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Abstract 

The dynamics of a large-scale quasi-homogeneous scalar f ie ld  producing the de Sit ter 

( inf lat ionary) stage in the early universe is strongly affected by small-scale quan- 

tum fluctuations of the same scalar f ie ld and, in this way, becomes stochastic. The 

evolution of the corresponding large-scale space-time metric follows that of the sca- 

lar f ie ld  and is stochastic also. The Fokker-Planck equation for the evolution of 

the large-scale scalar f ie ld is obtained and solved for an arbitrary scalar f ie ld  

potential. The average duration of the de-Sitter stage in the new inf lat ionary sce- 

nario is calculated (only partial results on this problem were known ear l ier) .  Appli- 

cations of the developed formalism to the chaotic inf lat ionary scenario and to quan- 

tum inf lat ion are considered. In these cases, the main unsolved problem lies in in i -  

t ia l  pre-inf lat ionary conditions. 

1. Introduction 

In the models of the early universe with an i n i t i a l  or intermediate metastable de 

Sit ter ( inf lat ionary) stage with an effective cosmological constant produced both 

by quantum gravitational corrections to the Einstein equations 111 and by a scalar 

f ie ld  12-4 , of extreme importance is the exi t  from this stage that depends on the 

way of decay of the effective cosmological constant because i t  determines the spec- 
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trum and amplitude of metric perturbations for the subsequent evolution. These per- 

turbations break the homogeneity and isotropy achieved earl ier at the inf lat ionary 

stage and can, in the worst case, destroy al l  the advantages of in f la t ion.  Two ways 

of decay of the effective cosmological constant are possible : via (quasi) homogene- 

ous classical ins tab i l i t y  and via inhomogeneous quantum fluctuations. In the f i r s t  

case, the amplitude of perturbations of the de Sit ter space-time in the modes which 

preserve (exactly or approximately) the isotropy and homogeneity of the 3-space in 

some frame of reference is much more than the amplitude of other, inhomogeneous per- 

turbations. Thus, we have a classical (quasi)-homogeneous perturbation from the very 

beginning and the subsequent evolution is deterministic ; the duration of the de 

Sit ter stage is to ta l ly  determined by the i n i t i a l  amplitude of this perturbation. 

This type of decay takes place, for example, in the author's model i l t  for the case 

of the closed 3-space section i f  the spatial dimension of this section was of the 

order of H "4 at the beginning of the de Sit ter stage (in the paper, we put 

= c = 1 ; a(t) is the scale factor of the Friedmann-Robertson-Walker isotropic 

cosmological model ; ~ = J/a). 

The existence of a quasi-homogeneous classical scalar f ie ld  is also assumed in the 

"chaotic" inf lat ionary scenario 151 (for the inclusion of the R 2 term where R is the 

Ricci scalar, see 161). Here, the term "chaotic" simply means the unspecified depen- 

dence of the metric and the scalar f ie ld  on space coordinates though this dependence 

is weak enough, so that the spatial derivatives of al l  variables are much less than 

the temporal ones. 

In the second case, we have no large (quasi) homogeneous perturbation at the begin- 

ning of the de Sit ter stage. This possibi l i ty  was f i r s t  pointed in 171 in connection 

with the model i l i .  But, in fact, this situation is more typical for the models whe- 

re the de Sit ter stage arises from the i n i t i a l l y  radiation-dominated, "hot" universe 

in the course of a non-equilibrium, close to the ~ order phase transit ion (for exam- 

ple, the "new" inf lat ionary scenario). Here, nevertheless, a large quasi-homogeneous 

"classical" perturbation with characteristic wavelengths >>H "1 can arise during the 

de Sit ter stage from small-scale quantum perturbations. In other words, "classi- 

cal order" appears from "quantum chaos". In spite of being effect ively classical, the 

evolution of this large-scale perturbation and the space-time metric as a whole is 

essentially stochastic. The duration of the de Sit ter stage also becomes a stochastic 

quantity in this case. 

This is just the process we are interested in. I t  belongs to the class of the so-cal- 

led "synenergetic" problems which arise in different branches of science and attract 

much interest at the present time. We shall consider the new inf lat ionary scenario 

where the role of the abovementioned perturbation is played by the non-zero large- 

scale scalar f ie ld  ~) . I t  is assumed that ~ ~ 0 (or suf f ic ient ly  small) at the 

beginning of the de Sit ter stage. We shall obtain the Fokker-Planck equation for the 

evolution of the probability distr ibut ion of ~ (Sec.2) and calculate the average 

duration of the de Sit ter stage in the new inf lat ionary scenario in Sec.3 (only par- 
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t i a l  resul ts  on th is  problem or order-of-magnitude estimates were obtained ea r l i e r  

18-101). Af ter  that ,  we shall  turn to the chaotic i n f l a t i ona ry  scenario (Sec.4) 

and discuss the modern state of the Problem of the "creat ion" of the universe b r i e f l y  

(Sec.5). 

