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Abstract 

We study the correspondence between certain supersymmetric gauge theories and 

their dual supergravity descriptions. Using low-energy brane probes of the super-

gravity geometries we find moduli spaces of vacua, as expected from considering the 

dual gauge theories. The metrics on these spaces can be put into a form consistent 

with field theory expectations. This provides a non-trivial check on the supergravity 

solutions, in addition to strong-coupling predictions for the gauge theories. 

In the case of M = 2 supersymmetric gauge theory, proposed supergravity duals 

have previously been shown, using brane probe techniques, to display the 'enhangon 

mechanism'. In particular, the supergravity geometries correctly reproduce the per-

turbative behaviour of the gauge theory. We calculate exact non-perturbative results 

at low-energies using the method of Seiberg & Witten. These correctly reproduce 

the perturbative results in the supergravity limit, but also make predictions for when 

the supergravity approximation is not valid. 

Finally, we study the Penrose limit of a geometry that is dual to a known J\f = 1 

superconformal gauge theory. The resulting spacetime is a new plane-wave solu­

tion with constant three-form fluxes. We quantize type I IB superstrings on this 

background using the Green-Schwarz formalism. We find the spectrum of string 

excitations and discover that it is particularly simple, due to the specific form of 

the plane-wave background. Using the gauge theory/gravity duality, we make pre­

dictions (beyond the supergravity approximation) for gauge theory quantities in the 

corresponding limit. 
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Chapter 1 

Introduction and Review of 

Background Material 

1.1 Introduction 

Through the standard model, gauge theories currently form the basis of our under­

standing of particle physics1. Most calculations are based on perturbative techniques 

where the gauge coupling is required to be small. For instance, since QCD is asymp­

totically free at high energies, perturbation theory can be used in that regime to 

make very accurate predictions. However at low energies the coupling is strong and 

we are hampered by the need to use non-perturbative methods. 

Although the standard model has been incredibly successful at describing the 

interactions we observe in particle colliders, it is somewhat incomplete. The choice 

of gauge group, particle content and couplings is not predicted (although there 

are restrictions) and must be chosen using experimental data. One might hope 

that a truly fundamental theory would explain, for instance, why there are three 

generations of quarks and leptons. There are other limitations, in particular the 

standard model does not include gravity. In order to understand the universe at 

the very high energies and large spacetime curvatures that we believe occurred in 

the early universe, we will need a quantum theory of gravity that reduces to general 

^ee, for example, [4-6]. 
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relativity at low energies. 

String theory is believed to be a consistent theory of quantum gravity. I t also 

naturally gives rise to gauge theories. For these reasons, and many others, string 

theory is being studied intensively to try to understand whether i t can go beyond 

the standard model and correctly describe our universe. 

The central theme of this thesis is how string theory can be used to understand 

strongly-coupled gauge theories, and vice versa. To be more specific, we will mainly 

be concerned with supersymmetric field theories because they naturally appear in 

string theory. Furthermore, some of their non-perturbative behaviour can be often 

deduced exactly. 

The AdS-CFT correspondence [7-9] (and its generalizations) has been central to 

much of the recent progress in non-perturbative field theory and string theory. It 

gives a precise way to make non-perturbative field theory calculations using string 

theory and will form the basis of much of the material presented here. 

In this introductory chapter we first discuss the field content and properties 

of various four-dimensional supersymmetric field theories. We will then introduce 

string theories and describe how gauge theories appear from the dynamics of objects 

called 'D-branes'. Finally, we briefly review the AdS-CFT correspondence and its 

derivation using D-branes. 

In chapter 2 we will study various proposed gravity duals of gauge theories using 

the low-energy dynamics of a probe D-brane in the supergravity geometry. We 

first describe the general probe technique, before studying a specific supergravity 

solution which has been proposed to be dual to a deformation of M — 4 super-

Yang-Mills theory that preserves N = 1 supersymmetry. We find that the result of 

the probe calculation can be interpreted in terms of the gauge theory and make a 

strong-coupling prediction for the metric on moduli space. We then apply the probe 

technique to other supergravity duals of supersymmetric theories and find that the 

results match field theory expectations. We conclude the chapter with a summary 

of our results and mention some possible avenues for future investigation. 

In chapter 3 we start by reviewing the 'enhangon mechanism' and supergravity 

solutions that attempt to encapsulate some of the physics of N = 2 gauge theory. We 
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then calculate exact, non-perturbative results for the gauge theory at low energies 

and compare them to those derived using perturbative methods and the proposed 

supergravity duals. We summarize by comparing our results to those in the existing 

literature and identify some possibilities for how the work presented here could be 

extended and applied. 

In chapter 4 we study string quantization on non-trivial 'plane-wave' backgrounds 

and relate the results to a special l imit of the corresponding dual gauge theories. We 

start by reviewing the maximally-supersymmetric plane-wave solution of type I IB 

supergravity and how it can be obtained as a limit of AdSs x S5. We also review the 

quantization of strings on this background and how this has provided new predictions 

for J\f = 4 gauge theory beyond the supergravity approximation. We then apply 

similar methods to the supergravity dual of an Af — 1 superconformal field theory 

studied in chapter 2. We find a new plane-wave solution of type I IB supergravity 

by taking a limit of the supergravity dual. The spectrum of string excitations on 

this background is calculated and found to be of a special form. We then attempt 

to match some of the string excitations to operators in the corresponding limit of 

the gauge theory. Finally, we present the plane-wave limit of a supergravity solution 

dual to a renormalization group flow and make some conclusions on our results. The 

appendices contain some reference material and an original observation based on the 

work in chapter 4. 

1.2 Four-dimensional globally supersymmetric field 

theories 

In this section we will review some basic facts about four-dimensional field theories 

that have supersymmetry2. These theories will be the main focus of this thesis and 

we will need to understand some of the restrictions that supersymmetry puts on a 

quantum field theory in terms of its field content and its dynamics. 

Supersymmetry is an extension of the Poincare spacetime symmetry algebra to 

2Some books, reviews and lecture notes are [10-18]. 
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include anticommuting spinorial generators. Part of its importance lies in the fact 

that, under some reasonable assumptions, it is the only possible extension of the 

known spacetime symmetries of particle physics [17,19,20]. Supersymmetric field 

theories, as we shall see, appear naturally in superstring theories. Furthermore, the 

restrictions put on quantum field theories by supersymmetry can allow one to make 

powerful statements about their strong-coupling behaviour and have been key to 

much of the recent progress made in understanding non-perturbative field theory 

and string theory. 

The four-dimensional supersymmetry algebra (with central charges) includes the 

following anti-commutation relations: 

The Q£ are spinor supercharges with A = 1 , . . . , J\f and their adjoints are ( Q f f l = 

Pfj, = idfj, is the generator of spacetime translations and the are 2x2 matrices 

defined in terms of the the Pauli matrices: crM = (1, <?). The Z A B are Lorentz scalars 

which commute with all the generators of the algebra — they are called central 

charges. Since they are antisymmetric in A and B, they vanish for J\[ = 1. 

I t is also possible for the M = 1 supersymmetry algebra to be invariant under a 

global U(1)R rotation of the supercharges called an R-symmetry. If this is generated 

by R, one can take 

[Qa,R] = Q«, [Q«,R] = -Qa- (1-2) 

This particular global symmetry is special because any other global symmetry must 

commute with the supersymmetry generators. For extended supersymmetry (i.e. 

N > 1) the R-symmetry group can be larger. However, one should note that the R-

symmetry is not part of the supersymmetry algebra. One can have supersymmetric 

theories with no R-symmetry or theories with an R-symmetry that is broken by a 

quantum anomaly. 

1.2.1 Field contents of supersymmetric field theories 

A direct conseqence of requiring that a theory have supersymmetry is that particles 

of different spin (or helicity) fall into particle supermultiplets. The supersymmetry 
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generators relate a bosonic field to a fermionic superpartner, and vice versa. In 

particular the number of bosonic degrees of freedom match the number of fermionic 

ones. Furthermore, i f a state is charged under a global symmetry that commutes 

with supersymmetry then its superpartner will have the same charge. In the case of 

R-symmetries, states in the same supermultiplet have different R-charges. 

In the following we shall state the supermultiplets that will arise in our study of 

gauge theories3. These all have particles with spins or helicities less than or equal 

to one. 

Massless multiplets 

First we shall study some massless representations. The basic idea in this case is to 

choose a frame where the four-momentum is = (E, 0,0, E). Then (1.1) becomes 

{QtQpB}=\ I si, (i.3) 
AE 0 

0 0 

so that since the operators act on positive-definite Hilbert space, we have that 

Q2 — 0. Furthermore, one can show that the central charges vanish. This leaves Qi 4 

which lowers the helicity of a state by | , and Qf which raises helicity by | . Therefore, 

we can use the supercharges as creation and annihilation operators. Starting on a 

state of lowest helicity one can find all 2^ states in the multiplet by acting with the 

Qi-
So in the case of M = 1 supersymmetry, starting with a helicity-zero state one 

obtains a state with helicity equal to | . In order for the theory to be CPT-invariant 

we require that the spectrum should be symmetric in helicities. Therefore, we add 

its CPT conjugate to obtain a multiplet with states of helicity (~, 0, 0, — | ) . This is 

the massless chiral multiplet, which is listed along with other massless multiplets4 

3 For more details see, for instance, [10]. 
4 One might have expected that the Af = 2 multiplet one obtains by acting on a state of 

(lowest) helicity ^ | would form a multiplet with helicities (—1,0,0, | ) . In fact, because of the 

way supersymmetry acts on quantum fields (rather than single particle states) the hypermultiplet 

must have eight degrees of freedom rather than four [17] (see table 1.1). One might also wonder 

why there is no Af = 3 multiplet listed. One finds that upon requiring CPT-invariance, the Af = 3 
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in table 1.1. 

Helicity N = 1 N = 2 Af = 4 

Chiral Gauge Hyper- Gauge Gauge 

1 0 1 0 1 1 
I 
2 1 1 2 2 4 

0 2 0 4 2 6 
1 
2 1 1 2 2 4 

- 1 0 1 0 1 1 

Table 1.1: The content of some massless supersymmetric multiplets. The entries 

indicate the number of states with a given helicity in the multiplet. 

Since states with helicity one correspond to gauge fields, the 'gauge' multiplets 

transform in the adjoint representation of the gauge group (since gauge fields do). 

In a supersymmetric gauge theory, the chiral multiplet and the hypermultiplet can 

act as 'matter' multiplets and can transform in an arbitrary representation of the 

gauge group. 

From the table i t is clear how the Af = 2,4 multiplets decompose under an 

M = 1 subalgebra. The hypermultiplet decomposes into two chiral multiplets in 

complex-conjugate representations of the gauge group (see e.g. [12,13,17]) whereas 

the Af = 2 gauge multiplet is the sum of an M = 1 gauge multiplet plus a chiral 

multiplet in the adjoint representation of the gauge group. Similarly, the J\f = 4 

gauge multiplet decomposes into an M = 2 gauge multiplet plus a hypermultiplet 

in the adjoint representation of the gauge group. 

Massive multiplets 

Having seen the massless multiplets, we can now consider the massive multiplets. 

One finds that generically there are 22J^ creation operators, that come in spin dou­

blets. Acting on (2j + 1) states that make up a representation with spin j, one 

multiplet is exactly the same as the one for M = 4. 
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obtains a multiplet with 22J^(2j + 1) states. (One can work out the spins of the 

states using the usual angular momentum addition rules.) 

However, for Af > 1 there is the possibility of short multiplets. Let us consider 

the case of A/" = 2. Here, we can have a non-vanishing central charge Z. Using 

the supersymmetry algebra, it is possible to show that for a massive multiplet with 

mass M one must have5 

M>\Z\. (1.4) 

For M > \Z\ there are 2 2 A r = 16 operators as discussed above. However, in the 

case of multiplets with M = Z (so-called BPS-saturated states), there are only 

2M = 4 operators so that the multiplet only has 4(2j + 1) states. These multiplets 

are of importance in supersymmetric theories because their masses are fixed by 

their central charges. This is a consequence of the spacetime supersymmetry and 

is not modified by quantum corrections (although the central charges may receive 

quantum corrections themselves). In order for the equality not to hold, the states 

would have to no longer be in a short representation and it is not expected that 

quantum corrections could generate the extra degrees of freedom needed to f i l l out a 

long multiplet. Therefore, this can often allow one to extend results deduced at weak 

coupling to the strong-coupling regime6 [23]. Some examples of massive multiplets 

are given in table 1.2. 

The massive gauge multiplets in table 1.2 can be understood in terms of the Higgs 

mechanism [4-6] (assuming that supersymmetry remains unbroken). For instance, 

a gauge field in a massless M = 1 multiplet can 'eat' a scalar in a massless chiral 

multiplet and become a massive spin 1 field in an J\f = 1 massive gauge multiplet. 

Exactly the same thing can happen when an M = 2 massless vector plus an J\f = 

2 massless hypermultiplet combine to form an J\f = 2 massive gauge multiplet. 

However, an M = 2 massless vector multiplet itself contains a scalar field, and so 

there is the possibility that the vector can eat this scalar. In this case, by counting 

5 This is often referred to as the BPS bound because of its relationship to BPS monopoles (see 

chapter 3). 
6However, there are subtleties that allow the strong-coupling BPS spectrum of a theory to differ 

from the BPS spectrum at weak coupling [21,22]. 
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Spin irrep. M = 1 M = 2 Af = 4 

(No. of states) Chiral Gauge Gauge BPS Hyper- BPS Gauge BPS Gauge 

1 0(0) 1(3) 1(3) 0(0) 1(3) 1(3) 
I 
2 1(2) 2(4) 4(8) 2(4) 2(4) 4(8) 

0 2(2) 1(1) 5(5) 4(8) 1(1) 5(5) 

Table 1.2: The content of some massive supersymmetric multiplets. The first entry 

indicates the number of a particular spin irrep. in a multiplet. The second (in 

brackets) indicates the corresponding number of states. 

states one can see that the Higgs mechanism must result in an A/* = 2 BPS multiplet. 

Similarly, in the case of the N = 4 massless gauge multiplet the Higgs mechanism 

must result in the BPS massive gauge multiplet 7. 

1.2.2 M = 1 supersymmetric field theories 

In order to construct Lagrangians that are supersymmetric, i t is very useful to 

introduce the notion of superspace. This is an extension of the normal Minkowski 

space that we are familar with, that allows one to write down superfields (which 

contain all the component fields that make up a supermultiplet) on which the action 

of supersymmetry is realized linearly. The basic idea is to construct composite 

superfields out of ones containing the elementary fields one wishes to consider, and 

then write down actions that are automatically supersymmetric. Here we shall only 

consider N = 1 superspace (although one can also consider J\f = 2 superspace) and 

shall follow [11,13]. 

Superspace is defined by introducing spin-| Grassmann coordinates 9a and 9a = 

(0aY, where a,a= 1,2. They satisfy 

[x»,oa] = {ea,e0} = {ea,8*} = {8*,$} = o, (1.5) 

and the spinor indices can be raised and lowered using the e-tensor (for notation and 

conventions see, for example, [10]). As usual, Grassmann differention and integration 

7 The generic M = 4 massive multiplet will contain massive spin-2 particles. 
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are defined to be identical: 

d 
d9a 

d 

= J d9a90 EE 8i, 

- { ! ) = J d9*(l) = 0, 
39' 

4 - 9 ? = [ d9a¥ = 0. (1.6) 
d9a J K ' 

Given this, we can now take the supersyrnmetry transformations to be 

a;" —+ x,fl = x(1 + i9a'1Z-i(afl9, 

9 —> 9' = 9 + £, 

8 —> 9'= 9 + 1 (1.7) 

which are generated by £Q<2Q + £ d 0 Q given by 

Q« = <9Q - i a ^ f y , Q& = -da + i9aa^dll. (1.8) 

These then satisfy the correct relation, {Qa,Qa} = ^aaa^- Although these gener­

ators commute with the momentum operator, PM = id^, they do not commute with 

the other superspace derivatives, da and da- Therefore, it is convenient to introduce 

the following super-covariant derivatives: 

Da = da + l a ^ d , , Da = -da - (1.9) 

which do commute with Q and Q. 

A superfield is defined to be an analytic function on superspace. Because the 

^-coordinates are Grassmann, the Taylor expansion of a superfield in terms of the 9 

is quite simple: 

S(x, 9,9) = <f>(x) + 9I/J(X) + 6~x(x) + 9^9 A^x) + 99f{x) + 99g*{x) 

+i999X{x) - i999p{x) + ^9999D(x). (1.10) 

A superfield can be bosonic or fermionic. For instance, if it is bosonic then 4>, A^, f,g 

and D will be bosonic fields while the other components are fermionic fields. The 

supersymmetry generators act on S by 

5tS=(£Q + tQ)S. (1.11) 
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Now, from the form of the supersymmetry generators one can see that the variation 

of the highest component in the superfield, D, is a total derivative of the other 

components. Therefore, the space-time integral of this component is invariant under 

supersymmetry (if we ignore surface terms), and can be used as a possible action 

for a supersymmetric theory 

= \D = J d29d29S. (1.12) 

In general, a superfield (1.10) is in a reducible representation of M = 1 super-

symmetry. In order to describe the multiplets above, i t is very useful to impose 

conditions on superfields so that they describe chiral and vector multiplets. 

Chiral superfields 

A chiral superfield $ is defined to be a superfield that satisfies 

D&$ = 0. (1.13) 

(An anti-chiral superfield, is defined by DA& = 0.) Since D anti-commutes 

with the supersymmetry generators, this condition is invariant under supersymmetry 

transformations. I f we let = x11 + iOa^O, and notice that 

D ^ = 0, 0*0* = 0, (1.14) 

then any function of y and 9 is a chiral superfield (and vice versa). In these variables, 

a chiral superfield $(y, 9) can be expanded as 

${y,0) = A(y) + V29^(y) + 99F(y), (1.15) 

which gives 

$(x, 9,0) = A + i9o>x9dtlA - -9292UA + V294> - -^B^d^aH + 92F. (1.16) 
4 \/2 

Here, A is a complex scalar field and tp is a Weyl spinor field that make up a chiral 

multiplet, while F is an auxiliary field. 

Given this, we can now write down supersymmetric Lagrangians for chiral su­

perfields. We will be interested in writing Lagrangians for both renormalizable field 
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theories and low-energy effective Lagrangians. This means that we shall restrict to 

Lagrangians with terms that have no more than two derivatives on bosonic fields 

and no more than one derivative on fermion fields. 

Let us first consider contructing a kinetic term for some chiral superfields 

The D-term of (where we sum over i) is, after integrating by parts, 

= d^Ajd^Ai + F}Fi - i ^ d ^ u (1.17) 

which is precisely the Lagrangian for free massless scalars and free massless fermions 

(once the auxiliary fields have been integrated out). In fact, more generally one can 

take 

CK = J d 4 6 K ^ l ^ ) , (1.18) 

where K is a real function called the Kahler potential. The bosonic part of the 

resulting Lagrangian is 

£tf,bosonic = ^ ^ ' V i f j + d^Ai d^Aj) , (1.19) 

so that the kinetic term for the scalar fields is governed by a Kahler metric. (Note 

that K is a function of the $ j and $ ] , but not their spacetime derivatives in order 

to avoid getting higher-derivative terms in the Lagrangian.) 

In the case of a chiral superfield, one can also construct a supersymmetric La­

grangian from the auxiliary field F: 

£ = F = J d 2 0 $ . (1.20) 

In fact, since a holomorphic function of a chiral superfield is itself a chiral superfield, 

one can write down another term in the Lagrangian 

Cw = j d2eW{^i) + J d29W(<S>l) 

c W ( A ) l v - , , d2W , . 
= L ^ - ^ - - 2 ^ ^ a ^ + C O m p l e X C ° n J - ' ( L 2 1 ) 

i i,j J 

where W is called the superpotential. This will provide mass and interaction terms 

for both the scalars and the fermions. 
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Gauge superfields 

In order to describe gauge fields using superspace it is convenient to define a vector 

superfield as a superfield V that satisfies V — V*. Therefore, in the component 

expansion of (1.10) one has x = i p , 9= j', P= X with (j), and D all real. Starting 

with a U(l) gauge group, Abelian gauge transformations (that preserve the reality 

condition) are given by V —> V + A 4- A\ where A is a chiral superfield. Using these, 

one can go to Wess-Zumino gauge where 

V(x, 0,0) = 0a»0A^x) + i000X{x) - i000X{x) + ]-0009D{x) . (1.22) 
Li 

From this, one can construct a (fermionic) chiral superfield, using the super-covariant 

derivatives: 

Wa = -l-D2DaV 

= - i \ a + 0aD - '-(a^a^)^ + 02(afidflX)Q . (1.23) 

Wa is called the field-strength superfield because it contains F^ = d^A^ — d^A^. 

Since Wa is a chiral superfield we can immediately write down the following super-

symmetric Lagrangian (as we did for the superpotential): 

2̂ d20WaWQ + j d 2 S W & W & 

= - 7 T ^ F ^ - ^ X a ^ X + — D 2 , (1.24) 
Ag2 g2 2g2 

which is precisely (once the auxiliary field has been integrated out) the correct action 

for a supersymmetric (free) U(l) gauge theory. 

The above can be generalized to the non-abelian case so that V — V a T a is in 

the adjoint representation of the gauge group. Now one can also include a FF (or 

'0-angle') term: 

where is the appropriate gauge-covariant derivative and 

0 4ni 
T = 2 ^ + J 2 

Im rTr / d20 WaW, 

+ , (1.26) 
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is the complexified coupling. 

We are now in a position to write down the ful l Lagrangian for a M = 1 super-

symmetric gauge theory with 'matter' chiral superfields: 

£ = ^ I m ( r ( $ ) T r J d29WaW^j + j d 2 0 d 2 0 t f ( e 2 V $ j , $ t ) 

+ j d26W($i) + J d ¥ P P ( $ | ) , (1.27) 

where we have allowed r to be a holomorphic function of the (Note that in 

the scalar kinetic term V = V a T a now acts on the $ i which can be in an arbitrary 

representation of the gauge group.) 

Non-renormalization theorems and exact /3-functions 

The fact that the superpotential W is a holomorphic function of the chiral superfields 

has some important conquences. Using holomorphicity and symmetry arguments 

with some other assumptions, Seiberg [24] found that the form of quantum correc­

tions to the superpotential in the Wilsonian effective action was highly restricted. 

In particular, the UV superpotential is not renormalized perturbatively. Additional 

non-perturbative terms can appear, but their form is restricted. Sometimes this can 

imply that the superpotential receives no corrections at all. (A detailed review of 

the arguments and assumptions used can be found in [14,25].) 

Similar arguments can be applied to the gauge field term — it is only renor­

malized through the coupling r ( $ ) . In perturbation theory the one-loop correction 

to r is exact, but it can receive non-perturbative corrections (as we shall see in 

chapter 3). 

The non-renormalization theorems can be used [26] to find the exact form of the 

/3-functions for the gauge coupling, g, and the couplings in the superpotential. When 

the /^-functions are zero, the couplings do not run and the theory is scale-invariant 

(and under some weak conditions, conformally invariant). The theory is said to be 

at a fixed point of the renormalization group flow. (If the theory is at fixed point 

in the space of couplings then it will remain there during a renormalization group 

flow.) 
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A case of particular interest is when the space of couplings has a line of fixed 

points. This implies that there is a coupling corresponding to an exactly-marginal 

operator — changing the value of the coupling moves the theory along the line 

without breaking scale invariance. Furthermore, the existence of an exactly-marginal 

operator implies the theory has non-trivial interactions. 

Let us consider a gauge theory with some chiral superfields that transform in 

representations Ri of the gauge group. For an operator 0\ = Yii(®i)ni t n a t appears 

in the superpotential with coupling A, the exact /3-functions are of the form [26-29]: 

Pg ex 3 T ( a d j ) - J > ( ^ ) ( l - 2 7 i ) , 

fix cx 3 - ^ ^ ( 1 - 7 0 , (1.28) 
i 

where the 7̂  are the anomalous dimensions of the <E>j, i.e. for a chiral superfield the 

scaling dimension is quantum corrected from its canonical value of 1 to (1 — 7 i ) . The 

index of a representation Ri is defined by T r ( T a T b ) =T(Ri)Sab. (In the case of the 

adjoint representation of SU(N), T(adj) = N.) 

We can now review some of the arguments of Leigh & Strassler [29] who studied 

the existence of non-perturbative fixed points and marginal operators using (1.28). 

As an example, let us consider the case of three chiral superfields $ 1 ? $ 2 and <E>3 

each in the adjoint representation, with a superpotential [18,29] 

W = Tr [a$i$2$3 + 6$i$3$2 + c($? + $^ + $3)] . (1.29) 

Using cyclic symmetry one can see that the anomalous dimensions of the chiral 

superfields are all equal, 7, = 7 say. In this case the /3-function relations (1.28) 

reduce to 

fia oc fib oc fic oc fig oc 7, (1.30) 

so that in the space of couplings (a, b, c, g) one expects a three-dimensional sub-

manifold of couplings, given by 7(0, b, c, d) = 0, that give rise to exactly marginal 

operators. Furthermore, because the subspace passes through the origin, where the 

theory is at weak coupling, we can be sure that this manifold exists. Although 7 

is not known away from the origin, we will see that the case when c = 0 and the 

other couplings are related in a specific way, gives rise to the Af = 4 supersymmetric 
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theory. We shall also use this method to study an N = 1 superconformal fixed point 

that arises from a deformation of the Af = 4 theory. 

In chapter 2 we will obtain results for the Kahler potential of certain theories 

using the AdS-CFT correspondence. These results are of particular interest because 

the above non-renormalization arguments do not hold for the Kahler potential (since 

it is not holomorphic). 

1.2.3 M = 2 supersymmetric field theories 

To study theories with Af = 2 supersymmetry one can extend Af = 1 superspace 

to Af = 2 superspace (see [12,17] and references therein). In the case of pure 

Af = 2 supersymmetric Yang-Mills theory (i.e. no matter hypermultiplets) one has 

the following low-energy Lagrangian in terms of Af = 1 superfields: 

( 1 3 1 ) 

47T 2 J <9$a<9$6 J 

where the Af = 2 gauge superfield is composed of an Af = 1 gauge superfield in 

the adjoint representation of the gauge group (with field strength superfield W a ) 

and a chiral multiplet (also in the adjoint representation), Note that now both 

the gauge coupling and the Kahler potential for the chiral multiplet are determined 

in terms of a single holomorphic function called the prepotential. This restriction, 

the fact that the theory contains BPS states, and other known properties, allowed 

Seiberg k. Witten to write down the exact low-energy effective action for the case 

with SU(2) gauge group. (This work was then extended to the case of other gauge 

groups and theories with hypermultiplets (see [12,13,16,30] and references therein).) 

I f we take T = | t $ 2 , with r a constant, so that the above Lagrangian is renor-

malizable, then one finds 

C = — ImTr 
47T 

d29WaWa+ I d 2 0 d W e 2 V $ 

T r [ - - ^ F U i , F ^ + 9 ^ F - + l ( ^ ) t ^ - ^ [ A t , A ] 2 ) 
4g2 32TT 2" 

+ fermions. (1.32) 

where in the second line we have integrated out the auxiliary fields. From this one 

can see that the scalar potential has minima given by [A^, A] = 0, i.e. when A and 4̂* 
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commute. These give (after taking into account the action of the unbroken gauge 

symmetry) a continuous set of inequivalent vacua, or moduli space. In fact, this 

moduli space is not lifted by quantum corrections, although the metric on it (given 

by the scalar kinetic terms) does receive corrections through the prepotential. 

1.2.4 Af — 4 super-Yang-Mills gauge theory 

If one now requires Af = 4 supersymmetry (with fields of helicity or spin < 1) then 

the theory is uniquely determined by the choice of gauge group up to the (constant) 

complex gauge coupling r . In terms of Af = 1 superfields, the Af = 4 theory has 

one gauge superfield and three chiral superfields, $ j (i = 1,2,3), all in the adjoint 

representation of the gauge group. In Af = 1 superspace the Lagrangian is: 

C = — ImTr 
47T 

T - 2 

+Tr 

l- J d29WaWa + J &29&29<$>\e2V<$>i 

ig j d 2 0 $ ! [ $ 2 , $ 3 ] - ^ J d ¥ $ ! [ l > 2 ) $ 3 
(1.33) 

where now every coupling is determined in terms of r . The theory has an SU(4) ~ 

50(6) R-symmetry, although in this representation only an SU(3) xU(l) subgroup 

is explicit. In terms of component fields the Lagrangian is 

+ A J + F E R M I O N S - ( ! - 3 4 ) 
9 I,J J 4<72 

Here the X1 are in the 6 representation of the SU(4) R-symmetry group, while the 

four Weyl fermions are in the fundamental representation. This form of the J\f = 4 

Lagrangian can be derived by dimensional reduction of ten-dimensional super-Yang-

Mills theory [31]. 

Remarkably, there are no perturbative ultraviolet divergences and it is believed 

that the Af = 4 Yang-Mills theory is UV finite, even non-perturbatively [26-28]. This 

implies that the /3-function vanishes and so the theory is scale-invariant, and is in 

fact invariant under the conformal group S0(2, 4) ~ SU(2, 2). The supersymmetry, 

R-symmetry and conformal symmetry actually generate a larger supergroup called 

5f/(2,2|4). 
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The form of the scalar potential implies that the theory has a moduli space given 

by [X1, XJ] = 0 for / , J = 1 , . . . , 6. By a gauge transformation, one can take the X1 

to be diagonal. For (X1) — 0 the theory remains conformally invariant, whereas for 

( X 1 ) ^ 0 the conformal symmetry is broken (although the Af = 4 supersymmetry 

remains unbroken). From the scalar kinetic term one can see that the metric on 

moduli space is required to be flat (although there are orbifold singularities due to 

unbroken, discrete gauge transformations [32]). 

Another important property of his theory is that it is conjectured to display exact 

Montonen-Olive, or S-duality [23,33,34]. The S-duality acts on r as r - ) - 1 / r , 

which for 9 = 0 takes g —>• Aiv/g, so that the theory at strong coupling is dual to 

the theory at weak coupling. The theory is also invariant under a shift of the theta 

angle 9 —»• 9+2TV, which implies r —»• r + 1 . Together these generate the full SL(2, Z) 

duality group which acts as: 

T—>—^—, ad — bc=l, a,b,c,d£7i. (1.35) 
CT + a 

The same sort of S-duality symmetry, but in more complicated realizations, plays a 

role in Af = 2 gauge theory, as shown by Seiberg & Witten [21]. 

