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Abstract

A galactic core-collapse supernova is a powerful neutrino source of which the sig-

nals can be picked up by a water Cherenkov detector on the Earth. From an

astrophysical point of view, the signals reveal the dynamics of core-collapse su-

pernova explosion and the subsequent cooling of a proto-neutron star (PNS). In

this regard, we compare the neutrino emission profiles from the recent 1D hydro-

dynamics simulation by Mirizzi et al. (2016) with the historical SN1987A data

through a statistical goodness-of-fit test. Such test reveals the tension between the

data and rapid PNS cooling prescribed by the convection treatment employed in

the simulation. The implications will be discussed. From a quantum-mechanical

point of view, on the other hand, the supernova neutrino flux is so intensive such

that a huge degree of wave-packet overlap is estimated. Such overlap may give rise

to an interference effect known as the Hanbury Brown and Twiss (HBT) effect.

We derive the solution for a 3D Gaussian wave packet and, with such solution,

the joint-detection probability. We demonstrate that an observable interference

occurs if the joint-detection were to render the two detected neutrinos in the same

phase space cell. Upon further examination, however, we conclude that such effect

is difficult to observe from neutrinos in practical experimental settings.
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Chapter 1

Introduction

Stars born with different progenitor masses end their lives differently [1]. During

the lifetime of a star, the core forms an onion-like structure of concentric layers

with elements of mass number arranged in a descending order away from the

core. As each thermonuclear fusion stage of a stellar core comes to an end due

to fuel depletion, the core contraction is accelerated resulting in further increase

of the core’s temperature and density. Such increase may ignite the subsequent

nuclear fusion to form heavier elements in its core. For a star with a progenitor

mass M . 8M�, the stellar core may undergo hydrogen burning (M > 0.08M�),

helium burning (M > 0.5M�), and carbon burning (M > 7M�) and then cools

down afterward as a white dwarf which is supported by the degeneracy pressure

of non-relativistic electrons.

On the other hand, a more massive star will eventually develop a core exceeding

the Chandrasekhar mass limit [2],

Mch ≈ 1.44

(
Ye
0.5

)2

M�, (1.1)

where Ye is the ratio of electrons to baryons, such that the electron degeneracy

pressure can no longer balance its self-gravity. More specifically, the star can form

an O-Ne-Mg core (8M� . M . 9M�) or an iron core (M & 9M�), of which the

density can reach 1010 g/cm3. At such density, two processes [3] can reduce the

1
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core’s sustaining pressure thereby triggering a gravitational collapse – the ultimate

fate of massive stars. The first process is the electron capture by heavy nuclei or

free protons,

e− +N (Z,A)→ N (Z − 1, A) + νe

e− + p→ n+ νe
(1.2)

enabled by the Fermi energy of (relativistic) electrons,

εF = ~c
(
3π2ne

) 1
3 , (1.3)

where ne is the electron number density, reaching the electron capture energy

threshold at an order of 10 MeV. This electron capture process reduces the electron

number as well as the degeneracy pressure at the core. It is primarily responsible

for triggering the collapse of stars with progenitor mass 8M� . M . 9M�. The

second process is the photo-disintegration of iron-group nuclei

γ +56 Fe
 13α + 4n− 124 MeV, (1.4)

the forward reaction of which is favored by the nuclear statistical equilibrium at a

temperature T ∼ 1010 K and reduces the thermal pressure. The collapse of stars

with 9M� . M . 100M� is mainly caused by the photo-disintegration process.

Once the stellar collapse commences, nothing stops the core from getting denser

and denser until the collapse is abruptly stopped by the stiffened nuclear equation

of state (EOS) at the nuclear density1 ρ ∼ 1014 g/cm3. Subsequently, the bounced

core immediately launches an outward shock wave while the outer part of the core

is still collapsing. Such shock wave will eventually expel the stellar mantle into

the interstellar medium and, hence, the supernova (SN) explodes.

The collapsed core releases an enormous amount of gravitational binding en-

ergy. With the proto-neutron star (PNS) radius RPNS ∼ 10 km and mass MPNS ∼
1 This dramatic density rise from the pre-collapse density to the nuclear density occurs in

less than one second.
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M�, an order-of-magnitude estimate suggests that the liberated binding energy

amounts to

Eb ∼
GM2

PNS

RPNS

≈ 3× 1053 erg. (1.5)

As the layers overlying the collapsing core are optically opaque, neutrinos and

anti-neutrinos (hereafter referred to as ”neutrinos” in this chapter), which interact

weakly, provide an efficient way of radiating this amount of energy over a time

scale of 10 seconds. In fact, neutrinos are responsible for carrying away ∼ 99%

of this energy budget in comparison to the rest ∼ 1% by the explosion ejecta in

the form of kinetic energy and � 1% by photons. This suggests that neutrinos

play a critical role in the dynamics of SN explosion and the subsequent cooling of

the compact remnant. With the typical energy Eν ∼ 10 MeV, a number 1058 of

neutrinos implied by the energy budget can provide observable signals for detectors

on the Earth thereby offering an effective probe for revealing information about

the collapsing stellar core. In fact, the SN1987A event has already provided such

opportunity to validate SN models, albeit with very limited statistics. A more in-

depth discussion about the experimental signals of SN neutrinos and the constraint

from the SN1987A data will be given in the first part of this thesis.

In addition to understanding the most intensive neutrino sources – core-collapse

SNe – in the universe, a better description of neutrinos themselves has also been

sought after in the past decades. As has been established by numerous neutrino

oscillation experiments [4], the neutrino production-propagation-detection process

involves quantum interference among the neutrino’s mass eigenstates. Such quan-

tum interference is further complicated by a more realistic form – wave packet

(WP) – of the neutrino’s wave function. Since the seminal discussion was given in

[5], theoretical efforts have been devoted to seeking for proper description of neu-

trinos as WPs. By treating the neutrino as an intermediate WP propagating be-

tween its production and detection locations (the quantum-mechanical approach)

[6, 5, 7, 8, 9, 10] or as a virtual particle in a macroscopic Feynman diagram in

which the external particles are described as WPs (the field-theoretical approach)
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[11, 12, 13, 14, 15, 10, 16, 17, 18], the formula of neutrino oscillations has been de-

rived and compared with the one obtained by assuming neutrinos as plane waves.

Although the plane wave treatment yields a simple and satisfactory description

of neutrino oscillations for the purpose of experimental fitting, its paradoxical

implications (see [19] for a review) causes confusions and it also neglects several

oscillation-suppressing factors in the flavor transformation probabilities predicted

by the WP treatments. These suppression factors are fundamentally connected

with quantum-mechanical uncertainties inherent to the WP description and testify

the importance of proper description of neutrinos.

The aforementioned studies focused on neutrino oscillations for which 1D de-

scription of neutrinos suffices because the coherence conditions concern the separa-

tion of mass-eigenstate components due to the difference in their group velocities.

One shortcoming of the 1D picture, however, is that it neglects potential overlap

of 3D neutrino wave functions which may induce interference among them. Here,

the wave-function overlap between two neutrinos should not be confused with the

overlap of the mass-eigenstate components of a neutrino; the former and its con-

sequences are the main issues we would like to address in the second part of this

thesis while the later concerns the coherence conditions of neutrino oscillations

for which a subset of the literature is given above. One known interference effect

is the Hanbury Brown and Twiss (HBT) effect [20, 21, 22]. Originally proposed

as an intensity interferometry technique in astronomy, the HBT effect has been

applied to subatomic physics [23] and realized [24, 25] with particles other than

photons. The potential applications of the HBT effect with neutrinos has been

discussed: A theoretical possibility of using the HBT effect to probe the neutrino

nature – whether neutrinos are Dirac or Majorana particles – was discussed in

[26] a decade ago. Very recently, the idea of measuring the diameter of a PNS

from a galactic SN event was proposed [27]. In this thesis, we aim to derive the

conditions for and analyze the viability of observing the neutrino HBT effect. As

our focus is on the potential interference among neutrinos, we will neglect the

neutrino masses (thus neutrino oscillations) for a succinct presentation.
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The rest of this thesis is organized as follows:

• In Chapter 2, we give a brief review on the standard stellar collapse theory

and an update of the current status of 1D SN simulation. Then we dis-

cuss the detection of SN neutrinos in a water Cherenkov detector and some

experimental issues relevant to the SN1987A observation.

• In Chapter 3, we carry out a statistical goodness-of-fit test on the latest 1D

simulation models with the SN1987A data. We identify some disagreement

between the simulation models and the data. A possible fallback scenario

to eliminate the disagreement will be explored.

• In Chapter 4, we model neutrinos as a 3D Gaussian wave packet and discuss

methods to derive its quantum evolution in time. With such solution, we

elucidate the concept of wave-particle duality.

• In Chapter 5, we discuss the wave packet detection in a quantum-mechanical

framework. The transition amplitude of one-particle detection will be ap-

plied to deriving the joint-detection probability which shows an interference

term between two detected identical particles. The conditions for the inter-

ference effect will be derived.

• In Chapter 6, we develop a wave packet overlap model based on the inter-

ference conditions from the joint-detection probability. We examine various

sources for possible observation of the interference effect in neutrino exper-

iments.

• In Chapter 7, a brief summary of the findings in this thesis will be given.



Chapter 2

Core-Collapse Supernovae

Neutrinos

After the stellar core collapses and bounces, the launched shock wave can be

viewed as a moving boundary which divides two regions – unshocked and post-

shocked – with distinct characteristics (temperature, density, velocity, and etc.).

As materials are accreted across this boundary, heavy nuclei are broken up into

free nucleons at the cost of about 9 MeV per nucleon. In fact, the shock wave

is heavily taxed by such energy cost and, as a result, the shock wave becomes

weakened and even ”stalled”1 . It has been established that the stalled shock

wave can be revived by the energy deposition by neutrinos in the post-shock region

for a successful SN explosion. Depending on the amount of materials the shock

wave has to traverse through, it can take up to a few hundred milliseconds for the

shock revival to occur. This scenario is the delayed neutrino-heating mechanism

[28]. In the following, we discuss the characteristics of neutrino emission as well

as the interplay between the shock wave and neutrinos in a core-collapse SN

explosion.

1 The shock front apparently comes to a stop relative to an observer at rest far away from
the star.

6
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2.1 Delayed Neutrino-Heating Mechanism

In the delayed scenario of core-collapse SN explosion, the neutrino emission can

be characterized by

1. a prompt neutronization burst of νe,

2. an accretion phase during which νe and ν̄e are abundantly produced com-

pared to other non-electron species, and

3. a Kelvin-Helmholtz cooling phase of the PNS during which thermal neutri-

nos and anti-neutrinos of all flavors are emitted.

The accretion phase and cooling phase altogether constitute the major observable

neutrino signal of core-collapse SN explosion. These stages will be discussed in

the following.

2.1.1 Neutronization Burst

As the gravitational collapse begins, the neutrino emission is dominated by the

νe production via the electron capture process shown in Eq. (1.2). The produced

neutrinos initially escape the stellar core freely but soon become trapped by iron

nuclei when the core density exceeds ρtrap,Fe ∼ 1011 g/cm3. The emission of νe

at this time is temporarily shut off while the electron capture process as well as

the collapse-and-bounce process of the core continues. After the core bounces,

the hydrodynamic shock wave dissociates nuclei into free nucleons on its way out,

creating a more favorable condition for νe production in the post-shock region be-

cause electron capture is more efficient on free protons than on nuclei. Compared

to iron nuclei, free nucleons are also more transparent to νe and correspond to a

νe-trapping density ρtrap,nucleon ∼ 1012 g/cm3. Consequently, a huge amount of νe

pile up behind the shock wave until it reaches the density layer ρ ∼ 1011 g/cm3

where the unshocked iron nuclei become transparent. This results in a brief yet
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luminous emission of νe which is termed the neutronization burst2 . Although

the luminosity can reach L ∼ 1053 erg/s, this prompt νe burst lasts only a few

milliseconds and can only carry away ∼ 1% of the total neutrino energy budget.

2.1.2 Accretion Phase

Within a few milliseconds after core-bounce, the shock front soon stagnates at

a few hundred kilometers from the core as the νe burst drains energy from the

post-shock region and iron nuclei continue to fall through. The PNS formed below

this accretion shock initially has a radius of ∼ 100 km. Through out the accretion

phase and the cooling phase, the PNS will first undergo a rapid contraction to a

radius ∼ 20 km within the first second after core-bounce and then slowly contract

to a radius less than 15 km over a 10-second time scale. Inside the hot core of

the PNS with a temperature up to a few tens of MeV, thermal neutrinos and

anti-neutrinos of all flavors are produced via neutral current interactions [29]:

e− + e+ → ν + ν̄ (pair annihilation)

e± +N → e± +N + ν + ν̄ (electron–nucleon bremsstrahlung)

N +N → N +N + ν + ν̄ (nucleo–nucleon bremsstrahlung)

γ → ν + ν̄ (plasmon decay)

γ + e± → e± + ν + ν̄ (photo–annihilation).

(2.1)

Additionally, electron neutrinos and anti-neutrinos can also be produced, with

abundant electron-positron pairs at such temperature, via (the forward reaction

of) the charged current interactions

e− + p
 n+ νe

e+ + n
 p+ ν̄e.
(2.2)

2 This term is somewhat misleading as the burst only carries away a small fraction of electron
lepton number of the core.
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These thermal neutrinos diffuse out of the flavor-dependent neutrino spheres3

with luminosities characterized by the Stephan-Boltzman’s law[30]

Lcore
ν ∼ 4πR2

ν × σνT 4
ν , (2.3)

where σν = 4.50× 1035 erg MeV−4 cm−2 sec−1, Rν is the neutrino sphere radius,

and Tν is the effective temperature at the neutrino sphere surface. In addition

to the ”core component”, additional νe and ν̄e production through Eq. (2.2) also

takes place between the neutrino spheres and the stalled shock. Assuming a quasi-

stationary state, the accretion contributes to a total luminosity

Lacc
νe+ν̄e ∼

GMPNSṀacc

RPNS

, (2.4)

where Ṁacc is the accretion rate of materials through the stalled shock and MPNS

and RPNS are respectively the mass and radius of the PNS.

The stalled shock wave can be revived by energy deposition of the neutrinos

and anti-neutrinos, in particular, from the core component discussed above. As

they diffuse out of the neutrino spheres, a small fraction of them may re-interact

with matter in the so-called gain layer behind the shock front. Such energy depo-

sition is realized predominantly by the reverse reaction of Eq. (2.2) with νe and

ν̄e since the absorption of other non-electron type of neutrinos and anti-neutrinos

is forbidden kinematically. In the post-shock region, the neutrino cooling rate4

drops much faster than the neutrino heating rate does with respect to the radial

distance. As a result, there exits a crossing point [3, 28] where these two rates

are equal. The gain layer is therefore defined between this crossing point and the

shock front; materials in this layer gain energy over time as the name suggests.

The stalled shock will eventually be refueled by such energy deposition and suc-

cessfully expel infalling materials, leaving behind the hot PNS yet to be cooled

down.

3 Neutrino sphere is a boundary accross which the propagation of neutrinos transitions from
diffusion to free streaming.

4 The cooling rate is the rate at which materials lose energy by emitting neutrinos. Similarly,
the heating rate is the rate at which materials gain energy by absorbing neutrinos.
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2.1.3 Cooling Phase

Compared to the νe burst and the accretion phase, the cooling phase takes place

over a much longer time scale (up to ∼ 10 seconds). During this phase, a large

fraction of the gravitational binding energy as well as the electron lepton number

will be carried away from the PNS by thermal neutrinos produced from processes

in Eq. (2.1)-(2.2). During this phase, the luminosities of neutrinos and anti-

neutrinos of all flavors are approximately identical in magnitude. Moreover, an

energy hierarchy

〈Eνe〉 < 〈Eν̄e〉 ≈ 〈Eνx〉 ≈ 〈Eν̄x〉 (2.5)

is followed because νe has the largest neutrino sphere radius as a result of its

additional charged current interaction (the reverse reaction of Eq. (2.2)) and the

abundance of neutrons in the partially deleptonized PNS.

In summary, Fig. 2.1 illustrates the neutrino luminosities with two progenitor-

mass models. We note that the magnitude and timing of the νe burst are inde-

pendent of the progenitor mass as the physical conditions for the collapse-and-

bounce process are the same. Heavier progenitor mass, however, corresponds to

a prolonged accretion phase. Elevated level of νe and ν̄e luminosities during the

accretion phase can also be observed from Fig. 2.1. In the next section, we will

briefly discuss the latest status of current SN simulation.

2.2 Latest Computer Simulation Models

For predicting experimental signals of neutrinos from a core-collapse SN event,

a long-term evolution of luminosity with spectral information for all neutrino

species is desirable. This means that the simulation model must include both the

accretion phase and the cooling phase. So far, only models from one-dimensional

(1D) simulations can fulfill this requirement as multi-dimensional (2D or 3D)

simulations are computationally expensive and usually limited to the first second

or so after core-bounce. However, the major shortcoming of a 1D simulation model
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Figure 2.1: The luminosities of neutrinos and anti-neutrinos of (top) a z9.6 M�
model and (bottom) a s27.0 M� model from [30]. These are also part of the
models we will perform goodness-of-fit test with the SN1987A data in Chap. 3.
The flavor index ”x” represents either muon or tau flavor since they have the same
luminosity and energy spectrum. The peak of the νe burst of both models can
be seen at t ≈ 6 msec. The explosion takes place at t ≈ 0.13 sec in the z9.6 M�
model and at t ≈ 0.5 sec in the s27.0 M� model.
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has been its underlying assumption of spherical symmetry of the explosion which is

commonly observed, in multi-D simulations, to be violated by convective flows and

non-radial deformation modes of the standing shock. These multi-D phenomena

have been found to assist the revival of the shock wave (see [31] and references

therein). Without such assistance, self-consistent explosion in 1D simulations can

only be achieved with a small progenitor mass (M . 10M�) which has minimal

mass shells overlying the stalled shock wave; for slightly massive progenitors, the

explosion has to be triggered artificially.

