scheme Invariant” 

(RSI)’ method, where one effectively requires all higher order coefficients to 

be zero. 

2. Principle of Minimal Sensitivity (PMS):5 

We shall define it here as the choice of the coupling scale at the stationary 

point of the truncated series: 

dR 0 -= 
dP, * (2) 

The PMS method also aims toward the choice of a renormalization scheme, 
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and beyond two-loop order this method requires the variation of scheme 

parameters besides the coupling scale. 

3. Brodslcy-Lepuge-Mucl(enzie (BLM): 7 

This method is inspired from QED. The philosophy is to absorb all fermionic 

vacuum polarization effects into the running coupling constant. In l-loop 

order massless QCD it is operationally equivalent to the condition of a van- 

ishing coefficient of the nf (number of light fermions) term. Therefore BLM’s 

results are formally invariant under the change of number of light flavors: 

The usual impression is that as long as the coupling scale p2 is chosen near the 

typical scale Q2 of a given process, the perturbation series would give a reasonable 

result. We should notice, however, that due to dimensional transmutation (i.e., the 

presence of &co) the correct scale might in some cases not be proportional to Q2 

but rather to some other power of it, or even in a more complicated way. So the 

naive form of assigning coupling scale to typical physical scales runs the danger of 

being too simplistic. Also, for processes involving many scales, in general it is not 

clear how a “typical scale” can be defined. 

For multi-scale processes, the conventional way of assigning a uniform coupling 

throughout all vertices becomes questionable. Consider, for instance, the exclusive 

process e+e- -+ p+p-y (fig. 1). In QED the vertices a and b should have a 

coupling strength - cr112 (Q2) whereas the vertex involving the radiated photon 

-should have a strength - ~x’/~(O) = l/&8. 
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This observation and the existing controversy on the various scale setting pro- 

cedures prompt us to explore the Dressed Skeleton Expansion (DSE) instead of the 

conventional power series expansion. The basic idea of skeleton type calculation is 

rather simple: 

1) The basic vertex functions are calculated by using renormalization group 

equations.8 

2) Any other Green’s function is expanded in skeleton graphs of the basic ver- 

tices. 

One property of this calculational procedure is that it is automatically scale 

ambiguity free, because there is no exogenous coupling constant. This resembles 

BLM’s observation of the automatic scale setting procedure for QED. Another 

observation is that the results in DSE calculations are not a simple power series 

in a coupling constant. In general the results in DSE calculations are expressed 

directly in terms of functions that involve a scale analogous to AQCD. This should 

not come as a surprise. In fact, the concept of coupling constant is also lost 

in conventional perturbation theory with scale fixing procedure. In &CD, after 

scale fixing, the results are directly expressed in term of AQCD. In this sense, 

the coupling constant merely serves as an intermediate device and is discarded 

after scale fixing. Another argument in favor of the dressed skeleton expansion is 

that many of the renormalon type contributions 
17,18 are automatically resummed 

into the full propagators and vertex functions, therefore the higher order skeleton 

results are expected to be less divergent than conventional power series expansion. 

For a more detail discussion about DSE and the scale setting problem, we refer 

*the reader to our original paper.’ 
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II. Gross-Neveu model in leading l/N expansion 

This section is basicly motivated by P. M. Stevenson’s analysis of the PMS 

method in the Gross-Neveu model.‘We shall consider this model with the presence 

of the auxiliary scalar field 3’10 O. The Lagrangian density of this model is given by: 

L = P(ipp, - ;02 - goP*,o , a=1,2 ,..., N , (4) 

The bare propagators and vertex functions of this theory are depicted in fig. 2 and 

are given by: 

-iA, = -i , 

iSa, iDa -- 
Ob-p2+ic ’ 

-ir a ob= -igOh'b , 

Let us analyse the off-shell fermion four-point function. Although this is not a 

“physical” quantity in the usual sense (because of its off-shellness), it nevertheless 

provides a simple Green’s function where various ideas about scale fixing methods 

can be tested. For our purpose, we shall only deal with perturbative quantities 

and bypass all non-perturbative effects arising from dynamical symmetry break- 

ing.“Th f e ermion four-point function to leading order in l/N has the structure 

(fig. 3): 

G(pl,pa,pa, Pdabcd = -igz[A(s)daJTbd - A(u)~~&~,] , (6) 

where A(s) is the full propagator of the scalar particle to leading order in l/N. 

