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Abstract. The discovery of the electromagnetic counterpart to GW170817 severely con-
strains the tensor mode propagation speed, eliminating a large model space of Horndeski
theory. We use the cosmic microwave background data from Planck and the joint analysis
of the BICEP2/Keck Array and Planck, galaxy clustering data from the SDSS LRG survey,
BOSS baryon acoustic oscillation data, and redshift space distortion measurements to place
constraints on the remaining Horndeski parameters. We evolve the Horndeski parameters as
power laws with both the amplitude and power law index free. We find a 95% CL upper
bound on the present-day coefficient of the Hubble friction term in the cosmological propa-
gation of gravitational waves is 2.38, whereas General Relativity gives 2 at all times. While
an enhanced friction suppresses the amplitude of the reionization bump of the primordial
B-mode power spectrum at ` < 10, our result limits the suppression to be less than 0.8%.
This constraint is primarily due to the scalar integrated Sachs-Wolfe effect in temperature
fluctuations at low multipoles.
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1 Introduction

The detection of gravitational waves opens a new window into constraining gravity. In general
relativity (GR), the line element for scalar mode perturbations in the Newtonian gauge is
given by ds2 = a2 (τ)

[
− (1 + 2Ψ) dτ2 + (1− 2Φ) dx2

]
. The line element for tensor mode

perturbations is ds2 = a2 (τ)
[
−dτ2 + (δij + hij) dx

idxj
]
, where hij = ±h+, h× are small

perturbations and are the divergenceless, traceless component of the metric. The linearized
Einstein equation without a source takes the form of the wave equation �hij = 0, where � is
the D’Alembertian. Then, going to Fourier space, the gravitational waves can be described
by ḧij + 2 ȧa ḣij + k2hij = 0, where k is the wavenumber. Dots throughout the paper denote
derivatives with respect to conformal time.

Changing the gravitational theory modifies the propagation of gravitational waves. In
Horndeski theory, the most general tensor-scalar theory in which the equations of motion are
second order [1], the tensor mode propagation equation becomes

ḧij + [2 + αM (a)]Hḣij + c2T (a) k2hij = 0, (1.1)

using the parameterization developed by [2] and where H = ȧ/a. The Planck mass run rate
αM describes how the Planck mass evolves over time and contributes to the gravitational
wave friction. It is defined as

αM =
d ln

(
M2
∗
)

d ln a
, (1.2)

– 1 –
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where M2
∗ is the effective Planck mass. If not constant, αM creates anisotropic stress in the

Jordan frame.

The tensor speed cT is given by c2T = 1 + αT, where αT is the tensor speed excess that
quantifies how much the gravitational wave speed deviates from that of light. Recent obser-
vations of GW170817 and its electromagnetic counterpart have placed the stringent bounds

− 6× 10−15 ≤ αT
0 ≤ 1.4× 10−15. (1.3)

This new constraint effectively eliminates all Horndeski theories with αT
0 6= 0 and alters the

physically allowed values of the other Horndeski parameters [3]. See e.g. [4] for an example of
a non-trivial theory compatible with cT = c, [5, 6] for discussions of how gravitational wave
detections impact Horndeski theory, [7–9] for good theoretical discussions about the impact
of GW170817, and [10] for observational constraints on Horndeski theory using only the si-
multaneous detection of GW170817 and GRB170817A. In this paper we use measurements
of the cosmic microwave background (CMB), galaxy clustering, baryon acoustic oscillations
(BAO), and redshift space distortions (RSD) to constrain the remaining Horndeski parame-
ters in light of this discovery.

The remaining viable tensor mode propagation equation is

ḧij + [2 + αM (a)]Hḣij + k2hij = 0. (1.4)

Two additional parameters, the kineticity αK and braiding αB, complete the parameterized
Horndeski theory. Kineticity describes the scalar perturbations’ kinetic energy. Large values
reduce the scalar sound speed. The kinetic braiding parameter describes how the scalar and
metric kinetic terms mix [see e.g. 11–13, for good discussions]. A nonzero value indicates the
clustering of dark energy. All four parameters are independent of each other and the back-
ground, which we choose to be ΛCDM. ΛCDM GR cosmology is regained when all αi = 0.

In section 2 we discuss our parameterization of the Horndeski parameters and what
data we use to constrain them, and in section 3 we define the model’s stability constraints.
We present our results in section 4 and discuss the source of constraining power in section 5.
In section 6 we compare our models and discuss our results. We summarize in section 7. In
appendix A we provide additional background information about Horndeski’s theory and its
implementation. Appendix B details how kineticity affects the model’s stability constraints
and how this influences our results, and in appendix C we discuss our evolution of the
Horndeski parameters.

2 Modeling & data sets

We use EFTCAMB1 [14, 15], a modified version of the Boltzmann code CAMB [16] that
does not use a quasi-static approximation, as well as the complimentary CosmoMC ver-
sion [17], to study the effects of modified gravity on perturbations. See appendix A for
further detail on how the parameters are handled in the code. We set R − 1 . 0.03, where
R is the Gelman-Rubin diagnostic [18], as our criterion to obtain convergence in the chains.

