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1
Introducción

La búsqueda de las leyes fundamentales que describen nuestro universo nos ha llevado
a preguntarnos por el comportamiento de la naturaleza a escalas infinitamente pequeñas
e infinitamente grandes. La Fisica de Part́ıculas y la Cosmoloǵıa son las ramas de la f́ısica
que estudian el comportamiento de los procesos f́ısicos a estas dos escalas tan diferentes.

La F́ısica de Part́ıculas busca entender cuáles son los constituyentes elementales que
forman el universo y las interacciones que los gobiernan. El concepto de bloque fundamen-
tal e indivisible (apodado entonces como átomo) viene ya de la Antigua Grecia, pero no
es hasta el siglo XIX de mano de la f́ısica experimental que se establece como base para
modelizar el comportamiento de la materia a escalas más pequeñas. La tabla periódica
es la primera clasificación de estos átomos o elementos qúımicos remarcando la existencia
de un orden y periodicidad en su propiedades qúımicas. Desde entonces, gracias a poder
realizar experimentos a escalas cada vez más pequeñas, hemos pasado de los átomos a los
núcleos y electrones, de los núcleos a los protones y neutrones, y de estos últimos a los
quarks. La “tabla periódica” del siglo XXI se conoce como el Modelo Estándar (SM) de
F́ısica de Particulas, y describe bajo el mismo formalismo matemático tanto las part́ıculas
que forman la materia como las responsables de las interacciones fundamentales. De la
misma manera el equivalente a los “microscopios” son hoy los aceleradores de part́ıculas,
que con sus altas enerǵıas permiten separar la materia en sus constituyentes elementales
y obtener información sobre la f́ısica a escalas cada vez más pequeñas. En concreto, el
modelo estándar es una teoŕıa cuántica de campos que describe las part́ıculas elementales
conocidas junto con la interacción electromagnética, nuclear fuerte y nuclear débil, es decir,
todas las interacciones fundamentales salvo la gravedad. El origen del valor de las masas
y acoplos de estas part́ıculas es un problema abierto hoy en d́ıa; y la incorporación de la
gravedad en una formulación cuántica consistente, la principal tarea pendiente de la F́ısica
Teórica de este siglo. Pero la motivación sigue siendo la misma, buscar esos constituyentes
elementales que al combinarse de diferentes formas dan lugar a la materia que nos rodea.
El principio que ha guiado y sigue guiando esta búsqueda es el concepto de unificación. La
naturaleza nos ha enseñado que a medida que vamos a escalas más pequeñas, las leyes que
dominan los procesos f́ısicos son más sencillas y requieren de menos ingredientes. Unos
pocos tipos de part́ıculas y tan solo cuatro fuerzas elementales son capaces de explicar
todos los fenómenos y estructuras observadas hoy en d́ıa.

Por otra parte, la Cosmoloǵıa estudia la evolución y composición del universo, desde
su inicio hasta nuestros d́ıas. A estas inmensas escalas la interacción que juega el papel
dominante es precisamente la gravedad. Observar el universo nos da información sobre
su pasado, sobre épocas en las que la enerǵıa media era suficientemente alta como para
que toda la materia estuviese disociada en sus constituyentes elementales. Cuanto más
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atrás en el tiempo más alta era la enerǵıa media (o temperatura) y más elementales
las part́ıculas que reǵıan el comportamiento del universo. Por ello se dice que el propio
universo es el acelerador de part́ıculas más grande que tenemos. El Modelo Estándar
de Cosmoloǵıa describe el universo desde unos pocos segundos después del Big Bang.
Sin embargo, estos primeros segundos son claves para entender el origen del universo, y
aunque poco en tiempo, en realidad equivalen a 16 órdenes de magnitud en enerǵıa. Es
durante este primer segundo, cuando el universo era tan pequeño y la densidad de enerǵıa
tan alta, que los efectos cuánticos de la gravedad pasan a ser apreciables. Por ello, para
poder entender esos primeros instantes en los que todas las part́ıculas estaban disociadas
en aquellos elementos fundamentales que componen el universo, es imprescindible tener
una teoŕıa cuántica consistente de la gravedad.

Teoŕıa de Cuerdas es hoy por hoy el mejor candidato para un teoŕıa cuántica de la
gravedad que unifica además la gravedad con el resto de las interacciones fundamentales
de la naturaleza.

1.1. Fenomenoloǵıa de Cuerdas

Teoŕıa de Cuerdas (ST) sostiene que toda part́ıcula es en realidad un objeto de
dimensión uno (una cuerda sin grosor). La escala a la cual la dimensión extensa de la
cuerda se hace apreciable se conoce como escala de la cuerda y es t́ıpicamente cercana
a la escala de Planck (escala a la cual los efectos de gravedad cuántica son apreciables).
Las cuerdas pueden ser abiertas o cerradas, y los diferentes tipos de part́ıculas observadas
en nuestro universo corresponden a diferentes modos de vibración de estas cuerdas. Una
de las caracteŕısticas más importantes es que el primer modo de vibración de una cuerda
cerrada equivale a una part́ıcula de spin 2 que juega el papel del gravitón. Las ecuaciones
de relatividad general de Einstein aparecen a su vez como condición necesaria para la
consistencia interna de la teoŕıa (invariancia conforme en la worldsheet). Por tanto, Teoŕıa
de Cuerdas necesariamente predice la existencia de gravedad. Este es uno de los mayores
logros que hizo que Teoŕıa de Cuerdas empezase a considerarse como un serio candidato
a una teórica cuántica de gravedad. Además ST ha demostrado ser suficientemente rica
como para incluir también los elementos necesarios para formar teoŕıas gauge no abelianas
y fermiones quirales, pudiendo dar cabida también al SM de part́ıculas. Por ello, ST se
considera una “teoŕıa del todo” que permite dar una descripción cuántica unificada y
autocontenida de todas las part́ıculas e interacciones existentes.

Por otra parte, cabe destacar que ST no tiene parámetros libres. Todos ellos se fijan
dinámicamente dentro de la propia teoŕıa, es decir, corresponden a valores esperados en el
vaćıo de los propios campos escalares que aparecen en última instancia como vibraciones
de las cuerdas. El ejemplo más t́ıpico es el propio acoplo de la cuerda, que no es más
que el valor esperado de un campo escalar conocido como el dilatón. El único parámetro
libre realmente es la escala de la cuerda e incluso se espera que este sea un artefacto
de la descripción perturbativa de ST, pues hoy por hoy aún no tenemos una descripción
completa a nivel no perturbativo de la teoŕıa. La propia dimensión del espacio-tiempo
tampoco es un parámetro que se especifique inicialmente sino que viene fijado por la propia
autoconsistencia interna de la teoŕıa. En el caso de teoŕıas de supercuerdas (es decir, teoŕıas
de cuerdas supersimétricas para poder incluir la presencia de fermiones en el espacio-
tiempo) esta dimensión es diez. Esto implica que a parte de las cuatro dimensiones espacio-
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temporales en las que vivimos, hay seis dimensiones espaciales extra. Estas dimensiones
extra deben ser compactas y tener un tamaño suficientemente pequeño como para no
ser observables a las escalas de enerǵıa en las que vivimos. Lamentablemente, toda la
simplicidad y predictividad de la teoŕıa se pierde en el proceso de compactificación de diez
a cuatro dimensiones. Las innumerables maneras de compactificar la teoŕıa dan lugar a
los múltiples vaćıos o soluciones que conforman el landscape de teoŕıa de cuerdas. De la
misma manera que diferentes soluciones a las ecuaciones de Maxwell describen diferentes
configuraciones del campo electromagnético, o que diferentes soluciones a las ecuaciones
de Einstein describen diferentes sistemas planetarios o galaxias, diferentes soluciones en
Teoŕıa de Cuerdas describen diferentes universos. Cada vaćıo, pues, corresponde a un
posible universo consistente con ST. Las caracteŕısticas de la compactificación (como el
tamaño y forma de las dimensiones extras) están parametrizados también por los valores
esperados de campos escalares (conocidos como moduli de la compactificación) que se fijan
dinámicamente dando lugar a un número inmenso (pero finito) de posibles soluciones.