1.2.5 The Leigh-Strassler fixed point 

Having briefly considered the Af = 4 supersymmetric theory we shall now consider 

a specific mass deformation of it that breaks Af = 4 supersymmetry to Af = 1. It 

will be useful to again use the superfield formalism to describe the deformation in 

an explicitly Af = 1 supersymmetric way. In particular, consider the superpotential 

W = fcTr($3[$i, N ) + ^ T r ( ^ ) ( i . 3 6 ) 

where we have chosen to give a mass to the chiral superfield $ 3 , while keeping $! 

and $2 massless, and in the UV we have k ~ g. Using the exact /3-functions one 

finds that in this case [11,29,35,36]: 

fig oc /3k oc 7i + 72 + 73 , 

f3m OC 1 - 273 , (1.37) 
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where we again consider the 7* to be functions of the couplings g, k and m. The 

theory has a global SU(2) 'flavour' symmetry which acts on <J>! and $ 2 , so that 

7i =72- (It also has an unbroken U(1)R R-symmetry.) Note that since /3g oc fik, we 

have two contraints on three couplings and so expect a line of fixed points in the 

coupling space. The /^-functions are zero if 7X = 7 2 = —1/4 and 73 — +1/2. We 

should now note that the line of exactly marginal couplings given by these relations 

does not pass through the origin and we cannot be sure that i t exists. However, the 

conjecture made by Leigh & Strassler is that in the infra-red the deformed theory 

approaches a conformal fixed point on this line of marginal couplings. Because one 

has an exactly marginal coupling for this theory, one can then deform this theory by 

adding the corresponding operator to the superpotential without breaking conformal 

invariance. Furthermore, the fact that the theory has an exactly marginal operator 

implies that the infra-red theory is an interacting conformal theory. In fact at low 

energies, the fields in $3 will be integrated out and the resulting superpotential will 

be of the form 

W = hTr([$1,$2]2) (1.38) 

where the marginal coupling h is related to g and m. This theory will again have a 

moduli space, this time given by [</>1; <£2] = 0 (where the 4>i are the lowest components 

of the $ j , i = 1, 2 ). 

Since the infra-red theory (we shall call i t the Leigh-Strassler theory or Leigh-

Strassler fixed point) is Af = 1 supersymmetric, the conformal symmetry is ex­

tended to an Af = 1 superconformal symmetry (the notation for the supergroup is 

SU(2, 211)). This implies that operators in the theory must be in superconformal 

multiplets 8. Each superconformal multiplet contains an operator of lowest dimen­

sion called a superconformal primary operator. A special class of operators are 

called chiral operators. They are analogous to BPS states — they are annihilated 

by some of the supercharges and lie in short representations of the superconformal 

algebra. For the superconformal primaries of these multiplets (superconformal chiral 

primaries) the superconformal algebra relates the scaling dimension of the operator 

For brief reviews of representations of superconformal symmetry see [11,37]. 
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to its R-charge by A = This allows an alternative way of deducing the scal­

ing dimensions of the $ j at a fixed point. For the R-symmetry to be a symmetry 

of the theory it must leave the superpotential term f d29W invariant. Since d29 

has R-charge —2 (see e.g. [14]), W must have charge +2. Using (1.36) and the 

SU(2) symmetry implies that # ( $ 3 ) = 1 and -R(<&i,2) = \- Therefore the scaling 

dimensions are A 3 = | and A 1 ) 2 = f , as derived above. 

1.3 String theory and D-branes 

Now that we have briefly reviewed supersymmetric gauge theories in four dimensions, 

we shall describe how they appear in some superstring theories as describing the 

dynamics of solitonic objects called D-branes9. 

The basic idea of string theory is that instead of regarding the fundamental 

excitations of the theory as being particles, as in quantum field theory, one considers 

the quantization of one-dimensional objects, or strings. At low energies one probes 

length scales above the characteristic length of the strings (the string length, / s ) and 

the strings appear to be point-like. Since the strings actually have spatial extent 

they can vibrate, and the different oscillation modes of the string give rise to a whole 

spectrum of particles (or more precisely quantum fields) in spacetime. 

1.3.1 Bosonic strings 

Firstly, before considering superstrings, let us remind ourselves of the case of the 

bosonic string. In D-dimensional Minkowski space the bosonic string action is 

S = J d r d a ( - 7 ) 1 / 2 7 a 6 a Q X ^ b A ^ ^ (1.39) 

where we have worldsheet coordinates aa = (T,O) and worldsheet metric jab. The 

X*1 are embedding coordinates in Minkowski space. In this formula the tension 

of the string is T = ^ 7 which is related to the string length by l2 = a'. I f one 

9Standard reference texts on string theory are [31,38]. Some reviews and lecture notes on 

strings and branes are [39-42], while a text on string theory with a modern D-brane viewpoint 

is [43] (based on [44]). 
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solves for the worldsheet metric using the equations of motion and puts the answer 

back into (1.39), then the action is simply proportional to the area of the string 

worldsheet. (This can be compared to the case of a point particle where the action 

is proportional to the proper length of its worldline.) 

So far we have not specified any boundary conditions to supplement the ac­

tion (1.39). There are two basic possibilities — one can either have closed strings 

(which have periodic boundary conditions) or open strings. For the moment, let us 

concentrate on the case of closed strings. 

Upon quantization of (1.39), one finds that in the critical dimension D = 26 the 

string spectrum contains at the massless level a spin-2 field, a two-form gauge field 

B^, and a scalar (called the dilaton). Since the spectrum includes a massless spin-2 

field the theory must include gravity. However, the bosonic string is rather 'sick' 

in that the spectrum also includes a tachyon field, which implies that the vacuum 

is unstable. Furthermore, in terms of matching to the real world, the spacetime 

spectrum does not include fermions. 

Despite these problems, it is interesting to consider quantizing the bosonic string 

in a non-trivial background where vacuum expectation values have been given to 

the massless fields. The correct action to consider is 

S = ^ j d2agll2[{gabG^) + i e a b B ^ ) ) d a X ^ d b X v + a'm{X)} , (1.40) 

where (G^u, B^, $) are the background values for the metric, two-form field and 

dilaton respectively10. In order for this action to define a consistent string theory 

it should be Weyl-invariant. Requiring this at the quantum level implies that the 

following ^-functions should vanish: 

0 = = a' (R^ + 2 V / 1 V „ * - -^H^H^j + 0(a'2) 

0 = 0* = a' (-L-V"H^ + V w $ # w / l l / ) + 0(a'2) (1.41) 

0 = /?* = + a' ( - ^ V 2 $ + VA$VA<f> +1-R- ^ H ^ H ^ + 0(a'2). 

1 0Here we have taken the worldsheet metric, g, to have Euclidean signature. R is the corre­

sponding Ricci scalar. 
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Here, we have made an expansion in a', which is equivalent to an expansion in 

spacetime derivatives. At zeroth order in a' we have the requirement that D = 26. 

At order a' the above equations are just spacetime equations of motion, which 

can be derived from a generalized Einstein-Hilbert action, with corrections that 

are higher order in a'. This is one of the most striking results in string theory — 

that the consistency of the worldsheet string model implies sensible spacetime field 

equations. 

1.3.2 Superstrings and supergravity 

Given the problems with bosonic string theory (tachyon field, no fermions, etc.), 

it is reasonable to see i f there are other theories that are better behaved. There 

are, and they are called superstring theories. They can be obtained by including 

world-sheet fermions (in the Neveu-Schwarz-Ramond (NSR) formalism) and then 

imposing a projection condition. This results in a tachyon-free spectrum which also 

includes spacetime fermions. In fact the spectrum is spacetime supersymmetric11. 

Furthermore, the spacetime is now required to be ten-dimensional. 

There are five distinct (perturbative) string theories called type I , type I IA, type 

I IB, E8 x Eg heterotic and 50(32) heterotic. The type I theory contains both open 

and closed strings whereas the others only contain closed strings. It is believed 

that the superstring theories are consistent theories of quantum gravity, at least in 

perturbation theory. 

At low energies superstring theories are described by supergravity (possibly cou­

pled to ten-dimensional Yang-Mills theory). In this thesis we shall be mainly con­

cerned with the type I IB theory, which is described at low-energies by Type I IB 

supergravity. I t has M = 2 supersymmetry in ten-dimensions (giving 32 super­

charges) with the supersymmetry generated by two Majorana-Weyl spinors of the 

same chirality. The type IIB supergravity field equations can be derived from the 

1 1 One can also use the Green-Schwarz formalism where spacetime supersymmetry is manifest. 

We shall use this in chapter 4. 
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following action (ignoring all fermion fields): 

2/c?, 
1 

10 

1 dwxV^Ge 2* m 2 

4 K 10 

/ 1 
4K 10 

^JdwxV^{\F^ + \F^ + \ \ h \ 2 ) 

C 4 A H3 A F 3 , (1.42) 

where 

^5 

F3 = F3 C0AH3, 

^C2 A H3 + ^B2 A F3 . (1.43) 

Here, we are in the 'string frame' so that the Einstein-Hilbert term involves a fac­

tor of the dilaton, $. In 'Einstein frame' this term is of the standard form, and 

perturbative string calculations imply Newton's constant is given by 

where the string coupling is given in terms of the asymptotic value of the dilaton, 

gs = e*°. Together with the metric and the dilaton, the two-form gauge field B2 is 

in the NS-NS sector of the theory. Its field strength is H3 = dB2. The other fields 

in the action are R-R (p + l)-form gauge fields C ( p + i ) , which have field strengths 

F ( p + 2 ) = dC( p + i ) . There is a condition on C4 that is not implied by the equations of 

motion but must put in by hand — it has self-dual 1 2 field strength, F 5 = *F5. 

1.3.3 j>-branes 

Having seen that type I IB supergravity contains gauge fields of various ranks, i t is 

reasonable to ask whether one can describe objects that are charged under those 

fields. If we consider the familiar case of a point particle, then it couples to a gauge 

field Au via 

16irGN = 2K2

1O9

2

S = (2TT) 7a'4g2

s (1.44) 

S 
Mi 

V[A] (1.45) 

2 Here, for a p-form u, *w is the corresponding Hodge-dual (10 — p)-form. 
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where Mi is the worldline of the particle and here V[A] is the pullback of onto 

M.\. Note that equation (1.40) shows that the fundamental string couples to the 

field in a natural generalization of (1.45), showing that it is a source for this 

field. Similarly, for the R-R C( p+i) fields one considers an object with p spatial 

directions called a p-brane. I t has a (p + l)-dimensional worldvolume, M(p+i), and 

the coupling is given by 

S = ixv [ V[C{p+l)) . (1.46) 
JMp+i 

I t is reasonable to ask whether one can find corresponding p-brane solutions in 

supergravity. One can, and (in the case of the extremal p-brane solution) the metric 

and dilaton are given by [37,45-47] 

/ P \ 9 - P 

ds 2 = # ( r ) " 1 / 2 - d * 2 + d x i d x i + # ( 0 1 / 2 d r a d r a ' 
\ 1=1 / 0=1 

e* = gsIi{r)^ , (1.47) 

where 

H ( r ) = 1 + ^ • L 7 ~ P = 2 5 " ^ ^ r ( l ^ j 9sNll-p • (1-48) 

Here, is the charge of the p-brane located at r = 0, given by 

N= f * F ( p + 2 ) . (1.49) 
Jss-p 

The 'extremal' p-brane solution is invariant under half of the 32 supersymmetries and 

is therefore a BPS solution. The supersymmetry algebra then fixes the tension, Tp, 

of the brane in terms of its charge, which can be directly computed using standard 

methods from the fields given in (1.47) to be 

N N 
Tp = -nP = . (1.50) 

9s gs{2-n)Pa'~ 

1.3.4 D-branes 

String theory is relatively well understood in the limit where gs is small, where one 

considers a genus expansion in string worldsheets. I t is then interesting to consider 

what happens to the above supergravity solutions for gs —>• 0. One can see that the 

metric approaches that of flat space, except on the (p + l)-dimensional hyperplane 
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at r = 0 where i t appears to be singular. In this limit the p-brane reduces to a 

localized defect in flat space. Closed strings propagate as normal except near the 

brane. I t is then interesting to consider whether the brane can be described directly 

in terms of how strings propagate near the brane. 

It is possible to do this by introducing open strings. One defines a 'Dp-brane' to 

be a (p + l)-dimensional hyperplane (with p spatial dimensions) where open strings 

can end. In the directions along the brane the strings obey standard open string 

Neumann boundary conditions, whereas in the directions transverse to the brane the 

string endpoints are constrained to be on the D-brane and obey Dirichlet boundary 

conditions. In this way one can consistently introduce open strings into a closed 

string background that describe the dynamics of the D-brane. 

D-branes appear in the type I theory and both type I I theories. In the case of 

the type I IB theory, there are supersymmetric Dp-branes13 for p = —1,1,3, 5, 7 that 

break half the supersymmetry and are therefore BPS states14. 

In a key calculation, Polchinski [48] showed using string worldsheet techniques 

that D-branes act as sources for closed string fields. In particular they have a tension 

(they act as gravitational sources) and they carry charges for R-R fields. A single 

D-brane has tension TP and charge fip given by 

*P = - = - 1—m- ( i -5 i ) 

so that comparing to the expression (1.50) we can see that the supergravity solution 

corresponds to N D-branes. Furthermore, Polchinski pointed out that the charges 

obey the correct Dirac quantization condition and that the quantization is such that 

a D-brane carries the minimal unit of charge. 

D-branes are dynamical objects in that they interact with the background closed 

string fields. In particular, one can write down the Dirac-Born-Infeld-Wess-Zumino 

1 3 T h e D( —l)-brane is a type of instanton. 
1 4 One can also consider D-branes with other dimensionalities. These are non-BPS branes and 

are unstable. 
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action for a D-brane in a non-trivial background [49,50]: 

S = -Tp [ dp+l£e-*^-det(Gab + Fab) 

A e f . (1.52) 

Here T = V[B] + 2ixa'F, where F is the field strength of a U(l) gauge field that 

propagates on the brane. (In the second term the sum over forms of differing rank is 

to be understood in sense that one integrates using the forms of rank (p + 1). In the 

type I IA theory n is even, while for type I IB n is odd.) The form of the second term 

(the Wess-Zumino term) can be understood from various points of view including 

anomaly arguments and T-duality. Furthermore, this action can be generalized to a 

supersymmetric form [51,52], and when added to the supergravity action generates 

the correct source term for the p-brane solutions. 

Upon quantization of the open strings that end on a single D-brane one finds the 

Dirac-Born-Infeld action which reduces at low energies to a supersymmetric U{\) 

Yang-Mills theory that can thought of 'living' on the brane. In particular there are 

(9 — p) scalar fields that describe the embedding of the brane in spacetime. 

Concentrating on the case of D3-branes in type I IB supergravity, the low-energy 

dynamics of the brane is governed by N = 4 U(l) super-Yang-Mills theory, that 

we saw earlier. (Since the D-brane leaves 16 unbroken supercharges, one can see 

that the field theory must be M = 4 supersymmetric.) This is consistent because 

the J\f = 4 supersymmetry requires that there be six scalar fields X1 to fill out the 

gauge multiplet (see table 1.1) — these correspond to the six transverse directions 

of the brane. In particular, the vevs (X1) of the fields X1 give the position of the 

brane in the transverse space. 

We can also consider the case of N parallel D3-branes [53]. I f they are all well-

separated then the low-energy degrees of freedom arising from the open strings are 

N copies of the J\f = 4 U(l) gauge theory described above, one for each brane. Now 

consider the case when all the branes are coincident, i.e. they are all located at the 

same point in the transverse space. Then there are additional massless degrees of 

freedom arising from open strings that start on one brane but end on another. One 

finds that the field theory that governs the dynamics of the branes is now a non-

+^3 / (n+l) 
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abelian gauge theory — M = 4 super-Yang-Mills with gauge group U(N). In this 

case the fields are in the adjoint representation and one can think of the scalar fields 

X1 as being N x N matrices. As described in section 1.2.4 the moduli space is given 

by mutually commuting matrices X1 which can then be put into diagonal fo rm 1 5 . 

The diagonal entries then give the positions of the branes. Because the branes are 

separated the open strings that run between different branes become massive (with 

mass proportional to their length). But from the point of view of the gauge theory, 

this is just the Higgs mechanism where the gauge group is broken and some of the 

gauge bosons become massive. One can also observe that the metric on moduli 

space is flat (because the branes are in flat space) as it should be from requiring 

Af = 4 supersymmetry. 

1.3.5 Dualities and M-theory 

D-branes have been crucially important in understanding how the five perturbative 

string theories are related non-perturbatively by dualities 1 6. We will not need to 

review many of the conjectured dualities for our purposes, but we shall mention a 

few that relate to theories that appear in this thesis. 

Type I IB string theory is conjectured to have an SL(2, Z) duality group that 

acts on T = 2(C 0 + igj1) as 

T—>———,, ad — be = 1, a,b,c,d£Z. (1.53) 
cr + a 

The S-duality transformation is given by r —>• — 1/r, which for C 0 = 0 implies 

gs —> 4/gs. Therefore, this is a strong-weak duality transformation in the string 

coupling constant. On the other fields of type I IB supergravity1 7, the metric and 

C 4 are invariant under S-duality while the B2 and C2 fields are interchanged. In 

terms of branes this implies that the D3-brane is invariant while the fundamental 

string and the Dl-brane (or D-string), which are sources for B2 and C2 as previously 

1 5 H e r e we are ignoring any remaining (discrete) gauge transformations. 
1 6 For a review see [54]. 
1 T T y p e I I B supergravity is actually invariant under SL(2, R), which is broken when one considers 

branes (because they carry quantized charges). 
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stated, are interchanged. The D5-brane, which couples to Cq (where dCe — *dC*2) 

is interchanged with the NS5-brane which couples to B6 (where dB$ = *d£?2)-

If this type of SL(2, Z) duality seems familiar, i t is because we have seen it before 

in section 1.2.4 where it was a duality of the N = 4 gauge theory. One can now see 

that the gauge theory duality can be realized by applying the string duality to a set 

of iV parallel D3-branes in flat space. Monopoles and W-bosons are interchanged 

by S-duality because, from the string theory viewpoint, strings and Dl-branes are 

interchanged. Applying string theory dualities to various configurations of D-branes 

is often the easiest way to visualize conjectured field theory dualities 1 8. 

Another remarkable string theory duality is that type I IA string theory is equiv­

alent to an eleven-dimensional theory, called M-theory, compactified on a circle. A 

fully satisfactory formulation of M-theory is not yet known, although i t is known 

that at low-energies M-theory should reduce to eleven-dimensional supergravity. 

Since this supergravity only has a single gauge field A3, it has p-brane solutions 

for p = 2,5 called M2-branes and M5-branes. The worldvolume theory of N co­

incident M2-branes is a three-dimensional superconformal field theory, which can 

be realized as the infra-red fixed point of three-dimensional pure SU(N) M = 8 

supersymmetric gauge theory. The worldvolume theory of N coincident M5-branes 

is a superconformal theory with (2, 0) supersymmetry in six dimensions, a strong 

coupling completion of five-dimensional SU(N) gauge theory with sixteen super­

charges. 

1.4 The A d S - C F T correspondence 

In the previous sections we have seen that string theory contains D-branes and that 

they can be described in quite different ways. On one hand they can be seen to be 

surfaces where open strings can end and give rise to gauge theories. On the other 

hand we have a description in terms of p-brane solutions of supergravity. Given 

this, it is possible to relate the two descriptions directly and argue that, in a certain 

A good review of brane constructions of supersymmetric field theories is [55]. 
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limit, they are in fact equivalent19. 

In order to do this, let us return to the configuration of N coincident D3-branes 

in Minkowski space. In this case there are closed strings propagating in the ten-

dimensional spacetime. There are also open strings with their end-points restricted 

to lie on the D3-branes. 

It is interesting to take the low-energy limit of this system where we only need 

to consider the dynamics of the massless modes. In order to do this it is sometimes 

easier to fix energies and let a' —> 0 (i.e. send the string length to zero) keeping 

dimensionless quantities, such as iV and gs, fixed. The closed string massless exci­

tations give rise to supergravity on flat space. The massless excitations of the open 

strings give M = 4 U(N) gauge theory at low energies20. Furthermore, in this limit 

the two sectors decouple leaving M — 4 super-Yang-Mills theory on the branes and 

free gravity in the bulk. 

Now let us consider this same limit, but this time from the point of view of the 

supergravity p-brane. In the case of p = 3 the extremal p-brane metric becomes 

6 

ds 2 = Hir)-1/2 (-dt2+ dx\ + dx2

2 + dxl) +H(r)1/2Y^dradra , (1.54) 

a=l 

where 

H(r) = l + ^ , L4 = 4ngsNa'2 . (1.55) 

and the dilaton is now constant e* = gs. Since Gu is not constant, the energy of 

an object as measured by an observer at some position r, Er say, is different to the 

energy measured by an observer at infinity, E. The two are related by 

E = ErH~l/i(r) , (1.56) 

so that as an object approaches r = 0 it has lower and lower energy as observed 

from infinity, due to the redshift factor. So now we can consider the low-energy 

limit in this system. There are two types of low-energy excitation. One is gravity 

1 9 Reviews of the derivation of the A d S - C F T correspondence can be found in [11,37]. 
2 0 T h e diagonal U(l) factor in U(N) = SU(N) x U{1) corresponds to the overall position of 

the branes and decouples from the rest of the gauge theory dynamics. We shall ignore it in the 

following. 
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propagating far from the brane on flat space. The other is any excitation near to 

r = 0, including not only supergravity modes but also higher string excitations. 

Furthermore, these two types of excitations decouple from each other as a' —> 0 

(see [37] and references therein). Therefore, we have at low energies a decoupled 

system consisting of gravity in ten-dimensional Minkowski space and superstring 

theory in the near-horizon limit of (1.54). One might imagine that this l imit does 

not make sense because the p-brane solution is singular at r = 0. However, the 

near-horizon geometry of the D3-brane solution is in fact regular and for r <C L the 

metric is given by 

ds 2 = T— {-dt2 + dx\ + dx\ + dxl) + ~dr2 + L 2 d f t 2 , (1.57) 

which is the metric of the direct product of five-dimensional anti-de Sitter space 

with a five-sphere, or AdS 5 x S5. 

Therefore we now have two different descriptions of the a' —>• 0 limit in terms 

of decoupled systems. On one side we have M = 4 SU(N) Yang-Mills theory plus 

ten-dimensional gravity in flat space, while we have just seen that from considering 

the extremal p-brane solution one has superstring theory in the near-horizon region 

plus gravity in ten-dimensionsal flat space. This led Maldacena [7] to propose that 

M = 4 SU(N) super-Yang-Mills theory is dual (or equivalent) to type I IB string 

theory propagating on AdS 5 x S5. The parameters of the two theories are related 

by 

g2

YM = 2irgs , L 4 = 2(g2

YMN)a'2 . (1.58) 

When we take the a' —v 0 l imit on the near-horizon geometry we want to keep 

all the string excitations in the low-energy theory, due to the redshift factor. This 

implies that ET ~ l / / s , i.e. \fa'ET should remain fixed. However, from (1.56) one 

can see that E ~ Err/\fa', so in order to keep E (the energy as measured from 

infinity) fixed, we need to keep r/a' fixed. Therefore, we can take the near-horizon 

limit of (1-54) by defining a new coordinate u = r/a' 

ds2 = a' -,(-dt2 + dx\ + dxl + d x l ) + V4ngsN-

yjAngsNdtt2 . (1.59) 
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This makes sense in gauge theory terms because a brane located at r corresponds 

to giving a vev to the scalar fields. Because gauge theory quantities should remain 

constant in the decoupling limit, the mass of the W-boson should remain constant. 

But this mass is just the mass of a string stretched from the brane to r = 0, which 

is proportional to r/a'. 

The strongest form of the Maldacena conjecture is that the equivalence between 

M = 4 SU(N) Yang-Mills and string theory on AdS 5 x S5 should hold for all values 

of N and gs. However, at present string quantization on the AdSs x S5 background is 

not well understood. Therefore one usually takes certain limits to make comparisons 

between the two theories. 

The ' t Hooft limit [56] is given by taking N —>• oo while keeping A = <7YM-^ (the 

't Hooft coupling) fixed. This limit is well defined in perturbative Yang-Mills theory 

and' t Hooft showed that the series of Feynman diagrams can be arranged in terms 

of topology, in analogy to the expansion in worldsheet genus one has in perturbative 

string theories. In terms of string theory on AdS 5 x S5 one has gsN held fixed as 

N —> oo so gs —» 0. Therefore, t he ' t Hooft limit corresponds to a classical string 

theory limit where string loop corrections are suppressed. 

Once we have taken the 't Hooft limit, the only available parameter is the 't 

Hooft coupling A = g\uN. This is the effective coupling constant (rather than 

<?YM) m Yang-Mills perturbation theory. For perturbation theory to be a good 

approximation, we should have A < 1. In contrast, for classical supergravity to be a 

good approximation to string theory we require L^> ls which implies A > 1 . In this 

way we can see that perturbative field theory and supergravity are good descriptions 

in completely different regimes. Therefore the correspondence is a duality in the 

sense that i t relates the strong-coupling limit of one theory to the weak-coupling 

limit of another. 

1.4.1 Matching symmetries 

Having argued that two theories that appear so different are in fact equivalent, there 

are various checks that one can make. Perhaps the most obvious one is to make sure 

that the theories have the same symmetries. 
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Firstly, as we mentioned before, the A/* = 4 Yang-Mills theory is in fact invariant 

under the conformal group 50(2,4) . This symmetry arises on the gravity side 

because i t is the isometry group of AdS 5 . Similarly, the SU(4) ~ 50(6) R-symmetry 

acts as the obvious symmetry of the 5 5 . 

From the gauge theory viewpoint the obvious M = 4 supersymmetries of the 

gauge theory are supplemented by extra fermionic generators of the superconformal 

group SU(2, 2|4) to give 32 conserved supercharges in all. I t turns out that AdSs x 

5 5 is a maximally supersymmetric solution of type I IB supergravity and also has 

symmetry group 5f/(2,2|4). Therefore, the symmetries of the two theories match. 

1.4.2 The field-operator correspondence 

Having seen that the symmetries of the two theories match up, it reasonable to ask 

whether the various representations of the symmetry group on either side of the 

correspondence match as well. 

I t was shown by Gubser, Klebanov & Polyakov [8] and Witten [9] that one could 

match operators in the gauge theory to fields in the gravitational description. To 

see this, let us consider Euclidean AdS 5 given by z0 > 0 with metric 

This metric diverges at z0 = 0 which is the boundary of the anti-de Sitter space. It 

turns out that one should think of the field theory as 'living' on this boundary [9]. 

The radial coordinate of AdS space, e.g. u defined previously, corresponds to an 

energy scale. (This can be seen from the action of the conformal group.) Therefore, 

the UV limit of the gauge theory corresponds to large u (near to the boundary) 

while u —y 0 is the IR l imi t 2 1 . 

Consider a scalar field ip(z, y) where z11 are coordinates on AdSs and y1 are 

coordinates on 5 5 . Then one can decompose ip in terms of spherical harmonics on 

ds2 = \ ( d z l + d x 2 ) . (1.60) 

5 5 : 

<p(z,y) = Y\ ^ * i * 2 * 3 (2)^*1*2*3 ( ? / ) (1.61) 
*1,*2,*3 

21 For some papers on the ' U V - I R ' correspondence see [57-59]. 
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The scalar fields (pkik2k3 are then massive scalar fields on AdSs with m2 = m2(ki). 

By considering the asymptotic behaviour of solutions of the scalar field equation, 

one can match a scalar field on AdSs with mass m to an operator in the gauge 

theory with scaling dimension A by 

A = 2 ± V4 + m 2 . (1.62) 

One finds when decomposing the type I IB supergravity fields according to (1.61) 

that negative values of m 2 are obtained. At first sight this signals an instability in 

the theory. However, for stability in AdS space one requires that m 2 > —4 (this is 

called the Breitenlohner-Freedman bound [60,61]). Therefore the dimension A is 

always real as i t should be for a unitary theory. 

Using this one can match the spectrum of type I IB supergravity on AdSs x 

5 5 to operators which are in chiral (or short) representations. These operators 

have dimensions that are given in terms of their 50(6) representation and so we 

can be sure of their dimensions even at strong coupling. Their presence in the 

supergravity description at large A is therefore a strong test of the correspondence. 

Furthermore, higher string states wil l have dimensions of order A 1 / 4 and so for large 

A the corresponding operators are not expected to be in short representations of the 

superconformal algebra. 

For a scalar field with mass m (corresponding to an operator with conformal di­

mension A) there are generically two independent asymptotic solutions for z0 —> 0. 

One is normalizable while the other is non-normalizable. A non-zero normalizable 

mode corresponds to giving a vacuum expactation value to the corresponding oper­

ator, while the non-normalizable mode corresponds to an insertion of source for an 

operator in the theory. 

These ideas can be generalized to asymptotically AdS supergravity solutions 

[35,62-83] by considering, for instance, supergravity solutions with non-zero values 

for scalar fields at large u (i.e. in the UV). The evolution of the supergravity fields 

with u then corresponds to a renormalization group flow, since u corresponds to an 

energy scale. 

In addition to matching fields to operators, Gubser et al. and Witten also pro­

posed a method to calculate gauge theory correlation functions from the classical 



1.4 The A d S - C F T correspondence 33 

supergravity. The basic idea is that the generating functional for correlation func­

tions in the gauge theory is given in terms of the full string theory partition function: 

On the left-hand side (f>0 acts as source for a particular operator O. On the right-

hand side (j>o is a boundary value for the corresponding scalar field. Of course the 

ful l partition function is not known, so in the classical supergravity approximation 

one uses Z ~ exp(—7 s u g r a). (In fact the prescription given in (1.63) is not well-

defined in that one needs to use a cutoff.) One evaluates this on the solution of the 

supergravity field equations, subject to the boundary conditions. Reviews of the 

calculation of correlation functions using the above method can be found in [11,37]. 

^ e / d 4 x 0 o ( ^ ) O ( f ) \ 
C F T = -^string <f>(zo,x) </»(0, X) = (j)0{x) (1.63) 



Chapter 2 

Probing Holographic 

Renormalization-Group Flows 

2.1 Probing AdS backgrounds with D3-branes 

The AdS-CFT correspondence has given us remarkable new calculational methods 

with which to study strongly-coupled gauge theory. However, as mentioned in the 

introduction, in its current form it is limited in various ways. One of the most 

difficult problems is that currently we are unable to quantize strings in the AdS 5 x S5 

background. Therefore, many of the tests and predictions that have been made are 

based on the supergravity approximation (large A). Indeed, this is the regime that 

we will use throughout this chapter. 

Another important problem is to extend the correspondence to more realistic 

theories — non-conformal theories with less or no supersymmetry. A step in this 

direction has been to study backgrounds that correspond to deformations of the 

J\f = 4 superconformal gauge theory. One reason for this is that properties of the 

new supergravity duals can easily be compared to those of the original AdS 5 x S5. 

Furthermore, these deformations are often to M = 1 or N = 2 supersymmetric field 

theories where some strong-coupling predictions can be made using field theoretic 

techniques. 