To explore the time evolution of the remaining Horndeski parameters and achieve a
sufficiently large stable parameter space to perform an MCMC analysis (see appendix B), we

1http://www.eftcamb.org/codes/download.html, version 2.0.
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evolve the Horndeski parameters as power laws:

αK = αK
0 a

κ (2.1)

αB = αB
0 a

ξ (2.2)

M̃ = M̃0a
β =⇒ αM =

d ln
(
M2
∗
)

d ln a
= M̃0a

β β

1 + M̃0aβ
, (2.3)

where M2
∗ /m

2
0 = 1+M̃ in the context of EFTCAMB, and m2

0 is the Planck mass. M̃0 is the
fractional deviation of M2

∗ from m2
0 today. αi0 denotes the parameter value today, and a is

the scale factor. This parameterization is similar to that used by the Planck collaboration for
the Horndeski parameters [19]. While we do not know the exact functional form of the αi’s,
ref. [20] discusses the challenges of parameterizing them as a function of ΩDE and ref. [21]
finds that evolving the αi’s as power laws, with both the amplitude and power law index
free, is preferred over evolving them with simpler or more complex models.

The authors of [12] parameterized the Horndeski parameters as a function of the dark
energy density and found that αK could not be well constrained [see also erratum of 12].
To limit the number of additional degrees of freedom in our analysis, we fix the evolution
of αK with αK

0 = 0.1 and κ = 3. We also choose to explore the case of αB
0 = 0 to probe a

theory in which the primary modification is due to gravitational waves. Fixing αB
0 = 0 yields

a perfect-fluid model that includes anisotropic stress [2]. If both αK
0 = 0 and αB

0 = 0, the
scalar propagation speed diverges. For this reason we fix the kineticity at a nonzero value
throughout our analysis. See appendix B for a discussion of how kineticity affects the stable
parameter space given the imposed stability conditions defined in section 3. We vary the
standard cosmological parameters Ωbh

2, Ωch
2, θ, τ , ln(1010As), ns, as well as the tensor-

to-scalar ratio r, Planck calibration ycal, the dust power (` = 80, ν = 353 GHz) AB,dust,
and the dust frequency scaling parameter βB,dust. We choose not to vary w0 and wa to
minimize the number of free parameters in our analysis and to focus on the propagation of
gravitational waves. In table 1 we list our adopted prior cutoffs for the different parameters.
All parameters have uniform priors except for ycal and βB,dust, which have the Gaussian
priors ycal = 1.0000± 0.0025 and βB,dust = 1.59± 0.11, respectively.

Given the direct effect the Horndeski parameters have on tensor perturbations [see
eq. (1.4) and e.g. 22–24], we include in our analysis the B-mode data from the joint analysis
of the BICEP2/Keck Array and Planck [25]. Because the Horndeski parameters influence the
scalar perturbations, as well, we use the 2015 Planck low-` CMB temperature and polarization
data, high-` temperature data, and the lensing potential measurements [26, 27].

It is reasonable to posit the CMB places optimal constraints on the remaining Horndeski
parameters at the epoch of decoupling. We studied the optimal pivot scale to measure αB

and αM and find that they are uncorrelated at present and are best constrained at late times
rather than during recombination. See appendix C for a further discussion. The constraints
primarily come from the late integrated Sachs-Wolfe (ISW) effect (see section 5). The pivot
scale is model dependent, however, and should be re-examined when the evolution of the
Horndeski parameters is better determined. To take advantage of this late time sensitivity,
we include the SDSS LRG DR4 [mpk, 28] and BOSS BAO and RSD data sets in our MCMC
analysis [29–32].

– 3 –
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Parameter Prior

M̃0 [−1, 5]

β [0, 20]

αB
0 [−7, 2]

ξ [0, 20]

Ωbh
2 [0.005, 0.100]

Ωch
2 [0.001, 0.990]

100θMC [0.5, 10]

τ [0.01, 0.80]

ln(1010As) [2, 4]

ns [0.8, 1.2]

r [0, 1]

ycal [0.9, 1.1]

AB,dust [0, 15]

βB,dust [1.04, 2.14]

Table 1. Adopted MCMC Priors.

3 Stability constraints

Several viability priors can be set by EFTCAMB to ensure the parameter space yields a
stable theory. We enforce the following constraints [see 2, 14, 33, for a full description]:

1. Physical stability: the theory must have a positive effective Newton’s constant (i.e.,
1 + Ω > 0), and avoid ghost and gradient instabilities. Ghost instabilities arise when
the kinetic energy becomes negative, and gradient instabilities occur when the squared
speed of sound for perturbations becomes negative [see section 3.3 of 2, 14].

2. Mathematical stability: neither the coefficient of ḧij nor the coefficient of π̈ may equal 0,
ensuring the tensor perturbation and π field equations are well defined, respectively [14,
33, 34]. In this work we exclude all exponential growth of the π field perturbations,
including those due to tachyon instabilities.2 For details of the mathematical stability
conditions, see Equations 40 and 52 in [33], as well as the corresponding π field equation
discussion in section IV D and viability condition discussion in section IV F of [33].