Fenomenoloǵıa de Cuerdas trata de encontrar cuál es el vaćıo (o compactificación)
que corresponde a nuestro universo. En ciertas teoŕıas de supercuerdas (Tipo II) es posible
definir sectores localizados de la teoŕıa que se puede desacoplar del resto de propiedades
de la compactificación. Esto permite atacar el problema a trozos, en un alarde del dicho
“divide y vencerás”. Ciertas propiedades de nuestro universo por tanto dependen de as-
pectos puramente locales y pueden ser modelizadas independientemente del resto de la
compactificación, como es el caso del Modelo Estándar de Part́ıculas. Esto permite atacar
y responder preguntas tales como cuál es el origen del valor de las masas de la part́ıculas,
el porqué de tener tres familias de part́ıculas o el origen microscópico de las interacciones
gauge. Sin duda, en los últimos quince años se han realizado grandes progresos para em-
beber el Modelo Estándar de F́ısica de Part́ıculas en Teoŕıa de Cuerdas, y mucho se ha
conseguido gracias a la construcción de modelos locales. Por contra, otras propiedades de
nuestro universo dependen de aspectos globales y no pueden responderse con exactitud sin
un conocimiento pleno de la compactificación. El ejemplo t́ıpico es el valor de la constante
cosmológica que da lugar a la expansión acelerada del universo. También los modelos infla-
cionarios pueden ser extremedamente sensibles a otras regiones de la compactificación en
principio desacopladas. Aunque grandes progresos se han llevado a cabo en la resolución
de los diferentes problemas por separado, mucho queda aún por hacer para encontrar una
compactificación que lo tenga en cuenta todo a la vez. Por suerte, aún queda mucho por
aprender.

A d́ıa de hoy Teoŕıa de Cuerdas tiene una motivación puramente teórica de defi-
nir una teoŕıa del todo que unifique y describa todos los elementos de nuestro universo.
Su propia autoconsistencia interna ha arrojado luz sobre muchos aspectos de gravedad
cuántica, a la vez que inspirado la formulación de dualidades entre gravedad e interaccio-
nes gauge cuyas aplicaciones a otras áreas de la F́ısica como Materia Condensada están
aún por sorprendernos. También ha sido la fuente de grandes avances en el propio campo
de las Matemáticas. La comprobación experimental de la teoŕıa en cambio parece estar
aún lejos de llevarse a cabo. Si efectivamente la escala de la cuerda y de las dimensiones
extras está cerca de la escala de Planck, la detección directa por parte de aceleradores de
part́ıculas es inviable. Aunque esta escala tan alta de enerǵıa para la escala de la cuerda
no es necesario para la autoconsistencia interna de la teoŕıa, lo es si queremos unificar
todas las interacciones gauge como resultantes de una única interacción a alta enerǵıa.
Observaciones cosmológicas podŕıan arrojar luz sobre estas escalas de enerǵıa tan altas y
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tal vez incluso detectar de manera indirecta remanentes de posibles modelos de Cuerdas,
como cuerdas cósmicas o señales de tunneling de un vaćıo a otro de la teoŕıa en etapas
tempranas del universo. Cuanto más ambiciosas son las preguntas que queremos responder
más lejos tenemos que irnos del rango de enerǵıas en el que vivimos y de lo que nos es
confortable. Pero esto no hace que dejemos de preguntarnos sobre el inicio del universo
y las leyes fundamentales que rigen la naturaleza. El tener una teoŕıa consistente que sea
capaz de dar respuesta a todas estas preguntales fundamentales sobre el mundo que nos
rodea es un proyecto ambicioso a la vez que extraordinario. Y Teoŕıa de Cuerdas es un
paso hacia adelante en el camino de conseguirlo.

1.2. Resultados experimentales en altas enerǵıas

Estamos viviendo unos años de nuevos descubrimientos tanto en F́ısica de Part́ıculas
como en Cosmoloǵıa. El 4 de Julio de 2012 se anunció [1,2] el descubrimiento del tan bus-
cado bosón de Higgs por parte del acelerador de part́ıculas del CERN situado en Ginebra
y apodado LHC (Large Hadron Collider). El bosón de Higgs, predicho hace nada menos
que 50 años, era la pieza del rompecabezas que faltaba para completar el Modelo Estándar
de F́ısica de Part́ıculas, que como hemos dicho describe las interacciones fundamentales y
part́ıculas conocidas de nuestro universo. La masa del Higgs era una incógnita dentro del
SM y de hecho, plantea un problema teórico. En general, lo más natural es que las part́ıcu-
las escalares (como el Higgs) tengan una masa del orden del ĺımite de validez (cutoff ) de
la teoŕıa efectiva. Por tanto la masa es una indicación de que a partir de ah́ı debe aparecer
nueva f́ısica (nuevas part́ıculas) y la teoŕıa debe ser completada teniendo en cuenta esos
nuevos grados de libertad. El que una teoŕıa sea efectiva no significa que sea errónea, sino
que simplemente es incompleta. Todas las teoŕıas f́ısicas que tenemos y en las que nos basa-
mos hoy en d́ıa son efectivas en el sentido de que son válidas solo en un rango de enerǵıas y
deben ser completadas a escalas más altas. F́ısica no relativista por relatividad especial de
Lorentz, mecánica clásica por mecánica cuántica, etc. Este paradigma de teoŕıas efectivas
constituye nuestro entendimiento moderno del universo, por el cual a medida que vamos a
longitudes menores (o escalas de enerǵıas mayores) accedemos a nuevos fenómenos f́ısicos
que necesitan de una nueva teoŕıa. Además esta capacidad de poder definir una teoŕıa
efectiva desacoplada de la f́ısica a enerǵıas más altas es lo que nos permite estudiar por
ejemplo la f́ısica de materiales sin tener que preocuparnos por la existencia de los quarks
dentro de los núcleos. Volviendo a la masa del Higgs, el concepto de naturalidad se basa
en asumir que las constantes f́ısicas y parámetros libres de la teoŕıa deben ser de orden
uno. La masa de un escalar es natural solo si es del orden de la escala donde aparece nueva
f́ısica. Si en cambio no aparece nueva f́ısica hasta muchos órdenes de magnitud después,
significa que esta masa está finetuned, es decir, que hace falta un ajuste de los parámetros
de la teoŕıa con una precisión extrema para dar lugar a ese valor no natural de la masa.
Este concepto de naturalidad en el Higgs ha inspirado la mayor parte de toda la investiga-
ción en f́ısica más allá del Modelo Estándar hoy en d́ıa, toda ella basada en el supuesto de
que nueva f́ısica debe aparecer a escalas de enerǵıas no muy lejanas a la masa del Higgs y
por tanto accesibles en el LHC. Sin embargo, el LHC aún no ha detectado señal alguna de
nueva f́ısica más allá del SM. Aún es pronto para concluir nada, pero si en el próximo run
del LHC a 14 TeV no hay signo aún de nueva f́ısica quizá estamos asistiendo a la primera
evidencia clara de fine-tuning en la naturaleza (tal vez junto con el valor de la constante
cosmológica), dando lugar a un cambio de paradigma en el entendimiento del universo.
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Por otra parte, este último año ha sido también un año de gran revuelo en la comu-
nidad cosmológica. En Marzo de 2014, el experimento BICEP2 [3] anunció la observación
de ondas gravitacionales primordiales, constituyendo una fuerte evidencia indirecta de la
teoŕıa de Inflación. Como veremos durante la tesis, Inflación postula la existencia de un
periodo de expansión acelerada al inicio del universo (tan solo 10−34 segundos después del
Big Bang), motivada de nuevo por un concepto de naturalidad en las condiciones iniciales
del universo. De ser confirmado el experimento, constituiŕıa la primera evidencia de f́ısica
más allá del SM a una escala de enerǵıa alt́ısima, tan solo dos órdenes de magnitud por
debajo de la escala de Planck y a nada menos que trece por encima del rango accesible por
el LHC. Por desgracia, recientes estudios muestran que toda la señal de BICEP2 podŕıa
ser debida a ruido (polvo) proveniente del fondo galáctico. Los próximos años prometen
sin duda arrojar luz sobre este asunto gracias a experimentos como Planck y Keck. Mien-
tras tanto, el estudio de inflación a estas escalas de enerǵıa tan altas es interesante por
śı mismo. Su extrema sensibilidad a f́ısica en torno a la masa de Planck, ha motivado
una estrecha relación con Teoŕıa de Cuerdas y puede convertirse en una gran fuerte de
información en la búsqueda de ese vaćıo dentro de Teoŕıa de Cuerdas que corresponde a
nuestro universo.