It was only until recently that the convection effect was implemented by Mirizzi

et al. [30] with a mixing length treatment in a long-term 1D hydrodynamic simu-

lation, which produced results consistent with their 2D counterpart. In addition

to the assistance in shock revival, it was found that convective flows in the inte-

rior of the PNS can also expedite deleptonization and cooling. As the observable

neutrino signals are largely contributed by the emission during the cooling phase,

the importance of testing these latest simulation models with the SN1987A event,

which is the only SN explosion event observed in terms of neutrinos so far, cannot

be overstated. For a comparison with the historical SN1987A data in Chap 3, we

obtain from the authors of [30] the neutrino emission profiles of two mass models,

9.6M� with zero metalicity and 27.0M� with solar metalicity. The profiles5 of

anti-neutrinos from these models are of relevance to analyzing the SN1987A data

and they are summarized in Fig. 2.2. Each of these progenitor masses has been

simulated with two nuclear equations of state (EOSs) abbreviated as ”LS220” [32]

and ”SHFO” [33]. These EOSs have been widely implemented in simulations over

recent years and yet there remains theoretical uncertainty in nuclear physics at

supranuclear densities. The LS220 EOS is a ”softer” EOS compared to the SFHO

EOS. A softer EOS generally allows faster contraction of the PNS which in turn

5 These 1D simulations terminate somewhere between 11 seconds and 17 seconds after
core-bounce. To accommodate the time span of the full KAM-II data set in our analysis, we
extrapolate the neutrino number luminosity, mean energy, and root mean square energy until
t = 24 seconds by fitting the last 0.1 seconds of each quantity with an exponentially decaying
function. Such extrapolation contributes very little to the total expected number of events in
both the KAM-II and IMB detectors but will be essential for our goodness-of-fit method.
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leads to faster release of gravitational binding energy. The effect of different EOS

appears more significant as the cooling of the PNS follows distinct trajectory at

late time as shown in Fig. 2.2 and the implication will be discussed in Chap. 3.

2.3 Detection of Supernova Neutrinos

Taking the simulation models discussed in the last section at face value, we discuss

the experimental signals of SN neutrinos in a water Cherenkov detector. Specific

experimental settings relevant to the Kamiokande-II (KAM-II) experiment [34, 35]

and the Irvine-Michigan-Brookhaven (IMB) experiment [36, 37] will be assumed

with an intention for making a comparison between the SN simulation models and

the SN1987A data sets from the two experiments later in Chap. 3.

2.3.1 Relevant Channels of Water Cherenkov Detector

SN neutrinos and anti-neutrinos have energies of order ∼ 10 MeV. At such energy

scale, the relevant targets for them to interact with in water are electrons, protons,

and oxygen nuclei. The interaction rate is dominated by the inverse beta decay

(IBD) process

ν̄e + p→ e+ + n, (2.6)

whereas other interactions

ν + e− → ν + e−

ν̄ + e− → ν̄ + e−

νe + 16O→ e+ + 16F

ν̄e + 16O→ e+ + 16N

(2.7)

have much smaller cross sections [38, 39]. After accounting for the relative abun-

dance of the targets in water, the processes shown in Eq. (2.7) do not contribute
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Figure 2.2: The emission profiles of anti-neutrinos from the z9.6 (left) and s27.0
(right) models from [30]. Blue (cyan) and red (magenta) curves represent ν̄e and
ν̄x (x = µ or τ) from the LS220 (SFHO) model, respectively. The top, middle,
and bottom figures are respectively the number luminosity, the mean energy, and
the root mean square energy of anti-neutrinos at R = 500 km from the PNS core.
Dashed part of each curve represents the extrapolation of the original simulation
data. The curves are plotted up to t = 15 seconds in this figure and extrapolated
up to t = 24 seconds for the goodness-of-fit analysis in Chap. 3.
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to more than 10% of the interaction rate in the relevant energy range. Therefore,

these subdominant channels will be neglected from our analysis.

In the IBD process, the recoil energy of the neutron is negligible and thus

Eν ≈ ∆ + Ee, (2.8)

where ∆ ≡ mn−mp ≈ 1.3 MeV. This approximate relation allows the reconstruc-

tion of ν̄e energy by measuring the positron energy. The IBD interaction rate in

the detector can be expressed as

d2Nint

dt dEν
= Fν̄e(Eν , t)× σν̄ep(Eν)×Nprotons, (2.9)

where Fν̄e(Eν , t) is the energy-differential ν̄e flux at the detector, σν̄ep(Eν) is the

IBD cross section, and Nprotons is the number of free proton in the detector mass

(to be converted from 2.14 ktons of water in the KAM-II detector and 6.8 ktons

in the IMB detector).

2.3.2 Quasi-thermal Spectra of Supernova Neutrinos

The spectra followed by neutrinos emerging from the SN are not thermal. The

emerging spectrum is a superposition of spectra of neutrinos emitted from dif-

ferent regions in the PNS. In addition, the interactions of neutrinos with matter

are also energy dependent. These factors can easily result in a non-thermal spec-

trum even if the neutrinos are originally emitted with a thermal distribution. To

parameterize a non-thermal spectrum, the traditional way is to use a nominal

Fermi-Dirac distribution [40]

f(Eν) =
1

T 3
νF2(ην)

× E2
ν

exp
(
Eν
Tν
− ην

)
+ 1

, (2.10)

where Tν is the effective neutrino temperature, ην is a degeneracy parameter in

place of the chemical potential term in the canonical Fermi-Dirac distribution,

and the complete Fermi-Dirac integral is defined as

Fn(η) ≡
∞∫

0

dx
xn

[exp(x− η) + 1]
. (2.11)
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The relation between the neutrino energy moments and the spectral parameters,

Tν and ην , can be expressed as

〈Eν〉 =
F3(ην)

F2(ην)
× Tν

〈E2
ν〉 =

F4(ην)

F2(ην)
× T 2

ν .

(2.12)

The above relation suggests that fitting the spectral parameters from an ”empir-

ical” energy distribution observed in a simulation is not so straightforward.

An alternative fitting formula has been proposed in [41]. With the two low-

est order energy moments, 〈Eν〉 and 〈E2
ν〉, the quasi-thermal spectrum can be

described equally well by the α-fit formula [42, 41]

f(Eν) =
1

〈Eν〉
× [1 + α]1+α

Γ (1 + α)
×
(
Eν
〈Eν〉

)α
exp

{
− (1 + α)× Eν

〈Eν〉

}
(2.13)

, where the shape parameter, defined as

α ≡ 2〈Eν〉2 − 〈E2
ν〉

〈E2
ν〉 − 〈Eν〉2

, (2.14)

determines the degree of ”pinching” relative to a Maxwell-Boltzmann distribu-

tion (α = 2) or a Fermi-Dirac distribution with zero chemical potential (α = 2.3).

Larger α value corresponds to a more pinched (narrowed) spectrum and vice versa.

In addition to the mathematical convenience of allowing a direct conversion from

the energy moments to the spectral parameters, α and 〈Eν〉, implied by Eq. (2.13)-

(2.14), the α-fit formula can also characterize an anti-pinched spectrum to which

Eq. (2.10) is not applicable. Nevertheless, a Monte Carlo study in [41] has found

the instantaneous spectrum always pinched relative to a Maxwell-Boltzmann dis-

tribution with the typical range 2 . α . 4 for SN neutrinos.

2.3.3 Supernova Neutrino Fluxes

It is well established that neutrinos undergo flavor transformations as they propa-

gate in vacuum or in matter [4]. While it is essential to account for this phenomena
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in a rigorous analysis especially with sufficient event statistics, treating neutrino

oscillations is unnecessary for our purpose and a brief rationale is as follows. Let

the electron anti-neutrino flux observed at the detector to be Fν̄e(Eν , t) and, with

neutrino oscillations, it is contributed by the fluxes of anti-neutrinos of all flavors

that emerge from the SN. These unoscillated fluxes are expressed as

F 0
β (Eν , t) =

1

4πD2
× Lnum

β (t)× fβ(Eν , t), (2.15)

where the flavor index β ∈ {ν̄e, ν̄µ, ν̄τ}, D kpc is the distance between the SN and

the Earth, Lnum
β (t) is the number luminosity, and fβ(Eν , t) is the normalized energy

spectrum discussed in Sec. 2.3.2. Given the overall survival probability Psur(Eν)

of an electron anti-neutrino which accounts for all possible flavor transformations

on its way to the detector, the observed ν̄e flux can be expressed as [43]

Fν̄e(Eν , t) = F 0
ν̄e(Eν , t) + [1− Psur(Eν)]

[
F 0
ν̄x(Eν , t)− F

0
ν̄e(Eν , t)

]
, (2.16)

where νx = ν̄µ or ν̄τ . The above equation suggests that Fν̄e is less sensitive to the

survival probability if both F 0
ν̄e and F 0

ν̄x fluxes are similar, as is the case implied

by Fig 2.2. In view of this, we consider in this thesis only the simplest cases in

which the survival probability is either 1 or 0. These two cases will be referred

to, respectively, as ”un-oscillated” and ”fully oscillated” throughout the rest of

the discussion. Along with the choice of SN progenitor mass (s27.0 vs z9.6) and

EOS (LS220 vs SFHO) from the available simulation models, a number of eight

possible combinations of these ”ingredients” will be compared to the SN1987A

data in the next chapter.

2.3.4 Experimental Issues with Cherenkov Detector

A few experimental issues have to be addressed before we can compare the simu-

lation models with the SN1987A data.
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Positron Detection

The detection of positron is not 100% efficient and precise. Once an IBD event

occurs, the outgoing positron moves faster than the speed of light in water and, as

a result, the Cherenkov radiation is emitted by the positron. Such radiation may

not be detected with 100% probability by the photomultiplier tubes surounding

the detector mass due to light attenuation and detector geomoetry. The proba-

bility of detecting the positron is termed detector efficiency which is a function of

positron energy and location of the event. For simplicity, a volume-averaged de-

tector efficiency ε(Ee) is often used. We take the fitting formulas for the KAM-II

and IMB detector efficiency functions from [44]. These functions are plotted in

Fig. 2.3, which implies that the two detectors were sensitive to different parts of

the neutrino energy spectrum.

Besides, the true positron energy is linearly correlated with the number of

photomultiplier tube hits, which is to be multiplied by a proportionality factor to

obtain an observed (best-fit) positron energy Eobs
e , and this number is subject to

statistical fluctuations. Consequently, one must fold the finite energy resolution

of the detector with the interaction rate from Eq. (2.9) when deriving the detector

counting rate. In regards to this, we adopt in our theoretical calculation a smearing

function of Gaussian form with a volume-averaged energy resolution

σE = α

√
Ee

MeV
, (2.17)

where we use the same values, α = 0.87 MeV for the KAM-II detector and α =

1.16 MeV for the IMB detector, as in [45, 46]. We remark that this KAM-II

detector resolution is more conservative (up to 20% larger α value) than was

reported in [47]; however, the choice of detector resolution has minimal effect on

the goodness-of-fit results to be presented in the next chapter.

Background Event Rate

Excess events above normal background level were observed in the KAM-II and

IMB experiments as well as the Baksan [48] experiment at about the same time
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within their reported absolute time uncertainties (see the discussion in Sec. 3.2).

This correlation has led researchers to attribute the excess events to the SN1987A

neutrino busrt. Among the three detectors, the Baksan detector had a background

component that permeated the entire energy spectrum with a rate comparable to

the SN neutrino signal rate. Therefore, the Baksan data set provides no discrim-

inating power in our goodness-of-fit test in Chap. 3 and will neglected from our

analysis. As for the KAM-II detector, we obtain the background rate over comple-

mentary energy ranges from both [49, 50] and [51], the later of which reported the

experiment’s solar neutrino measurement during the experimental phase when the

SN1987A event occurred. The KAM-II background rate is summarized in Fig. 2.4.

In addition, we emphasize that this rate is empirical and it already reflects the

smearing effect from the finite energy resolution of the detector [52].

The KAM-II background rate peaked at around Eobs
e = 6 MeV according to

Fig. 2.4 whereas the major SN neutrino signal was above Ee ≈ 8 MeV where the

detector efficiency exceeded 50%. This means that only those low energy events in

the KAM-II data set could have been background. The general approach adopted

by investigators to analyzing the KAM-II data set is to set an artificial threshold

at Eobs
e = 7.5 MeV to reduce most of the background. To avoid holding prejudice

against low energy events and to utilize the full information from the KAM-II

data set, we will perform the goodness-of-fit test both with and without this

conventional energy threshold in Chap. 3. On the other hand, the IMB data

set can be viewed as background free because of its experimental capability to

legitimately remove events deemed as background although the IMB detector did

have an empirical background trigger rate of 2.7 Hz [53], mostly due to penetrating

muons.
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Practical Detector Counting Rate

The detector counting rate, after accounting for the aforementioned characteristics

of positron detection and background rate, can be expressed as [50]

d2Ncount

dt dEobs
e

= B(Eobs
e ) +

∫
dEe

d2Nint

dt dEe
× 1

σE
√

2π
exp

{
−(Ee − Eobs

e )2

2σ2
E

}
× ε(Ee),

(2.18)

where the true positron energy Ee has been substituted for Eν in the interaction

rate from Eq. (2.9) and B(Eobs
e ) is the empirical background rate. For analyzing

the IMB data set, we will simply set B(Eobs
e ) = 0.

As a reference, Table 2.1 summarizes the total number of events computed

by integrating Eq. (2.18) over time and over observed positron energy with each

model. It is apparent that the total number of events depends strongly on the SN

progenitor mass. One immediate concern to be raised is that the actual SN1987A

progenitor mass lies between 9.6 M� and 27.0 M�; a direct comparison between

the numbers of events from Table 2.1 and the SN1987A observation (see Table 3.1)

seems inappropriate. In the next chapter, we will discuss a method to assess the

goodness-of-fit in terms of the events’ distribution in time and energy.
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Un-oscillated Fully oscillated
s27.0 s27.0 z9.6 z9.6 s27.0 s27.0 z9.6 z9.6
LS220 SFHO LS220 SFHO LS220 SFHO LS220 SFHO

KAM-II (no threshold) 20.8 20.9 11.2 11.3 20.6 21.3 12.7 12.5
KAM-II (Eobs

e ≥ 7.5 MeV) 17.4 17.5 7.9 7.9 17.2 17.9 9.4 9.2
IMB 9.8 8.7 3.1 2.6 11.2 10.7 4.9 4.1

Table 2.1: The predicted total number of events in the KAM-II and IMB detectors over a 24-second time
window starting from the arrival of the SN neutrino flux. For the KAM-II detector, each of the tabulated
numbers includes 3.4 background events (above and below the threshold) and 0.2 background events (above the
Eobs
e = 7.5 MeV threshold) expected during such period. As for the IMB detector, the numbers only reflect the

contribution from the SN neutrino flux and the dead-time effect is not considered.
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Detector Dead Time

The IMB detector suffered from its 35 msec dead-time following each registered

event. During such data acquisition period, no other events could be recorded

and thus the detector counting rate was affected. A quick estimate using the

aforementioned background trigger rate alone suggests a 90% live fraction; this

fraction would be even smaller if the SN neutrino signal rate is comparable to or

greater than the background rate. In fact, this is the case during the first second

of the SN neutrino burst. Given the counting rate before dead-time adjustment

as shown in Eq. (2.18), one could in principle use Poisson statistics to find the

probability of observing no events during the dead-time window prior to a time

of interest so as to find the expected instantaneous counting rate [54]. Then

one would find the total number of SN neutrinos events discounted by a fraction

ranging from 75% to 88% with the SN models shown in Fig. 2.2. However, we

refrain from involving this complication in our analysis because the goodness-of-

fit test to be discussed in the next chapter does not concern the total number of

events but rather their probability distribution. Most importantly, the p-values

from our tests with the IMB data set are large enough (above 10%) such that the

correction from the dead-time effect does not have any statistical importance. We

remark that a goodness-of-fit test that does compare the total number of events

should properly treat such dead-time effect.



Chapter 3

Goodness of Fit with SN1987A

Data

Valuable information was extracted from the limited statistics immediately after

the epochal observation of neutrinos from SN1987A in the Large Magellanic Cloud

to scrutinize stellar collapse models. A total of nineteen SN1987A neutrino can-

didate events observed in the KAM-II and IMB detectors confirmed the general

theoretical expectations such as the Kelvin-Helmholtz cooling phase of a PNS last-

ing about 10 seconds, the PNS contracting to a radius of order 10 kilometers, and

the SN neutrinos emitted with an average energy of order 10 MeV. More recently,

follow-up analyses [49, 52] employing more sophisticated statistical methods sug-

gested that SN1987A data favors the delayed scenario of SN explosion discussed

in Sec. 2.1. These remarkable analyses were based on parametric emission models

inspired by numerical simulations which were still under development back then.

While inference of parameters can reveal important information in the data, this

practice inevitably assumes that the observed events were due either to the physi-

cal processes implied by the parametric model or to the detector background. The

lack of examination with reliable calculations from first principles could hinder a

better understanding of SN1987A data.

In this chapter, we carry out a goodness-of-fit test of the 1D hydrodynamic

24
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simulation models discussed in Sec. 2.2 with the historical SN1987A data. Our

results indicate the poor fitting of the simulation models with the late-time events

from the KAM-II data set. We discuss the implications of the poor goodness-of-fit

and explore a fallback scenario in the SN1987A SN explosion.