3. We require a positive matter density and dark energy density with ωDE ≤ −1/3 at all
times.

We do not restrict our analysis to regions of parameter space where c2s ≤ 1 or m2
π ≥ 0.

Subluminal sound speeds are required for the theory to be UV complete through standard
methods [2, 36]. The authors of [37] have shown, however, that Horndeski theories will always
have regions of parameter space that include superluminal sound speeds [see also 2, for a brief

2Some argue that tachyon instabilities are not harmful because they produce perturbation growth on large
scales which is, thus, bounded [see e.g. 35]. In contrast are gradient instabilities that produce unbounded
perturbation growth on small scales. Nevertheless, in this paper we follow the framework of EFTCAMB, in
which the mathematical stability conditions include the tachyon stability requirement.

– 4 –
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discussion]. If the scalar field couples to matter, its speed and mass are more complicated
to compute than if the field were in a vacuum. They cannot be directly read from the π
propagation equation because the scalar degree of freedom of the theory is a combination of
π and the matter fields. Enforcing c2s ≤ 1 in EFTCAMB would not put a limit on the true
scalar sound speed in the non-minimal coupling scenario [38]. We note that restrictions on
cs can have a severe impact on the stable parameter space. The authors of [39] have shown
that restricting the scalar field to propagate subluminally yields a stable parameter space
that is a very small subsection of the parameter space allowed when the scalar field is free to
have any real sound speed.

4 Results

In figure 1 and figure 2 we show the resulting posterior probability distributions for the cases
with αB

0 6= 0 and αB
0 = 0, respectively. CMB denotes the low-` TEB, high-` TT [26], and

BKP [25] data set combination. LSS denotes combining the lensing [27], mpk [28], BAO [29,
30], and RSD [31, 32] data sets. Constraints on the friction and braiding parameters are
quoted in table 2 and table 3. See [40] for constraints on αB from galaxy cluster observations
in light of the observation of the electromagnetic counterpart to GW170817.

One may be surprised to see that the bounds on M̃0 and αM
0 exclude their GR values

at 95% confidence in the case of αB
0 6= 0. However, these lower bounds are driven largely by

stability constraints on the model when αK
0 = 0.1. For this kineticity, as M̃0 → 0+, αB

0 → 0+,

as well. Thus, for the αB
0 6= 0 case, there is not a large enough stable region around M̃0 = 0

for the posterior to show a nonzero probability.

αM
0 has an upper limit of 0.38 and 0.41 at 95% confidence for αB

0 6= 0 and αB
0 = 0,

respectively, for the CMB+LSS data sets. The stable parameter space for M̃0 is large (see
appendix B), so the upper 95% CL constraints for this parameter are driven by data. Matter

clustering and the late ISW effect are both sensitive probes of M̃0 (see section 5).

For αB
0 = 0, M̃0 and αM

0 are consistent with GR. See also the bimodal posterior for M̃0

in figure 2 when αB
0 = 0. When αB

0 = 0, M̃0 is stable at 0 and values near 0, allowing for the
bimodal posterior in figure 2. The posterior is bimodel rather than smooth because there is a
small number of stable parameter values when 0 . M̃0 . 0.1. Indeed, the M̃0 posterior for the
αB
0 6= 0 case and the rightmost mode in the posterior for the αB

0 = 0 case rise near M̃0 = 0.1.

The shape of this stable parameter region near M̃0 = 0 is purely driven from the choice
of αK

0 . When αK
0 = 0, values between M̃0 = 0 and M̃0 ≈ 0.1 are stable, eliminating the

bottleneck effect in the M̃0 − αB
0 stable space as M̃0 → 0+. However, to investigate the case

of αB
0 = 0, αK

0 must be nonzero since αB
0 = 0 and αK

0 = 0 simultaneously are unstable. See
appendix B for a further discussion.

Both ξ, the power law index for the braiding parameter, and β, the power law index
related to friction, are relatively unconstrained by the data. In fact, ξ cannot be constrained
at the 95% CL for the αB

0 6= 0 case with CMB data alone. At 68% confidence, ξ > 2.82
for this case. Note that the nonzero probability for ξ = 0 in figure 1 is due to smoothing
artifacts. The constraints on β are almost purely from stability constraints (see appendix B).
There is a small stable region for β near 0 if ξ is near 0, but the data did not prefer this
region. The β posterior bounds in figure 1 and figure 2 correspond to the boundaries of the
remaining portion of the stable parameter space. ξ has a large stable parameter space, so

– 5 –



J
C
A
P
1
2
(
2
0
1
8
)
0
3
0

0.80 0.84 0.88 0.92
σ8

4

8

12

16

ξ

0.0
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0.4

0.6

M̃
0

0.9

1.2

1.5

1.8

β

0.04

0.08

0.12

τ

0.04

0.08

0.12

0.16

r

−1.2 −0.8 −0.4 0.0

αB
0

0.80

0.84

0.88

0.92

σ
8

4 8 12 16

ξ
0.0 0.2 0.4 0.6

M̃0

0.9 1.2 1.5 1.8

β
0.04 0.08 0.12

τ
0.04 0.08 0.12 0.16

r

Planck + BKP

+lens + mpk + BAO + RSD

Figure 1. Constraints on the Horndeski parameters, τ , r, and σ8 for αK
0 = 0.1 and αB

0 6= 0.

the best-fit appears driven by the data. However, the plateau in the posterior for large ξ is
due to the data being unable to further constrain the parameter.