Gran parte de esta tesis ha sido motivada por los hallazgos experimentales recién
comentados: la masa del Higgs, la falta de evidencia de nueva f́ısica a baja enerǵıa ∼
103 GeV, y la posible detección de nueva f́ısica relacionada con inflación a alta enerǵıa
implicando la existencia de una part́ıcula escalar (el inflatón) a ∼ 1013 GeV. Estudiaremos
una clase de compactificaciones concreta de Teoŕıa de Cuerdas en la que el SM vive en
un sistema de D-branas y supersimetŕıa (SUSY) es rota espontáneamente por flujos de
cuerda cerrada. Veremos que ello motiva una escala de supersimetŕıa alta, entre 1010−1013

GeV, consistente con la masa del Higgs pero implicando efectivamente la ausencia de nueva
f́ısica a baja enerǵıa. Identificaremos además esta escala con la escala de inflación, uniendo
ambos mecanismos y llevando a una identificación del Higgs con el inflatón. De esta manera
conectaremos F́ısica de Part́ıculas y Cosmoloǵıa, todo ello siempre dentro del marco teórico
consistente de Teoŕıa de Cuerdas.

1.3. Esquema de la tesis

La tesis está estructurada de la siguiente forma. En el caṕıtulo 3 introduciremos
los ingredientes principales del tipo de compactificaciones que estudiaremos de Teoŕıa de
Cuerdas. En concreto, compactificaciones de Tipo IIB (y sus extensiones a F-theory) en
variedades Calabi-Yau (CY) con orientifolds y flujos, en las que el SM se encuentra en
un sector localizado de D7-branas. Estudiaremos en detalle la acción efectiva de una D7-
brana pues será el punto de partida tanto para estudiar el proceso de ruptura de SUSY
en el MSSM como la generación del potencial inflacionario. El caṕıtulo 4 está dedicado a
la conexión de Teoŕıa de Cuerdas con F́ısica de Part́ıculas. Estudiaremos las implicaciones
de romper supersimetŕıa con flujos de cuerda cerrada sobre las part́ıculas del MSSM.
En concreto, en 4.1 estudiaremos la estructura de los términos de ruptura de SUSY (soft
terms) inducidos y en 4.2 la presencia de no universalidades en los soft terms originada por
densidades de flujos no constantes. En 4.3 nos centraremos en el tamaño de estos soft terms,
motivando una escala alta de supersimetŕıa que como veremos es consistente con la masa
del Higgs medida experimentalmente. También estudiaremos la relación de esta escala con
unificación gauge dentro de F-theory, y propondremos soluciones a posibles problemas
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fenomenológicos como el decaimiento del protón o un candidato para materia oscura. En
el caṕıtulo 5 pasaremos a estudiar la conexión entre Teoŕıa de Cuerdas y Cosmoloǵıa,
en concreto, la construcción de modelos de Inflación dentro de Teoŕıa de Cuerdas. En 5.1
introduciremos los conceptos básicos de Inflación y el origen de su extrema sensibilidad a la
f́ısica de alta enerǵıa. Nos centraremos en el estudio de modelos de large field inflation que
requieren de un correcto tratamiento dentro de Teoŕıa de Cuerdas. En 5.2 propondremos
un nuevo modelo inflacionario apodado Higgsotic inflation, en el que el inflaton es un
escalar responsable a la vez de ruptura espontánea de una simetŕıa gauge no abeliana
y de inflación, siendo el obvio candidato para ello el bosón de Higgs. Embeberemos el
modelo en un sistema de D7-branas y calcularemos el potencial efectivo y los observables
cosmológicos resultantes. Finalmente el caṕıtulo 6 contiene las conclusiones de la tesis,
seguido de dos apéndices.
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2
Introduction

The search for the fundamental laws that describe our universe has led us to wonder
about the behaviour of nature at infinitely small and infinitely large scales. Particle Physics
and Cosmology are the branches of physics which study the physical phenomena at these
two vastly differing scales.

Particle Physics attempts to understand the nature of the elementary constituents
which are the basis of the matter and interactions of our universe. The concept of a fun-
damental and indivisible block (dubbed atom) comes from Ancient Greece, but it is not
until the 19th century that, motivated by experimental physics, it is really used to explain
the behaviour of matter at very small distances. The periodic table is the first classific-
ation of the different chemical elements (fundamental blocks of that time), highlighting
the existence of an order and periodicity in their chemical properties. Since then, our
understanding of the fundamental constituents has evolved thanks to experiments at ever
smaller distances, going from atoms to nuclei and electrons, from nuclei to protons and
neutrons, and from these to quarks. The current 21st century “periodic table” is known as
the Standard Model (SM) of Particle Physics, which describes within the same mathemat-
ical framework the elementary particles leading both to matter and interactions. Similarly
the new “microscopes” are the particle colliders, which are able to dissociate matter into
its elemental constituents at very high energies, allowing us to obtain information about
physics on ever decreasing scales. More specifically, the SM is a quantum field theory which
provides a unified description of matter particles and electromagnetic, strong and weak
interactions, i.e. all fundamental interactions except for gravity. The origin of the value of
the masses and couplings of these particles is today an open problem; and the formulation
of a consistent quantum description of gravity, the main task ahead of Theoretical Physics
this century. But the motivation is still the same, to look for those elemental constituents
which, combined in different ways, give rise to the world around us. The principle that has
guided and continues to guide this search is the concept of unification. Nature has taught
us that as we go to smaller scales, the laws describing the physical processes are simpler
and require fewer ingredients. Just a few kinds of particles and only four elementary forces
are enough to explain all the phenomena and structures observed today.

Cosmology, on the other hand, studies the evolution and composition of the universe,
from its beginnings up to the present day. At these huge scales the interaction playing the
dominant role is precisely gravity. The observation of the universe gives us information
about its past, about periods when the average energy was sufficiently high that all matter
was dissociated into its elementary constituents. The further back in time we go, the higher
the average energy (or temperature) was, and the more elemental the particles governing
the behavior of the universe were. For this reason, the universe itself is said to be the
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largest particle collider. The Standard Model of Cosmology describes the universe from
just a few seconds after the Big Bang. However, these first few seconds are crucial to the
understanding of the origin of the universe. And while it is very small in terms of time,
it actually corresponds to 16 orders of magnitude in terms of energy. It is indeed during
this first second, when the universe is so small and the average energy so high, that the
quantum effects of gravity are expected to be significant. That is why, having a consistent
quantum theory of gravity is essential to understand those first moments of the universe,
when all particles were dissociated into their fundamental units.

String Theory is currently the best candidate for a consistent quantum theory of
gravity, which in addition unifies gravity with the other fundamental interactions of nature.

