STOCHASTIC DE SITTER (INFLATIONARY) STAGE
IN THE EARLY UNIVERSE

A.A. STAROBINSKY
Landau Institute for Theoretical Thysics,
Moscow, 117334, U.S.S.R.

and

ER 176 C.N.R.S. “"Département d'Astrophysique Fondamentale"
Observatoire de Meudon
92195 Meudon Principal Cedex
FRANCE

Abstract

The dynamics of a large-scale quasi-homogeneous scalar field producing the de Sitter
(inflationary) stage in the early universe is strongly affected by small-scale quan-
tum fluctuations of the same scalar field and, in this way, becomes stochastic. The
evolution of the corresponding large-scale space-time metric follows that of the sca-
lar field and is stochastic also. The Fokker-Planck equation for the evolution of

the large-scale scalar field is obtained and solved for an arbitrary scalar field
potential. The average duration of the de-Sitter stage in the new inflationary sce-
nario is calculated (only partial results on this problem were known earlier). Appli-
cations of the developed formalism to the chaotic inflationary scenario and to quan-
tum inflation are considered. In these cases, the main unsolved problem Tlies in ini-
tial pre-inflationary conditions.

1. Introduction

In the models of the early universe with an initial or intermediate metastable de
Sitter (inflationary) stage with an effective cosmological constant produced both
by quantum gravitational corrections to the Einstein equations |1| and by a scalar
field |2-4], of extreme importance is the exit from this stage that depends on the
way of decay of the effective cosmological constant because it determines the spec-
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trum and amplitude of metric perturbations for the subsequent evolution. These per-
turbations break the homogeneity and isotropy achieved earlier at the inflationary
stage and can, in the worst case, destroy all the advantages of inflation. Two ways
of decay of the effective cosmological constant are possible % via (quasi) homogene-
ous classical instability and via inhomogeneous quantum fluctuations. In the first
case, the amplitude of perturbations of the de Sitter space-time in the modes which
preserve (exactly or approximately) the isotropy and homogeneity of the 3-space in
some frame of reference is much more than the amplitude of other, inhomogeneous per-
turbations. Thus, we have a classical {quasi)-homogeneous perturbation from the very
beginning and the subsequent evolution is deterministic ; the duration of the de
Sitter stage is totally determined by the initial amplitude of this perturbation.
This type of decay takes place, for example, in the author's model |1} for the case
of the closed 3-space section if the spatial dimension of this section was of the
order of P{" at the beginning of the de Sitter stage (in the paper, we put
h=c=1 ; a(t) is the scale factor of the Friedmann-Robertson-Walker isotropic
cosmological model ; H- 5/&).

The existence of a quasi-homogeneous classical scalar field is also assumed in the
"chaotic" inflationary scenario {5| (for the inclusion of the RZ term where R is the
Ricci scalar, see |6]). Here, the term "chaotic" simply means the unspecified depen-
dence of the metric and the scalar field on space coordinates though this dependence
is weak enough, so that the spatial derivatives of all variables are much less than
the temporal ones.

In the second case, we have no large (quasi) homogeneous perturbation at the Begin-
ning of the de Sitter stage. This possibility was first pointed in |7]| in connection
with the model |1]. But, in fact, this situation is more typical for the models whe-
re the de Sitter stage arises from the initially radiation-dominated, "hot" universe
in the course of a non-equilibrium, close to the I order phase transition (for exam-
ple, the "new" inflationary scenario). Here, nevertheless, a large quasi-homogeneous
“classical" perturbation with characteristic wavelengths >>H-1 can arise during the
de Sitter stage from small-scale quantum perturbations. In other words, "classi-
cal order" appears from "quantum chaos". In spite of being effectively classical, the
evolution of this large-scale perturbation and the space-time metric as a whole is
essentially stochastic. The duration of the de Sitter stage also becomes a stochastic
quantity in this case.

This is just the process we are interested in. It belongs to the class of the so-cal-
led "synenergetic" problems which arise in different branches of science and attract
much interest at the present time. We shall consider the new inflationary scenario
where the role of the abovementioned perturbation is played by the non-zero large-
scale scalar field 4? . It is assumed that = 0 (or sufficiently small) at the
beginning of the de Sitter stage. We shall obtain the Fokker-Planck equation for the
evolution of the probability distribution of ié (Sec.?) and calculate the average
duration of the de Sitter stage in the new inflationary scenario in Sec.3 (only par-
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tial results on this problem or order-of-magnitude estimates were obtained earlier
|8-10]). After that, we shall turn to the chaotic inflationary scenario (Sec.4)

and discuss the modern state of the problem of the "creation" of the universe briefly
(Sec.5).