3.1 Goodness-of-fit Methodology

As discussed in Sec. 2.1, a SN with a larger progenitor mass generally endures

longer accretion phase. This means that more materials can be accreted onto the

PNS thereby raising the luminosity and average energy of the neutrino emission

from the accretion phase onward. Accordingly, more ν̄e events with a harder

spectrum will be measured by the detector. The progenitor mass of SN1987A was

determined to be in the range 16 ∼ 22M�[55]. Therefore, an assumption has to

be made that the neutrino emission from an intermediate mass model, which is

appropriate for describing SN1987A, is an ”interpolation” between the 9.6 M�

and 27.0 M� models we have in hand. More specifically, we assume that the

double differential counting rate as shown in Eq. (2.18) – a 2D function of time

and observed positron energy – of such model is bound between those rates of

the 9.6 M� and 27.0 M� models. Based on this assumption, events observed at

unlikely locations in the 2D time-energy domain in light of the 9.6 M� and 27.0

M� models will signify inconsistency between the SN simulation and the SN1987A

neutrino data as we shall demonstrate with the following method.

As we have seen in Table 2.1, the expected total number of events also increase

with the progenitor mass. We should avoid assessing the goodness-of-fit in terms of

total number of events simply because the available mass models will either under-

or over-produce ν̄e events compared to a simulation model with an intermediate

progenitor mass. To remove the normalization factor of the counting rate that

scales with progenitor mass from our analysis, we consider the probability density

function (PDF) obtained by dividing the counting rate shown in Eq. (2.18) by the
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predicted total number of events Ntot as listed in Table 2.1, i.e.

g(t, Eobs
e ) ≡ 1

Ntot

× d2Ncount

dt dEobs
e

. (3.1)

Fig. 3.1 and Fig. 3.2 plot the PDFs of all the eight simulation models for the

KAM-II and IMB detectors, respectively. For a visual comparison, each plot is

overlaid with the SN1987A events which are also summarized in Table 3.1. These

events are plotted without energy error bars since the PDFs to compare with are

already probability distributions with respect to best fit energy. This allows us

to justifiably use the best fit energies of the events without dealing with their

uncertainty on an event-by-event basis. This philosophy will persist throughout

the analysis in this chapter.

The goodness-of-fit of the above PDFs will be assessed by p-values in the

following analysis. A p-value is a sum of probabilities of all statistically possible

outcomes which are deemed as extreme as or more extreme than the observed

outcome. A small p-value suggests that the observed outcome is an unlikely

instance under the assumed model and that there is incompatibility between the

model and the observed outcome. A high p-value, however, can only be interpreted

as no evidence of incompatibility. Prior to computing the p-value, a test statistic

must be chosen to quantify the degree of deviation from expectation. We choose

the probability of an outcome as the test statistic for its conceptual simplicity and

we will comment on an alternative choice of χ2 metric later.

In the following discussion, a statistical outcome is defined to be a set of n

events, each of which has a pair of coordinates in the 2D time-energy domain.

In order to assign a nonzero probability to the outcome, we divide each of the

time and energy domains into m equal intervals such that a 2D uniform grid with

a number k = m × m of cells can be used to categorize these n events. Let

xi (i = 1, 2, . . . k) be the count of events in the ith cell and, according to the

multinomial distribution, the probability of such outcome is

Pr (x1, x2, . . . , xk) = n!
k∏
i=1

pxii
xi!

, (3.2)
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Figure 3.1: The normalized PDFs (in MeV−1sec−1) of all the eight combinations
of progenitor mass, ν-oscillation condtion, and EOS with the KAM-II detector.
The constant background component can be seen at the bottom (low energy) of
each plot. The SN1987A neutrino candidate events along with the background
events are overlaid as red crosses by assuming a 0.1-second time offset relative to
the SN neutrino flux. For a better visual contrast, the color axis only covers three
order of magnitude such that the dark blue color represents values more than a
thousand times smaller than the maximum. It is clear that the events K10 through
K12 locate at where both the SN neutrino signal and the static background are
weak. The size of each red cross does not resemble measurement uncertainty.
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Figure 3.2: Similar to Fig. 3.1 but with the IMB detector. The background is
not included since the IMB data set is already background free.
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KAM-II IMB

t Eobs
e σrptdE t Eobs

e σrptdE

Event # (sec) (MeV) (MeV) Event # (sec) (MeV) (MeV)
K1 0.000 20.0 2.9 I1 0.000 38 7
K2 0.107 13.5 3.2 I2 0.412 37 7
K3 0.303 7.5 2.0 I3 0.650 28 6
K4 0.324 9.2 2.7 I4 1.141 39 7
K5 0.507 12.8 2.9 I5 1.562 36 9
K6 0.686 6.3 1.7 I6 2.684 36 6
K7 1.541 35.4 8.0 I7 5.010 19 5
K8 1.728 21.0 4.2 I8 5.582 22 5
K9 1.915 19.8 3.2
K10 9.219 8.6 2.7
K11 10.433 13.0 2.6
K12 12.439 8.9 1.9
K13 17.641 6.5 1.6
K14 20.257 5.4 1.4
K15 21.355 4.6 1.3
K16 23.814 6.5 1.6

Table 3.1: The SN1987A data sets from the KAM-II and IMB experiments.
The time of each event is relative to the first event recorded by the respective
detector. These experiments reported the energy uncertainty σrptdE on an event-
by-event basis, in addition to the observed positron energy.
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where

pi =

∫
ith cell

dt dEobs
e g(t, Eobs

e ). (3.3)

The multinomial probability is maximized when xi ≈ n×pi for all i ∈ {1, 2, . . . , k}
1 and therefore it can be used to quantify the deviation of the configuration,

(x1, x2, . . . , xk), from the underlying PDF. By definition, the p-value is can be

computed by exhaustively enumerating through a number Hk
n = (n+k−1)!

n!(k−1)!
of sta-

tistically possible outcomes:

p-value =
∑

x1,x2,...,xk∑
i xi=n

Pr(~x)≤Pr(~x1987A)

Pr(x1, x2, . . . , xk), (3.4)

where the reference probability Pr(~x1987A) is computed from the observed data.

The sparse events from the SN1987A data set makes such exhaustive enumeration

possible with a coarse grid; however, the multiplicity soon becomes out of reach

with a modern computer when the grid is refined.

An alternative way to compute the p-value is to use a Monte Carlo method

with the following procedures:

1. Repeatedly sample a set of n events to realize a random outcome by using

the acceptance-rejection method with the PDF.

2. Compute the multinomial probability of each realized outcome and compare

with the multinomial probability of the observed data.

3. Calculate the occurrence frequency at which an equally or more extreme

outcome is realized from the acceptance-rejection method.

For instance, if a total number N0 of iterations are performed in the simulation

and Nextrme outcomes are found to be equally or more extreme compared to the

1 The equality is exact if n × pi happens to be an integer for all i. In such case, it can be
shown that any deviation, i.e. by moving one event from one bin to the other, from this optimal
configuration results reduction in the multinomial probability.
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SN1987A observation, then the p-value is estimated by the ratio Nextrme/N0. Such

occurrence frequency can be demonstrated to converge, after a sufficiently large

number of iterations, to the p-value computed via Eq. (3.4). The uncertainty in

the estimated p-value can also be properly controlled. Suppose the true p-value is

ptrue and then it is expected that a number N0 × ptrue of equally or more extreme

outcomes will be sampled in the simulation. The actual number observed in the

simulation has an uncertainty of order δNextrme ∼ O
(√

N0ptrue

)
. Therefore, the

uncertainty in the estimated p-value is of order O
(√

ptrue/N0

)
. For a p-value

at percent level, i.e. ptrue ∼ 10−2, and one million iterations, the uncertainty is

estimated to be δptrue ∼ 10−4.

We make two additional comments on the above p-value method. Firstly,

without imposing any condition, the number of events found in each cell follows

a Poisson distribution, with a mean computed by integrating Eq. (2.18) over the

cell area, and so does the sum of counts from all the cells. Since we do not concern

the goodness-of-fit to the total number of events but rather the distribution of the

events, the set of statistically possible outcomes is limited to those with a fixed

sum of events. It is shown in Appendix A that the distribution of the cell counts

conditional on a fixed sum actually reduces to the multinomial distribution shown

in Eq. (3.2). Secondly, we could have chosen

χ2 ≡
k∑
i=1

(xi − npi)2

npi
, (3.5)

where the same notations as in Eq. (3.2) and Eq. (3.3) are used, as the test statistic

instead of the multinomial probability. Note that Eq. (3.5) is a χ2 metric with

a fixed sum of events. If the observed SN1987A events were numerous enough

such that each cell has more than five events, this statistic would follow a χ2-

distribution with k − 1 degrees of freedom [56]. This desirable χ2-distribution

is, however, not applicable to the small data set and the computation of p-value

must be done with the aforementioned exhaustive enumeration or Monte Carlo

method. Nevertheless, both choices measure the deviation of the cell counts from

the assumed PDF equally well and result in very similar p-values.
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3.2 Time Offset for the Data Sets

The relative time between events in the KAM-II and IMB data sets was accurately

measured to better than 1 msec, but, unfortunately, the absolute time in the KAM-

II experiment was not properly calibrated at the time of the SN1987A neutrino

burst. The first KAM-II event was recorded at 7:35:35 UT ± 1 min, while the

first IMB event was observed at 7:35:41.37 UT ± 0.05 s. There could be a brief

yet unknown delay of the first event relative to the incoming SN neutrino flux and

such delay could be different in the two detectors due to the random nature of

particle detection (a Poisson process). This can potentially affect our goodness-

of-fit test results since, as the time offset is varied, the way the observed events is

categorized into the cells on the 2D grid will be shifted along the time dimension,

thereby affecting the reference probability Pr(~x1987A) and, consequently, the p-

value according to Eq. (3.4). It is therefore essential to have a reasonable estimate

of the time offset prior to computing the p-value.

Let us define the arrival time of the SN neutrino flux at the detector to be

the time origin, as already implied in Fig. 3.1 and Fig. 3.2, and define t1 to be

the time of the first event relative to this time orgin. Given n events to randomly

distribute according to the 2D PDF defined in Eq. (3.1), we would like to find a

probability distribution, to be denoted as h(t1), of t1 for further estimating the

time offset. Since only the time is of relevance here, we integrate Eq. (3.1) over

the energy dimension to obtain a 1D PDF of time

g̃(t) =

∫
dEobs

e g(t, Eobs
e ) (3.6)

obeyed by these n events. A trivial yet crucial observation is that there is no event

observed before the so-called first event. The probability of observing no events

before some time t, hence observing all n events after the time t, can be derived

from the binomial distribution, namely

Pr(no event before t) =

1−
t∫

0

dt′g̃(t′)

n . (3.7)
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The difference between the probability of observing no events before t1 and the

probability of observing no events before t1 + dt1 is equal to the probability of

observing the first event between t1 and t1 + dt1. It is then straightforward to

show that the PDF of t1 is

h(t1) = n

1−
t1∫

0

dt′ g̃(t′)

n−1

g̃(t1), (3.8)

from which the expectation value, variance, and percentiles of t1 can be computed.

Eq. (3.8) is skewed toward t1 = 0 with the standard deviation of t1 comparable

to its mean. Fig 3.3 shows the percentiles, at increments of 5%, of the time offset

for the KAM-II and IMB data sets. Roughly speaking, the time offset is below

0.3 seconds and 0.6 seconds for the KAM-II and IMB data sets, respectively, on

a 90% confidence level. The IMB data set has a larger time offset mostly due to

its sparser events.

3.3 P-values

Following the methodology discussed earlier, we compute the p-values of all the

eight models with the data sets listed in Table 3.1. For each p-value, the time offset

corresponding to each data set and each model is applied to the event times. To

maintain consistency, we use the same 2D domain for both the KAM-II and IMB

data sets. The time and energy domains are set to be −0.001 sec ≤ t ≤ 24 sec and

1.5 MeV ≤ Eobs
e ≤ 120 MeV, respectively. In computing the p-values with the

conventional energy threshold applied to the KAM-II data set, the energy domain

is reduced to 7.5 MeV ≤ Eobs
e ≤ 120 MeV.
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Figure 3.3: Percentiles of the time offset for (top) the KAM-II data set with
16 events and (bottom) the IMB data set with 8 events. For each model, 19
percentiles of the time offset are plotted.
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Un-oscillated Fully oscillated
s27.0 s27.0 z9.6 z9.6 s27.0 s27.0 z9.6 z9.6

Data Set LS220 SFHO LS220 SFHO LS220 SFHO LS220 SFHO
KAM-II (all events) 3.2% 3.8% 7.7% 14.2% 7.4% 7.0% 6.6% 16.2%
KAM-II (Eobs

e,th = 7.5 MeV) 4.9% 5.1% 6.6% 11.8% 8.7% 8.1% 5.7% 14.2%

KAM-II (w/o K10-12) 42.5% 55.2% 78.3% 84.5% 60.3% 68.5% 76.5% 86.3%
IMB (all events) 15.4% 39.6% 12.8% 53.2% 35.1% 63.5% 13.5% 57.2%

Table 3.2: The p-values of all the eight models with the indicated data sets. Each p-value is computed based
on the median time offset corresponding to the model and the data set. The computation of this table uses a
grid with 106 cells. The first row corresponds to the full KAM-II data set (16 events) without applying any
energy threshold while the results after applying the 7.5 MeV threshold to the KAM-II data set are listed in the
second row. This energy threshold reduces the KAM-II data set to 11 events. The third row demonstrates the
improvement of p-values after removing the events K10 through K12 from the KAM-II data set (no threshold
applied). The last row corresponds to p-values with the IMB data set.
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The p-values computed with the median time offsets are summarized in Ta-

ble 3.2. The p-values with the full KAM-II data set clearly indicate poor fitting

by these SN simulation models. While p-values at the few-percent to ten-percent

level are far from a firm rejection of the models and an extreme outcome could

simply have been observed from the SN1987A burst by chance, the incompatibility

between the KAM-II data set and the models is worthy of a closer examination.

After applying the conventional 7.5 MeV threshold, we obtain p-values similar

to those with the full KAMII-data set and this suggests that the events below

the threshold (presumably background events) have no difficulty in agreeing with

the background component in the models. In addition, as one can observe from

Fig. 3.1, the three events K10, K11, and K12 seem difficult to be explained by

either the background or the SN neutrino flux. Indeed, this observation is further

confirmed by the dramatic improvement in the p-value after removing the three

events from the data set. The removal of these three events also helps alleviate the

tension between the KAM-II and IMB data sets as will be discussed in Sec. 3.4.

Moreover, the p-values with the IMB data set slightly disfavor those models with

the LS220 EOS. The events I7 and I8 were observed at the time when the two

nuclear equations of state predict different cooling behavior of the PNS according

to Fig. 2.2 and Fig. 3.2. Unfortunately, the sparse SN1987A events do not possess

sufficient discriminating power for eliminating this theoretical uncertainty.

A number of issues have been examined to ensure that the above p-value

results are reliable. The first among all is the time offset applied to the data

set. In computing the p-value for each model, we apply those 19 time offset

percentiles, as plotted in Fig 3.3, to the corresponding data set so as to gauge

its dependence on the time offset. Fig. 3.4 shows such dependence by using the

full KAM-II data set as an example. The p-values stay stable over most of the

percentiles and only decline with extremely small or large time offset. Therefore,

the p-values listed in Table 3.2 are approximately the maximum2 p-values one

can obtain with the models. Secondly, a series of grid refinement factors (m =

2 So that a more conservative stance is taken in model rejection.
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10, 30, 100, 300, and 1000) have been applied to partitioning the 2D domain and

the p-values are found to be stable with m & 300 as shown in Fig. 3.5. Thirdly, the

p-values are essentially estimated from sampling outcomes (sets of n events) via

the Monte Carlo method as discussed earlier. We run the Monte Carlo simulation

for one million iterations and this number is more than enough to ensure good

convergence for p-values at percent level or above. Lastly, the electron flavor

charged lepton emerging from the event K1 of the KAM-II data set was found

to be in the forward direction3 which is characteristic of an electron scattering

process. Removing the event K1 as an electron scattering event from our analysis

does not affect the p-values substantially.

3.4 Average Positron Energy

We have identified a subset of events from the KAM-II data set that causes poor

goodness-of-fit. We elaborate on how this may shed light on the unresolved ten-

sion between the KAM-II and IMB data sets that has puzzled researchers. In the

past, the sparse SN1987A events encouraged researchers to perform a simple max-

imum likelihood analysis with a time-integrated neutrino spectrum to infer the

fluence and the average energy of the neutrino burst. As demonstrated in [57],

consistent parameters cannot be fitted from a quasi-thermal spectrum between

analyzes with the KAM-II set and with the IMB data set; the confidence interval

from either analysis agrees only marginally with each other due to the fact that

the average energy of events from the KAM-II data set was relatively low com-

pared to that of the IMB events after accounting for different characteristics of the

two detectors. This observation has led to a data-driven proposal for a bi-modal

spectrum [49, 58] which consists of a low and a high energy peaks whose signals

can be preferentially picked up by the KAM-II and IMB detectors, respectively.

However, such proposal receives skepticism [57, 52] since the superposition of the

3 The event K1 had an angle θLMC = 18 ± 18 degree [35] where the angle is defined with
respect the direction pointing away from the Large Magellanic Cloud.
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instantaneous (and pinched according to [41]) anti-neutrino spectrum, of which

the mean energy does not vary by more than 50% during the first few seconds, is

most likely to result in a broadened quasi-thermal spectrum. Indeed, no evidence

from the recent simulations [30, 59] suggests such bi-modal shape and the tension

between the two data sets remains.