2.1. String Phenomenology

String Theory (ST) states that every particle is actually a one-dimensional object (a
zero-thickness string). The scale at which the extended dimension of the string becomes
appreciable is known as string scale and it is typically close to the Planck scale (that at
which the quantum effects of gravity become important). Strings can be open or closed,
and the different types of particles observed in our universe arise from different excitation
modes of these strings. One of the most important features is that the first excitation
mode of a closed string leads to a particle of spin 2 which plays the role of the graviton.
The Einstein equations of general relativity arise, in turn, as necessary conditions for
the internal consistency of the theory (conformal invariance in the worldsheet). There-
fore string theory necessarily predicts the existence of gravity. This is one of the biggest
achievements that caused string theory to begin to be considered as a serious candidate
for a quantum theory of gravity. In addition, ST has demonstrated to be rich enough to
accommodate non-abelian gauge symmetries and chiral fermions, allowing for the embed-
ding of the SM. Therefore, ST is considered as a “theory of everything” which provides a
unified and self-contained quantum description of all particles and interactions of nature.

Moreover, it should be pointed out that ST has no free parameters. All the free
parameters within ST are fixed dynamically by the theory itself, that is, they correspond
to vacuum expectation values of scalar fields which arise from the excitation string modes.
The most typical example is the string coupling itself, which is simply the vacuum expect-
ation value of a scalar known as the dilaton. The only free parameter is the string scale,
and even this is expected to be an artifact of the perturbative description of ST. For the
time being we do not have yet a complete nonperturbative description of string theory.
Interestingly, the space-time dimension is not a parameter imposed by hand but it is also
fixed by the internal self-consistency of the theory. In the case of superstring theories (ie,
supersymmetric string theories to account for the presence of fermions) the space-time has
to be ten dimensional. This implies that there are six extra spatial dimensions in addition
to the usual four dimensional space-time in which we live. These extra dimensions must
be compact and sufficiently small to be undetectable at the scales currently accessible by
experiments. Unfortunately, all the simplicity and predictability of the theory is lost in
the process of compactification from ten to four dimensions. The countless ways to com-
pactify the theory lead to the multiple vacua or solutions that form the string landscape.
In the same way that different solutions of Maxwell equations describe different configura-
tions of the electromagnetic field, or that different solutions of Einstein equations describe
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different planetary systems or galaxies, then different solutions of string theory describe
different universes. Each vacuum thus corresponds to a possible universe consistent with
ST. The compactification properties (such as size and shape of the extra dimensions) are
also parameterised by the vacuum expectation values of scalar fields (known as moduli of
the compactification) which are fixed dynamically leading to a huge (but finite) number
of possible solutions.

String Phenomenology attempts to find what is the vacuum (or compactification)
corresponding to our universe. In certain superstring theories (Type II) one can define
localised sectors which can be decoupled from the rest of properties of the compactification.
This allows us to attack by breaking down the problem into pieces, as the saying goes,
“divide and rule”. Certain properties of our universe, such as many properties of the
Standard Model of Particles, depend on purely local aspects and can be decoupled from
the rest of the compactification. This allows us to address questions such as the origin
of the value of the masses of the particles, why there are three families of particles or
what is the microscopic origin of the gauge interactions. Certainly in the last fifteen
years there have been big improvements in embedding the SM in string theory using
local models. In contrast, other properties of our universe depend on global aspects and
can not be addressed without a full understanding of the compactification. The typical
example is the value of the cosmological constant responsible for the accelerated expansion
of the universe. Inflationary models can also be extremely sensitive to other regions of
the compactification a priori decoupled. While big achievements have been made in the
resolution of the different problems separately, much work remains to be done to find a
complete compactification which takes all of them into account at once. Fortunately, there
is still a lot to learn.

Currently, string theory is mostly motivated by the theoretical challenge of find-
ing a theory of everything which provides a unified description of all the elements in our
universe. The internal self-consistency of the theory has shed light on many aspects of
quantum gravity, inspiring the formulation of dualities between gravity and gauge interac-
tions whose applications to other areas of physics as condensed matter are very promising.
It has also been a source of major advances in the field of pure mathematics. The ex-
perimental verification of the theory though seems to be still far from being achieved.
Cosmological observations might shed light on the physics at very high energy scales and
perhaps even indirectly detect possible remnants of string models, like cosmic strings or
signs of tunneling between different vacua in the early stages of the universe. However, if
indeed the string and compactification scales are close to the Planck scale, the direct de-
tection by the colliders will be unfeasible. While not required by the internal consistency
of the theory, such a high value for the string scale is necessary to achieve successful unific-
ation of all gauge interactions. The more ambitious are the questions we want to answer,
the further we have to go beyond the range of energies in which we live and beyond what it
is confortable to us. But that does not make us stop wondering about the beginning of the
universe and the fundamental laws describing the world around us. Having a consistent
theory capable of providing an answer to all fundamental questions about our universe is
an ambitious and extraordinary project. And string theory is a step forward on the way
to achieve it.
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2.2. New experimental results and future expectations

We are living an exciting time of new discoveries in both particle physics and cos-
mology. On July 4th 2012 it was announced [1, 2] the discovery of the long-sought Higgs
boson by the LHC (Large Hadron Collider) at CERN and located in Geneva. The Higgs
boson, predicted 50 years ago, was the missing piece of the puzzle to complete the standard
model of particle physics which, as commented above, describes the fundamental interac-
tions and particles known in our universe. The Higgs mass was a free parameter in the
SM and in fact it poses a theoretical problem. In general, it is natural that the scalar
particles (such as the Higgs) have a mass of the order of the cutoff of the effective theory,
indicating that new physics (new particles) should appear at that scale and the theory
has to be completed taking into account those new degrees of freedom. The fact that a
theory is effective does not make it wrong, but simply incomplete. Indeed all the physical
theories we have and on which we have built our knowledge of the universe are effective
in the sense that they are valid only in a range of energies and must be completed at
scales beyond that. For instance, non-relativitic mechanics must be completed by special
relativity, classical by quantum mechanics, etc. The notion of effective theories is the basis
of our modern understanding of nature. By going to shorter lengths (or higher energies)
we are able to observe new physical phenomena that will require the formulation of a new
theory. Furthermore, the fact that one can define an effective theory decoupled from high
energy physics allows us to study, for instance, material science without concerning about
the existence of quarks within the nuclei. Returning to the Higgs mass, the concept of
naturalness is based on the assumption that the physical constants and free parameters
of the theory should be of order one. The mass of a scalar is natural only if it is of the
order of the scale of new physics. But if new physics does not appear until many orders
of magnitude later, it implies that the mass is finetuned, ie, one needs a fine adjustment
of the parameters with extreme precision to give rise to such an unnatural value of the
mass. This concept of naturalness in the Higgs (leading to the hierarchy problem) has
inspired most of the research beyond the standard model (BSM), everything based on the
assumption that new physics must appear at scales not very far from the Higgs mass and
therefore attainable in the LHC. However, there is no sign of new BSM physics yet at
the LHC. While it is too early to make conclusions, if there is still no sign of new physics
in the next run of the LHC at 14 TeV, we might be witnessing the first clear evidence
of fine-tuning in nature (perhaps together with the value of the cosmological constant),
leading to a change in our current understanding of nature.

Furthermore, this last year has also been very important for the cosmological com-
munity. In March 2014, the BICEP2 experiment [3] announced the observation of prim-
ordial gravitational waves, providing strong indirect evidence for the theory of inflation.
As we will see during this thesis, inflation postulates the existence of a period of acceler-
ated expansion at the beginning of the universe (just 10−34 seconds after the Big Bang).
Inflation was also formulated to allow for naturalness in the initial conditions of the uni-
verse. If this experiment is confirmed, it would be the first evidence for physics beyond
the SM at very high energies, at only two orders of magnitude below the Planck scale
and thirteen above the range attainable by the LHC. Unfortunately, recent studies show
that the BICEP2 signal could be due to dust from the galactic background. The next few
years promise to be decisive in clarifying this issue thanks to experiments like Planck and
Keck. Meanwhile, the study of inflation at these high energy scales is interesting for its
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own sake. Its extreme sensitivity to Planck scale physics has promoted a close relationship
with string theory. Inflation might become an essential source of information in finding
the specific vacuum of string theory corresponding to our universe.