2. Evolution of a scalar field in the new inflationary scenario.

The de Sitter stage in the new inflationary scenario is assumed to be produced by
the vacuum energy of some scalar field with the Lagrangian density

L- 48, 8" - v(@) w

where the vacuum effective potential V(é) has the following properties :

V(id)= 0 5 (2)
- 2 ?._ 3_.4 L ,
V(dlg g Vor grrE -4y 2740

M2 can have both signes. §= éo is the flat space-time (true vacuum). éaO is
the false vacuum. We include the term in éa to describe the case of the so-called
"primordial” inflation |11} simultaneously. At the non-zero temperature T, the po-
tential V acquires the additional thermal term which is either small or, with the
sufficient accuracy, has the form —‘;.-BT" &2, x1, Toca Ll

At the de Sitter stage, H = Hy = const, a = a5 exp (Hpt), where H:'s grce V°/3
(the spatial curvature is negligable). In order to have enough long de Sitter stage
and enough small perturbations at the subsequent stages, the following conditions
should be fulfilled :

M*| & H:'/.z,o i V/H 4 107 ;5 Ag 107 3)

The Coleman-Weinberg potential does not evidently meet these requirements, so it is
usually assumed now that é is some weakly interacting scalar field, in particulan
it should be the singlet with respect to SU(5) or any other grand unification group.
In such a way, the spirit, though not the letter, of the "new" inflationary scenario
is maintained.

The de Sitter stage begins when T4~V0. It can be divided into two successive periods:
“hot" and "cold" (vacuum). During the hot period, the temperature T »H, and quantum-
gravitational effects caused by the space-time curvature are unimportant. The dura-
tion of this period is rather short ; in dimensionless units,

Ho oty o dn (VR e ()
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that is of the order of 10 typically. After that, the cold (vacuum) period begins
where T << Hpand, in fact, temperature effects can be neglected {except only for the
calculation of the initial dispersion of @ ; see Eq.(13) below). This period is
the most interesting because quantum-gravitational effects connected with the space-
time curvature play the decisive role here (we denote its beginning by tg).

To obtain quantitatively (not only qualitatively) correct results one should not
use such gquantities as < § > or < §2> (the approaches based on these quantities
have been correctly criticized in [12, 13]). Instead of this, we represent the quan-
tum scalar field {the Heisenberg operator) in the form :

= 3 —
$ . @(«b)r)-k(zn-)s/z J‘OL%. & (k- éa®H,).

L, (t) exp (-IRF) + W) exp ( cRF)]+ 8F.00)

k = ‘ Er[ 69(:! ) = { i; ? 270 € = oo1n$£. & 1 .

Here, 5(1;, '?) contains only Tong wavelength modes with k <« Hoa(t), 5‘-? is the
small correction that can be neglected in the leading order in small parameters
IM21/Hg2, V/Hy, A and the second integral term in Eq. (5) satisfies the free
massless scalar wave equation in the de Sitter background : U“P= 0. Thus,

Afa . . dt - -1
Tam Ho20)™ (- &) empoik) e HEa-(ah]’,
and gt and z’;k are the usual creation and annihilation Bose-operators. The auxiliary
small parameter & is introduced to refine the derivation, it will not appear in all
final equations. In fact, it cannot be arbitrarily small ; the immediate comparison
of different terms in Eq. (5) suggests that & >> |M|/Hy but more refined treatment
consisting in the substitution of the solution (6) by the solution of the free
massive wave equation D"? + M2Y =0 in the de Sitter background (that does not
change Eq. (8) below in the leading approximation in |MZ2|/Hy2) shows that the signi-
ficantly weaker condition | Ine | << max (Ho2/M2 , Ho/¥ . A -l) is sufficient.
It can be alsoc seen immediately that the account of the abovementioned thermal
correction to V( § ) results in the substitution

k —» (R*+ko®)™ Ro = BT*a® = comst. (7)

in Eq. (6). This gives an effective infrared cut-off that can be important in some
problems. '
The scalar field § satisfies the operator equation of motion D§+ dV /d§ =0
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exactly. Using (5, 6) and_the conditions of "slow rolling” (3), one obtains the
following equation for @ in the leading order :

—

e, 7)) -.a AV(E) £(t,7)

o 4B (®)
Le,#) = tahr (d’k. S(h-gak).cidHo [a, explik®) -
@r)l " ., vz kY2

-y exp (iRT) ]

That is the main point : the 1arge scale scalar field § changes not only due to
the classical force d V ( § )/d § but also due to the flow of initially small-scale
quantum fluctuations across the de Sitter horizon k = a(t)Ho in the process of expan-
sion. Moreover, the evolution of inhomogeneous fluctuations is linear inside the de
Sitter horizon and even in some region outside it ; on the other hand, the evolution
of @ is non-linear but here the spat1a1 and second time derivatives of § are small.
Below, we shall omit the bar above @ , SO § will mean the large-scale field only.
Two -important consequences follow from Eq. (8). Firstly, there are no spatial deri-
vatives in Eq (8) at all . This means that the evolution of P can be studied
Tocally, in the "point".(this "point" has, in fact, spatial dimension ~ Ho ). The