2. Evolution of a scalar f i e l d  in the new i n f l a t i ona ry  scenario. 

The de S i t t e r  stage in 

the vacuum energy of some scalar f i e l d  with the Lagrangian density 

the new i n f l a t i ona ry  scenario is assumed to be produced by 

2, 

where the vacuum ef fec t ive  potent ia l  V ~ )  has the fo l lowing properties : 

v ( @ . )  : o 

( i )  

(2) 
I M , ~  ~ _ ± v  4 3 -  ~ ~ 

M 2 can have both signes. ~_.- g o  is the f lat  space-time (true vacuum). ~ - 0  is 

the fa l se  vacuum. We include the term in to describe the case of the so-cal led  

"primordial" i n f l a t i o n  I l l l  s imultaneously.  At the non-zero temperature T, the po- 

t e n t i a l  V acquires the additional thermal term which is either small or, with the 

sufficient accuracy, has the form ~-B'I "L ~ ' ,  B(41, T:~a -I. 

At the de Sitter stage, H = H o = const, a = a o exp (Hot), where ~o ~= ~a~C~Vo/.~ 

(the spatial curvature is negligable). In order to have enough long de Sitter stage 

and enough small perturbations at the subsequent stages, the following conditions 

should be ful f i l led : 
?. 

IMP! ~ H°/Zo ; v/t.t. ~ to" ; ~ ~o'" 
(3) 

The Coleman-Weinberg potent ia l  does not ev ident ly  meet these requirements, so i t  is 

usual ly  assumed now that ~ is some weakly in teract ing scalar f i e l d ,  in part iculaG 

i t  should be the s ing le t  with respect to SU(5) or any other grand un i f i ca t i on  group. 

In such a way, the s p i r i t ,  though not the l e t t e r ,  of the "new" i n f l a t i ona ry  scenario 

is maintained. 

The de S i t te r  stage begins when T4~V o, I t  can be divided into two successive periods: 

"hot" and "cold" (vacuum). During the hot period, the temperature T ~H o and quantum- 

grav i ta t iona l  ef fects caused by the space-time curvature are unimportant. The dura- 

t ion of th is  period is rather short ; in dimensionless un i ts ,  

~ .  ,, ~ ,,, z,, ( v~l, 1 H. ) .,. ~ ( c, "~ V. " '/~ ) ,  ( ~ ) 
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that is of the order of 10 typ ica l ly .  After that,  the cold (vacuum) period begins 

where T << Hoand, in fact ,  temperature ef fects can be neglected (except only for  the 

calculat ion of the i n i t i a l  dispersion of ~ ; see Eq.(13) below). This period is 

the most in terest ing because quantum-gravitational ef fects connected with the space- 

time curvature play the decisive role here (we denote i ts  beginning by to).  

To obtain quant i ta t ive ly  (not only qua l i ta t ive ly )  correct results one should not 

use such quant i t ies as < ~l~ > or < ~2>  (the approaches based on these quant i t ies 

have been correct ly  c r i t i c i zed  in [12, 131), Instead of th is ,  we represent the quan- 

tum scalar f i e l d  (]~ (the Heisenberg operator) in the form : 

t ' t  , ~ ) o  
k = , o c t )  : 

& : o ~ Y : .  4< :£ . 

Here, ~ ' ( t ,  ~ )  contains only long wavelength modes with k<< Hoa(t), ~ (~  is the 

small correct ion that can be neglected in the leading order in small parameters 

NM21/Ho2, ~/H o, ~ and the second integral term in Eq. (5) sat is f ies  the free 

massless scalar wave equation in the de S i t te r  background : [ ~ =  O. Thus, 

(6) 

and ~ and a% are the usual creation and annihi lat ion Bose-operators. The aux i l ia ry  

small parameter 6~ is introduced to ref ine the der ivat ion,  i t  w i l l  not appear in a l l  

f ina l  equations. ~n fact ,  i t  cannot be a r b i t r a r i l y  small ; the immediate comparison 

of d i f fe ren t  terms in Eq. (5) suggests that ~ >> IMI/H o but more ref ined treatment 

consisting in the subst i tut ion of the solution (6) by the solution of the free 

massive wave equation O ~  + M2~ = 0 in the de S i t te r  background (that does not 

change Eq. (8) below in the leading approximation in [M21/Ho 2) shows that the s igni-  

f i can t l y  weaker condit ion i -~n& I << max (Ho2/M2 , Ho/P , ~ - i )  is su f f i c ien t .  

I t  can be also seen immediately that the account of the abovementioned thermal 

correct ion to V (  ~ ) resul ts in the subst i tut ion 

(7) 

in Eq. (6). This gives an ef fec t ive infrared cut -o f f  that can be important in some 

problems. 

The scalar f i e l d  ~ sat is f ies  the operator equation of motion [ ~ ' +  d V  / d ~  = 0 
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exact ly.  Using (5, 6) and the conditions of "slow ro l l i ng "  (3), one obtains the 

fol lowing equation for  ~ in the leading order : 

a Wo oL (8) 

(zn')#" ,, + 

That is the main point : the large-scale scalar f i e l d  ~l~ changes not only due to 

the classical  force d V ( ~ ) / d ~  but also due to the flow of i n i t i a l l y  small-scale 

quantum f luctuat ions across the de S i t te r  horizon k = a(t)H o in the process of expan- 

sion. Moreover, the evolution of inhomogeneous f luctuat ions is l inear  inside the de 

S i t te r  horizon and even in some region outside i t  ; on the other hand, the evolution 

of ~ is non-l inear but here the spatial  and second time der ivat ives o f ~  are small. 

Below, we shall omit the bar above ---~ , so ~ w i l l  mean the large-scale f i e l d  only. 