Most of this thesis has been motivated by the recent experimental findings detailed
above: the Higgs mass, the absence of new physics at low energy ∼ 103 GeV, and the
possible detection of new physics related to inflation implying the existence of a scalar
particle (the inflaton) at ∼ 1013 GeV. We will study a particular class of string theory
compactifications in which the SM lives in a system of D-branes and supersymmetry
(SUSY) is spontaneously broken by closed string fluxes. We will see that this motivates a
high scale for supersymmetry, 1010−1013 GeV, consistent with the Higgs mass and indeed
implying the absence of new physics at low energy. We also identify this scale with the
scale of inflation, unifying both mechanisms and leading to the identification of the Higgs
with the inflaton. In this way we will connect Particle Physics and Cosmology, all within
the theoretical framework of string theory.

2.3. Plan of the thesis

The outline of this thesis is as follows. In chapter 3 we introduce the main ingredients
of the string compactifications we will be dealing with during the thesis. In particular,
type IIB compactifications (and their F-theory extensions) on Calabi-Yau (CY) manifolds
with orientifolds and fluxes, in which the SM lives in a localised system of D7-branes. We
will describe in detail the effective action of a D7-brane as it will be the starting point
for studying both the SUSY breaking in the MSSM and the generation of the inflationary
potential. Chapter 4 is dedicated to the connection between string theory and particle
physics. We study the implications of flux-induced supersymmetry breaking on the MSSM
fields. In particular, in 4.1 we study the structure of soft SUSY breaking terms and in 4.2
the presence of non-universalities in the soft terms due to non-constant flux densities. In
4.3 we will focus on the size of the soft terms, motivating a high scale of supersymmetry
breaking which we will show to be consistent with the experimental Higgs mass. We will
also study the relation between this scale and gauge coupling unification within F-theory,
and propose solutions to possible phenomenological problems such as proton decay or a
candidate for dark matter. In chapter 5 we turn to studying the connection between string
theory and cosmology, in particular the construction of inflationary models within string
theory. In 5.1 we review the basic concepts of inflation and discuss its extreme sensitivity
to ultraviolet (UV) physics. We will focus on the study of large field inflation models that
require a proper treatment within string theory. In 5.2 we propose a new model dubbed
Higgsotic inflation, in which the inflaton is a scalar responsable for both spontaneous non-
abelian gauge symmetry breaking and large field inflation, with the Higgs boson being the
obvious candidate. We will embed the model in a system of D7-branes and compute the
effective potential and the resulting cosmological observables. Finally chapter 6 contains
the conclusions of the thesis, followed by two appendices.
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3
String Theory ingredients

There are five different superstring theories according to the concrete way by which
the anomalies are cancelled in ten dimensions: Type IIA, Type IIB, Type I, E8 × E8

Heterotic and SO(32) Heterotic. However all these string theories are related by a rich web
of dualities indicating that all of them might be perturbative limits of a more fundamental
theory, dubbed M-theory, whose microscopic formulation is still a mistery. In addition,
these dualities provide relations between different phenomenologically interesting vacua
of string theory. In this thesis we will work mostly in the context of Type IIB and its
non-perturbative F-theory extension. As we will see, such compactifications allow many
appealing features from the point of view of string model building. For an overview of
string phenomenology and model building see e.g. [4] and references therein.

In this chapter we introduce the basic ingredients of these compactifications which
will appear continously throughout the thesis. In particular, in 3.1 we review the basic
tools of Type IIB orientifold compactifications to four dimensions with special interest in
the closed string 3-form fluxes. The D-brane open string sector and its effective action is
considered in 3.2 while in 3.3 we describe a particular string embedding of the SM in a
local SU(5) GUT model of F-theory.

3.1. Fluxes on Type IIB orientifolds

Let us consider 4d compactifications of Type IIB theories on Calabi-Yau (CY) man-
ifolds. They lead to N = 2 theories in four dimensions, so they are not directly suitable
for particle physics model building since that amount of supersymmetry does not allow
for chirality. One can then further reduce the number of supercharges by introducing an
orientifold action which truncates the supersymmetry to 4d N = 1 (see [4,5] for reviews).
To cancel the RR tadpoles induced by these orientifold planes one needs to include as well
another kind of higher dimensional objects called D-branes. These objects may support
non-abelian guage interactions and chiral matter, so they will be crucial in the realisation
of the SM of particle physics in string theory. In this section we will focus on the closed
string sector of the compactification leaving the open string sector tied to the D-branes
for the next section.

The bosonic content of Type IIB in 10d is given by the NSNS sector, ie. the graviton
GMN , the antisymmetric tensor BMN and the dilaton φ, and the RR sector containing
the antisymmetric p-forms C0, C2 and C4. The 10d supergravity effective action is given
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by
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The term Slocal includes the contribution from localised sources of the compactification,
like D-branes or O-planes. The complete 4d massless spectrum of Type IIB CY compac-
tifications on X6 can be obtained by dimensional Kaluza-Klein (KK) reduction of the 10d
bosonic fields and further completion to 4d N = 2 supermultiplets to account for the fermi-
onic partners. They lead to the gravity multiplet, h1,1 vector multiplets and h2,1+1 neutral
hypermultiplets of N = 2. The integers hp,q are topological invariants known as Hodge
numbers which give the dimension of the corresponding cohomology group Hp,q(X6).

As we mentioned above, Type IIB orientifolds are obtained by considering IIB on a
CY and modding out by an orientifold action given by ΩR. Ω is the action on the world-
sheet while R is a geometric symmetry acting holomorphically on the complex coordinates
of X6. Here we will focus on models with O7/D7 planes, implying an orientifold action
of the form ΩRi(−1)FL where Ri locally acts on a single complex coordinate as zi → −zi,
while keeping the other two coordinates invariant. FL is the left-moving fermion number,
required for the orientifold action to square to the identity. This introduces O7-planes at
the fixed points of Ri wrapping a 4-cycle parametrized by the other two invariant complex
coordinates, and whose RR charges must be cancelled by D7-branes. These models are
of particular interest because they correspond to the weak coupling limit of the F-theory
constructions briefly discussed in section 3.3.

The spectrum is obtained by truncating the massless spectrum of type IIB to states
invariant under the orientifold action. This projects out a subset of the original spectrum
leaving the N = 1 gravity multiplet, h1,1 + 1 chiral multiplets coming from the N = 2
hypermultiplets, h+

2,1 vector multiplets and h−2,1 chiral multiplets (both two coming from

the original N = 2 vector multiplets). h±2,1 refer to number of (2,1)-forms which are even
or odd with respect to the geometrical action. In the following we present the microscopic
description of these multiplets in terms of the 10d fields.