- Notice that for the Gross-Neveu model in the auxiliary scalar field context, 

*every vertex in a given Feynman diagram counts as a negative unit power in N, 
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while every scalar propagator represents a positive unit power in N. Thus in 

the leading l/N expansion there is no vertex nor fermion self-energy corrections, 

since these effects are higher order in l/N.l’Thus only the full scalar propagator 

multiplied by the squared bare charge needs renormalization. In the following we 

shall refer to this function as the “charged scalar propagator”. That is, we can 

choose to “dress up” the charged scalar propagator instead of the three-point vertex 

function. This resembles the case of QED, where due to the fact that 21 = 22yonly 

the charged photon propagator needs to be renormalized in order to renormalize 

the bare charge. 

Naturally one can insist to “dress up” the three-point function rather than the 

two-point scalar function. But as we shall see shortly, both procedures will lead to 

the same result. Let us consider now the first case, more concretely, let us illustrate 

the application of the renormalization group equation (RGE), temporarily up to 

sixth order in the bare coupling constant. 

The charged scalar propagator to sixth order in go is (fig. 4) : 

-ig,2h(p2) K -ig&(p”, 

= g.2( -4 + (--i)[is,21Q2)](--i) + (--;)( [idW”,](-i,)z) (7) 

= -is,2 { 1 + imP2) + dn2(P2,} 7 

where the subscript DS stands for Dressed Skeleton. The vacuum polarization 

correction is given by (fig. 4) 

&fn(P2) = -(-i!d2(-i)2N @--+ k2(k +p)2 J ’ (8) 
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A straightforward calculation leads to: 

rI(p2) = -s (; + log( -p2 - ic)) ) ; = f - log4w + YE ) (9) 

where we have used dimensional regularization in d = 2 + 2~. Equation (7) can be 

rewritten as: 

&(P2) = s: + smP2) + g,“n”cp”, 7 (10) 

and by formally inverting this power series 

9,” = &(P2) - !J&JqP2) + s~s(P2)~2(P2) + ~~&) * (11) 

Now let us obtain the RGE for gDs(p2). The first step is to differentiate equation 

(10) with respect to the scale variable 2 = log(-p2 - iE>. Noting that 

we obtain 

dII N -=-- 
dx n- ’ (12) 

d& 
dx = s,4 (-X) + 2s:vP2) (-F) 7 (13) 

and then the next step is to replace go by gDS by means of the equation (11). After 

this substitution we obtain a finite RGE for ghs(p2): 

&lbs N - = ---{ (&(P2) - S$s(P2MP2) + . . .)” + 2gmP2)} dx (14) 

To order gbS, this equation is simply 

&s= N4 

dx -?,gDS + o(&S) 7 (15) 

Notice that the order six coefficient has all but vanished. This is a general result 

*for this model: no matter how many terms we start with, all higher order terms 
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in the RGE (15) ‘11 wr vanish. (This result would be obvious if we had applied the 

RGE to gig instead of g&, but here we have chosen to present the RGE for g& 

in order indicate the procedure for an general field theory.) In other words, we will 

always obtain the exact infinite order solution: 

Sks(P2) = 
7i- 

Nlog(-p2/& - ie) ’ (16) 

independent of the number of terms we have included in the original equation for 

the charged scalar propagator (eq. (7)). Th is is true even if we have only included 

the lowest loop correction. 

Naturally, we could have chosen to dress up the three-point vertex function 

rather than the two-point scalar function. But we can see that in this particular 

model these two approaches are completely equivalent. More specifically, to dress 

up the vertex function we need to obtain first the effective wavefunction renormal- 

ization constant of the scalar propagator: 

-iA(p2) = -i + (-i) [igiII(p”,] (-i) + . . . 
(17) 

E (-i)Z(p2) . 