Two important consequences fol low from Eq. (8). F i r s t l y ,  there are no spatial der i -  

vatives in Eq (8) at a l l  . This means that the evolution of ~ can be studied 

loca l l y ,  in the "point" ( th is  "point" has, in fac t ,  spatial  dimension ~ Ho " I ) .  The 

temporal evolution o f ~ ) i s  slow as compared to Ho-I ( i f  the i n f l a t i on  exists at a l l ) ,  

so our time "d i f f e ren t i a l "  dt can be also chosen .,, Ho-1 ; only the processes with 

character is t ic  times ~>> Ho-i w i l l  be considered. Secondly, though ~ and f have 

a complicated operator structure, i t  can be immediately seen that a l l  terms in 

Eq. (8) commute with each other because ~k and ~k + appear only in one combination for  

each possible ~ !  Thus, we can consider ~)and f as c lass ica l ,  c-number quant i t ies.  

But they are cer ta in ly  stochastic, simply because we can not ascribe any def in i te  

numerical value to the c o m b i n a t i o n [ ~  ~ : C . ~ ( - ~  ~ ) - ( ~ ~ ) ] .  As 

a resu l t ,  the pecul iar properties of the de S i t te r  space-time - the  existence of the 

horizon and the appearance of the large " f r i c t i on "  term 3Ho~ in the wave equation- 

s impl i fy  the problem of a non-equilibrium phase t rans i t ion  great ly and make i t s  solu- 

t ion possible, in contrast to the case of the f l a t  space-time. 

I t  is  clear now that Eq. (8) can be considered as the Langevin equation for  ~b ( t )  

with the stochastic force f ( t ) .  The calculat ion of the correlat ion function for  f ( t )  

is straighforward and gives ( ~ i s  the same throughout) : 

< = Ho 3 
(9) 

Thus f ( t )  has the properties of white noise. This appears to be the case because 

d i f fe ren t  moments of time correspond to d i f fe ren t  k because of the ~ -function 
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in the definition of f ,  and ~k and ak + with different'~commute. For spatially 

separated points, 

< > : 
e.,~., 14. 0 I ~ - ~ 1  "(10) 

We are interested in the average values <F(~ )> where F is an arbitrary function. 

For that case, one can introduce the normalized probability distribution ~ ( ~  ,t) 

for the classical stochastic quantity (~ 

= • ) so that 

(too 

~o,O 

By the standard procedure, the Fokker-Planck (or, better to say, Einstein- 

Smoluchowski) equation for ~ follows from (8) and (9) : 

This equation has to be supplemented by some ini t ial  condition for ~ at t = t o . I t  

should be noted also that Eq. (12) is applicable at the stage of "slow rolling" 

(I ~ I << Ha ~ ) only. When this condition ceases to be valid ~hat takes place at 

~ m i n  (H o ~ -1/2 , Ha2-}) -1)), the second time derivative o f ~  comes into 

play (though spatial derivatives are s t i l l  unimportant), the de Sitter stage ends 

and ~ reaches its f lat  space-time equilibrium value ~ o  during the time interval 

less than Ho-1. After that, a number of oscillations around ~o is possible. 

Thus, str ict ly speaking, we can use Eq. (12) i f  only i ~l<<min (H o ~-1/2,Ho2 ~-1). 

But just because we are not interested in time intervals ~ t  A_sHo -I when calcula- 

ting such quantities, as e.g., the average duration of the de Sitter stage, we can 

safely substitute V ( (~)  in Eqs. (8,12) by its expansion for I~LT~I << ~o (the 

second line in Eq. (2))and use Eqs. (8, 12) for arbitrary ~ . Then the (stochastic) 

moment of time t s when the de Sitter stage ends coincides with the sufficient accu- 

racy ( ~ t ~  Ha-l) with the moment when i ~ l  reaches inf ini ty according to Eq. (8) 

(the stochastic force f ( t )  becomes unimportant at the last stage of evolution). 

A note should be added about time reversibility. The microscopic evolution of the 

total scalar field operator ~) is, certainly, time-reversible, so the apparent, 

diffusion-like irreversibi l i ty of the evolution of ~ ( ~  ,t) is due to, as usually, 

"coarse-graining" that takes place continuously in the process of neglecting more 

and more information contained in separate modes with different k. 
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3. Average duration of the de Sitter stage in the new inflationary scenario. 

Now we have to introduce the i n i t i a l  condition for ~ at the beginning of the "cold" 

part of the in f l a t i on  : ~ :  I o ( ~ a t  t = t O . The simplest possible choice would be 

t e ( ~ )  : ~ )  • In fac t ,  the s i tuat ion is more complicated and depends on the 

i n i t i a l  conditions at the Planckian moment tip = G ½. I f  one assumes thermal equ i l i -  

brium before the de S i t te r  stage, then the contr ibution of thermal quanta of the 

scalar f i e l d  ~ with the rest mass m2(T) << T 2 (B<<1) to ~ e ( ~ )  is gaussian with 

the dispersion 

< : L el,) 
IT~ o 

At T << H o, the main contribution to the integral is due to the region k~k o << aT, 

I ~ I < < 1 .  Using (6,7), we obtain [I0,141 : 

CW~ 

ar t  ~" ( . k ' +  i ~ : )  :' 
This expression is valid i f  the modes with k~, k o are inside the horizon at the begin- 

ning of the de Sitter stage that requires B>>GV~ vHo/M p , where M@ = G -½ is the 

