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D-branes and orientifold planes are important ingredients in semi-realistic type
II string compactifications. Determining their explicit back-reaction on the compactifi-
cation background poses generically a difficult computational problem. This problem is
greatly simplified if one formally assumes the brane charges and masses to be smeared
over the whole internal manifold, which corresponds to taking into account their back-
reaction only in an averaged sense. I summarize recent progress in the understanding
of the range of validity of this smearing approximation and comment on possible im-
plications for attempts to build “classical” de Sitter vacua.
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1. THE “SMEARING” OF D-BRANES AND O-PLANES

D-branes and orientifold planes (O-planes) are indispensable ingredients of all
phenomenologically interesting type II string compactifications. They provide chiral
matter, contribute to supersymmetry breaking and play an important role for mod-
uli stabilization, e.g. via tadpole cancellation conditions for fluxes or by providing
sources for non-perturbative scalar potentials.

On the other hand, the presence of D-branes and O-planes in string com-
pactifications also leads to unwelcome technical complications, because they source
warp factors, RR-potentials and generically also a non-trivial dilaton profile. This
back-reaction on the compactification background can usually not be completely ne-
glected, as this would in general lead to inconsistencies, e.g. with the Bianchi iden-
tities of the RR-forms. Taking the full back-reaction into account, however, would
require solving a complicated coupled system of non-linear partial differential equa-
tions and hence seems out of reach, except possibly in a few highly symmetric situa-
tions.

A common approach to this problem therefore is to take into account the back-
reaction of localized sources only in an averaged or integrated sense so as to avoid at
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least the most obvious inconsistencies such as, e.g., a violation of the global tadpole
cancellation conditions. At the level of the 10D field equations, this averaging corre-
sponds to “smearing” the delta-function-like mass and charge profiles of the sources
along the directions transverse to their world volumes.

With smeared sources it is much easier to construct explicit solutions of the
10D supergravity equations (see e.g. [1] for several interesting examples), because
the warp factor, as well as the sourced RR-potentials and the dilaton, may often be
assumed constant. In this case a drastic simplification also occurs with regard to
the dimensional reduction, as one does not have to deal with, e.g., the subtleties of
“warped effective field theories” along the lines of [2]. Moreover, on group or coset
manifolds, the restriction to the left-invariant modes provides a consistent trunca-
tion [3] analogous to the constant Fourier modes for a torus compactification if the
sources are smeared appropriately. This ensures that solutions found in the lower-
dimensional truncation (e.g. de Sitter extrema) uplift to full solutions of the 10D
theory with smeared sources.

To summarize, the smearing of D-branes and O-planes is a commonly em-
ployed simplification to obtain explicit 10D flux compactifications or consistently
truncated 4D effective theories. It takes into account some brane back-reaction in an
averaged sense, but ignores the local back-reaction on warp factor, dilaton or RR-
potentials. As real D-branes and O-planes are, however, not smeared, it is important
to understand in what circumstances the smearing is actually a good approximation
and when it is not. This is a particularly pressing problem for recent attempts to build
“classical” de Sitter vacua, as we will now explain.

2. CLASSICAL DE SITTER VACUA AND THE DOUGLAS-KALLOSH PROBLEM

While string theory naturally combines many of the theoretical ingredients we
find useful for the description of the world we observe, its ability to produce a posi-
tive cosmological constant in four dimensions seems less immediate. In fact, there
are surprisingly powerful no-go theorems that rule out de Sitter compactifications
at leading order in the α′ and gs-expansion (which we will henceforth refer to as
“classical” de Sitter vacua) even if the most general fluxes and arbitrary sets of (anti-
)D-branes are included [4]. These simplest no-go theorems no longer apply in the
presence of objects that violate the strong energy condition. The best known such
objects in string theory are orientifold planes, which have negative tension. How-
ever, even if one allows for orientifold planes, more refined no-go theorems against
classical de Sitter compactifications can be proven, provided one restricts oneself to
compactifications with non-negative integrated curvature

∫
d6x
√
−g(6)R(6) ≥ 0 [5].