temporal evolution of §1s slow as compared to HO' (if the inflation exists at all),
so our time "differential" dt can be also chosen ~ Hy~l ; only the processes with
characteristic times @ >> HO'1 will be considered. Secondly, though § and f have

a complicated operator structure, it can be immediately seen that all terms in

Eq. (8) commute with each other because 31( and ;k appear only in one combination for
each possible k R ! Thus, we can consider § and f as classical, c-number quantities.
But they are certainly stochastic, s1mp1y because we can not ascr1be any definite
numerical value to the combination [ Qg €xp (-ka‘) Q,R e:cp (~ k r )J As

a result, the peculiar properties of the de Sitter space-time =the existence of the
horizon and the appearance of the large "friction" term 3H0§, in the wave equation-
simplify the problem of a non-equilibrium phase transition greatly and make its solu-
tion possible, in contrast to the case of the flat space-time.

It is clear now that Eg. (8) can be considered as the Langevin equation for § (t)
with the stochastic force f(t). The calculation of the correlation function for f(t)
is straighforward and gives { A is the same throughout) :

<P §td> = HS (aw)=' §( k- ta) o)

Thus f(t) has the properties of white noise. This appears to be the case because
different moments of time correspond to different k because of the § -function
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~ A
in the definition of f, and ay and agt with different X commute. For spatially
separated points,

CHE, T § (k@)D = Ho (ur) 5 (6 =t,). adn [Ealy19-51 )
EaH |5-fl

(10)

~N
We are interested in the average values <F( @ )> where F is an arbitrary function.
For that case, one can introduce the normalized probability distribution §(§ »t)
for the classical stochastic quantity

( g_:y(@,f)dzé = 4 ) , SO that
CF(E)D ff(&,w F(&) 4o

(11)

By the standard procedure, the Fokker-Planck (or, better to say, Einstein-
Smoluchowski) equation for f follows from {(8) and (9) :

o L M AF £ L2 (4¥ g
at TR b 34, 08 ‘4 & 1z

This equation has to be supplemented by some initial condition for f at t = t5. It

should be noted also that Eq. (12) is applicable at the stage of “"slow rolling"
(181« Ho ®) only. When this condition ceases to be valid (that takes place at
& ... nin (Ho A “1/2 , B2 o -1)), the second time derivative of & comes into
play (though spatial derivatives are still unimportant), the de Sitter stage ends
and ® reaches its flat space-time equilibrium value §o during the time interval
less than Hy~l. After that, a number of oscillations around §o is possible.

Thus, strictly speaking, we can use Eq. {12) if only | & | <«<min (Ho A~1/2,0,2 v-1).
But just because we are not interested in time intervals At asHy~! when calcula-
ting such quantities,as e.g., the average duration of the de Sitter stage, we can
safely substitute V ( @) in Eqs. (8,12) by its expansion for l§l <« §o (the
second line in Eq. (2))and use Egs. (8, 12) for arbitrary § . Then the (stochastic)
moment of time tg when the de Sitter stage ends coincides with the sufficient accu-
racy ( At~ Hg~l) with the moment when | € | reaches infinity according to Eq. (8)
(the stochastic force f(t) becomes unimportant at the last stage of evolution).

A note should be added about time reversibility. The microscopic evolution of the
total scalar field operator @ is, certainly, time-reversible, so the apparent,
diffusion-like irreversibility of the evolution of f(§ ,t) is due to, as usually,
“coarse-graining" that takes place continuously in the process of neglecting more
and more information contained in separate modes with different IZ.
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3. Average duration of the de Sitter stage in the new inflationary scenario.

_ Now we have to introduce the initial condition for 8§ at the beginning of the "cold"
part of the inflation : f_., S’o(f)at t = ty. The simplest possible choice would be
f(é) = 5(@) In fact, the situation is more comph’cated and depends on the
initial conditions at the Planckian moment tp= G2 If one assumes thermal equili-
brium before the de Sitter stage, then the contribution of thermal quanta of the
scalar field § with the rest mass mZ(T) « T2 (B«1) to S,(Q) is gaussian with
the dispersion

< é:) = .;1_1._ S R dk l\ﬂ:lz[Exp(Vh"-l—k: /q,T)-i]d(lB)

At T« Hg, the main contribution to the integral is due to the region kuko K aT,
lk'zl«l. Using (6,7), we obtain [10,14] :

o0
(Bryo HlaT [ kde  _ HS/srlEmh e
Q2r? o (' k* 4 kot )*

This expression is valid if the modes with k ~ k0 are inside the horizon at the begin-
ning of the de Sitter stage that requires B>» GV0 ~ Hg/Mg , where M‘, G';2 is the
Planck mass. In the opposite case, the modes with k < k = Hg a{t=Hg~ ) are never
inside the horizon. For these modes, kng--- const, and, 1n fact, nothing definite can
be said about their occupation numbers. The probability distribution needs not be
gaussian either, but it is independent of time (we do not include the term R§2/12
into the Lagrangian (1) because then the fine-tuning between M2 and Hg is necessary
for the inflation to occur). In this case, the reasonable lower Timit on the initial

dispersion can be obtained by integrating from k1 to ~ in Eqs. (13,14) that gives

CFtata> 2 Howl o HIE M 0> L0

if thermal equilibrium is assumed in the whole region inside the horizon at the
beginning of the de Sitter stage.

