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The Haleakala Gamma Ray Telescope is used to detect Extensive Air Show-
ers by utilizing the Atmospheric Cerenkov Technique. The resulting data is
analyzed in an effort to detect the presence of v-ray initiated showers above a
threshold energy of approximately 200 GeV. Hercules X-1, a neutron star mem-
ber of an accretion-powered X-ray binary system, was observed for 104 hours in
May through July 1986. On May 13 a burst of activity of approximately 15 min-
utes duration was detected, with a period of 1°.23593 + 0°.00018. Although this
period differs significantly from the pulsar period expected from X-ray observa-
tions, it is consistent with measurements of the periodicity of VHE and UHE
v-rays by other observers operating during the summer of 1986. This surpris-
ing result indicates that the y-ray production mechanism operates in a region
well removed from the neutren star and may set constraints on models involving
the interaction of the accretion disk with the magnetosphere associated with the

neutron star.
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Chapter 1

Introduction

The field of very high energy (VHE) v-ray astronomy is relatively young. Its
growth has been steady and, although the basic experimental technique used in
the earliest such experiments is still in use today, numerous efforts to increase
the efficiency of the technique have resulted in sophisticated telescope arrays
which are still being improved. Unlike many other wavelength bands in astron-
ony, however, the VHE band has yet to find its “standard candle” source by
which experiments can be calibrated and tuned. Instead, the field has developed
through the slow accumulation of rather weak signals from a small collection of
varied sources. The object of this thesis is to conduct a search for such signals
froin the X-ray binary system Her X-1/HZ Her. In order to accomplish such a
task, it is necessary to understand the subtleties of the Atmospheric Cerenkov
Technique (ACT) which is used to identify the presence of high energy pliotous
(or particles) impinging on the atmosphere. Further, one must investigate the
analysis techniques pertinent to the identification of signals in the presence of
a very large cosmic ray background as well as the physics associated with the
binary system in which the y-rays are produced in order to plan an efficient

strategy for the search for such signals. In this chapter we present an outline of
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the thesis and summarize the content of the chapters to follow.

1.1 Sources of Energetic Radiation

As a general class, the compact objects such as neutron stars and black holes
are likely candidates for production of extremely energetic radiation. Because
of the very large gravitational fields associated with these objects, and often
the presence of large rotating magnetic fields, the energetics are favorable for
such production. In Chapter 2 we review the physics of the environment in
the vicinity of rotating magnetic neutron stars. When such objects are located
in binary systems in which the companion objects are normal stars, possibly
which have evolved toward the red giant stage, we find that accretion of matter
from the companion onto the neutron star can result in the release of huge
amounts of energy. The accretion disks which form in such binary systems drive
the energetics of the system and determine the state of the outer regions of
the magnetosphere associated with the neutron star. We shall see that such an
environment lends itself to acceleration of charged particles to very high energies.
The production of v4-rays from such particles may occur in a variety of ways
although the exact mechanism is still unknown. Studies of the periodicity of
the 4-rays relative to that of the neutron star rotation could provide crucial

information about the site of y-ray production.



1.2 VHE y-Ray Astronomy

The technique used to detect v-rays of energies in the range 0.1-10 TeV involves
collecting the Cerenkov photons which are produced by electrons and positrons
in the particle cascade that the y-rays initiate upon entering the atmosphere.
In Chapter 3 we discuss this technique and, through Monte Carlo simulations,
the characteristics which describe Extensive Air Showers (EAS). The Cerenkov
radiation produced in such showers results in a photon density on the ground
of about 135 m~2 TeV~! (evaluated in the optical range between 300 nm and
475 nm and at an observation height of ~ 3 km). This photon density decreases
nearly exponentially with distance from the shower core and is reduced to e~}
of its maximnum value at an impact parameter of about 35 m. The photons
arrive in a “pancake” which is several nanoseconds in duration. Showers initiated
by hadrons (primarily protons in the energy range under consideration), which
provide the nearly overwhelming background to such an experiment, contain less
light for a given primary energy because a reasonable fraction of the primary
energy is used in the production of charged pions which do not contribute to the
electron component of the shower.

Experimental techniques for rejecting showers which are hadronic in origin
in an effort to enhance the y-ray signal-to-noise ration have taken several forms.
Because hadronic showers are characterized by pion production early in the devel-
opment, the eventual pattern of photons on the ground tends to be less uniforin
than that from a v-ray initiated shower. Further, because the charged pions

eventually decay into muons, the hadronic showers tend to be muon rich com-



pared with their 4-ray counterparts. The muons, which are very penetrating,
will reach observation level with sufficient energy to produce Cerenkov radia-
tion. This radiation will form small rings around the muon axis which might be
discernable if small enough detail is resolvable in the focal plane of the telescope
used to collect the Cerenkov light.

Because the region of sky over which the Cerenkov radiation from a shower
develops is rather large, correspondingly large apertures (~ 1°) are necessary to
optimize the collection of the light (for example, apertures of 0°.75 are used on
the Haleakala v-ray telescope). However, the use of a large aperture increases
the number of oblique proton-induced showers (i.e. those from directions differ-
ent from that of the source under observation) which may be detected by the
telescope. Because these showers are isotropically distributed, the number which
become background events increases as the square of the aperture angle. Because
these showers approach from directions different from that of the telescope axis,
their images are different from those which come from directions near the axis.
In addition, the light from such oblique showers will be spread over a somewhat
larger time than that for showers arriving along the axis.

Various experimental groups have developed different techniques for atteupt-
ing to discriminate y-ray i.nduced showers from protou-induced showers. The
Whipple Observatory group, for example, uses a many-pixel array of photomul-
tiplier tubes at the focal plane of a large seginented mirror in an effort to reject
hadronic showers based on the details of the shower images. The Haleakala

group, opting to collect all of the focal plane image on only several photomul-



tipliers, uses fast electronic timing to attempt to reject oblique showers on the
basis of their longer development time (see Chapter 3). To date, none of the
techniques has clearly established the ability to discriminate between v-ray and
proton initiated showers, largely because of the large fluctuations in the develop-
ment of individual showers. To be fair, however, improvements and refinements

currently underway may well prove successful in the future.

1.3 Analysis Techniques

Detecting v-rays from the direction of a particular source in the presence of
the large cosmic ray background mentioned in the previous section is a difficult
task. In order to recognize an overall excess of events from the direction of the
source at the low signal levels thus far identified with such sources requires a
very precise understanding of the background behavior. This is a very difficult
prospect except, possibly, during large outbursts of activity. In the case of a
periodic signal, variations of basic Fourier techniques can be used to improve
detectability. These techniques are reviewed in Chapter 4 where we investigate
the Rayleigh test in particular and, through Monte Carlo simulations, illustrate
the various pitfalls characteristic of this test when performed on data which
are dominated by random background. The statistics associated with period
searches are also investigated as are the barycentering techniques necessary to
remove the effective Doppler shifts associated with motions of the Earth and of

the v4-ray source.



1.4 VHE ~-Rays from Hercules X-1

Hercules X-1 is a highly magnetized neutron star with a rotational period of
~ 1*.24. It is located in a binary system with the ~ 2.3M, A-type star HZ
Herculis. The characteristics of this binary system are outlined in Chapter 5
where we summarize the results of optical, X-ray, and vy-ray studies and review
thie basic model which best describes the details of these studies. VHE y-rays
from Her X-1 have been detected at various levels of significance by several
groups and we review the details of these detections in order to guide our search
techniques.

In Chapter 6 we explain in detail the results of a search for VHE «-rays from
Her X-1 in the data collected at the Haleakala Gamma Observatory between May
and July of 1986, The identification of a burst of activity on 13 May, which is
characterized by periodicity distinctly different from that of the rotating neutron
star, is outlined and compared with results obtained by two other experiinental
groups operating that summer. The results of this study have been submitted

for publication in the Astrophysical Journal Letters.



Chapter 2

Compact Objects: Sources of VHE ~-Rays

Twinkle twinkle liltle star.
How I wonder what you are...
Jane Taylor

Like a river to a stream
It’s the famous final scene.

Bob Seger

VHE +4-rays are the signatures of extremely energetic processes. They gen-
erally owe their existence to the decay of neutral pions which are products of
energetic collisions of protons with other matter or to radiation produced by ul-
trarelativistic electrons moving in strong magnetic fields. The conditions needed
for such pion production and/or curvature radiation are found in the vicinity
of compact astrophysical objects — in particular, neutron stars. Since such
compact objects represent the endpoint of stellar evolution, it is instructive to
consider the fundamental physics associated with such evolution. In addition,
since many compact ohjects are members of binary systems, such a discussion

will facilitate the understanding of the roles played by tlie companion stars in
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such systems. We begin the discussion with a review of stellar structure and
evolution followed by a discussion of the physics of neutron stars. Binary sys-
tems in which one member is a neutron star are then discussed with an emphasis
on accretion of matter from the companion star. Finally, models depicting the

production of VHE ~v-rays in such systems are discussed.

2.1 Stellar Structure

Stars owe their existence to the mutual gravitational attraction between all of
the individual matter constituents. The Virial theorem guarantees that, as grav-

itational potential energy V is converted into thermal energy R, we have

VvV
K=—-— .
\ > (2.1)
where we may write
aGM?
V=- 2.2
R (2.2)

where R is the radius, M is the mass, and a is some proportionality constant.

Assuming an ideal gas equation of state,

K = gNIcT (2.3)

where N is the number of atoins or molecules, T is the temperature, and & is

Boltzmann'’s constant. The total energy of the star is

__aG'IW’
2R

E=K+V= (2.4)



Thus, for constant mass, we see that as energy is lost (for example by radiation)
the radius R decreases. However, from the expressions above, we find that

a GM?
T=m_R . (2-5)

Thus, as the radius decreases, the temperature increases. An increase in tem-
perature, however, results in further radiation of energy which then causes R to
decrease further. The star is thus destined to become a compact object. Only
when internal pressures are large enough to halt the decrease of R will the con-
figuration become stable. As we shall see, several such stability points are found
as a star evolves, but most are merely temporary resting places along a path to
final collapse.

The problem of determining the interior structure of a star requires relating
the pressure, temperature, and density of the star with its mass and cheniical
composition. Since the time scale over which the evolutionary process occurs is
generally long, it is reasonable to take static conditions as a first approximation.
The basic structure equations are then the conservation of mass,

dM.
dr

= 4nrip(r) (2.6)

the condition for hydrostatic equilibrium (whereby internal pressure supports

the weight of the exterior layers of the star),

~dP _ GM,p(r)

— 2.7
dr r? (2.7)
and the condition for thermal equilibrium,
dL,
— = 4nrriep. (2.8)

dr
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Here, M, is the mass interior to radius r, L, is the net energy flux through a shell
of radius r, p(r) is the density, and ¢ is the power liberated by nuclear reactions
in erg gm™! 57! (see sec. 2.1.3). To construct a model, then, these structure
equations must be satisfied simultaneously with the equation of state P(p,T),

the transport equation VT = f(p, T), and the equations for energy production.

2.1.1 Equation of State

Temperatures in stellar interiors are high enough for the atoms to be almost
completely ionized. Further, since the bulk of the matter is hydrogen, the over-
whelming majority of the particles which constitute the star are free electrons
and protons. The mean free path for these particles is small compared with
the distance over which temperature changes occur so that we may assume local
thermodynamic equilibrium. Thus, the pressure depends only on the density,
temperature, and chemical composition. There are three basic contributions to

the pressure: Gas pressure, radiation pressure, and eleciron degeneracy pressure.

¢ Radiation Pressure - By virtue of the momentum carried by photons, the

pressure contributed is

Praa = %aT‘ (2.9)

where a = 7.55 x 10" Serg em™! K™%,

¢ Gas Pressure - Since interaction energies < thermal energy we may assume

ideal gas behavior. Thus,

P,. = vkT (2.10)
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where v is the number of particles per unit volume. Letting p be the mean

molecular weight, we have
Py, = —pT (2.11)

where Ny is Avogadro’s number. We can account for the chemical conipo-

sition by defining

X = weight fraction of hydrogen
Y = weight fraction of helium

Z = weight fraction of heavier elements.

< 1 2 )

1
m
where each term represents

#particles (nucleus + electrons)
weight of nucleus (in AMU)

x fractional abundance.

Typical values found in Population I stars (i.e. stars, generally associated
with spiral arms of galaxies, whose composition includes heavier elements
synthesized in the evolution of earlier stars) are X ~ 0.6, ¥ ~ 0.38, Z ~

0.02.

Degeneracy Pressure - The Pauli Exclusion Principle forbids the occupa-
tion of a given quantum state by more than one electron. As a result,
if a collection of electrons are confined to a given volume, Lhe available

momentum states become fully populated; although there are an infinite
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number of momentum states, the available energy dictates which of these
are within the reach of the electrons. When all of the states up to some
particular state are filled, the collection is said to be degenerate. Further
reduction of the volume can be achieved only by supplying sufficient en-
ergy to populate higher momentum states; hence, compression is resisted
by so-called degeneracy pressure. For complete degeneracy, the number of

electrons as a function of momentum is

0 if
ne(p) = P (2.13)

33Ps if p < po.

Normalizing to the total number of electrons,

oo 8&r , 3h3n, }
n, =/o ne(p)dp = 3,5P0 = Po = ( rvll IR (2.14)
The associated pressure is then
1 fo .
P = 5/ pvp,n(p)dp. (2.15)
0
In the non-relativistic case, we have v, = p/m so that
8r ., 8 (3h3 \3

- = . 2.16
Ferr = T5mhaP = T5mho (81r " ) (2.16)

independent of temperature. The relativistic case and the case of partial
degeneracy, although more complicated, can be approached in a similar
manner. Degeneracy of protons and other nuclei do not occur at any ap-
preciable level because of their larger masses. Thus, if the electrons are

non-degenerate,

Pn+Pe=Pga:
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where P, is the pressure contribution from the nuclei and P, is that from

the electrons. In the degenerate case,

Nok

n

P, = pT

where g, is the weight (in AMU) of the nuclei only. The total pressure is

thus

P=P,+ P, + P (2.17)

2.1.2 Energy Transport

The stellar interior is characterized by a temperature gradient VT. In its effort
to achieve global thermodynamic equilibrium, the star may transport energy
through radiative transfer, conduction, or convection. Neutrino emission, which
also transports energy from the core of the star, is not characterized by interactive
transport through the stellar matter; the process is not a function of temperature
gradient. Conduction, whereby energy is transported directly through particle
interactions, is much less efficient than radiative transfer (except in a degenerate

electron gas) and, thus, does not represent a significant contribution.

e Radiative Transfer - Photons emitted thermally in hot regions and absorbed
in cooler regions transport encrgv. The effectiveness of the process is a
function of both the temperature gradient and the ability of the photons
to travel from one region to another, i.e. the opacity. If we define s to be
the opacity (i.c. the mass absorption coefficient, in cm? gm=!) and F as

the flux of radiation, then xpF is the energy flux absorbed. But from the
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continuity equation,

du
V.-§S= " (2.18)

where S is the Poynting vector and u is the energy density. By definition,

% = kpF (2.19)

and since the pressure is merely the momentum flux,
1-
P==-5 (2.20)
c

we have

— = == = ——F. (2.21)

But from Equation 2.9,

P = %aT‘ = j—g = % (2.22)
and since
F = 4ﬁ;z (2.23)
we have the result
(%?),f'ﬁ % ;;2. (2.24)

The primary contributions to the opacity x are photoionization, inverse-
bremsstralilung, and electron scattering. The relative importance of each

mechanism is dependent upon both temperature and compasition.

Convective Transfer - Thermounclear reactions in the central regions of a
star are the source of energy that is ultimately radiated from the surface of

the star. If the temperature gradient is sufficiently large, the rate at which
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ple+dr), T(r+dr)

L_ _____ p(r), Tir)

Figure 2.1: Convective instability occurs when the density of a fluid element

which has been raised adiabatically by a distance dr is less than the density of

the surrounding material.

radiation carries energy to the surface may be insufficient. In this case,
the star becomes unstable against convection and energy is transported
through bulk motion of stellar matter. Tlie conditions for convective in-
stability are illustrated in Figure 2.1. If a fluid element in the star is raised

adiabatically from a radius r to r + dr, its density will change from p(r) to
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some value p’. Convective instability occurs if
p < p(r + dr). {2.25)

We may define the adiabiatic coefficient I'; by

(%)“ - r,g. (2.26)
Then
P! = p(r) + (dp)ua = (r) + 1220 (%f) dr (2.27)
while |
po(r +dr) = p(r) + (%) dr. (2.28)

Hence, we can write the condition for convective instability as

1 dP d
2 () < 2L (2.29)
' P\dr dr

Often the inequality for convective instability is met only over limited por-
tions of the star. For example, low mass stars are characterized by a con-

vective surface and a radiative core. This is the result of the relatively low
surface temperature which produces a very high opacity (partially due to
neutral hydrogen) in the subsurface layers. High mass stars, on the other
hand, often have convective cores and radiative surfaces. This apposite
behavior is due to the lower opacity at the surface and the much larger
energy production rate at the core. In both cases, convection occurs in
regions where radiation is not capable of transporting energy at a sufli-

cient rate. It should be noted that convection can play an important role
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in the development of the star because of mixing of heavier elements with
the hydrogen in the vicinity of the core. Detailed stellar models, then, are
quite sensitive to convection effects (which may be further complicated by

the effects of rotation).

2.1.3 Energy Generation

The mechanism by which stars produce their energy consists of thermonuclear
fusion in the central regions. Such nuclear reactions convert light elements into
heavier elements with the excess binding energy per nucleon released in the
interactions powering the star. In order for nuclei with charges Z,e and Z,e to

be brought close enough for fusion to occur, the potential barrier

_ kleze’ _ 1.4421Z2

T ~ r(fm)

v MeV (2.30)

must be overcome. However, at temperatures typical of those found in stellar

cores (T ~ 10"K) the average energy of the nuclei is

E ~ kT = 1keV.

Thus only through tunneling effects can barrier penetration be accomplished.
We may define the energy production in terms of ¢, the amount of energy
rcleased per gram per second in nuclear reactions. The the total energy generated

per cm? per second is

pe = Z r12Q12 (2.31)

reac

where 7, is the rate per cm? for interactions of nuclei of type 1 with those of

type 2 and Q;; is the energy released in each such reaction; the sum is over all



possible reactions. If n; and n; represent the number densities of the nuclei, then

the reaction rate may be written

nyn,
1+ 64,

T2 = < ov >12 (2.32)

where 8,5 is the Kronecker delta and
< ov D= /m f(v)vorz(v) dv. (2.33)
0

Here f(v) is the velocity distribution of the nuclei (generally assumed to be

Maxwellian) and o, is the reaction cross-section. We may write the cross-section

as
- S(E) 2TI'Z122€2
o= —p exp (— o ) (2.34)

where S(FE') contains the additional energy dependence. Often S(E) = Sy is a

reasonable approximation. In this limit, the reaction rate may be approximated

by
X1 X, p’So'r’e" -3 -
~ (2.6 x 10%? 31 2.35
12 ( X )1 + 012 Ay A A12Z: 22 cm s ( )
where
A1A2
Ayg = ———
12 A+ A,

is the reduced mass, X; and X, are the atomnic abundances of nuclei 1 and 2,

and

1

2722 . 3

T = 42.48 (@) . (2.36)
8

Here Tg is the temperature expressed in units of 10°K.
Nuclear energy production generally consists not of a single interaction but,

rather, of an interaction cycle. For example, in the ma jority of normal stars, the
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primary energy production mechanism is the fusion of hydrogen to helium. It is
clear, however, that one cannot merely take four protons and join them to make
helium; rather, a process such as the PPI cycle must occur:

H*'+H' - H*+et 4+,

H*+ H' — He*+~4 (2.37)

He* + He® — He'+ 2H'.

In such a cycle, the total reaction rate is dominated by the rate of the slowest
process (the first process, in this case, which has an exceedingly small cross-

section).

Depending on the temperature and the abundance of He!, the reaction

He*+ He* — Be' ++

may dominate the consumption of He®. The PPII and PPIII cycles may then

operate:
He*+ He* — Be +7
Be'+e” — Li" +v, (2.38)
L+ H — 2He
or

He* + He* — Be + 4+
Be" + H' — B’ +4
(2.39)
B® — Be +et tu.
Be® — 2He'.
In practice, all three chains operate simultaneously. Figure 2.2 illustrates the

temperature dependence of the relative contributions of each cycle; in the sun,

reactions are ~40% PPI, 60% PPII, with a very small fraction of PPIII.
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Figure 2.2: The fraction of the He! production due to PPI, PPII, and PPIII

If heavier elements are sufficiently abundant in the star, helium can be syn-

thesized in reactions involving carbon and nitrogen nuclei with protons in the
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o cailed N cyele:

Cv12+HI — N13+7

N‘.S — Cl-’! + e+ + v,
C”3+ H!' . N +7

(2.40)

N4 L HY o oS ey

015 . le + e+ + v,
NS L HY o C'2 4 Het.

Note that the ("'% nucleus merely acts as a catalyst in the reaction. Bombardment

of N'5 nuclei with protons does not always produce C'?; the reaction
le + Hl — 018 + 7
occurs with a relative probability of ~ 4 x 10~*. This initiates the sub-cycle

N15+H1 s 018+7

018 +Hl s F17+7
(2.41)

F' o OV +et 44,
O'" + H! — N4 Het

The final production of N is then fed into the middle of the CN cycle. As
a result, the entire process is generally referred to as the CNO bi-cycle. The
reaction rates for the CNO cycle (which are extremely temperature sensitive)
and its competition with the PP cycles are discussed thoroughly by Clayton
(1968).

It is worth briefly noting that, because of the extremely large times required
for photons to diffuse from: the center of a star to its surface, the only direct test of

the theoretical calculations regarding current energy production in the sun is the
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measurement of the rate at which neutrinos (which escape virtually unimpeded)
are produced. To date, the most extensive study in this area has been carried
out by Davis et al. (1964) using a large tank of C{*" located 1500 m underground
in the Homestake mine in South Dakota. Unfortunately, the energy threshold
for the experiment is about 0.81 MeV; the most plentiful neutrinos from the sun
are produced in the first step of the PPI cycle and have a maximum energy of
0.42 MeV. The solar neutrinos for which the detector is most sensitive (those
from the PPIII cycle) occur in only 0.02% of solar reactions. Nonetheless, after
many years of operation the experiment has established a clear deficiency (by
about a factor of 3) in the number of neutrinos expected. This puzzle is one of
the most interesting and important issues in stellar astrophysics and the search
for its solution has produced more than a few suggestions including deviations
from steady-state behavior (Fowler 1972), non-Maxwellian distributions of the
nuclei involved in the neutrino production process (Clayton 1974, Clayton et al.
1975a), and even the presence of a black hole at the center of the sun (Clayton
el al. 1975b). Aside from deviations from the standard solar model, suggestions
involving neutrino oscillations and neutrino decay have also been made. At

present, however, there is no accepted explanation to the solar neutrino puzzle.

2.2 Stellar Evolution

For the purpose of developing the past history of compact objects, as well as to
establish terminology relevant to further discussion concerning binary systemms,

let us review the standard model of stellar evolution. This subject is broad, of
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course, and we shall merely summarize the more general features. More detailed
discussion can be found in many standard texts (e.g. Clayton 1968, Cox and
Guili 1969). Excellent review articles have also been written on most aspects
of the problem (e.g. Iben 1974). For the sake of simplicity, we will divide the
discussion into three stages; main sequence stars, post main sequence evolution,

and binary evolution.