Larger values of β are preferred for larger M̃0. This suggests that, for a power law
evolution, the data prefer to minimize the deviation from m2

0 at early times. The ξ − αB
0

contour in figure 1 shows a similar trend for ξ . 2 as αB
0 deviates farther from 0.

5 Sources of constraints

Where do the constraints on the Horndeski parameters come from? To identify the source
of dominating constraining power, we compute power spectra derivatives at our fiducial
cosmology for the temperature, E-mode polarization, B-mode polarization, lensing potential,
and matter power spectra in figures 3–6. Our fiducial values for the Horndeski parameters,

– 6 –
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0.9 1.2 1.5 1.8

β

0.0 0.2 0.4 0.6

M̃0

0.9

1.2

1.5

1.8
β

CMB, αB
0 = 0

CMB

+LSS, αB
0 = 0

+LSS

Figure 2. Constraints on the Horndeski friction parameters for αK
0 = 0.1 and both braiding cases.

The bimodality in the M̃0 posterior is due to stability constraints. We note that smoothing for plotting
purposes reduces the amplitude of the leftmost mode.

Parameter Planck + BKP + lens + mpk + BAO + RSD

M̃0 0.17+0.18
−0.11 0.160+0.14

−0.091
β 1.46+0.32

−0.31 1.43+0.28
−0.27

αM
0 0.22+0.23

−0.16 0.20+0.18
−0.12

αB
0 −0.53+0.50

−0.46 −0.54+0.52
−0.46

ξ − > 2.16

Table 2. Parameter 95% Confidence Limits, αB
0 6= 0.

Parameter Planck + BKP + lens + mpk + BAO + RSD

M̃0 0.18+0.21
−0.21 0.14+0.18

−0.18
β 1.49+0.33

−0.34 1.40+0.36
−0.45

αM
0 0.23+0.25

−0.26 0.18+0.23
−0.22

Table 3. Parameter 95% Confidence Limits, αB
0 = 0.

tensor-to-scalar ratio, and tensor tilt are listed in table 4, and we use the best-fit Planck
TT+lowP+lensing+ext ΛCDM parameter values [41]. The fiducial Horndeski values were
chosen based on the posteriors in figure 1 and figure 2. Computing the relative difference
between the Horndeski and fiducial (rather than GR) spectra ensures all the spectra have a
stable theory while only varying a single parameter.

The power spectra are most affected at large scales by the Horndeski parameters, and
the CMB scalar modes and large scale structure (LSS) are significantly more sensitive to
these parameters than the CMB tensor modes.

– 7 –
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Parameter Value

αK0 0.1

κ 3.0

αB0 −0.5

ξ 3.0

M̃0 0.15

β 1.5

r 0.05

nt 0

Table 4. Fiducial Parameters.

5.1 Cosmic Microwave Background

5.1.1 Scalar perturbations

In figure 3 we show the sensitivity of the unlensed temperature and polarization anisotropies
to changes in the Horndeski parameters in the neighborhood of the fiducial parameters,
which is a good proxy for the constraining power near the best-fit values. In general, the
CMB anisotropies are most sensitive to the Horndeski parameters at ` . 10, though mea-
surements at such scales are limited by cosmic variance. The perturbations are most sensitive
to the friction parameter M̃0, and M̃0 has a more dramatic effect on the scalar temperature
anisotropies than on polarization, lensing, and matter clustering.

The sensitivity of the scalar TT power spectrum to the Horndeski parameters at low-`
suggests the ISW effect may be the source of sensitivity. In figure 4 we show power spectra
derivatives with and without the ISW effect. Removing the ISW effect erases any sensitivity
the scalar TT power spectrum had to the Horndeski parameters, including braiding, indicat-
ing the ISW effect is the primary source of constraint for the temperature anistropies. Because
a nonzero Planck-mass run rate creates anisotropic stress, the evolution of the Bardeen po-
tentials changes over time [35, 42]. The anistropic stress constraint from the spatial traceless
component of the Einstein equations makes this clear [2]:

Ψ− Φ− αMHvX = p̃mπm, (5.1)

where vX = −aδφ

φ̇
is the scalar velocity potential, and H = H/a. Friction alters the re-

lationship between the Bardeen potentials, leading to a change in the ISW and, thus, the
temperature anisotropies. As seen in figure 4, increasing braiding decreases the ISW effect,
reducing the power of the temperature anisotropies at low-` [see 42, for a further discussion
of αM, αB, and the ISW effect].