To measure the discrepancy between the data sets and the time-integrated

spectra from the simulation models, we define a diagnostic indicator

∆E ≡ Emodel
avg − Edata

avg , (3.9)

where Emodel
avg is the average energy of n events sampled from the PDF of a simu-

lation model and E data
avg is the average energy of n events from a data set. For a

meaningful interpretation of ∆E, we briefly discuss the estimate of its uncertainty

in the following. We note that Emodel
avg is a random variable whose expectation value

and variance can be computed with the help of the time-integrated PDF

ḡ(Eobs
e ) =

∫
dt g(t, Eobs

e ). (3.10)

The expectation value of Emodel
avg is simply the average of the distribution, 〈E〉 ≡∫

dE ×E × ḡ(E), whereas its intrinsic variance stems from the finite sample size

n and can be shown to be

V ar[Emodel
avg ] =

1

n

∫
dE × ḡ(E)× (E − 〈E〉)2, (3.11)

which reduces to the variance of ḡ(E) with n = 1 and approaches to zero as n→
∞. On the other hand, the value of E data

avg is simply a constant that equals to the

average of the best fit energies of the events. Once again, we stress that the PDFs

already account for the finite detector resolution and we refrain from propagating

the energy uncertainty from each individual event to ∆E. In fact, the PDFs shown

in Fig. 3.1 and Fig. 3.2 are more ”stretched” along the energy dimension compared

to similar plots made without the smearing effect from finite detector resolution.

Such smearing effect has already made additional contribution to V ar[Emodel
avg ]

and therefore we ascribe the uncertainty of ∆E solely to the uncertainty from
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Emodel
avg . Moreover, in presenting the results of ∆E below, we have applied the 7.5

MeV threshold cut to the KAM-II data set and PDFs since, as we have shown in

Table 3.2, those events below the threshold do not play an active role in the low

p-values.

Fig. 3.6 summarizes the values of ∆E along with the corresponding uncer-

tainty. We can observe that the average energy of the KAM-II data set is about

2σ lower than that expected from the models whereas, for the IMB data set,

∆E ≈ 0 within 1σ error. It is also clear that the tension exists between both

data sets under the simulation models. Reconciliation between the two data sets

can be achieved by removing the events K10-12 from the KAM-II data set, which

have been identified to cause poor goodness-of-fit in the previous section. Such

reduced KAM-II data set also exhibits a better agreement with the simulation

models although the resultant ∆E is still more than 1σ above zero. Overall,

larger progenitor mass and neutrino oscillations increase the value of ∆E since

both factors increase the predicted energy of ν̄e flux observed on the Earth.

In summary, the analysis presented in this chapter so far suggests that the

KAM-II data set cannot be easily explained by the state-of-the-art SN models

shown in Fig. 2.2. The major issues are the relatively late timing of the events

K10-12 as well as the average positron energy of the KAM-II data set being too

low. We will discuss the implications of these results in the next section.
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3.5 Discussions

With the rather limited statistics from the SN1987A observation, it is hard to

determine with certainty whether the poor agreement between the KAM-II data

set and the simulation models is statistical or physical. However, if one assumes

that the SN1987A observation was a statistically probable outcome, then there

are clearly some physical implications. One conservative approach to bringing the

simulation models to a better alignment with the KAM-II and IMB data sets,

without subjectively removing any event, is perhaps to tune microphysics ingre-

dients in the hydrodynamic simulation so as to slow down the cooling of the PNS.

By having a slower cooling rate, not only can the events K10-K12 from the KAM-

II data set as well as the events I6-I7 from the IMB data set be better accounted

for by the SN neutrino flux but the average energy of the time-integrated neutrino

spectrum can also be lowered. Factors like the EOS, neutrino opacities, convec-

tive instabilities can affect the cooling trajectory of the PNS and they are still

subject to theoretical uncertainty to different extent. An attempt in this direc-

tion requires model adjustments made to prolong the cooling phase and lower the

predicted average energy of observed events by a few MeVs without counteracting

the efforts for achieving a successful SN explosion in the simulation. Nevertheless,

this approach still leaves the existing tension between the KAM-II and IMB data

sets unresolved.

Alternatively, we can take a more speculative stance to hypothesize additional

neutrino production mechanism which is not included in the standard SN ex-

plosion paradigm to account for the late-time neutrino emission observed by the

KAM-II experiment. It was pointed out in [60] that a fraction of the SN ejecta can

be decelerated, become gravitationally bound, and then fall back onto the PNS

within the first 10-15 seconds after the explosion is launched. The point was made

by using an ”energy-injected” explosion in the 1D simulation instead of a ”piston-

driven” explosion4 [61] which the author of [60] argued to cause a delay and an

4 These are two methods to artificially trigger the explosion in 1D simulations.
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underestimate of the accretion rate of fallback mass. Moreover, multi-dimensional

simulations [3] also predict asymmetric explosion whereby stellar materials, weakly

ejected along some directions, fall back onto the PNS. Motivated by findings from

SN simulations, we discuss one possible scenario in which the three events were

contributed by fallback mass accreted onto the PNS.

To keep the analysis general, this late-time neutrino emission could be due

to these materials falling directly onto the PNS surface or, if they had sufficient

angular momentum, forming an accretion disk to spiral inward towards the PNS.

Either way, the released gravitational binding energy could be transformed into

neutrino luminosity. Despite extremely limited statistics, we perform a maximum

likelihood analysis for the purpose of theoretical exploration of this scenario. To

avoid involving the fallback dynamics in the following analysis, we consider only

a time-integrated luminosity Iν̄e and a constant temperature Tν̄e for the ν̄e flux

observed on the Earth which is assumed to follow a Fermi-Dirac distribution,

Eq. (2.10), with zero chemical potential such that 〈Eν〉 = [F3(0)/F2(0)] × Tν ≈
3.15×Tν . We also neglect the KAM-II background component since the duration

of the emission due to fallback materials is not specified here. Then the counting

rate can be obtained as a time-integration of Eq. (2.18) with the interaction rate

replaced by

dNint

dEν
=

1

4πD2

Iν̄e
〈Eν̄e〉

fFD(Eν̄e , Tν̄e)σν̄ep(Eν̄e)Nprotons. (3.12)

Furthermore, we construct a combined likelihood function that takes both the

KAM-II and IMB observations into account; the fallback component would con-

tribute three events (or two if there was one background event) in the KAM-II

detector and no event in the IMB detector. Since the number of observed events

is of relevance here, a combined likelihood function Lcombined is defined to be a
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product of extended likelihood functions for the KAM-II and IMB observations:

Lcombined =
∏

D∈{KAM-II, IMB}

LD, where

LD =
λnDD exp (−λD)

nD!
×


nD∏
i=1

g̃D(Ei), if nD ≥ 1.

1, if nD = 0.

(3.13)

Each of the extended likelihood function has a Poisson probability component

that depends on the expected total number of events λD and, for KAM-II in

particular, a component consists of the normalized energy distribution function

ḡD(E), similar to that defined in Eq. (3.10), evaluated at the energies of the

nD events to assess the quality of energy fitting. Fig. 3.7 shows the best fit

point obtained by maximizing Eq. (3.13) and the 1σ as well as 2σ confidence

intervals in the Iν̄e-Tν parameter space. Due to the small sample size that renders

asymptotic confidence intervals unfeasible, we use a Monte Carlo simulation to find

the confidence intervals for the estimated parameters and the details are described

in Appendix B. Since we have neglected the KAM-II background component,

the analysis is also performed by removing one event, K12 for example, as a

background event from the analysis.

The analysis suggests that the fallback scenario would require a significant

amount of energy released in the form of low energy neutrinos. The inferred value

of Iν̄e can be related to the mass of fallback materials Mfallback via

Iν̄e = κ× GMNSMfallback

RNS

, (3.14)

where κ is a model-dependent conversion efficiency of gravitational binding energy

into the observed integrated luminosity Iν̄e . We remark that the most efficient

conversion would occur if (1) the fallback materials fell directly onto the PNS

surface releasing νe and ν̄e presumably in equal numbers via the forward reactions

of Eq. (2.2) and (2) the anti-neutrinos were detected in the absence of neutrino

oscillations. In such an ideal case, κ = 1
2

and, by taking MNS = 1.4M� and
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RNS = 10 km, Eq (3.14) suggests a fallback mass

Mfallback = 5.4× 10−3 ×
(
Iν̄e

1051 erg

)
×M�. (3.15)

The best fit value of Iν̄e from Fig. 3.7 then corresponds to an amount of 0.3M�

(or 0.1M� if one event was background) of fallback materials. We note that any

departure from this idealized case would result in a smaller efficiency and thus

more fallback mass is required to yield the observed luminosity. The period over

which the fallback materials were accreted must be greater than the observed

time interval spanned by the events K10-12. Such accretion rate could be a few

times 10−2M� sec−1 and, within the uncertainty from parameter estimation, com-

fortably agree with the accretion rate of fallback matter estimated in [60]. One

noticeable discrepancy, however, is the average energy of neutrinos: our param-

eter estimation suggests an average energy 3 MeV . 〈Eν〉 . 8 MeV (1σ range)

whereas in [60] a rather high average energy 〈Eν〉 & 20 MeV was obtained. We

comment that the conversion of gravitational binding energy of the fall back mass

to neutrino luminosity is model-dependent and our results can serve as an obser-

vational constraint for future simulation study of the fallback scenario.

Due to the broad confidence intervals as a result of sparse data, the analysis

presented here should be regarded as an invitation for more careful scrutiny. The

timing and duration of materials falling back onto the PNS as well as the luminos-

ity and effective temperature of the neutrino emission will have to be determined

by self-consistent numerical simulations. As estimated above, the fallback mass

could be a few times 10−1M� and potentially push the neutron star over the mass

limit to become a black hole, the formation of which at the SN1987A remnant has

been debated for the past decades. Properly understanding the potential exper-

imental signature of fallback mass resulting from asymmetric explosion can also

prepare us for the next galactic SN explosion.



46

10
51

10
52

10
53

10
54

10
55

Iν̄e (erg)

0

1

2

3

4

5

T
ν
(M

eV
)

1
7

0.1
1

10
51

10
52

10
53

10
54

10
55

Iν̄e (erg)

0

1

2

3

4

5

T
ν
(M

eV
)

1 5

0.1
1

Figure 3.7: Maximum likelihood parameter estimation with the three events
K10, K11, and K12 (top figure) or with only the two events K10 and K11 (bottom
figure). The black cross represents the best fit point and two black solid contours
are respectively 1σ and 2σ confidence regions. The gray dots are the best fit points
with fake data sets sampled by Monte Carlo simulation (see Appendix B). For a
better visual presentation, only five hundred iterations (gray dots) are plotted.
To provide a goodness-of-fit assessment by eye, the red (green) dashed contours
are overlaid to indicate the expected total number of events in the KAM-II (IMB)
detector.



Chapter 4

Evolution of a 3D Gaussian Wave

Packet

In this chapter, we present the methodologies for deriving the solution for a 3D

Gaussian WP. For simplicity, we ignore neutrino masses and neglect neutrino os-

cillations although the neutrino mass term can be introduced in the derivations

of the WP solution in this chapter and the quantum detection of WPs in the

next chapter. In addition, to simplify mathematical formulas, we adopt natural

units (c = ~ = 1) throughout the following chapters. We also assume that the

momentum distribution of the neutrino is sharply peaked around its mean mo-

mentum ~k0 so that the spinor part of the wave function is essentially an irrelevant

constant factor. The initial 3D WP in our study is parameterized by its widths

al and at in the longitudinal (propagating) and transverse directions, respectively.

The assumption of sharp momentum distribution requires that the transverse and

longitudinal momentum uncertainties be small compared to the mean momentum

and, according to Heisenberg’s uncertainty principle, this assumption is translated

to the following inequalities:

k0al � 1 and k0at � 1, (4.1)

which will be frequently referred to in this chapter.

47
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Suppose, at t = 0, the initial Gaussian WP is produced at the origin and it

propagates along the z-axis. The wave function can be expressed as

Ψ(~r, 0) =
[
(2π)3a4

ta
2
l

]− 1
4 exp

(
− ρ2

4a2
t

− z2

4a2
l

+ ik0z

)
, (4.2)

where ρ ≡
√
x2 + y2. It’s well-known that this WP spreads as it evolves in time

due to its intrinsic momentum uncertainty. A massless WP spreads only in the

transverse direction and the angular size subtended by such WP can be estimated

from the ratio of its transverse momentum uncertainty to its mean momentum.

This simple estimate suggests that the angular size should be ∆k⊥/k0 ∼ (2k0at)
−1,

as will be verified in the following sections where the time evolution of Eq. (4.2)

is derived.

4.1 Fourier Transform Method

The approach commonly followed in the literature to finding the WP evolution is

to decompose the initial wave function into a superposition of momentum eigen-

states and then evolve these eigenstates with different frequencies [62, 63, 64, 65].

To begin with this approach, the Fourier transform corresponding to Eq. (4.2)

must be obtained and it is

Ψ̃(~k) = (8π)
3
4 ata

1
2
l exp

[
−a2

t

(
k2
x + k2

y

)
− a2

l (kz − k0)2] . (4.3)

As the WP evolves in time, each plane wave component of the WP acquires a

different phase factor exp
(
−iω~k t

)
, where ω~k is the energy of the plane wave.

Therefore, the time evolution of Eq. (4.2) can be found from the inverse Fourier

transform at t > 0

Ψ(~r, t) =

∫
d3~k

(2π)3
Ψ̃(~k) exp

(
−iω~kt+ i~k · ~r

)
. (4.4)

With the sharp momentum distribution assumption, we can expand the energy-

momentum relation around the mean momentum ~k0 = (0, 0, k0) up to quadratic
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order 1

ω~k ≈ k0

[
1 +

k2
x + k2

y

2k2
0

+
1

k0

(kz − k0)

]
, (4.5)

which allows the exponent of Eq. (4.4) to be expressed as a quadratic polynomial

of the momentum variables. Upon completing the square for each momentum

variable in the exponent, a closed-form expression of Eq. (4.4) can be derived by

Gaussian integral. It follows that the evolved WP is found to be

Ψ(~r, t) = (2π)−
3
4σFTt (t)

−1
a
− 1

2
l

× exp

− x2 + y2

4a2
t

(
1 + it

2k0a2t

) − (z − t)2

4a2
l

+ ik0 (z − t)− iζFT (t)

 ,
(4.6)

where2 the (squared) transverse width is defined to be

σFT (t)
2 ≡ a2

t

(
1 +

t2

4k2
0a

4
t

)
(4.7)

and the time-dependent phase is defined to be

ζFT (t) ≡ arctan

(
t

2k0a2
t

)
. (4.8)

In addition, Eq. (4.6) corresponds to a probability density

|Ψ(~r, t)|2 = (2π)−
3
2σFTt (t)

−2
a−1
l × exp

[
− x2 + y2

2σFTt (t)
2 −

(z − t)2

2a2
l

]
, (4.9)

which suggest that the WP moves along the z-axis at the speed of light (c = 1) and

spreads in the direction transverse to the z-axis. Asymptotically, the transverse

width σFT (t) ∼ t/2k0at which, combined with the distance traveled z ≈ t, verifies

that the angle subtended by the WP is ∼ 1/2k0at.

1 Eq. (4.4) applies to the massless case. In the case with nonzero mass, the approximated

energy-momentum relation is found to be ω~k ≈ ω0

[
1 +

k2
x+k2

y

2ω2
0

+ m2

2ω4
0

(kz − k0)
2

+ k0

ω2
0

(kz − k0)
]
,

where ω0 ≡
√
k20 +m2. The solution for a relativistic massive WP can be derived in the same

way as discussed in this section.
2 We use the superscript ”FT” to denote the quantities derived from this Fourier transform

method. These two quantities will be compared to those found from the paraxial wave equation
method in the next section.
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The solution we obtain above represents a WP with a ”flat” shape that is

stretched in the transverse direction. One paradoxical implication of such solu-

tion is the superluminal propagation of its edge and it has sparked discussions in

the past [66, 67, 68]. While this approach may provide a satisfactory 1D solution,

the discarded higher order terms in the expansion in Eq. (4.5) are, however, re-

sponsible for causing spherical curvature of the evolved WP [68]. Unfortunately,

the inclusion of higher order terms can only allow the analytic solution to be

found perturbatively with limited applicability. The spherical shape is not only

required to comply with special relativity but it is also crucial for establishing

wave-particle duality in the 3D space as we shall demonstrate. Therefore, an

alternative approach will be pursued in the next section.

4.2 Paraxial Wave Equation Method

Inspired by the discussion in [67], we construct the desired WP solution using the

paraxial solution from laser optics. Derived by making paraxial approximation to

the wave equation, the paraxial solution describes a laser beam with a transverse

Gaussian profile at the beam waist. Appendix C summarizes the derivation of

the solution and the criteria for the paraxial approximation. In brief, the paraxial

solution reads

Ψk(~r, t) =
A

σt(t)
exp

{
− ρ2

4σt(z)2
+ i

[
kρ2

2R(z)
− ζ(z) + k(z − t)

]}
, (4.10)

where A is a normalization constant,

LR ≡ 2ka2
t (4.11)

is the Rayleigh range of the Gaussian beam,

R(z) ≡ z

(
1 +

L2
R

z2

)
(4.12)

characterizes the radius of curvature of the wavefront,

σt(z) ≡ at

√
1 +

z2

L2
R

(4.13)
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is a time-dependent transverse width, and

ζ(z) ≡ arctan

(
z

LR

)
(4.14)

is a position-dependent phase. Eq. (4.10) is valid under the condition (kat)
2 � 1,

which is already guaranteed by the assumption of sharp momentum distribution

as shown in Eq. (4.1).