Thus, the initial dispersion of , in general, exceeds H02 significantly. Never-
theless, it appears (see below) that if

< éz(.'k=t0)> << ’W\NW(.H:-/}\‘/Z 9 H:ls _))Z/s)’ (16)

then the initial dispersion can be neglected because its effect on the average dura-
tion of the de Sitter stage proves to be small. Therefore, there exists a set of pos-
sible (though not necessary) initial conditions at t = t_ for which we can use the
. s § ?

initial condition S)o( é )38( )at t = to.

Note that, if the last term in Eq.(12) can be neglected (that takes place in the be-
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ning of the "cold" period of inflation), then Eq. (12)is the usual diffusion equa-
tion. Thus, the initially gaussian distribution §(@) remains gaussian in the
course of time evolution and its dispersion changes as

L8> = (@ (tat)> + K (t-t) .
yr*
This is just the result obtained in [9,10,15]. In the presence of the quadratic po-
tential V = M2§2/2, the distribution remains gaussian and the dispersion can be
obtained from the "one-Toop" equation |10]

_i'I(@z): - ;:44 <>+ L (18)

2
0 qm

In this case, Eq.(20) below reduces to that of the harmonic oscillator and can be
solved analytically.
In the general case, the solution of Eq.(12) is :

(8, 1) = exp (-4 V() ) ):, G Y (8) expl-E: J“i?lge W),

3 Ho'

where /‘k. (é)is the complete orthonormal set of eigenfunctions of the Schrodinger
equation

2 e (6 -W(d)Y, = o
2 49*

I"’lm(i’”)l =0 ; (20)

_ 8wt AV L 2rd AV = A(vrown);
W(e) = @ ('Id;‘) - s oy
v(d) = 4ar*V(E)/3n"

It was explained at the end of Sec.2 that we may set Vlo) = -|V(-w)| = -©0, Therefo-
re, W(tw) =o® and Eq.(20) has the discrete spectrum of eigenvalues only. For V((P)
given in Eq.(2), it is the equation of the anharmonic (or doubly anharmonic) oscil-
lator. The coefficients c are obtained from the initial condition for S’(é, t)

at t = ¢y

o o A §08) enp (i) v, (8). @

“
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The behaviour of 3(4,1:) at large times is, as usually, determined by the lowest
energy level E5. Eqy is strictly positive that follows from the "supersymmetric"

form of the potential N(&).

In practice, we are more interested not in §(b,%) itself but in w(tg) - the probabi-
lity distribution for the stochastic moment tg when the de Sitter stage ends=.w{tg)
can be obtained from .f(iht) by the following way. let the rolling of the scalar
field to both sides is possible : V() = -0 . The integral Sd@’(%).' converges at
l¢l-m that means that |¢| approaches infinity in finite time. For ld’l-» % , the
evolution of becomes deterministic ; both the stochastic force in Eq.(8) and the
second derivative with respect to i’ in Eq.(12) can be neglected. Then the solution
of Eq.(12) for - 00 is, correspondingly,

-4 $ .
= () v (eon [WEEPT) o

where g is some unknown function that has to be determined from the previous evolu-
tion. The form of the solution represents the fact that the probability is transpor-
ted without changing along the classical paths

t+ 3H, g&iﬁ (fi—%)‘ = const. = t5 . (23)

T
Therefore, one can introduce w(tg)e(g(ts). The exact coefficient of proportionality
is determined by the condition of probability conservation

Wit = $C8,t) l(9‘§/9‘cs)£( ) (24)

along the path (23). If we do not make difference between rolling down to the left
and to the right sides, then the resulting expression for w(tg) is

oo A - Lo V(o)
W(ts) = 3 ( om 4 (E_’_w) )TL?— lf(ﬂts).(%)

o dé-;&oo

If the rolling of the scalar field is possible to the right side only (V(-e) = 0O,
V(o) = -w; e.q., when A = 0 in Eq.(2)), the second limit in Eq.(25) has to be omitted.
The distribution w(tg) is certainly non-gaussian. Its behaviour for large tg is ex-
ponential and is determined by the lowest energy level E,. Though w(tg) cannot be
computed analitically, it is remarkable that the closed explicit expressions for all
moments <(Hg(ts-to))™ with integer n can be obtained in the form of successive in-
tegrals. The approach used here is similar to the Stratonovich's "first time passage"
method.