Noting that there are no fermion self-energy nor vertex corrections, to renormalize 

the three-point function we simply multiply the bare vertex function by the square 

root of the effective scalar wavefunction renormalization constant (fig. 5) 

+Ds(p2) f -igoZ1j2(p2) , (18) 

but this implies 

&s(P2) = &YP2) = Si%P2) * (19) 

-Thus dressing up the three-point vertex amounts exactly to dressing up the charged 
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scalar two-point function. 

The result for the fermion four-point function is obtained by replacing the A 

function in the eq. (6) by using: 

dab) = &b) = Nlog(-s;-2 
GN - 65) ’ (20) 

Thus, for the massless Gross-Neveu model in leading l/N expansion, the DSE 

result is identically equivalent to the exact result. This should be contrasted with 

conventional perturbative expansion, where the results are not exact even after 

applying standard scale setting methods. In fig. 6 we plot the symmetrized and 

the antisymmetrized 4-point function, where the scale has been fixed by applying 

second and third order PMS scale-scheme setting method. Following the convention 

given in the ref. 9, these functions are defined by: 

R+(w) = g [A(s) + A(U)] , 

R-(s,u) = 2g,2N [A(s) - A(U)] . 
~1%W) 

(21) 

(22) 

We do notice that the third-order approximant improves remarkably over the sec- 

ond order approximant, however, these approximants would start to differ from 

the exact result at higher value of u/s. Evidently, the conventional scale setting 

methods fail to give the exact result in this simple model because of the assignment 

of a single coupling scale to both skeleton graphs. In fact, had the conventional 

scale setting procedures (FAC, PMS) b een applied to the two skeleton graphs in- 

-dividually, they would have given the exact result, too. 
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What is the moral of the story. 3 The moral of this exercise is that different 

skeleton diagrams possess individual renormalization properties, and that by sep- 

arating different skeleton graphs, at least in this case, one obtains a more exact 

answer. 

III. Massless Thirring Model 

The massless Thirring model12is simply the Gross-Neveu model with N=l and 

without performing the l/N expansion. This model is well-known to be exactly 

solvable 12’13. The main purpose of considering the massless Thirring model here is 

to illustrate the DSE calculation beyond the tree skeleton level. As before, we shall 

only be interested in performing perturbative calculations, and all non-perturbative 

effects (dynamical mass generation, spontaneous symmetry breaking 
10,12,13 

, etc.) 

shall be bypassed. Since the vertex correction is no longer trivial, we can not 

choose to dress up the charged two-point function. Instead, we should perform the 

RGE on the three-point vertex function. We shall carry out our calculation within 

the context of dimensional regularization, with d = 2 + 26 To one-loop order, the 

fermion self-energy correction remains zero (see fig. 7): 

igic(p) = (-i)(-igo)2 J f&i = 0 . (23) 

Hence there is no fermion wavefunction renormalization to this order: 

(24) 

-The scalar propagator is renormalized exactly like in the case of the Gross-Neveu 
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model (see fig. 7) 

-iA(k2) = -i + (-i)(igzII(k2))(-i) 

= -i [l - $(i + log(-p2 - ic))] , 

from here the effective scalar wavefunction renormalization constant is: 

(25) 

z,(k2) = 1 - $(; + lo&p2 - i,)) , ; = ; -lo&r + ^IE . (26) 

The vertex correction (fig. 7) is given by: 

lT1(k2) = &(f - log4 r-l+log(-k2-ia)) . 
(27) 

Combining the self-energy, vacuum polarization and vertex corrections, we obtain 

the renormalized vertex function: 

-igDs(k2) E -igoZf’2(q)(1 + g~I’1(k2))Zf’2(p).Z~‘2(k2) . (28) 

This equation can be put into the following form: 

1 

57;s (k2> 
= $ + & (f - log4r + 27~ t 1 t log(--k2 - i&)) . (29) 

and its solution is given by 

&(k2) = 
2X 

log(-k2/A$, - i,) . 
(30) 

Notice that if we had used the l/N expansion ( compare with eq. (16) ), we would 

il ave erred by an overall factor 2. Also notice that the vertex function to this order 
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depends exclusively on the squared momentum of the scalar particle. Now, let 

us use this vertex function to study the two-particle elastic scattering amplitude. 