As illustrated by Fig. C.1 in Appendix C, the paraxial solution is localized in

the transverse direction but unconfined in the longitudinal direction. It behaves

similarly to a plane wave along the z-axis, except for the additional phase ζ(z)

which varies from 0 to π/2 as z increases from 0 to∞. To construct a solution that

is also localized in the z-direction from the paraxial solution, we recall that a 1D

Gaussian WP is constructed by superposing plane waves weighted by a Gaussian

distribution of the plane wave momentum. We therefore consider the following

solution

Ψ(~r, t) = σ−1
k

∫ ∞
−∞

dk exp

[
−(k − k0)2

4σ2
k

]
Ψk(~r, t), (4.15)

where the k-width of the Gaussian distribution is chosen to be σk = (2al)
−1 from

hindsight. The prefactor σ−1
k is to ensure that Ψ(~r, t) has the same dimension

as Ψk(~r, t). We caution that the implicit dependence on k of the quantities LR,

σt(z), R(z), and ζ(z) defined in Eq. (4.11)-(4.14) must be accounted for in the

k-integration of Eq. (4.15). In the following discussion, boldface quantities, i.e.

R(z), ζ(z), σt(z) and LR represent those with k set to be k0, the central momen-

tum of the Gaussian distribution in the integrand of Eq. (4.15).

To see that Eq. (4.15) is indeed a Gaussian WP at t = 0, we consider the

approximations

R(z) ≈ L2
R

z

ζ(z) ≈ 0

σt(z) ≈ at

 at the near-field limit z � LR. (4.16)
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The phase term ikρ2/2R(z) . O(z/LR) can then be neglected from Eq. (4.10)

and the superposition in Eq. (4.15) reduces to a Gaussian integral which yields

Ψnear(~r, 0) ≈
[
(2π)3a4

ta
2
l

]− 1
4 exp

(
− z2

4a2
l

− ρ2

4a2
t

+ ik0z

)
, (4.17)

where the normalization constant is now fixed as A = 2−
7
4π−

5
4a
− 1

2
l in order to

satisfy the normalization condition 1 =
∫

d3~r |Ψnear|2. We can see that, if al �
LR, Eq. (4.17) is sufficient to describe the whole initial WP and thus Eq. (4.15)

corresponds to the solution of the Gaussian WP. This additional assumption,

al � LR, is equivalent to

k0al � (k0at)
2, (4.18)

which not only allows the construction of WP solution from the paraxial solution

but also simplifies the overlap model to be developed in Sec. 6.1.

Similarly, the evolution of the WP at t� LR can be found by evaluating the

superposition with the approximations

R(z) ≈ z

ζ(z) ≈ π

2

σt(z) ≈ z

2kat

 at the far-field limit z � LR. (4.19)

Under this limit, Eq. (4.15) reduces, again, to a Gaussian integral

Ψfar(~r, t) =
4alatA

z

∫ ∞
−∞

dk × k × exp [Ω(k)] , (4.20)

where the exponent

Ω(k) = −a2
l

(
1 +

a2
tρ

2

a2
l z

2

)
k2 +

[
2k0a

2
l + i

(
z +

ρ2

2z
− t
)]

k −
(
k2

0a
2
l +

iπ

2

)
≡ αk2 + βk + γ

(4.21)

is expressed as a quadratic polynomial of k with three complex coefficients α, β,

and γ. Then a closed-form expression for Eq. (4.20) is found to be

Ψfar(~r, t) =
(2π)−

3
4a

1
2
l at

z
×
β exp

{
−β2

4α
+ γ
}

(−α)
3
2

, (4.22)
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where the exponent reads

−β
2

4α
+ γ = −

(
z + ρ2

2z
− t
)2

4a2
l

(
1 +

a2t ρ
2

a2l z
2

) − k2
0a

2
l ×

a2tρ
2

a2l z
2(

1 +
a2tρ

2

a2l z
2

) +
ik0

(
z + ρ2

2z
− t
)

1 +
a2tρ

2

a2l z
2

− iπ

2
. (4.23)

Given the complicated appearance of the far-field solution, it is appropriate to

find an expression specifically only for the region where the solution has a non-

vanishing magnitude. Therefore we require the absolute values of the two non-

positive real terms in the exponent to be comparable to or less than O(1). In

particular, the second real term in Eq. (4.23) imposes the condition(
atρ

alz

)2

. O
(
(k0al)

−2
)
� 1, (4.24)

which is equivalent to ρ/z . O ((k0at)
−1) � 1. Subsequently, the first term

suggests that

z +
ρ2

2z
− t . O(al). (4.25)

Applying Eq. (4.24) to Eq. (4.23), we find

Ψfar(~r, t) ≈
[
(2π)3σt(z)4a2

l

]− 1
4

× exp

−
(
z + ρ2

2z
− t
)2

4a2
l

− ρ2

4σt(z)2
+ ik0

(
z +

ρ2

2z
− t
)
− iπ

2

 ,

(4.26)

where the far-field approximation of σt(z) shown in Eq. (4.19) is assumed. At this

point, we can compare the solution Eq. (4.6) derived with the Fourier transform

method with Eq. (4.26). These two solutions are in fact identical to each other on

the z-axis, except that the time-dependence in Eq. (4.7)-(4.8) have been replaced

by the z-dependence in Eq. (4.13)-(4.14). Of course, away from the z-axis, the two

solutions start to show difference in that Eq. (4.26) implies a spherical curvature

to be discussed below whereas Eq. (4.6) is a flat WP.

The solution in Eq. (4.26) can be easily understood if expressed in terms of

spherical coordinates; the term z + ρ2/2z in Eq. (4.26) can be approximated as
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the radial distance r =
√
z2 + ρ2 since ρ/z � 1 whereas other standalone ρ and

z variables can be substituted, respectively, by r sin θ and r cos θ by definition.

Eq. (4.26) can then be factorized as

Ψfar(~r, t) ≈
1

r

√
Θ(r̂)Ψ1D(r, t), (4.27)

where

Ψ1D(r, t) ≡ 1

(2πa2
l )

1
4

exp

[
−(r − t)2

4a2
l

+ ik0(r − t)− iπ
2

]
for r > 0 (4.28)

is an effective 1D Gaussian wave packet and

Θ(θ) ≡


(2k0at)2

2π cos2 θ
exp

[
− tan2 θ

2·(2k0at)−2

]
, if 0 ≤ θ < π

2
,

0 , if π
2
≤ θ ≤ π,

(4.29)

is an angular probability distribution that is peaked in the forward direction and

normalized over the entire 4π solid angle. Eq. (4.27) justifies the prevalent 1D

simplification of neutrino propagation in that the wave mechanics can be dealt

with solely by the effective 1D wave function whereas the factor r−1
√

Θ properly

accounts for the normalization of probability flux when squared. In practical

situations, the source is incoherent and emits neutrinos into a solid angle that

is much greater than the effective solid angle spanned by a single WP. Upon

averaging over the source solid angle, Eq (4.29) plays no role in the observed

number flux of neutrinos.

4.3 Viewpoint from Wave-particle Duality

The far-field solution shown in Eq. (4.26) can also be understood as a manifesta-

tion of wave-particle duality. In the absence of interference, a quantum particle

described by its wave function may as well be regarded as a classical point particle

with a probability distribution for its momentum; that probability distribution is

in fact equal to the modulus square of the Fourier transform of the wave function.
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Figure 4.1: The real part of far-field solution at t = 80a. For visualization
purpose, the plot is made by assuming at = al ≡ a and k0a = 10. Yellow arrows
point radially away from the origin and they are perpendicular to the spherical
wavefront.

This way, the constant longitudinal position width of the far-field WP solution

can be understood by viewing the particle as a bullet-like object; the initial lon-

gitudinal position uncertainty is simply retained by the momentum-independent

propagating speed of the massless particle, i.e. the speed of light. On the other

hand, the WP’s transverse size can easily grow to a macroscopic size thanks to

the nonzero transverse momentum component allowed by the probability distri-

bution. From the perspective of wave mechanics, an observer far away from the

origin of the WP only ”sees” a wave train. Because the phase term in the far-field

solution is spherical, the observed momentum of the wave train points in the same

direction as defined in a ballistic sense, i.e. parallel to the position vector pointing

from the origin to the observer, as illustrated in Fig. 4.1.
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By invoking the wave-particle duality discussed above, the angular probabil-

ity distribution of the far-field solution, i.e. Eq. (4.29), should be equivalent to

that derived from the momentum distribution of the initial WP, without actually

finding its evolution at t > 0. Viewing the particle as classical, the probability

of finding the particle at sufficiently far away (so that the initial position uncer-

tainty can be neglected) along a certain direction is equal to the probability that

the particle initially has a momentum pointing in that direction. We begin the

verification of the above statement by referring to the Fourier transform of the

initial WP shown in Eq. (4.3). The normalization condition of Eq. (4.3) can be

expressed with spherical coordinates

1 =

∫
d3~k

(2π)3

∣∣∣Ψ̃(~k)
∣∣∣2 =

∫
S2

dΩ

∞∫
0

k2dk

(2π)3

∣∣∣Ψ̃(~k)
∣∣∣2, (4.30)

from which we can infer an angular probability distribution

S(θ) ≡
∞∫

0

k2dk

(2π)3

∣∣∣Ψ̃(~k)
∣∣∣2

=

∞∫
0

k2dk

(2π)3
× (8π)

3
2a2

tal exp
[
−a2

tk
2 sin2 θ − a2

l (k cos θ − k0)2] (4.31)

that satisfies 1 =
∫
S2 dΩS(θ). The integration is somewhat tedious to carry out

but it can be shown to have a closed-form expression

S(θ) =
a2
tal exp (−ζ)

(2π)3/2δ5/2

{
2ε
√
δ +
√
π(2δ + ε2) exp

(
ε2

4δ

)[
1 + erf

(
ε

2
√
δ

)]}
,

(4.32)

where the three positive quantities as well as the error function are defined as

δ ≡ 2(a2
t sin2 θ + a2

l cos2 θ)

ε ≡ 4k0a
2
l cos θ

ζ ≡ 2k2
0a

2
l

erf(x) ≡ 2√
π

∫ x

0

dt exp
(
−t2
)
.

(4.33)
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Despite the very different appearances of Eq. (4.29) and Eq. (4.32), the two

angular probability distributions are in fact consistent with each other under the

assumption of sharp momentum distribution. By making small angle approxima-

tion, we can immediately see that Eq. (4.29) reduces to a Gaussian distribution

with an angular width (2k0at)
−1. To show that S(θ) also reduces to the same Gaus-

sian distribution, we note that the first term in the curly brackets of Eq. (4.32) is

suppressed by the factor exp(−ζ) whereas the second term is non-vanishing only

if the factor,

exp

(
ε2

4δ
− ζ
)

= exp

(
− 2k2

0a
2
l a

2
t sin2 θ

a2
t sin2 θ + a2

l cos2 θ

)
≤ 1, (4.34)

is not diminishingly small. By requiring |ε2/4δ − ζ| . O(1), we can deduce that

a2
t sin2 θ .

a2
l cos2 θ

2k2
0a

2
l − 1

� a2
l cos2 θ. (4.35)

This condition implies ε�
√
δ which can be used to greatly simplify the expres-

sion. It is then straightforward to show that

S(θ) ≈ Θ(θ) ≈ (2k0at)
2

2π
exp

[
− θ2

2 · (2k0at)
−2

]
, (4.36)

which has no dependence on al. This is consistent with the simple estimate on

the WP’s angular size using the ratio of transverse momentum uncertainty to the

mean momentum of the initial WP.

In this chapter, we have derived the 3D Gaussian WP solution and clarified

why common 1D treatment suffices for describing the propagation of neutrinos

when the interference among them is not of concern. We also addressed the wave-

particle duality implied by the solution and this concept will be frequently referred

to in the next chapter where the detection of WPs is discussed.



Chapter 5

Quantum Mechanics of Wave

Packet Detection

In a scenario where the source is intensive enough such that the 3D wave functions

of the emitted neutrinos overlap, a formal many-particle wave function might be

needed. An immediate consequence implied by such description is the well-known

Pauli exclusion principle which states that two identical fermions cannot be found

in the same state. One is then tempted to wonder if this would affect the detection

of neutrinos from an intensive source. To answer the question of what interference

effect might be observed, we divide the following discussion into two cases. The

first case concerns the scenario where only one neutrino is detected at a time and

the second case concerns ”simultaneous” detection of more than one overlapping

neutrinos. For the second case, we will first review the description of WP detection

in a quantum-mechanical framework and then discuss the conditions for the HBT

effect discussed in Chap. 1. This effect is closely related to the exchange symmetry

of fundamental particles as will be discussed in the later part of this chapter.

58
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5.1 When Only One Neutrino Is Detected

To grasp the key idea without invoking unnecessary mathematical complexity, we

consider only two 1-particle wave functions, ΨP1(~r, t) and ΨP2(~r, t), originating

from two production processes labeled as P1 and P2. Most likely, P1 and P2 are

separated by a macroscopic distance in the source. Without loss of generality, the

normalized two-particle wave function is expressed as

Φ(~r1, ~r2, t) =
ΨP1(~r1, t)Ψ

P2(~r2, t)−ΨP2(~r1, t)Ψ
P1(~r2, t)√

2− 2|〈ΨP1|ΨP2〉|2
. (5.1)

The probability density of finding one neutrino at ~r regardless of the other is then

ρ(~r) =

∫
d3~r2

∣∣Φ(~r, ~r2)2
∣∣+

∫
d3~r1 |Φ(~r1, ~r)|2

=

∣∣ΨP1(~r)
∣∣2 +

∣∣ΨP2(~r)
∣∣2 − 2Re

[
ΨP1(~r)Ψ∗P2(~r)〈ΨP1|ΨP2〉

]
1− |〈ΨP1 |ΨP2〉|2

,

(5.2)

where the time dependence is not explicitly shown. The above equation shows

that interference term is independent of the initial phases of the 1-particle states

and is proportional to the magnitude of 〈Ψa|Ψb〉. Although the WP states may

overlap in both position and momentum spaces, their inner product is in fact zero.

The 1-particle WP states are governed by the same time evolution operator and

the unitarity of the operator suggests that the inner product is time-independent:

〈ΨP1(t)|ΨP2(t)〉 = 〈ΨP1(0)|eiĤte−iĤt|ΨP2(0)〉 = 〈ΨP1(0)|ΨP2(0)〉, (5.3)

where Ĥ is a relevant Hamiltonian operator. By tracing back to the time when

the WPs emerge from spatially separated production regions in the source, it is

clear that the inner product should be zero. Therefore, Eq. (5.1) reduces to a

Slater determinant and Eq.(5.2) reduces to a simple sum of 1-particle probability

densities. With a bit more algebraic effort, the above argument can be applied to

an arbitrary number of overlapping neutrinos.
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5.2 Quantum Mechanics of WP Detection

It is beneficial to review the description of WP detection in a more formalistic

way before discussing the HBT effect of neutrinos. The detection process can

be described as a projection of the neutrino WP onto a detected WP state [19].

Such treatment provides a simply way to derive the oscillation probability for neu-

trino WPs, when the neutrino masses are considered, in a quantum-mechanical

framework. We remark that the detected state to be discussed below is merely

an ad hoc description that represents the approximate conservation of momentum

associated with the detection process. Neither does such detected WP state cor-

respond to an actual particle nor does it evolve in time (or propagate in space).

An implicit assumption implied by this ”static” WP state is that the detection

process is uninterrupted, i.e. it lasts sufficiently long for the incoming neutrino

wave train to pass through the detection region.

To begin, we assume that the detected state is a Gaussian WP characterized by

a mean momentum ~kD0 , a transverse position width aDt , and a longitudinal position

width aDl , where the label ”D” is used to distinguish from the parameters labeled

with ”P” for the neutrino WP from the production process. The detection process

may take place at an ”off-axis” position from the neutrino’s classical path. As

discussed in Sec. 4.3, the detection process observes a wave train with a momentum

direction defined by the production and detection locations. For the following

discussion, we shall define the line joining the two locations as the z-axis1 with

z = 0 and z = L defined to be the centers of the production location and detection

location, respectively. We remark that the mean momentum of the detected WP

does not necessarily have to align with this z-axis as long as the incoming wave

train’s momentum component transverse to ~kD0 does not exceed the transverse

momentum uncertainty of the detected WP. Nevertheless, the following analysis

assumes that ~kD0 = kD0 ẑ for simplicity. Similar to Eq. (4.2), the detected WP state

1 This is not to be confused with the coordinate definition in Chap. 4 where the z-axis is
defined to be the neutrino’s classical path.
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is described as

ΨD(~r) =
[
(2π)3aDt

4
aDl

2
]− 1

4
exp

[
− ρ2

4aDt
2 −

(z − L)2

4aDl
2 + ikD0 (z − L)

]
. (5.4)

On the other hand, the incoming neutrino wave train can be effectively described

by

ΨP (~r, t) =

√
ΘP→D

L
Ψ1D(z, t) (5.5)

according to Eq. (4.27) and Eq. (4.28) in the neighborhood of the detection loca-

tion where the values of Θ(r̂) and 1/r are essentially constant.

The transition amplitude can be calculated via straightforward integration of

Eq. (5.4) and Eq. (5.5) over position space and it is found to be

〈ΨD|ΨP (t)〉 ∝
√

ΘP→D

L
exp

[
−(t− L)2

4σ2
z,eff

− (kP0 − kD0 )2

4σ2
k,eff

− ikPDeff × (t− L)

]
, (5.6)

where the effective position and momentum widths are defined as

σ2
z,eff ≡ aPl

2
+ aDl

2

σ2
k,eff ≡

1

4aPl
2 +

1

4aDl
2

(5.7)

and the effective momentum is defined as

kPDeff ≡ ξkP0 + (1− ξ)kD0 (5.8)

with a weighting parameter (0 < ξ < 1)

ξ ≡ aPl
2

aPl
2

+ aDl
2 . (5.9)

A few comments about the derived transition amplitude are made in the following.