Friction’s effect on the temperature anisotropies via the ISW also changes the local
temperature quadrupole seen by electrons during reionization, altering the low-` E-mode.
Scattering of the reionization electrons off the quadrupole produces additional polarization
at the scale that enters the horizon during reionization. Increasing M̃0 makes the reionization
bump peakier for the scalar E-modes, boosting the power for ` < 10 and damping the power
near ` = 10.

– 8 –
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X
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1.5
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δ
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T
T

`
/δ
X

Scalar

Tensor

M̃0

β

αB
0

ξ

Figure 3. Sensitivity of the CMB perturbations to the Horndeski parameters as a function of scale.
Colors denote which Horndeski parameter was varied while all other parameters were held constant.
Solid (dashed) lines correspond to scalar (tensor) modes. Note that what is shown is equivalent to
the derivative of a fractional deviation, i.e. 1

C`
δC`/δX.

5.1.2 Tensor perturbations

Braiding only affects the scalar modes. Increasing the friction term M̃0 dampens the tensor
perturbations, decreasing the B-mode and tensor E-mode amplitudes (see middle and bottom
panels in figure 3). This is expected since the form of eq. (1.4) is that of a damped driven

oscillator [see also 24, 43]. For the tensor mode polarization, increasing M̃0 decreases the

– 9 –
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`

−0.5
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1.5
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δ
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C
T
T

`
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X

ISW

ISW = 0

M̃0

β

αB
0

ξ

Figure 4. Sensitivity of the ISW effect to the Horndeski parameters as a function of scale. Colors
denote which Horndeski parameter was varied while all other parameters were held constant. Solid
(dashed) lines correspond to including (excluding) the ISW. Removing the ISW from the TT power
spectrum eliminates the sensitivity of the temperature anisotropies to the Horndeski parameters.

10 100 1000

L

−1.5

−1.0

−0.5

0.0

δ
ln
C
φ
φ

L
/δ
X

M̃0

β

αB
0

ξ

Figure 5. Sensitivity of the lensing potential to the Horndeski parameters. Colors denote which
Horndeski parameter was varied while all other parameters were held constant.

reionization bump. See e.g. [22] and [24] for a further discussion on how friction affects the
reionization peak.
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Figure 6. Sensitivity of matter clustering to the Horndeski parameters. Colors denote which Horn-
deski parameter was varied while all other parameters were held constant.

Only gravitational waves outside the horizon at recombination affect the temperature
anisotropies since the gravitational waves decay and oscillate as soon as they enter the hori-
zon. Since friction is a damping term for the gravitational waves, the tensor temperature
power spectrum is damped for low-`, as well. Nonetheless, friction has a more dramatic effect
on the scalar modes, so the scalar temperature and E-mode polarization dominate the CMB
constraints.

5.2 Large scale structure

Increasing friction damps the lensing potential at all scales, but most significantly at large
angular scales (see figure 5). This occurs because |Φ + Ψ| is damped from increasing the
friction. The lensing potential is almost as sensitive to the friction parameters as the scalar
TT power spectrum at large scales, but present lensing potential measurements do not cover
multipoles L < 40 and so the lensing potential does not have strong constraining power.

Both αB and αM alter the growth rate [2]. In the neighborhood of our fiducial cos-

mology, increasing M̃0 boosts clustering for k . 10−2 hMpc−1 (see figure 6). Increasing αB
0

so that it is closer to GR reduces clustering on similar scales. The matter power spectrum
shows weak sensitivity to the Horndeski parameters for the scales directly probed by the LSS
measurements. The dominating constraining power on the Horndeski parameters from these
measurements comes through their constraints on σ8.

6 Discussion

To compare the two models we can use the Akaike information criterion (AIC) [44], defined as:

AIC = −2ln (L) + 2k = χ2 + 2k, (6.1)
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Observable Planck + BKP + lens + mpk + BAO + RSD

BKP 3.95 4.02

high−`TT 2.63 3.95

low−`TEB 3.40 3.75

lens − 3.86

mpk − 3.96

BAO − 3.99

RSD − 4.18

Total 1.97 3.72

Table 5. Model Comparison: values of ∆AIC = AICαB 6=0 −AICαB=0 = ∆χ2 + 4.

where χ2 = χ2
BKP + χ2

high−`TT + χ2
low−`TEB for the CMB data set combination and χ2 =

χ2
BKP + χ2

high−`TT + χ2
low−`TEB + χ2

lens + χ2
mpk + χ2

BAO + χ2
RSD for the CMB+LSS data set

combination. Then,

∆AIC = AICαB 6=0 −AICαB=0 = ∆χ2 + 4 (6.2)

where L is the maximum-likelihood and k is the number of fit parameters, yielding ∆AIC =
1.97 for the CMB data sets and ∆AIC = 3.72 after including large scale structure measure-
ments. The AIC takes into account how well the model fits the data while incorporating
a penalty proportional to the number of parameters fit. When comparing two models, the
lower AIC corresponds to the preferred model. In principle, the Bayes factor should be
used to compare the models and the AIC proves only an approximation to it [see, e.g., the
introduction of 45, for the Bayes factor].