2.2.1 Main Sequence Stars

One will recall from introductory astronomy that a scatter-plot of the luminosity
(or absolute magnitude) vs effective temperature (or spectral index) for stars,
the so-called Hertzsprung-Russell (H-R) diagram results in several populated re-
gions (Figure 2.3). A large percentage of the stars lie along the region referred to
as the main sequence. Such stars are in a temporary steady state in which ther-
monuclear fusion of hydrogen to helium (as discussed in Section 2.1.3) provides
sufficient pressure to halt gravitational contraction. The differences in luminos-
ity and temperature of these stars are entirely due to differences in mass. Direct
measurements of stellar masses are possible only for binary systems. Studies

of such systems show that, for main sequence stars, a mass-luminosity relation

exists;

L Ay’
Zg o (m) (2.42)

where 7 lies in the range of 3.5 to 4. The main sequence lifetime of a star is

inversely related to its mass;

iy
Tars ~ 13 x 10° [ —— . 2.4
Ms = 13 x (Me) yr (2.43)
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Figure 2.3: A schematic representation of the heavily populated ares in the H-R
diagram. Here the absolute bolometric magnitude My, is plotted against color
index B — V. A high percentage of stars lie near the main sequence. The next

most populous groups are the white dwarfs and the giants.

The hot blue giants, which produce energy predominately through the CNO
cycle, exhaust the supply of hydrogen at their cores in only a few million years
while the cool red dwarfs, burning their fuel much more slowly (chiefly through
the PPI cycle), survive for many billions of years. In either case, the supply of
hydrogen in central regions eventually becomes depleted.

In that stars of different masses have quite different luminosities and lifetinies,
it is not surprising that other general properties, such as mass loss, internal

convection, or optical spectra, can also differ considerably. The spectral classes
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of stars are, in fact, defined on the basis of these differences. Thus, spectra of
O stars reveal lines of highly ionized atoms while those of the K and M stars
display lines from neutral metals and even molecular bands of titanium oxide
(which cannot exist at the higher temperatures of more massive main sequence
stars).

The main sequence is generally divided into upper and lower regions where
the upper main sequence is characterized by stars with a radiative surface and
a convective core while the lower region contains stars with convective surfaces
and radiative cores. Details regarding convection affect the future evolution of a
star, in particular because of mixing in stellar interiors.

Mass loss during the main sequence phase occurs primarily in the form of a
stellar wind. This steady, slow loss which is the result of heating of the tenuous
outer layers of the star can play an important role in close binary systems (Section
2.4). Although the solar wind has been well measured, such winds in other stars
are difficult to detect. Evidence suggests, however, that such mass loss can in

some cases be considerably larger than that for the sun.

2.2.2 Post Main Sequence Evolution

Once hydrogen has been depleted in the central regions of a star there are no
longer sufficient means of supporting the gravitational pressure. As a result, the
core undergoes collapse. Energy is provided from the release of gravitational
energy and from hydrogen burning in the shell surrounding the core. As the

core collapses, its temperature, density, and pressure increase. The outer lay-
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ers expand as a result of the energy released at the center. This expansion is
accompanied by an increase in hydrogen shell burning so that, while the outer
’la.yers become cooler (and, thus, redder) the overall luminosity increases. This
evolution from the main sequence follows a path to the upper right hand region
of the H-R diagram; the star becomes a red giant. Its radius is enlarged by a
factor of nearly 100.

For stars with sufficient mass (> .25Mg), the core temperature eventually
becomes high enough to initiate the fusion of helium to carbon and oxygen. In
stars with masses less than about 7TMy, the helium core is degenerate when this
process begins. Because degeneracy pressure depends only on density and not
on temperature (Equation 2.11) the core cannot expand and cool in response
to the temperature increase. Rather, because the nuclear reaction rates depend
sensitively on temperature (for this process, e o« T*%), the temperature rise results
in a thermal runaway or helium flash. Only when temperatures become high
enough to lift the degeneracy of the core can expansion and cooling occur. After
this the star settles into a state whereby helium burning and hydrogen shell
burning supply its energy.

The further evolution of a star follows much the same pattern as above.
After helium is depleted, the core collapses until temperatures are high enough
for carbon fusion accompanied by burning of shells of heliumn and hydrogen. The
onset of such processes, which occur only in stars with sufficient mass for large
enough core temperatures to be reached, may also be accompanied by carbon

flashes. For stars with mass < 8Afy, the energy released in the carbon flash is
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probably sufficient to explode the core and disrupt the entire star. For more
massive stars, an oxygen burning cycle may be initiated after the completion
of the carbon cycle. By this time, neutri.no losses play a dominant role in the
transport of energy from the core.

For less massive stars, core degeneracy will be sufficient to support the grav-
itational collapse before the onset of further fusion cycles. The remnants of such
stars are white dwarfs. These remnants are stable up to the Chandrasekhar mmass
M, =~ 1.4mg. For stars more massive than ~ 12Mg, the core is pushed beyond
this limit and further fusion cycles are ignited. However, the continual fusion of
heavier and heavier elements cannot proceed past iron because beyond this point
the reactions cease to produce energy. Hence, once an iron core is reached, the
star cannot support itself against the influence of gravity and final collapse oc-
curs, Depending on the final mass, sufficient pressure may be supplied after the
core collapse has forced protons and electrons to form neutrons through inverse
(3-decay. Such collapse is rapid and violent resulting in a supernova explosion.
The compact object left behind is a neutron star (see Section 2.3.1). In the case
of extremely large mass, even the neutron star configuration does not supply
sufficient pressure to balance gravity and the collapse continues to form a black

lole.

2.2.3 Binary Evolution

Stars in binary systems can evolve along quite different paths than isolated stars

[see review articles by Paczynski (1971) and Van den Heuvel (1978, 1987)|. This
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is the result of mass transfer from one binary member to the other. In that the
member which is initially the more massive of the two will evolve to the red giant
stage more quickly, it is possible that, upon expansion of its outer layers, it will
overfill its Roche lobe (see Section 2.4.1) and ni1ass will flow onto the companion
star. Depending upon orbital parameters and relative masses, this mass transfer
can be sufficiently large to result in the companion star becoming the more
massive member. Because post main sequence evolution is determined primarily
by the core, not the stellar envelope, the evolved star will continue on its path
toward final collapse, thus forming some type of compact object. Meanwhile,
the companion star begins to pass much more rapidly through its main sequence
stage as a result of its newly acquired mass. It is likely to possess a strong stellar
wind which may be partially accreted onto the compact companion. As it evolves
toward the red giant stage, large mass transfer onto the compact companion
occurs. If the compact companion is a neutron star, such a configuration is
likely to become an x-ray binary as discussed in Section 2.4. If it is a white
dwarf, it is possible for the mass transfer to trigger a Type I supernova. In the
end, assuming that no cataclysmic event disrupts the entire hbinary system, two

compact objects will be remain.

2.3 Pulsars

The 1968 discovery of pulsars by Jocelyn Bell and Anthony Hewish was an unex-
pected result of an experiment designed to perform a large-scale survey of radio

galaxies using the interplanetary scintillation technique (Ilewish, 1975). In the
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discovery paper (Hewish et al. 1968), several important model constraints were
outlined. The very short duration of the pulses indicated that the source size
could not exceed ~ 4.8 x 10®km. Absence of detectable parallax set a lower limit
of 10® AU on the source distance while an npper limit of ~65pc was established
on the basis of the measured dispersion of the radio signal (pulsar distances are

still expressed in terms of the dispersion measure

DM = / ¥ el

0

where n, is the electron number density and L is the pulsar distance). Models
cousisting of oscillating white dwarfs or neutron stars were also suggested. In-
deed Cameron (1965) and Finzi (1965) had previously suggested that pulsation
of neutron stars could play an important role in the development of supernova
remnants through the generation of hydromagnetic shock fronts at the stellar
surface. Thus it is not surprising that soon after the discovery of pulsars, mod-
els involving neutron stars were proposed. Pulsations, however, were ruled out
partially because the observed periods seemed too long for neutron star pulsa-
tions (and too short for those of white dwarfs). Models involving orbiting white
dwarfs, even in contact, could not produce periods short enough to match the
data; the period for a satellite at the surface of an object with uniform density

p can easily be calculated as

1
k 2
T = (zg) . (2.44)

3 we see that periods no shorter than

Using a typical value of p ~ 10% gm cm~
~ 10s can be accommodated by such a model. Orbiting neutron stars, on the

other hand, would lose energy by gravitational radiation resulting in the rapid
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decay of the orbit. Rotation of neutron stars was soon the model of choice and
calculations by Gold (1968) indicated that pulse periods should show a secular
decrease (which was soon confirmed with measurements made on the emission
from the Crab pulsar). While other models still exist, it is the rotating neutron
star model which has been most successful in explaining the observed features of
pulsars. In order to understand the nature of the pulsars, a brief review of the

models of neutron stars themselves is in order.

2.3.1 Neutron Star Structure

Shortly after Chadwick’s discovery of the neutron, the suggestion was made by
Baade & Zwicky that matter at greater-than-nuclear densities might be formed in
the gravitational collapse of massive stars. Matter at such densities was predicted
to consist primarily of neutrons. The first models of such neutron stars were
calculated by Oppenheimer & Volkoff (1939). The matter was assumed to consist
of a cold Fermi gas (note that, using Equation 3.9, the Fermi energy for heavy
particles at nuclear densities is Eg ~ 80MeV so that the Fermi gas is still “cold” at
a temperature of ~ 10'°K) with degeneracy pressure balancing the gravitational
forces of the star. A somewhat simple treatment led to the conclusion that such
structures were unstable for masses greater than ~ T5Mg. At the time it was
believed that thermal radiation from such objects would be too weak to detect
because of the small radii expected.

More recent models of neutron stars predict a range of possible masses from

~ 0.1 —2Mg. The typical radius of such objects (as mentioned in Section 2.2) is
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about 10 km with densities reaching, and possibly surpassing, nuclear densities
(po ~ 2.8 x 10'* gm cm™2). The resulting gravitational fields on such objects are
nearly 10! times that on earth. Since the matter of which the star is comprised
is assumed to be highly conducting, the magnetic flux is conserved in the collapse
of the progenitor star; the resulting fields are immense due to the compression
of the flux. Observations indicate values as large as 10%G.

Along with the suggestion that pulsar behavior could be related to radial
oscillations in neutron stars came a strong interest in the equation of state for
matter at extremely high densities. This research has continued so that, although
many questions remain, we now have a fairly clear picture of the interior struc-
ture of neutron stars. The reader is referred to the review articles by Cameron
(1970), Baym and Pethick (1975), and Canuto (1974, 1975) for a more thorough
treatment. The matter inside neutron stars is relatively cold due to neutrino
emission very shortly after birth. The cross-section of a typical neutron star is
shown in Figure 2.4. At the surface, there is a shell that is likely to he com-
posed of *®Fe. Beneath this iron surface is a solid crust consisting of a lattice
of bare nuclei surrounded by a degenerate electron gas. The lattice represents
the configuration for which the energy due to the repulsion of the nuclei from
one another (an effect which is generally screened by elect.rons) is a minimuin.
At greater depths, electron energies increcase due to the increasing gravitational
compression until they become relativistic. At this point, inverse /3 decay ocenrs
thus combining electrons with protons (in the nuclei) to increase the neutron

population. This process results in the formation of heavy, neutron-rich nuclei
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Figure 2.4: Cross-section of a typical neutron star.

including somne species which are unstable in the laboratory (Baym et al., 1971).
At a density of p = 4.3 x 10'! gin cm™~3, the “neutron drip” point, the nuclei
have become so neutron rich that further electron capture produces unbound
neutrons. Thus the lattice becomes immersed in a sea of neutrons. As densities
reach those of nuclear matter, the nuclei are nearly touching and the matter is
composed of a liquid of neutrons, protons, electrons. When the Fermi level of
the electrons exceeds the rest mass of a muon, it becomes energetically favorable
to create negative muons with zero kinetic energy rather than pushing electron
energies above the Fermi level. Thus, at sufficiently high densities, muons are
added to the list of constituent particles. Similarly, as the Fermi level of the

neutrons increases, £~ and then A? hyperons are created. At the great pressures
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found in the deep interior, the final structure is still somewhat in question. It
is possible that interactions between neutrons will form a solid neutron lattice
although details concerning such interactions at very high energies, as well as

those between hyperons, are still not well understood.

2.3.2 The Pulsar Magnetosphere

The physics involved with the exterior regions 61' a rotating neutron star are no
less spectacular or puzzling than for the interior. Because of the large magnetic
fields found in such objects, acting in concert with the rapid rotation, the op-
portunity for many types of energy loss exist. Since the neutron star cannot
undergo further gravitational collapse, the energy released must be at the ex-
pense of rotational kinetic energy (except in the case of “glitches” whereby a
resettling of the crust releases gravitational binding energy). As a result, energy
luss is reflected in the secular change of the rotation period.

Suppose the neutron star possesses a magnetic dipole moment m, which
rotates about an axis perpendicular to the dipole with an angular speed 2. The

power radiated is then

o [2m2 Q4 ‘
-t (____3‘; ) , (2.45)

Setting this equal to the loss of rotational kinetic energy

- E= djf (%[QZ) (2.46)

(where I is the moment of inertia of the neutron star) yields

33 .
ml=_———pp (2.47)
Tio
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where we have used

27
P = o (2.48)

Using typical neutron star parameters {m ~ 1.4Mg, » &~ 10*m), and noting that

_ Homy
- (2.49)
we have ;
_ 3#'003 M _ . N 19 p pr}
B = [80#3 I PP] ~ 3.4 x 10”°(PP)? Gauss. (2.50)

Measurements of P and P can thus provide information about the strength of the
surface magnetic field. Of course, if other energy loss mechanisms are at work as
well, such a calculation will overestimate the field strength. Further, since only
the component of the magnetic moment which is normal to the rotation axis will
radiate, the orientation plays a major role. Nonetheless, estimates based on such
measurements suggest fields as large as ~ 10'? G, as mentioned in the previous
section.

In analyzing the electrodynamics of a rotating axisymmetric magnetic dipole,
Goldreich and Julian (1969) noted that the presence of such large, rapidly ro-
tating magnetic fields results in large electric fields as well. Because the stellar
material has extremely high conductivity, the net force on any charges must

vanish lest infinite currents he established. Thus,
E = -v x B. (2.51)

Using
v=0xr=r0sinbp
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at the surface, and
[.lo m;y

4r 73

B = — —[2fcosf + fsin 6

for the dipole magnetic field, we have

E = ﬁgm—-rﬂ[r sin? @ — 26 sin 6 cos 6).
ar ¢3

Thus, at the equator, the radial electric field is

_E_O__m_l ~ 13 -1
E yym RzRQ 6x10” Vm

using typical values for a rotating neutron star. In comparison, the surface
gravitational field is of the order

GM

~2x 102 ms 2.

g=

Thus, the ratio of electrostatic to gravitational force is about 10'? for electrons
and about 10° for protons. As a result, particles will be removed from the surface
of the star and a plasma-filled magnetosphere will be formed.

The charge density in the magnetosphere may be found using Maxwell’s equa-

tions:
€£=V-E=-V-(va). (2.52)
1]
Now
V. (vxB)=B-(Vxv)-v:(V x B) (2.53)

where the second term vanishes in the absence of currents. But, since v = ¥ xr,

we have

VUxv=—-(Q-V)r+(r-V)Q—(V-Q)r +(V.r)Qd =24Q. (2.54)
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Figure 2.5: Schematic of Goldreich-Julian pulsar magnetosphere.

Light cylinder
/

Thus,
p=(ny —n_)e=-2¢B -0 (2.55)

or

n.—n, = 221?. Q. (2.56)

This distribution of charges is locked to the magnetic field and, thus, corotates
with the star out to a radius where the velocity becomes equal to ¢ (the so-called
“light cylinder”). The Goldreich-Julian wodel of the magnetosphere is shown in
Figure 2.5. Two distinct regions are of particular interest, namely that in which
the field lines close within the iight cylinder and that which consists of open field

lines. In the open-line region, charges can escape.
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For a dipolar field, the field lines are described by

sin? @

r

= constant. (2.57)

Thus, for the last closed field line,

sin’f,  Qsin’(%)

R - p (2.58)
where 6, is the polar angle. Hence,
QR\}
sinf, = (—-CE) . (2.59)

The locus of points for which B - @ = 0 (shown as a dashed line in the figure)
defines the separation of positive and negative charge density.
Solving Laplace’s equation for the rotating dipole yields the electrostatic po-

tential

BOQ RS
6r3

Except for very near the light cylinder, we have E - B = 0 along the field lines.

$=- (3cos?6 —1). (2.60)

Hence, they form equipotentials. The field line for which ¢ = 0 is defined by

cosfy = —1- (2.61)

V3
For 8 < 6, electrons can be accelerated toward the light cylinder while for

6o < 0 < 0, protons are pushed outward. The total potential difference across

the polar cap is approximnately

' R? 2p3
Ad = Ba sin’, = B(; R .
c

(2.62)

Using B = 10*?G and R = 10*m, we may write this as

Ad =6 x 10'2P72 volts ‘ (2.63)
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where P is the rotation period in seconds. Hence, potential differences of 10'

volts are possible for rotation periods of ~ 10~%s.

While the Goldreich-Julian model for pulsar magnetospheres provides a great
deal of insight into the conditions surrounding rotating magnetic neutron stars,
it is by no means a complete description. For example, the assumption that
the rotation axis and the dipole axis are aligned, while a useful simplification,
is not likely to be accurate. Further, as mentioned previously, the assumption
that E - B = 0 along the field lines is only approximate. In section 2.5 we will
discuss results which suggest that vacuum gaps may form in certain regions of
the magnetosphere. For a comprehensive review of pulsar magnetospheres, the

reader is referred to Michel (1982).

2.4 X-Ray Binary Objects

A major breakthrough in the quest for detailed information about the properties
of compact objects came in the form of the discovery of x-ray binaries. These
objects consist of a compact star in gravitational association with a “normal”
companion star. The systems span a vast range of orbital parameters, periods,
and luminosities. The emission from those which contain neutron stars often
exhibit pulsations believed to be associated with the rolation period of the stars.
In such cases, orbital information can be ascertained just as in the case of spec-
troscopic binaries. Observations of the companion stars have provided estimates
of the neutron star masses which are cousistent with theoretical predictions.

Stuclies of the temporal behavior of the pulse periods have placed constraints on
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the accretion mechanisms believed to be acting to provide the x-ray luminosity
and have provided information regarding the internal structure of neutron stars.
Direct measurements of the surface magnetic fields of the neutron stars through
x-ray cyclotron lines show that these stars retain considerable magnetic lux and
provide information for models attempting to explain acceleration of high energy
particles in the vicinity of these objects. In order to understand the energy pro-
duction of these objects, we will review the important subject of accretion. First,
however, a brief look at the properties of three distinct x-ray binary objects will
illustrate the similarities and vast differences that have been ohserved fromn these

objects.

2.4.1 Examples

While there are more than fifty x-ray binary sources known at present, only a
handful have shown evidence, to date, of producing VHE ~-rays. Three of these
sources — Cygnus X-3, 4U0115+63, and Her X-1 — display so many similarities,
and also differences, that a brief discussion of their properties will illustrate the
range of phenomena detected from such binary sources.

Cyg X-3 is one of the most luminous x-ray objects known. Its emissions are
not confined to this band of the spectrum, however. Radio emission punctuated
by outbursts in which the luminosity soars some three orders of magnitude above
its quiescent level is observed. Infrared emission displays a 4.8 hour periodicity
that is also seen is x-rays. This periodicity is presumed to be associated with

the orbit of the system. Obscured by large quantities of galactic dust, it reveals
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no optical information. In the y-ray regime, emissions have been detected at
energies ranging from several hundred TeV up to 10 PeV. Indeed the study of
Cygnus X-3 is enough to fill volumes by itself. A claim of detection of 12.59 ms
periodicity presumed to be associated with the rotation of a neutron star has
yet to receive verification. If true, however, futiire observations may be able to
establish much better system parameters. At present, even a rough estimate of
the companion star mass does not exist.

The system designated 4U0115+63 consists of a neutron star orbiting its
companion star with a period of 24.31 days. This is in stark contrast to the 4.8
hour period for Cyg X-3. The period of the “pulsar” in this system (which is
not a pulsar at all, in the conventional sense, in that radio pulsations are not
seen — this more the rule than the exception for such binary sources) is 3.61 s.
Pulse timing of the x-ray emissions (which, unlike those from Cyg X-3 and Her
X-1, occur sporadically) yields information suggesting a highly eccentric orbit
(e == 0.34) whose projected semimajor axis is approximately 140 l-s. In addition,
a secular decrease in the pulsar period is observed, P ~ —3x10-!!, corresponding
to a spin-up that is expected to arise from the transfer of angular momentum from
accreted matter. The companion star is this system, which has been optically
identified, is believed to have a mass > 5My.

The properties of Her X-1, the subject of this paper, are investigated in detail
in Chapter 5. To summa.riée, this system has been studied at energies ranging
from the infrared to the UHE +-ray regions. The pulsar period of 1.24s is well

established both in x-rays and 4-rays associated with the neutron star and in
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optical pulses resulting from reprocessing of x-rays in the companion star HZ
Her. Doppler delays in the pulse arrival times establish a circular orbit of radius
13.2 l-s whose period is 1.7 days. Combined with data obtained from HZ Her
this suggests a companion star mass of ~ 2.2Mg. An additional periodicity of ~
35 days is observed in x-rays. Correlations of this cycle with optical and VHE
q-ray emissions are also suggested. The origin of the 35 day periodicity is not
known but it is believed to be associated with precession of an accretion disk,
which is known to exist, or of the rotation axis of the neutron star.

We see from these examples that x-ray binary objects involve a broad range
of physics. It is worth noting that claims (see e.g. Marshak et al. 1985) of
detection of underground muons associated with these three objects, along with
several others have be made. Whether or not such detections turn out to be

correct, it is clear that these objects invite and require much further study.