Let us introduce for this purpose a basis of harmonic p-forms which split in turn into
even and odd harmonic forms according to their behaviour under the orientifold action.
The elements of the cohomology basis satisfy the following relations,∫

X6

ωa ∧ ω̃b = δba ,

∫
X6

ωα ∧ ω̃β = δβα ,

∫
X6

αK ∧ βL = δLK (3.4)

where ωa (ωα) denotes an odd (even) (1,1)-form and ω̃a (ω̃α) denotes its dual odd (even)
(2,2)-form. Analogously, αk and its dual βK form a basis of 3-forms. The massless 4d fields
correspond to harmonic forms on the internal manifold X6, so that we have to expand the
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10d fields into the different non-trivial cohomology basis. The fields B2 and C2 are odd
while C4 is even under the orientifold action, leading to the expansion

B2 = ba(x)ωa , C2 = ca(x)ωa , a = 1, . . . , h−1,1 (3.5)

C4 = Ak1 ∧ αk + Cα(x)ω̃α , k = 1, . . . , h+
2,1 , α = 1, . . . , h+

1,1 (3.6)

where ba, ca and Cα are 4d scalars and Ak1 are gauge bosons. The geometric action also
acts as J → J and Ω3 → −Ω3, being J the Kahler 2-form and Ω3 the holomorphic 3-form
of the CY manifold X6. Therefore we can expand the Kahler form as

J = vαωα , α = 1, . . . , h+
1,1 (3.7)

obtaining h+
1,1 real kahler moduli. In addition, we have h−2,1 complex structure moduli

surviving the orientifold projection. The moduli space of CY orientifolds is then given by
h+

1,1 chiral multiplets Tα containing (vα, Cα), h−1,1 chiral multiplets Ga containing (ba, ca),

h−2,1 chiral multiplets Ui containing the complex structure moduli and one additional chiral
multiplet S combining the even universal axion C0 and the dilaton φ. We will come back
to this classification when discussing the candidates for inflation in Type IIB compactific-
ations in section 5.1.

The above scalars are known as moduli of the compactification. The vevs of these
scalars parametrize among other things the properties of the compactification (like size
or shape of the internal dimensions) and in the absence of further ingredients they are
massless 1. This presents a problem because they interact with the matter fields and they
would give rise to fifth forces which have not been observed experimentally. Therefore any
realistic attempt to embed our universe in string theory must sooner or later deal with
the problem of moduli stabilization, ie. must generate a scalar potential which fixes the
vevs of these scalars and provide them a large enough mass. Scalar potentials for these
fluxes can be induced by compactifying the theory on a non-trivial background [7–11].
Concretely, flux compactifications with non-trivial fluxes for the field strength tensor of
the diverse 10d fields are essential in the construction of realistic string models of particle
physics and cosmology. Let us go back then to the effective action (3.1) and consider a IIB
compactification on a 6d manifold X6 with CY topology but in the presence of non-trivial
NSNS and RR 3-form fluxes H3, F3. Due to the backreaction of the fluxes with gravity, the
actual 10d spacetime is not the product of 4d Minkowski spacetime times a CY, but must
account for a non-trivial warp factor [7]. The ansatz for the metric so that 4d Poincaré
invariance is maintained, reads

ds2
10 = e2A(y)ηµνdx

µdxν + e−2A(y)g̃mndy
mdyn (3.8)

where g̃mn is the underlying CY metric, xµ the coordinates in Minkowski and ym the
coordinates on the compact manifold. The ansatz for the five-form field strength consistent
with its Bianchi identity

dF̃5 = H3 ∧ F3 + 2k2
10µ3ρ

loc
3 (3.9)

and Poincare invariance, is given by

F̃5 = (1 + ∗10)(dα ∧ dx1 ∧ dx2 ∧ dx3) (3.10)

1Some of the moduli could be estabilized by the presence of D-branes, but not all of them so additional
ingredients are still required, see e.g. [6]
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with α a function on the compact space and ρloc3 the D3 charge density from localized
sources. Inserting (3.10) in (3.9) we get a laplace equation for the potential α, which
combined with the Einstein equation of motion for the Ricci tensor (also in the form of a
laplace equation for the warp factor) gives rise to the following condition

∇̃2(e4A−α) =
e2A

6Imτ
|iG3−∗6G3|2 + e−6A|∂(e4A−α)|2 + 2k2

10e
2A(

1

4
(Tmm −Tµµ )loc−T3ρ

loc
3 )

(3.11)
The last term above refers to the contribution from the localised sources, being TMN the
stress tensor and Tp the tension of the object. The LHS integrates to zero on a compact
manifold while the RHS is positive definite (as long as we are considering O3/O7-planes
and D-(anti)branes). Therefore the condition holds if all terms in the RHS vanish, implying
that the 3-form fluxes must be imaginary self-dual (ISD)

∗6d G3 = iG3 (3.12)

the warp factor and the four-form potential are related such that

α = e4A (3.13)

and the localised sources satisfy 1
4(Tmm − Tµµ )loc = T3ρ

loc
3 which allows the presence of

objects with D3 but not anti-D3 charge. It is interesting that the supergravity solution
becomes analogous to that of BPS D3-branes. Indeed, the integrated Bianchi identity
(3.9) states that the total D3 charge from supergravity backgrounds and localized sources
vanishes. The three-form fluxes must satisfy the Bianchi identities

dF3 = 0 , dH3 = 0 (3.14)

and obey a Dirac quantization condition

1

(2π)2α′

∫
γ
F3 = mγ ∈ Z ,

1

(2π)2α′

∫
γ
H3 = nγ ∈ Z (3.15)

where γ denote a 3-cycle on X6 and mγ , nγ are the flux quanta of the corresponding cycle.
This implies that the 3-form fluxes scale as G3 ∼ fα′/R3, where f is related to the flux
quanta and R measures the size of the overall CY.

In the large volume limit the fluxes are diluted and the 4d effective theory will be
given by adding a superpotential to the efecctive action of the flux-less CY compactification
[12]. This can be described in terms of the N = 1 Kahler potential

KIIB = −log(−i
∫

Ω3 ∧ Ω̄3)− log(S + S∗)− 2log(e−3φ/2

∫
J ∧ J ∧ J) (3.16)

at leading order in α′. The flux induced N = 1 superpotential, also known as Gukov-Vafa-
Witten superpotential [13], takes the form

W =

∫
X6

G3 ∧ Ω3 =

∫
X6

(F3 − iSH3) ∧ Ω3 (3.17)

and leads to a scalar potential for the complex axio-dilaton and the complex structure
moduli. The scalar potential is given by

V = eK(gab̄DaWDb̄W̄ − 3|W |2) (3.18)
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where we sum over all moduli and DaW = ∂aW +KaW . In the large volume regime the
last term on the Kahler potential (regarding the Kahler moduli) becomes

K(T ) = −3 log(T + T ∗) (3.19)

where we have only considered the overall Kahler modulus T . Combining the fact that
the superpotential (neglecting non-perturbative effects) does not depend on T , the effect-
ive theory is said to have a no-scale structure. There is a cancellation between the T
contribution and the −3|W |2 so that the scalar potential becomes

V = eKgij̄DiWDj̄W̄ (3.20)

where the sum is now only over the dilaton and complex structure moduli. This scalar
potential leads to Minkowski vacua for configurations with DiW = 0. If in addition
DTW = 0 these vacua are supersymmetric. We can translate the supersymmetric condi-
tions into conditions on the components of the 3-form fluxes. The auxiliary fields for the
dilaton and complex structure moduli are given by F̄ i = −eK/2K ījDjW with

DSW = − 1

S + S∗

∫
X6

Ḡ3 ∧ Ω , DUiW =

∫
X6

Ḡ3 ∧ χi (3.21)

where χi is a complete basis of (2,1)-forms. These auxiliary fields vanish if

G(3,0) = 0 , G(2,1) = 0 (3.22)

This is equivalent in a CY manifold to impose that G3 must be ISD2. The vacua will be
supersymmetric if the auxiliary field for the Kahler modulus

F̄ T = (S + S∗)−1/2(T + T ∗)−1/2

∫
X6

G3 ∧ Ω (3.23)

also vanishes, implying

G(0,3) = 0 (3.24)

Therefore supersymmetric Minkowski vacua are obtained only for (2,1) fluxes. Otherwise,
supersymmetry will be spontaneously broken upon turning on some other component of
the flux. The typical scenario to break supersymmetry comes from simply adding ISD
(0,3) fluxes, so that the supergravity equations of motion are still satisfied and the theory
preserves N = 1 supersymmetry which is in turn spontaneously broken in the vacua of
the theory. This situation corresponds to modulus dominated SUSY breaking, which
corresponds to have a non-vanishing auxiliary field for the Kahler modulus.