Many of these supergravity duals have been found, although sometimes i t is 

rather unclear how to test them or how to make predictions of the field theory at 

34 
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strong coupling. The aim of the research presented in this chapter is to try to under­

stand how some field theory physics can be easily extracted from the supergravity 

solution. 

The method employed here is very straightforward. The idea is that since AdS 5 x 

S5 is the near-horizon geometry of iV D3-branes (where N is large), and that SU (N) 

gauge theory governs the dynamics of those branes, useful information about the 

gauge theory can be extracted by considering the dynamics of a "probe" D3-brane 

in the ten-dimensional bulk theory. By saying that the brane is a probe, we mean 

that we can neglect its back-reaction on the spacetime. The results obtained from 

this method have a very direct interpretation in the dual field theory. 

We will consider a variety of geometries that are asymptotically A d S x M (for 

some Euclidean space M ) , and can be thought of as being "sourced" by branes. 

The probing method has been very successful in correctly understanding a variety 

of proposed supergravity duals. In particular the enhangon mechanism [84-90] has 

resolved various spacetime singularities by relating them to the low-energy physics 

of H = 2 supersymmetric gauge theories. We shall study this further in chapter 3. 

2.1.1 The generalized Born-Infeld action 

The low-energy effective action for a single D3-brane is given by a generalized form 

of the Born-Infeld action: 

S = -T3 f d 4 e [ - d e t ( G a f t + e - * / 2 J - a ( ) ) ] 1 / 2 

J Mi 

+ I X 3 I M ( ° W + C W A : F + I C W : F A : F ) • (2>1) 

Here Tab = Bab + 2ira'Fab, and M4 is the world-volume of the D3-brane, with 

coordinates f ° , . . . , { 3 . Also, Gab and Bab are the pull-backs of the ten dimensional 

metric (in Einstein frame) and the NS-NS two-form potential, respectively. They 

are defined as e.g.: 
dx» dxv 

Gab - G^Q^-g^b • (2-2) 

The other fields that appear in the action are the dilaton <3>, and the R-R p-form 

gauge fields C(p). As usual, the parameters / / 3 and r 3 are the basic [48] R-R charge 



2.1 Probing AdS backgrounds with D3-branes 36 

and tension of the D3-brane: 

"3 = n9s = why • (2-3) 

In this chapter we will be studying solutions of type I IB supergravity with the 

following general form 

ds2

10 = ft2 (e2A{r)r]abdxadxb + dr2) + ds2

5 . (2.4) 

This is a warped product of AdS$ and a five-dimensional compact space1 that is 

parametrized by five coordinates fa, % = 1 , . . . , 5. This means that the "warp factor" 

Q,2 and the metric components Gij can be functions of r and fa. 

The strategy we shall employ is to insert the form of the supergravity solution 

into the Born-Infeld action and write i t in terms of the transverse scalars ym and 

the field strength Fab. These both depend on the worldvolume coordinates £ a . We 

can then write the action as a derivative expansion, only keeping the potential and 

kinetic terms. Physically, this corresponds to only considering a slowly-moving D3-

brane probe. 

First of all we partition the spacetime coordinates, x^, as xa = {x°, x1, x2, x3}, 

and ym = {r, fa}. We choose the following gauge2 

xa = C , ym = ym(xa). (2.5) 

This is a natural choice because the xa are coordinates on the Minkowski space that 

the dual SU(N) gauge theory is supposed to live on. 

I t turns out that the p-form fields in the supergravity solutions have the following 

general form: 

^abcd = w{r,fa)et 

rw 
^abci = c*S, = o 

= c£> = o 
R ( 2 ) 
^ab = b2> = o (2.6) 

! T h i s will often be a deformed five-sphere. 
2 T h i s is more general than "static gauge" (where ym = y'n(x0)) but is explicitly Lorentz 

invariant and allows the possibility of studying interaction terms which are higher order in the 

derivative expansion. 
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Inserting the fo rm of the background given in (2.4) and (2.6) into (2.1), and 

expanding to quadratic order in ym and Fab, one finds the following result: 

^ t f e 2 A G m n d a y m d a y n - V(ym) - - ^ F a b F a b + ^ - F a b F a b 

= - T i ^ e 2 A G m n d a y m d a y n - V ( y m ) - ^ F a b F a b + ^ F a b F a b . (2.8) 

One can see directly that the dilaton gives the effective coupling, gef{, for the U(l) 

gauge field on the probe. Similarly the axion, C(o), gives the effective theta angle. 

Specifically, 

g2

eff = 2irgse* , 0 e f f = 4nC{0) . (2.9) 

The scalar fields, ym, have a kinetic term and also a potential given by: 

V(ym) = r3(Q4e4A - wgs). (2.10) 

The Lagrangian takes this simple fo rm because of the restrictions (2.4), (2.6) we 

have placed on the fo rm of the supergravity solution. I f we had allowed terms like 

C^b\j 7^ 0, then this would have resulted in extra terms quadratic in d a y m . 

2.1.2 A D3-brane in AdS 5 x S5 

Before we look at more complicated supergravity geometries, we should consider the 

standard A d S 5 x S5 case (1.57). The dilaton satisfies $ = 0, so that equation (2.9) 

implies t ha t 3 

= 9YM = 2TT<7s • (2.11) 

Therefore the effective (running) coupling is constant, as i t should be for a conformal 

theory. The potential in the probe Lagrangian vanishes identically and so there 

is a six-dimensional modul i space (or Coulomb branch). This is the whole space 

transverse to the brane, parametrized by {r,ipi}- The kinetic term for these scalars 

gives the metric on modul i space (the metric "seen" by the probe): 

ds 2 = — — l d v 2 + v 2 d n l ] . w i t h v = - , e T l L > ( 2 - 1 2 ) 
° 7 r #YM a 

3 I n fact we can set $ = constant, but this can always be absorbed into a redefinition of (?5. 
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where we have used the relations (2.11) and (2.3) and defined an energy scale v. 

Here, d f ^ is the standard metric on S 5 , and the metric in (2.12) is the flat metric 

on R 6 . A l l of these properties match those expected f r o m the discussion in section 

1.2.4. 

One should note how the extended nature of the brane probe was required for 

the potential V(ym) to cancel. The second term in equation (2.10) arises because 

the D3-brane couples to the R-R four-form potential. Wi thou t this cancellation, the 

probe would not have a six-dimensional modul i space. 

2.2 The holographic Leigh-Strassler R G flow 

2.2.1 Vacua of Af = 8, D = 5 gauged supergravity 

The field content of M = 8, D = 5 gauged supergravity is a single graviton mult iplet 

(see table 2.1). The 42 scalars parametrize the coset space Ee^/USp(8) and the 

Spin Field Number of Fields 

2 1 

3/2 8 

1 27 

1/2 A 48 

0 V 42 

Table 2.1: The field content of M = 8, D = 5 gauged supergravity. 

scalar potential V(ip) of the theory is invariant under the 5 0 ( 6 ) R-symmetry and 

also under SX(2,R) (which is inherited f rom the ST(2 ,R) symmetry of type I I B 

supergravity). Therefore V is a funct ion of 24 independent variables. A crit ical 

point tpc of V(<p) gives a solution of the gauged supergravity satisfying [91] 

R»» = Vcg^ , (2.13) 

so that Vc is the cosmological constant at the cri t ical point. For the cases we are 

interested in Vc < 0 and the supergravity vacua are anti-de Sitter spaces. 
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In [64] V(ip) was studied w i t h the intention of finding new critical points (pc. 

Finding local extrema of the f u l l supergravity potential would be an extremely hard 

task and therefore the authors of [64] studied a sector of the scalar fields invariant 

under a particular SU(2) C SU(i)R. This reduced the problem to studying the 

potential as a funct ion of four independent variables. 4 The results found in [64] are 

reproduced in table 2.2. 

Unbroken gauge symmetry Unbroken supersymmetry Perturbatively stable 

(i) 5 0 ( 6 ) = 8 Yes 

(ii) 5 0 ( 5 ) N = 0 No 

(i i i ) SU{3) M = 0 No 

(iv) SU{2) x U(l) x U(l) Af = 0 No 

(v) SU{2) x £7(1) H = 2 Yes 

Table 2.2: Some known vacua of D = 5 gauged supergravity. 

Case (i) in table 2.2 is simply the normal, maximally supersymmetric, AdSs 

solution (wi th all the scalar fields except for the dilaton and axion set to zero). Cases 

(ii) and ( i i i ) were originally found in [91,92] and were studied in terms of the AdS-

C F T correspondence in [62,63]. However, cases ( i i - i v ) are unstable (see [63,93] and 

references wi th in) since not all of the supergravity fields satisfy the Breitenlohner-

Freedman bound. This means that the dual conformal field theory would have an 

operator w i t h complex conformal dimension, violat ing unitarity. I t seems as though 

these fixed points are a pathology of the supergravity description of large N gauge 

theory. 

The final entry in table 2.2 is M — 2 supersymmetric and therefore corresponds 

to an M = 1 superconformal field theory. A natural question to ask is what can 

be said about the field theory dual to this new fixed point. This question was 

addressed in [35,36]. Since the unbroken gauge symmetry in the five-dimensional 

4 Another reason for making this choice was that Af = 2 field theories have SU(2) R-symmetry. 

Instead of finding an Af = 2 superconformal field theory Khavaev et al. found an Af = 1 supercon­

formal field theory with an SU(2) flavour symmetry. 
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theory is SU(2) x U(l) the corresponding field theory has a SU{2) x U{\) global 

symmetry. This should include an U{1) R-symmetry because the field theory is 

J\f = 1 supersymmetric. 

These global symmetries led the authors of [35,36] to conjecture that the new 

crit ical point of D = 5 gauged supergravity is dual to the Leigh-Strassler conformal 

fixed point described in section 1.2.5. The superconformal and global symmetries 

match exactly. They were able, however, to perform a quantitative check using a 

property of the new fixed point. As mentioned above, Vc = V((pc) is the cosmological 

constant of the AdS vacuum at the critical point. I n the AdS-CFT correspondence 

the cosmological constant of the bulk theory is related to the central charge of the 

corresponding field theory [8,9,94,95]. In fact for two AdS spaces w i t h cosmological 

constants A A and A B the following formula holds: 

where C A , B are the central charges of the respective dual field theories. Apply ing 

this formula to the M = 2 and M = 8 supersymmetric cri t ical points, Khavaev et 

al. found that 

This was reproduced exactly f rom the dual Leigh-Strassler field theory in [35,36]. 

However, we should realize that this is only a consistency check that the Af = 2 

critical point is dual to the Leigh-Strassler theory. The result in (2.15) can also 

occur for other supergravity solutions. For example, A d S 5 x T 1 ' 1 (which is dual to 

a theory w i t h SU(N) x SU(N) gauge group [96]) gives exactly the same result. 

2.2.2 R G flows from D=5 gauged supergravity 

Given that the Leigh-Strassler field theory is naturally obtained after a renormaliza-

t ion group flow f rom J\f = 4 super-Yang-Mills theory, i t is sensible to ask whether i t 

is possible to construct this flow in terms of five-dimensional gauged supergravity. 

Indeed, the supergravity solution which is the holographic RG flow to the Leigh-

Strassler point was constructed in [35]. We shall summarize the results here. 

3/2 A CA 

A B 
(2.14) 
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Freedman et al. take the metric to have the following form 

d s 2

4 = e ^ ^ d x ^ d x " + d r 2 , (2.16) 

where 7^„ is the Minkowski metric. 5 In this parametrization, AdS space has A(r) = 

r/l, w i th / the radius of curvature. They also allow the four scalars parametrizing 

the SU(2)-invariant sector of the f u l l scalar coset to be functions of r only, in order 

for the solution to have 4-dimensional Poincare invariance. To preserve M = 1 

supersymmetry and retain a U(l) R-symmetry along the flow, two of these scalars 

are set to zero. The other two, ipi^, satisfy 6 

difij _ 1 dW 

dr L d ( f j 

and the funct ion A(r) in the metric satisfies 

1,3 (2.17) 

W = — [cosh(2<p1)(p6 - 2) - (3p 6 + 2)] . (2.19) 

where W is a "superpotential", 

1 

4p 

Here we have defined p = ea and a = ^?<^3- One property of W that can be noted 

immediately is that i t is even in </?i. In fact the ten-dimensional solution found by 

Pilch & Warner [82] only depends on \ipi\, so wi thout loss of generality, we shall 

take ( f i > 0. 

The crit ical points occur at the following values of the scalars: 

N = 8 crit ical point: <Pi = 0 , <f3 = 0 (2.20) 

1 

7 6 

Near ipj = 0 one can expand W as a series: 

Af = 2 cri t ical point: ipx = \ log(3) , (p3 = -j= log(2) (2.21) 

W = - ^ + y | * 3 + . . . (2.22) 

A t a critical point of W, the mass matr ix for the ipj is related to the Hessian of W . 

The conformal dimensions of the corresponding field theory operators can then be 

found using equation (1.62): 

5 Note that we use the "mostly-plus" signature for the metric. 
6 Here, L is the radius of curvature of the N = 8 AdSs solution. 
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Scalar Mass 2 A Operator 

<Pi - 3 3 0 3 = T r ( A 3 A 3 + 0i[02, 03]) + h.c. 

¥>3 - 4 2 C 2 = - E L ^ 2 ) + 2 E l 5 T r ( X t

2 ) 

This implies that ipi is dual to a fermion bilinear operator whereas <p3 is dual to 

a scalar bilinear operator. This is what one would expect — in order to reach the 

Leigh-Strassler theory one has to switch on mass terms for A3 and 0 3 = X5 + iX&. 

However, adding a positive multiple of the operator O2 to the Lagrangian would 

result in negative mass terms for X\, X2, X$ and X 4 . What happens f rom a field 

theory point of view is that an appropriate amount of the Konishi operator OK — 

T r ( ^ i X f ) is added to (9 2 to ensure that the deformation preserves posi t ivi ty and 

M = 1 supersymmetry [77,83] 7. Therefore the correct fo rm for the scalar mass term 

\ { 0 2 + 0 K ) = X l + Xl , (2.23) 

is added to the Lagrangian. 

A similar analysis has been made at the M = 2 fixed point [35]. Again, the 

eigenvalues of the mass matr ix for <pi and ^3 were calculated. The conformal d i ­

mensions for the corresponding operators were then found — they are A = 3 — \ /7 

and A = 3 + y/7. Since ip\ and <y?3 are no longer mass eigenstates the operators are 

now dual to linear combinations of ipi and ip$. Furthermore, only one operator is 

now relevant ( A < 4) while the other is irrelevant ( A > 4). 

I t is also interesting to consider the asymptotic behaviour of y? 1 3 near the M = 8 

critical point for large r . Using (2.17) and (2.22) gives the following solutions [35]: 

ipi ~ a 0 e ~ r / L 

<P3 ^ ]flalle~2T/L
 + a * e ~ 2 r / L ( 2 - 2 4 ) 

This is consistent w i t h the discussion in section 1.4.2. For ao 7̂  0, <pi^ are non-

normalizable modes and therefore correspond to adding mass terms to the field 

T T h i s is very interesting since the Konishi operator is not dual to a field in gauged (or even 

type I I B ) supergravity, but is dual to a string state and has large conformal dimension in the 

supergravity (large A) limit. 
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theory Lagrangian. However, depending on the choice of a\, a particular scalar V E V 

can be switched on as well. We shall discuss this a b i t later in section 2.2.4. First 

of all we shall consider the holographic RG flow to the Leigh-Strassler conformal 

field theory, i. e. switching on a mass for $ 3 wi thout setting any scalar VEVs to be 

non-zero. 

2.2.3 The pure mass deformation 

We now wish to study the holographic RG flow f rom the M = 8 fixed point to 

the Af = 2 fixed point described above. In the language of the renormalization 

group, this w i l l involve switching on relevant operators in the U V (i.e. perturbing 

the field theory Lagrangian) and then evolving down in energy to the IR. In order 

to approach a fixed point in the IR, the operator governing the RG flow w i l l then 

need to be irrelevant there. 

From now on we w i l l find i t easier to write in terms of slightly different variables 

in order to match the literature. They are 

X(r) = ¥ > i ( r ) , (2.25) 

p(r ) = ea(r) , where a(r) = -^=<p3(r) . (2.26) 
V6 

The flow equations in (2.17) and (2.18) are then: 

I = h % = ^ ( A c o s h ( 2 * ) - 3 ) + cosh(2*) + 1 ) 

^ = - ^ = - ^ 2 ( P 6 ( c o s h ( 2 x ) - 3 ) - 2 ( c o s h ( 2 X ) + l ) ) , (2.27) 

for which no explicit analytic solution is known. However, they can be studied 

numerically. 

Rewrit ing (2.24) in terms of a and x, o n e finds that we w i l l require for r —v oo: 

X(r) ^ o o e " ^ + . . . , a -> ^ e ~ ^ L + + . . . (2.28) 

In order to study the required flow numerically, one might make various choices 

for the in i t i a l conditions, ( a 0 ,G i ) , and then find the corresponding solution using 
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(2.27). However, one doesn't know the correct in i t i a l conditions required to reach 

the Af — 2 fixed point as r —> oo. In fact physically inequivalent solutions of (2.27) 

are parametrized by 

a = ^ + \\\ogaQ. (2.29) 
do » o 

Even wi th this knowledge, f inding the correct numerical value for a is quite hard. 

Instead, i t much easier to start at the infra-red fixed point (as r —> —oo) and 

integrate up to the ultra-violet. Since we know that the flow should approach the 

I R fixed point w i t h an irrelevant operator, the functions ( a ( r ) , x(r)) should approach 

the fixed point f rom the direction corresponding to the A = 3 + y/7. This implies 

as r —> —oo: 

X{r)->\ log 3 - 6 0 e A r / L + . . . , a(r) -> | log 2 - ^ b 0 e ^ L + ... , 

where A = ^ ( v

/ 7 - l ) . (2.30) 

Using this, one can then easily find the numerical solution and in fact find that 

ac ~ —1.4694 corresponds to the flow to the fixed point. 

2.2.4 The mass deformation with non-zero vevs 

The critical value [35] ac ~ —1.4694 represents the particular flow which starts 

out at the M = 8 critical point and ends precisely on the M = 2 crit ical point. 

In [77] i t was proposed that the solutions w i t h a > ac describe the gauge theory at 

different points on the Coulomb branch of modul i space. This makes sense because 

f r o m (2.24) one can see that i t possible to vary a i which controls a normalizable 

contribution to <p$. In fact the choice of a controls the vev to be switched on w i t h the 

mass deformation, w i t h a = ac specifying zero vev, i.e. the Leigh-Strassler conformal 

fixed point (specifying a vev would break conformal invariance at the very least). 

I t is important to note that the flows w i t h a / ac terminate at some finite value 

of r , r0 say. In particular they are not defined for r < ro. This is because at least 

one of the supergravity scalar fields diverges as r —> TQ. We shall see later that in 

terms of the probe calculation, we w i l l need to consider the geometry at r = r 0 . 

The solutions w i t h a < ac have the property that the gauged supergravity scalar 

potential is not bounded above. The criterion suggested in [77] implies that they 
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are unphysical. In fact these flows correspond to giving a vev to T r ( X | + X | ) , 

i.e. giving a vev to massive scalars. This is neither a sensible vacuum state nor 

supersymmetric. 

On the other hand, i f one chooses a > ac then the supergravity potential is 

bounded above and the solutions are physical. These correspond to giving a vev to 

Ti(Xi+X2+X$ + Xl), which is a perfectly valid choice of vacuum state on the f u l l 

moduli space of the SU(N) Leigh-Strassler theory. Some different flows, including 

the flow to the fixed point are presented in figure 2.1. 

I t w i l l be very interesting to see later in section 2.4 how the probe calculation 

can determine between physical and unphysical RG flows. 

0.6 

/ 

<Pl 

\ 

±0.4 

±0.6 

±0.8 
±0.2 ±0.4 

<p3 

Figure 2.1: A contour plot of W((pi,(p3) w i t h some physical and unphysical RG 

flows superposed. The flows along the <^3-axis (starting at the origin and tending 

to <p = ± o o ) are physical, and in fact are a special case of the Af = 4 Coulomb 

branch. The flow to the saddle point is the Leigh-Strassler flow. Those to the right 

are physical; those to left are unphysical (see text) . 
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2.2.5 The ten dimensional solution 

The f u l l l i f t to ten dimensions of the five-dimensional solution found in [35] was 

carried out by Pilch & Warner [82], after parts of the solution had been found 

previously [64,97,98]. The Einstein metric is 

(2.31) 

where dsf 4 is as in equation (2.16) and 

f t 2 I " . P 6 cos2 9 
ds2 = L2 

p 2 cosh 2 x 
sin2 9 l 2 

-d<f>2 + 

d9' + (a2 + a\ + o f ) 

X1 

p 6 s inh 2 x 
(cos 2 9a 3 - s in 2 6d<j>)' (2.32) 

wi th 

^2 = X{12 cosh x 

Xl = cos2 9 + p 6 s in 2 9 (2.33) 

The <7j are the standard SU(2) left-invariant forms, normalized such that df2 3 = 

OiOi is the metric on the unit 3-sphere (see appendix A ) . 

As mentioned in section 2.1.1, we w i l l not require the f u l l fo rm of the two-form 

gauge fields B(2) and C( 2 ) . We w i l l need, however, the explicit fo rm for the R-R four 

fo rm potential C(4), to which the D3-brane naturally couples. The part ial derivatives 

of this field, which appear in the field strength, are presented in [82], and checks are 

made there on the mixed second derivatives in order to ensure consistency. However, 

i t is possible to integrate the equations to yield a closed fo rm for Ca^cd: 

rW -
^abcd — 

n4A 

2gsp' 
[p 6 s in 2 0(cosh(2 X ) - 3) - cos2 0(1 + cosh(2x))]£a6Cd . (2.34) 

Finally, the dilaton, $ , and the axion, C 0 , are constant throughout the ten-dimensional 

solution. 

Symmetries of the Pilch-Warner solution 

I t is useful at this point to check that the symmetries of the Pilch-Warner solution 

match those of the field theory i t is supposed to be dual to. 
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The solution should preserve 4 real supercharges in order to correspond to N = 1 

supersymmetry in the field theory. Showing the existence of K i l l i n g spinors should 

reduce to requiring that x ( r ) a n d p(r) satisfy the flow equations (2.27). Although 

(to my knowledge) this calculation has not been done, the five-dimensional solution 

is supersymmetric by construction (indeed this is how equations (2.27) were found). 

However, i t has been checked that the ten-dimensional solution corresponding to 

the Leigh-Strassler fixed point [98] has M = 2 supersymmetry — this is sensible as 

the field theory is M = 1 superconformal. 

The metric has an SU{2) x U(l) x {7(1) global symmetry. The 5/7(2) acts on the 

Oi in the natural way, while one of the ?7(l)s rotates o\ and <t2 into each other. ( I t 

shifts the coordinate f3, as described in appendix A. ) The other {7(1) is generated 

by 8$. However, only a linear combination of the two U(l)s is a symmetry of the 

two-form gauge fields. I n particular, 

C ( 2 ) = e _ , '*(aid0 - a2<73 - a3d<f>) A fa + ia2). (2.35) 

has a U(l) symmetry under 

<p ->• <t> + i> , a i + i < 7 2 - » e ^ ( ( 7 i + i < r 2 ) . (2-36) 

Therefore, the f u l l solution only has an SU(2) x U(l) global symmetry, as i t should. 

2.3 Probing the Leigh-Strassler R G flow 

2.3.1 The probe moduli space 

As mentioned in section 2.1, i t is quite natural to probe asymptotically AdS$ x 

M supergravity duals w i th a D3-brane. Indeed, the Maldacena conjecture was 

motivated by considering the near-horizon geometry of a stack of N conincident 

D3-branes. The dynamics of these branes is governed by an SU(N) gauge theory. 

In flat space, separating a single D-brane f rom the stack breaks the gauge group to 

SU(N — 1) x f 7 ( l ) by the Higgs mechanism. Therefore in the case of AdSs x S5 i t is 

reasonable to suppose that pu t t ing a probe brane in the geometry again corresponds 
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to breaking the gauge group to SU(N — 1) x U(l). The probe interacts w i t h the 

other branes via the background geometry produced by them. 

More precisely, the action presented in (2.8) only contains the transverse scalars 

and the U(l) gauge field that "live on" the probe. I t does not explicit ly contain the 

degrees of freedom associated to the rest of the original SU(N) theory and so we 

should interpret i t as a low-energy action in which the massive W-bosons have been 

integrated out. That is, i t should not be valid at energies above the mass of the W -

bosons, which is set by the size of the vev given to the probe. (This expectation value 

exactly corresponds to the position of the brane in its six-dimensional transverse 

space.) I n fact we shall argue that the Lagrangian in (2.8) can be interpreted quite 

sensibly as a low energy action. 

Given these ideas, we can probe the ten-dimensional supergravity solution corre­

sponding to the Leigh-Strassler flow described in section 2.2.5. In this background, 

(2.8) becomes 

C = T -V — ~ n 2 e 2 A G m n d a y m d a y n - r 3 s in 2 0e4V(cosh(2x) - 1) , (2-37) 

where we have only kept the terms involving the scalar fields. The first difference 

f rom the case of a D3-brane in AdS$ x S5 is that now we have a non-tr ivial potential 

given by 

V = r 3 s in 2 0e 4V (cosh(2x) - 1) . (2.38) 

The potential is always non-negative and vanishes for 6 = 0. This condition defines 

a modul i space of inequivalent vacua 8. The metric on modul i space is given by the 

kinetic term evaluated on this space: 

d s 2 = Tje™ | c o ^ x d r 2 + L y { c Q s h 2 x ^ + a , + ^ | ( 2 3 9 ) 

As r —> oo one finds that x —> 0, p —» 1 and so this tends to a flat metric on R 4 . For 

r —> —oo the supergravity scalars x a n d p again tend to constant values, so near 

the origin the metric is not flat and in fact has a conical singularity. 

8 T h e r e is a possibility that the r-dependent function in (2.38) could vanish for some r — it does, 

but only at r = —oo, where the kinetic term vanishes as well. T h i s vacuum is actually included in 

the space given by 6 = 0. 
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We w i l l see in section 2.3.2 that by a suitable change of coordinates i t is possi­

ble to make some interesting gauge theory predictions using this result. However, 

before doing that, let us consider some of the more qualitative features of the probe 

Lagrangian (2.37). 

To understand the probe result we should consider the energy scales in the prob­

lem. First, there is the mass given to $ 3 , let us call i t ra3. Secondly, there is the 

mass of the W-bosons that are integrated out in the process of obtaining the La­

grangian for the probe theory. This is proportional to the size of the vev that breaks 

SU(N) -> SU(N - 1) x £7(1), i.e. \(X% where Xi is the vev of the brane. Finally, 

there is the energy for which the effective action is valid at or below, A, say. As 

argued above, we should have A < | (A" ! ) | . 

Al though the ten dimensional geometry of the flow solution becomes arbi t rar i ly 

close to that of pure A d S 5 x S5 for large r , "the U V " , the physics of the D3-brane 

probing the flow geometry does not approach that seen by a D3-brane in pure 

A d S 5 x S5. In fact, for large r the potential behaves like 

V ~ e 2 r / L s in 2 9 . (2.40) 

In fact we can interpret the behaviour of V in equation (2.40) as a mass term for 0 3 

w i t h 1031 ~ e r / L s i n # . 

This is slightly counterintuitive — one might expect that for large positive r , 

that a probe could not tell the difference between normal A d S 5 x S5 and the Pilch-

Warner geometry 9 . Indeed, i f placing the brane at large r meant that (2.37) was 

valid at high energies, then perhaps one would expect to see behaviour similar to 

the Af = 4 theory. But as emphasized above, the action is really a low-energy action 

and considering the brane at large r is setting \(Xl)\ to be large. 

However, one should note that for large r that the kinetic term in (2.37) does 

indeed tend to a flat metric on R 6 — the result found for pure A d S 5 x S5 in section 

2.1.2. How we can interpret this f rom a field theory point of view? Taking r to 

be large means that we are setting {(X1)] to be large — therefore the energy scale 

at which the gauge group is broken to SU(N — 1) x £7(1) is larger than the mass 

9 See [57-59,99,100] for some discussion of the issue of probes in AdS and holography. 
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m 3 . I n terms of obtaining a low-energy action by integrating out massive fields this 

means that the massive W-bosons are integrated out first at an energy where the 

mass term can be neglected. This leaves a Lagrangian of the form 

~ Irnl^h - - ^ F a b F a b + ^ F a b F a b . (2.41) 

which is indeed of the fo rm that we see. 

Wha t happens i f we now take r (roughly | ( X l ) | ) to be small? This implies 

that in obtaining the low-energy action, the mass term for $ 3 w i l l be integrated 

out before the massive gauge bosons. I.e. the gauge theory w i l l flow to the Leigh-

Strassler fixed point first, and then be broken to SU(N — 1) x U(l). So in this case 

the metric on modul i space should be that of the Leigh-Strassler theory. However, 

there is now a slight problem in interpreting the potential, V. Since the action is 

valid at energies at or below A < < ra3, (/»3 should have been integrated out. 

However, the brane is s t i l l able to fluctuate in the "</>3" directions 9^0. Therefore 

the interpretation of these directions is unclear 1 0 . Having mentioned this, f rom now 

on we shall concentrate on the Lagrangian for the massless fields $ i ) 2 , Aa only. 

The effective coupling and inherited duality 

So far, we have not mentioned the t / ( l ) gauge theory on the probe. From the 

analysis in section 2.1, one can immediately see that the effective coupling, # eff, 

and the effective theta-angle, 9eg, are both constant i n this background. I t is quite 

remarkable that this is the case — one would expect that adding a mass term to 

the Af = 4 theory w i l l cause the coupling to run. This would have implied that ge$ 

would be a non-trivial funct ion of ( X 1 ) at low energies. 

This interesting property of the Leigh-Strassler theory has been explained by a 

simple argument in [101]. Furthermore, the authors argue that the Leigh-Strassler 

theory should inherit a fo rm of duality f rom the Af = 4 theory. This manifests itself 

in the supergravity dual as the usual action of SX(2, Z ) on the dilaton and axion. 

1 0 S o m e progress has been made in interpreting the potential term by Evans, Johnson & Petrini 

(unpublished work). 
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2.3.2 A Kahler metric for moduli space 

Having considered the probe Lagrangian qualitatively, i t is sensible to ask whether 

the result for the metric on modul i space can be put into a fo rm where the connection 

to field theory is more apparent. As described in section 1.2.2, the metric on modul i 

space in an M = 1 supersymmetric theory should be a Kahler metric. In this section 

we shall show that i t is possible to put the metric into Kahler form, and furthermore 

that this constitutes a non-tr ivial test of the ten-dimensional geometry. 