2.4.2 Accretion

The physics of compact astrophysical objects is strongly determined by the grav-
itational environment in their immediate vicinity. While, by definition, the grav-
itational fields surrounding such olyjects are extremely large, the presence of
matter which may be accelerated in the field is crucial for the conversion of grav-
itational energy into radiation. In particular, matter which undergoes accretion
onto a compact object can produce detectable radiation of energies ranging from

the infrared to the soft 4-ray regions.
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Energy Considerations

We begin by considering spherical accretion onto an object of mass M and radius

R. The energy-release available from accretion of matter of mass m is

GMm

A Eacc = R

(2.64)

For accretion onto a neutron star, for which M ~ 1.4Mg and R =~ 10 km, this
results in a release of ~ 102° erg gm~! or about 20% of the rest mass energy of

the accreted matter. The corresponding luminosity due to such accretion is

_ GMri

Lace = (2.65)

where m is the accretion rate in gm s~!. This results in a radiant energy flux

S — Lacc

= (2.66)

This flux will exert radiative forces on the particles in the accreting plasma. We
may consider this plasma to consist primarily of protons and electrons. The force

a given electron will feel as a result of the radiative flux is

S

Fraa = or— (2.67)
where
2 2
or = §1£ ¢ ~ 6.7 x 107 cmn? (2.68)
3 \m.c?

is the Thomson cross-section. The radiative force on the protous is negligible
by comparison because the cross-section is smaller by the factor (m./m;,)?. Due

to electrostatic forces, however, the protons are pulled outward along with the
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electrons. The net force on such electron-proton pairs is thus

F = (GMm, - "lL-) L (2.69)

4nc ) r?

where m, is the proton mass. This force vanishes at the so-called Eddington

luminosity
_4rcGMm,
= or

M
Lg ~ 1.3 x 10%® (——) erg s '. (2.70)

Mg
This luminosity, then, represents an upper limit beyond which radiation pressure
overcomes the gravitational forces on the accreting matter. Such an upper limit

ilposes a constraint on the rate at which mass may be accreted. Setting Lg <

L,.. yields
m<9.7x10"Rgms ' =1.5x10""* R Mgy yr~'. (2.71)

For white dwarfs, this limits the accretion rate to ~ 102! gm s~! while for neutron
stars the rate must be less than ~ 10'® gm s~!. For Her X-1, the observed flux

2 s-1. The source distance is ~5 kpc

in ~ 5 keV x-raysis ~ 1.8 x 107? erg cm™
yielding a luminosity of ~ 5 x 10% erg s~!, nearly the Eddington luminosity.
The radiation emitted as a result of the accretion process can be characterized

by an effective temperature T,,4. For large optical thickness, the radiation is

characterized by a black-body temperature

Tu = Loce )% (2.72
*~ \4rRio 2)
while for small optical thickness, the thermal temperature
N
T, = Cz[mp‘ (2.73)

kR
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Figure 2.6: Schematic of binary star system.

is a more reasonable approximation. Thus, Ty < T,qe¢ < Tip or, for accretion
onto a neutron star, lkeV < hv < 50MeV. It is reasonable, then, to expect

the production of x-rays and low energy vy-rays. Lower energy photons resulting

from secondary processes may also be produced.

Accretion in Binary Systems

Accretion is a particularly important subject when the characteristics of binary
systems are considered. Consider a system consisting of stars of masses M; and
M, separated by a distance a (Figure 2.4). The period of rotation is given by
Kepler’s third law:

| 4r’a® = G(M, + ML) P2, (2.74)

The Roche potential for the system is given by

GM, _ GMy 1 o (2.75)

Br(r) = —[r—n( - Ir—rz] 2




e a

Figure 2.7: Roche lobe geometry.

where r; and r3 are the position vectors of the two stars. The equipotential

surface which contains the first Lagrangian point L, consists of two lobes as

shown in Figure 2.5. The shape of the equipotentials is determined by the ratio

_M
=M

(2.76)

As an approximation, each lobe can be represented by a sphere which contains

the same volume as the lobe. The radii of such spheres can be approximated by

the expressions (Paczyinski 1971)

R, 0.38 - 0.20loggq, 0.05<q¢< 2

e 0.462(1 +4¢)°3, 2<gq

and

R, 0.38+0.20loggq, 0.5<g¢q <20

¢ 0.462(1 +¢71)"}, 0<qg<0.5.
In addition, the distance from the primary star to L, is approximately

b
= ~ 0.500 — 0.227 log .

a

(2.77)

(2.78)

(2.79)
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As an example, the mass ratio for the Her X-1/HZ Her system is ¢ ~ 1.68
(Middleditch and Nelson 1976) so that R, = 0.425a and 4, =~ 0.449a. Using the
orbital parameters of the system (see Chapter 5) we find R; =~ 2.7 x 10® km or
about four times that of the sun. As noted in Section 2.2, early B-type stars as
well as evolved red giants can reach sizes considerably larger than this. Hence we
sce that it is quite possible for a star to fill its Roche lobe (as Middleditch and
Nelson have shown is the case for HZ Her). Clearly, in such an instance, mass can
easily be transferred from a star to its companion. However, because ¢ changes
as such mass transfer occurs, one must consider whether the result of the transfer
will cause R; to decrease, in which case the process will continue, or to decrease,
in which case the process will be quenched. The value ¢ = 1 is the dividing line
between the two scenarios; for ¢ > 1, the process is self-perpetuating while for
g < 1 the star must expand (as part of its evolutionary cycle, for example) in
order for the transfer process to be maintained.

Even if the companion star does not fill its Roche lobe, accretion onto the
compact star is possible via a stellar wind. Sufficiently massive upper main
sequence stars may lose mass at a rate of 107Mg yr~! through such winds.
Some fraction of this mass may be captured by the primary star. The captured
gas will carry some angular momentum, but the accretion is likely to be more or
less spherical; Roche lobe overflow, on the other hand, is likely to result in the
formation of a disk of accreted material somewhat akin to the rings of matter

which surround Saturn and other planets.
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Accretion Disks

Let us consider the case of accretion through L; onto a compact star. The
accretion appears, in a non-rotating reference frame at the compact star, to

consist of streaming matter with velocities

vy ~ bw
(2.80)
v” ~ C,
where w is the angular velocity of rotation and ¢, is the speed of sound in

the accreting matter. For normal stellar surface temperatures (< 10°K), v ~
10 km s~!.

Because circular orbits have the minimum energy for a given momentum, the
accreted matter will tend to fall into circular Keplerian orbits whose radii R.
correspond to the specific angular momentum that the matter had in passing

through L, i.e.

GMl)
. = 2.81
v= (g (2.81)
subject to the constraint

R.v. = bv, = bfw. (2.82)

Using Kepler’s third law, this reduces to

[~ )

4
R.= —(1 +q). (2.83)

2

For Her X-1, then, R. = 0.24b,; i.e. circularization occurs well inside the Roche
lobe (although well outside of the light cylinder of the neutron star - see Section
2.3.2). This picture indicates a ring of matter. However, collisions will result

in dissipation of energy (some of which is radiated). To meet this energy loss,
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the matter will be pulled further into the gravitational well of the compact star.
Such diminished orbits require loss of angular momentum. This is accomplished
Ly the transfer of angular momentum to the outer regions of the ring. Thus, the
inner portion of the ring is drawn in toward the compact star while the outer
region is pushed out; the result is an accretion disk.

While a complete description of the structure of accretion disks is beyond
the scope of this chapter, a summary of the main characteristics will be use-
ful in further understanding the environinent in which VHE ~-rays appear to
be produced. The matter being accreted onto the compact star has virtually
zero gravitational binding energy upon passing through the inner Lagrangian
point. When circularization and viscosity effects have brought the matter near

the surface of the star, it will have binding energy

th;m
ray & T o - 2.84
Eg 27'1 ( )
Hence, the luminosity of the disk is
* M 1
Liise = GM, 1 = ~Lgee. (285)
2"1 2

The matter which comprises the accretion disk is characterized by highly

subsonic radial velocities (v, ~ 3 km s™!) and supersonic tangential velocities

(vg ~ 10® kmn s7'). The thickness of the disk is approximately given by
H c,

-_—

R~ u(R) (2:86)

where v (R) is the speed of Keplerian orbit at a distance R. The disk itself is thin
in the z direction but the optical thickness is large, resulting in essentially black-

body behavior. The self-gravity of the disk is negligible in comparison with the
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gravitational influence of the compact star. As a result, the disk is stable against
breaking up into self-gravitating clumps of matter. The process of accretion onto
the surface of the star is complicated by considerations of the magnetic field of
the star. In the absence of a significant field, the matter falls into ever smaller
Keplerian orbits as it approaches the star. However, the corotation radius of the
system (i.e. the radius at which the period of the Keplerian orbit matches the

rotation period of the compact star) is given by

Teor = (GM‘)éP?f (2.87)

4r?

which, for a neutron star with a period of 1s, is about 108m. Inside of this radius_,
the matter will move faster. Hence, there must exist a region near the surfa;'e
of the star where the angular velocity of the matter decreases in order to match
that of the star (Figure 2.6). The matter in this region will form an optically
thick boundary layer which will radiate as a black-body.

The weak field scenario described above may be a reasonable description of
accretion onto a white dwarf (if the field is weak enough), but for a neutron
star as the compact object the magnetic field contributions are quite likely to
hbe much too large for this simple picture. We may define the Alfvén radius as
that distance from the neutron star at which the magnetic pressure exceeds the
gas/ram pressure of the matter in the accretion disk. The magnetic pressnre is

given by
Bz

Prrag (2.88)

while the disk pressure is given by

Piie = pv’. (2.89)
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R

Figure 2.8: Angular velocity of accreting matter as a function of distance from
the stellar surface. The region R; < R < R;+b forms an optically thick boundary

layer frc. which radiation is emitted.

We may approxiimnate the disk pressure by considering a spherical mass of matter:

dm = p(4nr? dr) = m = 4nrripv. (2.90)
Solving for p and using )
2GM
V=Vpp = ( . ) (2.91)
and
B~ & (2.92)
r

where p is the magnetic moment of the neutron star, we obtain

i

o = (53'2—) M bd, (2.93)
Ho
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Using Equation 2.46, then, we may write the Alfvén radius in terms of the

luminosity:

1
2 72 v
P = (?-’i) MmAudr-3R-4, (2.94)

2
Ho

For Her X-1, for which the luminosity in 2-6 keV x-rays is =~ 5 x 10% erg s!
and the magnetic field strength is ~ 10'2G, this corresponds to a radius of ahout
105m. More complicated calculations which treat the characteristics of the disk
show that the effective radius is actually smaller than this by about a factor of
two. Inside this radius, matter is forced to rotate with the field lines and, thus,
with the same angular velocity as the rotating neutron star. Hence, as matter
accretes toward r,, it is forced to reduce its angular velocity in order to fall into
corotation. The result is a net transfer of angular momentum to the neutron
star causing its period to decrease (assuming that the angular momentum of the
accreting matter is in the direction of the neutron star rotation). On the other
hand, viscous torques resulting from the shearing of the magnetic field lines in
the vicinity of r,, will tend to oppose such a spin-up of the pulsar. Assuming that

these torques are small, we can write the rate at which the angular momentum

interior to r, changes as
d(If?)

o = Mi(rm) (2.95)

where (7, ) is the specific angular momentum of accreting matter at r,, and Q

is the angular velocity of corotation. Using

. dI . : P
= — [ = - .
d]l!A and PQ, (2.96)



we find
P M [(Md Ml{r,) -
—-—=—|— - . (2.97)
P M\IdM I
In general, the second term in this expression dominates. Noting that
i) = (GMryg)} and L = SMM (2.98)
we can arrive at the relation
: wre 1o gy
P=- [IGGGm"IT] (PL‘) ) (2.99)

For compact stars of a given size and magnetic moment, then, the value of P is
dependent only upon the period and luminosity.
As noted above, this expression neglects the effects of magnetic torques. Such

torques can be important for systems with large values of the “fastness parame-

ter”

Y]
QK(rm )

where Qg (7, ) is the Keplerian velocity at r,,. For w, >~ 1, the magnetic torques

(2.100)

w, =

oppose the spin-up due to the accreting material. As a result, during periods of
low accretion rate (i.e. low luminosity) the star can even undergo spin down.
Such variations in the behavior of P have been well documented in the case of

Her X-1 (see Section 5.1.2).

2.5 VHE ~-Ray Production Mechanisms

Very lLigh energy 4-rays are produced via interactions involving extremely ener-

getic particles. The origins of such 4-rays, then, are related to the mechanisms by



which particles are accelerated to very high energies. We have seen, in Section
2.3.2, that electric fields in the vicinity of pulsars can be of sufficient magni-
tude to accelerate particles to energies ~ 10'® eV (using the model of Goldreich
and Julian, 1969). Gunn and Ostriker (1969) proposed a model in which the
magnetic moment of the pulsar is assumed to be perpendicular to the axis of
rotation. The resulting electric field associated with the dipole radiation can
accelerate particles in much the same manner as that used in conventional man-
made accelerators. The particles ride the wavefront and are accelerated in the
direction of the propagation of the wave.

Ruderman and Sutherland (1975) extended the model of Goldreich and Julian
by considering the case in which the magnetic moment of a spinning pulsar is
antiparallel to the angular momentum vector. They conclude that ions in the
polar regions will remain bound to the neutron star resulting in a net positive
charge which will persist because of the inability of electrons to be drawn in
through the light cylinder to discharge the region. The result is the formation
of a charge-depleted polar gap region. The potential difference associated with
the gap can be as large as ~ 10'? volts. Such gaps are continually discharged by
the formation of electron-positron pairs. These particles are accelerated in the
gap and produce y-rays through curvature radiation, synchrotron radiation, or
inverse-Compton scattering on soft photons in the vicinity of the pulsar.

One problem with models in which v-rays are produced near the pulsar is
that absorption via pair-production in the strong magnetic field reduces the

observable v-ray flux. The “outer gap” madel of Cheng ef al.  (1986) does



not suffer from such absorption problems in that acceleration occurs near the
light cylinder where the magnetic field is greatly reduced. Such outer gaps are
formed in the regions bounded by the “null surface” defined by 2-B = 0 (see
Equation 2.5.6), tne last closed field line (refer to Figure 2.5), and the light
cylinder. While charges within the closed magnetosphere cannot escape the
region, nothing prevents charges from leaving the open magnetosphere through
the light cylinder. Such charge flow results in a net charge in such regions which
“pushes” the null surface toward the star. Again, as with polar gaps, a gap grows
until discharge, and resulting acceleration, of electron-positron pairs occurs. The
outer gap acceleration mechanisin is most efficient for rapidly spinning pulsars
such as the Crab and Vela pulsars but may fail for slowly rotating pulsars (such
as Her X-1). Further, the presence of an accretion disk may modify the geometry
of the field lines a such a way as to complicate the application of the model.
While we have seen that the accretion process can result in very efficient con-
version of gravitational energy (Section 2.4.2), such a mechanism cannot produce
TeV (or even GeV) particles or photons. However, a highly conducting accre-
tion disk in the presence of a strong rotating magnetic field can result in large
potential differences through a dynamo mechanism. Adaptmg a madel proposed
by Lovelace (1976) with reference to accretion onto massive black holes in active
galactic nuclei, Chanmugam and Brecher (1985) propose a “unipolar inductor”
mechanism which can result-in sufficient potentials for acceleration to very high

energies in accreting binary systems. They find that the potential across the disk
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is given by
T2

1
Vi = (GM)} B.(r1)rZ In (—) (2.101)

T
where r; and r, are the inner and outer radii of the accretion disk and B. is the
magnetic field at the inner edge of the disk. Using parameters associated with
~ Her X-1, we may choose 7, to be the Alfvén radius (r; ~ 10° m - see Equation
2.8G) so that
R 3
B(r) = B (-—) ~10° T (2.102)

Ty
where B is the surface field and R the radius of the neutron star. Observations
indicate that r; ~ 2 x 10° m (see Chapter 5) so that Vj; & 4 x 10'® volts.

In order to produce VHE 4-rays from such energetic particles, interaction with
matter is required. It has been suggested that such “beam dump” interactions
may occur in the limb of the companion star (Vestrand and Eichler, 1982) or in
the rim of the accretion disk (Eichler and Vestrand, 1985). It must be noted,
however, that the observations of VHE emission from Her X-1 do not appear
to be correlated with orbital phase, and appear to occur when the disk is tilted
toward the observer (thus making the disk rim a geometrically unlikely location
for particle conversion).

While the models for acceleration in the vicinity of rotating neutron stars are
many and varied, it seems clear that the hasic energy requirements can easily he
met. It is possible that, through observations of the sources of such radiation,
model parameters will be refined and that a consistent picture may eventually

emerge.



Chapter 3

The Atmospheric Cerenkov Technique

The way we look to a distant constellation
That’s dying in the corner of the sky

These are the duys of miracle and wonder...
Paul Simon

The detection of radiation in any band of the electromagnetic spectrum con-
sists of measuring the secondary effects of photon interactions: radio photons
produce time-varying potentials in antennas; optical photons liberate electrons
from photocathodes of photomultiplier tubes or from silver- bromide atoms in
photographic emulsions; and x-ray photons interact with target gasses within
proportional counters to produce energetic electrons which go on to ionize other
atoms in the detector. As photon energies increase, it becomes possible, in the
presence of some medium, to pair-produce secondary particles. These particles
then lose energy through a variety of mechanisms which will be discussed in this
chapter. Detection of such high energy photons (y- rays), then, consists of de-
tecting the secondary particles. In order to determine the energy of the photons,

it is necessary to investigate the entire energy-loss process of the secondaries.
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For extraterrestrial 4-rays with energies above ~ 1 GeV, a suitable interaction
medium for such a process is the Earth’s atmosphere. In this chapter, the tech-
nique by which the atmosphere is used as a Very High Energy (VHE) v-ray

detection medium is discussed.

3.1 Extensive Air Showers

If a y-ray of energy > 2m.c? enters the Earth’s atmosphere, it is kinematically
possible to form an electron-positron pair. For VHE +-rays, such ete”~ pairs
will carry virtually all of the incident 4-ray kinetic energy. Various energy-loss

mechanisms are then available to the electron:

e bremsstrahlung - radiation produced when a charged particle is accelerated
(e.g. in the electric field of another charged particle). In the relativistic

case, these losses are of the form

- === (3.1)

where zg, the radiation length, is the path length through which the electron
losses all but a fraction e~! of its energy. In air, o ~ 36.5 gm cm~=2. Onthe
average, a very high energy electron will deposit about half of its energy

into one or two photons early in its travel through the atmosphere.

e ionization - process by which the electron transfers energy via the dislodg-
ing of an atomic electron. While hremsstrahlung losses dominate at higher

energies, below a critical energy E. ~ 83 MeV ionization losses begin to



dominate.

e multiple scattering - predominately Coulomb scattering of the electrons
from the nuclei of surrounding matter. These losses are actually negligible
at high energies. However, the multiple scattering results in deviations
in the direction of the electron velocity. The angular distribution of the

scattered electrons is governed by (Rossi)

- (5

where

4
E, = m.c? ad x 21.2 MeV,
a

0 is the scattering angle, and n is the number of radiation lengths traversed

(here  is the fine structure constant).

At very high energies, then, we expect bremsstrahlung losses to dominate, thus
producing additional 4-rays. As long as the v4-rays are above threshold, each will
again pair-produce; the cross-sections for the two processes are approximately

equal at very high energies.

3.1.1 Cascade Theory

Considering the above discussion, it is easy to give a qualitative description
of the result of a high energy electron or vy-ray impinging on the atimosphere.
A high energy photon (which, in the case of a primary electron, results from
hbremsstrahlung) pair-produces an electron and a positron each of which radiate

high energy photons by bremsstrahlung. These newly created photons repeat.



the pair-production process and the entire sequence unfolds to form a cascade of
energetic particles called an Extensive Air Shower (EAS). This cascade (Figure
3.1) develops until the mean particle energy becomes too low for pair-production.
After this, Compton scattering and ionization losses dissipate the shower.
Although a complete description of the shower development entails detailed
calculations incorporating cross-sections for all relevant interaction processes, we
can (after Longair 1984} @ive an illustrative discussion which&Femonstrates the
salient features. In the ultra-relativistic case, the interactionslength for pair-
production is very neagrpg oune radiation length. Thus, we ean deline a mean
distance R for which the interaction probability for either paig. production (in

the case of photons) or bremsstrahlung (in the case of electrons) is 1/2, i.e.

i
Sl

8o -

(3.3)

Further, assuming that the energy is roughly equally shared at each interaction,
we see that a v-ray of incident energy E, will, after travelling a distance R,
produce an electron-positron pair each carrying energy Eo/2. Each of these
will radiate a y-ray of energy Eo/4 after travelling an additional distance R
(Figure 3.1). Hence, at a distance n K, the total number of shower particles is
2" and the average energy per par‘ticle is Eo/2"; one-third of the particles are
photons. The shower, as noted earlier, develops until the average energy per

particle drops below the critical energy after which ionization losses dominate.

From our approximate treatment we see that, at this point,

Eo EO
_— = Ec = N = 2" = —_—
2" E.
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Mean Energy Path Length
Per Particle Through Medium

SR
Figure 3.1: Simple geometrical development of EAS.

gives the total number of particles while

"~ Inke
n= lng (3.5)

yields the number of radiation lengths traversed to this point of “shower max-
imum.” For example, for a 500GeV primary +-ray, we would expect shower
maximum to occur after n ~ 12.5 radiation lengths (corresponding to a depth
of ~ 23km for a first-interaction height of 30km) in which n ~ 6 x 10? parti-
cles would be produced. In reality, the bremsstrahlung process has been grossly
oversimplified by this model. Since the energy distribution of the photons ra-
diated by the process is actually a continuum below the initial electron energy.
considerable loss occurs in the form of low energy photons which are below the

pair-production threshold (whereas we attributed all of the loss to a single pho-
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ton). This results in fewer particles being produced than the above estiumate
suggests; a more reasonable approximation is that the number of electrons at

shower maximum is given by
Ne = O.SEG,v.

While comparison of such calculations with those done by Monte Carlo simula-
tions (see Section 3.3) shows our simple model to be very approximate indeed,
the general features of EAS are illustrated; the growth of the shower is initially
exponential and the yield of secondary particles at shower maximum is propor-
tional to the energy Eq of the primary.

Thus far, we have considered showers produced only from incident high energy
electrons or v-rays. EAS may also be initiated by other high energy particles. As
our previous discussion would suggest, a shower initiated by a high energy elec-
tron will be indistinguishable from that initiated by a 4-ray. In either case, the
shower is referred to as an electromagnetic cascade; such showers consist almost
entirely of electrons and photons. Because electrons are light, they easily radi-
ate energy and, as such, are not expected to contribute significantly to the flux
of high energy particles that have travelled large distances through interstellar
matter. Hadrons, on the other hand, are sufficiently massive to maintain consid-
erable energy in t;heir transport throughout the galaxy. When such particles are
incident on the atmosphere, th‘e first interaction generally produces a number of
secondary pions, both charged (7%, 77 ), and neutral (7). The n%'s eventually

decay into y-rays which then go on to produce electromagnetic cascades. The
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charged pions decay via

s ptty,or T T o,

These resulting muons may provide a signature to differentiate between the oth-
" erwise similar electromagnetic and hadronic cascades. In showers induced by
~-rays, there are two types of processes involved in the generation of muons: pho-
toproduction of pions (which then decay to produce muons) and direct creation
of muon pairs. The cross-sections for both of these processes are extremely small
and, thus, very few muons are expected from such showers (Stanev et al. 1985).
There have been suggestions (Samorski & Stamm 1983) that electromagnetic
cascades may, througi; some unexplained process in the shower development,
contain considerable numbers of muons, but these claims have yet to be con-
firmed experimentally or explained itheoretically. Because the number of pions
produced in a hadronic shower will be roughly equally divided among the tliree
varieties, the resulting electromagnetic component of the shower will contain ap-
proximately one-third the number of particles as a shower produced by a v-ray
of the same initial energy. On the other hand, because the hadronic particles
are more penetrating than electrons, hadronic showers will contain more parti-
cles at large depths in the atmosphere than their electromagnetic counterparts.
These statements are both quite energy dependent, however. For very high en-
ergies, heavy pionization (e.g.. TN —« mta=2"N) results in the charged pions
dumnping much of their energy into neutral pions which then decay into y-rays
thus producing additional electromagnetic cascades. In the extreme case a large

fraction of the charged pion energy may be reprocessed into the electromagnetic



63

component.
The angular spread of hadronic cascades is somewhat larger than for elec-
tromagnetic cascades due to the transverse momentum of the pions. For high

energy collisions, the average transverse momentum is

independent of energy. Roughly half of the initial proton energy is expended
in making pions. The multiplicity at E ~ 1 TeV is ~ 10 with the production
of kaons and baryon-antibaryon pairs less frequent by one and two orders-of-

magnitude respectively (Perkins 1982). Thus,

Eo PL 8 GeV
Elyx ——=~pic = 0=—= .
(E) 2(10) P Pl E,

For a 1TeV proton shower, then, 8 ~ 0°.5.