Eq. (5.6) is up to an arbitrary and constant complex phase as well as a factor that

depends on the position widths of the two WPs. The transition amplitude is

non-vanishing only if |t − L| . σz,eff and |kP0 − kD0 | . σk,eff , which respectively

reflect causality and conservation of momentum within given uncertainties. The
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effective momentum is, roughly speaking, determined by whichever WP state

that has a more precisely defined momentum (thus energy). For instance, if

aDl � aPl , the momentum uncertainty of |ΨD〉 is much smaller than |ΨP 〉 according

to Heisenberg’s uncertainty principle and, in this case, kPDeff ≈ kD0 . We also note

that the effective widths shown in Eq. (5.7) satisfy an uncertainty relation

σz,eff × σk,eff =
aPl

2
+ aDl

2

2aPl a
D
l

≥ 1, (5.10)

where the inequality is inferred from the inequality of arithmetic and geometric

means. The product reaches its minimum at aDl /a
P
l = 1 and approaches to in-

finity at aDl /a
P
l → 0 or aDl /a

P
l → ∞. In comparison to a Gaussian WP, which

mathematically has the minimal uncertainty product, the transition amplitude

has a slightly larger lower bound for the uncertainty product.

Assuming that the detection time is not measured, the detection probability

can be found by integrating the modulus square of the transition amplitude over

time, i.e.

Pr(P → D) ∝
∫

dt
∣∣〈ΨD|ΨP (t)〉

∣∣2 ∝ ΘP→D

L2
exp

(
−(kP0 − kD0 )2

2σ2
k,eff

)
. (5.11)

Overall, this result meets the expectation that the detection probability should

decrease with L−2 and be proportional to the angular probability ΘP→D. We

comment that in this quantum-mechanical framework a correct normalization for

the probability cannot be obtained self-consistently which is not the main goal

to achieve here. Nevertheless, this framework provides a simple expression for

the detection probability that allows a succinct presentation of the interference

effect later on. Finally, the complex phase, exp
[
−ikPDeff (t− L)

]
, in Eq. (5.6) does

not appear in the one-particle detection probability shown above for an obvious

reason, but this varying phase actually plays a crucial role in the HBT effect as

we shall discuss in the following.
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5.3 When Two Neutrinos Are Detected

We now consider pair-detection by two uncorrelated processes D1 and D2 of two

neutrinos produced from two uncorrelated processes P1 and P2 as schematically

depicted in Fig. 5.1. Suppose the source and the detector are well separated such

that the directional difference of the P1 and P2 locations cannot be resolved by

either of the detection processes. Therefore, when the momenta of |ΨP1〉 and

|ΨP2〉 as seen at the detector are very similar to those of |ΨD1〉 and |ΨD2〉, the

ambiguity of pairing a production process with a detection process may arise.

Similar to Eq. (5.11), the pair-detection probability is obtained by integrating the

squared amplitude over the two detection times t1 and t2

Pr(P1P2 → D1D2)

∝ 1

2

∫
dt1dt2

∣∣∣〈ΨD1|ΨP1(t1)〉〈ΨD2|ΨP2(t2)〉 − 〈ΨD1 |ΨP2(t1)〉〈ΨD2|ΨP1(t2)〉
∣∣∣2,

(5.12)

where the amplitude entails two possible configurations of production-detection

pairing and the negative sign reflects the exchange symmetry of fermions. Expand-

ing the integrand of Eq. (5.12) and referring to the 1-particle detection probability

shown in Eq. (5.11), the pair-detection probability can be expressed as

Pr(P1P2 → D1D2)

∝ 1

2
[Pr(P1 → D1)× Pr(P2 → D2) + Pr(P1 → D2)× Pr(P2 → D1)]

−
∫

dt1dt2 Re
[
〈ΨD1 |ΨP1(t1)〉〈ΨD2|ΨP2(t2)〉〈ΨP2(t1)|ΨD1〉〈ΨP1(t2)|ΨD2〉

]
,

(5.13)

where the second line is an incoherent sum of products of 1-particle probabilities

and the third line is the interference term to be investigated in details. The quartic

amplitude in the interference term is invariant under arbitrary re-phasing of the

four WP states. Furthermore, if the arrival times of the two wave trains, |ΨP1〉
and |ΨP2〉, at either of the detection locations are not sufficiently close, the quartic
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Figure 5.1: Diagrammatic illustration of pairing two production processes with
two detection processes. P1P2 and D1D2 do not necessarily lie in the same plane.
The size of the source and the detector, as defined by the dashed borders, are ex-
aggerated. The four lines are virtually parallel to each other under the geometrical
condition for the HBT effect to be derived in Sec. 5.4.

amplitude vanishes since at least one of the first and the third (similarly, second

and fourth) constituent amplitudes will be zero at any given time. In addition to

the proximity of |ΨP1〉 and |ΨP2〉, a few more conditions are in fact required for an

experimentally observable interference effect. These conditions inevitably require

some laborious mathematical derivation to uncover.

Without loss of generality, we define the production time of |ΨP1〉 to be t = 0

and that of |ΨP2〉 to be t = t0, where t0 can be either positive or negative. We

consider only the same particle interaction channel for P1 and P2 (likewise, the

same channel for D1 and D2) such that both WP states can be characterized by

the same width parameters. As in the derivation of 1-particle detection prob-

ability, both the mean momenta of |ΨD1〉 and |ΨD2〉 are assumed to align with

the momenta of the wave trains from |ΨP1〉 and |ΨP2〉 to simplify the calculation;

this assumption is legitimate since, with sufficient source-detector distance,
−−−→
P1Dj

are approximately parallel to
−−−→
P2Dj for j = 1 or 2. The ingredients needed for
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Eq. (5.13) can be obtained by making a quick reference to Eq. (5.6):

〈ΨDj |ΨP1(t)〉

∝
√

ΘP1→Dj

L1j

exp

[
−(t− L1j)

2

4σ2
z,eff

− (kP1
0 − k

Dj
0 )2

4σ2
k,eff

− ikP1Dj
eff (t− L1j)

]
〈ΨDj |ΨP2(t)〉

∝
√

ΘP2→Dj

L2j

exp

[
−(t− t0 − L2j)

2

4σ2
z,eff

− (kP2
0 − k

Dj
0 )2

4σ2
k,eff

− ikP2Dj
eff (t− t0 − L2j)

]
,

(5.14)

where Lij ≡ PiDj and the definitions in Eq. (5.7)-(5.8) apply. In the factor mul-

tiplying the exponential function of each amplitude, an approximation ΘPj→D1 ≈
ΘPj→D2 ≡ ΘPj , for j = 1 or 2, can be made since the angular size of the detector

as seen at the source can be safely neglected. In addition, the distance variable in

that prefactor can also be approximated by an average source-detector distance

L0. However, extra care shall be taken with the distance variable in the exponent

as it is relevant to the quantum phase that gives rise to the interference effect; for

instance, a 10 MeV SN neutrino has a de Broglie wavelength of order 10 fm which

dictates a very small margin of error in the length approximation to be dealt with

later. With Eq. (5.14), the quartic amplitude is found to be

〈ΨD1 |ΨP1(t1)〉〈ΨD2|ΨP2(t2)〉〈ΨP2(t1)|ΨD1〉〈ΨP1(t2)|ΨD2〉

∝ ΘP1ΘP2

L4
0

× exp

{
−1

4σ2
z,eff

[
(t1 − L11)2 + (t2 − t0 − L22)2 + (t1 − t0 − L21)2 + (t2 − L12)2

]}

× exp

{
−1

4σ2
k,eff

[
(kP1

0 − kD1
0 )2 + (kP2

0 − kD2
0 )2 + (kP2

0 − kD1
0 )2 + (kP1

0 − kD2
0 )2

]}
× exp

{
iξ
(
kP2

0 − kP1
0

)
(t1 − t2)

}
× exp

{
i
[
kP1D1
eff L11 + kP2D2

eff (t0 + L22)− kP2D1
eff (t0 + L21)− kP1D2

eff L12

]}
.

(5.15)
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At first glance, the imaginary part of the exponent gives rise to temporal (the

second last line) and spatial (the last line) oscillations which on average do not

contribute to the pair-detection probability. With the same prefactor ΘP1ΘP2/L
4
0

as the incoherent part of the pair-detection probability, the interference term

can, however, ”reshuffle” the overall temporal distribution (hence the term ”anti-

bunching” effect for fermions) of the two detections if certain conditions are met.

A few more steps to rewrite the quartic amplitude are necessary before the

physics picture becomes clear. We first define

k̄P0 ≡
1

2
(kP1

0 + kP2
0 ), ∆kP0 ≡ kP1

0 − kP2
0 ,

k̄D0 ≡
1

2
(kD1

0 + kD2
0 ), and ∆kD0 ≡ kD1

0 − kD2
0 ,

(5.16)

as well as recall the definition of the effective momentum in Eq. (5.8)-(5.9). These

identities allow one to rewrite kP1D1
eff = ξ(k̄P0 + 1

2
∆kP0 ) + (1− ξ)(k̄D0 + 1

2
∆kD0 ) and

the other three effective momenta with similar expressions. Then it follows that,

in the last line of Eq. (5.15),

kP1D1
eff L11 + kP2D2

eff (t0 + L22)− kP2D1
eff (t0 + L21)− kP1D2

eff L12

=
[
ξk̄P0 + (1− ξ)k̄D0

]
(L11 + L22 − L21 − L12)

+
1

2
ξ∆kP0 (L11 − L22 + L21 − L12)

+
1

2
(1− ξ)∆kD0 (L11 − L22 − L21 + L12 − 2t0) .

(5.17)

Furthermore, by defining ~L0 ≡ 1
2
(
−−−→
P1D1 +

−−−→
P2D2), ~∆P ≡

−−→
P1P2, and ~∆D ≡

−−−→
D1D2,

it is shown in Appendix D that three different combinations of the four distance

variables can be approximated as

L11 + L22 − L21 − L12 ≈ −
∆P,⊥∆D,⊥ cosφ

L0

L11 − L22 + L21 − L12 ≈ −2∆D,‖

L11 − L22 − L21 + L12 − 2t0 ≈ 2
(
∆P,‖ − t0

)
,

(5.18)

where the ”⊥” and ”‖” components are defined with respect to L̂0 and φ is the

angle between ~∆P,⊥ and ~∆D,⊥. With Eq. (5.17)-(5.18), the quartic amplitude can
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now be expressed as

〈ΨD1 |ΨP1(t1)〉〈ΨD2|ΨP2(t2)〉〈ΨP2(t1)|ΨD1〉〈ΨP1(t2)|ΨD2〉

∝ ΘP1ΘP2

L4
0

× exp

{
−1

4σ2
z,eff

[
(t1 − L11)2 + (t2 − t0 − L22)2 + (t1 − t0 − L21)2 + (t2 − L12)2

]}

× exp

{
−1

4σ2
k,eff

[
(kP1

0 − kD1
0 )2 + (kP2

0 − kD2
0 )2 + (kP2

0 − kD1
0 )2 + (kP1

0 − kD2
0 )2

]}
× exp

{
i
[
ξ∆kP0

(
t2 − t1 −∆D,‖

)
+ (1− ξ)∆kD0

(
∆P,‖ − t0

)]}
× exp

{
−i
[
ξk̄P0 + (1− ξ)k̄D0

]
× ∆P,⊥∆D,⊥ cosφ

L0

}
.

(5.19)

5.4 Conditions for the HBT Effect

We are now ready to interpret the interference term in the current form shown in

Eq. (5.19). To begin, we give physical interpretation of the two quantities t2−t1−
∆D,‖ and ∆P,‖− t0 appearing in the complex phase. As t1 and t2 are the detection

times, the quantity t2 − t1 − ∆D,‖ corresponds to the relative distance parallel

to L̂0 between the two ”point-like” neutrinos as determined by the two detection

processes. This can be understood from an analogy of two marathon runners who

run at the same known speed. Suppose the passage of each runner at a different

checkpoint is timed and the distance between the two checkpoints is known. Then

the constant distance between the two runners is determinable given the two

time measurements and the distance between the two checkpoints. Similarly, the

quantity ∆P,‖−t0 is simply the parallel distance between the two neutrinos as they

emerge from the production processes. Although the two neutrinos are supposed

to maintain constant distance between them, the quantity t2 − t1 − ∆D,‖ need

not coincide with the quantity ∆P,‖ − t0 simply because of the intrinsic position

uncertainties of the production and detection processes. In the following, we shall
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discuss the interference conditions in relation to these two quantities.

Two sets of conditions are required for a non-vanishing magnitude of the in-

terference term: The first set of conditions is

|t1 − L11|

|t2 − t0 − L22|

|t1 − t0 − L21|

|t2 − L12|


. O(σz,eff ), (5.20)

which, by combining two of the four inequalities using the identity|A−B| ≤
|A|+ |B|, implies (for j = 1 or 2)

|t2 − t1 − (Lj2 − Lj1)| ≈
∣∣t2 − t1 −∆D,‖

∣∣ . O(σz,eff ) and (5.21a)

|L1j − L2j − t0| ≈
∣∣∆P,‖ − t0

∣∣ . O(σz,eff ). (5.21b)

The second set of conditions is∣∣kP1
0 − kD1

0

∣∣∣∣kP2
0 − kD2

0

∣∣∣∣kP2
0 − kD1

0

∣∣∣∣kP1
0 − kD2

0

∣∣


. O(σk,eff ), (5.22)

which, again by combining two of the above four inequalities, implies∣∣kP1
0 − kP2

0

∣∣ =
∣∣∆kP0 ∣∣ . O(σk,eff ) and (5.23a)

∣∣kD1
0 − kD2

0

∣∣ =
∣∣∆kD0 ∣∣ . O(σk,eff ). (5.23b)

Strictly speaking, if these two sets of conditions are satisfied, the interference

among the four amplitudes occurs; however, these conditions alone do not guar-

antee an observable interference effect.
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In addition to the non-vanishing magnitude, the interference term must not

undergo rapid oscillations upon summing over all pairs of production and detection

processes since otherwise the interference effect will be smeared. This means that

the imaginary part of the exponent of Eq. (5.19) must be kept small compared to

π. Therefore, we require∣∣ξ∆kP0 (t2 − t1 −∆D,‖
)∣∣ . O(1) and (5.24a)

∣∣(1− ξ)∆kD0 (∆P,‖ − t0
)∣∣ . O(1) (5.24b)

as well as [
ξk̄P0 + (1− ξ)k̄D0

] ∆P,⊥∆D,⊥

L0

. O(1). (5.25)

Recalling Eq. (5.9)-(5.10), we can observe that Eq. (5.21) and Eq. (5.23) automat-

ically guarantee Eq. (5.24) if aPl ∼ aDl . However, Eq. (5.24) imposes additional

constraints when aPl � aDl or aPl � aDl . To summarize at this point, the HBT

effect requires all the conditions shown in Eq. (5.21), (5.23), (5.24), and (5.25) to

be met.

The quantity t2 − t1 − ∆D,‖ discussed earlier is subject to the inequalities

Eq. (5.21a) and Eq. (5.24a). The later can be expressed as

∣∣t2 − t1 −∆D,‖
∣∣ . ξ−1

∣∣∆kP0 ∣∣−1 ∼ ξ−1σ−1
k,eff ∼

aDl
aPl
× σz,eff , (5.26)

where
∣∣∆kP0 ∣∣ ∼ σk,eff is assumed. Combining Eq. (5.26) and Eq. (5.21a) and

recalling the asymptotic values of σz,eff , we obtain

∣∣t2 − t1 −∆D,‖
∣∣ . min

(
1,
aDl
aPl

)
× σz,eff ∼ aDl , (5.27)

regardless of whether aDl � aPl or aDl � aPl . Note that in principle it is possible

that
∣∣∆kP0 ∣∣� σk,eff , in which case the combined upper bound shown above might

be relaxed up to σz,eff ; however, this scenario is much less probable as the relevant

neutrino flux is proportional to the energy width directly translated from
∣∣∆kP0 ∣∣.
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The interpretation of Eq. (5.27) is quite simple: the condition states that the two

detection processes, with the finite spatial resolution aDl , cannot tell the neutrinos

apart along the parallel direction. Similarly, Eq. (5.21b) and Eq. (5.24b) together

set the upper bound of
∣∣∆P,‖ − t0

∣∣. With the assumption
∣∣∆kD0 ∣∣ ∼ σk,eff , we

obtain ∣∣∆P,‖ − t0
∣∣ . min

(
1,
aPl
aDl

)
× σz,eff ∼ aPl , (5.28)

regardless of whether aDl � aPl or aDl � aPl . This condition requires the two

neutrinos to be produced with a separation along the parallel direction smaller

than the production processes’ spatial resolution aPl . Therefore, the inability

to distinguish the two neutrinos by the localization of detection and production

processes is essential to the interference effect.

On the other hand, the same analysis leading to Eq. (5.27)-(5.28) can be

applied to
∣∣∆kP0 ∣∣ and

∣∣∆kD0 ∣∣ as well. By assuming the maximally allowed value

σz,eff for
∣∣t2 − t1 −∆D,‖

∣∣ and
∣∣∆P,‖ − t0

∣∣ in Eq. (5.24) as well as combining with

Eq. (5.23), the inequalities are found to be

∣∣∆kP0 ∣∣ . min

(
1,
aDl
aPl

)
× σk,eff ∼

1

2aPl
and (5.29a)

∣∣∆kD0 ∣∣ . min

(
1,
aPl
aDl

)
× σk,eff ∼

1

2aDl
, (5.29b)

regardless of whether aDl � aPl or aDl � aPl . As shown above, it is also crucial

for the interference effect that the WP states cannot be distinguished by their

momenta. In Eq. (5.27)-(5.29), the smallest (most strict) upper bound for each

quantity is presented; although these upper bounds are not required to be satisfied

all at once by the original conditions shown in shown in Eq. (5.21), (5.23), and

(5.24), they clearly indicate that the interference effect is closely tied with the

particles’ indistinguishability.