The modul i space is parametrized by the vevs of the massless scalars 4>x and 

02, which we shall wri te as zx and z 2 , respectively. The Zi transform in the funda­

mental of SU(2), while their complex conjugates transform in the anti-fundamental 

representation. The SU(2) flavour symmetry implies that the Kahler potential is a 

function of u2 only, where 

Divid ing the coordinates (and indices) into holomorphic and anti-holomorphic 

(those wi th and those without a bar), i f the metric is Kahler, then i t is given by 

ds 2 = g^dz^dz" = g x x d z x d z x + ^ d - Z i d ^ + g 2 x d z 2 d z x + g22dz2dz2 , (2.43) 

where 

where the primes denote differentiation w i t h respect to u2, and we have used the 

fact that K only depends on u2. Notice that since 

U2 — ZXZX + z 2 z 2 . (2.42) 

9m> = d^dvKiu2) 

= d,(dp(u2)K') 

= d ^ i u ^ K ' + d ^ d ^ K " , (2.44) 

di(u2) = zl and <%(u2) = z, (2.45) 

we have 

p i ! = dxdxK = K' + zxzxK 

0i2 = zxz2K' (2.46) 
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and so on. Therefore the metric can be wri t ten as 

ds 2 = (dzidzi + dz2dz2)K' 4- { z i d z l + z2dz2)(zidzi + z2dz2)K" . (2.47) 

Now notice that (see appendix A ) 

du = ^-(z~idzi + z2dz2 + Z\dz\ 4- z2dz2) and 

ua3 = -^-{—iz\dz\ — iz2dz2-\-iz\dz\ + iz2dz2) , (2.48) 

which is convenient, since we can write 

du + iua3 = -(zidzi 4- z2dz2) and du — iua3 = — (z\dzi + z2dz2) . (2.49) 
u u 

This implies that 

ds 2 = (K' + u2K")du2 4- u2{K'(a2 + a2) 4- (K' + u2K")a2) . (2.50) 

2.3.3 Comparison with probe result 

The result derived using the brane probe should be wr i t ten out at this stage, to 

give: 

ds2 = ^ S ^ ^ e ^ r 2 + L2p2e2A(cosh2

Xa2 + a2 + a2)^ . (2.51) 

The explicit SU(2) invariance in this equation is that of the flavour symmetry, so 

in order to put the metric into Kahler fo rm we need a change of radial coordinate 

relating r and u. 

Comparing equations (2.50) and (2.51) we obtain three equations: 

(K' 4- u2K")du2 = l l S ^ L e 2 A d r 2 } ( 2 5 2 ) 

2 pl 

u2(K' + u2K") = ^ L V e ^ c o s h 2 * , (2.53) 

U2K> = IiL2p>e™ . (2.54) 

Using the first two equations we find 

d r 2 = ^ l u 2 . (2.55) 
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A solution is: 

„ = £ C / W / L j W i t h ^f = ~ . (2.56) 
a' dr fr 

The latter is always positive and so defines a sensible radial coordinate u. 

We can now define K by the differential equation (2.54): 

dK r 3 L V e ^ 
K = d R ) = 2 ~ < ( 2 - 5 7 ) 

and we have to check that such a K obeys equation (2.53), which can be written as: 

u2J^r(u2K') = ^L*p2e2A cosh2

 x . (2.58) 

From the definition of u in equation (2.56), we have that: 

d hp2 d 
d(u 2) 2u2 dr 

and so we need to show 

(2.59) 

^ 2 ~ h { v ? K , ) = TiL2p2e2A c o s h 2 x • ( 2 - 6 0 ) 

From our definition of K in equation (2.57) this amounts to requiring us to show 

that: 

^ ( ^ e M ) = i C

M c o 8 h 2 x , (2-61) 

which seems quite unlikely. Amazingly, performing the derivative on the left hand 

side and substituting the flow equations for p(r) and A(r) listed in (2.27) gives 

precisely the result on the right. This demonstrates the existence of Kahler potential. 

In fact, using the equation (2.59) we can write an alternative form for the definition 

of K, to accompany (2.57), which is: 

~ = r 3 Le M < r > . (2.62) 
d?-

After some thought, one can write down an exact solution to the equation (2.62) 

for the Kahler potential, for all r. Up to additive constants, it is: 

K = ^ l ( / + n . (2,3) 
4 V P 
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2.3.4 A few asymptotic results 

Large u 

For large u {i.e., in the limit of large vevs), p ~ 1 so that, from equation (2.56) we 

have u ~ jfr exp(r/L), and to leading order: 

ds 2 = Q „ 2 2 (dzidzi + dz2dz2) • (2.65) 

which implies the expected flat metric: 

1 

We can also look at next-to-leading order corrections to the Kahler potential. Re­

calling the asymptotic solutions for a and x m equations (2.28) and also the flow 

equations (2.27) one can show: 

, 2 

so that 

A(r) ~ y - °^e-2r'L + 0{e-ir'L) , (2.66) 
L 6 

where we have now discarded terms of order exp(—2r/L) as well as constant terms. 

Similarly, the corresponding expression for u2 is 

^ i L f e ^ + i ? . ! ) . ( 2 . 6 8 ) 

Returning to the Kahler potential, we find: 

\T? / r v ' 2 7 , 2 \ n 

(2.69) K — 
~ 8TTV YM 

9 alL2 , / a'2u2 

ul In ' 
' 2 *"» L2 

a' 

This expression looks similar to that which one might obtain from a one-loop 

calculation in field theory. To compare with such a result we need to know how a2, 

corresponds to the mass for <3>3. To deduce this we can look at the probe result at 

large u more closely. 

To leading order, we have 

L 2 

a1 
k i | 2 + N 2 = - ^ e 2 r / L cos2 9 , and 

M 2 = ^e2r?Lsm2e, (2.70) 
a 
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and so 

C = (dazxdazx + daz2daz2 + daz2daz2 + ^ k 3 | 2 ) , (2.71) 

where the asymptotic solution for a and for x have again been used. The mass of 

$ 3 is therefore 

m 3 = ^ . (2.72) 

Inserting this into the Kahler potential, we obtain 

K^^w/~^H~ir)- (2'73) 

I t would be very interesting to match this result to one obtained using conven­

tional field-theoretic techniques. Indeed, using the result of [102] (see also [103,104]), 

one finds that the one-loop correction to the Kahler potential is of the following 

form 1 1 : 

— < - ) 

where c and k are real constants. Although I have not matched the coefficients of 

(2.73) and (2.74), i t is encouraging that the result based on a perturbative approach 

appears to give a result that is consistent with that derived from the probe result. 

Small u 

For small u, p —» 2 1 / 6 and we have 

L 
u ~ a ' ^ i ^ l ) ' ( 2 ' 7 5 ) 

This gives us the Kahler potential: 

Q / 2 / 2 \ 4 / 3 -i o / i2\1/3 

2 2V3 \ L 2 ) 8 T T 2 5 2 M 2 5 / 3 \ L 2 ) ^ > > ^ ' ^ 

1 1 One should note that corrections such as u2 In u2 are not expected because the Kahler potential 

should return to its Af = 4 form for 7713 = 0. However, this requirement does not preclude correction 

terms such as m^u or m 3 u l n u 2 . It is interesting to note that if one expands the perturbative 

prepotential for the M = 2 mass-deformed theory considered in [79,105,106], then one obtains a 

similar correction to that in (2.74). 
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and so the metric in the IR is: 

ds2 ~ dr/" "3 O2 +*2 ( a f + ° l + H) • ( 2 7 7 ) 

Therefore, near the origin of moduli space the metric has a conical singularity. This 

may seem rather strange, but we will see that this is quite reasonable based on a 

simple (classical) scaling argument. (Furthermore, at the origin of moduli space the 

unbroken gauge group is the ful l SU(N), so that the probe approximation is not 

really valid.) 

2.3.5 Scaling dimensions 

Now that we have found coordinates on the probe moduli space that appear to 

be suitable for field-theoretic considerations, we can perform a consistency check 

on them. As described in section 1.2.5, the scaling dimensions of the fields fa are 

well-defined at the conformal fixed points of the RG flow, and are related to the R-

charges. We shall find they are easily reproduced from the supergravity description. 

First, we will find the correct coordinates to cover the space 9 = 7r/2, which 

corresponds to z\ = z^ = 0. The probe metric is 

ds2 

-2 

= | p 4 c o s h 2

X e 2 ' 4 ( d r 2 + ^ d ^ 2 ) . (2.78) 

Since 0 < <j> < 2n, we should take z3 = u>(r)e!<^. With this choice of sign z 3 has 

charge 1 under the R-symmetry (2.36), whereas Z\ and z2 both have charge 1/2. 

These charges match those stated in section 1.2.5. I f we then put the metric into a 

natural form, ds 2 = gdz^dz3 for some function g, we find that dw/dr = pAw/L. 

To find the scaling dimensions we notice that the supergravity solution and probe 

action have the following scaling symmetry: 

x->-x, eA -> aeA . (2.79) 
a 

At either end of the RG flow the gauge theory is approaching a conformal fixed 

point and we can find the scaling dimensions of the Zj. For instance, at large r, both 

u.w ~ -^eA, so that 

x —>• —x , Zi —> azi , (2.80) 
a 
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for i = 1, 2,3. Therefore the each have A = 1 in the UV l imi t 1 2 . In the IR limit, 

r ->• -oo, u ~ (e- 4) 3/ 4 and w ~ ( e A ) 3 / 2 so that 

a: -> , 2i > 2 -> a 3 / 4 z l ! 2 , z 3 « 3 / 2 ^ 3 , (2.81) 

and the correct scaling dimensions are recovered. 

Having found a very simple form for the Kahler potential (2.77) for small u, we 

should perhaps ask ourselves whether it can be derived by a different method. I t 

can, by a rather heuristic scaling argument. 

From the SU(2) flavour symmetry of the theory, we know that K is a function 

of u2 only. The scaling dimension of u at the UV end of the flow is 1; at the IR end 

of the flow it is 3/4. Now, in the action the scalars (pi have the following term 

S ^ = J d 4 x d^d^Kdaepd^ (2.82) 

For S to be invariant under the scaling symmetry, classically K(u2) must have scaling 

dimension 2. Therefore for large u, K ~ u2. Similarly for small u (at the IR end of 

the flow solution), u has scaling dimension 3/4 and so K ~ (w 2 ) 4 / 3 . This matches 

the result found in section 2.3.4. I t is therefore possible to recover the form of the 

Kahler potential at either end of the flow from a classical scaling argument. 

2.4 Probing the Pilch-Warner geometry with non­

zero vevs 

Having studied the behaviour of the probe brane in the Pilch-Warner geometry 

(corresponding to a pure mass deformation) and found a Kahler metric on moduli 

space, we now turn our attention to the other flows discussed in section 2.2.4. 

2.4.1 Physical R G flows 

First, consider the flows for which a > ac, that are physical. These correspond to 

giving a mass to 03 = X5 + iX& (and its superpartner) and switching on a vev for 

1 2 As mentioned before, for the brane probe the large r limit is a limit of large vevs. However, 

one can read off UV properties because the gauge group is broken at high energies. 
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Tv(X2 + X\ + X2 + X j ) . For these flows, the geometry terminates at some finite 

value of r, TQ say. As r —>• r 0 , one finds the following: 

X(r) -> 0 , p(r) -> oo , A(r) -> -oo , (2.83) 

such that the following holds 

e 4 V(cosh(2 X ) - 1) -> 0 , e V -> C # 0 , (2.84) 

where C is a constant. We will see that the behaviour of these function gives a 

sensible result for the probe as r —> r 0 . Indeed, e 4 Ap 4(cosh(2x) — 1) appears in the 

expression for V in equation (2.38). Since the potential vanishes for r = r0 (where 

the supergravity geometry terminates), we have a second locus that did not appear 

in the pure mass deformation. Therefore the probe now has a moduli space made 

up of two loci: 

Locus I : 9 = 0, 

Locus I I : r = r0 . (2.85) 

The form of the metric on Locus I is exactly the same as in section 2.3.2: 

ds5 (2.86) 

The choice of coordinates to make this Kahler is also the same, and equation (2.65) 

holds for large u. 

As r -> r 0 , one finds the following 

TzCL2

 2 2 2 T3CL2

 2 l n 

inn 2 v 1 2 

So locus I is no longer a ful l R 4 — it is an R 4 with a ball of radius 

r3CL* 
(2.88) 

2 

removed. 

On locus I I , the kinetic term in the Lagrangian implies the following metric on 

moduli space 

r3CL2 

ds' -(sin2 0 d r + cos2 9(af + a\ + CT|)) . (2.89) 
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I t is important to note here that although the ten-dimensional metric contains p{r), 

which diverges as r —>• r 0 , the metric on moduli space is well-behaved. Furthermore, 

this locus is again four-dimensional. Indeed, because 0 < 8 < ir/2, one can see 

that locus I I fills out the ball not included in locus I ! In particular, we can change 

coordinates to u = u 0cos#, with u0 = ^e^To^L, so that the definitions of u match 

at the intersection of the loci. This gives 

ds' 

where 

7 (dzidz! + dz2dz2) , (2.90) 
8 7 r 2 ?YM 

7 = lim p2e2Ae2f/L . (2.91) 
r-»ro 

The metric can obviously be put into Kahler form because i t is simply a flat metric 

on E 4 . The Kahler potential in this case is given by 

T1CT2 

K= ^ ^ - ( 2 c o s 2 0 - l ) , (2.92) 

where we have included a constant term so that the two definitions of K also match 

on the intersection of the loci. 

I t is interesting to notice that although the overall constant factors in both and 

(2.90) and (2.65) are not physical (because both can be absorbed into a redefinition 

of u), their ratio, 7, is. It is easy to show using the flow equations that the function 

p2e2Ae~2ML has non-negative r-derivative. This implies that 0 < 7 < 1. In fact it 

appears (from brief study of numerical solutions) that 7 is monotonic as a function 

(a - a c). 

From the above analysis i t is quite clear that the N D3-branes that "source" the 

ten-dimensional geometry are now located at the intersection of the two loci, i.e. on 

the 5 3 defined by r = r 0 , 9 = 0. This is quite sensible because, as described above, 

a non-zero vev has been given to the operator Tr(X2 + X\ + X2 + X2). 

In the above analysis we have found a coordinate u such that u2 = z\Z\ + z2z2 

and the metric is Kahler over both loci. The Kahler potential is continuous across 

the intersection, as is the metric — this implies that dK/du and d2K/du2 are 

continuous there as well. However, it is seems that the higher derivatives of K, 

d^K/du^n\n > 3, are not continuous there. In fact, on locus I I these derivatives 
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are zero (since the potential is quadratic in u) whereas they remain non-zero on 

locus I as r —> r 0 . These discontinuities are familiar in spacetime physics where 

there is a shell of matter 1 3, but their direct interpretation in terms of low-energy 

lagrangians and renormalization theory remains to be clarified. 

In the case of the unphysical flows with d < d c , one again finds that the flow 

terminates at some finite r = r 0 . In these cases one has 

Numerically, one can find that, as for the pure mass deformation, the moduli space 

is given by 6 = 0 only. However, for the these flows the metric on moduli space 

diverges, which seems to be indicative of unphysical behaviour. Therefore, the probe 

calculation can correctly discriminate between physical and unphysical RG flows. 

2.5 A more general A/* = 1 flow in D = 4 

2.5.1 The ten-dimensional solution and probe result 

We shall now study a slightly more general solution, presented in [108], that allows 

a new scalar field, /3 = log v, to vary. This field corresponds to the operator Tr(A^2 + 

X 2 — X 2 — X%), and so in a way similar to that described before, the holographic 

RG flow will now have different vevs for T r ( X 2 + X 2 ) and Tr (Xf + X}). This breaks 

the SU{2) x U(l) global symmetry to U(l)2. 

The new metric will again be of the form given in (2.31) and (2.16), while the 

warp factor is given by [108]: 

2.4.2 Unphysical R G flows 

x{r) —>• oo, p(r) —> - co , A(r) —¥ - co . (2.93) 

coŝ  6 
Q = cosh x (v cos 4> + v sin <j>) + p4 sin 2 9 (2.94) 

These have been studied in the enhancon scenario [107]. 
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and the deformed sphere metric is given as follows [108]: 

L2 

ds2

5 = — [p~4 (cos29 + p6 sin 2 0 (*>"2 cos2 + ^ 2 sin2 (f>)) d92 

+p2 cos2 6(v2 cos2 ^ + V 2 sin 2 </>)d</>2 

—2p2(v2 — v~2) smO cos# sin<f>cos</>d0d^> 

+ p 2 cos2 0(zv~2 cos2 0 dtpl + v2 sin 2 </> d<p2) +p~4 sin 2 0 dtp2] 
L 2 

sinh 2 x cosh2 x(cos2 0(cos2 <f>dipx - sin 2 <j>dtp2) - sin 2 6d</?3)2(2.95) 

This metric has a U(l)3 symmetry generated by the Killing vectors d/dtpi, d/d<p2 

and d/dcps. However, the two-form fields of the solution are only invariant under 

shifts of the ipi satisfying 5ip\ + 5<p2 + 5(p3 = 0, so the actual symmetry is U(l)2. 

The superpotential for this flow is given by [108]: 

W = ip 4 (cosh2x - 3) - ^ { v 2 + z/- 2)(cosh2x+ 1) , (2.96) 

which generalizes the superpotential in equation (2.19). The equations of motion 

for the supergravity fields are: 

t = VL"^ = I ^ ; ( 2 A c o s h 2 x - 3 ) + (^ + ^ ) ( c o S h 2 X + l ) ) , 

dv 1 9dW 1 . , n „. . y 9 , 

57 = 2 l ^ V = - i v ( c o s h 2 ' : + 1 M ' '—' »• 
dx 1 cW sinh2x , 6 , 2 . - 2 n \ 

1 7 = - ^ ^ = - ^ ( p 6 ( c o s h 2 x - 3 ) - ( i . 2 + ^- 2)(cosh2x + l ) ) .(2.97) 

The authors of [108] probed the metric with a D3-brane, and found that the 

probe potential V was the same as in equation (2.38). In the following, we shall 

consider a RG flow from the M = 8 critical point such that for large r each of a, ft 

and x a r e small and positive. Then for some r 0 one finds that as r —> ro'-

X(r) ->• 0 , p(r) ->• oo , A{r) -> - co , (2.98) 

as for the flows considered in section 2.4.1, and 

v ->. UQ ^ 0 , e 4V(cosh(2x) ~ *) ~>
 0 > e 2 V ~> C + 0 • (2-99) 
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where now both u0 and C are constants. As before we have two loci, given by (2.85). 

The metric on locus I is now 

ds2 = ~r3e2A [C(p~2 cosh2

 X d r 2 + L2 p2d(f>2) 

+L2p2(u~2 cos2 (j> dy\ + v2 sin 2 <j> dpi) 

+LVs inh 2 xC" 1 ( cos 2 ( / ) d^ 1 - sin 2 <^d^ 2) 2] , (2.100) 

where £ = ( i / 2 cos2 <f> + v 2 sin 2 0). The metric for locus I I is: 

d s 2 = Z 3 C Z ^ ^ c o g 2 ^ + ^ ^ 

II ^ 

+ cos2 0{vl cos2 0 + ẑ ~2 sin 2 4>)d(j)2 

—2(̂ o — ^ 2 ) sin 9 cos0 sin <f> cos 0d# d0 

+ cos 20(f o

- 2cos 2(/>dv? 2 + i / £ s i n 2 ^ d ^ ) ) . (2.101) 

2.5.2 Finding a Kahler potential 

As in section 2.3.2, we would now like to find a set of coordinates such that the 

metric on the probe moduli space is a Kahler metric. In order to do this we will 

use the U(l)2 global symmetries of the problem to impose conditions on the Kahler 

potential. Since cp3 does not appear in either (2.100) or (2.101), the U(l)2 symmetry 

is generated by constant shifts in <pi and <p2. In the supergravity solution presented 

in section 2.5.1, one has 0 < ip\t2 < 2n. Therefore, i t quite natural to make the 

following ansatz: 

Z x = u(r, (f))eil(n , z2 = v(r,(f))e-ltp2 , (2.102) 

with 

K = K{zxzx, z2z2) = K{u2, v2) . (2.103) 

This results in the following form of the Kahler metric: 

ds 2 = ^ ( d u 2 + u2dtf)(udu)2K+-^(dv2 + v2dip2)(vdv)2K 
4u 4i> 

+-!- {dudv - uvd<f2df2) (udu)(vdv)K . (2.104) 
Li (Jj (J 
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We can compare this to the metric on locus I , (2.100), to obtain the following: 

\{udu)2K = ^e2AL2p2(v-2 cos2 </» + s i n h 2

X r 1 cos4 0) , 

\{vdv)2K = T^e2AL2

P

2{u2sm2

(i> + smh2xC1^^) , 

Uudu){vdv)K = ^e M L 2 p 2 s inh 2 xC" 1 cos 2 ( / ) s in 2

( / ) . (2.105) 

Given the form of the l i f t ansatz that was used in [108] to find the ten-dimensional 

supergravity solution, 1 4 it is quite natural to make a further ansatz: 

u = F{r) cos $ , v = G(r)sm<j). (2.106) 

I t is then straightforward to show that F(r) and G(r) must satisfy 

dF _ _v*_F dG _ 1 
dr Lp2 ' dr LpPv 

In fact using equations (2.104 - 2.107), it is possible to reproduce the probe 

metric (2.100). However, we still need to check that equations (2.105 - 2.107) are 

themselves consistent. The first step is to note that 

8$ = — tan <j)(udu) + cot <j)(vdv) , (2.108) 

so that, for instance, 

dr(vdvK) = 2r3Le2A sin 2 0 cosh2 x , 

d^vdyK) = 2T3L2e2Ap2v2 cos <p sine}) . (2.109) 

This implies that 

vdvK = r3L2e2Ap2u2 sin 2 </> + b , (2.110) 

1 4 T h e lift ansatz involves deforming the metric for a 5-sphere in K 6 . The authors of [108] choose 

the sphere to be parametrized by 

Ui = cos # cos ̂ e'*'1, 

U2 = cos#sin0e~ t v > 2, 

u3 = sinOe-^3, 

so on locus I, ui = cos</>eI¥'1 and ui = sin ^e - 1 ^ 2 . 



2.5 A more general M = 1 flow in D = 4 64 

where 6 is a constant. Repeating this process for uduK and then K itself, one finds 

that 

K = TlL2e2A (pV - sin 2 <f> + ^ (p 2 ^~ 2 + P~ 4)) + alog(tt) + b\og{v) + d , 

(2.111) 

where a, b and d are constants. As before, the equations of motion (2.97) were 

needed in order to find a solution. As in section 2.3.3, the required formulae are 

relatively neat: 

dr dr L 

< J £ p . = ,2,12) 

This implies a solution for A as a function of p and v when v =̂  1: 

e2A = a , 2

f c _ 2 , , (2.113) 

where A; is a constant. Using this expression and setting a = b = d = 0 gives a 

relatively simple form for the Kahler potential: 

* = 2 i W * + 5 ^ ( £ + I | . (2,14) 

It is interesting to note that this Kahler potential also satisfies equation (2.62) 

(because we have set a = b = 0). 

Extension to locus I I 

Having found a set of coordinates so that the metric on locus I of the moduli space 

is Kahler, we can now do the same for locus I I . As in section 2.4.1, the coordinates 

and the Kahler potential should match across the intersection of the two loci. 

If we again use the ansatz in (2.102) then the general form of the metric in 

(2.104) is still valid. Comparing (2.104) with the probe metric on locus I I (2.101), 

results in the following expressions: 

(udu) K = o 2 cos 9 cos cj) , 
*'o 

l(vdv)2K = T 3 C ^ ° 2 c o s 2 f l s i n 2 0 , 

(udu){vdv)K = 0 . (2.115) 
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Given the form of u and v on locus I , and our experience of the simpler example in 

section 2.4.1, it is quite reasonable to propose the following: 

U = UQ C O S 9 cos (j) , 

v = i>ocos#sin0, (2.116) 

where u0 and VQ are chosen to match the definitions used on locus I . Given this 

ansatz, one can reproduce (2.104) using (2.115). Furthermore, i t is straightforward 

to find a Kahler potential: 

K T3CL/2 / 1 o „ o , o 1 n • 1 1 1 
—7; cos 9 cos 0 + cos 9 sin <b x 

2 V"o 2^ 2 

" X vo 2l/oJ 

where again the constant term has been chosen so that the Kahler potential is 

continuous across the intersection of the two loci 1 5 . 

2.6 The Coulomb branch of N = 4 gauge theory 

In this section we shall consider a rather simpler situation from the point of view of 

gauge theory. Instead of deforming the J\f = 4 theory by adding a mass term to the 

its Lagrangian, the supergravity duals we will look at correspond to just giving non­

zero vevs to the scalar fields16, X\ As discussed before, this separates the branes in 

their six-dimensional transverse space. Firstly, we shall briefly present the general 

type I IB supergravity solution that corresponds to the N = 4 theory away from 

the superconformal point on its moduli space. We shall then discuss a subclass of 

solutions found using five-dimensional gauged supergravity. 

1 5 I t is now natural to ask whether vo = "ô o* s o t n a ' t n e m e t r i c i n (2.117) is flat in (21,^2)-

coordinates. It appears that this is not the case. 
1 6More precisely, vevs are given to gauge-invariant operators constructed out of the X1. 



2.6 The Coulomb branch of M = 4 gauge theory 66 

2.6.1 General supergravity duals 

The general solution to type I IB supergravity that corresponds to Af = 4 gauge 

theory in some vacuum on the Coulomb branch is given by [109]: 

ds 2 = H-1*rjabdxadxb + H-2(dyl + dy 2 + . . . + dy2) , 

C ( 4) = H~1dx° A dxl A dx2 A dx 3 , (2.118) 

for any harmonic function H(yi). The harmonic function is given by 1 7 

H(Vi) = L* [ d * V T ^ % , (2.119) 

J \y-y\ 

This background preserves 16 supersymmetries, which matches that of the M = 4 

gauge theory in a non-conformal phase. A D3-brane probe in this background has 

a flat metric on moduli space [44]: 

ds2 = ^(dy2 + dy2 + ... + dyl) = ^{dz^z, + dz2dz2 + dz3dz3) , (2.120) 

with a very simple Kahler potential 

K = ^{zizi + z2z2 + z3z3) . (2.121) 

Furthermore, because the dilaton is constant, the effective gauge coupling on the 

brane is constant on moduli space. 

2.6.2 The Coulomb branch from gauged supergravity 

A simple case 

Before we consider the general case of Coulomb branch flows lifted from gauged 

supergravity, let us consider the same solution that we studied in section 2.5 but 

this time setting x = 0. This is a consistent solution to the flow equations (2.97) 

and corresponds to not having a mass deformation, but to a state on the Coulomb 

branch of the theory 1 8. 

1 7 I t should be noted that we are working in the near-horizon limit, otherwise the harmonic 

function would have a 1 added which would give asymptotically flat space for large \y\. 
1 8 The solution is similar to one studied in [110]. 
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In particular, for x — 0 the probe potential is identically zero, and so its moduli 

space is six-dimensional, as expected. The metric on moduli space is given by: 

D2A 
T 3 _ 

2 
+p2 cos2 9{y2 cos2 (f> + v~2 sin 2 0)d0 2 

D S 2 = >J*_ [ F I 4 D R 2 + L 2 ( ( P - 4 C Q S 2 p + P 2 S I N 2 ^ - 2 ^ 2 ^ + y 2 ^ 2 ^ 2 

—lp^{y2 — v 2 ) sin 0 cos 0 sin </> cos </> d# d(/> 

p 2cos 20(i/- 2cos 2(/.d(p 2 + ^ 2 s i n 2 < / . d ^ ) + p ~ 4 s i n 2 0 d ^ ) ] , (2.122) 

where now f2 4 = p~2{y2 cos2 0 + i > - 2 sin 2 </>) cos2 9 + p4 sin 2 0. In this case, we have 

^ p V ) = = l ^ A

P - ' ) = ^ , (2.123) 

and using these one can show that 

ds 2 = l 2 (dzidzt + dz2d22 + dz 3dz 3) (2.124) 
° n 9YM 

where 

Z/ eAp 
zi = cos 9 cos (j>etVl , 

a1 v 

z2 = —eApv cos 0 sin <be~%H>2 , 
a' 

z 3 ~ - ^ r c o s ^ e - ^ 3 . (2.125) 
a1 p2 

So in the case where p —t oo, v —> UQ as r —>r0, the subspace defined by r = ro 

is spanned by z i , 22- This is the same as in the case studied in section 2.5 where 

a mass deformation was also made (although the definitions of z\ and z2 were, of 

course, slightly different). I t is now very clear that the geometry studied in section 

2.5 approaches the Coulomb branch geometry considered here, as r —> r0. However, 

i t is important to recognize that in the case where a mass has been given to $ 3 , the 

probe only ever has a four-dimensional moduli space — at no point does i t have a 

(locally) six-dimensional space of vacua. 

More general solutions from gauged supergravity 

The previous example of a Coulomb branch supergravity solution was found by 

lifting a solution from gauged supergravity. In fact the complete ansatz for lift ing 
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solutions from five-dimensional gauged supergravity to ten dimensions has been 
found in the case when only scalars in the 20' representation are non-zero [74]. 

The ten-dimensional solution is given by: 

ds 2 = Q2{e2Ar]abdxadxb + dr2) + ds2 , (2.126) 

= H-1/2

Vabdxadxb + Hl

0

/2(dy2 + dy2 + ... + dy2) , (2.127) 

where the harmonic function H0 is given by 

= h f i n £ < f t ^ •
 f = WF -bi)- <2'128) 

The bi are real constants and F is determined from the yi by: 

6 .2 

E n = 1 ' ( 2 1 2 9 ) 

The deformed S5 in (2.126) is parametrized by ii — (F — bi)~1/2yi and the function 

F is related to r by 

— = 2Le2A . (2.130) 
dr 

In terms of the f / j , the Kahler potential is given by 

K = Ti E y> = Ti X> - w = ? (F - E > (2-131) 
i=l i=l \ i=l / 

so that 

which is the same as equation (2.62).1 9 

2.7 An analogous Leigh-Strassler flow in D = 3 

In this section we shall study a family of supergravity solutions that are anal­

ogous to those studied in section 2.3. They have been constructed [112] using 

1 9These results have been generalized to also include the analogous cases for M2- and M5-branes, 

using the results of [111]. It was found that [2]: 

^.=TpLelP-»A, (2.133) 

where p = 2, 3 or 5. 
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four-dimensional 50(8) gauged supergravity and then lifting to solutions of eleven-

dimensional supergravity. In this way they are holographic RG flows of the (2+1) -

dimensional field theory on a stack of TV coincident M2-branes. This theory is an 

M = 8 superconformal theory with 8JV scalar fields (corresponding to the transverse 

positions of the branes) and 8iV fermionic superpartners [32]. Much of the analysis 

in this section is exactly analogous to that in section 2.3. 