3.1.2 Cerenkov Radiation

When a relativistic particle travels through a medium with a speed in excess of
the local velocity of light, a form of electromagnetic shock-wave is produced in the
medium resulting in the emission of so-called Cerenkov radiation. This process
is analogous to the formation of pressure shocks during supersonic travel and
results in the emission of visible light at an angle 8. with respect to the particle’s
velocity; a cone of light is produced (Figure 3.2) with an apex half-angle given

by
6. = cos™? L (3.7)
< ﬂ N

n
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particle

trajectory % ;."

&

Cerenkov pool

on ground

Figure 3.2: Geometry of Cerenkov radiation.

where n is the refractive index of the medium and G = v/c is the particle velocity.

For particles of very high energy, 8 =~ 1 so that

1 ..
12 2~ 1°3in air at sea level.

n

6. = cos”
The rate of production of Cerenkov photons in the frequency range (¥mins¥maz)

is given by

. 1 vmaz
N, / (1- ! 27 dv photons m™*. (3.8)

T 13%¢ o, A*n?
Expressing this in terms of wavelength, and noting that

1
Bn?

=sin’é,

1-

we have
dN. 2_,-rsin2 6.
d\ T 137 A®

(3.9)



which, in the optical range (0.4nm< A <0.7nm), integrates to
N. =~ 5 x 10*sin? 6, photons m™!. (3.10)

The preference for production at short wavelengths is fortuitous from the stand-
point of photocathode efficiency in photomultiplier tubes and can also be used
to reduce the relative contribution of background skylight (see Section 3.3.2).

There is a threshold velocity for the production of Cerenkov radiation given

by
cos 6 —L—l (3.11)
c = Tlﬂ = 1. J.
But since
1
=yl1-7?=1- — 3.12
s v 27 (3.12)
or
n
> | — 3.13
Y=\ 2(n-1)) (3.13)
we find a threshold energy:
Ew = ymc? > mcé? L (3.14)
- 2(n-1)

For an atmospheric shower we may assume an exponential atmosphere for which

n=1+m5(:) (3.15)
where
() = noe 0. (3.16)

Here =z is the atmospheric height and =g is the scale height. Using an isothermal

approximation, o ~ 2.7 x 10™* and zy ~ 8.2 km. Thus, at sea level, n ~ 1.0003
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so that

Eu ~ 41mc. (3.17)

Corresponding threshold energies for Cerenkov production are 21 MeV for elec-
trons, 4 GeV for muons, and 39 GeV for protons. Because these values scale
exponentially with z it is clear that, even in hadronic showers, the bulk of the
Clerenkov light is produced by the electrons.

Since the Cerenkov threshold for electrons is relatively low it is not sur-
prising that, expecially in large cascades (initiated by very energetic particles),
there are electrons with energies above threshold which penetrate deep into the
atmosphere. Because these electrons travel at approximately speed ¢ while the
Cerenkov photons emitted at higher points in the atmosphere travel at speeds
reduced by the index of refraction, there is a spread in time of arrival of pho-
tons produced at different altitudes. A simple calculation, neglecting additional
delays due to path-length differences due primarily to multiple scattering, illus-
trates the effect. Suppose the first photons are produced at a height z;. Since

the photons travel at

= ¢
v = 2? = ;_l (318)
we see that the time required to propagate to a height z; is
1 H
t = -/ ' n(z)d: (3.19)
[of .'.2

which, substituting Equation (3.11), yields

t = % [(:, — ) - ,,,,;,,(e‘% - e‘%)] . (3.20)
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Meanwhile, the electrons travel the same distance in a time

21— 22

(3.21)

t. =
C

Thus, the difference in arrival timmes of photons produced at height z; and those

produced at z; is

-2 -
ae= T2 (e % _e m). (3.22)

As an example, suppose z; = 11 kin and z; = 5 km (representing a reasonable
spread about a typical height of 8km for shower maximum). The expression
above then yields At ~ 2.1 ns. At observation level, then, the shower produces
a “pancake” of Cerenkov radiation several nanoseconds in duration. In reality,
the width is affected by multiple scattering and zenith angle considerations as
well (see Section 3.1.3). This short duration is crucial in the detection of EAS

by optical techniques in the presence of ambient starlight.

3.1.3 Monte Carlo Studies of EAS

In order to go beyond the simplified calculations describing the development of
EAS outlined in the previous sections, it is necessary to consider the full details
of the cascade. The generation of particles in such a process may be described

by

dN; 1 dN, = 1 dN; dNi_,
. 5> iy 3.2
dE,d= = X, dE; / X dE, dE, “* (3.23)

Here the first term accounts for the interaction or decay of particles of species j in
the energy range ( E;, E; + dE) while the second term represents the production

of particles of species j in the energy range (E;, E; + dE') by particles of species
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i from the energy range (E;, E; + dE). The column density z is defined by
= / p dl (3.24)

while the evolution length X is a combination of the decay length Ap and the

interaction length A;:

= — 4 —. (3.25)

The determination of the cascade parameters, then, requires the solution of the
system of differential equations alove. Generally this can be accomplished only
by introducing approximations which simplify the solution (see, ¢.g., Rossi and
Greisen 1941, Rossi 1952, Greisen 1956, Misaki 1970).

While the above analytical solutions to the cascade equations concentrate on
the particle component of the shower, our primary interest is in the Ceerenkov
radiation produced by these particles. The Cerenkov production can also be ap-
proximated analytically in a manner similar to that for the cascade development.
An alternative to the analytical solution is to perform Monte Carlo simulations.
In such simulations, all interactions are treated stochastically with formal in-
tegration over interaction probability densities replaced by discrete statistical
“simulated interactions.” Thus, a single calculation yields only one of many
possible final results, but the distribution resulting from a large number of such
calculations converges to that which would be obtained if the formal integration
(if possible) was performed. Such a simulation program has been written by
members of the collaboration (in collaboration with T. Stanev). The program is
divided into two parts. First, given parameters describing the primary particle

(particle type, energy, direction, etc.), each shower particle is followed until its
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Figure 3.3: Spatial (a)East-'West and (b)North-South development of EAS initi-

ated by 100 GeV y-ray.
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energy reaches a particular cutoff (usually taken to be the threshold energy for
production of Cerenkov radiation). The particle paths are divided into segments
corresponding to no more than a particular number (generally 0.2) of radiation
lengths. For each such segment, the direction cosines, Cartestan coordinates (rel-
ative to the projected position of the primary on the ground) and times (relative
to the time the primary would have reached the ground without interacting)
are recorded for the beginning and end of the path. The energy at the track
midpoint is recorded as well.

The spatial development of a shower initiated by a 100 GeV y-ray is illus-
trated in Figures 3.3(a) and (b). The effect of the magnetic field of the Earth
is evident as a broadening of the shower in the East-West direction as compared
with the North-Scuth direction. Also apparent are the tracks of several low-
energy electrons which have scattered through quite large angles. Because of
these and other fluctuations present in the shower development, the general be-
havior is best represented by the average of many such showers. To illustrate the
overall features, simulations of showers initiated by 500 GeV v-rays have been
performed. In the following, we present the averages of 50 individual showers.
In Figure 3.4, the number of shower particles as a function of the number of
radiation lengths traversed is plotted. The exponential mcrease in the growth of
the shower is evident. Shower maximum occurs after about 8 radiation lengths
corresponding to a typical altitude above sea level of 8 km. The number of
particles (not including 4-rays) at shower maximum is ~300. We note Lhat the

approximations reached in Section 3.1.1 are quite rough although the general he-
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havior of the shower development is similar to that described earlier. The energy
profile of the showers is displayed in Figure 3.5. The trend toward lower mean
energy with increasing shower depth is clear. Note, however, that a considerable
spread in energies appears quite early in the shower development.

For comparison, Figures 3.6-3.7 contain similar plots to those above for show-
ers initiated by 500 GeV protons. Note that fewer particles are produced in such
showers, as expected. In Figure 3.7, a penetrating component to the shower is
obvious. These particles, primarily muons, are an identifying feature of hadronic
showers. They result in large localized fluctnations in the photon density. In

addition, the transverse momentum of the pions produced early in the devel-
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opinent of a hadronic cascade causes the resulting electromagnetic components
to the shower to produce a somewhat uneven distribution of Cerenkov photons
on the ground. Such a photon density profile may be useful in discriminating
showers of hadronic origin from those initiated by v-rays if imaging techniques
or several independent telescopes are used. As shown if Figure 3.8, the ratio of
electrons in g-ray induced showers to those in proton showers is approximately
3 as suggested earlier.

The second part of the simulation program generates the Cerenkov plotons
from each of the particle path segments. The photons are propagated to the

ground (with atmospheric extinction taken into account) and the final positions,
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directions, times, and wavelengths are recorded for each. Optionally, simulations
of the telescope response characteristics can be invoked to study the distribution
of photons actually detected. For purposes of direct comparison with the tele-
scope of interest, only those photons which { 1l in the bandpass 300 nm < ) <
475 nm have been considered. Since the Cerenkov spectrum is well known, scal-
ing to larger wavelength bands can be accomplished easily. Figure 3.9 is a plot
of the photen duilisity as a finFcHiawf distance fromtlie shower core for showers
initiated by 500:Ge Y v-rays. The shoulder at a radfusipf ~ 80m is & geometric
eMBct ;r!sumng from the size® the Cerenkov angle at@hower maximum (where

the largest:amount of light F Paluced). While we:-shall see that the photon
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(a)all photons; (b)photons for which 26 < 0°.75 (500 GeV «v-ray primary).

deunsity is sufficiently high to trigger a telescope only within ~ 50m of the shower
core, light from the shower is spread over an appreciably larger distance. The
photon density is decreased when an aperture constraint corresponding to the
0°.75 full-width acceptance of the Haleakala telescope is imposed. The angular
distribution of the photons, shown in Figure 3.10, has a width of ~ 0°.75 for
r < 50m. This sets an upper limit to the useful telescope aperture size; us-
ing an angular acceptance larger than this will merely increase the amount of
background skylight.

The distribution of arrival times for photons within both the angular range

of acceptance and the radial range for sufficient density is shown in Figure 3.11.
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A's suggested earlier, the duration is quite short (At < 2.5ns). A technique for
detecting the light from these showers suggests itself; one can require the arrival
of a large number of photons inside of a narrow time window (see Section 3.3.3).
Figures 3.12-3.14 include corres;: 'nding plots for showers initiated by protons.
The above discussion perni:ts us to quantify the shower characteristics suffi-
ciently well to allow a reasonable calculation of the rate at which such showers
will be detected given the characteristics of the telescope being used. The density
of Cerenkov photons produced in a shower determine the ability of the telescope
to trigger. Given a reasonable form for the density profile for showers, aloug with
the rate at which showers are incident, a calculation of the expected trigger rate

can be made. Let p be the photon density in photons m~2. We may assume a
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density profile of the forin

p=aEe )" (3.26)

where rq is the characteristic radius at which the density is reduced by a factor
e~'. As shown in Figure 3.15, we can use x * 2 and a =~ 24 m 2 TeV~? to a
fair degree of accuracy. Similarly, Figure 3.16 indicates that ¢ =~ 1 (the dotted

curves represent the profiles given by equation 3.26 using ¢ = 1). Thus,

EZ
ln( p,)z_L =.r=r¢,ln(a ) (3.27)
aFE? Ty . P

We can write the differential energy spectrum for primary protons as

J(E)=BE~" showers m~% sr™! s7!. (3.28)

Then, the total shower rate for showers of energy E with photon density p > po
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is

R(> po, E) = J(E)A(> po )2 (3.29)
where A(> po) is the effective area for showers with p > po and 2 is the solid

angle accepted by the telescope aperture. Thus,

aE?
Po

2
R(> po,E) = BE™'(nr*)Q = BE 77} [ln ( )] Q showers s™'.  (3.30)

Hence, the total rate for showers with p > pg is

R(> po) = /: R(> po, E)dE (3.31)

where

E.= (@)% (3.32)
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is the critical (minimum) energy for which density po can be achieved. Therefore,

2
= 2 ® g aF?
R(> po) —ﬁwroﬂ_/sc E {m( po )] dE. (3.33)
Integrating,
-1
837r2Q [a\ T
(> po) (v —1)° \ po ( )

We know the integral spectrum for primarv cosmic rays (Lang 1980)
J(> E) = 0.16 E7}® showers m-2s ! srl. (3.35)

But
FE-+
7-1"

J(> E):/: J(E')dE' = (3.36)
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The dotted curves represent the approximate density profile given by Equation

3.26 using parameters given in text.

Thus, we have y = 2.6 and 3 = .256 m~? sr~! s~! TeV ™!,

As described in Section 1.2 (see also Section 3.3.2) the aperture for the
Haleakala 4-ray telescope has a full-angle of 0°.75 which corresponds to a solid
angle 2 = 1.35 x 107* sr and the critical density for triggering is pp ==
20 photons m~2. From Figuré 3.15, we saw that a ~ 24 photons m~2? Tev™?

and from Figure 3.16 we see that ry ~ 30m. The trigger rate for the telescope is



]2

then

_ 8(.256)m(30)%(1.35 « 107%) /2498 _
= (1.6)° (-2-6) s”! =0.22 Hz.

It should be noted that this rate is somewhat of an underestimate in that the

R (3.37)

solid angle of acceptance is actually an energy dependent quantity. High energy
showers can contain sufficient photon density at large angles to permit protons
which are incident at angles larger than the aperature of the telescope to cause

a trigger.

We can estimate the energy threshold of the telescope as well since

1
Ew~ (@) * ~ 900 GeV. (3.38)

«

This is consistent with the Monte Carlo results shown in Figure 3.16. Here the
photon density is plotted for various values of primary energy and the effective
radius for triggering is identified. The proton energy threshold is clearly about
900 GeV. Of course, the effective area 4 over which a shower can trigger the
telescope is a function of energy. Thus it is useful to quote an effective energy
defined as that for which the product AE~7Y is a maximum. This will take into
account the larger collection area availabie for higher energy showers along with
the relative scarcity of such showers. Using equation 3.27 wilh the critical density

P = 20 m~2, we have

4212
AE~ = mrl [ln (ub )] E".
Pe

Diflerentiating to determine the maximum, we find E,;; ~ 2 TeV (Figure 3.17).
Because v-ray induced showers of a given primary energy yield greater amounts

of Clerenkov light that their proton induced counterparts, we expect the energy
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threshold for triggering on such showers to be lower. In Figure 3.18 we plot
the photon density at the shower core as a function of energy while Figure 3.19
shows the density profiles for showers initiated by 4-rays of various energies.

Clearly, the threshold is approximately 200 GeV. From these two figures we
see that we may use the parameterization given by Equation 3.26 with « = 1,
a=135m"2 TeV™!, e = 1, and ro = 30 m. As with the proton induced showers,
we may define an effective energy at which the telescope operates for y-rays by
considering the product AE-", However, for primary ¥-rays, the spectral index

is unknown. Thus, in Figure 3.20 we plot the effective energy as a function of

spectral index.
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ture). Note that the density scales linearly with energy.

While it is clear that optical phiotons froms EAS are in sufficient supply for

the detection by a sensitive telescope, there still remains the task of identifying

these photons in the presence of random night-sky background. We shall see that,

although the Cerenkov photons from EAS make up only 10~* of the night-sky

brightness, we can use the distinct signature of the EAS photons to effectively

discriminate against the background.
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Effective trigger radii are defined by the critical trigger density line p = p..

From this we can establish a trigger threshold of =~ 200 GeV.

3.2 The Haleakala Gamma Ray Telescope

3.2.1 Introduction

The Haleakala gamina ray telescope is the result of a plan to introduce fast
electronics to the standard Atmospheric Cerenkov Technique (ACT) in an ef-
fort to obtain energy thresholds nearly an order-of-magnitude lower, for a given
area, than those attained b'y other facilities. Previous gamma ray telescopes
have concentrated light from large mirrors onto relatively few phototubes. The
resulting singles rates are quite high thus requiring the operation of the PMT’s

at low voltage to maintain reasonable anode currents. With the reduced voltage,
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many photoelectrons are required to provide a reasonable signal within a several
nanosecond gate. By using fast PMT’s which service a small mirror area, the
Haleakala telescope operates at the single photoelectron level thus making more
efficient use of the area. The result is that the time development of electromag-
netic cascades can be studied on timescales of nanoseconds.

The telescope is located 10,000 feet above sea level on Mt. Haleakala, a dor-
mant shield volcano situated on the island of Maui in Ilawaii (east longitude
—156°15'30", latitude 20°42'36”). The skies at the site are extremely clear with
little sky shine from nearby cities and minimal cloud cover. The latitude allows

observations of some southern hemisphere objects currently outside the viewing
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Figure 3.21: The Haleakala VHE v-ray telescope (from Szentgyorgyi, 1986).

windows of many other experiments. A brief description of the apparatus and
the data acquisition system follows. For a more complete discussion, the reader

is referred to Szentgyorgyi (1986) and Resvanis et al. (1988).

3.2.2 Physical Description

The telescope consists of six 1.5m diameter, spherical mirrors situated on a
digitally driven equatorial mount (Figure 3.21). The mirrors were fabricated by
the University of Utah Cosmic Ray Group (for usein the “Fly’s Eye” experiment)
by slumping ordinary plate gl;.ss on a graphite mold. The optical quality of the
mirrors (point-source spot size of ~ 0°.5) is adequate for use in detecting air

showers since the angular size of a shower is of approximately the same magnitude
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Figure 3.22: Schematic of mirror/PMT canister configuration illustrating the

two separate apertures, each serviced by three PMT’s.

as the mirror resolution. It should be noted, however, that future plans include
the replacement of these mirrors with a large number of smaller, higher quality
mirrors which are presently being fabricated by the collahoration.

Each mirror has, in its focal plane, an aluminum canister containing two 0°.75
apertures, separated by 3°.6 in declination (Figure 3.22). In practice, one aper-
ture observes a source region while the other observes a “background” region.
Often the role of on-source and off-source is switched periodically, by moving the
declination axis, to eliminate systematic contributions to on-source/oll-source
differences. The mirrors each service six PMT's (three per aperture). Each

PMT, then, views one-third of the mirror yielding a collection area of approxi-
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mately 0.6 m?. The focal plane scale of the apparatus is 2.62 cm deg™'; apertures
of 1.96 cm provide a 0°.75 acceptance cone. This size was chosen to strike a bal-
ance between sampling an ample portion of the Cerenkov pools and maintaining
reasonable singles rates (produced by ambient skylight) in the PMT’s. The 3°.6
separation of the apertures is large enough to eliminate cross-talk between the
two channels while being small enough to minimize zenith-angle related differ-
ences between on-source and off-source.

The equatorial mount is driven by stepping motors through a gear drive.
Each motor is under the control of a microprocessor which in turn receives its
instructions from the main computer. During normal operation, the instruc-
tions provide for sidereal tracking through rotation of the right ascension axis as
well as for periodic 3°.6 wobbles of the declination axis for on-source/off-source
switching. Each axis is equipped with a shaft encoder whose angular resolution
is 2.64 minutes of arc. The encoder values are written into each data record for
both precautionary reasons and to facilitate identification of the wobble cycles.
The mount is also equipped with a television camera which is used for rough
siting and visual monitoring of the position of the telescope. The 0°.1 resolution
of the camera is sufficient to guarantee proper pointing (through the monitoring
of positions of guide stars) to well within the accuracy required by the ACT.

The photomultiplier tubes employed in the telescope are Hamamatsu model
R1450. These 3/4-inch tubes have high quantum efficiency (~ 30% at 420 nm)
and the 10-stage dynode system provides excellent time resolution (< 1ns) with

a gain of 10%. Single photoelectrons produce anode signals of 2-3 mV amplitude
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Figure 3.23: Typical “plateau” curve of PMT rate vs applied voltage.

with 3ns duration across a 5082 load. Resolution is sufficient to identify the
one- and two- photoelectron peaks in the PMT counting spectrumn. The PMT’s
are operated at “plateau” voltages (Figure 3.23) to minimize gain fluctuations
produced by any deviations in the operating voltages while providing maximum
gain.

Optical filters (HOYA B-370), whose spectral characteristics are shown in
Figure 3.24a, are used to confine the bandpass of the telescope to those wave-
lengths in which the Cerenkov radiation is most prominent. The wavelength
spectra of both the Cerenkov radiation and the night sky background are illus-
trated in Figure 3.24b. From these plots, it is clear that the filters suppress

the night sky background considerably. When the filter response is folded with
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Figure 3.24: Spectral characteristics: a)Transmission coefficient T for HOYA
B-370 filter; b)Cerenkov radiation (dashed curve) and night sky background

intensity I (arbitrary scale); c)quantum efficiency € of Hamamatsu R-1450 PMT.

the quantum efficiency of the PMT’s (whose spectral characteristics are shown
in Figure 3.24c), the collection efficiency of the combination is ~ 13% over the
wavelength band 325nm < A < 425nm. The specular reflectivity of aluminum is
~ 85%; a reasonable estimate for the mirrors on the telescope (which are directly
exposed to the outside environment) is a reflectivity of ~ 65%. Further, there
are losses due to the incomplete overlap of the three PMT’s in each aperture as
well as due to the large angle of incidence of the photons which arrive from the
outer regions of the f/1 mirrors. A reasonable overall estiimmate of the collection

efficiency of the apparatusis ~ 5%. Implementation of new 1nirrors in a configu-
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ration requiring only one PMT per mirror could increase this efhiciency by more
than a factor of two.

Given the telescope parameters, we can determine the rate at which the
PMT’s will collect photons from the night sky background. At a dark observ-
ing site, the night sky brightness is approximately 22.5 magnitudes per square
arcsecond, or -4.1 mag sr~! (see, e.g. Zombeck, 1982). The site at Haleakala
has very clear, dark skies so that this value should be a reasonable (or slightly
optimistic) characterization of the background. We know that, if L represents

the intensity in photons m~2 s~! A_l, then the associated magnitude is given by
m=-25logL +C (3.39)

where (' is a constant which is related to the bandwidth. By definition, m =0
corresponds to an intensity of (10° m~2? s~! A—I)A)\ centered at A = 560 nm.
Using the bandwidth of the telescope filters, AA = 150 nm, we find that ' =
25.5. From Figure 3.24, however, we see that this bandwidth is centered at about
375 nm and that the night sky intensity at this wavelength is about a factor of
3 smaller than at 560 nm. Thus, the night sky intensity is approximately

Lns = (-;-) 105 = (-;-) 1083 23 10" m~2 57! srt, (3.40)

Given the efficiency of 5%, mirror area of 10.4 m?, and solid angle of 1.3 ¥ 10" * sr,
the expected rate in each of the 18 PMT’s is about 1 Mhz. In practice, we find
that the PMT’s operate with rates between 1.5 and 2 Mhz, in good agreement

with this approximation.
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Figure 3.25: Schematic of data acquisition electronics.