Planck mass. In the opposite case, the modes with k < k I = H o a(t=Ho -1) are never 

inside the horizon. For these modes, ~0~., const, and, in fact, nothing definite can 

be said about their occupation numbers. The probability distribution needs not be 

gaussian either, but i t  is independent of time (we do not include the term R~2/12 
2 into the Lagrangian (1) because then the fine-tuning between M 2 and H o is necessary 

for the inf lat ion to occur). In this case, the reasonable lower l imi t  on the i n i t i a l  

dispersion can be obtained by integrating from k I to ~ in Eqs. (13,14) that gives 

< < ~ ( t : ~ . ) >  >~ HoV. V~ ,,, Ho'/* M~/z >>Ho z . (15) 

i f  thermal equi l ibr ium is assumed in the whole region inside the horizon at the 

beginning of the de S i t te r  stage. 

Thus, the i n i t i a l  dispersion of ~ , in general, exceeds Ho 2 s ign i f i can t l y .  Never- 

theless, i t  appears (see below) that i f  

then the i n i t i a l  dispersion can be neglected because its effect on the average dura- 

tion of the de Sitter stage proves to be small. Therefore, there exists a set of pos- 

sible (though not necessary) i n i t i a l  conditions at t = t~,for which we can use the 

i n i t i a l  condition ~)o(~)=~(~) at t = to" 

Note that, i f  the last term in Eq.(12) can be neglected (that takes place in the be- 
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ning of the "cold" period of inf lat ion),  then Eq. (12)is the usual diffusion equa- 

tion. Thus, the i n i t i a l l y  gaussian distribution ~C(~) remains gaussian in the 

course of time evolution and its dispersion changes as 

~rr { 

This is just the result obtained in [9,10,15J. In the presence of the quadratic po- 

tential V = M2~2/2, the distribution remains gaussian and the dispersion can be 

obtained from the "one-loop" equation 1101 

In this case, Eq.(20) below reduces to that of the harmonic osc i l l a t o r  and can be 

solved analytically. 

In the general case, the solution of Eq.(12) is : 

3 

a# ~ /  
where ¥ ~ ( ~ } i s  the complete orthonormal set of eigenfunctions of the Schrodinger 

equation 

i - 2, 

I t  was explained at the end of Sec.2 that we may set V(eo) : -JV(-~)I = - ~ .  Therefo- 

re, W(%m) =~ and Eq.(20) has the discrete spectrum of eigenvalues only. For V(~) 

given in Eq.(2), i t  is the equation of the anharmonic (or doubly anharmonic) oscil- 

lator. The coefficients c n are obtained from the i n i t i a l  condition for ~)(!T~, ~)  

at t = t o : 
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The behaviour of J C ~ , I : )  at large times is ,  as usual ly,  determined by the lowest 

energy level E o. E o is s t r i c t l y  posi t ive that follows from the "supersymmetric" 

form of the potential W(~). 

In pract ice, we are more interested not in ~(~, i : )  i t s e l f  but in w(t s) - the probabi- 

l i t y  d is t r ibu t ion  for  the stochastic moment t s when the de S i t te r  stage ends'.w(ts) 

can be obtained from ,~(~i : )  by the fol lowing way. ~et the ro l l i ng  of the scalar 

d~)~.--~) "I converges at f i e l d  to both sides is possible : V ~ )  = - ~ .  The integral .~ 

]~)~-~ that means that [~ )J  approaches i n f i n i t y  in f i n i t e  time.~ ~V'For l~l-," ==, the 
I *  

evolution of ~ becomes determinist ic ; both the stochastic force in Eq.(8) and the 

second der ivat ive with respect to ~ in Eq.(12) can be neglected. Then the solution 

of Eq.(12) for  ~ - ~ ± ~ i s ,  correspondingly, 

where g is some unknown function that has to be determined from the previous evolu- 

t ion.  The form of the solution represents the fact that the probabi l i ty  is transpor- 

ted without changing along the classical paths 

Therefore, one can introduce w(ts)cK.g(ts). The exact coef f ic ient  of propor t ional i ty  

is determined by the condition of probabi l i ty  conservation 

along the path (23). I f  we do not make difference between ro l l i ng  down to the l e f t  

and to the r ight  sides, then the resul t ing expression for w(ts) is 

_ 3 U o  

I f  the ro l l i ng  of the scalar f i e ld  is possible to the r ight  side only (V(-m) = ~ ,  

V(~) = - m ;  e.g. ,  when~ = 0 in Eq.(2)), the second l i m i t  in Eq.(25)hastobeomitted. 

The d is t r ibu t ion  w(ts) is cer ta in ly  non-gaussian. I ts  behaviour for large t s is ex- 

ponential and is determined by the lowest energy level E o. Though w(ts) cannot be 

computed a n a l i t i c a l l y ,  i t  is remarkable that the closed e x p l i c i t  expressions for a l l  

moments <(Ho(ts-to))n> with integer n can be obtained in the form of successive in- 

tegrals.  The approach used here is s imi lar  to the Stratonovich's " f i r s t  time passage" 

method. 