In this case the probe action is given by: 

S = - T U 2 t d 3 e v / - d e t ( G a 6 ) + r M 2 f A { 3 ) . (2.134) 
J Ms J M3 

The eleven-dimensional metric [112] is written in terms of cartesian coordinates 

parametrizing an S7, Yl&i=\ X r X T = 1: 

ds2 

A 

e 

Q 

A-1(e2Air)r]abdxadxb + d r 2 ) + ds 2 , 
sinh 2 x = A 1 / 2 L dX'QjjdXJ + (X'JudX')2 

( £ c o s h X ) - 4 / 3 , 

XTQuXJ , 

diag(p" 2, p~2, p~2, p~2, p~2, p~2, p 6 , p 6) , (2.135) 

where J is an antisymmetric matrix satisfying J 1 2 = J34 = J56 = J78 = 1- The func­

tions (x{r), p(r), A(r)) are given by the following supersymmetric flow equations: 

oV = ^ ( ( c o s h ( 2 x ) + 1) + (cosh(2X) - 3)p 8) , 

£ = ^ ^ - 3 ) s i n h ( 2 X ) , 

^ = - | ^ = - i ^ ( p 8 ( c o s h ( 2 X ) - 3 ) - 3 ( c o s h ( 2 x ) + l ) ) . (2.136) 

We also require the form of the three-form potential A^, [112] : 

4 ( 3 ) = 2We3Adx° A dx1 A dx 2 + . . . , (2.137) 
1 r 6 8 

W = — (cosh(2x) + l ) J ] X / X / - p 8 ( c o s h ( 2 X ) - 3 ) ^ X / X / (2.138) 
^ L /=1 1=7 

Here the other terms in the expression for A^ do not lie in the x°, x1, x2 directions, 

and will are not needed for our purposes. 
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Inserting the background (2.135), (2.138) into the action (2.134) and expanding 

the square-root gives [112]: 

C = - T ^ . e A A - l / 2 G m n d a y m d a y n _ y { y m ) ^ ( 3 ^ 3 9 ) 

V = TM2e3A{A-V2 -2W) 
8 

= 2e3Ap6smh2x^2xIXI , (2.140) 
7=7 

2.7.1 The flow to the conformal fixed point 

As in section 2.3, we shall start by considering the flow to the conformal fixed point. 

Firstly, in the UV, we have as r —> oo, 

a a o 
X - > 0 , (2-141) 

As r —>• —oo, the theory approaches the IR fixed point, 

d A 3 3 / 4 

cosh (2 X ) ->2 , — . (2.142) 

It is possible to check that the moduli space is given by X1 = Xs = 0. Then the 

metric on moduli space is: 

D S 2 = T | 2 e A ^ ^ ! > i D R 2 + tfptdX'dX1 + L2p2 sinh 2

 X{X' J u d X J ) 2 ^ , (2.143) 

where now Yli=i X1 X1 = 1. 

2.7.2 A Kahler metric 

Having found the metric on moduli space from a probe computation, we should now 

try to rewrite i t in coordinates that are more suitable for field theory interpretation. 

As before, we first find the correct form for the Kahler metric. This time the moduli 

space is parametrized by three complex coordinates z\, zi and z 3 which transform as 

a triplet under the SU(3) flavour symmetry. This implies that the Kahler potential 

K is a function of u2 = z\2i + z2z2 + Z3Z3 only. Following the same steps as in section 

2.3.2, we find that: 

ds2 = K'(dzidzi + dz2dz2 + dz 3dz 3) + K"\zidzx + z2dz2 + z3dz3\2 . (2.144) 
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Since the Zj are rotated into each other under the SU(3) symmetry, we can write 

zx = u{Xl + iX2) , z2 = u{X3 + iXA) , z3 = u(X5 + i X 6 ) , (2.145) 

where ] C / = i ^ 7 X 1 = 1. In these new coordinates: 

6 

ds 2 = (K1 + u2K")du2 + u2K' £ dX'dX1 + u*K'\Xl J u d X J ) 2 , (2.146) 

dr Lp2 ' 
dK r M 2 L2eAp2 

where J u is defined as before. Matching this metric to that in equation (2.143), we 

find the following equations: 

(K' + u2K")du2 = ! M 2 £ ^ ! x d r 2 ) ( 2 . 1 4 7 ) 

2 p2 

u 2 K , = Z M 2 L 2 E A P 2 J ( 2 1 4 8 ) 

u4K" = ^ L 2 e V s i n h 2

X . (2.149) 

Therefore we can define u and K by: 

d " " (2.150) 

d W - 2 u> • ( 2 ' 1 5 1 ) 

This leaves us to check that equation (2.149) holds. For this to be true, one requires: 

^ ( e V ) = | e A c o s h 2

X , (2.152) 

which can be proved using the flow equations (2.136). Therefore, we have shown 

that the metric (2.143) can be put into Kahler form. In fact, as before, i t is possible 

to find an exact expression for K in terms of the functions p and A: 

/ f = M L v ( / + i ) . (2.153) 

2.7.3 The flow with non-zero vevs 

Having considered the holographic flow to the non-trivial fixed point, we can now 

study a class of flows where one switches on a vev, in analogy to section 2.4. 

I t is possible to study solutions of (2.136) numerically, such that as r —» oo, 

X —> 0 + and p —> 1 + . One finds that the flow geometry terminates at some finite 

r = r0. As r —> r0, 

X 0 , p ->• oo , A ->• -oo . (2.154) 
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Furthermore, 

e 3 V sinh 2

 x ->• 0 , e V -> C ^ 0 , (2.155) 

where C is a constant. Therefore, we again have two loci: 

Locus I : X7 = Xs = 0 , 

Locus I I : r = r0 . (2.156) 

We can put the metric on locus I into Kahler form by the change of coordinates 

described above for the flow to the conformal fixed point. As r —>• r 0 , one finds that 

ds" TM2CL* ( j ^ d X ' d X 1 ) = T-^^dQl . (2.157) 
inn 2 } 2 

where dQ| is the metric on a unit 5-sphere. Now we have the situation that locus I 

is an R 6 with an S5 removed. The metric on locus I I is given by 

r M 2 C L 2 

ds' ^ d X ' d X 1 . (2.158) 

where now we have the constraint that X1 X1 < 1, so that locus I I is a six-

dimensional ball that fills out the rest of the M 6 . 

On locus I I we should now choose coordinates so that 

2! =u0(Xl+iX2) , z2 = u0(X3 + iXA) , 2 3 = u0(X5 + iX6) , (2.159) 

so that the metric on locus I I is (up to constant factors) ^ d z j d z , . 

2.8 Summary and future possibilities 

In this chapter we have used the simple technique of considering a brane probe in a 

background corresponding to a RG flow to elucidate new predictions for the gauge 

theory. In the cases we considered the probe calculation was able to reproduce 

the expected moduli space from the ten-dimensional supergravity solution. This 

included (in the case of non-zero vevs) the probe exhibiting sensible physics20 at the 

singularity r = TQ. 

2 0 I t would be interesting to consider further how this can be interpreted in terms of holography. 

In particular, for the example studied in section 2.4.1, the radial coordinate on moduli space (which 

is an energy scale) is a non-trivial function of both r and 6. 
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We were also able to make predictions for the Kahler potential for various su-

persymmetric gauge theories. For these theories holomorphy arguments and global 

symmetries can be used to make quite powerful predictions about the form of the 

superpotential. This makes predictions for the Kahler potential rather difficult to 

check, but very interesting for that reason. 

I t is remarkable that in each case, it was possible to find relatively simple ex­

pressions for the Kahler potential in terms of the supergravity fields. (However, 

in the case of the Coulomb branch flows, the supergravity form of the Kahler po­

tential was more complicated than the very simple form in terms of gauge theory 

variables.) Furthermore, we were able to find a Kahler potential in each case that 

satisfied (2.133). I t would be interesting to understand the relevence of this equation 

in terms of gauge theory and gauged supergravity. 

Having found new coordinates, i t was quite easy to rederive the scaling dimen­

sions of the complex scalar fields at an IR fixed point. Normally in the AdS-CFT 

correspondence, finding the scaling dimensions of gauge invariant operators requires 

finding the masses of linearized fluctuations about the background which can be 

rather cumbersome. 

I t is possible to extend this type of analysis to other RG flow supergravity solu­

tions. In [2] a solution (found in [79]) corresponding to a mass deformation of the 

jV = 4 theory preserving N = 2 supersymmetry was considered. This solution had 

previously been studied in [105,106]. Again, we were able to find a Kahler potential 

in terms of the supergravity fields. Another example in [2] was that of the same 

four-dimensional (gauged supergravity) flow studied in 2.7, but lifted to a different 

supergravity solution in eleven dimensions. (Instead of using a deformed Sb metric 

the l i f t ansatz uses a deformed T 1 ' 1 . ) 

An entirely natural question to ask is whether the results presented here for 

Kahler metrics on probe moduli spaces can be extended to the whole transverse 

space in which the probe moves. Unfortunately, for the initial example studied in 

section 2.3, we have been unable to put the metric on the six-dimensional transverse 

space into Kahler form. (At some point in the calculation, one finds that consistency 

conditions on the partial derivatives of K are not satisfied by applying the flow 
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equations (2.27).) This might be a signal that supergravity is unable to reproduce all 

the expected features of the gauge theory. On the other hand, there may be a mistake 

in our calculations or even in the supergravity solution itself. Another feature of 

the probe result presented here that would be interesting to fully understand is the 

form of the potential in the probe Lagrangian (2.38). 2 1 

Another calculation that could be made is finding the exact form of the one-loop 

correction to the Kahler potential (2.74). The exact numerical coefficient in that 

correction is possibly an important test of the results presented here. 

A natural extension to the work presented in this chapter would be to include 

world-volume fermions in the probe action (after all, it is supposed to be describing 

a supersymmetric theory). This would probably not only give results on the gauge 

theory superpotential but also provide an independent check on the supergravity 

solution (especially the two-form fields). Work on probing similar backgrounds using 

this method has been done by Graha and Polchinski [113,114]. 

2 1 I understand some progress has been made on this by Evans, Johnson and Petrini (unpublished 

work). 



Chapter 3 

M — 2 Supersymmetric SU(7V) 

Gauge Theory and the Enhangon 

Having considered supergravity duals of gauge theories with M = 1 supersymmetry, 

let us now turn to studying supergravity backgrounds that are connected to the 

physics of M = 2 gauge theories. In order to do this i t it reasonable to consider 

supergravity solutions that arise from brane configurations which at low energies 

are governed by M = 2 gauge theories. In particular, in this section we shall 

concentrate on the case of pure M = 2 supersymmetric Yang-Mills theory {i.e. no 

matter hypermultiplets). Finding a supergravity dual for this theory (and other 

theories with 8 conserved supercharges) was part of the motivation for the paper by 

Johnson, Peet and Polchinski [84]. Although a precise supergravity dual was not 

found, a certain type of naked spacetime singularity was resolved by studying the 

behaviour of a D-brane probe in the geometry. I t was found that the singularity 

is unphysical and that the geometry is well-behaved once the D-branes that source 

the geometry are correctly taken into account — this was dubbed the 'enhangon 

mechanism'. 

Furthermore, it was suggested [84] that the solution of low-energy M = 2 gauge 

theories found by Seiberg k. Witten [21,115] (extended to the SU(N) case in [116, 

117]) can be related to the enhangon. 

In this chapter we shall first review the enhangon argument in the case related 

to four-dimensional field theory. Because this particular geometry is rather patho-

75 
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logical, we then review geometries found in [118,119] that correspond to wrapped 

branes and are rather better behaved. We shall see that these supergravity solutions 

are able to reproduce the perturbative behaviour of the field theory. 

We then calculate some exact non-perturbative results using the SU(N) Seiberg-

Witten curve and relate these to the enhangon viewpoint. In particular we point 

out that the relationship between Seiberg-Witten theory and the enhangon proposed 

in [84] is incomplete. The results found by the Seiberg-Witten method reproduce 

those found from supergravity at large N, but are also valid for any N. 

3.1 The D7/D3 enhangon 

Consider N D7-branes wrapped on a K3 manifold in type I IB string theory [84,120]. 

Since K3 is a compact four-dimensional manifold 1, a wrapped D7-brane looks like 

a type of 3-brane carrying a (3 + l)-dimensional worldvolume theory, at least when 

the volume of the K3 is small. The branes have a two-dimensional transverse space 

which we shall parametrize with a complex scalar w. Since the K3 breaks half the 

supersymmetries and adding D7-branes breaks another half, i t turns out that the 

field theory on the branes is M — 2 U(N) super-Yang-Mills with no hypermultiplets2 

[84,120]. Because the K3 manifold has a non-trivial curvature class, the wrapped D7 

has an induced D3-brane charge of —1 [122]. Let us therefore denote a wrapped D7 

by D3*. I t is also possible to add normal D3-branes without breaking supersymmetry 

further, although we shall consider the case of only having D3*s. 

n i 9 
X X X X 10 K3 

D7 = D3* - - - - . . -- - - -

D3 

Table 3.1: The D7/D3-brane enhangon configuration. 

In the case of parallel Dp-branes in flat space the scalars that appear in the 

1 F o r a discussion of K 3 surfaces see, for instance, [121]. 
2 Usual ly we will ignore the diagonal U{\) in U(N) and consider SU(N) only. 
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world-volume theory on the branes are interpreted as transverse positions of the 

branes. We can do the same here because the Af = 2 field theory has a complex 

scalar field, <&, which corresponds to w. In fact at the classical level, the field theory 

has a moduli space of vacua parametrized by the vev of 3>. One might expect that 

for generic values of ($) the gauge group would be broken to U(l)N~l, but by setting 

($) = 0 the SU(N) gauge symmetry would remain unbroken. However, this is not 

the case when quantum corrections to the low-energy field theory are considered — 

it is not possible to set ($) = 0 and so the low-energy theory never has unbroken 

SU (N) gauge symmetry. 

I t is possible to see this effect from the supergravity solution for the D7/D3 sys­

tem outlined above. Initially, we can find a supergravity solution which corresponds 

to attempting to put all the branes at the origin of the w-plane. The geometry is 

given by: 

ds2 = —L=Vlu,dx'idx'' + (a1)2 ^Z~7dw dw + V0

1/2 J ^ d s 2

K 3 , 
v Z3Z7 V Z7 

9_ 
Z7 ' 

C(4) = -\r-dxQ A da;1 A dx2 A da;3 , 

C ( 8 ) = ^-§rdx° A da;1 A da;2 A dx3 A e K 3 , (3.1) 

where V0 is a (dimensionful) constant that determines the volume of the K3 and 

and W = \w\. This geometry is only valid for p 3 < W < p7. At W = p7, we 

have Z7 = 0 and therefore the dilaton diverges. For a sensible supergravity dual we 

should have that the dilaton is small because it is the effective string coupling. For 

W = pz, Z3 = 0 and this is in fact a naked "repulson" singularity. 

If this solution is sourced by a stack Af coincident D3*-branes then it should be 

possible to bring in branes from infinity to construct the geometry3. This can be 

3 This process is not very sensible in this case because the geometry is not denned for W > p7. 
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checked by studying the behaviour of a probe D3*. (Already we can see that because 
the geometry is not valid for W < p3, it will not be possible to put the branes at 
W = 0.) 

The probe computation [84] reveals that although a probe D3* has a two-

dimensional moduli space, the metric on that moduli space is given by: 

ds 2 = ^(p7V0Z3(W)-p3Z7(W))dwdw 

= ^ Z l { W \ v K Z ( W ) -V*)dwdw . (3.3) 
^9 

Therefore, the probe cannot move below a certain value of W given by 

VK3(W) = K • (3.4) 

Here, V* = (27r)4(o:')2 is a volume defined by the string scale and VK3 is the volume 

of the K3 at radius W: 

VK3(W) = V 0 f ^ • (3.5) 

From the point of view of the probe D3*, it sees the following metric on moduli 

space: 
AT / W \ 

d5 2

 = ? — l o g — d u , d ^ . (3.6) 

The interpretation of all this is that the branes are not situated at the origin of the 

VF-plane, but form a ring, the enhangon, given by: 

W = W e = v/p3p7~ > P3 • (3.7) 

Therefore, the geometry for W < We is unphysical. I t can be consistently excised 

and replaced by a flat, sourceless geometry. (This still leaves the difficulty of the 

singularity at W = p 7 . In the next section we shall study a set of supergravity 

solutions that do not suffer from this problem.) 

Now consider the more general situation of trying to write down the geometry 

when one attempts to place the branes in a circle of radius WQ. In the region 

outside the branes the solution would be as before, whereas inside the metric would 

In the case of wrapped D6 or D5 branes the geometry does not have such a singularity and moving 

branes in from large W is quite reasonable. 



3.2 Supergravity duals from wrapped D5-branes 79 

be constant. If WQ < WE then one again has an enhangon at W — WE and the same 

excision should be carried out. However, if one tries to place the branes at W0 > We 

then the the enhangon does not appear because V K 3 ( W ) never reaches V*. Therefore 

the actual radius of the ring of branes is max(M/o, We). To summarize, if one tries 

to place the branes on a circle of radius Wo then the correct geometry is given by 

3.2 Supergravity duals from wrapped D5-branes 

Although the D7/D3 configuration described above is relatively simple, it suffers 

from various problems. Because D7-branes only have a two-dimensional tranverse 

space they induce a deficit angle on the spacetime geometry. For N — 24, the 

deficit angle is such that the transverse space is a 2-sphere. However for large 

N, this becomes a serious problem. Furthermore, the solution is only sensible for 

P3 < W < p-j. Near W = p7 the dilaton diverges and one would need to include 

non-perturbative corrections to remove the singularity [84]. 

Therefore, we shall briefly reproduce some of results obtained by Gauntlett et 

al. [118] and Bigazzi et al. [119]. These papers present solutions4 of type I IB su­

pergravity that correspond to large numbers of D5-branes wrapped on a two-sphere 

in a Calabi-Yau two-fold, i.e. a K3 manifold. (This configuration can be related 

to the one studied previously by T-dualities.) The low-energy field theory of these 

branes is J\f = 2 supersymmetric SU(N) Yang-Mills theory with no hypermultiplets. 

gNV. 
n 

2TT Vq P3 
gN pi n 
2TT 

(3.8) 

where 
if W > m&x(W0,We), W 

p(W) 
max(Wo, We) otherwise. 

The metric on moduli space seen by the probe D3* is then 

(3.9) 

p(W) N 
ds j log dw dw 

27T 
(3.10) 

4 T h e s e solutions were also studied in [123]. 
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Therefore these solutions should be an alternative set of supergravity duals to the 

problematic D7/D3 solutions described in section 3.1. 

3.2.1 A ten-dimensional solution 

We shall use the solution and conventions of Gauntlett et al. [118]. Their ten-

dimensional metric is: 

* / „ J J j J , ~(AQ2 , • 2 f l j i 2 \ , E J _ 2 , dsl = e* yr]abdxadxb + z(d6l + sin 2 Odtf) + — dz1 + Nd6 

Ne~x ~ ~ Nex \ 
+—^-cos26(d<t>1+cosed(l))2 + —sm26d(t>l) , (3.11) 

where the dilaton is given by 5 

e2* = e-2*°e2'lNe-xQ. , (3.12) 

and 

O = ex cos2 6 + e'x sin 2 6 , (3.13) 

e - = 1 - " W " ) . (3.14) 
2* v y 

Here A; is a constant and the D5-branes wrap the 8,<f) directions. The qualitative 

behaviour of the solution is different for varying values of A: and is determined 

through the behaviour of e~2x: 

e~2x ->• oo as z —>• 0 for k < - 1 , 

e-2x z ^ q for k = - 1 , 

e~21 -> 0 as z -> z 0 > 0 for A; > - 1 . (3.15) 

Gauntlett e£ a/, argue that the solutions with A; > — 1 are related to gravity de­

scriptions of a part of the Coulomb branch of M = 2 Yang-Mills theory, whilst the 

k < — 1 solutions are unphysical. 

5 T h i s formula has e * ° , rather than e*° , because the solution has been obtained from a back­

ground corresponding to NS5-branes by a S-duality transformation that takes $ —> — 3>. 
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3.2.2 The probe computation 

The above solution has been probed using a wrapped D5-brane [118,119] to match 

the geometry to gauge theory expectations. We briefly present the results here, 

which are somewhat similar to the results in chapter 2. One finds that the moduli 

space is given by: 

Locus I : 0 = f for all k, 

Locus I I : z = z0 for k > — 1 . (3.16) 

The metric on moduli space can be put into the following form 6 on locus I 

d 5 2 

where w is defined by 

, = ^ L 0 G ( A , D W D * ' ( 3 - 1 ? ) 

w = Aez/Nei<t>\ A = - ^ . (3.18) 

and so in the physical case k > — 1 satisfies w > w0 = Aez°/N. For k > — 1 one also 

has locus I I which fills out the disc missing from locus I : 

As' 

where now 

_ N , (wQ 

I I 4 7 T 2 

\og(^p) dw&w , (3.19) 

w = w0 sin 0e i 0 2 , w0 = AeZo/N . (3.20) 

In fact the brane action can be put into a form consistent with M = 2 super-

symmetry: 

S = ^ J d4x(^lmr(w)dawdaw + ^Re r(w){iF2+ FF)^j . (3.21) 

where 
, ^ l o g ^ ) if \w\ > w0 

T(w) = { n K a J ' . (3.22) 
^ l o g ( 7 ) i f k | < ^ o 

6 Here we have set a' = 1. 



3.3 Af = 2 SU(N) gauge theory 82 

3.3 Af = 2 SU{N) gauge theory 

3.3.1 Matching to the probe results 

In this section we will review how the results from the probe computations can be 

matched to perturbative results of jV = 2 SU(N) gauge theory [84,105,118,119]. 

The field content of pure four-dimensional M = 2 supersymmetric SU (N) gauge 

theory is a massless vector A^, two Weyl fermions (A, ip), and a complex scalar field 

<& that all transform in the adjoint representation of SU(N). The D-term gives rise 

to a classical scalar potential: 

V = ^ T r [ $ , &}2 , (3.23) 
9 

which has the following supersymmetric vacua: 

($) = d iag(o 1 ) . . . , a*) , (3.24) 

subject to 
N 

^ O i = 0 . (3.25) 
i = l 

For generic values of the the SU(N) gauge group is broken to U(l)N~l, with 

the W-bosons having masses rriij = y/2\a,i — a,j\. I f some of the a, coincide then the 

gauge symmetry is enhanced. 

In the generic case of [ / ( l ) w _ 1 , the low-energy Lagrangian is of the following 

form [21,105,118]: 

\Tij(iFiFj + FiFj)]) . (3.26) 
8 T T / 

d4x ( — ImTij ddidcij + -Re 

where the couplings are derived from an holomorphic prepotential 

d2T 
T%* dciidaj (3.27) 

The one-loop prepotential is given by 

and in fact this is exact in perturbation theory. There are non-perturbative correc­

tions from instantons, but these vanish in the large N limit provided |a, — a,j\ > 

0(1/N) [124]. 
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In the probe approximation we should take the following 

{$) = diag(w,ai - w/N,.. .,aN -w/N) , (3.29) 

so that the coupling on the probe is given by 

d2T % s-^ (w- ai)2 

r H = ^ = 2 ^ l 0 g ^ - ' ( 3 " 3 0 ) 

At large N this can be approximated by an integral: 

r H = h I d2°p(a) log ' (3-31) 

where the density p(a) is normalized so that f d2a p(a) = N. 

For the case discussed above, where the branes are distributed on a circle of 

radius wo, we can take 

p(a) = ^_S(\a\ - w0) , (3.32) 

giving 

J f i o g ( ^ ) i f M > « * 
= < M . ) \ (3.33) 

( f l o g ( ^ ) i f H < « ^ 

This matches the form found by the probe computations outlined in sections 3.1 

and 3.2 (with some differences in normalizations). 

3.3.2 The Seiberg-Witten solution 

Quantum mechanically, the moduli space is parametrized by vevs of the following 

gauge invariant operators: 

uk = Tr($*) . (3.34) 

These can be expressed in terms new parameters fa: 
N N 

uk = Y^ 4>i where ^ fa = 0 . (3.35) 
i= l i=l 

The at then become non-trivial functions of the fa, with ~ fa only at weak 

coupling, i.e. for large fa. The interpretation of this in terms of the enhangon is 

that fa are the classical positions of the branes in the transverse space, while the 

di((j)j) are the physical (quantum corrected) transverse positions of the branes. In 
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particular, the a; are the quantities that appear in the BPS formula for the W-boson 

masses7. Generally, the masses of BPS states are given by 

M B P S = y/2\Z\ , (3.36) 

where the central charge Z is 

N 

Z = '^2(qlai + hidDi) , (3.37) 

i= l 

and the integers <ft (electric charges) and hi (magnetic charges) satisfy 

N N 

5> = 0, X> = 0 . (3.38) 
i= l i = l 

The dual variables am are derived from the prepotential T by [21]: 

and the complex coupling matrix is 

r = = d a ° j (3 40) 
13 ddiddj da,i 

The question is then how to calculate the aj, am from the parameters fa. This 

was solved for the SU(2) case by Seiberg &: Witten [21,115]. Some reviews of this 

subject are [12,13,16,30]. 

Following Seiberg and Witten's method 8, Argyres and Faraggi [116] and Klemm, 

Lerche, Yankielowicz and Theisen [117] proposed a solution of the SU(N) case based 

on the following hyperelliptic curve9: 

y2=p(x)2-A™ , (3.41) 

where the p(x) is a order N polynomial in x with the </> as its roots: 

N N 

p(x) = H(x -<j)l) = xN-J2 u>xN'1 . (3.42) 
i= l i=2 

7 Strictly, the equivalence of brane positions and W-boson masses is a result derived in Minkowski 

space, and will not be true in more general backgrounds. 
8 A good textbook on complex function theory is [125]. 
9 For the rest of this chapter we will take A to be real and positive. 
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Here, we have introduced A which is the dynamically generated scale of the theory. 

The aj and the aoi can then be found using the curve by performing certain 

period integrals: 

ai{<t>j) = f ^sw , o,Di{(t>j) = <p <W , (3.43) 

where the ot{ are 'electric' contours and the are 'magnetic' contours. The Seiberg-

Witten differential is given by: 

1 xdp 
<̂ sw — r, • 

2TTI y 

1 xp'(x)dx ( 3 4 4 ) 

2wi y 

Actually performing the contour integrals is rather impractical for most cases. 

However, it has been found that the period integrals satisfy certain 'Picard-Fuchs' 

equations which are partial differential equations in the Ui defined in (3.42): 

Cna{(f>j) = 0 , (3.45) 

where the differential operators Cn are given by: 

N 

C0 = Nd2dN-i - - j ) u 3 d j + i d N , 
3=2 

N 

Cn = - n d N + l - n + Nfyds-i-n - - j)ujdN+i-ndj 

( f o r n = l , . . . , i V - 3) , 
N N 

£/v_ 2 = 1 + ] T J U - 2)ujdj + iPhUjddh - N2A2Nd2

N , (3.46) 
3=2 i,j=2 

where 

dl = / - . (3.47) 

3.3.3 A circular distribution of branes 

In order to determine the correct strong coupling results (i.e. for small fa) one should 

be able to compare to known results at weak coupling (large fa). To do this it is 

useful to consider various one (complex) dimensional subspaces of the moduli space. 
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One way of doing this is to fix the classical shape of the distribution of branes and 

then scale and rotate this distribution with a parameter (f>: 

4>i = 1i<f>, i = l , . . . , N , 
N 

P(x) = n ^ - ^ ) - t 3 - 4 8 ) 
J = I 

Although the Picard-Fuchs equations simplify with this restriction, i t is still unclear 

how to extract useful results from them. Given this, let us consider the following 

choice for the 7^ 

<f>i = where u = e 2 7 r i / N and i = 1,... ,N . (3.49) 
N 

P ( X ) = Ylix-LO*-^) 
i=l 

= xN - u , so u = (f)N . (3.50) 

Here, we are trying to put the branes in a circle, with the first brane at position <j) 

(see figure (3.2)). In this case the final Picard-Fuchs equation simplifies to 1 0 : 

(N\U2 - A 2 N ) ^ + N{N - 2)u^- + 1^ a(u) = 0 . (3.53) 
\ duz du ) 

Now consider the following change of variables 

u2 

<* = • ( 3 - 5 4 ) 

After some algebra one finds that equation (3.53) becomes 

0 ( 1 - ^ + G - 0 - * )*) I - w ) a { a ) = 0 • < 3 - 5 5 ) 

This is in fact a hypergeometric differential equation with a = b = —1/2N and 

c = 1/2, and has the following general solution [126]: 

a(u) = A(u2 - A 2 N ) ^ (^) + B(u2 - A 2 N ) ^ ( ^ ) , (3.56) 

1 0 I t is possible to check equation (3.53) independently using Maple. One finds: 

* v " A 2 N ) d S + N { N ~ 2 ) u t + : ) A s w ( u ) = % ' ( 3 ' 5 1 ) 

where 
xN+1(x2N -(N + 2)xNu + (N + l ) u 2 + (N — l)A'2N) 
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with 
1 1 

A* = o 
1 

2 - J V - " = - 2 ' ( 3 ' 5 7 ) 

and where and Q£ are the associated Legendre functions [126]. This can be 

checked by putting into equation (3.53) the following: 

a(u) = (u2 - A 2 N r ' 2 f ( u ) , 

which results in the Legendre differential equation [126]: 

(3.58) 

(1 - *,2) 
dv2 

n d 
2v— + 

dv 
v{u + \) - A* f(v) = 0 , (3.59) 

where we have changed variable to v — u/AN. Therefore it is possible to find the 

general form of the period integrals a,,0£>i from the Picard-Fuchs equations. 

3.3.4 Direct calculation of period integrals 

Interestingly, in the case of the circular distribution of branes i t is possible to evaluate 

the period integrals directly, without resorting to the Picard-Fuchs equations. Let 

us first concentrate on the calculation of the a;(0): 

Oi{<t>) = f 
Joci 

A sw (3.60) 

where the ai are 'electric' contours and are shown in figure (3.1). They encircle 

the branch cuts in the rc-plane. The branch cuts run between singularities of the 

integrand which are where y2 = p2 — A2N vanishes. These are given by 

x i j + = O J 1 - 1 ^ + A N ) l / N where i = l,...,N. 

(3.61) 

and to = e 2 i r t / , j V. Before we evaluate the above integrals one can make the following 

observation. Using the form of Asw given in (3.44): 

f 1 x p' dx 

L^nJp^ 

/ 1 

A2N 

Tai 2ni ^/((uj*-lx)N - <PN)2 - A2N 

(3.62) 
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X 

> 

< 

X a 

Figure 3.1: The electric contours in the x-plane. Here we have taken 4> to be real 

and positive with 4> > A. 