3.2.3 Data Acquisition System

Trigger Processing

Each PMT in the telescope constitutes the start of a separate channel of electron-
ics; the on-source and off-source groups of 18 channels are processed separately
and identically. A schematic of the trigger electronics is shown in Figure 3.25.
PMT pulses are directed from high speed amplifiers (bandwidth ~ 1GHz, gain ~
40) to LRS 620BL discriminators where a thireshold of 30 mV is used to pass only
pulses corresponding to at least one pliotoelectron from the PMT cathode. The
18 discriminated pulses are then fed to a LRS 380 majority logic unit (ML),
The MLU is operated in a mode whereby the output has a pulse-height of n » 50

mV where n is the number of overlapping input pulses. Because of the short du-



ration of the individual pulses, this overlap condition corresponds approximately
to requiring the pulses to arrive within an effective gate of ~ 7Tns. A fan-out
is then used to direct the MLU output to various discriminator channels whose
thresholds are set to correspond to multiplicities of 4, 5, 6 etc. It should he noted
that the MLU output is actually a response to an integration of the overlapping
input pulses; as such, there are small ambiguities in the strict interpretation of
the multiplicity that corresponds to a particular output. The operating point
for the telescope trigger is chosen such that no more than ~ 50% of the triggers
taken correspond to events in which night-sky background (possibly in combina-
tion with light generated by a low energy shower) has satisfied the multiplicity
requirement. This point can be estimated statistically as follows.

Let m represent the number of PMT’s which can contribute to the trigger (in
our case, m = 18) and let { be the counting rate of each PMT due to ambient
light (which we will take to be the same for all tubes for simplicity). Since
the ambient light consists of photons which arrive at random, the time intervals
between hits are Poisson distributed. Hence, the probability that a given tube
will fire in a given time window 7 is given by p = 1 —e~¢t = (t (for {t < 1). Given
that one tube is required to effectively start the coincidence gate, the probability

of obtaining an additional n — 1 counts within the coincidence window is

. n — 1 m-n
})n-l,m—l = P"-l (C_c') (141)
n-1
k - - - A 3 t.
where is the binomial coeflicient. Since the gates are produced at a rate



r ~ m(, the random trigger rate for multiplicities greater than or equal to n is

m-—1

Rmn(C,T) =m i CiTi—l (e-(r)m-,- -' (3.42)

1—1
Now suppose that the rate for showers of a given photon density p is s. The

probability = for a given PMT to fire is

z=1-¢€¢"% : (3.43)

where a is some constant. Further, assuming that s scales with density with the
same spectral index as that for the rate as a function of energy (although this

may be an unfair approximation - see Section 3.1.3), we have
s=Kp™” (3.44)

where ¥ = 2.6. Thus, integrating over all densities p > pnin, we find the rate for

showers of multiplicity > n:

™m

p7 f: (1 — e~°)(e~%)™"dp. (3.45)

[ <]

Son = K /,

min

The operating point of the telescope is chosen such that R,.. =2 Sn... In this
way, the bulk of coincidences due to ambient light pile-up are rejected while
the majority due to actual showers are recorded. [Figure 3.26 is a plot of the
trigger rate as a function of coincidence multiplicity as determined by varying
the threshold of the discriminator used to set the operating point (recall that the
MLU output is = 50mV x multiplicity). The solid lines are the rates expected

from the expressions given above: the steeper line represents the rate for ambient
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Figure 3.26: Telescope trigger rate vs discrimination threshold (multiplicity).

light triggers assuming ( = 1.8 Mhz, and 7 = 8 ns while the shallower line
represents showers assuming a spectral index v = 2.6.

In addition to being used for MLU triggering, the discriminated PMT pulses
are used for time digitization of the individual pulse (with a TDC), for a separate
timing latch (requiring an overlap with a hardware gate), and for recording the
PMT singles rate (with a scaler). Once the MLU output passes its discrimina-
tor, a pulse is sent to an interrupt box which performs several functions. First,
it sends an interrupt to the data-taking computer thus indicating both the ex-
istence and the origin (e.g. A-aperture, B-aperture, etc.) of the trigger; the
computer then executes op-code based on the trigger type in order to read out

the system clock and the data electronics. In addition, the interrupt box freezes



the electronics so that no additional triggers may be accepted until the current
data has been read. Lastly, a register of environmental information (e.g. clock
status, high voltage status) is passed through the interrupt hox to the computer.
The output of the discriminated MLU pulse is used to provide gates to the Latch
registers and stop pulses to the TDC’s. In addition, it provides gates to AD(’s
which integrate pulses taken from the last two dynodes of the PMT as a measure
of the pulse height.

For a monitor of the system, environmental triggers are generated every sec-
ond. In these triggers, the clock, encoders, and environmental registers are read
as with any event. Scalers which are gated for 100 s are used to monitor the
PMT singles rates. Along with the PMT pulses, a 1Mhz signal is scaled to
provide live-time measurements.

Low multiplicity events, as determined by discrimination of the MLU output
at a low threshold, are also recorded to provide events with which to test off-line
software algorithms designed to reject such triggers. These are usually taken at
multiplicities n > 5; such events are pre-scaled by a large factor to maintain

reasonable rates but are otherwise treated as normal triggers.

Data Logging

The data recorded by the acquisition electronics is logged onto tape through a
DEC LSI11/73 computer under the control of RSX/MULTI. The CAMAC elec-
tronics are read through a Jorway CAMAC-11/73 interface via Direct Memory

Access. The encoders and clock are read into mmemory through a direct DRV 11-
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J parallel interface. The clock isell operates with a 1 Mhz cesinm bheaw sigual
provided by the nearby Lunar Ranging Experiment; because this signal is peri-
odically calibrated to UTC by Bendix Time Systems Inc., the clock is accurate
to within several us per year. The data is written onto a 9-track magnetic tape

“with a density of 1600 bpi.

On-Line Monitoring Facilities

To facilitate the operation of the system, various on-line monitoring procedures
are employed. Through MULTI, watch blocks are used to warn the operator in
the event that any PMT rate falls outside of a pre-set range or if the CAMAC
branch driver notes that a probiem has uccurred in reading the electronics. On-
line histograms are used to nic::itor the trigger rate and multiplicity distributions
of the recorded triggers. Othe: ustograms, such as TDC or ADC distributions
cah easily be generated by the operzior and are frequently used to check the
behavior of individual channels of eiectronics.

Individual PMT anode currents are monitored via scanning ADC’s such that,
if any exceeds a pre-selected threshold, the high-voltage to the PMT’s is shut
down, an alarm is sounded, and a bit is set for the data record as an indicator
that the voltage is off. In this way the PMT’s are spared from the excessive anode
currents that can occur il, for example, nearl:v liglts are accideuntly turned on
or a bright star crosses the telescope aperture (e.g. during a wobble cycle).

The input to the clock is nmionitored so that a loss of the cesium signal au-

tomatically sounds an alarm znd sets a flag in the data recorcd. The alaru: is



also set if the one-second marker that is provided with the 1 MHz signal is in
disagreement with the clock. These precautions are primarily to watch for catas-
trophic events such as lightning glitches or power failures (which may occur while
the operator is away). The us timing can be checked by inspection of the times
of environmental triggers; the time differences should be multiples of 1s down to

the pus level.

3.2.4 Systematic Data Analysis
Inspection and Calibration

Prior to analyzing data for signatures of activity from the source under study,
various calibrations and systematic checks are made to ensure that the data is of
good quality. As a first step, individual data records are inspected. Occasionally
we have found instances in which a particular CAM AC module has, for unknown
reasons, not given a proper Q-response (i.e. “ready” response) when a read
is attempted. Because CAMAC reads are performed with Q-scans (whereby
modules are read sequentially until the specified number of words have been
read) to reduce the time needed to read the data, any module failing to give a
Q-response is merely skipped over. Unfortunately, data from the next available
module is then stored at the position in the data record that would have normally
contained information from the skipped module. This can be confusing but cau
be identified in several ways. First of all, the data record should not have the
expected length if a module is skipped; such a signature is easy to monitor. In

Figure 3.27 we plot the word lengths of individual data records for a particular
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Figure 3.27: Word lengths of individual data records. Evidence (at the < 1%
level) for module skipping is contained in the bins with incorrect word lengths

(see text for explanation).

run. Normal events contain 179 words, pre-scaled events contain 177 words,
and environmental records contain 275 words. Nete that the bad events contain
word counts that differ from the correct valies by multiples of 8, 12, or 16
- corresponding to the 8 word TDC’s, 12 word ADC’s, and 16 word scalers.
As an added precaution, pattern units have been hard-wired to establish a set
configuration of 0's and 1’s at several positions in the CAMAC crates so that if
the pattern is not properly placed in the data record, the event can be skipped.

Overall, these sorts of bad events constitute less than 1% of the data and pose

no serious problem.
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Figure 3.28: ADC pedestal and single-photoelectron peak for a typical channel.

For calibration purposes, the ADC pedestal and single photoelectron values
are determined by taking averages over several runs in a given observation period.

The pedestal values are determined by averaging the ADC values for PMT hits

which occur in the off-trigger data (i.e. data from the aperture that did not

produce the trigger) and which are accompanied by TDC values that indicate
that no stop pulse occurred. This is performed on a tube-by-tube basis. Since any
tubes that do record a hit in the off-trigger are most likely to have recorded only
a single photon, the single photoelectron value may be dectermined by averaging
the ADC values for latched off-trigger tubes. Figure 3.28 illustrates the positions
These

of the pedestal and single-photoelectron values for a typical channel.

calculated values are quite stable from month to month unless PMT or amplifier
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replacement has occurred.

Because TDC times are used to study the time-evolution of the hit pattern
recorded by the telescope (in part to help identify triggers caused primarily
by ambient light, as mentioned above) it is important that relative times as
recordled by the TDC’s are meaningful. While hardware timing has been carefully
adjusted so that pulses which are physically in-time will arrive at the TDC's
simultaneously, throughput differences and pulse-height slewing (large pulses,
with their associated faster rise-times, will fire a discriminator faster than small
pulses) can cause relative timing errors. These errors must be identified and
removed in software. In Figures 3.29a) and b), the distributions of TDC times for
individual channels are shown for triggers originating in the A and B apertures of
the telescope, respectively. It is clear that, when a trigger occurs in a particular
aperture, the TDC times for tubes corresponding to that aperture are grouped
in a cluster whose duration is several nanoseconds while those for tubes in the
other aperture have basically random distributions. Figure 3.30a shows TDC
mean times for all PMT’s for various multiplicities. Variations as large as 5 ns
can be seen. Figure 3.30b shows the TDC mean times after slewing corrections
based on the calibrated ADC’s have been made. After correction, the relative
timing is accurate to within about lns. One can note that the TDC means are
larger for high multiplicity events than for low multiplicities. This is simply the
result of the trigger forming more quickly for the high multiplicity events; since
the delay lines carrying the TDC stop pulses are of fixed length, a faster start

time yields a larger count in the TDC’s before the stop pulses arrive.
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Figure 3.29: Distribution of TDC stop times for A aperture (a) and B aperture
(b) events. Note that the times for tubes in the triggering aperture cluster

together while those in the opposite aperture are randoinly distributed.

Rates

Trigger rates as well as individual scaler rates are used for each run to identify
eflects related to clouds or nearby lights. Figure 3.31 shows the scaler rates for
the various tubes as a function of time. Note that, although there are differences
in the individual tube rates, the rates are quite stable. One can note a slow
increase in the rates which is due to the first signs of dawn toward the end ol a
run. Also evident is a large drop very early in the run which was the result of a
high-voltage trip in response to some momentary bright lights near the telescope.

Figure 3.32a shows the trigger rate for events in the A aperture of the telescope.
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Figure 3.30: Means of TDC stop times during trigger for various multiplicities,

before (a) and after (b) slewing corrections.

The rapid increase in the rate toward the end of the run is the result of increased
ambient light caused by the rise of the sun.

Triggers which are due to cosmic ray showers can be separated from those
caused by ambient light by requiring a tight coincidence of TDC times. Figure
3.33b shows the data from Figure 3.32a after a software cut requiring at least 9
of the 18 tubes to have fired within a 5ns window. Note that the sunrise effect
is completely removed by such a cut. One should note that, because the TDC
means are different for different multiplicities (as noted above) a sliding time
window is used to look for tight clusters of TDC hits. The shower rate that

results from the above multiplicity cut is quite steady from night to night. The
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Figure 3.31: Scaler rates for individual PMT’s as a function of time. .

rate is a function of zenith angle as shown in Figure 3.33. In order to establish
a baseline about which to identify rate excesses, the zenith angle dependence
is fit to a three-term Legendre polynomial expansion as shown in the figure
(along with the corresponding x? for the fit). Using the fit, the expected rate
for any given interval of data can be calculated (based on the zenith angle) and
compared with the actual rate obtained. Inspection of Figure 3.33 indicates that,
after performing the shower cut described, the behavior of the two telescopes (i.e.
those corresponding to the two separate apertures) is very nearly identical. Given
this cut as an operating point for the telescope, we cau then define the critical
photon density required from a shower. We have seen that the overall light

collection efficiency of the apparatus is = 5% . Because the average occupancy
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Figure 3.32: Telescope trigger rate: a)raw triggers; b)triggers surviving a cut
requiring 9 or more TDC hits in a sliding 5ns window. The increasing rate in
the raw triggers is due to a brightening of the sky at dawn; such contributions

from random skylight are removed with the multiplicity cut.

of the PMT’s is slightly greater than one for multiplicities larger than 9, we
assume that we need at least 10 photoelectrons to yield a multiplicity sufficient

to pass the shower cut. Given the 10.4 m? of telescope area, then, the minimumn
density is approxiinately 20 photons m~? (which is the value which was used in

the calculation of Section 3.1.3).
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Chapter 4

Time Series Analysis for Periodic Behavior

What a tangled web we weave.
Go 'round in circumstance...
Someone show me how to tell
The dancer from the dance.
The Eagles

The search for periodicity in a set of arrival times has many angles of ap-
proach. This chapter summarizes several of these methods with particular at-
tention paid to the statistical interpretation of the results of the tests as well
as inherent difficulties associated with each. Before any attempt at detecting
periodicity is made, however, it is crucial to remove any contributions to the
measured arrival times that have been introduced by time-dependent relative
motion between the source and observer. Our discussion, therefore, will begin
with an investigation of the detailed procedure of reducing times to the respective

barycenters of the source and observer systems.
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4.1 Barycentering

The necessity of reducing times to the barycenter can be appreciated by con-
sidering the result of Doppler effects caused by the movements of source and
observer. One may treat the variations in the period P of the source, caused by
Doppler shifts, as an effective P, (not to be confused with the period derivative
related to the spin-up of the pulsar which, for the moment, is being ignored).
Arrival times may be assigned a relative phase between 0 and 1 based on the
period of the source:

t dt’

#(t) — ¢(to) =  P(7) (1.1)

Treating P. as constant over the time of observation, this becomes

t dt’ 1 .
¢W—MM=Lgf%;%;M%+RWo (4.2)

We may arbitrarily set to = 0 and ¢(fy) = 0 to obtain

e

o(t) = %c [ln(Po +Pt)—In Po] = %eln (1 + i;ot) . (4.3)
Now if P. = 0, the phase ¢(t) is just
Blt) = = (4.4)
P
Thus, the difference in phase introduced by P. is
A¢=%§f£;"'<l+;}ol) z%f.’,;—é. (1.5)

As an example, consider data taken from Her X-1 (F, & 1.24s) at intervals
separated by 48 hours; to maintain true phase to within A¢ < .1, we must have

) 92
B =2 <o
2 -
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The value of P, introduced by the orbit of the earth may be approximated by

v=2%z3x10‘ms'l
AP v  Ap—YP~10"%
P c c

AP will vary sinusoidally with this amplitude:
AP(t) =~ (107%) sin @

where 8 is the angular position of the earth in its orbit. Thus,

. d(AP) -4 dé

P, = o = (107%s) cosﬂdt.
But

do — 2_1' J—y r ~ -1

dt—T-,P.m,—v?xlO .

Clearly, this is larger than our analysis can tolerate. While the data is generally
broken into intervals much shorter than 48 hours, the barycentric corrections are
necessary if phases are to be linked between different intervals. Similar calcula-
tions regarding the orbital motion of the source show that timing corrections to

remove these effects are necessary as well.

4.1.1 Solar System Barycentering
Signal arrival times at the solar system barycenter are given by
1
th=t,+ At, + -r-n (4.6)
c

where 2, is the observed arrival time, Al, is a general relativistic correction to

the clock time required to account for the variations in gravitational potential
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around the Earth’s orbit, r is the vector from the solar system barycenter to the
obscrvation site, and n is the unit vector from the barycenter in the direction
of the source. The event times, as recorded by the observatory clock, are in
coordinated universal time (UTC). As outlined in the Astronomical Almanac, to
include the relativistic effects, that is, to convert to barycentric dynamical time
(TDB) one needs to first convert to terrestrial dynamical time (TDT). This is
accomplished by converting UTC to international atomic time (TAI) through
the addition of a given number of leap seconds, depending upon the date, and
then to TDT by adding exactly 32°.184 (an offset needed to provide continuity

with a convention used prior to 1984);
TDT = UTC + 32°.184 + leap seconds. (1.7)

Then

TDB =TDT + 0°.001658 sin g + 0°.000014 sin 2¢ (4.8)

where g is the mean anomaly of the Earth in its orl)ii,
g9 = 357°.53 + 0°.98560028(J D — 2451545.0) (1.9)

and JD = Julian day (in TDT system) of the ohservation.

The values for the positions of the solar system barycenter and ol the Earth
have been calculated by a simultaneous numerical integration at the Jet Propul-
sion Laboratory in cooperation with the U.S. Naval Observatory. The correction
term ir - 1, corresponding to propagation tinie to the barycenter, is determined
using these values along with the coordinates of the source (precessed to epoch

J2000.0, as per the AU standard adopted in 1984, and consistent with the epoch
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Figure 4.1: Barycentric correction as a function of time for plane waves arriving

from the direction of Her X-1.

of the JPL positions). The correction has an annual sinusoidal variation with an
amplitude of nearly 500s. Accurate positions for the source are thus imperative;

an error as small as 0.1 can lead to errors as large as
ty — t; ~ 500s [sin(a + 0”.1) — sin ] ~ 500s cos asin(0”.1)

so that

(t2 — t1)maz ~ 500s sin(0”.1) = 250pus.

A routine for determining the barycentric correction has been written by the

collaboration; a plot of the correction as a function of time in 1986 is shown in
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Figure 4.2: Comparison of barycenter routines. The difference between the cor-
rection as calculated by the Haleakala (HGO) routine and that of Deeter, Boyn-

ton, & Pravdo (DB&P).

Figure 4.1 for the direction of Her X-1 (RA 16" 57™ 21, Dec 35° 21’ 44”). An
empirical formula for this correction has been introduced by Deeter, Boynton,
and Pravdo (1981). As a check of the Haleakala routine, the difference between
its calculated correction and that given by DBP is plofted in Fignre 4.2, Lunar
variations, as well as an annual and a ~120 day variation in the difference is
obvious; these result from simplifications inherent in the DBP formula. As a
further check, the routine was compared with an independent routine written

at MIT (using the older MIT ephemeris); the differences are plotted in Figure
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Figure 4.3: Comparison of barycenter routines. The difference between the cor-
rection as calculated by the Haleakala (HGO) routine and a routine using the

MIT ephemeris.

4.3. For the purposes of this analysis, the small discrepancy between the two
calculations is negligible. It should be noted, however, that the discrepancy is
large enough to be worrisome for such calculations as the absolute phase of a

millisecond pulsar.

4.1.2 Barycentering in the Her X-1/HZ Herculis System

In order to account for the changing position of the source in its orbit, an addi-

tional correction to event times must be included. For Her X-1, the problem is
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simplified by the small eccentricity of its orbit (e < 0.0003). The general calcu-
lation for non-circular orbits is more complicated and is outlined in Appendix B.
The orbital parameters for Her X-1 are listed in Table 5.1. Given an observation

time {.,, one can calculate the orbital phase of Her X-1;

Bors = g,r(fg’i"_—_ﬁ)

5 (4.10)

where tg is the epoch of zero phase (it is assumed that both t., and tq are solar-
system barycentered times). The correction required to account for the time

delay (or advance) relative to the barycenter of the binary system is then
ODt,ource = asini cos(27wdorp) (4.11)

where asini is the radius of the Her X-1 orbit projected onto the plane of sight.
Since @orp, = 0 is defined at the center of eclipse, At,ource must be subtracted
from the observation time (t.e. at eclipse, the signal travel time is longer than
the propagation time from the system barycenter).

It should be noted that the pulsar period P is not constant but, rather,
shows the spin-up behavior characteristic of accreting binary systems (see Section
2.4.2). Thus, the pulsar phase calculations, even after barycentric corrections,
must account for P. This can be accomplished by using Equation 4.3 although
problems may arise in the case of Her X-1 for which P can change significantly
over relatively short periods of time (see Section 5.1) making phase-linking over

intervals much longer than one month difficult.
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4.2 Epoch Folding

In virtually any test for periodicity, time series data is folded modulo the period
to be tested. This is conveniently done by assigning phases to the individual
times. In the absence of any previous measurements of the source period, the
choice of ¢(to) = 0 is arbitrary. In practice, it is convenient to choose ¢, as
some fixed reference so that phases calculated for different data sets may be
compared in a meaningful way. Of course, if an ephemeris for the source is

already established, f4 should be taken as the epoch of zero phase. Then we have

t; — o
P

assuming P is unknown. If P is known, the phase is determined by Equation

(4.12)

#(t:) =

4.3. Once the times have all been converted to phases, a histogram of number
vs phase bin may be plotted. Such a process is referred to as “epoch folding.”
In the absence of a signal, the resulting histogram should be uniformly pepu-
lated within Poisson errors. Various statistical tests may he used to investigate
the uniformity of the folded data. The x? test, for example, can be used for a
measure of the deviation of the folded data from that expected from a random
distribution. Similarly, the histogram can be scanned for individual bins which
deviate significantly from the mean. Both of these tests (which, one must note,
are not mathematically independent) are attractive in that their statistical be-
haviors are well known and understood. They are not problem-free, however;
as with any test which relies on binned data. the result can often he strongly
dependent on the exact binning (c.g. the number of bins used). One must be

careful to keep track of how many different arrangements of the data are used in



testing for a signal and weight the final statistics accordingly.

An advantage to the epoch folding approach is that one can test the folded
distribution against non-uniform shapes as well. Thus, if the shape of the ex-
pected distribution is known (from a previous measurement, for example) one
can perform least-squares analysis on the fit of the data to the expected dis-
tribution. Of course, proper phasing of the events relative to the epoch of the

previous measurement then becomes crucial.