In order to construct de Sitter compactifications, one obvious avenue is to go
beyond the leading order approximation and invoke stringy and/or quantum correc-
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tions. This has by now led to many interesting scenarios, starting with the work [6],
which, as most of these approaches, uses non-perturbative quantum corrections as an
essential ingredient. The advantage of this approach is that the use of small correc-
tions might make it easier to generate small scales for the breaking of supersymmetry
or the cosmological constant. The “price” one has to pay, on the other hand, is that
the explicit computation of the relevant perturbative or non-perturbative corrections
usually poses a hard problem. Because of this, the evidence that these vacua really
exist is also rather indirect.

The other possibility would be to try to construct de Sitter vacua at leading
order by violating – already at the classical level – some of the assumptions that
underlie the above-mentioned no-go theorems [7]. Although it may make it more
difficult to generate small scale supersymmetry breaking or tiny cosmological con-
stants, this purely “classical” approach certainly promises a gain in computational
control.

2.1. THE DOUGLAS-KALLOSH PROBLEM

Looking at the possible caveats of the existing no-go theorems, the best-control-
led classical ingredients that may evade them are a combination of orientifold planes
and fluxes on spaces of negative integrated curvature

∫
d6x
√
−g(6)R(6) < 0.∗ As

the dimensional reduction on a generic negatively curved space is much less well
understood as for Ricci-flat spaces such as Calab-Yau manifolds, most attempts have
focused on group or coset manifolds, where the left-invariant modes provide a con-
sistent truncation when the O-planes are smeared.

It is here where the Douglas-Kallosh problem [8] becomes particularly obvi-
ous. On a group or coset manifold, the curvature scalar of left-invariant metrics is
in general a constant, i.e. the manifold has negative curvature at every point. As
was pointed out by Douglas and Kallosh, however, the Einstein equation then re-
quires that there also be a source of negative energy density at every point of the
internal space. Clearly, a smeared orientifold plane provides precisely that, and in
fact there are exact de Sitter solutions of the 10D field equations with such smeared
oerientifold planes on group and coset spaces [9] (the known examples are not yet
satisfactorily: they all have at least one tachyon, and there are possible issues with
flux quantization). But the problem is that true O-planes are not smeared, and hence
it seems unclear how a negative curvature space could possibly be supported at all.
One should note that this is a general problem of compactifications on spaces of
negative curvature that is not necessarily related to de Sitter vacua.
∗The use of negative internal curvature here stems from the fact that the dimensional reduction of

the internal part of the Einstein Hilbert term gives rise to a positive contribution to the scalar potential
when the integrated internal curvature is negative. This positive contribution can then effectively act as
an uplifting potential that may help to reach a positive vacuum energy.
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Douglas and Kallosh suggest two possible ways around this problem. One is
that negative curvature might be supported if there is an everywhere strongly varying
warp factor, and another possibility could be effects from higher curvature terms. For
lowest order solutions, only the first option could be viable, and indeed, a localized
O-plane does in general lead to a varying warp factor. The important question then is,
though, whether a solution with an everywhere strongly varying warp factor sourced
by a localized O-plane can reliably be approximated by a solution with a smeared
O-plane and a constant warp factor.

This motivated the works [10–12] where the validity of the smearing approx-
imation is studied in simple setups that admit some control also over the localized
solutions. The two main questions in this context then are:
1) Do smeared solutions always have a localized counterpart?
2) If yes, how much do the physical properties of the smeared and the localized solu-
tion differ from one another (e.g. with respect to the moduli values, the cosmological
constant etc.)?

3. SMEARING IN THE BPS-CASE I

There is one known type of flux compactification where the back-reaction ef-
fects of localized brane sources are well enough understood to allow for an explicit
comparison with the corresponding smeared solutions. These are the type IIB com-
pactifications first discussed by Giddings, Kachru and Polchinski (GKP) [13]. In
their simplest version they feature conformally Calabi-Yau spaces with H3 and F3

flux and spacetime-filling O3-planes. These source a non-trivial warp factor and a
non-trivial profile for the C4-potential, as follows from the F5 Bianchi identity

dF5 =H3∧F3−µ3δ6(O3), (1)

where µ3 is a positive constant and δ6(O3) denotes a 6-form with delta-function
support at the position of the O3-planes on the internal 6D manifold.