Therefore the branes are still arranged on a circle if one takes the a* to be the branes' 

transverse positions rather than the fa (see figure 3.2). Therefore, we only need to 

calculate a,i(fa). 

Furthermore, it is interesting to consider the case A = 0. This is the classical 

limit where the dynamically generated scale, A, can be ignored. The integrals aj 

can then be evaluated for any choice of fa (and not just the circular case we are 

studying here) by using Cauchy's theorem. One finds that a; = fa, so the period 

integral reproduces the correct result in the classical regime of A = 0. 

Returning to the case of the <j> lying on a circle, with A ^ O , we can now consider: 

where we have introduced z such that p — ANz. It is clear that we can rewrite this 

1 xp dx 
ai 2m J p 2 _ A2N 

Q l 

1 x z dx 
2m J Q l 

(3.63) 
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L i . 

* 

Figure 3.2: The points fa, i = 1 , . . . ,7V, which correspond to the classical positions 

of the branes are denoted by crosses. We have chosen <f> to be real. The quantum-

corrected positions are denoted by circles. 

integral as twice the integral along the bottom of the branch cut. Choosing a sign 

for the square root, 

1 fXl'+ xz'dx 

1 /•*'•+ {zAN + ̂ j V ) 1 / J V 

i r1 [zAN + <t>NyiN 

7T / _ ! (1 - Z 2 )V2 

_ I [ l __{zAN + <f>N)1/N 

W - i ( i z)V2(l + z ) l /2 

Changing variable to w, where z = 2w — 1, gives: 

= U ( 2 - 2 ^ / 2 ( 2 ^ / 2 2 d w 

dz . (3.64) 

^ ^ r ^ ( 1 ^ ) - ( 1 + ^ ) , / w - ( 3 , 5 ) 
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Now recall the integral representation of the hypergeometric function [126]: 

F(a, b; c; C) = r { b ^ _ b ) f d * ^ i 1 ~ x ) M { l - (x)~a , (3.66) 

where Re(c) > Re(b) > 0. This function is defined on the £-plane with a branch cut 

on the real axis between 1 and oo. So in particular 

«,« = «-A»)W F(_^,I l l ;_Z^) 
= ( , « + , (3.67) 

where the second line follows from the following identity [126]: 

F(a, b; c; C) = (1 - 0 " ^ (a, c-b;c; ^ - ^ ) . (3.68) 

In calculating the integral in terms of a hypergeometric function we now seem to 

have a problem in matching this result with that obtained using the Picard-Fuchs 

equations which was in terms of Legendre functions. Thankfully, there are equations 

relating one form to the other [126]: 

F(a, b; 2b; ( ) = ^ ^ ^ C ^ ~ O ^ V ^ P ^ Q - l ) . (3.69) 

In order to check that we have calculated the actual position of the brane we 

should check that the position of the brane is correctly reproduced in the weak-

coupling region, i.e. for large 4>. There we expect the quantum corrections to be 

small and ai ~ </>. Taking A one finds 

The branch cut involved in the definition of F is now a branch cut for a,\ lying 

on the real axis of the u-plane between — and AN. 

One might worry that because the roots Xi _ degenerate at = A we might 

not be able to match up weak-coupling results (large to those at strong-coupling 

(e.g. 4> small). One could envisage problems if we had to choose a different set of 

contours a{ for particular values of <f>. One solution is to consider the case when 

u = cj)N is imaginary. In this case one can go from \4>\ 3> A to <j> = 0 without the 

singularities in the x-plane degenerating and therefore check that it is possible to 
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continue using the same contour down to (f> = 0. Furthermore, the result in equation 

(3.67) does not depend on <f> being real. A plot of |ai(0)| for this case is presented in 

figure 3.3 for N = 3,10,100. I t is clear that for large N, equation (3.67) reproduces 

the form of the supergravity results. I f one tries to place the branes in a circle of 

radius \(j>\ then they will actually lie in a circle of radius max(|0|, A), where now A 

can be interpreted as the enhangon radius. 

A natural definition of the enhangon radius is given by |«i(0)|, i.e. the actual 

radius of the branes when the classical radius is zero. Using equation (3.67) one 

finds a relatively simple expression [126]: 

which in the limit N -> oo simply gives A. 

Direct calculation of am by integration 

Having found the ai(4>) by carrying out the relevant period integrals directly, we 

can now attempt the same for a combination of the dual variables a^i- Many of 

the steps are similar in nature to those done before and again result in an answer 

involving an hypergeometric function. 

For this we shall use the contour fa shown in figure 3.4. I t has intersection 

numbers —1 with ai and + 1 with a2. Therefore, the corresponding quantity is 

{aD2 — &DI), which gives the mass of a monopole between the U(l)\ and f / ( l ) 2 

factors. (Recall that the sum of the magnetic charges vanishes, hi = 0.) Similar 

expressions can be found be using different contours. 

where we have defined q = xNl2 in order to allow us to change the integration range. 

A r ( i + ^ ) r ( | + ^ ) (3.71) 

m = <f xp dx 1 
(dD2 — dDl 2m Jtf - \2N 

UlXl xp dx L 1 
Jtf - A2N 7Ti 

ql+2'Ndq 2 r 
Tl Ju J(q2 - <j)NY - A2N 7T2 A J V ) l / 2 N 

ql+2lNdq 2(CJ - 1 

V(<72 - <t>N)2 ~ A 2 / V 0 
(3.72) 
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MW |o,«WI 1.5 
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U 

Figure 3.3: Plots of the physical radius of the branes against the 'classical' radius. 

Here we have chosen u = <f>N to be imaginary and A = 1. The different plots have 

N = 3,10,100, respectively. The u-plane has a branch cut from — AN to AN. 
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Figure 3.4: The contour Pi which intersects ot\ and O J 2 . 

If we now use p as our integration variable, recalling that p = q — (f>• , then we find: 

(oj-1) r A " (v + 4>NY/N 

(aD2 - am){<t>) = ^ — i / l P X ^ 4 w d p • ( 3 ' 7 3 ) 

As before, we rescale variables and define z = p/AN and v = (j)N/AN: 

( vwrt ( ^ - I ) A r 1 (^+^) l / j V, 
{aD2 - aD1){(f>) = : / dz . 

= (̂ -ijA r(„- j ^ 
We can now put the integral into a form suitable for expression in terms of a hyper-

geometric function by defining t by z = (v — l)t + 1: 

( a m - a m ) W = « ^ ( , - I , ' / - / * f 1 ( ' - ^ , ; , d t , 
s/2ni v" " Jo t i / 2 (i + (j!^)ty/2' 

V^Fi 1 ' r ( | + i ) V2' 2' 2 + TV' 2 J 

^ ^ j U N + A») r ( | + i ) 
, 1 1 3 1 0 N - A W \ , 
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where to obtain the final result we have again used equation (3.68). (This result is 

presumably related to the general solution found in section 3.3.3 by formulae such 

as (15.4.16) and (15.4.17) in [126].) I t is clear that (aD2 — ar>i)(A) vanishes, as i t 

should, because all the magnetic contours degenerate to zero at <f> — A. 

3.4 Summary and future possibilities 

The original interpretation of the enhangon in terms of Seiberg-Witten theory given 

in [84] is that the transverse positions of the branes can be related to the branch 

points of the SU(N) Seiberg-Witten curve, x±ti((f>j). Indeed, these quantities give a 

good heuristic picture of the enhangon. For the SU(N + 1) case where we consider 

a probe: 

{<$>) = di&g(w,-w/N, ...,-w/N), a n d w > A , (3.76) 

one finds that 2N of the branch points lie approximately on a circle of radius A, 

while the remaining two lie near x = w. Similarly, if one considers the case where 

w < A then all the branch points lie on the circle. Therefore the behaviour of the 

branch points reproduces the behaviour of the probe. 

However, as an example consider the case of 4> = A. This is the case briefly 

mentioned above where the magnetic contours degenerate. Half of the branch points 

are at the origin, X-j, = 0, whereas the other half lie on a circle of radius 2 1 / i V A. 

What precisely does this mean for the branes? I t is rather unclear how this should 

be interpreted. 

In this chapter, we have proposed a different set of quantities, a ^ f a ) , to be 

identified with the transverse positions of the branes. One reason for this is that 

the CLi{<frj) appear in physical quantities, such as W-boson masses, whereas the x±vi 

do not. Another, simpler, reason is that there are N transverse positions whereas 

there are 2N branch points. Given that brane positions are usually identified with 

vevs of scalar fields, the seem to be the most appropriate quantities to calculate. 

Furthermore this is supported by the matching between various supergravity 

duals and one-loop results, such as that in [118,119] (which we reviewed in section 

3.3.1) which followed probe analyses [105,106] of another solution [79] corresponding 
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to a different H = 2 gauge theory. 

However, this is not to say that the branch points are not a useful guide. They 

are also much easier to calculate. Furthermore, from Witten's construction [127] of 

the Seiberg-Witten curve by uplifting configurations of D4- and NS5-branes to an 

M5-brane wrapped on a holomorphic curve, one can see that the branch points give 

an indication of the positions of the (uplifted) D4-branes. These then correspond to 

the vevs of the scalar fields. 

Eleven-dimensional supergravity solutions have been found [128] that correspond 

to the above construction of M5-branes wrapped on the Seiberg-Witten curve. I t 

would be interesting to see if they could provide further insight into the enhangon 

mechanism. 

In addition, Witten's construction of Seiberg-Witten curves using M-theory can 

be related [129] to the appearance of the Seiberg-Witten solution in F-theory [130, 

131]. Given that the results derived here are exact (they do not rely on large N), it 

may be possible to apply similar methods to F-theory configurations. 

An important question not addressed here is that of calculating the matrix 

which contains the effective couplings and theta-angles and also gives the metric on 

moduli space11. Some progress has been made in this respect by the recent paper 

by Alberghi et al. [132]. 

Further extensions to this work could include studying the theory near Argyres-

Douglas points [133] or relating it to previous work on large N Seiberg-Witten theory 

by Douglas & Shenker [124]. It would also be interesting to see how changes in the 

BPS spectrum [21,22] can be seen in the enhancon picture. 

Finally, one should note that the supergravity solutions we have studied are 

limited by the fact that they do not include all the relevant degrees of freedom in 

their derivation. For instance, in the case of D6-branes wrapped on K3 manifold 

(giving a three-dimensional field theory) there are also degrees of freedom arising 

from D4-branes wrapping the K3. These degrees of freedom become light as the 

1 1 It is interesting to note that in general this matrix will not be diagonal. Therefore the metric 

on moduli space and the specific form of the low-energy theories on the separated branes will be 

quite complicated. 
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volume of the K3 shrinks to V*, and should be included as fields in the supergravity 

Lagrangian. Work towards including these non-perturbative effects has been done 

by Wijnholt & Zhukov [134] and also by Mohaupt and Zagermann [135]. 



Chapter 4 

Penrose Limits of Supersymmetric 

Gauge Theories 

4.1 Introduction 

Recently, there has been a flurry of interest in a particular limit of the AdS-CFT 

correspondence. This arose from the realization that there exists a plane-wave solu­

tion to type I IB supergravity that preserves all 32 supersymmetries [136] which can 

be related to the AdSs x S5 solution by the concept of the "Penrose limit" [137-139]. 

Remarkably, type I IB string theory can be quantized on this background [139-141]. 

(Quantizing strings on a background with non-trivial R-R flux has proven to be 

a rather hard problem [142-144].) The Penrose limit was given a gauge-theoretic 

interpretation by Berenstein, Maldacena and Nastase (BMN) [139] using the AdS-

CFT correspondence. This work is particularly important in the context of gauge 

theory/gravity dualities because it represents one of the few examples where we are 

not restricted to using supergravity techniques, but can compare gauge theory to 

stringy calculations. 

In this chapter we shall first review the above material, before applying it to 

the study of the Pilch-Warner solution that is dual to the Leigh-Strassler fixed 

point studied in chapter 2. We find its Penrose limit which is a new plane-wave 

solution with constant three-form fluxes. On this background the string action takes 

a simple form and can be quantized using the same method as in the maximally 

97 
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supersymmetric case, although the details are different. We find the string spectrum 

and then study the corresponding limit of the Leigh-Strassler theory. Finally, we 

find the Penrose limit of the supergravity solution corresponding to the RG flow 

from the J\f = 4 SU(N) gauge theory to the Leigh-Strassler fixed point 1. 

4.2 Penrose limits and plane-waves 

4.2.1 The Penrose-Giiven limit 

Consider the following solution [136] of type I IB supergravity [147]: 

ds 2 = 2dudv + H(u,x)du2 + ds2(E8), (4.1) 

F5 = (1 + *)du A u)4, 

where for each u, u>4(u, x) is a closed and co-closed2 four-form on E 8 (it can depend 

on u in an arbitrary way). The equations of motion relate H and U4 as 

V2H = - \ u 2 = - \ u m ^ k l , (4.2) 

where x\i = 1 , . . . ,8, are the coordinates, and V 2 the Laplacian, on E 8 . This so­

lution is an example of what is called a"pp-wave"3. (Later, we will study pp-wave 

solutions of type I IB supergravity with non-zero three-form fields as well.) I f we now 

take H to be quadratic in the x\ H — Aij(u)xlx^ say, then the solution is called a 

"plane-wave". I f we further take Aij to be a constant, symmetric matrix then the 

metric is that of a Cahen-Wallach space [149]. These solutions are of interest for 

various reasons. One of these is that plane-wave solutions of type I IB supergrav­

ity preserve at least 16 supersymmetries. In fact, Blau et al. [136] found that for 

cj4 = //e(E4) a constant multiple of the volume form on one of the transverse E4s, 

'This chapter is based on work done in collaboration with Dominic Brecher, Clifford Johnson 

and Robert Myers and presented in [3]. Whilst that paper was in final preparation, two other 

papers appeared [145,146] that address some of the same issues. 
2I.e. d 8w 4 = d 8 ( * 8 W 4 ) = 0. 
3 The "pp-" stands for "plane-fronted wave with parallel rays" [148]. 
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there is a unique choice4 of Aij = —n25ij for which the solution is maximally super-

symmetric, i.e. it preserves all 32 supercharges5. Therefore, the known solutions of 

type I IB supergravity that preserve 32 supercharges are AdSs x S5, the maximally-

supersymmetric plane-wave and Minkowski space (which is the [i = 0 case of the 

pp-wave). 

The maximally-supersymmetric plane-wave was related to the AdSs x S5 solution 

by Blau et al. [137] and Berenstein et al. [139] by the notion of the "Penrose l imit" . 

In [152], Penrose showed that any spacetime has a limit in which i t becomes a plane-

wave6. This can be seen by first considering a null geodesic, 7, in a spacetime7. Then 

it is possible [152,153] (under some reasonable conditions [137,138]) to introduce 

local coordinates (U, V, Y l ) such that the metric takes the following form: 

ds 2 = 2dV I dU + adV + Y&Yl ) + Y CljdY1dYj , (4.3) 

where a, and are functions of all the coordinates and the matrix Cij is 

positive-definite. The coordinate U is the affine parameter along a congruence of 

null geodesies labelled by V and Y\ such that 7 has V = Y l = 0. The next step is 

to introduce a real constant Q > 0 and rescale the coordinates in the following way: 

U = u, V = tfv, Y l = tty1 , (4.4) 

so that the metric is now Q-dependent. The fact that we can put the metric into 

the form (4.3) ensures that the Penrose limit 

, 2 ,. ds2(Q) , . 
ds2 = hm — ^ , 4.5 

is well-defined. The resulting metric is of the form 

ds 2 = 2dudv + Y Ci^dy'dy* (4.6) 

which only depends on the coordinate u and not on v or yl. Here, the metric is in 

what is called Rosen form. One can also find Brinkman coordinates8 so that the 

4There are differences between our conventions and those of [136]. (See [3].) 
5 A similar solution in eleven-dimensional supergravity was already known [150,151]. 
6Note that this is a stronger claim than saying it has a limit in which it is a pp-wave. 
7 For a detailed description of the Penrose-Guven limit and its mathematical properties, see [138]. 
8 For the explicit change of variables see, for instance, [138]. 
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metric takes the form 

ds 2 = 2dudv + Aijiu^xldu2 + d x l < i x i > ( 4 - 7 ) 
i,j i 

i.e. precisely the form of a plane-wave (4.2) described above. 

So far we have not mentioned what happens when one introduces other spacetime 

fields, such as the ones that appear in supergravity theories. Giiven [153] extended 

this analysis to supergravity theories by also rescaling the gauge fields in a way 

analogous to (4.4). 

Importantly, the Penrose limit of a supergravity solution is again a solution of 

the supergravity equations of motion. This follows from the fact [153] that the 

supergravity actions transform homogeneously under the rescaling (4.4). 

Another important point is that the Penrose limit depends on the choice of null 

geodesic. Therefore, later on when we look at taking Penrose limits in the context of 

the AdS-CFT correspondence, the choice of null geodesic will be important. How­

ever, the Penrose limit has the following covariance property: if two null geodesies 

in a spacetime are related by an isometry, then their associated Penrose limits are 

isometric. 

One interpretation of the Penrose limit is that it gives a 'first order approxima­

tion' to the spacetime along the null geodesic (c/. the tangent space to a point). 

Another, physical, interpretation [138,152] is that one can consider a series of ob­

servers in the spacetime whose worldlines approach the null geodesic 7 more and 

more closely. As these observers travel faster and faster, approaching the speed of 

light, they recalibrate their clocks so that in the limit the clocks measure the affine 

parameter along the geodesic. Then the argument given above implies that in the 

Penrose limit the observers see the spacetime as being of plane-wave form. 

The Penrose limit also has some interesting mathematical properties [138]. These 

are often heriditary — any Penrose limit of a spacetime inherits certain properties 

from that spacetime. For instance, Geroch [154] showed that the number of linearly 

independent Killing vectors can never decrease in the Penrose limit. This can be 

generalized [137,138] in the case of supergravity theories to the statement that the 

number of supersymmetries preserved by a supergravity solution does not decrease 
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in the Penrose l imi t . However, i t is important to note that the Penrose l i m i t of a 

supergravity configuration may have more K i l l i n g vectors and/or supersymmetries 

than the original solution. In fact, the Penrose l im i t of a supergravity solution 

preserves at least one half of the maximum possible supersymmetry [138]. A plane-

wave solution that preserves more than the generic 16 supersymmetries is sometimes 

said to have supernumerary supersymmetries 9. We shall see an example of such a 

plane-wave solution in section 4.5. 

4.2.2 The Penrose limits of AdS 5 x S5 

Having discussed the Penrose l im i t and some of its properties, let us now return to 

the case of immediate interest — using i t to relate the maximally-supersymmetric 

pp-wave of type I I B supergravity to the A d S 5 x S5 solution. 

The Penrose l imits of AdSs x Sb were classified in [138] by Blau et al. Using 

the covariance property they found that there are two cases. The first (non-generic) 

case is when the null geodesic 7 is tangent to the AdS-space, i.e. when the tangent 

of 7 vanishes in the Sb directions. For this type of geodesic the resulting Penrose 

l i m i t is Minkowski space (which is the \x = 0 case of the maximally supersymmetric 

plane-wave). However, the tangent of a generic null geodesic in A d S 5 x S5 has a 

non-vanishing component in the S5 directions. I n this case i t was shown [138] that 

the Penrose l i m i t results in the maximally-supersymmetric plane-wave (wi th n ^ 0). 

This makes sense because since the amount of unbroken supersymmetry does not 

decrease in the Penrose l imi t , any Penrose l i m i t of AdSs x S5 must s t i l l preserve 32 

supercharges. 

To illustrate this, let us carry out a Penrose l im i t of AdS 5 x Sb which does not 

result in flat space. This is most easily done i f one chooses to wri te the AdS-space 

9Some plane-waves in ten and eleven dimensions that have supernumerary supersymmetries are 

discussed in [155-158]. 
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in global coordinates 1 0: 

ds 2 = L2 ( - cosh 2 p dt2 + dp2 + s inh 2 pdQ2 

+ cos 20dV> 2 + d0 2 + s i n 2 0 d f t 2 ) , (4.8) 

where dQ| , dVt\ are metrics on uni t S*s. The Lagrangian for geodesies on this space 

is then simply (in an obvious notation) 

C = L2 ^ - cosh 2 pi2 + p2 + s inh 2 pQ2 + cos 2 9 ip2 + 92 + s in 2 9 Q^j , (4.9) 

where now dots indicate derivatives w i t h respect to the affine parameter along the 

geodesic. From the Euler-Lagrange equations one finds that i t is consistent to set 

p = 9 = 0 and that for a null geodesic w i t h affine parameter A 

t(X) = I/J(X) = EX , (4.10) 

so that the energy and angular momentum of the massless particle travelling on the 

geodesic are equal. (Note that we have left the coordinates on both S3s arbitrary.) 

We can now find coordinates near the geodesic that are suitable for taking the 

Penrose l i m i t . To do this we require coordinates (u, v) such that (for p = 9 = 0) we 

have 

9uu = g(du, du) = 0 , guv = g(du, dv) = 1 . (4.11) 

These are satisfied by t a k i n g 1 1 

du = idt + i>di) = E(dt + d t ) 

dv = ^ ( - d t + d^), (4.12) 

which are solved by 

We have identified u w i t h the parameter A along the geodesic. To take the Penrose 

l i m i t we w i l l take the l imi t L —> oo (which can be throught of as ' f lat tening' the 

1 0 For a discussion of different coordinate systems on AdS-space see [37]. 
1 1 We have made a specific choice here in the definition of v, but a more general definition leads 

to the same results here and in section 4.3. 
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space). Since in our choice of geodesic we have set p = 9 = 0, the corresponding 

coordinates are rescaled as follows (cf. equation (4.4)): 

" = Z - t = I - ( 4 ' 1 4 ) 

Inserting these expressions back into the metric (4.8), one finds that the Penrose 

l im i t given by L -> oo is well-defined: 

ds 2 = 2dudv - ( r 2 + y2)E2du2 + d r 2 + r2dSl\ + dy2 + y2dQ2

3 , (4.15) 

which is of course the metric of the maximally-supersymmetric plane-wave. The 

corresponding calculation of this Penrose l i m i t , but using Poincare coordinates 1 2 on 

the AdS-space is presented in appendix C.3. 

4.3 Type I I B string theory on plane-waves 

Another reason for studying plane-wave solutions of type I I B supergravity is that 

the Green-Schwarz action [159,160] for superstrings drastically simplifies in these 

backgrounds. In fact i t has been known for some time that the model for strings 

propagating on plane-wave backgrounds wi th only non-trivial NS-NS fields is exactly 

solvable [161-167]. 

Metsaev [140] studied the Green-Schwarz action in the maximally-supersymmetric 

plane-wave background and found that the resulting light-cone gauge action was 

quadratic in both bosonic and fermionic fields and could therefore be quantized ex­

actly. This quantization was carried out in detail by Metsaev & Tseytl in [141] and 

the spectrum was also found by Berenstein et al. [139]. 

Let us now review the method and results of [141]. First of a l l , let us recall the 

explicit form of the maximally-supersymmetric pp-wave: 

8 8 

ds 2 = 2dudv - E 2 Y ^ z V d u 2 + d r c W , 
1=1 2=1 

F5 = £ (1 + *) du A d x 1 Ada: 2 Ada; 3 A d x 4 . (4.16) 

1 2 It is useful to also take the Penrose limit in these coordinates because the Pilch-Warner flow 

solution that we study in section 4.8 is presented in Poincare-type coordinates. 
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We shall in i t ia l ly consider the bosonic part of the world-sheet action: 

SB = J d a d r j sf^gg^d^d^G^ + ^ d a X * d f i X v B ^ (4.17) 

where fi, v = 0 , . . . , 9 and in the case of the background (4.16) i t simplifies to: 

S b = ~4*O' J d a d T " / - 9 9 a ( ) ( 2 d ° U d P V ~ E2XiXldaUdfiU + d a X i d 0 X i ) . (4.18) 

Here e 0 1 = 1, and we shall use the familiar world-sheet gauge choice gap = rjap. We 

have also used world-sheet coordinates cr a, where a, @ = 0 , 1 , and cr° = r , a1 = a. 

Variat ion of V gives rise to the equation of motion for U, namely UTJ = 0. So 

we can work in the standard light-cone gauge w i t h U = a'p+r + constant. In that 

case, the worldsheet scalars obey the following equations: 

axi - M2xi = o, 

where % = 1 , . . . , 8 and we have set M = Ea'p+. The two independent components 

of the standard constraint f rom world-sheet reparametrizations, TQ /g = 0, are 

daV = —^—drX'd^X1, (4.20) 

dTV = -7r^r- (dTXidTXi + dvX'd^ - M 2 X i X i ) , (4.21) 
2 a p + 

which allow for the elimination of V in the usual way. Integrating the former over 

a gives 
p2tt 

/ da dTXldaXl = 0. (4.22) 
Jo 

In the light-cone gauge, the action becomes 

SB = - — ^ JdadT^-2a'p+dTV + M2XiXi + rfpdaX%X^, (4.23) 

f r o m which i t is easy to derive the Hamiltonian: 

HB = ^ da^na'fWU1 + M2XiXl + d a X l d a X ^ (4.24) 

where the conjugate variable to X1 is 

IT = ^—drX\ (4.25) 
lira 
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Note that (4.24) only contains the transverse degrees of freedom (X1, IP) and not U 

or V. The only non-zero (equal-r) Poisson bracket is 

| x > ) , Xj(a')] = 2ira'5ij6(a - a') . (4.26) 
L JP.B. 

To solve for the eigenmodes of the system, subject to the usual periodic boundary 

conditions X1(T, a + 2ir) = X l ( r , cr), we Fourier expand 

X{(T, a) = Y l Cl

nel{uJ»T+n(T\ (4.27) 
n 

for some unknown coefficients Cl

n. The normal modes are given by 

u)2

n = n2 + M2. (4.28) 

A key feature of this spectrum is that even the zero modes (n = 0 ) have an oscillator 

frequency OJ0 = M set by the plane-wave background, corresponding to the mass of 

the world-sheet bosons associated wi th those directions. The mode expansion for 

these coordinates is then [141] 

a' 
Xl(r,a) = cos Mr Xq + — sin M r pl

0 

where, to ensure reality, we have 

+l\frT, — K e m C T + 6 n c _ < B * ) c _ < w " T . ( 4 - 2 9 ) 
V 6 ~ T U)n 

ujn = sgn(n) Vn2 + M2 (n ^ 0 ) , ( 4 . 3 0 ) 

and 

( < ) f = a l n , {&n)] = a \ . ( 4 . 3 1 ) 

The non-vanishing Poisson brackets are found to be 

[4>PO]P.B. = [«m. O£]P.B. = [ain, O £ ] P . B . = - i w m 5 m + n f i 8 i j . ( 4 . 3 2 ) 

The constraint ( 4 . 2 2 ) becomes N = iV, where 

N = J 2 ~ a ~ n < , N = J 2 - * - n * l ( 4 - 3 3 ) 
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and the Hamiltonian (4.24) is 

H b = h ( a ' V o P o + m 2 x ° x ^ + + • ( 4 3 4 ) 

To quantize the system, we replace the Poisson brackets w i t h commutators i n 

the usual way. We further take, for n > 0, 

< = ~<^% (4-35) 

and similarly for the the independent set of operators w i t h a t i lde, and combine the 

zero modes as 

4 = vdb { a % ~ l M 4 ) '
 4 =

 v m ^ { a % + i M x [ ) • ( 4 3 6 ) 

The new creation and annihilation operators obey the standard harmonic oscillator 

commutation relations 

[ai

rn,ai]=5mn5v, n,m>0, (4.37) 

and similarly for the t i lded set of operators. In this basis, the Hamiltonian (4.34) 

becomes 

H = AE + MN0 + J2unNn> ( 4 - 3 8 ) 
n>0 

where AE is the zero point energy. The occupation numbers are given by 

Nn = + n > 0 ' 
i= l 

8 

N0 = ^44- (4-39) 

We now tu rn our attention to the fermionic sector which requires us to include 

contributions f rom the background R-R fields in the world-sheet action. The prob­

lem as to how to include R-R fields in the world-sheet analysis of the superstring 

is a diff icul t one. Techniques ut i l iz ing coset superspaces have been used in an at­

tempt to construct actions for superstrings in AdS backgrounds {e.g. [142]), although 

the resulting action is diff icul t to quantize explicitly. However, in the case of pp-

waves, the superstring action simplifies considerably in the light-cone gauge. For 
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the maximally-supersymmetric plane-wave i t can be easily quantized, since i t turns 

out that the five-form field strength only gives rise to mass terms for the fermions. 1 3 

More heuristically, since this background admits a nul l K i l l i n g vector, i t can be ar­

gued [141] that the fermionic action is a direct covariantization of the f lat action, at 

least in the standard light-cone gauge. 

I n our conventions, the light-cone gauge is implemented via 

T~9 = T+9 = 0, (4.40) 

in which case the fermionic action is simply [141] 

S F = l ~ f dad r {rja%j - e a / 3 p u ) daXad^Xh W Ta(Vb9)J, (4.41) 

where I,J= 1,2 denote the two 16-component Majorana-Weyl spinors 1 4 . I n terms 

of the Pauli matrices, T j , the two-dimensional gamma matrices are p° = ITI and 

p1 = T i , so that p = p°pl = r 3 . W i t h G3 = H3 + iFs, and viewed as acting on a 

column matr ix , the supercovariant derivative 1 5 in the string frame then takes the 

form [141] 

V a = Da + l-Ha

bcYbcp + ^FbcdTbcdTaPl + ^ - F b l . . . b 5 T b ^ T a p 0 . (4.42) 

In the light-cone gauge, the action simplifies considerably, and we have [141,156] 

SF = -l-a'v+ j dcrdr jfl T_ (dT9 + p da9) + ^a'p+9 T_ #p 9 

+±a'p+9 T_ F 3 P l 9 + ^a'p+9 T_ F5p0 9^ , (4.43) 

1 3 Other techniques can be used to derive the relevant action [156]: since the eleven-dimensional 

supermembrane action is known to 0(62) [168], dimensional reduction will give rise [169] to the 

superstring action to the same order in the fermions; and this is all that is required in the case at 

hand. 
1 4 I t is important to realize that the supercovariant derivative appearing in this action is written 

in the string frame, as opposed to the Einstein frame. Since the gravitino is shifted by a multiple 

of the dilatino when going from one frame to the other [170], what we mean by the supercovariant 
derivative is also changed. 

1 5Here, r Q , . . . a t are antisymmetrized products of gamma matrices, e.g. Ti23 = ^ F i l ^ r s ± 

5 terms = I M ^ I Y 
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where 

¥ — HuijVij, F3 FuijTij, F5 = FuijklYijki- (4.44) 

We should note that the NS-NS three-form gives rise to a chiral interaction, whereas 

the R-R three-form field strength gives further mass terms [141]. 