Notice that the 3-form fluxes are able to stabilize the dilaton and the complex struc-
ture moduli, but not the kahler moduli. The KKLT [8] and large volume scenarios [14–17]
of moduli stabilization consider in addition non-perturbative effects to the superpotential
and α′ corrections to the Kahler potential (this latter in the LVS scenario) to stabilize
the Kahler moduli. These models are able to stabilize all the moduli in an AdS vacuum,
so it is required an extra contribution to uplift the vacuum energy to a dS vacuum. This
uplifting is source of debate and controversy nowadays.

2Recall that there are not non-primitive components in a CY compactification, so (3.22) implies the
vanishing of the IASD fluxes.
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Let us remark the relation just found between the 3-form fluxes and the 4d N = 1
supergravity variables. Closed string 3-form fluxes correspond to non-vanishing vevs for
the auxiliary fields of the chiral fields T, S, U . We have seen that these fluxes are generic in
a realistic Type IIB compactification, since they are necessary to stabilize at least part of
the moduli of the compactification. Therefore they typically provide an important source
of SUSY breaking. In this section we have studied the effect of these fluxes over the closed
string moduli sector. However, they also affect the D-brane open string sector and may
generate SUSY breaking soft terms on the SM fields, as we will discuss in section 4.1.

3.2. Dp-brane effective action

The second superstring revolution was triggered by the renewed interest on D-branes,
which allowed for a better understanding of string theory at strong coupling, beyond the
perturbative regime in which the theory had been defined by then. It turned out that
String Theory is not a theory of strings after all. It contains extended objects, like D-
branes, which may become arbitrarily light at strong coupling dominating the low energy
physics at that regime. This gave rise to the introduction of the weak/strong coupling
dualities relating different superstring theories [18] and suggesting the existence of a unique
underlying theory which was dubbed M-theory. The different string theories correspond
to perturbative corners of this more fundamental theory, whose nature and microscopic
description is still unknown.

Dp-branes can be understood as extended (p+1)-dim surfaces at which open strings
endpoints are linked to. These objects are indeed dynamical and can be described at
weak coupling in terms of the massless spectrum of the open string sector, leading to an
effective supersymmetric Yang Mills (SYM) theory in the worldvolume of the brane. These
D-branes have to be interpreted as non-perturbative states of the same Type II theory, in
analogy with the solitons in quantum field theory. This implies that it should be possible
to construct these states as collective excitations of the spacetime fields. This interaction
with the closed strings leads to a non-trivial background which can also be described as a
solution to the supergravity equations of motion. These two equivalent descriptions lead
Maldacena [19] to introduce the AdS/CFT correspondence or gauge/gravity duality.

The interest on D-branes is also justified by their enormous possibilities in model
building [4]. D-branes became an essential ingredient in the construction of Type II
orientifold compactifications and opened a new avenue to embed the SM of Particle Physics
in ST. They provide a beautiful geometrical picture of the 4d properties: non-abelian gauge
groups arise from coincident D-branes and matter fields live at the brane intersections.

The massless spectrum of the open string sector ending on a Dp-brane is depicted
in table 3.1. The massless states fill an U(1) vector supermultiplet with respect to the 16
supercharges in (p+1)-dimensions propagating in the (p+1)-dimensional worldvolume of
the Dp-brane. In the case of a set of N coindicent Dp-branes, the gauge group is enhanced
to U(N) and all the fields (gauge bosons, scalars and fermions) are promoted to be on
the adjoint representation of the gauge group. In this thesis we will construct our models
around a system of D7-branes.

As mentioned above, the dynamics of the brane is described by the open string
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Sector SO(p-1) (p+1)-dim field

NS vector gauge boson Aµ
NS scalar 9-p real scalars Φi

R spinor fermions λα

Table 3.1: Massless spectrum of a Dp-brane.

modes. For instance, the transverse scalars play the role of the goldstone bosons coming
from the translational symmetries broken by the presence of the brane. Therefore a vev to
these scalars parametrizes the D-brane position in the transverse space, and a non-trivial
profile describes the fluctuations of the brane worldvolume on spacetime. The effective
action for the massless open string modes is thus the worldvolume action describing the
dynamics of the brane. The bosonic action contains two pieces, known as the Dirac-Born-
Infeld (DBI) action and the Chern-Simons (CS) action.

The DBI action is given by

SDBI = −µp
∫
Wp+1

dp+1ξ e−φ
√
−det (P [Eab] + 2πα′Fab) (3.25)

where the coefficent µp = (2π)−pα′−(p+1)/2 is related to the Dp-brane tension (and charge).
The embedding of the Dp-brane into the 10d space-time induces a world-volume metric
which is described by the pullback of the space-time tensor Eab = Gab −Bab to the brane
worldvolume. The field-strength of the worldvolume gauge field is denoted by Fµν . Notice
that this action describes the interaction of the worldvolume fields with the NSNS closed
string background determined by the dilaton φ, the metric Gµν and the antisymmetric
tensor Bµν .

The derivation of this action is quite technical and involves the computation of
the vacuum cylinder diagram describing the interaction between two identical branes by
interchanging closed strings. The contribution from the NSNS and RR fields cancel each
other, so the amplitude vanishes indicating that a D-brane is a BPS state. However
the study of the two different pieces give us information about the DBI and CS action
independently. It was obtained that the effective action describing the interaction with the
NSNS fields coincides with the Born-Infeld action which was introduced 40 years before in a
different context, as the action of an electromagnetic field which is invariant under general
transformations of coordinates. Even if the full derivation of the action is beyond the scope
of this section, we can give an intuitive reasoning to explain the functional dependence of
the action on the different 10d fields. Notice that the piece of the action depending on the
metric is no more than the Nambu-Goto action of an extended p-dimensional object with
tension µp/gs

SNG =
µp
gs

∫
dp+1ξ(−g)1/2 (3.26)

This action is the generalization to higher dimensions of the usual relativistic action of a
particle described by the total path length swept out in spacetime. The worldline in the
case of a particle is generalized to the wordsheet for strings or the worldvolume for branes.
The explicit appearance of the field strength Fµν can be guessed by T-duality from the
simple situation of a D1-brane expanding a spatial dimension tilted at an angle θ with
respect to ξ1. The Nambu-Goto action of the D1-brane is simply

∫
dξ1
√

1 + (∂1ξ2)2. By
T-dualizing along ξ2 we get a D2-brane extended along ξ1 and ξ2 but with a non-trivial
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magnetic flux F12. Since this flux is related to the angle by tanθ = 2πα′F12 the action for
the D2-brane becomes

∫
dξ1dξ2

√
1 + (2πα′F12)2, matching with the result anticipated in

(3.25). In fact, if we expand the DBI action in terms of Fµν (or in α′) the first non-trivial
term on Fµν corresponds to the usual Yang-Mills action for the worldvolume field strength,

SYM =
1

g2
YM

∫
dp+1(−g)1/2trFµνF

µν (3.27)

with g2
YM = gsα

′(p−3)/2(2π)p−2. Finally the appearance of B through the combination
B−2πα′F is required to respect the gauge invariance of the B-field. Besides the appearance
of B in equal footing with the metric is consistent with the fact that both fields arise
microscopically from the same string states. Finally the dilaton background parametrizes
the string coupling as gs = eφ, so the dependence of the brane tension on the string
coupling Tp ∼ 1/gs reflects the non-perturbative nature of these states.