Let us consider a set of the functions
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Q. () = S: (t-t)" §(d,t) b, m=otiz. o

L (g:w L:”), Y| Q. (9)= ju.,)”‘wca)olh CR

Integrating both sides of Eq.(12) over t from t = ty to t =90, we obtain the ordina-

ry differential equation

H°3 W 4—. dVv l = -0 .
ppor Qo + 3Ho( E Qo) g(@) (28)

Its solution, subjected to the boundary conditions Qo( ) = 0 (because f(:w, )=0), is

Q, . & -w(&)s " g (5’ 5(8) 48, - C)

[X

S_wezv(@;& f £(2)dE, const occct®

:S:ezrv-ci) 19

If the rolling is possible to the right (left) side only, then C=0 (C=1). For the
symmetric case V(-§) = V(§ and S, ( -§) = g, §) C = %. Now,

(B & QMM l@o(ﬁ) = (4-¢) + C =1 jw(ﬂdfso

SHO §—i+m -§..Q &
1]

Thus, the probability w(tg) introduced according to Eq.(25) is properly normalized.
By multiplying both sides of Eq.(12) by (t-to)n and integrating over t from ty to
t =00, the recurrence relation between Q, can be found. It has the form (n)1) :

1

Ztrz. Qn t SH Q%QM)I = Qs (31)

The boundary conditions are Qu(*e9 = 0 for all n. Then

-2 0 &,
Q. suw:,,, e ci)y 2 ( 5‘ Qs (£)dE, - C)
[} ¢ -
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C. _ Sw e*” 8 45 XfQM (&, d&  conct.

- —
- -—

(32)

SQ e &) 4§

-

Using Eq.(27), we obtain
L H, (-t =m Homs Qs (2)dE (o

In particular, the average dimensionless duration of the de Sitter stage is equal to

CHOAES aHo Aty + < Holheto > Hahtrof Q(8)4 4g

(34)

where ZSEﬁ is given in Eq.(4) and Q, is presented in Eq.(29).

Let us now consider several particular cases. Let Y=0 in Eq.(2) (that corresponds
to the original picture of the "new" inflation) and ‘f,@}= S$CE) . Then Eq.(34)
simplifies (C = %) :

awr(d,
CHBEN o HoAl, 4 8T H S‘Lé zv(i)g W 1&@1}-(35)

°

w(®) _ urt V(9) _oamrt (M9 2 ¢*)
3 T % 4

(the constant term in the potential may be omitted because it cancels in Eq.{(35)).
After some manipulation, the expression (35) can be represented in the form contai-
ning only one integration :

SHo AbN = HAH-&-"V—[\[—S’ — )ez,’a(

(36)
+o<f dne P (41, 2, =
) Vi-x*® N 2)] oo 2T M*

b) o p—

32 Ho

°¢.’-C)+

where § is the confluent hypergeometric function.
Three more particular cases are of special interest.
1) M2<0; NHo? < IM2| < Ho? 5 K| » L.

Then

2l
HoAt \ = H, A + 3H° dn 2Ny
£ > Ly ( Y ).

?
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where 2r= 0.577 ... is the Euler constant. In this case, one-loop approximation
which consists in the substitution of <¥> by 3(<§2)2 in the equation for <€2>
gives the result which is correct with the logarithmic accuracy :

<z
CHo A S = HOA’ci-l-é_L/QmM.m)
ome, -Loop 2 (M3 qA H,°

However, more accurate approach was developed in |10} for this case which gave the
right answer. It consists in the observation that in this case the stochastic force
£(t) in Eq.(8) is important then and only then when the classical force (-dv($)/d&)
can be neglected and vice versa. Thus, Eq.(8) can be integrated directly that gives
the following result for the stochastic quantity tg itself |10/ :

Ho(-t) o 3He  dn AN
2 M 18>

where éﬁ; is a gaussian stochastic quantity with zero average and the dispersion

<8y = 3H[ gwrimM (+0)

(39)

(the thermal contribution to <§%2> is neglected here for simplicity). After avera-
ging ikl€E1 in Eq.(39) over the gaussian distribution, just the correct result (37)
appears.

2) IM2| « N2 Ho? 5 1o] « 1.

For this case, only one-loop |10] or order-of-magnitude |9! estimates were known
earlier. It follows from Eq.(36) that

LHAES = H, A%, + %@? ) Y Bt 80

One-loop approximation gives the numerical coefficient in the second term equal to
2 /{2' 6.98 that is 2.56 times less.

It is intructive to consider the case of a many-component scalar field géa with the
symmetry group O(N) and see how the one-loop approximation becomes exact in the limit
Npoa, Let §E = (§% ays, The strightforward application of the developed approach
shows that the corresponding generalization of Eq.(12) to the N#1 case is :

B _He 5 (),

= A QD (dV
28 ‘T3 H, O 'g“a(ﬁ

N-1
% gnr &' 2% ® £)s)

Ul
Sey B o8y dB =1t ; Sy= N r(1+%),
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where Sy is the area of the N-dimensional sphere (O(N)-symmetrical initial condition
for S is also assumed). If 9(§,t) =S(&) at t = tg, then, instead of Eq.(35), the
following expression for the average duration of the de Sitter stage results

CHALS =H, At + 8rr"§0{,§ gN-A M‘C@)j 18, é‘"" ‘W(ﬁ)

ForV(§)=Vo-ﬂ§/‘lN)
<H°U:_|:°)> = Tl"’\/?. NF(N/")

vzr 2T (Y2 + Nluy) (44)
< H (g k)D = 3. [N .