The last piece of the puzzle can be uncovered by the condition shown in

Eq. (5.25). As discussed in Sec. 4.3, the detection process finds the incoming

wave train with a momentum pointing in a direction consistent with that defined
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in a ballistic sense. In the case of pair-detection, the two neutrinos are found

to have momenta pointing in very similar directions; the perpendicular compo-

nent of the momentum difference between the two neutrinos is estimated to be

δk⊥ ≈ kD0 × ∆P,⊥/L0, where ∆P,⊥/L0 is the apparent angle of the production

process pair as seen at the detection site. The term

ξk̄P0 + (1− ξ)k̄D0 =
1

4

(
kP1D1
eff + kP2D2

eff + kP1D2
eff + kP2D1

eff

)
(5.30)

represents the arithmetic average of the four effective momenta (see Eq. (5.8) and

Eq. (5.16)) and, to a very good approximation, ξk̄P0 + (1 − ξ)k̄D0 ≈ kD1
0 ≈ kD2

0

since the momentum widths are expected to be small. Therefore, the condition

in Eq. (5.25) can be translated to

δk⊥∆D,⊥ . 1. (5.31)

Furthermore, the detection processes also find the parallel momentum difference

and spatial separation between the two neutrinos to be, respectively, δk‖ ∼
∣∣∆kD0 ∣∣

and
∣∣t2 − t1 −∆D,‖

∣∣. With Eq. (5.27), Eq. (5.29), and Eq. (5.31) squared, such

pair-detection renders the two neutrinos in a phase space volume

δ3~k × δ3~r . 1, (5.32)

where the upper bound is to be compared with the minimal phase space volume

(2π)3 occupied by a quantum particle. Although this upper bound may appear as

a poor numerical match with (2π)3 ≈ 250, the minimal phase space volume2 of

a quantum particle, the result shown in Eq. (5.32) is in fact remarkable since the

derived upper bound for the phase space volume would have been comparable to

(2π)3 had we chosen a more realistic range of a few ”σ” (⇔ ±(1 ∼ 2)× σ around

the mean value) for each of the six momentum and position intervals.

It is clear at this point that, through tedious mathematical derivation, the

Pauli exclusion principle is manifested by the interference effect in the wave me-

chanics. The HBT effect does not require any coherence between the pair of

2 The minimal volume is h3 = (2π~)3, where h is the Planck’s constant. Since ~ = 1 in
natural units, the phase space volume is (2π)3.
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production processes or between the pair of detection processes; therefore, macro-

scopic separation in time and in space between either pair is allowed as long

as the spatial and kinematical indistinguishability between the two neutrinos is

maintained and the geometrical criteria is satisfied. In the next chapter, we shall

estimate whether it is possible to observe this HBT effect for neutrinos in a prac-

tical experimental setting.



Chapter 6

Possibility of Observing Neutrino

HBT Effect

As discussed in Chap. 4, a massless neutrino WP maintains constant longitudinal

width and angular size as it propagates away from the source at the speed of

light. One can imagine that if the production rate of the source is high enough

the neutrino wave functions start to overlap among themselves and, in other words,

a ”traffic jam” of neutrinos occurs. It has been demonstrated in Chap. 5 that the

issue of indistinguishability, hence the interference effect, may arise if the pair-

detection process find the two particles in the same phase space cell. However, the

interference requires the overlap among neutrino wave functions and such overlap

is generally ignored based on the belief that the intensities of neutrino sources are

low [69, for example].

To assess the viability of observing the interference among neutrinos, we will

develop a simple model [70] to estimate the degree of overlap among WPs from

various man-made and astrophysical neutrino sources. Such model is designed

with a particular emphasis on the ”production” aspect of the problem which means

that the model only concerns the constraints from Eq. (5.28) and Eq. (5.29a) as

a preliminary assessment of the sources. From this overlap model, we will show

that a galactic SN is an interesting candidate source to observe the neutrino HBT

73
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effect from; however, further examination reveals the difficulty of observing such

effect even with a next-generation neutrino detector. Our work confirm and shed

light on the experimental difficulty as pointed out in [26].

6.1 Definition of the WP Overlap Factor

We assume a point-like source which emits neutrinos randomly at a predictable

average rate. For the remaining of the discussion, the energy Eν of a neutrino WP

will be used in place of its mean momentum k0. In addition, we will suppress the

superscript ”P” in the width parameters, aPl and aPt , associated with a production

process as this overlap model does not concern the detection of WPs. To begin,

we note that a WP mathematically extends to infinity so it is practical to define

its size based on the region where it is most likely to be found. According to

Eq. (4.27), the probability of finding the neutrino within a volume element is

|Ψfar(~r, t)|2d3~r = |Ψ1D(r, t)|2dr ×Θ(r̂)dΩ. (6.1)

We define the ”physical extent” of an evolved WP to be the the volume swept

by the fan-shaped strip, as shown in Fig. 6.1, around the neutrino’s classical

path. The radial width and the angle subtended by the fan-shaped strip are

chosen so that each of them corresponds to 95% probability according to the

radial and angular probability distributions, respectively. This way, the overall

probability of finding the neutrino in the region is approximately 90% (≈ 0.952).

The radial width is 4al as inferred from the Gaussian form after taking the modulus

square of Eq. (4.28). The angle subtended by the fan-shaped strip with respect

to the WP’s classical path are computed from both Eq. (4.32) and Eq. (4.36) as

a comparison; the former angular distribution is an exact result whereas the later

is an approximation under the assumption of sharp momentum distribution. The
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Figure 6.1: The probability density of the WP in the far-field limit at selected
times. The WP is assumed to be produced at the origin at t = 0 and propa-
gates along z direction. This plot is produced by using Eq. (4.26) and assuming
at = al = a and Eνat = 10. The fan-shaped strips enclosed between two gray
sectors correspond to the cross sections of the 90%-probability volumes at the two
indicated times. As shown by the strips, the WP maintains constant longitudinal
width 4a and asymptotically subtends a constant angle with respect to the origin
during propagation. All length and time scales are expressed in unit of a.
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angle computed from the former is determined numerically and it is denoted as

θf = P−1(0.95), where

P (θf ) ≡ 2π

∫ θf

0

S(θ) sin θdθ.
(6.2)

On the other hand, the angle from the later can be found from the analytic result

of the integration:

θ′f = P−1
approx(0.95) ≈ 1.22× (Eνat)

−1, where

Papprox(θ′f ) ≡ 2π

∫ θ′f

0

Θ(θ)× θ × dθ = 1− exp

( −θ′ 2f
2 · (2Eνat)−2

)
.

(6.3)

Both θf and θ′f are plotted as functions of Eνat in Fig. 6.2 which, as a confirmation

of our earlier results, clearly demonstrates their convergence at (Eνat)
2 � 1. The

comparison shows that the simple form of θ′f suffices to estimate the angular size

of the WP and it will be used in the following analysis.

With a well-defined volume for each WP, we can define the criteria for two

WPs to be considered as overlapping. Consider an auxiliary sphere centered at the

source and a reference WP passes through such sphere at time tref. In addition,

the center of this reference WP propagates along some direction r̂ref. If another

WP, with direction r̂ and passage time t similarly defined, were to spatially overlap

with the reference WP, two criteria must be met:

cos−1(r̂ · r̂ref) < 2θ′f and (6.4a)

|t− tref| < τ , (6.4b)

where τ = 4al according to our definition of the WP volume. These criteria are

illustrated diagrammatically in Fig. 6.3.

Next, we define a positive factor η to quantify the average number of WPs

that each WP overlaps with. Let d2Φ/dEνdΩ be the differential rate at which a

particular source gives off neutrinos and ∆E be the energy range of neutrinos of
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Figure 6.2: The angular size of a WP corresponding to 95% probability from the
angular probability distributions as functions of Eνat. The numerical result of θf
is computed assuming Eνal = 100. In the plot, θf is computed from Eq. (6.2)
where as θ′f is derived from Eq. (6.3). As discussed in Sec. 4.3, S(θ) is independent
of al if Eνal � 1.

❒

Source

Figure 6.3: Diagrammatic illustration of the overlap criteria. The gray solid
strip represents the reference WP, of which the center passes through an auxiliary
sphere plotted as the gray dashed circumference. If the other WP (shown as the
blue strip) were to overlap, its center must be within the black dotted boundary.
Note that the status of being overlapped with each other is independent of time.
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relevance. The expected number of WPs satisfying these criteria is

η ≡ d2Φ

dEνdΩ
×∆E × 2τ ×∆Ωoverlap, (6.5)

where

∆Ωoverlap = 4πθ′f
2 ≈ 6π(Eνat)

−2 (6.6)

is the solid angle covered by possible r̂ according to the criterion Eq. (6.4a). In ad-

dition to spatial overlap, their overlap in momentum space is ensured by ∆Ωoverlap

and ∆E, which respectively concern the overlap of transverse and longitudinal

momentum components. By expanding the massless energy-momentum relation

Eν = |~k| with the WP momentum distribution from Eq. (4.3), it can be shown

that the energy uncertainty of a WP,

σE =
√

(2al)−2 + (4Eνa2
t )
−2 ≈ 1

2al
, (6.7)

receives dominant contribution from the longitudinal momentum uncertainty un-

der the assumption shown in Eq. (4.18). Therefore, by choosing ∆E = 4σE = 2/al,

the overlap factor η counts the average number of neutrinos that are indistinguish-

able from the chosen reference WP. We notice that the dependence on al from τ

and from ∆E immediately cancels and the overlap factor reduces to

η ∼ d2Φ

dEνdΩ
× 96π

(Eνat)2
� 96π × d2Φ

dEνdΩ
. (6.8)

We remark that the numerical factor in Eq. (6.8) is in fact up to the exact

definition of ”overlap”, but the order of magnitude of η should nevertheless pro-

vide a clear indication of the neutrino ”traffic jam”. Also, for the reference, the

consideration of ∆E and τ in fact correspond to the HBT effect conditions shown

in Eq. (5.28) and Eq. (5.29a).

6.2 How Large Is the Initial WP?

An ab initio calculation of the initial WP size is difficult due to our limited

knowledge of the details of the production process (the same also applies to the
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detection process). The overlap factor depends on only one of the position widths,

at, as shown in Eq. (6.8). While the longitudinal width al can easily exceed the

position uncertainty of the neutrino production vertex if the temporal localization

of the process is loose [6], the transverse width at should more or less reflect the

position localization of the parent particle and other entangled daughter particles

involved in the production process. A rigorous treatment should take into account

the interaction of the involved particles with the environment as the position

widths of the neutrino simply reflect its momentum uncertainty inherited from

other involved particles. We find very limited literature on this subject and only

a recent theoretical work [71] using decoherence theory [72, 73] addresses this issue

in the context of accelerator neutrino experiment. We refrain from delving into

the determination of at as it is beyond the scope of this work. Instead, we will

leave at (or equivalently Eνat) as a free parameter in the following discussion.

6.3 Overlap Estimate for Various Sources

Based on Eq. (6.8), we perform an order-of-magnitude estimate on the overlap

factor for various neutrino sources. The estimate here can only yield the upper

bound of η since no specific assumption on the value of at is made except that

Eνat � 1.

Accelerator

In accelerator experiments, high energy protons hit a stationary target to produce

mesons which subsequently decay to produce muon neutrinos or anti-neutrinos.

Protons arrive at the target bunch by bunch, resulting in peaked structures in the

instantaneous proton-on-target (POT) rate. The mesons (mostly pions) and the

neutrinos travel at approximately the speed of light down the beamline, so, to an

observer far away, the instantaneous neutrino production rate retains similar time

structure to the instantaneous POT rate. As an example, we take the parame-

ters of the low energy configuration of the NuMI beam [74, 75] for the following
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estimate.

There are approximately 500 bunches in each NuMI spill and each spill de-

livers a total of 2 × 1013 protons. The time width of each bunch is of order 1

nsec. This corresponds to an instantaneous POT rate about 4 × 1019 POT · s−1.

The νµ charged current event spectrum (unoscillated) peaks at Eν = 3 GeV,

at which each POT results in approximately 10−3 νµ GeV−1 passing through the

near detector [74]. Neglecting neutrinos that are not intercepted by the near de-

tector for simplicity, the effective energy-differential production rate of neutrinos

is dΦ/dEν ∼ 4 × 1016 GeV−1 · s−1. We estimate ∆Ωsource to be the solid angle

subtended by the near detector with respect to the mean decay location of pions in

the decay pipe. The mean distance traveled by the pions of Lorentz factor γ ∼ 50,

which dominantly contribute to those 3 GeV neutrinos, before they decay is about

400 m. The near detector is approximately a cylinder of radius 2 m and locates at

1 km away from the upstream end of the pipe. Therefore, ∆Ωsource ∼ 10−5π. Since

the characteristic decay angle of these pions is much greater than the near detec-

tor’s angular size, the neutrino flux can be treated as uniform within ∆Ωsource.

Finally, the overlap factor is estimated to be η ∼ 0.3× (Eνat)
−2.

Fission Reactor

A reactor core is a strong and isotropic source for electron anti-neutrinos at MeV

range [76, 77]. The typical measured spectrum of ν̄e ranges from 1.8 MeV to

8 MeV with a peak at Eν = 3.6 MeV. The energy-differential production rate

dΦ/dEν decreases with neutrino energy. For a typical commercial reactor core

with 3 GW thermal power, dΦ/dEν ∼ 1020 MeV−1 · s−1 at Eν = 3.6 MeV. The

overlap factor is then η ∼ 1.6× (Eνat)
−2.

The Sun

Thermal nuclear fusion processes take place in the solar core and result in a huge

electron neutrino flux. The energy-differential rate of solar neutrino production is
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1032 MeV−1s−1 . dΦ/dEν . 1039 MeV−1s−1 in the energy range 0.1 MeV < Eν <

10 MeV [78]. The corresponding estimate for the overlap factor in the energy

range is η ∼ (1012 − 1019)× (Eνat)
−2.

Supernova

As discussed in Chap. 2, most of the gravitational energy of a SN is carried away

by neutrinos, resulting in an astonishing neutrino flux soon after the onset of

collapse. Taking a M = 20M� core-collapse SN [79] as an example, the differential

rate of ν̄e emission is of order 1052 MeV−1s−1 . dΦ/dEν . 1056 MeV−1s−1 for

4 MeV < Eν < 40 MeV at the time 0.1 s < t < 10 s after the onset of collapse.

Similar to the solar neutrino case, a huge overlap factor is obtained: η ∼ (1032 −
1036)× (Eνat)

−2.

We summarize the above estimates in Table 6.1. With the assumption of

sharp momentum distribution, we can conclude from the above estimate that the

overlap is negligible for accelerator and reactor neutrinos without knowing the

transverse width at. For astrophysical sources, on the other hand, any reasonable

guess on the value of at would conclude significant overlap. For instance, taking

at as the mean interparticle distance of order O(10−11m) estimated from the solar

core density (150 g/cm3) along with, say, Eν = 10 MeV would result in η ∼ 108.

Needless to say, the overlap among SN neutrino WPs is even more dramatic.

In addition to the overlap factor, the interference condition concerning the

source and detector sizes shown in Eq. (5.25) is also examined for each source with

Source d2Φ/dEνdΩ η(k0at)
2 L0 Eν HBT Setup

(MeV−1 s−1 sr−1) (m) (MeV) (Eq. (5.25))
accelerator 1018 0.1 106 103 No
reactor 1019 1 103–105 1 No
sun 1032–1038 1013–1019 1011 0.1–10 No
supernova 1051–1055 1032–1036 1020 10 Yes

Table 6.1: Characteristics of various neutrino sources relevant for the overlap
estimate. All numbers presented here are order-of-magnitude estimates.
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the corresponding typical detector size; the results are listed in the last column

of Table 6.1. Among the investigated neutrino sources, a galactic SN seems to be

a promising candidate source for neutrino HBT effect after having examined the

conditions Eq. (5.25), Eq. (5.28), and Eq. (5.29a) so far. The remaining question

to answer is if the relevant event rate, which involves the detection aspect of the

problem, is strong enough to allow experimenters to observe the anti-bunching of

events.

6.4 HBT Effect for Supernova Neutrinos?

In our local galaxy, about three core-collapse SN events at an average distance

10 kpc from the Earth are expected every century [80]. At such distance, the

condition Eq. (5.25) is satisfied by the typical proto-neutron star radius ∆P,⊥ ∼
10 km, Eν ∼ 10 MeV, and a megaton water Cherenkov detector size of order

∆D,⊥ ∼ 100 m such as the one planned in the Hyper-Kamiokande experiment [81]

to be operated in the near future. Optimistically, such galactic SN event would

result in up to ∼ 106 events in the megaton detector. Most of these events would

be observed during the first few seconds and over an energy range ∼ 10 MeV.

Therefore, an optimal estimate on the energy-differential event rate is

d2N

dEνdt
∼ 106

10 MeV · 1 sec
∼ 10−16, (6.9)

where we express the differential rate in a dimensionless form (~ ≈ 6.6 × 10−22

MeV· sec) and assume that the rate is constant over time and energy for simplic-

ity. Without any interference effect, the observed events simply follow Poisson

distribution. With the interference effect, however, the probability of observing

two events close in time and in energy decreases compared to that expected by

Poisson statistics.

We recall the conditions associated with the detection process for the interfer-

ence effect shown in Eq.(5.27) and Eq. (5.29b). The former condition is equivalent
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to

t1 + ∆D,‖ − aDl . t2 . t1 + ∆D,‖ + aDl , (6.10)

which suggests an interference time window of width ∼ aDl . This time window is

actually shifted with ∆D,‖ but, nonetheless, the width is independent of ∆D,‖. The

later condition, on the other hand, suggests an energy interval of width ∼ 1/aDl .