Let us consider a set of the functions 
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(26) 

Then 

(27) 

Integrating both sides of Eq.(12) over t from t = t o to t =~ ,  we obtain the ordina- 

ry d i f fe ren t ia l  equation 

H? Q~"+ ~ ( av Q.), __y.(~) 

I ts  solut ion, subjected to the boundary conditions Qo(~.~) = 0 (becauseS(m•,t)=O),is 

C ~, • ~ ~ 

a,: 

I f  the ro l l i ng  is possible to the r ight  ( l e f t )  side only, then C=O (C=1). For the 

symmetric case V(-~) = V(~) and ~ ( - ~ )  = ~ (~ ) ,  C : ½. Now, 

~U--, ½_,..~ ~ . ®  a--¢- ~° ( ]} ) = O -  ~ )  - c _- ~ = . ( ~d t (~o l  
eo 

Thus, the probabi l i ty  w(ts) introduced according to Eq.(25) is properly normalized. 

By mult ip ly ing both sides of Eq.(12) by ( t - to )  n and integrat ing over t from t o to 

t =~ ,  the recurrence re lat ion between Qn can be found. I t  has the form (n>zl) : 

+ ..'o : -~ ~?-.-. :~:I ga" 3 

The boundary conditions are Qn(~*:) = 0 for a l l  n. Then 
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Using Eq.(27), we obtain 

Con£~". 

(32) 

~/Ho - 

In par t icu lar ,  the average dimensionless duration of the de S i t te r  stage is equal to 

: ( 34 )  

w h e r e ~ i s  given in Eq.(4) and Qo is presented in Eq.(29). 

Let us now consider several par t icu lar  cases. Let ~ = 0 in Eq.(2) (that corresponds 

to the or ig inal  picture of the "new" i n f l a t i on )  and #o(~ = ~ C ~  • Then Eq.(34) 

s impl i f ies  (C = ½) : 

(the constant term in the potential may be omitted because i t  cancels in Eq.(35)). 

Af ter some manipulation, the expression (35) can be represented in the form contai- 

ning only one integration : 4 

o £' ] (3,) 

V ~  ' ~ - '  

where ~ is the confluent hypergeometric function. 

Three more par t icu lar  cases are of special in terest .  

I )  M 2 < 0 ; ~½ Ho2 << IM21 << Ho 2 ; 141 >> i .  

Then 

ZlM'I 

-i- 

o~- ~_n" M ~" 

-'IG rr 7" I'l 4 ] 
S~, 14o 4 "I-Y 

(37) 
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where *'6"= 0.577 ... is the Euler constant. In this case, one-loop approximation 

which consists in the substitution of <~4> by 3(<~2>) 2 in the equation for <~2> 

gives the result which is correct with the logarithmic accuracy : 

H ~ 
3 4 ~ , , A ~ ' >  = No ae~ + 

o.n,...-Lo,,f ~ I m~'l R 71 ,qo ~- (38) 

However, more accurate approach was developed in 1101 for this case which gave the 

right answer. I t  consists in the observation that in this case the stochastic force 

f ( t )  in Eq.(8) is important then and only then when the classical force (-dV(~)/d~) 

can be neglected and vice versa. Thus, Eq.(8) can be integrated directly that gives 

the following result for the stochastic quantity t s i tse l f  1101 : 

14o(~-~o) = ~ ° ~  ~ IM ' I ,  ; (39) 

where ~ I  is a gaussian stochastic quantity with zero average and the dispersion 

: ,  (40) 

(the thermal contribution to <~12> is neglected here for simplicity). After avera- 

g i n g ~ 4  in Eq.(39) over the gaussian distribution, just the correct result (37) 

appears. 

2) IM21 ~ ½  Ho 2 ; I~I ~ I. 

For this case, only one-loop 1101 or order-of-magnitude 191 estimates were known 

earlier. I t  follows from Eq.(36) that 

+ 

One-loop approximation gives the numerical coefficient in the second term equal to 

~2 / ~ ' ~ 6 . 9 8  that is 2.56 times less. 

I t  is intructive to consider the case of a many-component scalar f ield ~a with the 

symmetry group O(N) and see how the one-loop approximation becomes exact in the l imit 

N -~ .  Let ~ = (~.a~a) ½. The strightforward application of the developed approach 

shows that the corresponding generalization of Eq.(12) to the N{I case is : 

.~  = ,~..,. ~,~-, ~.~ ~ .~)(42) 

o 

W~ / 
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where S N is the area of the N-dimensional sphere (O(N)-symetrical init ial condition 

for ~ is also assumed). If  ~°(~,t) =~(~) at t = t o , then, instead of Eq.(35), the 

following expression for the average duration of the de Sitter stage results : 

~ t~ ~"-~ 

For V((): Vo- ~ ~ ' / " ~  

< H. C~.- ~.) > = 
q~w 

< , .  c~,.~.~ >,.~--  ,-,-'-~ 
Thus, both expressions tend to the same limit .,rc=l~" /~)P.,¢~ 
at N..~aO (but from different sides). 

p., F ( 4h • NI~) 
Z) 

(44) 

Now we return to the N = I case and calculate the dispersion of the quantity Ho(t s- 

<H:(t°)" BY the use °f Eqs'(32'33)' we ° b t a i n ~ - ( : : ) ~  > ~--- ~ I I  "~ J~°°~IbY~ ~,IA.d~°°~ ~ / ~ ( ~ f % / ~ / Z _ ~ Y ~ ; t p .  

s ~ - < " : (~ .~ . )~>  - ( 4 , .  c~,-~.) > )  ~ = (~') 

_ F ~ ( e ~  ~f, 'I¢~) ~t 

where F(~,k) is the el l ipt ic integral of the f i rs t  kind. Also interesting is to cal- 

culate the change in the result (41) due to the spreading of the init ial condition 

at t = t o (the "thermal" correction). If  .~C~}is the gaussian distribution with 

the zero average and the dispersion ~)~- (see Eqs.(14,15), then by applying Eq.(29) 

with C = ½ the following result can be found : 

q'~'~, << Ho 

z - Z  

_ ~n-~- @T Ho ;- 

(46) 

Thus, i f  the condition (16) is satisfied, then the thermal correction is small ; in 

the opposite case, the inflationary stage is very short. 