Consider the process indicated in fig. 8, where we have chosen the center-of-mass 

frame to express our kinematics. The corresponding tree skeleton diagrams are 

indicated in figure 9. 

The external fermion wavefunctions are given by: 

1 0 

Ul = J2p 0 0 7u2= 4 2P 1 ) ’ 

U3=J2p(O 1) , ii4=6(1 0) , 

and the tree level amplitude is simply 

ii&,,, = ig&(t)(fi3ul)(fiqu2) t i&(u)(fi4u1)(~3u2) 

= i4p2g& (u) 

i8wp2 
= log (4p”lA;,) * 

(31) 

(32) 

The Mandelstam variables have the following values: 

s = 4p2, t = 0, u = -4p2 . (33) 

The one-loop order skeleton diagram is given in fig. 10. Let us spend sometime 

to discuss these diagrams. First of all, let us compute the box diagrams in the 

usual perturbation theory, i.e., using the bare coupling constant at the vertices. 

By simple power counting argument, one can see that the two diagrams are indi- 

cvidually divergent. However, it turns out that the divergences coming from the 
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two diagrams cancel each other, as one would expected from the renormalizability 

of the theory. The Feynman integral of these box diagrams is given by: 

2 

iMboz = d J ( - - ctrF2 u3 fi1 ” F Ul >( ti4*2;F 
u2 t ~3Pl~pul 

> ( >( fi4p2;Fu2 > 

J 2 
= 4p2gz 

k2 
- 
(:r;2(k-p1)2 

The propagators in these expressions come with the tie prescription, and in the 

language of distribution theory they should be interpreted as the sum of a principal 

value part and a delta function: 

& = P.V. 6 - ir6(k2) , (35) 

thus the terms in the integrand in eq. (34) can be classified into the following three 

types: 

1) Product of two principal value parts, 

2) Product of a principal value part with a delta function, 

3) Product of two delta functions. 

By direct calculation, it can be shown that the first two types of terms vanish, 

thus the net contribution of the box diagrams comes entirely from the double delta 

function terms. In figure 11 we plot the location of the singularities of the double 

delta functions. The result after integration has a simple expression: 

iMboz = p2gi . (36) 

Now let us return to the dressed skeleton case. We have to replace the bare coupling 

-vertex -igo by the dressed vertex function -igDs(k2). At high energies (p >> ADS) 
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the dominant contribution will still be coming from the two double delta points, 

the reason of this resides in that these two points are located in deep-spacelike 

and deep-timelike regions, i.e., far away from the light-cone, and in that gDs(k2) 

is a slow varying function at large k 2. Therefore, the corrections coming from the 

infrared behavior of the vertex function gDs(k2) are expected to be higher-twist 

in nature.141n a sense, we can interpret the two points shown in fig. 11 as the 

“scale-setting centers” of the skeleton box diagrams. The Landau singularity at 

k2 = A& might cause concern about the box integral. But one should bear in 

mind that this pole actually is located off the real axis due to the presence of the 

tic term, and as long as we respect this prescription, this pole poses no threat to 

the finiteness of the box integral. It turns out that box skeleton diagram can be 

calculated exactly (see Appendix for the calculation and discussion about the box 

integral): 

iMbox = 4p2 J d2k k2 1 
(2~)~ (k - p1)2 (k + p2)2 - (k -lp2)2 ddk2) > 

= 2p2 [Q/(1 - ;log(2p/ATh)) - 9’ (5 - ;log(2p/ATh))] 
(37) 

, 

l5 where Q’ is the trigamma function. Needless to say, this amplitude is totally free 

of scale ambiguity: the result of the skeleton box diagrams is directly expressed in 

terms of p and ATE, and no exogenous coupling has been invoked in the calculation. 

In fig. 12 we plot the real and imaginary part of the effective coupling constant 

g,ff(p), and in fig. 13 we plot the Bode diagrams of amplitude and phase for the 

effective scale peff(p). Th ese functions are defined by (see eq. (30) and (36)): 

iMbox(P) = P2&(P) 

= P2&Peff) - 
(38) 
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We observe that at high energies the effective scale has, in the language of phasors, 

an inductive angle of 45’. This is expected since one box diagram probes into the 

deep timelike region while the other box diagrams probes into the deep spacelike 

region (see fig. 11). Thus the effective scale is expected to be half inductive and half 

resistive. In contrast with conventional scale setting methods, the effective scales 

and the effective coupling constants in DSE are in general complex numbers. 