This setup admits 4D Minkowski solutions provided the following BPS-type
equations are satisfied

e4A−α= const. (2)

F3+e
−φ∗̃6H3 = 0. (3)

Here, e2A denotes the warp factor (i.e. the 10D metric is ds210 = e2Ads̃24+e
−2Ads̃26),

the function α determines the F5-field strength via F5 =−(1+∗10)e−4A ∗6 dα, and
∗̃6 is the internal Hodge star but with respect to the Calabi-Yau metric ds̃26 without
the conformal factor e−2A.
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We now want to see what happens to this solution when the O3-planes are
smeared over the full internal space. This means that the delta-functions in the source
terms such as, e.g., the one in (1) are replaced by constants. As a consequence, the
functions A and α become constants (in fact, they can be chosen to be zero), so that
the first BPS-condition (2) becomes trivial. The form of the second BPS-condition,
on the other hand, stays exactly the same, and the solution still gives rise to a 4D
Minkowski metric.

These observations have two important consequences:

1) For every smeared Minkowski solution satisfying the second BPS-condition (3)
there is a localized Minkowski solution that also satisfies (3) (along with (2)).

2) The localized and the smeared solution have the same 4D cosmological constant
(because they are both Minkowski compactifications) and they stabilize the com-
plex structure moduli and the dilaton at the same values (because these moduli
are stabilized by the condition (3), which is identical in both cases).

We thus see that for BPS-type solutions of the above type the smearing procedure
provides a remarkably robust approximation. Intuitively this can be understood from
the fact that the O3-planes and the fluxes do not exert any forces upon one another as
they are mutually BPS. The fluxes should thus not be much influenced by a redistri-
bution of the O3-brane charge and energy density.

4. SMEARING IN THE BPS-CASE II

The simple GKP-setup in the previous example does not directly address the
Douglas-Kallosh problem as it is based on Ricci-flat internal manifolds in the smeared
case. It is well known, however, that these smeared solutions (assuming a suitable
U(1) isometry) can formally be T-dualised to compactifications that have negative
internal curvature [14]. Starting from a 6-torus, for example, T-duality along a circle
that is threaded by part of the H3 flux, yields a nilmanifold (twisted torus) with con-
stant negative curvature and wrapped O4-planes. The localization of these smeared
solutions should then again be possible due to the T-dual version of the above BPS
conditions, and one should obtain a very concrete setup that directly addresses the
Douglas-Kallosh problem.

For this reason we have explicitly constructed the smeared and the localized
version of this negative curvature compactification and also studied the fate of the
integrated internal curvature scalar [10]. The result is that, for this BPS-solution, the
localized solution always exists, and it has again rather similar properties (cosmo-
logical constant, moduli vevs etc.) as the smeared solution. Moreover, the localized
solution satisfies the 10D Einstein equations, and the Douglas-Kallosh problem is
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indeed taken care of by a careful interplay of the warp factor and two different con-
formal factors for the internal dimensions.

It is this interplay of the various warp and conformal factors that also has an
important consequence for the integrated internal curvature. More precisely, one
should look at the contribution, Vcurv, of the internal curvature to the effective 4D
scalar potential, which must include also the determinant of the 4D metric. One then
finds†

−Vcurv =

∫
d6y

√
g(10)R(6)=

√
g̃(4)
∫
d6y

√
g̃(6)
(
−40

3
(∇̃A)2+ 1

4
e

16
3
AR̃(6)

)
< 0. (4)

Thus, also in the localized version, the sign of the properly integrated internal cur-
vature stays negative, and the above term can in principle be used as an uplift term
(although in this case we know that the final result will be a Minkowski vacuum).

5. SMEARING IN THE NON-BPS CASE

In the above examples we have seen that, for BPS-type setups, the smear-
ing procedure can be a remarkably harmless modification of the solution, and there
doesn’t seem to be an obvious obstacle to obtain a localized solution from a smeared
one. If this is due to the no-force property of BPS-like configurations, however, this
maybe entirely different for non-BPS solutions. In order to explore this issue, we
therefore also studied the localization of a given smeared solution for a particularly
simple non-BPS example that is in fact closely related to the above GKP-type solu-
tions.