I n the case of the maximally-supersymmetric plane-wave we have F ui234 = 

^u5678 = E, and so rewrit ing in terms of 91 and 92, gives 

SF = - J dadr jfl^.d+fl1
 + 0 2 r _ d _ 0 2 + 2 M 0 1 r _ r 1 2 3 4 0 2 j , (4.45) 

where 

d± = dT±da. (4.46) 

The equations of motion for 81 and 92 are then 

d+91 + MTl23492 = 0, 

d-92 - M r 1 2 3 4 6 ' 1 = 0. (4.47) 

which imply 

U9l - M291 = 0. (4.48) 

The next step is again to Fourier expand 

^ ( r , a ) = ^ ; ^ ( r ) e - , (4.49) 
n 

giving 

91

n + in91

n + MT123492

n = 0, 

92

n - in92

n - M r 1 2 3 4 ^ = 0. (4.50) 

We also have 

9'n + u y n = 0, (4.51) 

where un is defined as before (and OJQ = M). Therefore, the fermionic sector of 

the Green-Schwarz superstring in the maximally-supersymmetric plane-wave back­

ground has the same set of frequencies as the bosonic sector [139-141]. In fact, i t 
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was found by Berenstein et al. [139] and Metsaev & Tseytl in [141] that this matching 

extends to the form of the complete light-cone Hamiltonian: 

H = 4 + MN0 + "nNn (4.52) 
n>0 

(and also the constraint), so that now the number operators N0 and the Nn contain 

contributions f rom both bosonic and fermionic oscillators. The expression for the 

light-cone Hamiltonian contains the zero-mode energy, which arises f r o m the bosonic 

zero-modes (8 x | = 4) only. The fermionic zero modes do not contribute, whereas 

for n > 0 the contribution vanishes because there are equal numbers of bosonic and 

fermionic oscillators. 

The vacuum state is the direct product of a zero-mode vacuum and the vacuum 

for string (n > 0) modes. I f we concentrate on the zero-mode part of (4.52), there 

are eight bosonic zero-mode creation operators that raise the value of H by M, as 

is famil iar f rom the superstring in flat space. However, to obtain this form of the 

Hamil tonian we have assumed that four of the fermionic oscillators raise the value 

of H of a state by M, whereas the other four lower the value of H by M. Therefore, 

by applying the fermionic zero-modes to the vacuum state one obtains states w i t h 

light-cone energy f rom 0 to 8 (in units of M ) . 

However, as pointed out i n [141], the choice of fermionic vacuum is not unique. 

A n equivalent choice is to take the Hamil tonian to be 

H = MNo + J2tonNn (4.53) 
n>0 

where now the 8 fermionic zero-mode creation operators all raise the value of H by 

M. This gives exactly the same light-cone energy spectrum 1 6 . 

Metsaev & Tseytl in were able to reproduce the zero-mode spectrum f rom an 

analysis of the fluctuations of the type I I B supergravity fields around the plane 

wave background (4.16). Therefore, one can identify the zero-modes of the string 

wi th supergravity modes, and the modes w i t h n > 0 w i t h string excitations, as one 

would expect. 

1 6 T h e original choice of Hamiltonian is useful because it has a natural flat space limit [141]. 
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4.4 The B M N limit of M = 4 gauge theory 

Having identified the maximally supersymmetric plane-wave as a Penrose l im i t of 

AdSs x S5, and having also found the string spectrum on the plane-wave, i t is natural 

to ask whether i t is possible to relate string theory on the plane-wave background 

to J\f = 4 gauge theory via the AdS-CFT correspondence. This matching was made 

by Berenstein, Maldacena & Nastase ( B M N ) [139], by ident i fying the corresponding 

'Penrose l i m i t ' in the field theory. They were able to match certain gauge theory 

operators to string states on the plane-wave. Furthermore, they were able to check a 

prediction of the string spectrum to first order in t h e ' t Hoof t coupling using a gauge 

theory computation. In this section we w i l l briefly review some of their arguments. 

The quantities we w i l l in i t ia l ly consider are the light-cone energy, which in the 

light-cone gauge of the previous section is given by 

H = idT — ia'p+du, (4.54) 

and the light-cone momentum p- = idv. Using the definitions of u and v used in 

deriving the Penrose l i m i t (4.12) we can write 

H = ia'p+du = a'p+E(idt + i f y ) = M ( A - J ) , 

P-=idv = - ^ ( A + J). (4.55) 

Here, M = a'p+E, and we have used the fact that dt is the di latat ion operator of 

the conformal group and that is a generator of a U(l) subgroup of the f u l l 5 0 ( 6 ) 

R-symmetry group of M = 4 Yang-Mills theory. 

The Penrose l i m i t is given by L —> oo, so that since L4 = gyMNa'2, in gauge 

theory variables we have N —> oo w i t h #YM = kept fixed. Furthermore, for H 

and p- to remain finite and non-zero in this l imi t , we must have A ~ J ~ i V 1 / 2 

w i t h A — J fixed. 

Let us now t ry to match some of the lowest ly ing states of the string spectrum 

on the pp-wave background to the corresponding Yang-Mills operators. A l l of these 

operators w i l l have large J and A wi th ( A — J) given by (4.55). Because the string 

spectrum on the pp-wave background has a unique ground state w i t h H = 0 this 

implies that there should be a unique operator w i t h large J and ( A — J) = 0. Indeed, 
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by choosing a particular 5 5 coordinate tp when taking the Penrose l i m i t , we have 

chosen a particular U(l) subgroup of 5 0 ( 6 ) which has generator J . We can take 

the complex scalar field that has R-charge + 1 under U(l)j to be Z = fe + ifo, w i t h 

the remaining </>;, % = 1,2,3,4, uncharged. I t is then clear that that we can make 

the following matching: 

73Sm^ M ^ (4-56) 

( f rom now on we w i l l drop normalization factors). This is the unique operator that 

has R-charge J and A = J (since i t is a chiral operator its conformal dimension is 

given by the free-field value). 

We can now consider the states which have H = M. There are eight bosonic 

oscillators which raise the value of H by M and eight fermionic counterparts. This 

implies there should be eight bosonic operators w i t h ( A — J) = 1 and large J. These 

arise f rom inserting the following operators into the "string of Zs": 

<f>i, 1 = 1,2,3,4, 
V (4.57) 

DaZ = daZ + [Ai,Z], a = 1,2,3,4. 

There should also be eight fermionic operators w i t h ( A — J ) = 1. These can be con­

structed by inserting any of the eight components of the sixteen-component gaugino 

that have J = \ (since they increase the conformal dimension by | ) . 

Having matched some of the lowest supergravity modes to their corresponding 

large J operators in the gauge theory, we can now consider some of the string states. 

The contribution of a single n > 0 oscillator to ( A — J ) is 

( A - J ) n = - J - V M 2 + n 2 = J l + "2 

M V (Ea'p+)2 

1 + r ^ L = 1 + ^ L + ... (4.58) 

where we have used the fact t h a t 1 7 

In fact, because of the level-matching constraint, one has to act w i th at least two 

stringy oscillators. In order to match these predictions, B M N proposed that acting 

17 Note that p+ = p_, but that p ^ p+. 
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w i t h an oscillator mode w i t h n > 0 corresponded to inserting an operator into the 

string of Z's w i t h a position-dependent phase. For instance acting wi th a® would 

correspond to: 

This vanishes by the cyclicity of the trace — this makes sense because the constraint 

is not satisfied. A n example of where the constraint is satisfied is: 

£ 7 ^ T T T r
 i ^ l ^ J - 1 } « | 0 , p + > , (4.61) 

where now there are two insertions. Remarkably, B M N were able to reproduce 

the correct first-order correction to ( A — J ) , which they predicted using (4.58), by 

a gauge theory calculation. This was checked to the two-loop level by Gross et 

al. [171]. However, as pointed out by Constable et al. [172], this analysis does not 

quite match our expectations. The string theory on the plane-wave background 

is an interacting string theory and so we would expect the masses of string states 

to be renormalized accordingly. But B M N were able to reproduce the free s tr ing 

spectrum f r o m field theory. In fact, B M N only considered planar diagrams — only 

these contribute i n the usual ' t Hooft l i m i t . However, the l i m i t considered here is 

different and in fact non-planar diagrams do contribute. I n the B M N l imi t Yang-

Mil l s perturbation theory can be organized as a double expansion in an effective 

loop-counting parameter A' = g\yiN/J2 and an effective genus-counting parameter 

g\ = J 4 / N 2 . 

In a paper by Santambrogio & Zanon [173], i t was found that one can reproduce 

the complete square-root that appears in (4.58) f r o m the gauge theory using su-

perspace techniques (in the planar l i m i t ) . The calculation relies on the constraints 

imposed on two-point functions by the superconformal invariance of the theory. I t 

would be very interesting to see how this result, and the other results mentioned 

above, w i l l improve our understanding of the relationship between strings and large 

N gauge theories. 
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4.5 A Penrose limit of the Pilch-Warner geometry 

Having seen how the Penrose l im i t can be interpreted in terms of N = 4 supersym-

metric gauge theory, i t is natural to wonder whether one can do the same for other 

supergravity duals. Some papers that have studied problems of this type (especially 

Penrose l imi ts of A d S 5 x X" 1 , 1 ) are [174-176]. I n this section we w i l l take a Pen­

rose l im i t of the supergravity dual of the Leigh-Strassler fixed point theory that we 

studied in chapter 2. I n section 4.6 we w i l l compute the free string spectrum on the 

resulting plane-wave and then compare to the gauge theory in section 4.7. 

For completeness, and to fix our conventions, we present the fixed point solution 

in appendix B . As discussed there, we want to work i n coordinates for which the 

U(1)R symmetry is simplest so we shift the S3 Euler angle j3 —>• j3 + 2(f), to give 

a solution w i t h a global U(1)R = U{1)^> symmetry. Performing this coordinate 

transformation on the solution (B.9), (B.10), (B.12) and wr i t ing the AdS space in 

global coordinates gives 

ds2 = 

ds2 

L2n2 ( - cosh 2 p d r 2 + dp 2 + s inh 2 p dQ.2

3) + ds2, 

4cos 2 0 , , o, 4 sin 2(20) 
-L2n2 

3 
d92 + L > 2 + o\) + ,;J'" K Z L {a, + d0) 2 

(3 - cos 29) 

8 / 2 s i n 2 0 - c o s 2 0 \ 2 . J J 

+ s { 3 - c o s ( 2 0 ) ) { d < P 

(3 - cos 20) 2 

2cos 2 0 x 2 

<73 2 s in 2 0 - cos2 0 

G3 

2 5 / 3 -
L 4 cosh p s inh 3 p (1 + * ) d r A dp A e{S3), 3 

-iL2 cos0 d0 Ad4> 
8 cos 2 0 

(3 - cos(20)) 2 

2% sin(20) 

d0 A (<T3 -f- d(f>) 

(3 - cos(20)) 
a 3 A dcj) A (CTI + ia2) 

where 
2 i / 3 

n 2 = cos(20), 
v 3 

(4.62) 

(4.63) 

(4.64) 

(4.65) 

(4.66) 

and the AdS radius, L, is given in terms of L, the AdS radius of the U V spacetime, 

by 

L 
2 5 / 3 " 

(4.67) 

Note that the three-form field strength G 3 could include an arbitrary constant phase, 

which we have set to —1 here. The global isometry group of the metric is SU{2) x 
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U(l)p x U(l)<p, where U(l)/3 denotes the shift i n the Euler angle /3, rotat ing <j\ 

into cr2- However, f rom the three-form one sees that the U(1)R R-symmetry of the 

solution as a whole is U(1)R = U(l),p, as required. 

Since we are working in global coordinates, we can consider the simple null 

geodesies for which p = 0. A n examination of the 9 geodesic equation shows that 

one can also consistently set either 9 = 0 or 9 = n/2. We w i l l consider taking the 

Penrose l i m i t along a nul l geodesic in the probe modul i space, w i t h 9 = 0. We do 

also consider the other class of geodesies, w i t h 9 = 7 r / 2 , but since we have not been 

able to see the relevance of the latter to the gauge theory, we have consigned the 

analysis of this case to appendix C . l . This may be because 9 = T T / 2 is the massive 

direction f rom the point of view of a brane probe and i t is precisely this direction 

which is to be "integrated out" in the hf — 1 gauge theory at the I R fixed point 

We thus take 9 = 0, in which case the effective Lagrangian is 

2' 
L2Ql - f 2 + \(<x2 + s in 2 cry 2 ) + ^ (<j) + ft + cos ay) (4.68) 

where f i 2 , = 2 1 / 3 ^ /2 /3 and a dot denotes differentiation w i t h respect to the affine 

parameter. We can thus also consider geodesies for which a = 0, g i v i n g 1 8 

C = L 2 Og ( - f 2 + , (4.69) 

where we have defined 

= + £ + 7 , (4.70) 

to be the direction in which our geodesies have an angular momentum. The natural 

light-cone coordinates are then 

u=h ( r + y ) ' V = ~ E L 2 Q O ( R - ^ ) • ( 4 - ? I ) 

where E is the conserved energy associated w i t h the K i l l i n g vector d/dr. I f h is 

the conserved angular momentum associated w i t h the K i l l i ng vector d/dip, we have 

E = (2/Z)h. We implement the fact that we are considering p = 9 = a = 0 geodesies 

1 8 I t would be interesting to study more general geodesies, since other geodesies could give a 

Hamiltonian with an alternate linear combination of the charges J and J 3 (to be defined below). 
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by taking 

p=L e = l , a = ™, (4.72) 
L L L 

and considering the L —> oo l imi t . 

Dropping terms of 0 ( 1 / L 2 ) , defining two new angular coordinates as 

1 2 
= 0 - 3^, 7 = 7 - 3 ^ , (4-73) 

and rescaling r, y and w, the metric becomes 

ds 2 = 2dudv - E2 (r2 + w2 + Ay2) du2 + d r 2 + r 2 d f t 2 

+dy2 + y2dj>2 + dw2 + w 2 d f . (4.74) 

W i t h the same definitions of <j> and 7, and rescalings of coordinates, taking the 

Penrose l im i t of the fo rm fields gives 

F5 = —E (1 + *) du A e(E 4 ) , 

G 3 = - \ / 3 £ e i / 3 du A (dy - xyd^j A (dw - iwdj) (4.75) 

= V3E du A dz 1 A dz2, 

where ^(E 4 ) = r 3 d r A e(S'3) and we have defined complex coordinates on the re­

maining E 4 . I t turns out that this new plane-wave solution preserves 20 supersym-

metries [3]. Because i t is of relatively simple form, we w i l l again be able to carry 

out string quantization on this background. Furthermore, because the gauge theory 

dual to the original supergravity solution is known, we can at tempt to match the 

string spectrum to the corresponding l i m i t of the gauge theory. 

4.6 String propagation on the plane-wave 

4.6.1 World-sheet analysis: bosonic sector 

The fields which w i l l contribute to our discussion of the world-sheet bosons are the 

NS-NS fields, i.e. the metric and the antisymmetric tensor field B2. A convenient 

choice of gauge for the B-f ield is 

B2 = -V3E(xldu A dxs - x2du A d x 4 ) . (4.76) 
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The relevant part of the world-sheet action is: 

SB = [ dadTl^gap{2daUd3V + AuX'XidaUdpU + d a X i d 0 X i ) 
4ira J { 

-2V3E€af3{XldaUd/3X3 - X2daUdpX4)^, (4.77) 

where A{j may be read off f rom (4.74). 

As before, variation of V gives OU = 0. So we can again take light-cone gauge 

wi th U = a'p+r + const, so that the worldsheet scalars obey the fol lowing equations: 

• X 1 - 4M2X1 + V3MdaX3 = 0, 

• X 2 - 4 M 2 X 2 - VSMdaX4 = 0, 

• X 3 - M 2 X 3 - VZMdvX1 = 0, (4.78) 

• X 4 - M 2 X 4 + \f?,MdaX2 = 0, 

DXP - M2XP = 0, 

where p,q = 5,6,7,8 w i l l label the directions which are unaffected by the S-field. 

The structure of these equations is similar to those f rom other plane-wave systems 

(see for example [141,167,177], which follow on f rom [161-163,166]), but the cru­

cial difference arises f rom the asymmetry between the 1-3 plane and the 2-4 plane 

(visible in (4.74)), which w i l l produce a mass spl i t t ing in the spectrum. The two 

independent components of the standard constraint f rom world-sheet reparametriza-

tions, Tap = 0, are 

d„V = j—dTX%X\ (4.79) 

dTV = --^—(dTXidTXi + d a X i d a X i + {a'p+?AijXiXi), (4.80) 
l a p + 

which we can use to eliminate V. The constraint is again found by integrating the 

former over o: 

/ da d T X i d ( J X i = 0. (4.81) 
Jo 

In the light-cone gauge, the action becomes 

SB = f dadT\-2a'p+dTV-{a'p+)2AijXiXj+ r}a0doX%Xi 

4ira J i 

- 2 v / 3 M ( X 1 9 ( T X 3 - X 2 5 f f X 4 ) | , (4.82) 
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from which i t is easy to derive the Hamiltonian: 

HB = -^—t jT d a | ( 2 7 r « ' ) 2 n i n l -(a'p+)2AijXiXj + d„X%Xi 

-2V3M {XldaXz - X2daX4) | . (4.83) 

Again, the conjugate variable to X% is 

IT = -^—dTX\ (4.84) 

The usual periodic boundary conditions apply in this case so we can Fourier 

expand, 

X'(T, V) = Y1 C £ e < ( w " T + n a \ (4.85) 
n 

from which we get the following system of equations: 

[-uj2

n + (n2 + AM2)] Cl

n - inV3MCl = 0, 

[-tu2

n + (n 2 + 4 M 2 ) ] C 2 + inV3MC* = 0, 

[ - w 2 + (n 2 + M 2 ) ] Cl + inVZMCl = 0, (4.86) 

[-u2

n + (n 2 + M 2 ) ] - inV3MCl = 0, 

[-a; 2 + [n2 + M 2 ) ] = 0, 

for some unknown coefficients Cl

n. For the Xp, the analysis is the same as in section 

4.3, and so we can turn our attention to the % = 1, 2, 3,4 directions. The form of the 

equations is slightly more complicated because although the 1 and 3 directions are 

coupled, the contributions from Aij are different. The frequencies of these modes 

are: 

UJI = \ (2n 2 + 5 M 2 ± ^12n2M2 + 9 M 4 ) = {u±f . (4.87) 

I t is interesting to note that this expression is positive for all n, and so we can expect 

to obtain a string spectrum that is qualitatively familiar. In appendix C.2 we will 

study slightly more general backgrounds where this is not the case (the equation 

equivalent to (4.87) gives imaginary frequencies), and some possible interpretations. 

The natural frequencies of the zero modes are UJQ = u>0 = M and wj" = 2M, as 
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expected. Explicitly, the mode expansions for these coordinates are 

X1(T,CT) = cos 2 M r xl + —— sin 2 M r pi 

a' 

(4.88) 

X 3 ( r , a ) = cos M r + —s in M r PQ M 
a' — r ^ + 

(4.89) 

where is given by the positive (negative) root of (4.87) for positive (negative) n 

and 

°" = 2 7 T M ( ~ 3 M 2 ± ^ 1 2 ^ M 2 + 9 M 4 ) , (4.90) 

which obeys c+c~ = 1. I t is important to realize that X 1 and X 3 still have four 

families of oscillators, but that now all four appear in both expansions. Similar 

expressions hold for X2 and X4, with 7 1 , (31,71} replaced by {/32,72, /32,72} 

and replaced by — c*. With A = 1,2, reality of the coordinates implies 

= M ) F = 7^ , = « ) F = (4.91) 

The remaining non-vanishing Poisson brackets are then 

K,KW = [^ + 2, P o

B + 2]pB = ^ , 
[ / t> # ] P B = fflpfl = - ^ < W n , o < ^ S , (4.92) 

[7^,7n]pB = [ltln\PB = -iu>~ .°m _ 5 m + n f i S A B , 

The constraint (4.81) becomes N = N, where 

N = E " [ ^ - x + ^ ( i - c r ) ^ + ^ ( i - c n - 2 ) 7 ^ 

N + - 1 (1 - c f ) fa ft + - 1 (1 - c- 2 ) 7 ^ ,(4.93) 
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and the Hamiltonian (4.83) is 

+ ( l - c „ " 2 ) ( 7 ^ + 7 ^ ) ) . (4.94) 

As before we replace the Poisson brackets with commutators and take for n > 0, 

rf=fA* 7 - " = ^ A 5 " - ( 4 - 9 5 ) 

Analogous formulae hold for the independent set of operators with a tilde, and we 

combine the zero modes as 

1 
v / 4 M ^ 7 V 7 

4 = -^L=(«H + 2 iM4) , (i = l,2), (4.96) 

4 = ^ = = ( a ' p j + z M x * ) , (2 = 3, . . . ,8). (4.97) 

The new creation and annihilation operators obey the standard harmonic oscillator 

commutation relations 

[4, 4] = ^ K . <1 = tmJ™, [b*,b°] = ft?, <£] = 6nmSAB, (4.98) 

and similarly for the tilded set of operators. In this basis, the Hamiltonian (4.94) 

becomes 
8 

H = AE + 2MJ2 ^ ° + M £ W o 0 + £ (W BJVW + az+Wf + u r f ) , (4.99) 
i=l,2 z=3 n>0 

where un and are given by (4.28) and (4.87) respectively and AE is the zero 

point energy. The occupation numbers are given by 

i V W = « + ^ X , (4-100) 
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and similarly for and , and we have defined 

= 44- (4-101) 

The spectrum of the bosonic string is thus of the same form as in the maximally 

supersymmetric case reviewed in section 4.3, the only difference being the more 

complicated frequencies w*. We will see shortly that precisely the same frequencies 

appear in the normal modes of some of the fermions. 

4.6.2 World-sheet analysis: fermionic sector 

In order to carry out the quantization of the fermionic fields, our starting point 

is again the action in light-cone gauge (4.41). In the case of the Penrose limit 

of the Leigh-Strassler point we have Huu = —Hu2i = F u l 4 = F u 2 3 = y/ZE and 

•fui234 = -F«5678 = —E, so that rewriting in terms of 81 and 92, gives 

SF = ~<x'p+ J dadr^T-d+O1 + 92V_d.92 + ^j-M91T.(Tu + T23)92 

+^Wr_(r 1 3 - r 2 4)^ - ^Wr_( r 1 3 - r24)92 

- 2 M ^ 1 r _ r 1 2 3 4 ^ } , (4.102) 

where 

d±=dT±da. (4.103) 

The equations of motion for 9l and 92 are then 

d+9l - MYl2M92 + ^ - M ( r 1 4 + T23)92 + ^ M ( r 1 3 - Tu)8l = 0, 

d.92 + M I W 1 + ^ M ( r 1 4 + Y2Z)9X - ^ - M ( r 1 3 - T24)92 = 0.(4.104) 

The next step is again to Fourier expand 

9I(r,a) = Y^0In(r)etna, (4.105) 
n 

giving 

9\ + M ^ ( r 1 4 + r 2 3 ) - r1234^j e2

n + ^ M ( r 1 3 - r 2 4 ) + z n j e\ = o, 

92

n + M[ ^ ( r 1 4 + r 2 3 ) + r 1 2 3 4 ) o\ - ( ^ M ( r 1 3 - r 2 4 ) + in]e2

n = o. (4.106) 
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Differentiating with respect to r and using (4.106) again to eliminate the first 

derivatives, results in 

en + Anen = 0, (4.107) 

where 

2 , 7M2\ r 3M\ iV3Mn,„ „ , i3M2 

An= [n' + —)i-—r12z4--:L-^—(r13-r24)-—(r12+r34), (4.108) 

and we have re-combined 81 and 62 into a single complex spinor e = 61 + i62. In 

order to solve (4.107) we need to find the eigenspinors of the matrix An. To do this, 

we consider constant eigenspinors oi iT^ and i r 3 4 , and denote them as e±:t where 

i r 3 4 s { ) ± = ± £ ( ) ± . (4.109) 

so that 

Ane++ = {M2 + n2)e++- VSMne—, 

Ane+~ = (M2+n2)e+-, 

Ane-+ = {M2+n2)e-+, (4.110) 

Ane— = {4M2 + n2)e—- V3Mne++. 

Therefore, at each level n, there are four fermionic oscillators with frequency given 

by 

w 2 = n 2 + M 2 , (4.111) 

and there are four fermionic oscillators with frequencies 

( w ± ) 2 = I (2n2 + 5 M 2 ± Vl2n2M2 + 9 M 4 ) . (4.112) 

Remarkably, these exactly match the frequencies (4.28) and (4.87) found for the 

bosonic oscillators above. This is presumably required by the supernumerary super-

symmetries. 

Having seen that the bosonic and fermionic contributions match up in the case of 

the maximally-supersymmetric plane-wave, it is reasonable to expect that the same 

thing happens in this case. Therefore the Hamiltonian takes the following form: 
8 

H = AE + 2M + M £ iV 0

w + £ (u,nN* + cu+N2 + < i V „ 3 ) , (4.113) 
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where, in analogy with [141], the zero point energy is 

AE = (6 x 1/2 + 2 x 2 x 1/2)M = 5 M , (4.114) 

the fermion zero modes appear in and the operators N^'2,3 now also include the 

relevant contributions from the fermions. 

As before, one can take a different definition of the fermionic vacuum to remove 

the zero-point energy. In this case, one then has six fermionic zero-mode creation 

operators that raise the value of H by M , and two that raise i t by 2M. 

4.7 The BMN limit of the Leigh-Strassler fixed 

point 

Now that we have found the string spectrum on the background (4.74), we can 

attempt to match it to the Leigh-Strassler theory, following the work of BMN. 

Let us first consider the light-cone Hamiltonian 

H = ia'p+du = a'p+ ( j j j d T + ^id* + ^idp + ^Ud^j , (4.115) 

where 

1 v , 3 / 1 r = Eu — — ~ T T — — , V — 7: \ Eu + 
2^o EL2' 2 V 2^o EL2 J ' 

1 2 
( f ) = ( f , + 7 = 7 + 3 ^ - (4.116) 

Since U(l)/3 is not a symmetry of the gauge theory superpotential, there is no con­

served charge associated with the operator idp, and so it would not make sense to 

have this term present in the Hamiltonian. However, we have 

/3 = V-(</> + 7) = - ( ^ + 7), (4.117) 

so that dP/du = 0 as required. The scaling dimension, A, the R-charge, J, and 

the 'flavour' charge, J3, associated with the C/(l) 7 diagonal subgroup of the global 

'flavour' SU(2), are given by 

A = idT, J = -id,p, J 3 = idy, (4.118) 
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A J J 3 
£ = A - | J + J 3 

01 3/4 1/2 1/2 1 

02 3/4 1/2 -1 /2 0 

03 3/2 1 0 1 

fa 3/4 - 1 / 2 -1 /2 1/2 

02 3/4 - 1 / 2 1/2 3/2 

03 3/2 - 1 0 2 

Table 4.1: The conformal dimensions, charges and light-cone energies of the complex 

scalar fields appearing as the lowest-order components in the expansions of the three 

chiral and three anti-chiral superfields. 

so that 

H = M ( A - i j + J 3 ^ . (4.119) 

Likewise, the light-cone momentum is given by 

" + = * = - T O ( A + ^ J 3 ) ' ( 4 1 2 0 ) 

Since both of these quantities should remain fixed after taking the Penrose limit, in 

analogy with [139], we are interested in operators with large R- and flavour-charges: 

|J|, | i 3 | ~ L2 ~ N1/2, (4.121) 

as we take the N —> oo limit, keeping g\M fixed and small. In this limit of infinite 

' t Hooft coupling, we must further demand that A — (J/2) + J 3 is kept fixed, so that 

the light-cone Hamiltonian remains finite. 

The values of A, J, J 3 and H for the complex scalar fields appearing as the 

lowest-order components in the expansion of the three chiral and three anti-chiral 

superfields are listed in table 4.1. Remembering that i t is $ 3 which is massive, and 

can be integrated out as $ 3 ~ [ $ i , $ 2 ] ; the values of H which we find make sense: 

the energy of 4>z is equal to the sum of the energies of <f>x and 0 2 . 

The first prediction from the spectrum found in section 4.6 is that there should 

be a unique light-cone ground state with large A, J and J 3 . I t is simply that state 

for which all the occupation numbers in (4.113) vanish. This corresponds in the 
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gauge theory to the operator Tr(0 2 - / ) . I t has H = 0 since i t is chiral — its conformal 

dimension is simply the naive value A = 3J/2. The second prediction (and this is 

where we depart from the previous results concerning both the M = 4 [139] and 

M = 1 [174-176] theories) is that there should be precisely six bosonic operators 

with H = M and two bosonic operators with H = 2M, corresponding to the zero 

modes of the worldsheet scalars. Four are straightforward to write down; they are 

simply derivatives of the ground state operator 

T r ( D a ^ J ) , a = 1,2,3,4, (4.122) 

coming from inserting covariant derivatives along any of the four spacetime direc­

tions. This follows straightforwardly from the descendant of the action of the con-

formal group. 

Another operator with H = M is T r ^ ] ^ 2 / ) . This is again chiral and so its 

conformal dimension is the sum of those of its constituents. This leaves a sixth 

bosonic operator to be found, which we can look for in analogy with the analysis of 

Itzhaki et al. [174] in the T 1 , 1 case. We propose 

T r ^ 2 / ) , (4.123) 

as our sixth operator with H — M. Since i t is not chiral, its conformal dimension 

is not necessarily the naive one found using the values in table 4.1. 

To understand why this operator should have the required conformal dimension, 

consider 

Tr (<M 2 ) . (4.124) 

Perusal of the tables in [35] shows that this operator is in the same Af = 2 super-

multiplet as the conserved SU(2) current and therefore its dimension is the same as 

its free-field value, i.e. A = 2, which gives H = M. Unfortunately, there does not 

seem to be a field theory method to derive the conformal dimension of T r ^ i ^ 2 / ) . 

For the equivalent operator in the T 1 , 1 case, Itzhaki et al. [174] were able to find 

the relevant conformal dimension using a standard AdS/CFT formula relating the 

conformal dimension to the Laplacian on T 1 , 1 . In the case of the Pilch-Warner geom­

etry considered here, we do not have such a formula and so the proposed conformal 

dimension of Tr^i^Y) i s somewhat more conjectural than one might have liked. 
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A J § = A - I J + J 3 

Xi 5/4 - 1 / 2 1/2 2 

X2 5/4 - 1 / 2 -1 /2 1 

</> 3/2 1 0 1 

Xi 5/4 1/2 -1 /2 1/2 

X2 5/4 1/2 1/2 3/2 

j> 3/2 - 1 0 2 

Table 4.2: The conformal dimensions, charges and light-cone energies of the gaugi-

nos, I/J, and the fermionic components, Xi and X2, of the chiral superfields <3>i and 

$ 2 j and their anti-chiral counterparts. We do not consider the components of <J>3 

here, since it should not enter our discussion at all. 