The total amplitude to one-loop skeleton level is given by the simple addition 

of the tree-level amplitude (eq. (32) ) and the box amplitude (eq. (37) ): 

iMt,t = iMtree t iMboz . (39) 

IV. Yukawa Interaction in l+l Dimension 

The main purpose in using the Yukawa model here is to present the subtleties 

related to the mass renormalization of propagators and to the matrix structure 

of vertex functions. While the usage of the skeleton technique for massless scalar 

bosons is straightforward, the presence of mass term and the existence of matrix 

structure in the various basic vertex functions make the extension of the DSE not 

immediately trivial. The Yukawa model is chosen because it presents these two 

features at first-loop level. Although the Yukawa model in 1 + 1 dimension is a 

superrenormalizable theory, this does not affect our discussion of Dirac structure. 

-The Yukawa theory describes the interaction between a fermion field and a scalar 
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boson field according to the following Lagrangian density: 

(40) 

where a mass unit m has been inserted in the interaction term to make the bare 

coupling X0 dimensionless. To simplify our discussion, we shall consider the case 

of equal renormalized fermion and boson mass, and we further chose m to have 

this value. That is, we will take the physical mass of the boson and the fermion 

to be equal to m. The bare interaction vertex is scalar (diagonal), in the sense 

that it is given by -X,m and thus proportional to the identity matrix. However, 

this feature is spoiled by the presence of higher order corrections. The full vertex 

function will in general contain non-trivial Dirac structure (fig. 14): 

-imA(p, q) = --in2 {A, t ;il(p, q)j t x2(& q>k t i3(P, C7)pR) m (41) 

In general the vertex function A(p, q) will b e an N by N matrix, and an immediate 

question is how to apply DSE method to obtain all the N2 components of this 

vertex function. A first approach would be to write down the RGEs for all the 

components and solve them separately. But this would introduce N2 integration 

constants, that is, N2 quantities analogous to AQCD. This is hardly necessary, 

for we know that, aside from the masses of the particles, we only need one more 

parameter to fix the entire theory. Therefore we can solve the RGE for only one 

component, and then expand the other components in term of the one we have 

solved for. 

The next question is how to choose the component for the RGE. One obvious 
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selection is A,, for we know that in weak coupling regime the vertex function should 

somehow resemble the bare coupling, which is scalar diagonal. More precisely, we 

1) solve the RGE for i,(p, q) 

2) expand the other components in power series of io(p,q) by inverting the 

equation (42). F or example, Ar will have the expression 

While this procedure is formally valid, we notice that the four matrices 

{ 1, j, &, $k} are not the most desirable choice of basis to decompose A. The 

problem is that when p and q are on-shell and the vertex function is multiplied 

by the external fermion wavefunctions, the matrices $I and k can be formally re- 

placed by the scalar matrix m . 1 because the wavefunctions satisfy Dirac equa- 

tion. This means that, on-shell, the matrices j and k are indistinguishable from 

a scalar matrix. Thus, it is highly unnatural to perform the RGE on Ao, for it 

means that its on-shell value will not be representative of the entire vertex func- 

tion. Therefore, we are lead to the more natural choice of basis matrices given by: 

{l,j- m,h- m,(k-m)($- m)}.16Notice th a now the non-scalar components t 

vanish on-shell upon contraction with the external fermion wavefunctions because 

of Dirac equation, thus the on-shell value of the vertex function is completely 

contained in the scalar component. 
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Let us carry out the explicit computation of these components of the vertex 

function in DSE to l-loop order. The scalar boson propagator offers no major dif- 

ficulty: we simply absorb all renormalization effect into the effective wavefunction 

renormalization constant Z* (fig. 14) 

iAb(p2) = ’ ’ 
p2 - rni 

+ 
p2-mi 

#m211(p2) ’ + . . . , 
p2 - rni (44) 

To the lowest order, we can replace the bare fermion mass rnf by m in the previous 

expression, and obtain 

1 

II(r2) = & f + ( J &log (-X(1 - 2)r2 + m2 - i.5) . 