More precisely, we now consider a type IIB compactification in which the 3-
form fluxes do not satisfy the BPS-condition (3), but instead

F3−e−φ∗̃6H3 = 0. (5)

One can show that these fluxes admit an AdS4 solution with smeared D3-branes and
a positively curved internal space, the simplest example being S3×S3. Due to the
sign change in (5), this smeared solution does not satisfy BPS-like conditions, but it
nevertheless can be shown to be a stable solution in the entire left-invariant sector.

When one now tries to turn this solution into a solution with localized D3-
branes, using the most general ansatz for F5 and the warp factor compatible with the
field equations, one finds that the smeared flux relation (5) can not be maintained in

†The 4D metric determinant in fact contributes powers of the warp factor that are necessary in order
to make the whole expression manifestly negative definite (after a partial integration). What is also
important for this result is the precise form of the two different conformal factors of the internal metric
(see [10] for details). Without these contributions, a definite sign of the integrated internal curvature is
not apparent [8].
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the localized solution, as it would lead to the following contradiction

e−2AR̃4 =−2µ3δ(D3), (6)

where R̃4 < 0 is the curvature of the unwarped AdS-metric, µ3 > 0, and δ(D3) has
support only at the positions of the D3-branes and vanishes elsewhere, in contra-
diction with the left hand side (the warp factor e−2A must be finite away from the
branes). Note that in the smeared limit δ(D3)→ 1, e−2A→ 1 this contradiction dis-
appears.‡ This implies that, should a localized version of this non-BPS solution really
exist, it must have a relation between the 3-form fluxes different from the smeared
relation (5), which then makes it unlikely that the moduli that are stabilized by (5)
are stabilized at the same values as in the smeared situation.

In order to make further progress, we considered the analogous smeared com-
pactification on AdS7×S3 in type IIA theory with spacetime-filling D6-branes and
H3-flux on the S3 and a nontrivial Romans mass parameter F0, playing the role of
F3 in the previous example. Assuming the most general ansatz for the relevant fields,
we could then prove [11] that there is no continuous interpolation between the fully
smeared solution and a hypothetical localized solution. Thus there can at best be a
localized solution that is disconnected from the smeared one in parameter space. This
again makes it unlikely that physical quantities such as moduli vevs or the cosmo-
logical constant take on the same or nearby values in the smeared and the localized
solution (if one exists).

In [11] and [12] we could furthermore show that if a localized solution exists,
it must have some very unusual boundary behavior near the D-branes, as it must
involve diverging H3-flux energy density. As H3 is not directly sourced by the D6-
branes, this divergence might indicate that a global static solution does not exist, or it
could be a sign of the D6-branes being unstable in this non-BPS background due to
some version of the Myers effect [15]. It would certainly be interesting to understand
the physical meaning of this singularity and what it implies for the existence of a
localized solution.

6. CONCLUSION

The smearing of D-branes and O-planes is a common and very helpful simpli-
fication for finding explicit compactification backgrounds or for deriving the corre-
sponding effective actions. For BPS-type flux-brane configurations, we found this
approximation to be remarkably robust and showed that the Douglas-Kallosh pro-
blem for negatively curved internal spaces may indeed be taken care of by an inter-
play of warp and conformal factors.
‡For the BPS-Minkowski solutions of section 2, the right hand side of (6) has the prefactor 0 instead

of (−2), and no analogous contradiction occurs in the localized solution.
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For non-BPS configurations, however, the general validity of smearing is much
less clear and could not yet be confirmed. In fact, our investigation of a few sim-
ple examples raised a number of open questions and potential problems with this
approximation.

Unfortunately, de Sitter vacua are non-BPS in nature, so it is still unclear
whether smearing really makes sense here. As the attempts to build classical de
Sitter vacua also have met with other problems, one might take this as an indication
that de Sitter vacua are more likely to hide elsewhere in the parameter space of string
theory.

In this context, it might be interesting to explore also some parallels with the
recent work [16] on the back-reaction of anti-branes in warped throats.

Acknowledgments. This article summarizes much of the work of [10–12], and it is my pleasure
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