4.3 The Fast Fourier Transform

Any time domain function f(Z) can be decomposed into a combination of si-
nusoids of different frequencies w. The Fourier transform F(w) expresses this
decomposition; F(w) represents the amplitude of the sinusoid of frequency w

which is contained in f(¢). Mathematically,
Flw) = / T f(t)em i dt. (4.13)

In the case of discrete sampling of f(¢) with N data points in the interval (0,7T),

we have the Discrete Fourier Transform (DFT)
F(w) = /Q a;6(t — tj)e'i”'dt (4.14)

where a; = f(t;). Hence,

N-1 .
Flw)= 3 aje™™". (4.15)
j==0

Wihile the frequency spectrum can be calculated directly from the DFT, the

process is computer intensive; if amplitudes are desired for N frequencies, the
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computation time will be proportional to N?. With large data sets the process
can be quite time consuming. An algorithm for calculating the DFT which makes
use of the cyclic nature of the exp(—iwt;) factors (Cooley and Tukey, 1965) can
reduce the computation by a factor of =~ N/log, N. Since, for large values of NV,
this algorithm is much faster than the standard DFT, it is known as the Fast
Fourier Transform (FFT).

The standard form of the FFT requires breaking the data set f(¢;) into 2"
segments of equal length At (although there exist modified algorithms which
do not require that the number of segments be a simple power of 2). Such
truncation and finite sampling in the time domain can cause spectral leakage in
the the frequency domain [see, e.g. Brigham (1974)]. This can be understood
in terms of the Fourier Convolution Theorem. The convolution of two functions

x(t) and y(t) is defined by

h(t) = z(t) o y(t) = f: z(r)y(t — 7)dr. (4.16)

According to the convolution theorem, if f(t) = f,(t)fa2(¢) then

F(w) = Fi(w) o F3(w) (4.17)
where F, Fy, and F; are the respective Fourier transforms of f, f;, and f,. This
process is illustrated in Figu;e 4.4.
4.3.1 Aliasing

An immediate result of the convolution theorem occurs in the instance of a

uniformly sampled waveform. Suppose the function f(?) is sampled at regular
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Figure 4.4: Graphical example of the frequency convolution theorem. Dou-

ble-ended arrows connect Fourier transform pairs.
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intervals of spacing At. The Fourier transform of such a sampling function in
the time domain is a similar function in the frequency domain with discrete

frequencies separated by
1

=%
When the transform of the unsampled f(t) is convolved with this function in the
frequency domain, the result is a superposition of F(w) at each discrete frequency
(Figure 4.5). Such distortion of the power spectrum is known as aliasing and is
the result of choosing too large a sampling interval. Clearly, if At is chosen to
be smaller, the resulting convolution will still yield power at frequencies outside
of the true spectral range, but now the values in the true range are undistorted
(Figure 4.6). The maximum spacing with which distortion by aliasing may he
avoided is At = 1/2f. where f. is the highest frequency component contained in
F(w). Of course, when the frequency spectrum of f(t) is unknown, the choice
of At is not so simple. In the FFT, the power spectrum is calculated only for

frequencies up to the Nyquist frequency,

N_1 (4.18)

v =57 = 5

where N is the total number of sample intervals and T is the duration of the full
data sct to be analyzed. Above the Nyquist frequency. aliasing occurs. As a result
of this eflective bandpass, At is generally chosen such that the Nyquist frequency

is somewhat larger than the highest frequency of interest in the spectrum.
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Figure 4.5: Graphical illustration of discrete, regular sampling of a function in

the time domain resulting in aliasing in the frequency domain.
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Figure 4.7: Illustration of sidelobes produced as a result of sampling for a finite

duration in the time domain.

4.3.2 Sidelobes and Window Functions

Truncation of a waveform can also cause spectral leakage in the frequency do-
main. If the function f(¢) is truncated by a window of duration T, the resulting
convolution in the frequency domain carries the transform of the window func-
tion. The result is the production of sidelobes at frequencies spaced at multiples
of 1/2T about the true frequency (Figure 4.7). Because all real waveforms to be
analyzed are of finite duration, the existence of sidelubes is unavoidable. One
method for minimizing the power in the sidelobes consists of “tapering” the win-
dow function; a window that falls simoothly, rather that abruptly, to zero will

contribute less power leakage to frequencies away from those actually contained
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in the continuous waveform f(t).

4.4 The Periodogram and Rayleigh Test

While the FFT yields the most efficient manner in which to calculate the DFT
of a function f(t), often one is not interested in the complete power spectrum
but, rather, in the power contained at a given frequency (or in some limited
frequency band). This is true for data obtained in v-ray astronomy if the source
has a known periodicity. While the information desired is certainly contained in
the FFT, it is easier to go back to the DFT and calculate the power spectrum
al just those frequencies of interest.

We note that the DFT as expressed in Equation 4.15 can be reduced to

N-1 N-1
F(w) = Z ajcoswtj+ 1 Z a;jsinwt;. (4.19)
=0 Jj=0

This represents a vector in the complex plane. We may associate the power
associated with the frequency w with the square of the length of this vector:

N- 2 N- 2
S(w) =| F(w) l2= (Zl a; coswtj) + (Zl a; sinwtj) . (420)

i=0 j=0

The classical periodogram is conventionally defined (Scargle, 1982) as
1 2
S() = 5 | F(w) | (4.21)

which, apart from normalization, is identical with the power as defined above.
The Rayleigh Test was first devised by Rayleigh in 1905 in order to describe
the statistics of a random walk in two dimensions. It has found extensive use

recently in the field of y-ray astronomy (Gibson et al., 1982). The test statistic
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is derived by assigning a phase ¢;(w) to each time measurement (see Equation

4.12) and forming the sum
2

1 N-1 N-1 2
H(w) = — [Z cos pj(w)| + [z sinQSj(w)] . (4.22)

j=0

"Since, for measurements in y-ray astronomy, the coefficients a; are all equal
to one, we see that the Rayleigh statistic and the power defined by the peri-
odogram are identical. If the data ¢; are random, then measurements of S(w)
yicld a distribution which is proportional to a x? distribution with two degrees of
freedom (i.e. the sine and cosine sums act as independent variables). Thus, the
probability of obtaining a power value larger than some fixed value 24 is given
by

W(z > z9) = €7, (4.23)
This distribution is valid only for large N, however; for N smaller than ~ 50, an

approximate correction to the exponential should be used (Mardia 1972):

229 — 22 2420 - 13222 + 7623 — 9:¢

4N 288N? (4.24)

W(z>z)=€e|1+

4.4.1 Fourier Independent Frequencies

Because the periodogram is equivalent to the DFT, it is subject to the same
spectral leakage problems associated with the DFT. An advantage of the peri-
odogram is that the time seri‘es which constitutes the sampled waveformi need
not be binned (as with the FFT). Instead, the arrival times provide a very non-
uniform sampling which reduces the effects of aliasing. The finite duration, T, of

the data set, however, limits the frequency resolution. This is merely the result
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of convolving the window function with the sampled waveform and is analogous
to the optical resolution associated with single-slit diffraction. The result is that
closely spaced frequencies are not statistically independent. The independent

frequency spacing is given by

Af = % (4.25)
Often one works in period space rather than in frequency space. Then
p?
AP = —. 4.26
- (4:26)

If the time series is tested over a range of frequencies, one must account for the
total number of independent frequencies tested in order to correctly assess the
statistical results. It is generally useful to sample in frequency space at intervals
somewhat smaller than the independent frequency spacing so as to avoid nulls
in the spectrum created by the window function as well as to facilitate location
of the peak of the spectrum; such a process is referred to as oversampling. It has
been noted by de Jager (1987) that such oversampling results in the underestima-
tion of the probability associated with the resultant value of the peak power (i.e.
one calculates that the probability of obtaining a particular result is smaller than
it really is). For an oversampling factor of ~ 5 the factor of underestimation,
i, is between 2.5 and 3 (depending on the number of independent frequencies
spanned).

The numiber of frequencies one needs to scan in searching for a signal from a
periodic source depends on several factors. Clearly, if the period is not known,
the range must be chosen based on physics assumptions about the likely hehavior

of Lhe source. If the period is well known, however, one only needs to scan enough
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frequencies to cover the uncertainty in the known period. For binary sources such
as Her X-1, it is often desirable to scan a wide enough frequency band to account
for any changes in the period that may result from orbital effects (which may be
present even after barycentering if, for example, the site for production of the
v-ray signal differs from that of the x-ray signal).

We may now evaluate the statistical significance of obtaining a particular
value zo from the Rayleigh test in a certain number of trials. Suppose all the
data is divided into m, intervals of equal duration and that the Rayleigh test is
used to span m; independent frequencies. Then, the total number of independent
trials is M = mym,;. Now we know that the probability of exceeding z¢ in a single
trial is

p=e 0, (4.27)
Hence, the probability for obtaining no z larger than 2o is 1 — p. In M trials,
this probability becomes (1 — p)™ so that the probability of obtaining at least

one value of z > zo in M trials is then
1 . — M
W(z>z:M)=y¢[1-(1-pM| =yMp (4.28)

where the approximation holds for Mp <« 1 and the factor 3 = 3 is the under-
estimation factor mentioned earlier in this section. For M trials, the probability
of obtaining n measurements = > =g is
i M A
Wa(z> 200 M) = (dp)"(1 — $ip)™ . (4.20)
n
We can immediately see the relation between the Rayleigh probability as

defined above and the lcvel of confidence e. We consider two hypotheses, Hg



128

and H,. Here Hy is the hypothesis that no periodic signal is present in the
data set (i.e. the Null Hypothesis) and H, is the alternate hypothesis. We may
consider the set 5 of all possible results of a particular test and define a critical
subset s in which Hp is regarded as unlikely to be true. Then ¢ is defined as
‘the probability of a measurement falling in s when Hp is true. This is exactly
what the Rayleigh probability represents. Thus, its identification with statistical
significance is consistent. It should be noted, however, that it is possible to define
the critical region mentioned above on the basis of more than one (independent)
test statistic (see Section 4.4.3). If, for example, two independent statistics are to
be combined, one must take care in properly interpreting the overall confidence
level. Wallis (1942) has shown that if ¢; and ¢; represent the confidence levels

associated with the two tests, then the overall confidence level is given by
€ = 6162[1 "-lﬂ(G]_éz)]. (430)

The derivation of this result is straightforward and is summarized in Appendix

C.

4.4.2 Signal-to-Noise Characteristics

As suggested in Section 4.4, it is useful to consider the periodogram in terms
of vectors. In principle, the phases used to calculate thie periodogram can be
separated into those due to the signal and those due to the random background.

The periodogram may then be written as

S(w) = z{w) = % [Ri + Rz] (4.31)
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where R, represents the magnitude of the signal vector and R, represents that
ol the background vector. In the case of pure random background, we know that

the distribution of z values is
W(z) =€ (4.32)

Hence, the mean value for z is found from the first moment of the distribution:

Jo o ze 7dz ze * |°
= =1 — 4.3;
Jol e*d: Jo e2dz (4.33)
Thus,
T=1,0r Ry = VN

where N, is the number of random background events.
We can use this information to determine the average behavior of the Rayleigh
test in the presence of a signal. Suppose the signal events are distributed in phase

with probability density H(¢#). The signal vector then has components
2r
zo= N, [ H($)cos 4dg,
)

2w
vo=N, [ H(#)sin 6.

We may then write

R, = ANs (4.34)

where ) %
B= {[/: H($)cos ¢d¢]2 + [ 02" H(4) cos ¢d¢]2} (4.35)

As an example, suppose the signal has the form

H(¢) = %[1 + cos(¢ — «)).
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Integrating, we find

o
2

so that 3 = 1/2. For a signal distributed as a é-function, 3 = 1.
The angle 6 between the signal and background vectors is arbitrary. The

resultant value of z depends on this angle:

z m [R? + 2R, Ry cos 8 + R} (4.36)
b

so that, using the mean value for R,, we have

z m [Rz + 2R,/ Nycos 8 + Nb] (4.37)

Let us now define the signal-to-background ratio

N,
= —-. 4.3
a=3 (4.38)
Then we may write
:=1To 1 [/32,8 + 28K cos 8 + 1] (4.39)
a
where
N,

(4.40)

K = .

vV Ny

We see, then, that for modest amounts of signal (so that « is reasonably small),
= is primarily a function of x and 8. Because # is arhitrary, a given value of

can yield a considerable range of values for =. Figure 4.8 shows the distribution

of = with 8 (neglecting the divisor 1 + a) for a signal distributed as

H(¢) = 6(¢ — ¢0).
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Figure 4.8: Distribution of Rayleigh statistic z as a function of the angle 6
between the signal and noise vectors. (See text for a description of the approxi-

mations used to derive this resnlt).
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Wihile this calculation neglects the fluctuations in Ry, we can make two quali-
tative statements: one need not expect a large value of & to accompany a “de-
tectable” value of = (e.g9. for x = 2 there are many values of 8 for which z > 6
which has a corresponding probability of ~ 2.5 x 107%); but a large value of &
doues not guarantee a value of z which is large enough to claim detection. Monte
('arlo simulations (see Section 4.4.3) show that these conclusions are indeed true.

Since the preceeding discussion indicates that z is primarily a function of x,
methods for mmaximizing & must be devised. In the case of a steady signal, we

can see that a search strategy should center on long integration times since
N, =r,t and Ny = rpi

where r, and r, are the respective signal and background rates. Thus,

r,t

r= vl

i.c. longer integration times will yield larger values of x. Unfortunately, in VIIE

= const x t*,

v-ray astronomy signals often occur in bursts whose durations (and locations in
time) are unknown, Clearly, if the burst time is short compared to the integration

time, detectability is decreased.

4.4.3 Moute Carlo Simulations

In order to devise a coherent strategy for the search of periodic signals in a
dala set, it is useful to study the Dhehavior of the chosen test statistics through
sitnulations. To this end, Monte Carle simulations of the expected time series

have been performed with particular emphasis placed on the behavior of the
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Rayleigh test in the presence of varying amounts of periodic signal. In these
stuclies, a set of randomly distributed event times representing the background
has heen combined with “signal” times injected with a particular periodicity
and distributed according to some chosen waveform. The signal distribution is
that of a half sine-lobe which spans a chosen duty fraction § of the period. The
strength of the injected signal is characterized by the signal-to-background ratio

o as defined in Equation 4.38.

Resolution

Although we know that the maximum resolution attainable using an FFT is given
by the Fourier Independent Period spacing (Equation 4.26), it is not correct to
assume that such resolution corresponds to the error in a period measurement
using the Rayleigh test. Because of the ability to oversample the independent
band, the resolution is actually increased. The price paid, however, is in the form
of a statistical penalty associated with oversampling as mentioned earlier. The
correct formulation of the error in a reconstructed period has been discussed by
Middleditch (1976) and Gorham (1986) and warrants additional emphasis.

In order to form a standard lo error bar associated with a measurement
of the period of a signal, one must determine the period range over which the
probability drops from a value p’ to a value e’%p’. Thus, if we let po represent
the probability associated Witil zg, the largest detected value of =z, we nced to

find the period with Rayleigh power =’ such that

po=e2p (4.41)
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Figure 4.9: Schematic of power spectrumn and associated error bars on recon-

structed period.

or

e = e be?. (4.42)

Solving for z', we have
-4 ’

' =z -0.5. (4.43)

Thus, the range for the error bar on the period extends between values of P [or
which z = zo — 0.5 (Figure 4.9).

Such a formulation impiies that the resolution of the Rayleigh test is de-
pendent upon the value of z. This is intuitively obvious; the larger the signal
strength, the better one should be able to resolve the period. In order to de-

termine the range of the period resolution as defined above, it is necessary to
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Figure 4.10: Resolution of Rayleigh test. Simulation of 500 data intervals with
duration 900s and average background rate 0.7 Hz. The signal strength used
was 10% distributed as a half sine-lobe with a duty fraction of 0.6. The injected

period was chosen to coincide with that for Her X-1.

perform a graphical solution. Alternatively, one can assume a functional form
for the power spectrum to obtain an analytical solution. Under the assumption
that the power spectrum is described by a “sinc?” function, Middleditch (1976)

has shown that the period resolution is given by

) P? |6
= — [, 44
ap 27rT\/: (4.44)

In Figure 4.10 the results of a simulation of the resolving power of the Rayleigh
test are plotted. Here signal with a period P corresponding to that of IHer X-1

was added into a randomly distributed background. The duty cycle chosen for
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the signal distribution was § = 0.6 (which is similar to that expected from Her
X-1) and the signal strength was chosen to be 10%. The results of the siinula-
tion, however, are not significantly affected by the choice of these parameters.
After injection of the signal, the Rayleigh test was performed over three Fourier
independent periods and the value of the period which reconstructed with the
largest power was plotted. From the figure it is clear that the distribution of re-
constructed periods is significantly narrower than one independent period. The
solid envelope shown is that corresponding the the formula for the resolution
given above (Equation 4.44). It is clear that this envelope encompasses approx-
imately two-thirds of the data points while the full independent period band
encompasses a much larger fraction and, thus, corresponds to much more than
a 1o error bar.

While the preceeding discussion suggests that the period resolution f{or the
Rayleigh test is always better than one Fourier independent period, this need
not strictly be true. This is because the time window T defines the independent
period spacing while the actual duration of the signal defines the the envelope
of the power spectrum. Thus, if the signal occurs in a burst of duration T’ < T,
the envelope will be correspondingly larger and the resolution will be decreased
(Figure 4.11).

Additional complications in resolving the periorl of a signal will resualt il pevi-
odicity occurs in several discrete bursts within the search window. If, for example
two bursts of equal duration occur during a particular interval of data, the re-

sulting power spectrum will correspond to the familiar double-slit interference
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Figure 4.11: Power spectrum corresponding to a search window of 900s with the
signal burst spanning only 450s. The dashed lines span one Fourier independent
period assuming a duration of 900s while the dotted lines correspond to a dura-
tion of 450s. Note that the width of the peak, and thus the inherent resolution,

is broader than expected from a 900s window.

pattern. Similarly, more complex arrangements of signal bursts result in corre-
spondingly complex power spectra. In such cases, it may be helpful to study the
temporal growth (and decay) of the Rayleigh statistic inside the search wincdow.
Such an exercise suffers from the normalization characteristics of the statistic
whereby the Rayleigh vector is weighted inversely by the number of events. This
normalization reduces the ability to identify bursts of signal unless the test is

begun very near the beginning of the signal burst; acdnnulating a large num-
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her of random events preceeding a burst will diminish the resulting statistic in

proportion to the number of such events.

Efficiency

" Because of the nature of the Rayleigh test, it was suggested earlier that presence
of a signal may go undetected because of cancellation from the background.
Figure 4.12 illustrates this effect by plotting the value of z for fixed signal-to
hbackground ratio but varying values of the angle # (compare with Figure 4.8).
It is clear that fluctuations in the ‘noise vector’ can result in cancellation of the
‘signal vector.” Using Equation 4.39, we can estimate the mean value of z for a
given value of the signal fraction. For a signal distributed as a é-function (i.e.
very small duty fraction), we have =1 so that averaging over all values of ¢
yields

1+ %2
1+a (4.43)

ti

where a, 3, and x are as defined earlier (Equations 4.34, 4.38, and 4.40). Figure
4.13 illustrates this behavior along with the results from Monte Carlo siinulations
where we have used a background level corresponding to an average rate of 0.7
Hz tested over intervals of duration 900s. From the plot we see that if 500 such
intervals are tested, the signal strength required to yield a = which corresponds to
the 99% confidence level (= ='-10.8) requires x =x 3.4, or a signal-to-background
ratio of about 14%.

The efficiency of a particular test for identifving a signal is dependent upon

the type of signal being studied. Since the signal relevant to the analysis in
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Figure 4.12: Scatter plot of z as a function of the angle # between the background

and signal “vectors” for fixed signal strength a = 0.1 (x = 2.1, 8 = 1).
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Figure 4.13: Average value of the Rayleigh power z as a function of signal

strength using Equation 4.39. The data points are derived from Monte Carlo

simulations using a light curve for which g = 1.

this study is likely to be sporadic, a reasonable definition of efficiency centers on
the ability of a test to identify a single burst of signal in the presence of many
intervals of pure background. Thus, in the case of the Rayleigh test, we must
set a threshold in z beyond which we may conclude the presence of signal at the
99% confidence level. This threshold is dependent upon M, the total number of

intervals searched since

}5=1—(1—e'=0)". (4.46)

Further, an additional factor must be included if the power spectrum is oversam-

pled. For example, for P=0.01 when M =500, we have (assuming an oversampling
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Figure 4.14: Efficiency of Rayleigh test as a function of signal pulse duty fraction.
The upper family of curves correspond to a signal strength of 15% while the lower
curves have 10% signal. The numbers along each curve indicate the number of

such intervals searched (and, thus, the corresponding detection threshold z.

penalty ¥ = 3) zo = 11.9. To determine the efficiency of the Rayleigh test, then,
we may simulate data with a particular duty cycle and fraction of signal, perform
the test on N such data strings, and find the percent which pass the detection
threshold. The results of such simulations are shown in Figure 4.14 where we
have plotted the efficiency as a function of pulse dunty fraction for experiments
consisting of 100, 300, and 300 test intervals. The simulation was performed
for both 10% and 15% signal and, in each case, one Fourier independent period

was sampled at T lattice points. The fraction of intervals that contained power



142

80 | LS le_fTﬁITf T T‘T—I' | L 7Tﬁl~
60 — —
- =
2 . Z
& i .
.“s’ 40 — —
& - Rayleigh .
= - -
';W': 20 — —9
> i -
o 8 ) I | | N - | Ll [ Ll i1 1.1 LLI H LJ

0.05 0.0 0.1 0.125 0.15 0.175 0.2

Signal/Background Ratio

Figure 4.15: Comparison of Rayleigh test and x2 (for a 10 bin light curve) as a

function of signal strength.

above zg then defines the efficiency. It is clear that the Rayleigh test favors
narrow pulses (which agrees intuitively with the simple vector addition model)
and that considerable signal is required before the likelihood of an isolated burst
exceeding the threshold becomes large. For comparison purposes, the Rayleigh
test and a x? test on the folded data using 9 degrees of freedom were performed
simultaneously. In this comparison, a duty fraction of 0.5 was used and 500
intervals were tested. In order to remove ambiguity due to oversampling in the
two tests, only the period at which the signal was injected was tested. For such
signal distributions, the Rayleigh test is more powerful than xJ for all values of

signal strength (Figure 4.15).
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Figure 4.16: Results of x? test of Rayleigh power distribution as a function of
signal strength for 500 test intervals of 900s duration. The signal pulse duty

fraction used was 0.5 and the average background rate in the intervals was 0.5

Haz.

Although the Rayleigh test has been represented as having rather low effi-
ciency at low signal levels, if the signal is steady (rather than just occurring in a
burst) the efficiency is quite high. In that the expected distribution for z in the
absence of signal is known to be an exponential, one can test the distribution
obtained from data against the random distribution. In Figure 4.16, the results
of a x? test of this distribution is plotted as a function of signal strength. Along
the vertical axis, the value of y? per degree of freedom is plotted. The number
of degrees of freedom varies from about 20 at small signal strength to about 40

at larger values. The probability associated with these x? values is vanishingly
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small for all but the smallest amounts of signal. For comparison, the distribu-
tion was tested for the case in which the signal occurs only in a fraction a of
the time window (although appearing in each window - a somewhat unrealistic
model). It is obvious that continuous low-level pulsed signals can be detected
with relative ease. Also apparent is the fact that choosing an interval size which
is large compared with the signal duration significantly decreases the ability to

detect the signal.