Oh&'lﬂof A ' N+2

-if2.
Thus, both expressions tend to the same limit JC*V3 /\’SL/\ ~ 12.09 A
at N_sp o0 {(but from different sides).

Now we return to the N =

<l_

1 case and calculate the dispersion of the quantity Ho(ts-
ty). By the use of Eqs.(32,33), we obtain

<Ho”‘(es-t.,)z>=%_rr‘j o 72 au.f < da fe 3% ]e Z/ﬁlz
A

[

CHI (L b ~([KH gt D)™ = (s5)
= _4%;[1( F:E['Q -— 1 Fz(ar‘o cos £ 4//5)6{1:)5
] A

1 - ¢4
d~ 0.640® < H, (-t) > »
where F{{.k)

is the elliptic integral of the first kind. Also interesting is to cal-

culate the change in the result (41) due to the spreading of the initial condition

at t = ty (the "thermal" correction). If £C§)1s the gaussian distribution with

the zero average and the dispersion @T (see Egs.(14,15), then by applying Eq.(29)
with C = % the following result can be found :

ZH, (f-t) ) = 17.88 A=~ oprt & Ho?
\rf@: & H . (46)

Thus, if the condition (16) is satisfied, then the thermal correction is small ; in
the opposite case, the inflationary stage is very short.
3) A% Ho? « M2 < HoZ 5 &> 1.

In this case, the result (36) simplifies to the form :

<HA\:> “A":“ + ?ﬁ: w:f(zn'zmll)

(47)
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The exponent just coincides with the result obtained by Hawking and Moss |8] with

the help of the de Sitter instanton. Thus, our approach reproduces the instanton re-
sults without using instantons at all. Moreover, we have obtained a little more -

the coefficient of the exponential, that corresponds to the summation of all one-loop
diagrams on the instanton background in the standard functional integral approach.
The corresponding probability distribution w(tg) is determined by the lowest energy
level E, of Eq.(20) with the excellent accuracy and, thus, is purely exponential :

Wig) s EoH exp (<F, Ho (fi-t) )
bz 42

(48)

Zm* - 202MY ) (- k)
4 amr ﬂ,,z e/x,r ( 3\ H' >

]

It is clear in our approach that the transition of the scalar field through the po-
tential barrier takes place only locally, that is, in the volume A,H0"3 (in fact,
somewhat larger), but not in the whole 3-space. This fact can be also understood

in the functional integral approach if one rewrites the de Sitter instanton in the
static, "thermal" form :

B (f- M) dT (1= KT ‘dr . 7 (det sine- d )
§-'= §ma.x= Mﬂ_/ J

where U is periodic with the period erHo'l. Then the instanton tells us that §
has reached the top of the potential barrier inside the horizon (r < Ho‘l) but gives
us no information about the behaviour of éE outside the horizon.

That is enough for the case of the "new" inflation. Now we shall turn to the so-cal-
led "primordial™ inflation |11] where it is assumed that ¥ # 0, A = 0 and present
the most interesting results briefly. In this case, the average duration of the de
Sitter stage is given by Egs.(34,29) with C = 0. Two limiting cases are the most
important and representative.

1) IM2] « Ho4/3 J2/3,

Then

2 2 %/3
< Ho(-t) > = 4(:)/"’r(4/ (H)
= 23.60 (Hep ) ¥ Y
2) Ho*3 923 « M2 « H,2.
In this case,

Myl y = CTH enp (

Y MO )
M'J—

qH“»*
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Again, the exponent is just the action for the Hawking-Moss instanton which is equal
to the difference between the actions for the de Sitter instantons (49) with & = §znax
=My and P émm=°- The third case M2<0, Ho%/3 5 2/3« |M2| € Hy2 reduces, in
fact, to the second one after shifting the scalar field : & = &4 — ”’l"'/)) .

The quantitative results presented in the Sec. 2,3 were first published by the au-
thor in the shorter form in Russian in |16,17]. Two points should be emphasized,
however. .

Firstly, though the quantity j%(a(ts)/a(ton =Hg{ts-tg) has the well-defined probabi-
lity distribution w(tg), the quantity a(tg)/a(ty) does not, because EgHy2«1 in all
cases. Thus, it seems that the quantity 8na(t) is more suitable for the description
of the stochastic inflation than the scale factor a(t) itself.