In table 5 we list the individual ∆AIC values for each data set used in the CMB and
CMB+LSS combinations, as well as the total ∆AIC value for both combinations. All ∆AIC
values are positive, indicating the αB = 0 model is preferred for all data sets. For this case
the data are consistent with GR.

Incorporating the LSS data leads to a lower preferred value and upper bound on M̃0

(see table 2 and table 3). Increasing M̃0 boosts the power of the matter power spectrum for

large scales, increasing σ8 (see figure 6). A weak correlation between M̃0 and σ8 is visible in
the lower boundary of the relevant contour in figure 1. The RSD measurement’s preference
for a lower σ8 helps shrink the contour and leads to a slightly lower preferred M̃0.

A primary goal of current and future CMB polarization experiments is to make the first
detection of B-mode polarization from primordial gravitational waves. With our constraints
we can investigate the impact of the Horndeski parameters on such experiments. In figure 7
we plot the primordial B-modes while varying αM

0 in the 95% CL range allowed by the
CMB+LSS data set combination for αB

0 6= 0 to show the range of B-mode spectra consistent
with the data. We use r = 0.05, nt = 0, the best-fit Planck TT+lowP+lensing+ext ΛCDM
parameter values [41], and our best-fit αB

0 and ξ, the power law index for braiding, values
for the CMB+LSS data set combination. Even for the largest αM

0 allowed by the data, the
deviations from GR are less than 1% at the reionization bump at ` < 10, which is smaller than
the cosmic variance. Thus, even without a detection of primordial B-modes to date, we can
conclude that the effect of the Horndeski parameters on the primordial B-mode polarization
is constrained to be insignificant.
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Figure 7. Primordial B-mode spectra for different values of αM
0 allowed at the 95% CL by the

CMB+LSS data sets for αB
0 6= 0 with all other parameters fixed. The bottom panel shows the relative

difference to GR. The dashed line corresponds to the best-fit values of M̃0 and β, the power law index
related to friction, for the CMB+LSS data sets for αB

0 6= 0.

7 Summary

With a fixed kineticity of αK = 0.1a3 we have shown:

• The friction αM
0 has a 95% CL upper limit of 0.38 and 0.41 when αB

0 6= 0 and αB
0 = 0,

respectively, when using both CMB and LSS data.

• The lower 95% CL limit for αM
0 excludes GR for the αB

0 6= 0 case but not for the
αB
0 = 0 case. We believe this is primarily due to tachyon instabilities (defined in

section 3) imposed by fixing αK
0 = 0.1.

• The effects of Horndeski theory on primordial B-modes are constrained by CMB and
LSS data to be insignificant with 95% confidence.

It is important to remember that even when using Horndeski theory, making different
assumptions about the αi parameters can yield dramatically different results. See e.g. the
tight αM

0 constraint by [19], the negative values allowed by [12, 24], and [12, erratum of],
and the constraints found by [39]. We stress that choice of kineticity has a non-negligible
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impact on the constraints for the other Horndeski parameters due to its effects on the viable
parameter space.

The observation of the electromagnetic counterpart to GW170817 has constrained −6×
10−15 ≤ αT

0 ≤ 1.4 × 10−15, which seems to eliminate all Horndeski theories with αT 6= 0.
Typically, the αi’s are parameterized so that they are 0 in the matter dominated era and only
have late time effects [see e.g. 20, 21]. However, the evolution of αT could take a form such
that αT → 0 as z → 0, but where αT 6= 0 in the past. In this case, eq. (1.1) is still viable. The
power law evolution probed in this paper does not permit this behavior, but other functional
forms can. It would be interesting to explore the parameter space and constraints from such
a theory.
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A Model specifics

The effective field theory action in unitary gauge and Jordan frame is defined as [46–48]

S =

∫
d4x
√−g

{
m2

0

2
[1 + Ω (τ)]R+ Λ (τ)− a2c (τ) δg00

+
M4

2 (τ)

2

(
a2δg00

)2 − M̄3
1 (τ)

2
a2δg00δKµ

µ

− M̄2
2 (τ)

2
(δKµ

µ)2 − M̄2
3 (τ)

2
δKµ

νδK
ν
µ +

a2M̂2 (τ)

2
δg00δR(3)

+m2
2 (τ) (gµν + nµnν) ∂µ

(
a2g00

)
∂ν
(
a2g00

)
+ . . .