3) ~½ Ho2 ~ M 2 ~ Ho2 ; IX~ i. 
In this case, the result (36) simplifies to the form : 

~EM" 
C.&rr= M ~ ) 

e ~ ,  . z, 3 Ho ~ (47) 
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The exponent jus t  coincides with the resu l t  obtained by Hawking and Moss 181 with 

the help of the de S i t t e r  instanton. Thus, our approach reproduces the instanton re- 

sul ts without using instantons at a l l .  Moreover, we have obtained a l i t t l e  more - 

the coe f f i c ien t  of the exponential,  that corresponds to the summation of a l l  one-loop 

diagrams on the instanton background in the standard funct ional  integral  approach. 

The corresponding p robab i l i t y  d i s t r i bu t i on  w(ts) is determined by the lowest energy 

level E o of Eq.(20) with the excel lent  accuracy and, thus, is purely exponential : 

4~'~ 4It ~ 
~oI4; _ ~ M "  ( ~ , )  " ' ~ , / , ( 4 8 )  _ 2 .  M / ,  

I t  is clear in our approach that the transit ion of the scalar f ie ld through the po- 

tential barrier takes place only local ly,  that is, in the volume.~.Ho "3 (in fact, 

somewhat larger), but not in the whole 3-space. This fact can be also understood 

in the functional integral approach i f  one rewrites the de Sitter instanton in the 

stat ic,  "thermal" form : 

_ + ( t _  + 

~. {.,, M "B ""I` 

where "~ is per iodic with the period 2~Ho- l .  Then the instanton t e l l s  us that 

has reached the top of the potent ia l  bar r ie r  inside the horizon (r  < Ho-1) but gives 

us no information about the behaviour of ~ outside the horizon. 

That is enough for  the case of the "new" i n f l a t i o n .  Now we shall  turn to the so-cal- 

led "pr imordial"  i n f l a t i o n  i l l 1  where i t  is assumed that P~ O, ~ = 0 and present 

the most in terest ing resul ts b r i e f l y .  In th is  case, the average duration of the de 

S i t t e r  stage is given by Eqs.(34,29) with C = O. Two l im i t i ng  cases are the most 

important and representative. 

i )  IM21 ~ Ho4/3 V2/3 .  

Then 

2) Ho 4/3 ~ 2/3 ~ M 2 ~ Ho2. 

In th i s  case, 

/ , ~  F'("/s)(_g.)i4"o -/s 
,.o ( " % , )  v,  . 

~,," U2 
M ~ q Ho e "v '~ 

(5o) 

(51) 
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Again, the exponent is jus t  the action for the Hawking-Moss instanton which is equal 

to the dif ference between the actions for the de S i t te r  instantons (49) with ~ - m ~ x  

: M~/p and ~ :  ~m{~=O.  The th i rd  case M2<O, Ho4/3 ~ 2/3C IM21 ~ Ho2 reduces, in 

fact ,  to the second one a f ter  sh i f t ing  the scalar f i e ld  : ~ . = ~ E I  - |M~Jj/~ ) • 

The quant i tat ive results presented in the Sec. 2,3 were f i r s t  published by the au- 

thor in the shorter form in Russian in i16,171. Two points should be emphasized, 

however. 

F i r s t l y ,  though the quanti ty Y,~(a(ts)/a(to) )=Ho( ts - to )  has the wel l-def ined probabi- 

l i t y  d is t r ibu t ion  w(ts) ,  the quanti ty a ( ts ) /a ( to )  does not, because EoHo2~l in al l  

cases. Thus, i t  seems that the quant i ty ~na( t )  is more suitable for the descript ion 

of the stochastic in f la t ion  than the scale factor  a(t)  i t s e l f .  

Secondly, the calculated duration of the de S i t te r  stage gives us the typical size 

of causally connected regions. However, only a minor last  part of this in f la t ion  pro- 

duces regions those remain approximately homogeneous and isotropic in the course of 

subsequent evolut ion. This fol lows from the fact  that a f te r  the inf la t ion~the space- 

time metric at scales much larger than the cosmological post - in f la t ionary  particl~ol,~ 

horizon has the fol lowing simple structure in the proper ("ultra-synchronous") gauge. 