Correlation With Rate Deviations

When signal is introduced to a random background, a deviation in rate is ex-
pected. Of course, since the rate is subject to statistical variations, such devi-
ations may not always be significant. As with the Rayleigh test, if a signal is
continuously present (and the background is well known) the effect on the distri-
bution of expected rate deviations will be obvious even at relatively small signal
strength. In the case of a burst of signal, however, it is quite conceivable that
the expected increase will meet with a statistical downward fluctuation in the
background to reduce the overall significance of the signal. For this reason, it is
useful to use both a periodicity test (such as the Rayleigh test) and a neasure
of rate excess to search for non-random behavior. As a simulation, intervals
with fixed amount of signal (subject to fluctuations) were generated and tested

for periodicity. At the same time, a rate excess based on the expectation from
the known background was calculated. The distributions are plotted in Figure

4.17. In the case of no signal, it is clear that there is no correlation between
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Figure 4.17: Scatter plots of rate deviation vs Rayleigh power for various values of
signal strength. In this simulation, 500 intervals with duration 900s and average

rate 0.5 Hz (prior to addition of signal) were used. The signal was distributed

such that 8 = 1 (i.e. a very sharp light curve).

rate excess (here defined in standard deviations based on the mean background
rate) and Rayleigh power. This is to be expected since the Rayleigh power is
properly normalized to remove the contribution due to the number of events (for
sufficiently large numbers). Hence, a statistical upward Auctuation in the rate
of a set of random times should not show any non-random preference for peri-
odicity. In that the time series to be analyzed is to be tested against the null
hypothesis (i.e. the hypothesis that there is no signal present), we may define

the probability associated with a given detection (:,v), where v is the number
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of standard deviations corresponding to the rate deviation, as
W =14 [1-(1-p)"]ps (4.47)

Here p, is the probability associated with the Rayleigh power, p; is that associ-
ated with the rate deviation (i.e. the probability against exceeding v standard
deviations), and M is the number of independent searches. The associated level

of coufidence, as explained in Section 4.4.1, is given by
e=W({Q-InW). (4.48)

From this it is clear that a signal may manifest itself as an excess with no apparent
periodicity or as periodic with no significant rate excess. The power of both tests

should be coinbined to identify deviations from random behavior.



Chapter 5

The Binary System Her X-1/HZ Herculis

Images of broken light

Which dance before me like a million eyes
They call me on and on

Across the Universe.

The Beatles

The binary system in which the periodic source Her X-1 resides has been
studied extensively since its discovery in 1972. The picture that has unfolded
presents views of both simple binary behavior and complex astrophysical pro-
cesses. Pulse timing in electromagnetic bands extending from the infrared to
UUHE 4-rays has resulted in the identification of phenomena which has greatly
improved the understanding of such binary systems. In addition, X-ray studies
have provided. a measure of the magnetic field strength in the vicinity of Iler
X-1 while optical studies have provided mass measurements for botl stars as
well as information pertaini;xg to the accretion disk which powers the system.
In this chapter a review of the studies of Her X-1 is presented. We begin with
a discussion of the early studies in which the various periodicities of the system

were identified. After discussing contributions made in the optical and infrared
147
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stucies of the companion star, we discuss the more recent VHE and UHE studies

as well as models which have been proposed to explain the various features which

have been identified in such studies.

' 5.1 X-Ray Studies of Her X-1

X-rays from Her X-1 were first discovered with the Ukuru satellite (Tananbaum
et al., 1972). Originally designated 2U1705+34, the source was immediately
hypothesized to be part of an accretion-driven binary system. Periodicity of
17.7, thought to correspond to orbital motion and associated eclipse of thg X-
ray source, was identified. Further, pulsations with a periodicity of 1*.24 were
detected. Careful pulse timing of this periodicity revealed temporal variations
in the period which were consistent with Doppler shifts due to an orbit with
a 17.7 period. By fitting these Doppler shifted values to an expression for the
orbit, the path was found to be very nearly circular with a radius of about 13
light-seconds; the calculated eclipse was found to correspond in phase to the
observed minimum in the 1¢.7 periodicity. In addition, a long-term periodicity
of approximately 35¢ within which the X-ray source was ohserved for only about
9 days was noted. It was suggested that the source of this periodicity could
arise from instabilities in the atmosphere of the companion star in the vicinity
of the Roche lobe, thus resulting in decreased emission when the lobe ceases to
be filled, or from precession of the pulsar beam. Although the nature of the long
term cycle in this system is still in question, most of the original interpretations

of the system parameters have turned out to be largely correct. The most recent
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Figure 5.1: Secular changes of pulsar period of Her X-1. The overall decrease
in the period is consistent with the suggestion that the system is powered by an
accretion disk (which, thus, transfers angular momentum to the neutron star).
Short term deviations from this overall trend are thought to result from torques

applied by matter near the Alfvén radius.

ephemerides for the various cycles are listed in Table 5.1.

Further studies of Uhuru data (Giacconi et al., 1973) show the pulsar period
to be decreasing (Figure 5.1), consistent with the spin-up expected in accretion
driven binary systems. The X-ray luminosity of ~ 10* erg s~! (Forman et al.
1972) is consistent with such :;n accretion production mechanism. A connection
between the orbital and long term periods have also been identified whereby

the long termm cycle (whose transition from off to on states was observed to be



Pulsar Period®
Epoch of Period®
Period Derivative!®
Orbital Period®

Projected Radius‘®

Projected Velocity'™

Eccentricity!®
Precession Period'®
Epoch of Precession ™
[Her X — 1 Mass(?

HZ Her Mass(?

P =1°.23779200 £ 0°.00000005
To = JD2445778.56
P=_2+1x10"13

P,., = 14700167788 + 0%.000000011
%2 sin: = 13°.1831 £+ 0°.0003

v, sini = 169.049 + 0.004 km s~}
€ < 0.0003

Pisq = 344.928

To,3s4 = JD2445788.0 £ 0.5

Myer x-1 = 1.30 £ 0.14 M,

Muyz er = 2.18 £ 0.11M,

(a) Ogelman et al. (1985)

(b) Deeter et al. (1981)

(c) Staubert et al. (1983)

(d) Middleditch and Nelson (1976)

Table 5.1: Her X-1 parameters.



very rapid) turns on at discrete values of the orbital phase, ¢,.» ~ 0.2 or 0.7.
Further, dips in the X-ray intensity which are not associated with the eclipse of
the source by the companion star have been observed. Such dips are thought
to be produced by intervening gas. Variations of the intensity during such dips
suggest that the column density associated with the intervening matter is not
uniform. Even more interesting, hiowever, is the fact that such intensity dips
occur at progressively earlier orbital phases during the 35 cycles. This is again
indicative of some sort of precession whereby the intervening gas arrives along
the line-of-sight somewhat earlier with each orbit. Breclhier (1972) has suggested
that precession of thie neutron star could be responsible for the cycle while models
for precession of the accretion disk have also been suggested (Roberts 1974, Katz
1973, Petterson 1975). Petterson (1977) has considered the “slaved-disk” model
whereby the accretion disk precession results fromn precession of the axis of the
companion star. He finds that, assuming that HZ Her corotates with the orbit
and fills its Roche lobe, the precession of the axis results in a change in the
angular nomentum of the accreting matter thus producing a twisted accretion
disk. Using this twisted disk along with a thin disk corona, a shell of matter
at the Alfvén radius, and a time varying accretion rate, a model which is able
to explain the various details of the cycle can be constructed. However, he
concludes that such precession of HZ Her is hard to explain in that such effects
should be removed in a timé scale small compared to the orbit circularization
time (note that the eccentricity of the orbit is extremely small - see Table 5.1).

Crosa and Boynton (1986) have suggested that the absorption dips and discrete
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Figure 5.2: Variation of X-ray intensity due to 359 cycle.

turn-on phases of the characteristic 35 day cycle can be explained in terms of
periodic mass transfer associated with the passage of the X-ray shadow of the
tilted accretion disk across the inner Lagrangian point of the system.

The identification of emission during the 357 low state, displaying the char-
acteristic 1°.24 period, eclipses, and absorption dips, (Fabian et al., 1973; Cooke
and Page, 1975; Jones and Forman, 1976) has extended the form of the intensity
cycle to include both “High” and “Low” on-states separated by off-states. The
form of the cycle is illustrated in Figure 5.2. The form of the bimodal intensity
profile suggests that, in the model of a precessing disk, the X-ray source is par-
tially obscured, possibly by a hot corona surrounding the disk, during the low-on

state.



Using data from a balloon experiment, Trimper et al. (1978) have identified
cyclotron lines in the X-ray spectrum which suggest a surface magnetic field of
~ 4 x 10'? Gauss. Such a measurement is consistent with values expected from
models of stellar evolution to the neutron star state (see Chapter 2) and repre-
sents a most important parameter determination, especially in view of models
invoked to explain the production of VHE and UHE +-rays in such systems.

In 1983, an extended low state was discovered in Her X-1 (Parmar ¢t al., 1985)
wherein EXOSAT observed the system over several 35% cycles but measured no
high increase in intensity above the that typical of the “off” portion of the cycle.
This observation directly followed measurements made by the Japanese Hakucho
and Tenma satellites which suggest that the secular spin-up of the pulsar had
reversed, thus resulting in an increase of the period (Nagase et al. 1984). Such
a spin-down could be related to a change in the accretion rate of the system
although optical observations of the companion star made during the extended
low state (Delgado et al. 1983) suggest that the X-ray source was still active.
Rather, an increase in the size and/or density of the accretion disk may have been
responsible for obscuring the X-ray source. By March, 1984 the extended low had
ceased as EXOSAT once again observed transitions into the high intensity state.
Evidence for neutron star precession based on a 180° phase shift of the main
pulse feature in the EXOSAT data (Trimper et al. 1936) in passing from the
high-on to the low-on state of the 35¢ cycle has introduced further controversy
in the interpretation of the nature of this long term variability.

The composite X-ray spectrum of Her X-1 (McCray et al. 1982) is shown
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Figure 5.3: Composite photon spectra of Her X-1 from 0.1 to 100 keV.

in Figure 5.3. Below ~20 keV, the spectrum is relatively flat with a power-law
index of § ~ 1. Above 20 keV the spectrum steepens to § ~ 3.0. Spectral
features at ~6.4 keV (iron K-fluorescence line) and ~ 58 keV (corresponding to
the cyclotron feature mentioned earlier) are clearly visible. The soft X-ray flux,
from black body arguments, must originate from a distance R > 10% cm from
the neutron star (Holt and McCray 1982). This distauce very nearly coincides
with the Alfvén radius (Section 2.4.2) where one expects a pile-up of accreting
matter. A fraction of the hard X-ray fluxis appareﬁtly intercepted by the matter

and reradiated at lower energies.



Since the last EXOSAT data, there exists a gap in X-ray observations of
Her X-1. The Japanese satellite GINGA (which has diverted much previously
scheduled observing time in order to study SN1987A) and the X-ray facility
“Kvant” (which is housed in the USSR’s Mir space station) should provide new
data in the near future, in particular with regard to the suggestion of the neutron

star precession features.

5.2 Optical and Infrared Studies of Her X-1/HZ Her

Soon after the X-ray discovery of Her X-1, the ultraviolet-strong variable star
HZ Herculis was suggested as a candidate for the companion star (Liller 1972).
Identification of 19.7 variations in the intensity of the star established its asso-
ciation with Her X-1 (Bahcall and Bahcall 1972). Optical pulsations with 1°.24
periodicity were soon identified (Davidsen et al. 1972). These pulsations were
not detected in all of the observations, but appeared in both high and low X-
ray intensity states. Indeed, the 19.7 light curve shows no large dependence on
the 35% phase. This is consistent with the idea that X-rays from Her X-1 are
absorbed, thermalized, and re-emitted in the atmosphere of HZ Her; one would
expect the surface to receive some X-rays regardless of the 35¢ phase.

The optical pulsations in HZ Her are found to occur primarily at discrete
values of the binary phase. Middleditch and Nelson (1976) have identified three
distinct regions of emission based on the frequency of these pulsations. By as-
suming that any matter which is reprocessing the X-rays is in corotation with

the binary system, a measure of the (Doppler shifted) pulsation frequency and
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its derivative yields a position of origin in the binary system. Such measure-
ments suggest that pulsation occurs at binary phases near 0.25 and 0.75 from a
source very near to the surface of the companion star while pulsations at phases
near 0.85 originate from near the compact star. Models of the expected pulsa-
tions from HZ Her for various equipotential contours (i.e. various values of the
fraction of the Roche lobe that HZ Her fills) indicate that the star must very
nearly fill the Roche lobe. Thus, because the matter viewed at binary phase 0.5
is essentially “pointed” toward the observer, the reprocessed X-rays are not “re-
flected” in such a manner as to be observed. At the quadrature phases, however,
the “reflections” off of the flatter regions of the distended stellar atmosphere are
favorably directed toward the observer. By considering the expected Doppler
shifts from these two regions for different values of the mass ratio of the two
stars, the data is found to suggest a ratio of ~ 1.5 — 2.0. Given the duration of
the X-.ray eclipse and this mass ratio, a value for the inclination of the system
can be inferred. This, along with the value of the mass function derived from

X-ray data,
_ (Mysini)®  4x?(rysini)?

T (My+ M) G P? (5.1)

is sufficient to determine the individual nasses of the components. The values
obtained by Middleditch and Nelson are listed in Table 5.1.

Coordinated observations of uptical and X-ray pulsations from Her X-1 (Joss
et al. 1980) suggest that some of the optical pulsations may be emitted in-phase
with the X.ray pulsations. Such optical photons are thought to originate in a

region of enhanced density near the intersection of the accretion disk with an



accretion stream from HZ Her.

Simultaneous observations of optical and infrared pulsations from HZ Her
(Middleditch et al. 1983) indicate that the spectrum is relatively flat in this
region. These observations were made several orbits prior to a turn-on of the
X-ray cycle. Later studies by Middleditch et al. (1985) successfully identified
optical and infrared pulsations during the 1983 prolonged X-ray low state.

The optical data from this binary system is rich with information regarding
the accretion disk and its effects relative to the 35 day cycle as well as the
interplay between this cycle and the orbital period and its relation to details in
the X-ray data. For detailed analysis the reader is referred to Boynton (1978),

Crosa and Boynton (1980), and Middleditch (1983).

5.3 VHE and UHE y-Rays from Her X-1

Observations of TeV v-rays from Her X-1 have been made by several groups.
The Durham group first reported such activity (Dowthwaite et al. 1984) when
a three minute burst of activity pulsed at the 1°.24 period was observed. The
time of the burst was consistent with a turn-on of the 35? X-ray cycle. Because
of the short duration of this .burst, the resolution of the period measurement
was quite poor. Several months later. pulsations from the sonrce were detected
by the “Fly’s Eye” experiment (Baltrusaitis ef al. 1985) at an energy > 500
TeV. The emission, however, apparently did not extend to lower energies in that
simultaneous observations from the Durham group showed no such activity. In

both 1984 and 1985, the Whipple Observatory group made several detectious of
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pulsations from Her X-1 (Gorham et al. 1986a, 1986b) including one episode
that continued far into the eclipse of Her X-1 by HZ Her. Using the standard
model of Eichler and Vestrand (1985), Gorham and Learned (1986) suggested
that such behavior could result from beam steering in the magnetic field of HZ
Her.

Upon investigating data which overlapped with the Whipple detections, the
Durham group has reported a simultaneous detection of pulsations occurring on
4 April 1984 (Chadwick ef al. 1986). On this date, the Whipple group reported
a burst of activity in a 28 minute segment of data collected from the direction of
Her X-1. The Durham group, analyzing an hour-long run containing this time
interval, also observes periodic pulsations (at a somewhat less significant level).
It appears, however, that the duration of the Durham signal is only ~ 10 minutes
and it is not clear from the literature whether this time interval is a direct overlap
with the Whipple result.

The Haleakala group reported several episodes of activity displaying period-
ictty in 1985 (Resvanis ef al. 1987). In this case, the light curves corresponding
to the burst intervals were quite different from those generally seen from Her
X-1. Rather than consisting of rather broad emission, these light curves showed
activity confined to a narrow region of the pulsar phase. While cousistent with
the light curve from the Fly's Eye detection, this represents a considerable devi-
ation from other TeV results. Additional episodes of activity in 1986 have been
reported by several groups and will be discussed in Chapter 6.

When the orbital phase of the various TeV detections are plotted against the
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Figure 5.4: Scatter-plot of orbital phase vs 35¢ phase for TeV observations of

Her X-1. See Figure 5.5 for symbol key.

357 phase (Figure 5.3) an obvious correlation is seen; the X-ray “off” portions
of the phase are also void of VHE ~v-ray detections. If the X-ray off cycles
are the result of matter in the accretion disk blocking the view of the pulsar,
one might expect enhanced y-ray production because of the additional target
material available for the conversion of charged particles. On the other hand,
the particle acceleration regions are not well enough understood to claim that
precession of the neutron star should result in a lack of particle beams directed
toward the observer during such phases.

Possibly miore interesting is the scatter of detected periods from TeV experi-

ments. In Figure 5.4, these periods are plotted as a function of time. Note that
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while many of the observations produce periods which are consistent with the
expected X-ray period, most are not. The 1986 observations create the illusion
that the period is decreasing with time. This is an observational affect which re-
sults from the earlier practice of scanning a narrower range of periods in looking
for signal (see Section 6.1). The deviations of periodicity from that of the pulsar
implies that the vy-ray production occurs in regions removed from the neutron
star. In models which use accelerated particles to produce the y-rays, such de-
viations in the period may result from magnetic steering effects in combination

with a moving beam dump target or {rom from a broad proton beam striking a
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Figure 5.6: Schematic representation of the Her X-1/HA Her binary system.

target mass which has broken free from corotation.

5.4 Her X-1/HZ Her: A Synopsis

The many and varied studies of the Her X-1/HZ Her binary system have yet
to provide a complete understanding of all the observed details. It is possible,
hhowever, to construct a reasonable picture which describes the approximate size,
coufiguration, and energetics of the system. While such a picture will surely
be deficient in some aspects and contain features which are questioned by some
in the field, it will serve the purpose of illustrating the regions in which the

characteristic radiation is produced.

The accretion-driven system is shown schematically in Figure 5.6. HZ Her-
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culis, a 2.3My A-type star, fills its Roche lobe of nominal radius 2.7 x 10° km.
Its binary companion Her X-1, located 6.4 x 10° km from its center, is a 1.4
neutron star with a surface magnetic field strength of ~ 4 x 10! Gauss and a ro-
tation period of 1.24s. The two stars orbit their relative center-of-mass, located
4 x 10° km from the neutron star, with a period of 1.7 days. Matter from HZ
Her flows through the inner Lagrangian point, at a distance of 2.9 x 10* km from
Her X-1, and, by virtue of its relative angular momentum, forms an accretion
disk whose radius is ~ 2 x 10% km - nearly that of the Roche lobe of the neutron
star. The matter, which is accreted at a rate of ~ 1072My yr~!, gradually loses
angular momentum thus falling into ever smaller Keplerian orbits. At a distance
of ~ 102 — 10* km from Her X-1 (the Alfvén radius), the magnetic field of the
neutron star is sufficient to force the matter into corotation. Angular momen-
tum which is transferred to the neutron star upon accretion results in its overall
spin-up. Occasionally instability regions develop in which matter which is orbit-
ing with its Keplerian period couples to the magnetic field of the neutron star.
The resulting torques may act to increase or decrease the rotation speed of the
neutron star depending upon whether the instability develops inside of outside
of the corotation radius. This behavior is evident in Figure 5.1.

Upon reaching the Alfvén radius, the accreting matter becomes controlled
by the magnetic field lines whereby il is {unneled toward the polar caps. The
extensive heating which results is the source of X-rays. Because the polar caps
rotate with the star, the X-rays appear pulsed to a distant observer. The acere-

tion disk, which is tilted several degrees relative to the orbital plane, appears to
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precess with a 35 day period. Because the orbital plane lies very nearly along our
line of sight, the tilted disk regularly obscures the view of the X-rays. However,
suflicient quantities reach the companion star to result in optical and infrared
reprocessing which is modulated at the X-ray period.

Somewhere between the neutron star and the light cylinder (which is ~ 6 x 10*
km distant) electric fields sufficient to accelerate protons to energies in excess of
10'5 eV are formed. These accelerated protons interact with surrounding matter,
possibly in the accretion disk or in the outer regions of HZ Her, to form very
high energy v-rays. Such y-rays have been observed only recently and the further

study of such radiation is the subject of this paper.



Chapter 6

A Search for VHE ~v-Rays from Her X-1

Well my feet they finally took root in the earth.
I got me a nice little place in the stars.

And I swear I found the key to the universe

In the engine of an old parked car.

Bruce Springsteen

The Haleakala Gamma Observatory logged 132 hours of observation time
on Her X-1 between the months of May and July in 1986. After rejection of
weather-affected data, 104 hours were selected for analysis. Here the details of
this analysis are described and the results discussed. In particular, evidence of
a burst of activity occurring on 13 May is presented. This burst is characterized
by periodicity which is near,. but distinctly different from, the pulsar perind
expected from extrapolation of the most recent X-ray ephemeris. This result is
discussed in relation to similar results from other experimental gronps in 1936

and suggestions as to the origin of such a result are discussed.

164
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Figure 6.1: Orbital and 35% phase distribution of HGO observation times in

May-July 1986.

6.1 Data Preparation

In the summer of 1986, the Haleakala Gamma Observatory collected 132 hours
of data from the direction of Her X-1. The data included observations covering a
broad range of both orbital and 35¢ phases (Figure 6.1). As always, an off-source
region located 3°.6 from Her X-1 was monitored simultaneously and this off-

source data was treated identically to the on-source data in performing a signal

search. Because the durations of the data runs vary considerably, a decision was
made to divide the data into 15 minute segments and to analyze each such interval
for signs of y-ray activity. Before compiling a set of such intervals, however, all

data was inspected for overall quality. Any data which indicated the presence
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Here event counts are tallied in 60s bins.

of clouds (which are sometimes overlooked by observers) was rejected. Such
identification was accomplished in a two step process. First a nominal shower
cut (Section 3.2.4) was applied to all data. The resulting trigger rates were then
inspected for “reasonable” behavior. Runs with rate fluctuations which were
obviously related to sky conditions were identified and rejected (Figure 6.2). As
a further check, the zenith angle dependence of the data was fit to a three-term
Legendre polynomial expansion (as described in Section 3.2.4) and the deviation
from the fit was recorded fur. ;:ach 15 ininute interval. Runs in which a strong
correlation between negative deviations in both the on-source and off-source
apertures was apparent were rejected from the sample. This inspection process

reduced the original 132 hours of data to a working set of 104 hours. Within this
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set, the segments to be analyzed were chosen with particular attention paid to
an effort to eliminate gaps in the data. Such gaps may occur, for example, when
the high voltage to the PMT’s shuts down in response to high base current in any
particular channel. Although such gaps do not present any particular problem
for periodicity analysis (except for the possible introduction of window effects),
they are somewhat of a nuisance in terms of calculating deviations in rate and,
as such, their elimination was deemed worthwhile. The end product of the data
preparation was a set of 416 15-minute intervals.