Given a detected event, a time interval1 as well as an energy interval surrounding

that event can be defined. If Poisson statistics were the case, a small but nonzero

number of events is predicted to be found in that 2D time-energy interval whereas,

if there is an interference effect, no events will be found. With Poisson statistics,

one expects to find a number

d2N

dEνdt
× δEν × δt ∼ 10−16 (6.11)

of events in the time-energy interval corresponding to each detected event. Since

there are ∼ 106 detected events, the expected number of to-be-correlated pair is

106×10−16 = 10−10. Even with the knowledge of the value of aDl (such that a well

defined time window can be used to search for correlated events) and with perfect

time and energy resolution of the detector, there is obviously no experimental

sensitivity to the interference effect. Due to the weakly interacting nature of

neutrinos, as remarked in [26], the observation of the neutrino HBT effect would

require a fundamental paradigm shift of how neutrinos are detected.

1 Strictly speaking, it should be a set of time intervals corresponding to the location in the
detector where the correlated event is searched.



Chapter 7

Conclusion

In the first part of this thesis (Chap. 2 and Chap. 3), we find that the rapid

cooling of the PNS prescribed by the newly implemented convection treatment in

the 1D hydrodynamic simulation of [30] does not agree well with the SN1987A

data, particularly with the events K10-K12 in the KAM-II data set (see Table 3.1

and Table 3.2). Given the rather limited statistics of the SN1987A data, a few

plausible explanations are as follows:

1. A relatively less probable outcome had been measured by chance by the

KAM-II experiment during the SN1987A neutrino burst. The state-of-the-

art 1D simulations of PNS cooling accurately predict the neutrino luminosi-

ties.

2. The KAM-II data set was a statistically probable outcome. The 1D simu-

lations mischaracterize the cooling rate of the PNS such that the predicted

neutrino luminosities fall off early. Model adjustments are necessary to slow

down the cooling.

3. The KAM-II data set was a statistically probable outcome and the 1D simu-

lations accurately characterize the PNS cooling. However, these simulations

neglect fallback materials which contributed to additional neutrino luminos-

ity observed by the KAM-II experiment.

84
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As the current 1D SN simulations are still subject to theoretical and modeling

uncertainties, the implications we derive from the SN1987A data in light of the

latest simulation models can provide valuable inputs to future research.

In the second part of thesis (Chap. 4 - Chap. 6), we discuss the quantum

mechanical aspect of neutrino detection. With the solution of the 3D Gaussian

WP, namely Eq. (4.26), we elaborate on the concept of wave-particle duality in

3D space. Applying this concept to the detection of such WP at a distance far

away from the source, we derive the transition amplitude, Eq. (5.6), which reflects

approximate conservation of momentum and causality. This transition amplitude

is subsequently applied to calculating the interference term in the joint-detection

probability as shown in Eq. (5.19). We analyze the conditions for observing the

interference effect known as the HBT effect. We find that an observable inter-

ference requires the joint-detection to render the two particles in the same phase

space cell and that such effect does not require any coherence between the two

production processes or between the two detection processes. After all, the inter-

ference effect simply reflects the exchange symmetry of fundamental particles. In

the last chapter, we explore the possibility of observing such interference effect in

neutrino experiments and reach a conclusion that it is extremely difficult, if not

impossible, to observe such effect in practical experimental settings.
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Appendix A

Conditional Distribution of

Poisson Variables

We summarize some properties of Poisson variables and show that a set of Poisson

variables will follow multinomial distribution under the condition that their sum

is fixed. Let upper case X be a Poisson variable, lower case x ∈ {0, 1, 2, . . . } be

its outcome, and λ = E[X] be the expectation value. The probability of getting

a particular outcome x is governed by Poisson distribution

Pr(X = x) =
λx exp(−λ)

x!
, (A.1)

which satisfies the normalization condition
∑∞

x=0 Pr(X = x) = 1.

An important property is that the sum of two Poisson variables is also a

Poisson variable. Let us use subscript i ∈ {1, 2} to differentiate between two

Poisson variables and define the third random variable Y ≡ X1 + X2 to denote

their sum. The probability of getting a particular outcome y ∈ {0, 1, 2 . . . } is then
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Pr(Y = y) =
∞∑

x1=0

∞∑
x2=0

λx11 exp(−λ1)

x1!
× λx22 exp(−λ2)

x2!
× δy,(x1+x2)

= exp {−(λ1 + λ2)}
y∑

x1=0

λx11

x1!
× λy−x12

(y − x1)!

=
exp {−(λ1 + λ2)}

y!

y∑
x1=0

y!

x1!(y − x1)!
× λx11 λ

y−x1
2

=
(λ1 + λ2)y exp {−(λ1 + λ2)}

y!
,

(A.2)

which clearly shows that Y is a Poisson variable with expectation value λ1 + λ2.

This, of course, can be generalized to the sum of an arbitrarily number of Poisson

variables.

Now suppose we have k Poisson variables and recall the conditional probability

formula, P (A
∣∣B) = P (A ∩ B)/P (B). Under the condition that their sum is a

fixed number n, the probability mass function of these k Poisson variables can be

deduced to be a multinomial distribution

Pr

(
X1 = x1, X2 = x2, . . .

∣∣∣ k∑
i=1

xi = n

)

=
Pr (X1 = x1, X2 = x2, . . . )× δn,(x1+x2+···+xk)

Pr
(∑k

i=1 xi = n
)

= δn,(x1+x2+···+xk) ×

(
k∏
i=1

λxii exp(−λi)
xi!

)/(λnsum exp(−λsum)

n!

)

= δn,(x1+x2+···+xk) × n!×
k∏
i=1

(
λi
/
λsum

)xi
xi!

= δn,(x1+x2+···+xk) × n!×
k∏
i=1

pxii
xi!

,

(A.3)

where λsum ≡
∑k

i=1 λi and pi ≡ λi/λsum.



Appendix B

Monte Carlo Confidence Intervals

The procedure of obtaining the confidence intervals shown in Fig. 3.7 is described

as follows. We first assume that the observed SN1987A events were a statistically

probable outcome so that the best fit parameters are a good approximation to the

true parameters when we use a Monte Carlo simulation to sample fake data sets.

In each iteration of such Monte Carlo simulation, the number of events in each

detector as well as the event energies are allowed to fluctuate according to the rel-

evant probability distribution functions. There is a small yet non-negligible prob-

ability, 5% (13.5%) with the best fit parameters found from using the three (two)

late-time KAM-II events, that no events are sampled for both detectors in an iter-

ation and such instances will be neglected. With each fake data set that contains

at least one sampled event, the combined likelihood function Lfake data
combined(Iν̄e , Tν) is

maximized to find the ”best fit” point which is then plotted as one gray dot in

Fig. 3.7. The distribution of the gray dots then suggests the uncertainty in the

fitted parameters one would observe from repeating the same experiment.

The streak-like structures of the gray dots are due to the fact that the num-

ber of sampled events is discretized; the streaks closely follow the trajectories that

predict integral numbers of events in KAM-II detector in the region where the pre-

dicted number of events for IMB is much less than 1. The streaks apparently do

not suggest a smooth probability distribution function of the parameters as would
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be expected in typical parameter estimation analyses. However, imagine that,

if the detector masses were continuously varied, the streaks as well as the total

event contours (red and green dashed contours in Fig. 3.7) would have continu-

ously swept across the parameter space. This means that the physical parameters

should not be restricted to discretized possibilities resulting from low statistics.

Therefore, we construct the 68.3% (1σ) and 95.4% (2σ) confidence intervals by

choosing ∆ such that the contours defined by

logL1987A
combined(Iν̄e , Tν) = logL1987A

combined,max −∆ (B.1)

enclose the corresponding percentage of the gray dots. To ensure good convergence

of the enclosure probability, 105 iterations are performed in the Monte Carlo

simulation. For the analysis with the three (two) KAM-II events, ∆1σ = 1.26

(0.93) and ∆2σ = 4.00 (3.58). We remark that these values are somewhat different

from those derived based on asymptotic normality of the log-likelihood function

which is, of course, invalid in this case.



Appendix C

The Paraxial Solution

The paraxial solution [82, e.g.] is a solution that describes a laser beam with a

transverse Gaussian distribution at the beam waist. It is an approximate solution

to the wave equation (
−∂2

t +∇2
)

Ψ(~r, t) = 0. (C.1)

We summarize the derivation of this solution and discuss its criteria here. Suppose

we were to find an energy eigenstate allowed by the wave equation and we assume

that the spatial and temporal dependence of the desired solution are separable.

Plugging

Ψ(~r, t) = Φ(~r)T (t) (C.2)

in the wave equation leads to

1

T (t)

d2T (t)

dt2
=

1

Φ(~r)
∇2Φ(~r) = constant, (C.3)

where the constant is conventionally defined to be −k2. The wave number k is

equivalent to momentum in natural units. Eq. (C.3) contains two independent

equations; one involves only the time variable and the other only the position

variables. The spatial equation, known as the Helmholtz equation, requires a spe-

cific boundary condition to be specified before a solution can be determined. For

instance, plane waves ei
~k·~r and spherical waves eikr/r are solutions with different
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boundary conditions. The paraxial solution is derived by imposing a transverse

Gaussian profile at the beam waist plane which will be defined as z = 0.

By assuming that the spatial part of the wave function takes the form

Φ(~r) = φ(~r) eikz (C.4)

and that the z-derivative of the envelop function φ(~r) varies insignificantly over

the distance of a wavelength along the z-direction, i.e.∣∣∣∣∂2

∂z
φ(~r)

∣∣∣∣� ∣∣∣∣k ∂∂zφ(~r)

∣∣∣∣, (C.5)

the Helmholtz equation reduces to the paraxial wave equation(
∇2
⊥ + 2ik

∂

∂z

)
φ(~r) ≈ 0. (C.6)

Moreover, we plug in the above equation an ansatz solution

φ(~r) ∝ exp
[
p(z) + ρ2q(z)

]
, (C.7)

where ρ ≡
√
x2 + y2 and p(z) and q(z) are two complex-valued parameterization

functions, and then impose the boundary condition φ(~r) ∝ exp (−ρ2/4a2
t ) at z = 0.

It follows that p(z) and q(z) can be solved from Eq. (C.6). Then, one finds that

Eq. (C.6) has a solution

φ(~r) =
A

σt(t)
exp

{
− ρ2

4σt(z)2
+ i

[
kρ2

2R(z)
− ζ(z)

]}
, (C.8)

where A is a normalization constant, LR ≡ 2ka2
t is the Rayleigh range, σt(z) ≡

at
√

1 + z2/L2
R, R(z) ≡ z (1 + L2

R/z
2), and ζ(z) ≡ tan−1(z/LR). Combining with

the time-dependent part T (t) = exp (−ikt), we obtain the approximate solution

shown in Eq. (4.10). The real part of Φ(~r) is plotted in Fig. C.1, from which it can

be seen that the solution behaves as a plane wave at z � LR and as a spherical

wave at z � LR.

The paraxial approximation shown in Eq. (C.5) is made in simplifying the

Helmholtz equation and here we examine the criteria of the approximation. By
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directly computing ∂2
zφ(~r) and ∂zφ(~r) in terms of the dimensionless variables,

z̃ ≡ z/LR and

ρ̃ ≡ ρ/at,
(C.9)

we find

∂φ(~r)

∂z
=

φ(~r)

LR(1 + z̃)2

{
−z̃
(

1 + z̃2 − 1

2
ρ̃2

)
+ i

[
1

4

(
1 + z̃2

)
ρ̃2 − 1

]}
(C.10)

and

∂2φ(~r)

∂z2
=

φ(~r)

L2
R(1 + z̃)2

{[
−z̃ +

z̃ρ̃2

2(1 + z̃2)
+ i

(
ρ̃2(1− z̃2)

4(1 + z̃2)
− 1

)]2

+ 1− z̃2

+
ρ̃2

2
− 2z̃2ρ̃2

1− z̃2
+ i

[
ρ̃2

2z̃

(
(1− z̃2)2

1 + z̃2
− 1

)
− 2z̃

]}
.

(C.11)

We then examine the approximation, Eq. (C.5), in the following regions on the

first quadrant of the 2D plane of ρ̃ and z̃ (the same results can be applied to the

other three quadrants).

1. ρ̃ . 1 and z̃ . 1:

The moduli of the terms enclosed within the curly brackets in Eq. (C.10)

and Eq. (C.11) are of order O(1). Therefore the approximation requires

L−1
R � k or, equivalently, (kat)

2 � 1.

2. z̃ ∼ ρ̃� 1: The terms within the curly brackets in Eq. (C.10) and Eq. (C.11)

are dominated by the one with the highest combined order of z̃ and ρ̃. Both

sets of curly brackets are dominated by the fourth order terms so they are

of the same order of magnitude. By the same argument as in region 1, the

approximation requires (kat)
2 � 1.

3. z̃ � ρ̃ and z̃ � 1:

If z̃ � ρ̃ � 1, |∂zφ| ∼ |φL−1
R (1 + z̃)−2 × max (z̃3, z̃2ρ̃2) | and |∂2

zφ| ∼
|φL−2

R (1 + z̃)−2 × max (z̃ρ̃2, ρ̃4) |. Regardless of whether z̃ is greater than
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ρ̃2, the approximation requires kat � 0. If z̃ � 1 & ρ̃, Eq. (C.10) and

Eq. (C.11) are dominated by the term with highest order in z̃. It is then

straightforward to conclude that the approximation requires kat � 0 as

well.

4. ρ̃� z̃ and ρ̃� 1:

Following similar reasoning to that for region 3, it can be shown that the

approximation requires (kat)
2 � ρ̃2/z̃2 if ρ̃ � z̃ � 1 and (kat)

2 � ρ̃2

if ρ̃ � 1 & z̃. Since ρ̃ is a variable, the approximation is not valid in

this region. However, φ(~r) is exponentially suppressed in this region and

thus ∂2
zφ(~r), which is proportional to φ(~r), can be safely neglected from the

Helmholtz equation.

In conclusion, the paraxial approximation |∂2
zφ(~r)| � |k∂zφ(~r)| requires

(kat)
2 � 1. (C.12)
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Figure C.1: The real part of Φ(~r) assuming k0at = 5 and arbitrary A. The
longitudinal and transverse coordinates are scaled by LR and at, respectively. At
z � LR, the transverse width increases linearly with z.



Appendix D

Length Approximation for the

HBT Effect

We begin by defining the average production-detection separation vector

~L0 ≡
1

2
(
−−−→
P1D1 +

−−−→
P2D2) =

1

2
(
−−−→
P1D2 +

−−−→
P2D1) (D.1)

along with two separation vectors for the pairs of production and detection pro-

cesses

~∆P ≡
−−→
P1P2

~∆D ≡
−−−→
D1D2.

(D.2)

The second equality of Eq. (D.1) can be obtained by adding ~∆P to one vector

and subtract ~∆P from the other (alternatively, ~∆D can be used). Then the four

separation vectors shown in Fig. 5.1 can be expressed as

−−−→
P1D1 = ~L0 +

1

2
~∆P −

1

2
~∆D

−−−→
P1D2 = ~L0 +

1

2
~∆P +

1

2
~∆D

−−−→
P2D1 = ~L0 −

1

2
~∆P −

1

2
~∆D

−−−→
P2D2 = ~L0 −

1

2
~∆P +

1

2
~∆D,

(D.3)
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which allow the expansion of each distance up to a desired order of ∆/L0.

As these distances are related to the quantum phase relevant for the HBT

effect, the error resulting from such expansion should not exceed the de Broglie

wavelength. From hindsight, the only conceivable candidate source to observe

neutrino HBT effect from is a galactic core-collapse supernova (L0 ∼ 1020 m). The

typcial supernova neutrinos momentum is of order 10 MeV which corresponds to

a de Broglie wavelength of order λdB ∼ 10 fm. As the size of proto-neutron star

(∼ 10 km) dominates the size of a supernova neutrino detector, we deduce that

the factor max(∆P ,∆D)/L0 ∼ 10−16. The second order terms of such expansion

corresponds to an order of magnitude 10−12 m (� λdB) whereas the third order

terms are about 10−28 m � λdB. Therefore, the following length approximations

will be up to second order.

The length of each vector can be expressed explicitly with ~L0, ~∆P , and ~∆D

according to Eq. (D.3). For instance,

L11 =
∣∣∣−−−→P1D1

∣∣∣
= L0

[
1 +

(
L̂0 · ∆̂P

) ∆P

L0

−
(
L̂0 · ∆̂D

) ∆D

L0

+
1

4L2
0

(
~∆P − ~∆D

)2
] 1

2

,
(D.4)

which can be expanded using
√

1 + ε = 1 + ε/2− ε2/8 +O(ε3). By keeping terms

only up to second order in ∆/L0, Eq. (D.4) can be approximated as

L11 = L0

{
1 +

(
L̂0 · ∆̂P

) ∆P

2L0

−
(
L̂0 · ∆̂D

) ∆D

2L0

+
(
~∆P − ~∆P

)2 1

8L2
0

−
(
L̂0 · ∆̂P

)2 ∆2
P

8L2
0

−
(
L̂0 · ∆̂D

)2 ∆2
D

8L2
0

+
(
L̂0 · ∆̂P

)(
L̂0 · ∆̂D

) ∆P∆D

4L2
0

+O
(

∆3

L3
0

)}
.

(D.5)

Similar approximations can be made to the other three distances. With patience,
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one finds

L11 + L22 − L21 − L12 ≈ −
1

L0

[
~∆P · ~∆D −

(
~∆P · L̂0

)(
~∆D · L̂0

)]
= −

~∆P,⊥ · ~∆D,⊥

L0

L11 − L22 + L21 − L12 ≈ −2~∆D · L̂0 = −2∆D,‖

L11 − L22 − L21 + L12 ≈ 2~∆P · L̂0 = 2∆P,‖,

(D.6)

where the decomposition ~∆ = ~∆‖ + ~∆⊥ is defined with respect to L̂0.
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