ds 2=d t  2 -exp (h (~ ) )a2 ( t ) (dx  2+dy2+dz 2) ; (52) 
# I  

h(~) = 2 ~(a(ts(3m))/a(to)), 

where h(~) is not assumed to be small and a(t)  is the scale factor for the s t r i c t l y  

isotropic and homogeneous solut ion. The quanti ty h(~ ~) is essent ia l ly  stochastic, i ts  

rms value is of the order of i ts  average (see, e.g. ,  Eq.(45)). Thus, the metric (52) 

becomes anisotropic and inhomogeneous in the course of the a f te r - i n f l a t i ona ry  expan- 

sion when spatial gradients of h (~  (omitted in Eq.(52) in the leading approximation) 

come into play. This s i tuat ion i l l us t ra tes  the well-known fact  that "general" i n f la -  

t ion produces neither isotropy nor homogeneity of the present-day universe and, there- 

fore, cannot "explain" them without fur ther  assumptions. Nevertheless, i f  the condi- 

t ions (3) are f u l f i l l e d ,  then the last ,  "useful" part of in f la t ion  does produce suf- 

f i c i e n t l y  large regions with the degree of homogeneity and isotropy that matches the 

observations. I t  is important that during this part of i n f la t ion  the stochastic force 

f ( t )  in Eq.(8) becomes small as compared to the classical force ( -dV(~) / (d~ .  Then, 

for  regions those are not too large, h(~) can be represented in the form which was 

used in 110,18-211 : 

h(~) = const +~h(r~ ; ~h(~) = - 2 H o ~ E ( t , ~ ) /  ~ , (53) 

where ~ is the small f luctuat ion of ~ ( t )  produced by f ( t , ~ ) .  Here ~h(~) is 

rea l ly  small. 

The duration ~ of th is "useful" part of in f la t ion  (when i ~ h I < l )  is easi ly  es t i -  

mated using the expression for perturbations (53) : 
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t4o ~,~:, ",, ~ - ' H  

IM'I 
IMP 

Ho (' 

I M' I  /_..~ '~4/~ t-I0 ~ , ,)=o ; 

IM' I  >> ~,'/~ No = ~ ~ = o .  

(54) 

M tl , ~=o • ~ 1 M'!  >) p'~Ho 31~ 

H o ~ t I contains no exponentially large multipliers. I f  ~ or "~ are fixed, then 

A t  I is maximal and the amplitude of perturbations at the given present-day scale 

is minimal when IM2[ ~ ~ 1/3Ho2 or iM2[ ~ ½ Ho 3/2 ; the upper l imits on ~ and 

presented in Eq.(3), s t r i c t l y  speaking, refer just to these cases. I f  M does not 

satisfy these conditions, the duration of the "useful" part of inf lat ion diminishes ; 

however, the numerical restrictions on } and V remain practically unchanged due 

to the f i r s t  condition in Eq.(3). I t  should be pointed also that the case M2>O pre- 

sents no more advantages than the case M2<O. 

4. Evolution of the scalar f ie ld in the chaotic inflationary scenario. 

In the chaotic in f la t ionary  scenario, i t  is assumed that the i n i t i a l  value of the 

quasi-homogeneous scalar f i e l d  ~ i s  non-zero and, in fact ,  large ; t yp ica l l y ,  

I~I>M~ at t=t~ . The potential V(!~) can be a rather arb i t rary  function ; the only 

condition is that i t  should grow less faster  than exp(const, l~ i )  for  J ~ i - - ~  . Typi- 

cal examples are V(~) = ~ 4 / 4  15I and even V(~)=M 2 ~2 /2  with M2>O (the dynamics of 

the la t te r  model was studied in 122-261). Here, the quanti ty H =~/a cannot be cons- 

tant in general, but i f  IH] ~H2~then the expansion of the universe is quasi-exponen- 

t i a l .  Thus, the notion of the quasi-de S i t te r  stage with the slow varying H arises. 

The scalar f i e ld  should also change slowly during this stage : I~I ~ H ~ .  Then, 

H 2 : 81~ GV(~). 

We can now repeat the derivation of Eqs.(8,12) (Sec.2) for this case. Because of the 

dependence of H on t ,  the quantity -~A~a(t) = jH ( t ) d t  appears to be more proper and 

fundamental independent variable than the time t. Eq.(6) retains i ts form with the 

change : Ho..~H. I t  is straightforward to obtain the following equation for the lar- 

ge-scale scalar f ie ld : 

~ A ~  3H ~ ~ ~I (55) 
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Then the corresponding Fokker-Planck equation takes the form (H2can be expressed 

through V(~)) : 

?) 
- 4 { (5e) 

I t  is worthwhile to note that th is equation has just  the form one would expect to 

fol low from quantum cosmology because i t  is no longer depends on such classical 

quant i t ies as t or H, but contains only fundamental variables ~ a and ~ which 

remain in quantum case. 

Now, the problem of the init ial  condition for j O ( ~ a )  arises In the studies 
of classical chaotic i n f l a t i on ,  i t  is usually assumed that = ~Po at t=tp that 

corresponds to - -  --'%eC~) °(. ~ C ~ - ~ ) f o r  some . ~ 0 ~  . But such a condition con- 

t rad ic ts  the whole s p i r i t  of quantum cosmology. A natural idea is to consider sta- 

t ionary solutions (e.g. ,  independent of ~ v ~ )  of Eq.(56). They can be thought of as 

being in "equi l ibr ium with space-time foam" which may arise at planckian curvatures. 

At f i r s t ,  we introduce the notion of the probabi l i ty  f lux  j (  ~ j ~  ) by rewr i t ing 

Eq.(56) in the form 

" a ~ o .  