}

+ Sm [χi, gµν ] (A.1)

where

a2δg00 = a2g00 + 1, (A.2)

δKµ
ν = Kµ

ν −Kµ0
ν , (A.3)

δKµ
µ = Kµ

µ −Kµ0
µ, (A.4)

and δR(3) = R(3) −R(3)0 (A.5)

are the perturbations to the time-time metric component, extrinsic curvature, curvature
trace, and the three dimensional spatial Ricci scalar, respectively. nµ is the normal to sur-
faces of constant time. We adopt EFTCAMB’s definitions for clarity. Ω, Λ, and c are the
background evolution equations, as a function of conformal time [14, 15]. The background
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equations Λ and c can be written as a function of Ω, the coupling to gravity:

c = −m
2
0Ω̈

2a2
+
m2

0HΩ̇

a2
+
m2

0 (1 + Ω)

a2

(
H2 − Ḣ

)
− 1

2
(ρm + Pm) (A.6)

Λ = −m
2
0Ω̈

a2
− m2

0HΩ̇

a2
− m2

0 (1 + Ω)

a2

(
H2 + 2Ḣ

)
− Pm, (A.7)

where ρm and Pm are the matter energy density and pressure, respectively [14, 15]. EFT-
CAMB multiplies R by 1+Ω rather than Ω for numerical accuracy. Sm [χi, gµν ] is the action
for all matter fields χi.

The Stückelberg technique makes the scalar perturbations explicit in unitary gauge.
The conformal time is perturbed by a scalar field π, known as the Stückelberg field. All
equations are now functions of τ + π, and the perturbation operators transform as [14, 15]

δg00 → δg00 − 2
π̇2

a2
− 2
Hπ
a2

+ . . . (A.8)

δKµ
ν → δKµ

ν +
Ḣ
a
πδµν +

1

a2
∇̄µ∇̄νπ + . . . (A.9)

δR(3) → δR(3) + 4
H
a
∇̄2π + . . . (A.10)

The Horndeski theory of gravity is the most general tensor-scalar theory in which the
equations of motion are second order [1]. However, the authors of [4] and [49] have pre-
sented an extended Horndeski theory in which the equations of motion have higher order
derivatives. The equations of motion that describe the propagating degrees of freedom re-
duce to second order equations and, thus, avoid Ostrogradski instabilities [see also 50, 51].
In this study we restrict ourselves to ordinary Horndeski theory in which operators con-
tain at most two derivatives. The authors of [52] detail the derivatives introduced by the
perturbation operators that act on the metric and scalar field perturbations. They note
both (Kµ

µ)2 and δKµ
νδK

ν
µ contain terms with four spatial derivatives on the scalar per-

turbations and with one time and two spatial derivatives. Cancelling the two operators
removes the four spatial derivatives, while δg00δR(3) can cancel with the mixed time and
spatial derivative term. The ∂µ

(
a2g00

)
∂ν
(
a2g00

)
term also contains higher order derivatives

that cannot cancel with any other term, so it must be removed. The coefficient relationships
required for these cancellations to occur are [52]

2M̂2 = M̄2
2 = −M̄2

3 and m2 = 0. (A.11)

The authors of [2] have formulated a physically motivated parameterization of the coeffi-
cients in the action displayed in eq. (A.1) for Horndeski theory. The following four parameters
are independent of both themselves and the background:

αK =
2ca2 + 4M4

2a
2

m2
0H2

(
1 + Ω + M̄2

2 /m
2
0

) , (A.12)

αB = +
aM̄3

1 /m
2
0 + aHΩ′

2H
(
1 + Ω + M̄2

2 /m
2
0

) , (A.13)

αT = − M̄2
2

m2
0 (1 + Ω) + M̄2

2

, (A.14)

and αM = a
d lnM2

∗
da

=
a
(
Ω + M̄2

2 /m
2
0

)′

1 + Ω + M̄2
2 /m

2
0

, (A.15)
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where primes denote derivatives with respect to the scale factor a. In our work we choose a
ΛCDM background. EFTCAMB evolves M2

∗ /m
2
0 = 1 + M̃ = 1 + Ω + M̄2

2 /m
2
0 for numerical

reasons, transforming eq. (A.15) to αM = aM̃ ′/
(

1 + M̃
)

.

B Effects of kineticity on stability constraints

Kineticity’s effects on the observables are closely related to the accuracy of the quasi-static ap-
proximation. The authors of [53] have shown that when analyzing the CMB, the quasi-static
limit should be used neither when dark energy has a non-negligible effect at recombination
nor when modeling the integrated Sachs-Wolfe (ISW) effect. If the dark energy sound speed,
also known as the π field sound speed, is less than 0.1, the quasi-static limit is not valid
for CMB lensing. When the approximation is valid, kineticity does not enter the equations
of motion and is not well constrained by observations. As mentioned in section 2, ref. [12]
found that αK could not be well constrained with their parameterization. They then pre-
sented constraints on αT, αM, andαB for a few fixed values of kineticity. To limit the number
of additional degrees of freedom in our analysis, we also fix αK

0 in our analysis.
With αT

0 = 0, we find that evolving the remaining parameters as constants, with αK =
0.1, yields a stable parameter space too small to explore with an MCMC analysis. Evolving
the Horndeski parameters as power laws (see section 2 and appendix C) enlarges the stable
parameter space and provides the opportunity to probe the time evolution of the parameters.