We should also consider the two operators with H = 2M, which contribute at the 

same 'level' as the six operators with H = M. However, there are various candidates, 

and none of them seem to have protected conformal dimensions. Therefore, we have 

not been able to identify them and have to leave their existence in the appropriate 

BMN limit as a conjecture. 

Given this limited success with the bosonic operators at the lowest lying levels, let 

us now turn our attention to the fermionic ones. From table 4.2 one can immediately 

see that the following operators have H = M: 

T r ( X 2 ^ 7 ) , T r ^ 2 / ) . (4.125) 

These give four fermionic operators since both x a n d "0 a r e two-component Weyl 

fermions. The first two are the supersymmetry variation of the ground state oper­

ator. The second two involve the gaugino, ip. The remaining two operators to be 

found are the fermionic counterparts of T r ^ ^ 2 / ) : 

T r ( x i ^ ) . (4.126) 

Again, we do not consider fermionic operators with H = 2M, but expect that there 

are precisely two of them as above. 

Of course, our ultimate aim should be to reproduce the form of the string spec­

trum (4.113) from the gauge theory, along the lines of BMN [139]. Rewriting this 
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in gauge theory variables, we would want to derive that, for the 5, 6, 7, 8 directions, 

(4.127) 
32 / J 2 ' 

where J = J/2 — J 3 , and we have used the fact that 

4 

L 4 = 
2 5 / 3 

QYhiNot2 and p + 
Q2EL2 

-J. 

For the 1, 2,3,4 directions, we should have the very interesting result 

(A f ) - 5 / 2 7 \ n2g2

YMN • 3 / 4 / 2 7 \ n2g2

YMN 

(4.128) 

(4.129) 

Having considered the IR fixed point geometry and its Penrose limits in some 

detail, we now move away from the fixed point, turning to the flow geometry of [82]. 

4.8 Taking a Penrose limit along the R G flow 

If we are to take the Penrose limit of the flow geometry away from the fixed points, 

we are forced to use 'Poincare' coordinates on the 'AdS' space. Using the the same 

coordinates on the squashed five-sphere as in section 4.5 above, the flow geometry 

is described by the metric [82] 

ds 2 = 2 X ^ c o s h x 
s 

dsl = L2 

( e 2 A d S

2 ( M 4 ) + d r 2 ) + d S

2 , 

,Xl/2sechx d92 + 

p6 cosh2 x 
4X2 

p6 cos2 9 
X 

(a 2 + a 2 ) + 

( 2 s i n 2 0 - c o s ' 0 ) 2 d0 

p 1 2 sin 2 (20) 
AX2 

2 cos2 6 
(2 sin 2 9 - cos2 9) 

(2 + p 6) 

<̂ 3 

2p6 

2 

d</) 

where 

X = cos2 9 + p 6 sin 2 9. 

, (4.130) 

(4.131) 

We are still free to choose geodesies for which 9 = 0 and a = 0. Considering also a 

constant point on E 3 , the effective Lagrangian is 

C O S h x / 2A12 , -2 , -̂ 0 4 )2 \ 
L =• | -e t + r 4- —p if) J , (4.132) 
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where ip is denned in (4.70). As above, there are two conserved quantities, E and 

h, associated with the Killing vectors d/dt and d/dip respectively. The t and ip 

equations then give 

i = EL—^-—e~2A, ijj = 3

 h , (4.133) 
cosh x P cosh x 

and the null condition is 

r = £ i ^ f " M " ^ ' ( 4 1 3 4 ) 

where we have chosen the arbitrary sign in the above to be positive. Of course, we 

cannot integrate to find r(A), but we do not need to. 

Following [137,138], we introduce coordinates {u,v,x} such that guu = 0 = gux 

and guv = 1. In other words, just as in (C.25), we have 

du = rdr +idt + ipdrjJ, 

dv = -j^-dt, (4.135) 

dx = + 

which gives 

dr = E L - P - ( e - ™ - ^ - L Y 2 d«, 
cosh x V E2 40* J 

dt = EL—?—e-2Adu-^- + ]^dx, (4.136) 
coshx EL 4E 
h , dx 

dip = — — du+—. 
p4 cosh x L 

Substituting for these in the metric (4.130), taking 

0 = \ , a = j., (4.137) 

and dropping all terms of (9(1 / L ) , we find 

i j ^ . J A / ^ h1 1 \ 2 , coshx 
4 r \ E24p 

dsl = 2dudv + -ps coshxe2A ( e~'ZA - 1 dx1 + e 2 / l ds 2 (E 3 ) 

sechx (dy2 + y2d<f)2^ + ^sechxp3 {dw2 + u>2d72) 
p 3 \~» • * ~ - ) < 4 

coshx ( p V + ^ ) d u 2 , (4.138) 
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where 

d</> = d ^ - p 6 s i n h 2 x ^ , d-y = d 7 - cosh2 x ^ - (4.139) 

Note that in the IR, these reduce to the angular variables in (4.73) as required. 

To write this in terms of Brinkman coordinates, define 

E(u) = \?>2 cosh 1/ 2 xe^e-**-^-^ = ^ p 1 ' 2 cosh3/2

 x e A f , (4.140) 

F(u) = eA

]J™^, G(u) = ] j ^ , H(u)=1-^py^hX, (4.141) 

and consider the metric 

ds 2 = 2dudv + E(u)2dx2 + F{u)2dxidxi + G{ufdzldzl + H{u)2dz2dz2 

- ^ c o s h x ( p 3 k T + ^ f ) du2, (4.142) 

where i = 1,2,3 and z1, z2 are complex coordinates on the obvious E 2s. Then, with 

a dot denoting d/du, the relevant Brinkman coordinates are 

u = u, x — Ex, xl — Fxl, zx=Gzl, z2 = Hz2, 

v = v - \ [EEX2 4- FFx{xl + GG\zl\2 + HH\z2\2^ , (4.143) 

in terms of which the metric (4.142) becomes, dropping the hats, 

ds 2 = 2dudw + ds 2(E 8) 

du 2 . (4.144) 

We will not consider the form fields explicitly, but it is easy to see that an application 

of the Penrose limit will give the same fields (4.75) as for the IR solution of section 

4.5, but with a u-dependent amplitude. 

At any rate, the resulting metric is certainly in the form of a one-half supersym-

metric pp-wave, but with a complicated ^-dependent profile. It seems unlikely that 

string theory on this background is tractable. Moreover, it is somewhat difficult 

to see what statements about the dual gauge theory can be made. The immedi­

ate observation in this regard is, of course, that there is no concept of operators 

with a definite conformal dimension at a general point along the flow. However, 
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in the maximally supersymmetric case, dual to the M = 4 Yang-Mills theory, we 

know [178-180] that evolution in light-cone time u corresponds to changes of scale in 

the gauge theory (the original holographic radial direction is a monotonic function 

of u). I t is thus tempting to argue that string theory on the above pp-wave is dual 

to an "RG flow" between the Penrose limit of the M — 4 Yang-Mills theory (u = oo) 

and the Penrose limit of the N = 1 fixed point theory (u = —oo). Evolution in 

light-cone time would then induce a flow between the relevant sectors of the two 

gauge theories. 

However, the interpretation must be more subtle as is apparent from considering 

the Penrose limit of AdSs x S5 in Poincare coordinates. For example in (C.23), one 

finds that the usual null trajectories start at r = 0, travel out to some maximum 

r = L\n(E/h) and then fall back to r = 0. Hence these geodesies sample a finite 

range of energies extending from the far IR to some maximum, which depends 

solely on the choice of the initial conditions for the geodesic19. Therefore the correct 

interpretation of the Penrose limit of a non-conformal theory is rather unclear. 

4.9 Conclusions 

One of the most interesting unresolved problems arising from the work presented in 

this chapter is the complete matching of the string spectrum (4.113) to the corre­

sponding set of operators in the field theory. Initially, one would want to match the 

supergravity modes first (including those single-oscillator modes with H = 2M), but 

eventually the aim would be to match the stringy modes as well. At first, the double 

square-root formula of (4.129) appears very difficult to reproduce from perturbative 

Yang-Mills theory. However, an approach similar to that taken by Santambrogio & 

Zanon [173] may be quite promising. They were able to reproduce the square-root 

formula of BMN using superspace techniques. (In fact they found the square-root 

arose simply as a solution of a quadratic equation.) One of the key elements of their 

analysis was that they were able to use properties of the operators implied by M = 1 

1 9 We should also add that similar geodesies in nonconformal backgrounds were considered in 

[181,182], and a discussion of R G flows in this context also appeared in [179]. 
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superconformal invariance. In the case we have studied, the Leigh-Strassler theory, 

we also have Af = 1 superconformal symmetry and so one might imagine that with 

some assumptions one could use a similar argument. (Perhaps i t is possible to de­

rive the double square-root formula in the same way that we found i t in the string 

analysis — as the solution of two coupled quadratic equations.) 

Other interesting questions concern the appearance of supernumerary supersym-

metries. Does the existence of supernumerary supersymmetries always imply that 

the frequencies of the bosonic and fermionic modes of the superstring match? How 

can the appearance of 20 supersymmetries be seen from the gauge theory? 2 0 

Finally, it would be attractive to extend the work of Gubser, Klebanov & Polyakov 

[185] (and also Russo [186]) who studied highly excited string states on AdS 5 x Sb 

using semi-classical soliton solutions and reproduced the square-root formula (4.58) 

of BMN. Applying this technique to other supergravity duals would hopefully give 

further insights into a variety of gauge theories. 

It has been suggested [3] that this could be related to "Inonu-Wigner contractions" [183,184]. 



Appendix A 

The SU(2)-invariant one-forms 

In the following we shall use the conventions of Eguchi et al. [187], (for instance see 

p. 377). 

The group manifold of SU(2) is S3 - this can easily be seen by the following 

parametrization of SU(2): 
1 -2 

V —V 

9= \ „ , I , (A. l ) 

where v1v1 + v2v2 = 1. Let us define three one-forms, cjj, % = 1, 2,3, by the following: 

g~1dg = ioiTi (A. 2) 

where the T ; are the Pauli matrices, that satisfy TT^TJ) = 25^. Therefore, 

d = ~Tr(Ti9-ldg) (A.3) 

so that 

CTI = -{v2dvl - vldv2 - v2dvl + vldv2) , 
Li 

02 = )j{v2dvl - v1dv2 + v2dvl - vxdv2) , 

CT3 = -%-(vldvl+v2dv2-vldvl-v2dv2) . (A.4) 

Then if we choose the following parametrization of v1 and v2 (where 0 < a < ir, 

0 < /? < 4?r, 0 < 7 < 2TT), 

vl = c o s ( - U * ( / J + 7 ) 

v2 = sin (f) e * < ™ , (A.5) 
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one finds the following: 

<Ti = - (sin /5da — sin acos/fcfy) , 

G2 (Cos f3da + sin a sin Pd^) 

A 3
 = -(d/3 + cos 0x17) . (A.6) 

In particular 

o\ + io2 — — — (da — i sin ad7) , (A.7) 

so that o\+o\ = j d f i 2 , , where dfi 2 , is the metric on the unit two-sphere. Furthermore, 

one has 

a2 + o\ + o\ = dvxdvx + dv2dv2 = d f l 2 . (A.8) 

The corresponding volume forms on S2 and S 3 are: 

u>2 = 4<7i A <T2 = sin adj A da , 

OJ3 — o\ A <T2 A a 3 = ^ sin ada A d/3 A d7 
8 

(A.9) 

(A.10) 

Another useful fact is 

d<Tj = eijfcCTj A (Tfc (A. l l ) 

Given, this we can parametrize R 4 in terms of the <7j and a radial coordinate u. Let 

z1 — uv1 , 2 2 
Z = UV (A.12) 

so that 

and so 

( du ^ 

\ U03 ) 

1 
2u 

z2 

-2 • -1 

-zl 

• -2 1 
izl 

ds< dzMz1 + dz2dz2 = du2 + u2(a2 + a\ + oj) 

ZZ 

2/^2 

dz2 

dz1 

\ d f 2 ) 

R 4 

(A.13) 

(A. 14) 



Appendix B 

The Pilch-Warner geometry 

The ten-dimensional Pilch-Warner geometry has the metric [82,98] 

ds 2 = Q2 ( e 2 / l ds 2 (M 4 ) + d r 2 ) + ds 2, (B. l ) 

where, in terms of Cartesian coordinates x1,1 = 1 , . . . , 6, on E 6 such that xlxl = 1, 

the five-dimensional "internal" metric is 

d S

2 = L 2 S G C h * ^d^Qjjdx-1+smh2

X(xIJIJdxJ)2 , (B.2) 

L0 being the radius of the AdS space at the UV fixed point. The complex structure 

Ju = —JJI has non-zero components Ju = J-n — J&b = 1 and 

ft2 = £ c o s h X , ^2 = X I Q I J X J ^ Q = d i a g ( p - 2 , p - 2 , p - 2 , / 9 - 2 , p 4 , p 4 ) . (B.3) 

The supergravity scalars x{r) and p(r) obey [35], together with the metric function 

A(r), the equations in (2.27). As explained in [98], one uses the complex coordinates 

ul = xl + ixA, u2=x2 + ix3, u3 = x 5 - i x 6 , (B.4) 

parametrized as 

) =e~i*'2cos0 | V I , u 3 = e- l '*sin^ (B.5) 
u2 J \ v 2 J 

where (vl,v2) are as in appendix A. 

Our choice of these one-forms differs from that of [82,98] by a factor of 1/2, 

which gives rise to various discrepancies between the form-fields given here and 

those in [82,98]. 
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There is thus a natural U(l) action /? -> /3 + const., under which the SU(2) 

doublet in (B.5) picks up an overall phase. This global U(l)p rotates o\ into a 2 and 

leaves <r3 invariant. The local version can be used to choose different parametrization 

of the five-sphere directions. Thus, to go from the coordinates used in [98] to those 

used in [82], one shifts /? —>• f3 + 0, which removes the overall phase from the SU{2) 

doublet in (B.5), and induces the shift <j3 —>• cr3 + d0/2. There is a further U(l) 

action 7 —> 7 + const, which will be of interest to us. This U(\)1 is the diagonal 

subgroup of the obvious global SU(2). 

Putting this all together, we have (cf. [98]) 

d5 2 = 
X 1 / 2 cosh x 

(e2Ads2(M4)+dr2)+dsl (B.6) 

ds2 = L A n 2 p 6 c o s 2 0 , 2 2 , p 1 2sin 2(20) / ( 2 - p 6 ) ^ 
dO2 + (a2 + o f ) + - — A ^ 1 [ cr3 + v

 n 'd<j> 

p 6cosh 2 x 
16X 2 

X 

(3 - cos(20))2 ( d<f> -

4X2 

4 cos2 9 

2p6 

(3 - cos(20)) <?3 

where 

X{r,9) = cos2 9 + p 6 sin 2 9. 

(B.7) 

(B.8) 

Note that the global isometry group of the metric is SU(2) x U(1)^ x U(1)^, although 

only a combination of the two U(l)s is preserved by the form-fields. In the IR 

(r ->• - 0 0 ) , we have x ~> 2/v^3, P -»• 2 1 / 6 and A{r) ->• r/L, where L = 3L /2 5 / 3 . 

The metric becomes [98] 

ds 2(IR) 

d S

2 ( IR) 

2 l / 3 

V3L2 

(3 - cos 29)1/2 ( e 2 r / L d s 2 ( M 4 ) + d r 2 ) + ds 2(IR), 

(3 - cos 29) 1/2 d0 2 + 
4 cos2 9 

(3 -cos 29) 
(a2 + a 2 ) + 

+ 3 [ d < f > (3 -cos20) 

4 sin 2 20 2 

(3 -cos20) 2 C T 3 

(B.9) 
4 cos2 0 N 2 

<?3 

Concentrating for the time being on this fixed point geometry, our self-dual five-form 

is 
2 2 2 / 3 

F 5 (IR) = - - - ^ - e 4 r / L ( l + * ) e ( E 4 ) A dr, (B.10) 
3 L 

which differs by a factor of 2 to that in [98]. To determine the correct ansatz for the 

three-form, one considers the linear G 3 = du1 A dit 2 A du3, which depends on 0 only 
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through the overall phase e - 2 '*, and which includes an overall factor of (<7i + io2) 

(this is (<7i — icr2) in [82,98] due to different conventions for the left-invariant one-

forms). The two-form potential is thus 

, , » , 9,v. L2cos9 / ,„ 2is'm(26) \ . _ 
^ ( I R ) = A e~** — ( d » - ( 3 _ c o ^ ) r ) A (a, + «r»), (B.11) 

where there is an overall arbitrary constant phase, A which is set to —i in [98]. The 

field strength G3 = dA2 is 

G 3 (IR) = a e - 2 i » L 2 cos 9 (df l A d(ft — , 8 C ° S * * 2 d f l A <T3 

\ (3 - cos(29)Y 
2zsin(20) , , \ . . , , „ „. 

v ' a3 A d0 A (a x + zcr2) • (B.12) (3 - cos(20)) 

I t should be obvious that the global U(l) symmetry group of the solution as a whole 

is the combination U(1)R = f / ( l ) ^ + 2U(l)p. Of course, by shifting /? as discussed 

above, one is free to choose the R-symmetry to be any combination of the two U(l)s. 

For example, in the text we are interested in coordinates for which U{\)R = U(l),p, 

so we perform the coordinate transformation ft —» (3 + 2$ on the above solution. 

This removes the overall ^-dependent phase in the two-form potential precisely as 

required. 



Appendix C 

Penrose Limits and PP-Waves 

C . l The 6 = 7r/2 geodesies 

Here we will consider the Penrose limit of the IR fixed point solution along a null 

geodesic with 9 = TT/2, corresponding to the massive direction orthogonal to the 

moduli space. We start with the solution (4.62-4.65), and take 

with L —>• oo. Defining the light-cone coordinates, 

" = 2 i ( H * ) ' "=-S £ i 2( T-^)' (c-2) 

the solution becomes 

ds 2 = 2dudv + ^-(l-A(r2 + \v\2))du2 + ds2{Es)+iEdu{vldvl+v2dv2), 

Fb = - | d u A e ( E 4 ) , (C.3) 

G3 = -V3E duAdv1 Adv2. 

where we have rescaled r and y and defined the coordinates 

z 1 , ^ 2 being complex coordinates on one of the two E4s. The constant in guu is 

unimportant as far as the field equations and supersymmetry transformations are 
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concerned, and has been discussed in [155]. The metric has a dudx* cross-term, but 

it is clear that this can be traded with explicit w-dependence in the three-form. 

In the original coordinates, that is, the cross term is of the form 03 du and can 

be removed by shifting the Euler angle 0, to give 

ds2

2 = 2dudv-E2{r2 + \z\2)du2 + ds2{EB), 

F 5 = - | d u A (C.5) 

G3 = -V3Ee-iEuduAdzl Adz2. 

Substituting for A = — E/2 and \i = —\/2>E e~lEu in the field equation (C.8), one 

can verify that the solution is valid. The ^-dependence in G3 drops out of the field 

equations since i t is just an overall phase. We note that the above pp-wave will give 

rise to worldsheet scalars of the same mass, unlike the case we have considered in 

the text. 

We have not been able to understand the significance of this particular Penrose 

limit with respect to the dual gauge theory. In the original coordinates with a cross 

term in the metric, the light-cone Hamiltonian one finds is 

H ~ A - p , (C.6) 

so that all six scalar fields have H = 0 — there is certainly no unique ground state. 

Moreover, this fact does not seem to be mirrored in the string theory spectrum on 

this background, which does seem to show a unique ground state. Furthermore, the 

frequencies of the bosonic and fermionic modes do not seem to match, in which case 

it seems unlikely that a simple Hamiltonian can be written down at all. On the 

other hand, after shifting f3 to remove the cross-term, one finds an idp term in the 

Hamiltonian and, as discussed in section 4.7, there is no conserved charge in the 

gauge theory associated with this differential operator. 

Taking the Penrose limit along geodesies with angular momentum in the massive 

directions is perhaps an odd thing to try to do anyway, since at the IR fixed point, 

one can simply integrate out these directions. As far as a D-brane probe would be 

concerned, motion in these directions is energetically disfavoured and simply not to 

be described in the dual picture by the effective low energy M = \ field theory. 
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C.2 Possible instabilities for large B-fields 

Let us consider the general solution 

ds 2 = 2dudv + Aijxixjdu2 + ds2{E8), 

F5 = n ( l + * ) d « A e ( E 4 ) , (C.7) 

G 3 = C du A d z 1 A d z 2 , 

where z1 = x1 + ix2, z2 = x3 + ix4 are complex coordinates on one of the transverse 

I^s, and £ are real and complex constants respectively, and the equations of 

motion demands that 

tiA = - 8 ^ 2 - 2|C|2. (C.8) 

Furthermore, let A be diagonal so that Aij = —5ijE2, so that (C.8) becomes: 

^ E 2 = 8/x2 + 2|C|2. (C.9) 

Following the analysis of section 4.6.1, the equations of motion for X1 and X 3 are 

then 

V 2 X 1 - M2XX + bdaX3 = 0, (CIO) 

V 2 X 3 - MiX3 - bdaXx = 0, ( C . l l ) 

where b = p+a'Ci and Mi = p+a'Ei. (Similar equations hold for the X2 and X4 

directions.) Fourier expanding as in (4.85) above, one finds that the frequencies of 

the normal modes are: 

U J 2 = N 2 + Ml + Ml ± ^ / l (M x

2 - M | ) 2 4- b2n2 (C.12) 

Now note that all of the above w n 's are real and non-zero if and only if 

b2 <n2 + M2 + M2 + ^ I p - . (C.13) 

In particular, by minimizing the right-hand side with respect to n, one is guaranteed 

real u>n for 

b2 < {Mx + M 3 ) 2 . (C.14) 
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However, for larger values of b2, it is possible that some of the frequencies are 

imaginary, resulting in exponentially growing string modes. 

Generalizing the analysis of section 4.6.2, one finds no such instability in the 

fermionic spectrum. As well as the standard four fermions with frequency u2 = 

n2 + M2 at each level, the remaining fermionic oscillators have 

w 2 = n 2 + M2 + - ± V & 4 + 4b2n2 (C.15) 

where M = p+a'n. I t is straightforward to show that this expression always yields 

real frequencies. Note that the metric coefficients E2 do not appear directly in the 

fermionic spectrum. Further, for the general background, the bosonic and fermionic 

spectra no longer match. 

The interpretation of the unstable modes is somewhat unclear, although their 

existence is quite interesting. One might think of them as some sort of (classical) 

instability in the string theory in these backgrounds. The appearance of these 

modes is particularly curious because the supergravity background still appears to 

be at least one-half supersymmetric, i.e., the 16 standard Killing spinors one has 

in the case of plane-wave solutions will yield vanishing supersymmetry variations, 

irrespective of the value of the three-form field. One might suspect that these Killing 

spinors are ill-behaved in some way, e.g., exponentially diverging in u, if the three-

form is too large. However, this is not the case since the equation for standard 

Killing spinors is independent of G3. 

One might imagine that solutions with the Z?-field too large, in the above sense, 

are excluded by the supergravity field equations C.9. However, it is easy to see that 

this is not the CclSGj clS the inequality (C.14) only refers to three of the nine pa­

rameters appearing in the former equation. Hence these unstable modes apparently 

appear in valid supergravity backgrounds. Further it seems that given the null form 

of these gravity wave solutions, they will be solutions of the string equations of mo­

tion to all orders in a' [162,163,188]. In particular, it seems the general discussion 

of [162] should apply even with the appearance of R-R fields in the background. 

Let us make several further observations. First, these solutions are in no sense 

asymptotically flat in any directions, rather the field strengths and Ruiuj are con­

stant throughout the spacetime. Hence one may wonder whether or not the generic 
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backgrounds are relevant in string theory. Certainly we have found that certain 

plane-wave solutions with constant three-form fluxes appear as Penrose limits of 

asymptotically AdS backgrounds, and so play a role in string theory. I t could be 

that these "unstable" supergravity solutions are simply pathological backgrounds 

as far as the string theory is concerned and are not useful spacetimes to consider 

from this point of view. A second observation is that the unstable modes in the 

bosonic spectrum only occur at finite, non-zero n. Roughly, one may think that 

oscillator modes need to be excited so that the string is spatially extended and can 

"see" the S-field. Hence the instability is inherently stringy in origin. This feature 

is somewhat reminiscent of the instabilities discussed in [189]. Finally, we note that 

the instability only appears for a finite set of modes, i.e., for a finite range of n2. I t 

is straightforward to derive the exact range, however, let us make some qualitative 

statements. Generically if we take M\ ~ M f ~ M2 then the instability sets in for 

b2 > M2. In this case the unstable modes appear in a certain range, n2_ < n2 < n2

+, 

where n2

± = 0(M2) and n\ — n2_ = 0(M2). However, recall the definitions above, 

M2 = (p+a'Ei)2. Now in studying supergravity backgrounds, we would ask that 

typical curvatures are small which in this case corresponds to (lsEi)2 <C 1. I f this 

inequality applies and (lsp+)2 < 1, then the unstable range will lie entirely within 

the range 0 and 1. That is, there will not actually be any integer values of n for 

which the frequencies (C.12) become imaginary. Hence the appearance of an actual 

unstable mode requires that either the background is highly curved on the string 

scale and/or the p+ component of the momentum is very large (which corresponds 

to a highly excited string state). This once again emphasizes the stringy nature of 

this potential instability. 

C.3 Penrose limit of AdSs x S5 in Poincare coor­

dinates 

Although the Penrose limit of AdS 5 x S 5 in Poincare coordinates has already been 

discussed in [138], it is worth reviewing the analysis here: firstly, we use different 

coordinates on the five-sphere, which leads initially to a "mixed" Rosen-Brinkman 
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form of the maximally supersymmetric pp-wave; and secondly, i t will be useful to 

compare this simple case with the more complicated geometry in section 4.8. The 

metric on AdSs *Sb, with the AdS factor in global coordinates, is 

ds 2 — L2 - cosh2 p d r 2 + dp2 + sinh 2 p dttj + cos2 9 d<j)2 + d0 2 + sin 2 9 dClj , 

(C.16) 

where d£22 and df2| denote metrics on unit three-spheres. In these coordinates, a sim­

ple class of null geodesies is that for which p = 0 = 9. Taking the Penrose limit along 

such a geodesic which has angular momentum in the <f> direction gives rise [137-139] 

to the maximally supersymmetric pp-wave of type I IB supergravity [136]. Poincare 

coordinates on AdSs are defined by 

y = y(coshp COST — sinhp Q 4 ) , 

t = -coshp sinr, (C17) 
V 

x% = - sinh p fli, 
y 

where x*,i = 1,2,3, are the coordinates on E 3 and where fijfij + Q 4 0 4 = 1 gives an 

embedding of S3 in E 4 . Defining a new radial coordinate 

r = L\n(Ly), (C.18) 

the metric on AdS 5 x S5 is thus 

ds 2 = e2T>L [-dt2 + ds 2 (E 3 )] + dr 2 + L2 [cos2 9 d^ 2 + d0 2 + sin 2 9 dtlj] . (C.19) 

For geodesies at a constant point in E 3 , the effective Lagrangian is 

C = -e2rIH2 + r2 + L2 cos2 9 ft + 92 + sin 2 9d\ , (C.20) 

where, if A is the affine parameter, a dot denotes d/dA. One is still free to consider 

the class of geodesies for which 9 = 0. Then the t and (f> equations give 

i = ELe~2r/L, 4> = h, (C.21) 

where E and h are the conserved energy and angular momentum associated with 

the Killing vectors d/dt and d/dcj) respectively. The null condition £ = 0 then gives 

f = ±EL\\e-^IL_^ ( C ,22) 
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If we choose the — sign in the above, then the resulting geodesic matches onto the 

p = 0 geodesies in global coordinates.1 Integrating (C.22) and (C.21) gives 

r(X) = Lln^j-cosXhj , t{\) = L ^ t a n A / i . (C.23) 

Transforming back to the y coordinate defined in (C.17) above, gives 

2/(A) = ~ c o s A / i , (C.24) 

which, with h = E, matches onto the p = 0 null geodesies in global coordinates, as 

promised (and these latter do indeed have h = E). 

Following [138], we introduce coordinates {u, v,x} such that u is the affine pa­

rameter along the null geodesies. Demanding that guu — 0 = gux and guv = 1, a 

possible choice is 

du = rdr + idt + 4>d^, 
h2L 

= — Lh tan uh dr -\—— sec2 uh dt + hd^, 
E 

dv = ~ d t , (C.25) 

which can be integrated to give 

r(u) = Lin ^-cosuh^J , 

i \ v h 
t(u,v,x) = — tan uh - —— + — x, (C26) 

E EL E 
x 

4>(u, x) — — + hu. 
±j 

We now write the original metric (C.19) in terms of {u,v,x} and implement the 

fact that 9 = 0 by defining 9 = y/L and taking the limit L —> oo. Dropping terms 

of 0(1/L) gives the metric 

E2 

ds 2 = 2dudv - h2y2du2 + sin2 uh dx2 + — cos2 uh ds 2 (E 3 ) + ds 2 (E 4 ) , (C.27) 
hl 

lrThe choice of sign either gives ingoing or outgoing geodesies, which does not change the effect 

of the Penrose limit on the spacetime. 



C.3 Penrose limit of A d S 5 x S5 in Poincare coordinates 143 

where y is the radial coordinate on E 4 . The coordinate singularities in this metric 

appear because of degeneracies in the choice of vectors in (C.25). For example, 

du = hLdx at sinu/i = 0. Further, we note in passing that working in global 

coordinates, and the analogue thereof on the sphere, gives rise to the pp-wave in 

Brinkman coordinates. Use of Poincare coordinates, however, and the parametriza-

tion of the five-sphere used in [138], gives rise to the pp-wave in Rosen coordinates. 

The "mixed" coordinates used here has given rise to the above pp-wave in "mixed" 

Brinkman-Rosen coordinates. At any rate, introducing 

x~ = u, z = sinuhx, zl = jCOSuhxl, 

x+ = v + \ (f xlxl - x2) sin(2u/i), (C.28) 

gives 

ds 2 = 2Ax~dx+ - h2\x\2dx~2 + ds 2 (E 8 ) , (C.29) 

where now |x| denotes the radial coordinate on E 8 . 

As to the R-R five-form field strength which, in Poincare coordinates, has the 

form 

F5 = y ( l + * ) e(AdS5) = y e 4 r / L ( l + * ) dt Ae (E 3 ) A d r , (C.30) 

for some constant C and where e(M) denotes the volume form on A^, we find 

F 5 = Cdx~ A e(E 4). (C.31) 
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