S 
(57) 

Then, two types of stat ionary solutions arise : with no f lux  and with a constant f lux  

Jo 
:~9 = const. V - lexp(3 /eG 2 v ) - ~  

G 2 d ~ l  G 2 V(~l)). 
(58) 

- -  3 ~Jo(GV)-I exp(3/8 V) J exp(-3/8 

The f i r s t  solution (with j = O) is jus t  the envelope of the Hartle-Hawking time-sym- 

metric wave function 1271 in the c lass ica l ly  permitted region (a2~ (83~GV) -1) ; the 

exponent is the action for  the de S i t te r  instanton with ~ =  const (with the correct 

sign). Moreover, we have obtained the coef f i c ien t  of the exponent, so the solution 

appears to be normalizable. I t  iseasy to ver i fy  that the average value of ~ calcula- 

ted with th~ use of th is solution p rac t i ca l l y  coincides_L..with ~ $  --the value of 

for which IHI~H2 and the de S i t te r  stage ends ( q~s,~l~pi f  V(.~ = "~h~_n/n). This 

does not mean that the dimension of the universe a f te r  in f la t ion  is small (because 

al l  ~ are equally probable for stat ionary solut ions) but suggests that the "use- 

fu l "  part of i n f la t ion  is t yp ica l l y  very small ( i f  exists at a l l )  in th is case. I t  

is possible to obtain the "useful" part of in f la t ion  that is long enough, but with 

the very small probabi l i ty  ~ exp(-3/eG2V(~s))~ exp(- lolO).  
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I t  is interesting that the second solution with j {0 does not, in fact, contain any 

exponential at a l l .  For G2V(~)~I that corresponds to curvatures much less than the 

planckian one, its form for Jo<O is : 

In this case, the stochastic force is unimportant. Thus, we have only two possibi- 

l i t ies :e i ther  the stationary solution contains the instanton contribution exp(-S) 

(where S is the action for the instanton, S<O) or the solution is non-exponential. 

We have not obtained the solution proportional to exp(S) =exp(-ISl) which was advo- 

cated by several authors (including the author of this paper) some time ago 128-301. 

I t  seems that the lat ter  solution describing the process of "quantum creation" of the 

universe via quantum tunneling to the de Sitter stage, though possible formally, has 

a very small probability also (with the same order of magnitude as above). This con- 

clusion is similar to that obtained by Rubakov 1311 though we suppose that his ter- 

minology of "catastrophic particle creation in the process of quantum tunneling" is 

inadequate ; in fact, no real particle creation takes place at the de Sitter instan- 

ton solution. 

5. Conclusions and discussion. 

We introduced and elaborated the approach consisting in taking into account the chan- 

ge in a large-scale scalar f ie ld due to the continuous flow of small-scale quantum 

perturbations of the same scalar f ie ld across the de Sitter horizon during the de 

Sitter ( inflationary) stage. That gave us the possibi l i ty to find the expl ic i t  expres- 

sions for the average duration of the de Sitter stage (and for any higher moment i f  

necessary) in the case when the i n i t i a l  probability distribution of the scalar f ie ld 

before the beginning of de Sitter stage was known. Certainly, the method used in the 

paper (as any other mathematical method) cannot solve the problem of i n i t i a l  pre-in- 

f lationary conditions ; new physical hypothesises (or "principles") are necessary 

for this purpose. 

What can be said now about the possibi l i ty of "spontaneous quantum creation of the 

universe" which was so extensively discussed in 132-351 ? To make the terminology 

more precise, the author proposed some time ago 1361 (see also 130i) to call the 

"quantum creation of the universe" the situation when we have a solution for the wave 

function of the universe with a non-zero probability f lux emerging from the region 

of small values of a (or, equivalently, large values of space-time curvature). This 

proposal can be used in our stochastic approach also. Then the f i r s t  stationary solu- 

tion of Eq.(56) (the f i r s t  term in Eq.(58)) corresponds to the time-symmetric univer- 

se which has no beginning and was not created. This coincides with the Hawking's 

interpretation of the Hartle-Hawking wave function in quantum cosmology. In the case 

of our f i r s t  solution, we encounter the serious d i f f i cu l t y  connected (as was explai- 
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ned in Sec. 4) with the very small p robab i l i t y  of having the large duration of the 

"useful"  part of i n f l a t i o n .  

The second stat ionary solut ion with the non-zero p robab i l i t y  f l u x  does correspond to 

the "creat ion" of the universe but th is  creation has very l i t t l e  in common with the 

picture that was introduced in 132-35J. In pa r t i cu la r ,  no quantum tunnel ing takes 

place, and the evolut ion of the metric and the scalar f i e l d  remains c lassical  up 

to the planckian curvatures. This type of creation was cal led the "c lassical  crea- 

t ion"  in ]28J but i t  should be clear that the "c lassical  creat ion" is not a new con- 

cept but simply the paraphrase of the standard c lassical  p icture of a s i ngu la r i t y  as 

a boundary of the space-time through which the space-time cannot be continued ; the 

only di f ference is that now th is  boundary is assumed to have a f i n i t e  thickness o 

The d i f f i c u l t i e s  with the second solut ion are connected with our imposs ib i l i t y  at 

the present time to prove the very existence of such a solut ion ( in other words, to 

prove the p o s s i b i l i t y  of the quantum change of topology) and to say something def i -  

n i te  about the value of Jo, i f  i t  is non-zero. Thus, the problem of the p o s s i b i l i t y  

of the quantum creation of the universe remains open. 
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