Secondly, the calculated duration of the de Sitter stage gives us the typical size

of causally connected regions. However, only a minor last part of this inflation pro-
duces regions those remain approximately homogeneous and isotropic in the course of
subsequent evolution. This follows from the fact that after the inflation,the space-
time metric at scales much larger than the cosmological post-inflationary partic iO!
horizon has the following simple structure in the proper ("ultra-synchronous") gauge.

ds2 = dt2 - exp (h(?) a2(t)(dx2 + dy2+ dz2) ;

(52)
h(P) = 2 nialts(M)/alto)

where h(¥) is not assumed to be small and a(t) is the scale factor for the strictly
isotropic and homogeneous solution. The quantity h(¥) is essentially stochastic, its
rms value is of the order of its average (see, e.g., Eq.(45)). Thus, the metric (52)
becomes anisotropic and inhomogeneous in the course of the after-inflationary expan-
sion when spatial gradients of h(¥) (omitted in Eq.(52) in the leading approximation)
come into play. This situation illustrates the well-known fact that "general" infla-
tion produces neither jsotropy nor homogeneity of the present-day universe and, there-
fore, cannot "explain" them without further assumptions. Nevertheless, if the condi-
tions (3) are fulfilled, then the last, "useful"” part of inflation does produce suf-
ficiently large regions with the degree of homogeneity and isotropy that matches the
observations. It is important that during this part of inflation the stochastic force
f(t) in Eq.(8) becomes small as compared to the classical force (-dV(&)/(d®). Then,
for regions those are not too large, h(*) can be represented in the form which was
used in |10,18-21} :

h() = const + Sh() ; Sh(®) = -2H, 5& (£,7)/ i , (53)

where § & is the small fluctuation of §(t) produced by F(t,¥). Here §h(®) is
really small.

The duration Z}{:4 of this "useful" part of inflation (when |&h{<1) is easily esti-
mated using the expression for perturbations (53) :
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oAb, ~ M o M L APHY | vs0

o Ho G M (M3 Sy AT |2, V=0,

M AHS
(54)
(Fo ) & VR o
y
~voHe Im MU MUy YRR a0
L A Th

Ho Atl contains no exponentially large multipliers. If ?\ or ¥ are fixed, then
Atl is maximal and the amplitude of perturbations at the given present-day scale
is minimal when 1M2] « A /34,2 or [M2] « 9 % 1,32
presented in Eq.(3), strictly speaking, refer just to these cases. If M does not

; the upper limits on A and V

satisfy these conditions, the duration of the "useful" part of inflation diminishes ;
however, the numerical restrictions on ) and ¥V remain practically unchanged due
to the first condition in Eq.{3). It should be pointed also that the case MZ2>0 pre-

sents no more advantages than the case M2<0.

4. Evolution of the scalar field in the chaotic inflationary scenario.

In the chaotic inflationary scenario, it is assumed that the initial value of the
quasi-homogeneous scalar field is non-zero and, in fact, large ; typically,
|§l>Mf at t=tp . The potential V(&) can be a rather arbitrary function ; the only
condition is that it should grow less faster than exp(const.@l) for I§|—>w . Typi-
cal examples are V(&) = )§4/4 15] and even V(®)=M2 B2/2 with M2>0 (the dynamics of
the latter model was studied in [22-26]). Here, the gquantity H=a/a cannot be cons-
tant in general, but if II:II K Hz,then the expansion of the universe is quasi-exponen-
tial. Thus, the notion of the quasi-de Sitter stage with the slow varying H arises.
The scalar field should also change slowly during this stage : 18| « H®. Then,

H2 = s av(E).

We can now repeat the derivation of Egs.(8,12) (Sec.2) for this case. Because of the
dependence of H on t, the quantity oema(t) = ,SH(t)dt appears to be more proper and
fundamental independent variable than the time t. Eq.(6) retains its form with the
change : Hg—s H. It is straightforward to obtain the following equation for the lar-
ge-scale scalar field

28 _ _ 4 dV L
Y 3H® 40 H

(55)
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< S'(RMQ') 8-(1/“(14) > = H‘q (Qx‘)dlg(%a-(’ma.,,)

Then the corresponding Fokker-Planck equation takes the form (HZ can be expressed
through V(i))

& 25 (V 2 (dmV.
9’3]5:“& T 3r p8” (v8) +£mea§ dé §)

It is worthwhile to note that this equation has just the form one would expect to
follow from quantum cosmology because it is no longer depends on such classical
quantities as t or H, but contains only fundamental variables ‘e'n a and 5 which
remain in quantum case.

Now, the problem of the initial condition for f( 3_2_. -?ma arises. In the studies
of classical chaotic inflation, it is usually assumed that ;32 = §0 at t= tP that
corresponds to 90( §)°‘- S(‘f-fo)for some ,Qmo., . But such a condition con-
tradicts the whole spirit of quantum cosmology. A natural idea is to consider sta-
tionary solutions (e.g., independent of Xma.) of Eq.(56). They can be thought of as
being in "equilibrium with space-time foam" which may arise at planckian curvatures.
At first, we introduce the notion of the probability flux j( i/ &r\(\. ) by rewriting
Eq.(56) in the form

99 -~ A .