0 ) 

The bare boson mass to order Xz is given by 

rni = m2(1 + Xzcb) , (47) 

where cb is the lowest order counterterm. Replacing (46) and (47) into (44), and 

retaining only terms to order Xi, we obtain the expression 

1 (48) 

On mass shell (r2 = m2), Ab has a simple pole, therefore cg = II(m2), and 

i&(r2) = r2 ” m2 
. ( 

1 - Xzrn2 
II(r2) - II(m2) i 

r2 - m2 > 
= r2 _ ,2 zb(r2) . (49) 
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The effective wavefunction renormalization constant is given by 

zb(r2) = 1 _ pm2W2) - Wm2) 
r2 --,2 * 

In particular, the on-shell renormalization constants is 

&,-OS = &(m2) = 1 - Xzm2 f 

(50) 

x2 27r =1+-z -- 
( ) 47r 3J3 

1 
* (51) 

+=m2 

For the fermion propagator we apply a similar procedure (fig. 14). To one-loop 

order 

where the self-energy is given by 

(52) 

iX2,m2x(q) = (-iXom)2(i)2 J ddL F + m 
(27r)d [(k - P)~ - mi][k2 - m;] * 

(53) 

To order Xz (for DJ(Q)), we can replace the boson mass mb by m. After removing 

the mass counterterm for the fermion mass 

m; = m2(1 + Xzcf) , (54 

by requiring Df(a) to have a simple pole at q2 = m2, we obtain the following 
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expression for the full fermion propagator 

z;/2(q) = 1 ;; (?I2 + > m2 uy--2~ m2 m2 f( 

xt f(q2> - f(“2)m(8 _ m) -- 
8w q2 - m2 

7 

.f(q2) = m2 [log (l-&-q (55) 
Jq2(q2 - 4m2 + iE) 

-1% (1+&-jq] * 

Notice that instead of a scalar (diagonal) wavefunction renormalization constant, 

we have introduced an effective wavefunction renormalization matrix. The on-shell 

expression of this matrix is 

Zi!$,(P) = zi’2 (P) Ip2=m2 

where the scalar part ( the first two terms ) is readily identified as the conventional 

on-shell wavefunction renormalization constant. The last term vanishes on-shell 

upon contraction with the associated external fermion wavefunction. 

Let us study the full vertex function at the particular configuration p2 = r2 = 

m2 and spacelike q2 = -Q2 < 0. The vertex function at a general momentum con- 

figuration could be studied exactly the same manner, but the expressions involved 

-would be much more complicated. 
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The vertex correction (fig. 14) is given by 

J d 
-iXfml?l = (-iXom)3 (i)“(F + k + ml@ + P + 4 - (i$ [(k + q)2 - m2][(k: + p)2 - m21[k2 - m21 ’ (57) 

where we have set rnf = mb = m. The decomposition of rl into the various 

components is given by 

G(q2) = & { 
R-m /zo(q2)1+ h(q2)G + h2(q2)7 + h3(q2P 

- m>(P - 4 
Q-m 1 

(58) 
with 

1 X 

ho(q2) = 3 dx 
.I J 

dyy , 
b b 
1 2 

h1(q2) = 
J J 

dx dy ’ + 6; 3y , 
0 0 

Q1 x h2(q2) = ; 
s s 

dx dy -’ +;f - ’ , 
0 0 

Q1 x h3(q2) = ; dx 
J J 

dys , 
0 0 

D = 1 - y + y2 - (1 - X)(X - y)$ - i& . 