Although the authors of [12] found the remaining Horndeski parameters have a weak
dependence on kineticity, we note that fixing the kineticity has non-trivial effects on our
viable parameter space. We believe this is primarily due to the tachyon instabilities defined
in section 3. In figure 8 we explore the stable parameter space for αK

0 = 0.1. We fix κ = 3.0,
which we found provides a large range of likely values for the other Horndeski parameters.
The stable region for β, the power law index related to friction, has a gap from 2 . β . 3 due
to mathematical stability conditions. Without using a nested sampling method, the MCMC
cannot reach both stable β regions. We choose to only explore the smaller friction exponent
values β . 2 since large values will drive the friction parameter αM close to 0. Having M̃0 ≈ 0
effectively achieves the same result if the data prefer αM ≈ 0.

Stability requires the scalar propagation speed to satisfy [2]

c2s = −
2 (1 + αB)

[
Ḣ − (1− αB + αM)H2

]
+ 2Hα̇B + a2 (ρ̃m + p̃m)

H2
(
αK + 6α2

B

) > 0, (B.1)

using the definition for αB of [33]. Because both kineticity and braiding are in the denom-
inator, it is not stable to have αK

0 = 0 and αB
0 = 0 simultaneously. Thus, to explore the

αB
0 = 0 case and compare with the αB

0 6= 0 case in a self-consistent manner, we must fix αK
0

at a nonzero value.
We analyzed the stable parameter space for αK

0 = 0 and αK
0 = 1.0, as well. Increasing

αK
0 from 0.1 to 1.0 significantly shrinks the stable parameter space to the extent it cannot

be explored with an MCMC analysis. We fix αK
0 = 0.1 throughout our analysis due to its

larger stable parameter space and closeness to GR.
In figure 9 we compare the stable parameter space for αK

0 = 0 and αK
0 = 0.1 for values

near αB
0 = 0. The higher the point opacity the larger the stable parameter space allowed by

the parameter values describing that point. Regions of overlap indicate where parameters
are stable for both kineticity values. The difference in the stable parameter space for the two
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kineticity values is dramatic, indicating the importance of understanding how all imposed
stability conditions affect the viable parameter space to correctly interpret the parameter
posteriors. When αK

0 = 0.1, the viable parameter space when 0 . M̃0 . 0.1 is small, whereas

for αK
0 = 0 the same M̃0 values provide a larger stable parameter space. The tachyon stability

conditions solely drive these differences and those in the other stability contours. For the
αK
0 = 0.1 case, the viable M̃0 − αB

0 space converges to a single point as both αB
0 and M̃0

approach 0+, i.e. their GR value from the right. Thus, the choice of kineticity affects the M̃0

posterior due to the tachyon stability constraints (see section 4). Indeed, if we remove the
mathematical stability conditions the viable parameter spaces for αK

0 = 0 and αK
0 = 0.1 are

identical.

We also note that while the stability contours for αK
0 = 0 make it appear αB

0 = 0 is
stable for this kineticity, there are no stable points when both αK

0 = 0 and αB
0 = 0 exactly.

The appearance of the plot is an artifact of discretely sampling the parameter space.
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Figure 9. Comparison between the stable parameter spaces for αK
0 = 0 and αK

0 = 0.1 when αB
0 is

near 0.

C Parameter evolution

To better constrain the Horndeski parameters we explore the pivot point a∗ at which to
measure the parameters. The parameters of interest to measure then become

αB
∗ = αB

0 a
ξ
∗ (C.1)

αM
∗ = M̃0a

β
∗

β

1 + M̃0a
β
∗

(C.2)

along with their exponents ξ and β. We are then evolving

αB = αB
∗

(
a

a∗

)ξ
(C.3)

αM = αM
∗

(
a

a∗

)β β

β +
[
(a/a∗)

β − 1
]
αM
∗

. (C.4)

We can derive the braiding and friction today, αB
0 and M̃0β/(1 + M̃0), respectively, from

these measured values. In figure 10 we show the correlation coefficient between Horndeski
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Figure 10. Correlation coefficients for the Horndeski parameters derived from the CMB+LSS chains.

parameters of interest as well as σ8 as a function of pivot redshift z∗. αB
∗ is relatively

uncorrelated with the other parameters at decoupling, which could be an artifact of the
power law evolution. αM

∗ and σ8 are positively correlated at present. This is consistent

with the effects seen in the matter power spectrum when increasing M̃0 (see section 5).
Large scales entered the horizon at low redshifts when αM

∗ and σ8 were positively correlated.

Hence, increasing M̃0 creates an amplifying effect on large scales. αB
∗ and αM

∗ are positively
correlated with their respective exponents at the present epoch. However, the only epoch
during which αB

∗ and αM
∗ are uncorrelated is at present.

αB
∗ has the smallest relative uncertainty at present. The relative uncertainty for αM

∗ has
a small minimum near z∗ ≈ 10−20, similar redshifts to where αM

∗ is uncorrelated with β and
σ8. This suggests a pivot point earlier than the present may be preferable for αM. However,
the relative uncertainty for αM

∗ at present is almost as small. Thus, because αB
∗ and αM

∗ are
uncorrelated at present and the relative uncertainties for each are minimized or close to the
minimum, we choose to keep the pivot point at present.
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