2 iIma 'o%i ’ y -
- i d ,

i (V8) + o =07 S

Then, two types of stationary solutions arise : with no flux and with a constant flux
Jg ¢

l

srr: ’<>§

§ = const. V-lexp(3/86G2V) ~ 9

—~3Wjo(6V)~Lexp(3/862V) Sd§1 exp(-3/8 62 V(&) (58)

The first solution (with j = 0) is just the envelope of the Hartle-Hawking time-sym-~
metric wave function |27| in the classically permitted region (aZ» (8JTaV)-1) ; the
exponent is the action for the de Sitter instanton with §'= const {with the correct
sign). Moreover, we have obtained the coefficient of the exponent, so the solution
appears to be normalizable.Itis easy toverify that the average value of & calcula-
ted with the use of this solution practically coincides with § —the value of §
for which |l ~H2 and the de Sitter stage ends ( ¢5~MP1'f V(@) = ')h@‘/n). This
does not mean that the dimension of the universe after inflation is small (because
all Ina are equally probable for stationary solutions) but suggests that the "use-
ful" part of inflation is typically very small (if exists at all) in this case. It
is possible to obtain the "useful" part of inflation that is long enough, but with
the very small probability ~s exp(-3/8G2v( §5)) ~ exp(-1010),
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It is interesting that the second solution with j #0 does not, in fact, contain any
exponential at all. For GZV(§) &1 that corresponds to curvatures much less than the
planckian one, its form for j,<0 1s :

5 = 'ﬁ"‘ 9!1‘(3»\//2‘_\(. :

LT (59)

In this case, the stochastic force is unimportant. Thus, we have only two possibi-
lities ieither the stationary solution contains the instanton contribution exp(-S)
{(where S is the action for the instanton, S<0) or the solution is non-exponential.
We have not obtained the solution proportional to exp(S)=exp(-|S|) which was advo-
cated by several authors (including the author of this paper) some time ago |28-30].
It seems that the latter solution describing the process of "quantum creation" of the
universe via quantum tunneling to the de Sitter stage, though possible formally, has
a very small probability also (with the same order of magnitude as above). This con-
clusion is similar to that obtained by Rubakov |31| though we suppose that his ter-
minology of "catastrophic particle creation in the process of gquantum tunneling" is
inadequate ; in fact, no real particle creation takes place at the de Sitter instan-
ton solution.

5. Conclusions and discussion.

We introduced and elaborated the approach consisting in taking into account the chan-
ge in a large-scale scalar field due to the continuous flow of small-scale quantum
perturbations of the same scalar field across the de Sitter horizon during the de
Sitter (inflationary) stage. That gave us the possibility to find the explicit expres-
sions for the average duration of the de Sitter stage (and for any higher moment if
necessary) in the case when the initial probability distribution of the scalar field
before the beginning of de Sitter stage was known. Certainly, the method used in the
paper (as any other mathematical method) cannot solve the problem of initial pre-in-
flationary conditions ; new physical hypothesises (or "principles") are necessary
for this purpose.

What can be said now about the possibility of "spontaneous quantum creation of the
universe" which was so extensively discussed in |32-35] ? To make the terminology
more precise, the author proposed some time ago |36| (see also [30]) to call the
"quantum creation of the universe" the situation when we have a solution for the wave
function of the universe with a non-zero probability flux emerging from the region
of small values of a (or, equivalently, large values of space-time curvature). This
proposal can be used in our stochastic approach also. Then the first stationary solu-
tion of Eq.(56) (the first term in Eq.(58)) corresponds to the time-symmetric univer-
se which has no beginning and was not created. This coincides with the Hawking's
interpretation of the Hartle-Hawking wave function in quantum cosmology. In the case
of our first solution, we encounter the serious difficulty connected (as was explai-
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ned in Sec. 4) with the very small probability of having the large duration of the
"useful" part of inflation.

The second stationary solution with the non-zero probability flux does correspond to
the "creation" of the universe but this creation has very little in common with the
picture that was introduced in |32-35|. In particular, no quantum tunneling takes
place, and the evolution of the metric and the scalar field remains classical up

to the planckian curvatures. This type of creation was called the "classical crea-
tion" in |28| but it should be clear that the "classical creation" is not a new con-
cept but simply the paraphrase of the standard classical picture of a singularity as
a boundary of the space-time through which the space-time cannot be continued ; the
only difference is that now this boundary is assumed to have a finite thickness
The difficulties with the second solution are connected with our impossibility at
the present time to prove the very existence of such a solution (in other words, to
prove the possibility of the quantum change of topology) and to say something defi-
nite about the value of j,, if it is non-zero. Thus, the problem of the possibility
of the quantum creation of the universe remains open.

The author would Tike to thank Prof. Norma Sanchez for the hospitality in the Groupe
d'Astrophysique Relativiste de 1'Observatoire de Paris-Meudon where this paper was
completed and the Centre National de la Recherche Scientifique for financial support.
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