The renormalized vertex function is given by 

Upon decomposition we have 

P-m h(p,q) = b(q2) * 1+ x1(Q2)- + X,(q2jR - m ~ Q 
+ x3(q2) (k - m)(p - m, 

Q-m ’ 

(59) 

(60) 

(61) 
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where we have named the scalar component the dressed skeleton effective coupling 

constant. It satisfies the RGE 

(q2 + m2)j(q2) - 2m2j(m2) 5 5n 
- 2(q2 - m2) +3-g& + 2ho(q2) 1 , (62) 

with the solution 

x2 
xis(q2) = 1+ (X2/47r)L(q2) ’ 

(63) 
L(q2) = 2(yq::;2)f(n2) - Gq2 :L2 + 2ho(q2) + ; - s - 

we have chosen the integration constant X such that L(q2 = O-) = 0. That is, X is 

the effective coupling at zero spacelike momentum 

A&q2 = o-) = x . (64) 

The general procedure to obtain the other three components involves an ex- 

pansion of A, in term of XDs(q2) by inverting the eq. (62), and then using this 

substitution in the eq. (61). But to this order we simply need to replace A, in the 

eq. (61) by ADS. The resulting expressions are: 

x1(q2) = ““$‘) (h(q2) - f + &) , 

X2(q2) = AtlF2’ (hz(sz) - fmQ f(qi? 1 zF2)) , (65) 

x3(q2) = ““f” h3(q2) . 

In figure 15 we plot the different components of the full vertex function for two 

different values of A. Notice that in the weak coupling regime (say, X2/47r < 0.2), 
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the renormalization effects become small, namely, the scalar component at high en- 

ergy only gets slightly renormalized, and the non-scalar ones become comparatively 

negligible. 

V. Summary 

We have analysed the application of the DSE to simple field theory models in 

1 + 1 dimension and discussed the various technical features in its implementation. 

Among the main conclusions we should mention: 

1) In the Gross-Neveu model, the DSE is equivalent to the exact result. We 

argue that the failure of conventional scale setting methods (FAC, PMS) to 

yield the exact result resides in the assignment of a uniform coupling scale 

to different skeleton graphs. 

2) We have shown in the Thirring model that loop skeleton diagrams can be 

meaningfully computed. For asymptotic free theories like QCD, we indicate 

that the presence of the Landau singularity at AQCD is not expected to pose 

threat to loop skeleton integrals, as long as the +ie prescription is carefully 

respected. Also, the effective scale of loop skeleton diagrams is shown to 

be coming from deep timelike and spacelike regions, thus the detail infrared 

behavior of the vertex function gives only higher twist correction. 

3) We have extended the DSE to vertex functions involving Dirac matrix struc- 

ture. For the fermion-boson interaction vertex, we have pointed out that 

one should perform the RGE on the scalar component (ADS) of the vertex 

function, with the exclusion of those components that vanish on-shell upon 
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contraction with external fermion wavefunctions. Once the scalar component 

is obtained, the non-scalar ones are to be expanded in power series of the 

scalar component. 

Application of DSE to scale setting for the three-gluon vertex in QCD is dis- 

cussed in a forthcoming paper. 

We thank Prof. Stanley Brodsky for the suggestion of the scale setting problem 

and helpful discussions. We also thank helpful discussions with Matthias Burkardt, 

Carl J. Im, Carlos A. R. Sb de Melo, Jorge G. Russo and Brian J. Warr. 

Appendix: Box Diagram Calculation 

The skeleton box diagrams indicated in fig. 9 gives the following Feynman 

integral: 

J 

2 

iMbox = 4p2 
k2 

(irt2 (k - PI)~ 
1 

(k + ~2)~ - (k ‘~2)’ 
473 

log2(-k2/$,,, _ iE> * 

(66) 

To perform this integral, let us first expand the inverse square of the logarithm 

into power series in log(p2/A+,). Define 

x = log(p2/A&,) , i = k/p , (67) 

we have 

10gw2 (-g-k) = [l0g(-$-) +lq+$-i+jm2 

= [x + log( -i2 - i,)] -2 (68) 
1 O” -2 10gn(-k2 - ie) 

=- 
X2 c( > Xn 7 

n=O n 
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where 

= WW) - - * C-1 - 4 = (-l)n(n + 1) 
1.2...:n (69) 

This expansion effectively corresponds to the expansion of the box skeleton dia- 

grams into a power series in the coupling constant at scale p. 