As described in Chapter 3, the timing cut used to eliminate triggers which
were caused by random light from the night sky background consisted of requir-
ing a multiplicity of 9 or greater in a sliding 5ns time window. This requirement,
of course, was made only after calibrating the data so that TDC times were cor-
rected for slewing effects. The trigger times for each event passing the require-
ments of the shower cut were reduced to the solar system barycenter relative to

the Her X-1/Hz Her barycenter as described in Chapter 4.

6.2 Period Search

The search for periodicity in the time series data selected to be analyzed was done
with the Rayleigh test. Given the expected X-ray periond, hased on the ephemeris
listed in Table 5.1, the Fourier-independent period spacing for the 15 minute data
segments is AP = 1.702 x 1073s. Tests were made for 17 periods, centered on
the expected X-ray period, and spanning 3 independent periods.  This range

corresponds to approximately +3.5 Doppler shifts in the binary system. While
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Figure 6.3: Distribution of Rayleigh powers obtained in periodicity search
(a)on-source and (b)off-source. Note that the multiple entries of high power

in the on-source data are the result of oversampling the burst interval.

this range is quite large, previous results indicate that VHE -y-ray emission may
occur in a region different from that of X-ray emission (Gorham et al. 1986b). In
that the production mechanism is not clearly understood, and since the presence
of large magnetic fields can result in considerable steering of charged particle
beams which may be responsible for the 4-ray production, such large shifts in
the period are not unreasonable.

The distribution of Rayleigh powers for all intervals searched is shown in
Figure 6.3. Note that such a distribution represents an oversampling of the

independent periods. Thus, the three entries indicating high power in the on-
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Figure 6.4: Power spectrum for burst interval at 13:35:40.98 UTC on 13 May

1986 (a)on-source and (b)off-source. The X-ray period is indicated by the arrow.

source data actually all correspond to the same time interval. Similarly, the two
entries in the bin for which z =~ 9 in the off-source data correspond to a single
oversampled peak. Comparison of the on-source and off-source distributions
suggests no obvious low-level constant periodicity (i.e. the distributions are
both fairly well described by the expected exponential fit). However, the on-
source data clearly contains an interval of unexpectedly high power. This power
corresponds to an interval starting at 13"35m40°.98 UTC on 13 May, at orbital

phase @,.» = 0.81 and 35% phase estimated at ¢354 = 0.22. The power spectrum
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upper curve was derived using the Kernel density estimator method of de Jager

(1987).

for this interval is shown in Figure 6.4. Note that the spectrum is has been
expanded to ten Fourier-independent periods for purposes of illustration. The
detected period of 1°.23593 + 0°.00018 is 0.15% lower than 1°.237778, the value
expected by extrapolation from the most recent X-ray ephemeris. As we shall
discuss in the next section, this surprising result is in excellent agreement with
other TeV measurements made.in 1986. The light curve for the burst interval is
shown in Figure 6.5 along with the smoothed function as derived by the Kernel
density estimator method of de Jager (1987). In an effort to determine whether

the y-ray activity extended beyond the 15 minute time window used for the
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Figure 6.6: Rayleigh power as a function of time for data on 13 May 1986. The
plot begins 3000 s into the data run. The search interval in which the burst was

detected was begun at 3600 s (the beginning of the fourth 15 minute interval in

the run).

interval, the Rayleigh power was calculated as a function of time. As explained
in Chapter 4, the results of such a calculation suffer from the dependence upon
starting time. Thus, events accumulated prior to the onset of the burst (which
are included in the final weighting of the Rayleigh vector) tend to decrease the
net power. In Figure 6.6, we plot the Rayleigh power as a function of timne.
Here we begin accumulating events 3000 seconds into the data run in an effort
to investigate the time prior to the burst interval (which begins 3600 seconds

into the data run). The onset of the burst appears to occur very near to the
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Figure 6.7: Observation window for Her X-1 on 13 May 1986. The solid curve
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beginning of the search interval in question and the duration is very nearly 15
minutes. Note that the peak power is lower than the 12.79 expected because of
the events accumulated in the times between 3000 s and 3600 s.

Figure 6.7 illustrates the observation window for Her X-1 on 13 May 1986 and
indicates the time region in which the y-ray burst occurred. The event rate for
the interval containing the 4-ray burst is above the expected bhaseline by 6% or
1.4 standard deviations. Given‘ the large Rayleigh power of the burst, this excess
is lower than expected. As shown in Chapter 4, however, just as a real (pulsed)

signal can manifest itself as a rate excess with very small Rayleigh power, one can



173

10-2 E ¥ i1 [ ¥ LELEER) [ | L) rfrl 11 L R} vl 11 E
~~ _3 | —
o < 10 3 E
&~ = 3
Now i N
1]
o § 1074 = 3
o g = 3
Z | - 3
> 0 B 7]
§ Z, 1075 —3
- é
'g g c S S I | l 1 1 t 1 Ll 1t 1 l 1t 1 l L1 1 1 h
T 0 0.05 0.1 0.15 0.2 0.25

Signal/Background Ratio
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1.40, as a function of signal-to-background ratio. Results derived from Monte
Carlo simulations of intervals of 15 minute duration with a mean background

rate of 0.7 Hz. The injected signal was a half-sine lobe of duty fraction 0.5.

also obtain large Rayleigh power with little overall rate excess. To be sure, such
a combination is less likely than a combination of both large power and large
rate excess. In Figure 6.8, we have plotted the probability, as determined by
Monte Carlo (except for the case of zero signal, which was calculated directly),
of obtaining a Rayleigh power larger than = = 12.5 and a rate deviation less
than 1.4, as a function of sig'nal-to-background ratio . It is clear that such a
combination is much more likely to arise from signal (a = 0.1) than from pure

random background. The 4-ray flux associated with the burst, based on the
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number of excess counts accumulated, is approximately 10~ cm~2 s~! above an
effective energy of about 400 GeV.

As discussed in Chapter 4, in the absence of signal, Rayleigh power and
rate excess are uncorrelated. While this statement should be intuitive, it must
be emphasized here in that calculations of the probability of our result having
occurred from purely random background must make use of this fact. Thus,
in testing against the null hypothesis, if we let p; represent the probability of

obtaining a Rayleigh power larger than zo, i.e.
D1 = e"°, (6')

and p, represent that of obtaining a rate excess larger than n standard deviations,

the total probability given N trials is
w=[1-01-p)"]pe. (6.2)

Here, we must consider the number of intervals searched, the number of in-
dependent periods scanned in each such interval, and the oversampling factor
associated with such scanning. Given 416 intervals searched over 3 Fourier- in-

dependent periods, we have

N =3 x 3 x 416 = 3744 . (6.3)

where the additional factor of three is associated with the oversampling. Using
the values obtained from the interval of interest, we find ¥~ = 8.4 x 10~*. As
explained in Chapter 4 and Appendix C, the confidence level associated with

this combined probability is then

e=W(l -InlV)=6.8x10"3. (6.4)
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By contrast, the lowest value of € for any of the off-source intervals was 0.385.
To dezermine the degree, if any, to which the events contained in the burst
interval differ from those in other intervals, the multiplicity distribution has
been compared with the overall average with no statistical difference apparent.
- In addition, for each event the sum of the ADC’s for participating PMT’s was
divided by the multiplicity of the event as an additional test for enhanced light
in the events from the burst. Comparison of the distribution for the burst events
with the average distribution again yields no indication of significant difference.
As a further check for indications of periodicity, the incoherent sums of the
Rayleigi: powers for each interval were formed as a function of test period. These
sums were then treated as y? variables with 2M degrees of freedom, where M =
416 is the number ~f intervais. The resulting distribution, plotted in Figure
6.9, does not provide any further evidence of periodicity. In, a similar effort,
the Rayleigh distributions shown in Figure 6.3 were tested against the expected
exponential distributions using a x? statistic. In neither case is the deviation

from a random distribution indicated by this statistic.

6.3 Other Results from 1986

The observed periodicity in VHE v-rayvs disenssed in the previous section is com-
plimented by the results of two other experimental groups which operated during
the suinmer of 1986. On 11 June, at 7"02™ UTC(', the Whipple Observatory group
observed a burst of activity from Her X-i which persisted {or at least 25 minutes

(Lamb et al. 1988). The measured period of 1°.2358 is in excellent agreement
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Here the Rayleigh powers for each search interval were added and the sum (for
each test frequency) was treated as a x? variable with 2M degrees of freedom,

where M is the total number of intervals.

with the results obtained at Haleakala. The reported flux of 2 x 107! ecm~2 57!

above 1 TeV is compatible with that quoted in the previous section given the
difference in threshold energies.

Operating at the much higher threshold of about 100 TeV, the Cygnus Array
group (Dingus ef al. 1987) observed a burst of activity from the direction of
Her X-1 on 23 July 1986. The burst was characterized by an increase in rate
which, when investigated for periodicity, was found to be pulsed with a period
of 1°.2358, again in remarkable agreement with the Haleakala result. The three

results are compared in Figure 6.10.
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Optical observations of the Her X-1/Hz Her system during the suminer of
1986 ( Middleditch 1987) yield periodicity which is consistent with that expected
from extrapolation of the most recent X-ray gpllexlleris (see Table 5.1). Thus, the
deviations in the period measured in VHE and UHE «-rays are not indicative of
a change in the rotational period of Her X-1. Rather, therfz‘a,ct: that the period
differs from that expected indicates that the 4 rays are not produced in the same
region as the X-rays. This suggestion has been made previously (Gorham et al.
1986DL) in reference to an observation of y-ray activity which continued into the
eclipse of Her X-1. Thus, these measurements provide important information

regarding the physical conditions in the binary system.

6.4 Concluding Remarks

The production of pulsed y-rays at a period differing from the rotational period
of the neutron star can undoubtedly occur in a variety of ways. Details of the
burst observed at Haleakala could set constraints on possible models. Here we
consider a scenario which could pertain to the observed activity. We assume
the presence of a charged particle beam which is produced in the vicinity of the
neutron star and which rotates with the neutron star. The y-ray production is
assumed to result from the interaction of this particle beam with matter heing
accreted onto the neutron star.

As discussed in Section 2.4.2, the bulk of the material in an accretion disk
orbits the central star with Keplerian velocities. In the region of the magne-

topause, however, the magnetic field strength becomes sufficient to disturb this
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pattern. As a result, matter may become locked onto magnetic field lines, thus
being forced to corotate with the central star. While in a Keplerian orbit, how-
ever, the accreting matter may act as a moving target for a particle beam. In
the process of becoming locked onto a field line, the matter may be channeled
up out of the piane of the disk to a sufficient degree that the particle beam is
obscured “-om: the direction of the solar system (recall that the disk around Her
X-1is tiited) so that y-rays may be directed toward the earth.

In Figure 6.9 we depict a broad particle (of width Af) impinging on matter
which is orbiting Her X-1 with a period Pg which is smaller than the rotational
period of the neutron star Pys. In such a scenario, y-ray production occurs for
as long as the target matter stays within the beam. This duration is merely
determined by the angular width of the beam and the difference in periods of

the orbiting matter and the rotating beam:

,=%‘Z(L_L)'1_ (6.5)

Throughout this time, v-rays will be beamed toward the earth only when the
target matter is directly along the line-of-sight. Thus, the «-ray period will be
that of the orbiting matter, not that of the neutron star.

The period detected in the burst observed at Haleakala suggests a Keplerian
orhit of radius = 1.9 x 10° m which is very near the corotation radius. Let us
consider the structure of the ciisk in this region. From equation 2.86, we know

that the thickness of the disk at rg is given by

H c,s

—_—

Tk Uk(TK)
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Figure 6.11: Schematic diagram depicting the interaction of a broad particle
beam with target matter orbiting neutron star with a period smaller that the

rotational period of the star (and particle beam). As time progresses, the target

advances with respect to the beam.

where c, is the speed of sound in the disk material and vg is the Keplerian speed

at rx. For typical disk temperatures of ~ 10°K, we have ¢, ~ 5 x 10* m s~ '.

Since
( ) 27I'TK
Tr) =
VK\TK PK
we have
H=~E 100 m
27

The density of the disk material in this vicinity (see, e.g. Frank et al. 1985) is

of the order p ~ 10~! kg m~2. In order for a region of target matter to act as
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an efficient production source for y-rays, the mean free path must be suflicient
for production but small enough to guarantee that the v-rays escape without
considerable attenuation. Using, as an estimate, a path length of 1 gm cm™2 =
10 kg m~2, we need ~ 10% m for the dimension of the target. This is considerably
smaller than the disk thickness. It is not difficult to imagine that such tiny
“droplets” of matter will be removed from the disk in regions of instability such
as that of the magnetopause.

Given the existence of a target of radius ~ 10?> m orbiting Her X-1 at a

distance of ~ 10® m, with a period of 1°.23593, we can predict the approximate

characteristics of the associated v-ray signal. The angular size of the target is

10° m
106 m

g~

~ 6 x 1072 degrees.

As such, we would expect the duty fraction of the associated light curve to be
quite small. This is in conflict with the relatively broad light curve observed.
Given the duration of the observed activity, 7 ~ 900 s, the angular width of the

proton beam must be at least

1 1
A8 = 277 (—— _ ——) ~ 360°.
Py Pys

If the beam is this broad, the burst duration is clearly determined by some other

factor (possibly the dissipation of the target upon capture by the field lines).

We see, then, that although the above scenario can produce a y-ray signal
whose period is distinctly different from that of the neutron star, there are de-

tails which are difficult to reconcile with the data. Certaiuly features such as
the period derivative which may be associated with the transition between [Ke-

plerian and corotation orbits and the steering of the particle beam by the field
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of the neutron star can be expected to complicated matter considerably. Still,
it is clear that details associated with the interaction of the inner regions of the
accretion disk with the neutron star may play a major role in determining the
characteristics of VHE <v-ray bursts in such systems. Further studies of such
-activity may provide direct information on the structure of such systems in ad-
dition to providing clues as to the nature of particle acceleration and the origin

of the cosmic rays.



Appendix A

Calculation of Muon Trigger Rate

Because muons can penetrate deep into the atinosphere, they represent a po-
tential source of triggers for the VHE ~v-ray telescope. In this Appendix, the

rate at which such triggers are expected to occur for the Haleakala telescope is

calculated.

Let N, be the number of Cerenkov photons produced per pathlength in the

wavelength band to which the telescope is sensitive.

1 vmaz
N, = [ in’ Al
5l sin® 8.2ndv (A.1)
[ntegrating,
27 1 1
Ne = == sin® 6, ( - ) : 2
137 o Al'!u'n. A1"mzz (A )

The effective bandpass of the telescope (see Figure 3.23) is 325 nm < A < 425

nm. Thus,

21r( 1

1 . . _
N, = —= 325 om 135 nm) sin 8. = 3.3 x 10*sin? 8, photons n™"'.

<7137

The refractive index at an altitude # is given by

n=1+(27x10"% ho (A.3)
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Figure A.1: Geometry of Cerenkov radiation.

where 7 =~ 8.2 km. At Haleakala, & = 3 km so that » = 1.00019. The Cerenkov

angle is given by

6. = cos™! (f@l—) ~1°.12 = 1.95 x 1072 rad. (A.4)
n

Thus, N. ~ 12.6 photons m~1.
From the geometry of the Cerenkov radiation (Figure A.1), light produced at

a height z hits the ground at a radius r fromn the muon point of impact where
r=60.:=dr =6.d-. (A.5)

The photon density p produced by the muon is then

N. d:z N. 1.03 x 10*  _,
p(r) = 2rr dr ~ 2mrf. T o (A-6)




The telescope must process ~ 8 photoelectrons in order to trigger. The average
quantum efficiency of the PMT’s over the effective bandpass is ~ 20% while
the average transmission of the filters is ~ 67%. The reflectivity of the mirrors
is more difficult to judge but is probably ~ 65% (it is about 85% when the
-aluminum is perfect). There are also losses due to reflections at the PMT surface
because of the relatively large angle with which photons approach fromn the outer
portions of the mirrors as well as overall losses due to incomplete coverage of the
apertures by the PMT’s. An estimate of the overall efficiency of the optics system
is ~ 5% {or slightly lower). Thus, to get 8 photoelectrons, ~ 160 photons on the
~ 10.4 square meters of mirror area are needed. This yields a critical density

p = 13m~%. The effective trigger radius is then

103 x 107

Te =
Pe

=6.8 m.

The rate for vertical muons with £ > 2GeV, at A = 3.2 km, has been measured

(Shen & Chang 1979) as
[,(>2GeV) =49 m™ s Isr7 1. (A.7)

However, the threshold for production of Cerenkov radiation is ~5.4GeV for
muons at A = 3km. The muon energy spectrum is illustrated in Figure A.2.

Above 5 Gev, the integral spectral has the form E-2?. Thus, we have

L(> 5.4GeV) =~ 6.7 m~ 25 'sr~ L. (A.8)

The solid angle of acceptance for muons to trigger the telescope is just the
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Figure A.2: Vertical differential and integral momentum spectra of muons at sea

level.

solid angle of the telescope aperture:

Q=54x 1074 sr.

The muon trigger rate is thus
R, = I, = 0.1 Hz. (A.9)

One can see from the dexlsify calculation that a non-uniformity of photons
on the mirrors exists (although, since we are operating in a very low-statistics
regime whereby the bulk of our triggers have an average of 1 or 2 photoelectrons

per mirror, such nonuniformity may be buried in the noise). The spread in
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the arrival times of the Cerenkov light from a single muon is very small. This
featurs maxr be difficult to utilize in that large showers, with correspondingly
bright leading edges. will aiso vield very narrow triggers. Although the trigger
rz-e calculated avove is likely tc represent an overestimate, efforts to identify

such muon iriggers are clearly worthwhile and are in progress.



Appendix B

Arrival Time Corrections for Eccentric Orbits

In Chapter 4 we summarized the necessity for correcting arrival times to the
barycenter of the binary system in which the signals originate. Such a procedure
is particularly simple in the case of a circular orbit and has been outlined in
Section 4.1.2. For binary systems whose eccentricity is not small (e.g. the system
containing 4U 0115+63), the procedure is more complicated.

The orbital elements of a binary system are illustrated in Figure A.1 which
represents a celestial sphere centered on the primary star A. The directions of
east and north are indicated by the points E and N. The position angle of the
ascending node, {2, is defined by the arc NL while the orbital inclination 2 is
defined by the spherical angle VLS. The periastron (point P) is the position of
the pulsar when it is closest to the primary. The angle LA P’ defines the argurmnent
of periastron, a. If the pulsar is, at some time ¢, located at point B, then the
angle P'AB' is called the true anomaly, 3. The remaining orbital elements are
the semimajor axis a, the orbital eccentricity e, the epoch of periastron r, and
the orbital period T. The seven parameters (a,e,i,a,§,7,T), then, define the
orbit.

Orbital parameters for X-ray binaries are determined by observing Doppler

188
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Figure B.1: Orbital elements of a binary star systeni.

shifts in the pulsar period P (ust as those for spectroscopic binaries are deter-
mined Sy ~bserving such shifts in a spectral line of one of the stars). With such
observations, however, the full set of orbital elements cannot be determined. In-
stcacl, one can only obtain measurements of (asini, e, a,r,T). These elements
being determined, one can then reverse the process to determine the Doppler
shifts expected at some other time.

“en one views an elliptical orbit which is not confined to the observation
plane, tiie apparent orbit is still an ellipse with the primnary star located at a
focus. Tariher. “lie center of the apparent orbit is also the center of the true

orbit anc. =: such, allows one to determine :iie position of periastron (see Figure

A.2). We mav then. for a time ¢, define a nean anomaly
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Figure B.2: Apparent orbit of an inclined binary system. Because the primary
star is located at a focus and the center of the ellipse of the apparent orbit is
also the center of the actual orbit, the location of the periastron point P (which

lies on the extension of the line from the center through the primary star) can

be determined.

2
A’Iz?(t—r). (Bl)

The eccentric anomaly E is defined such that it is zero at periastron and increases
by 2x in the course of one orhit. It is related to the mean anomaly by Keplet's
equation

M=F —-esinE. (B.2)

Hence, given a time ¢, the mean anomaly may be determined and Kepler’s equa-

tion can be solved numerically to yield the eccentric anomaly. The true anomaly
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is then de.ermined by

1
8 1+e\2 E
an — = tan —. .
‘an o (1 —e) an 2 (B.3)

Knowing 3, the correction required to account for the time delay (or advance)
relative to the barycenter of the binary system is given by

asint 1 —e?
¢ l+ecosp

Dtyource = sin(a + 3). (B.4)

The sign convention for the binary orbit is defined such that this correction is to

be subtracied from the observation time.



Appendix C

Confidence Level for Combined Probabilities

In order to properly interpret the statistical significance of the result of a par-
ticular test, it is necessary to carefully assess the selection criterion used to
characterize intervals of interest. In particular, when two or more independent
measurements are used in combination to define an overall test statistic, the re-
sulting confidence level is not the simple product of the probabilities associated
with the individual tests. To understand this distinction between confidence level
and probability, we must review ihe definition of confidence level and interpret
this definition properly in the multi-variable case.

Let S5 represent the set of possible results o from the overall test chosen to
characterize a set of data. Let s represent the subset of S which consists of
test results that have been identified as being sufficient to reject a particular
hypothesis Hg. Then the confidence level ¢ associated with the test is defined
as the probability that « falls in s given that Hy is true; i.e. it represents the
probability of incorrectly rejécting the hypothesis Hqg. As an example, in the
Rayleigh test, the confidence level associated with z = 10 in a single test is
4.54 x 107%; if this valuc of = is used to reject the hypothesis that the data from

which 1t is derived is purely random (the null hypothesis), one will incorrectly

192
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re;ect the hypothesis about 4 or 5 times in 10° trials.

Suppose the region S is defined by results a; and a; of two independent tests.
Let €, and ¢, represent the confidence levels associated with the two tests. Then
the probability of simultaneously satisfying €¢; and ¢; is certainly the product ¢;¢,.
However, the overall confidence level ¢ is not given by this product. Rather, we
must seek the probability of incorrectly rejecting Ho based on the fact that the
comined test statistic lies within the critical region defined by ¢,¢,. However,
there ar: many values of ¢; and ¢; which yield the same product. Hence, the
probability of obtaining a result in the critical region defined by ¢ is actually

greater than €;e2. Let

q=€¢€ (C.1)

represen: “he value of the combined statistic which defines the critical region s.
Then the confidence level associated with g is given by the fraction of the area of
S repreccuted by the critical region s. Wallis (1941) points out that the region s

is “efinen oy the urperbola

q:% (C.2)

1
e=q+/ 2 ge,. (C.3)
19 €
Thus,
e =¢q(l —Ingq). (C.4)

In general, when the critical region is defined by N independent probabilities
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region for which

€:€2>9

Figure C.1: Critical region defined by two independent statistics. The confidence
levels ¢; and e, are used to define the region €;e; < q. The overall confidence

level is given by the area indicated.

whose product is q, the overall confidence level is given by

Nl _Ing

. (C.5)
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