By applying the identity: 

logn(-i2 - ie) = 
( > 

& n (A2 - icy , 
ff=o 

the Feynman integrals can be done exactly, the result is: 

iMbox = !gy(-q”~ (CL)” 
n=O a=0 

= %{I - 2! fix-l + . . . + (-l)n(n + l)! jnxSn + . . .} , 

where 

j(a) = (4i)‘Ysec 7 = j0 + jla + j2a2 + . . . 
( > 

, 

We give here the numerical value of the first few coefficients: 

fo = 1 

jl = 1.38629 + il.5708 

j2 = 0.960906 + i2.17759 

j3 = 0.444033 + i2.80132 

j4 = 0.15389 + i2.48848 

j5 = 0.0426674 + i2.75823 

f6 = 0.00985826 + i2.40832 . 

(71) 

(72) 

(73) 

The expansion (71) exhibits an n! divergence behavior, typical of an asymptotic 
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series that needs Bore1 resummation 
17,19 in order to yield a finite result.201t turns 

out that this series can be Bore1 resummed exactly, and the result obtained by a 

straightforward application of the Bore1 resummation formulas is given by: 

1 . 
5 - ilog(%‘/ATh) 7 (74 

where Q’ is the trigamma function 15defined by 

d2 
W(2) = $f = -&ogr(z) 

It is interesting to observe that the Bore1 transform of the series (71): 

d2 
G(Y) - S(Y) + dy2 (yf(-Y)) 7 

(75) 

(76) 

possesses infinite number of poles on the real axis (see fig. 16). These poles exhibit 

the typical feature of renormalon singularities 17’21. We notice that these poles lie 

exactly on the real axis, i.e., they do not have infinitesimal imaginary part. Thus, 

when performing the Bore1 integral, those poles on the positive real axis should be 

interpreted in the principal value sense. We note that the resulting integral under 

this prescription is finite. 
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FIGURE CAPTIONS 

1) A typical QED process, where the coupling strength at vertices a and b is 

expected to be stronger than the coupling strength at c. 

2) Bare propagators and coupling vertex of the massless Gross-Neveu model. 

3) The fermion four-point function to leading order in l/N. The double dashed 

line represents the full scalar propagator to leading order in l/N. 

4) The charged scalar propagator and the vacuum polarization diagrams in 

Gross-Neveu model to leading order in l/N. 

5) Dressed three-point function in Gross-Neveu model to leading order in l/N. 

6) Symmetrized (R+) and antisymmetrized (IL) fermion four-point functions 

to leading order in l/N in Gross-Neveu model. The dashed lines represent 

the exact results. The solid lines are the results obtained by applying the 

PMS optimization method. Fig. (a) and fig. (b) correspond respectively to 

the second and the third order approximant. 

7) 0 ne oo se -1 p lf- energy, vacuum polarization and vertex correction diagrams in 

massless Thirring model. 

8) Kinematics of two-particle elastic collision process in massless Thirring model 

in the center-of-mass frame. 

9) Tree-skeleton diagrams for two-particle elastic scattering amplitude in mass- 

less Thirring model. 

10) One-loop skeleton diagram for two-particle elastic scattering amplitude in 

massless Thirring model. 
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11) Location of the double-delta function singularities of the box diagrams (a) 

and (b) of fig. 10 in the ko - ICI plane. The hyperbola indicates the location 

of the Landau singularity at k2 = -A;h. 

12) Real and imaginary parts of the effective coupling constant for the box am- 

plitude of the Thirring model. Notice that at high energy geff(p) + SDS(p). 

13) (a) B d d g o e ia ram of amplitude for the effective scale of the box amplitude 

in the Thirring model. (b) B o e ia d d g ram of phase for the effective scale of 

the same amplitude. 

14) One-loop scalar and fermion propagator and vertex correction diagrams for 

the Yukawa model. 

15) Different components of the full vertex function of Yukawa model in 1 + 1 

dimension as obtained by DSE. The external legs of the scalar boson and one 

of the fermions are on-shell; the second fermion has a spacelike momentum 

q2 = -Q2 < 0. In fig. (a) X2/47r = l/r = 0.318. In fig. (b) X2/47r = 0.2 . 

16) Location of the singularities of the Bore1 transform of the box amplitude in 

the complex-y plane. There is a delta function at the origin and an infi- 

nite number of poles located at odd integer numbers, which correspond to 

renormalon singularities. 
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