The second piece of the action, known as CS action, describes the coupling of the
open string modes with the RR closed string background and is given by

SCS = µp

∫
Wp+1

P [
∑
q

Cq] ∧ e2πα′F2−B2 (3.28)

where we have neglected the effects of spacetime curvature. As any BPS state, a D-brane
must have conserved charges which correspond to antysimmetric RR charges in the case of
D-branes. The topological nature of the above actions refers to the fact that it describes
indeed the RR charges of the brane. If we expand the action on α′

SCS = µp

(∫
Wp+1

Cp+1 + 2πα′
∫
Wp+1

Cp−1 ∧ trF + . . .

)
(3.29)

the interpretation of each term is more clear. The first term describes the coupling of
the Dp-brane with the (p+1)-form potential Cp+1 as expected. Besides, the presence of
worldvolume gauge field backgrounds induce lower dimensional RR charges on the brane,
giving rise to the additional terms above.

The generalization of the effective action to a stack of N branes requires to account
for the non-abelian character of the worldvolume fields. We have to promote the partial
derivatives appearing in the pullback of tensor space time fields to covariant derivatives
of the full non-abelian theory, and keep trace of non-trivial commutators such as [A, φ] or
[φ, φ]. Notice that both gauge fields and scalars are now N × N matrices in the adjoint
representation of the gauge group. One also have to introduce a symmetrized trace over
gauge indices ’STr’ to ignore all commutators between the non-abelian expressions such
as the field strength, the covariant derivatives or the commutators above themselves.
This prescription for the trace is controversial and it can lead to incomplete results in
general configurations for sixth or higher orders in the commutators. However, it describes
properly the physics for supersymmetric configurations. The leading behaviour of the non-
abelian action has been confirmed with the computation of string scattering amplitudes,
and the full form

S = −µpSTr

∫
Wp+1

dp+1ξ e−φ
√
−det (P [Eab + Eai(Q−1 − δ)ijEjb] + 2πα′Fab) det(Q

i
j)

+ µpSTr

∫
Wp+1

P [
∑
q

Cq] ∧ e2πα′F2−B2 (3.30)
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has been shown to be consistent with T-duality [20], where Qij = δij + i2πα′[Φi,Φk]Ekj .
Recall that a, b denote the dimensions extended by the brane and i, j the transverse dir-
ections.

We have seen that a stack of N branes lead to a SYM U(N) gauge theory with
bosons, scalars and fermions in the adjoint representation. To construct realistic embed-
dings of the SM we need to consider several stacks of D-branes in non-trivial open string
backgrounds (namely, intersections of branes and magnetic worldvolume fluxes) to allow
for the additional presence of chiral matter fields in the bifundamental representation of
the gauge group. In the next section we describe a particular local model of D7-branes
in Type IIB which can also be understood as arising at the weak coupling limit of an
F-theory configuration. We will use this local model in the forthcoming chapters.

3.3. F-theory local model building

F-theory [21–23] may be considered as a non-perturbative extension of Type IIB
orientifold compactifications with 7-branes. This class of compactifications have two main
phenomenological virtues compared to other string constructions (see [24–29] for reviews).
First, in Type IIB compactifications it is well understood how moduli could be fixed in the
presence of closed string fluxes and non-perturbative effects. Secondly, particularly within
F-theory, GUT symmetries like SU(5) appear allowing for a correct structure of fermion
masses (in particular a sizeable top quark mass). Here we just review a few concepts
which are required for the understanding of the forthcoming sections (see [30–33] for
model building in F-theory). Our general discussion mostly applies both to perturbative
Type IIB and their F-theory extensions but we will refer to them as F-theory constructions
for generality.

In Type IIB orientifold/F-theory unified models the GGUT = SU(5) symmetry arises
from the worldvolume fields of five 7-branes with their extra 4 dimensions wrapping a 4-
cycle SGUT inside a six dimensional compact manifold B3, see fig.3.1. The matter fields
transforming in 10-plets and 5-plets have their wave functions in extra dimensions localized
on complex curves, the so called matter curves. These matter curves, which have two real
dimensions, may be understood as intersections of the SU(5) 7-branes with extra U(1)
7-branes wrapping other 4-cycles in B3. In other words, new degrees of freedom appear
at these intersections and the gauge symmetry is enhanced to a larger group like SU(6) or
SO(10). The breaking of these groups and the decomposition of the adjoint representation
is performed as follows,

SU(6)→ SU(5)× U(1) SO(10)→ SU(5)× U(1)′

35→ 240 + 10 + 5−1 + 5̄1 45→ 240 + 10 + 104 + 1̄0−4
(3.31)

which gives matter in the 5, 5̄ and 10 of SU(5), as required to accommodate all the SM
particles. Fig.3.1 shows a pictorial scheme of a SU(5) F-theory GUT model. The gauge
bosons live in the bulk of SGUT while the matter (quarks, leptons and Higgses) are localized
in the matter curves. In order to get chirality we have to add a non-trivial background
worldvolume flux 〈F 〉 along the extra U(1) 7-branes, so that the gauge symmetry SU(5)
remains unbroken but the matter curves become charged under the magnetic flux. If
that is the case we will have a 4d chiral spectrum arising from the corresponding matter
curves. The magnetic flux also sets the number of local families in such curves. Finally
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Figure 3.1: Scheme of an F-theory SU(5) GUT. The six extra dimensions are compactified
on B3 whereas the SU(5) degrees of freedom are localized on a 4-cycle submanifold SGUT .
The gauge bosons live on the bulk of SGUT but the chiral multiplets are localized on
complex matter curves. At the intersection of two matter curves with a Higgs curve a
Yukawa coupling develops.

in order to break the SU(5) GUT to the SM gauge group we have to add a second piece
of worldvolume flux along the hypercharge generator, as we will see later. Hypercharge
fluxes have an additional use in typical F-theory GUT’s. Indeed, by appropriately choosing
these open string fluxes one can get doublet-triplet splitting in the SU(5) Higgs 5-plet, see
refs. [24–33] for details. However, as we will remark later, this is only required if SUSY is
broken at low energies.

Furthermore, two matter curves may intersect at a point p ∈ S where the gauge
group is enhanced to Gp giving rise to Yukawa couplings between the chiral multiplets of
the GUT matter fields. Gp contains the gauge group Gσi of each matter curve involved
(and thereby alsoGGUT ). TakingGGUT = SU(5) one can end up in the context of F-theory
compactifications with different enhanced groups at p such that SO(12), E6, E7 or E8.As
we have commented, the existence of these enhanced groups is a very attractive feature
of F-theory, not realizable in perturbative Type IIB compactifications where the gauge
groups are limited to be SU(n + 1), SO(2n) or Sp(n). Indeed, the top Yukawa coupling
can be described only in the presence of exceptional groups which are not realizable in
Type IIB.

Yukawa couplings appear then at triple intersection points in SGUT at which two
matter curves involving 10-plets and 5-plets cross with a matter curve containing the Higgs
5-plets, see fig.3.1. The Yukawa couplings may be computed as in standard Kaluza-Klein
compactifications from triple overlap integrals of the form

Y ijD,L =

∫
S

Ψi
10Ψj

5̄
ΦHD Y ijU =

∫
S

Ψi
10Ψj

10ΦHU . (3.32)

where i, j are family indices. The wave functions have a Gaussian profile so that one
only needs local information about these wave functions around the intersection points in
order to compute the Yukawa couplings. This local information may be extracted from
the local equations of motion which give quite explicit expressions for the wave functions
(see [34–43] for details). We will use these local wave functions to compute the SUSY
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breaking soft terms for chiral bifundamental fields in section 4.1.

Let us remark the importance of going to an F-theory construction to provide a
realistic embedding of the SM. As commented, the top Yukawa coupling is forbidden at
perturbative level in Type IIB due to the selection rules of the overall U(1) of the GUT
stack of branes, and can only be generated by non-perturbative effects. Instead F-theory
provides a strong coupling description of Type IIB allowing for the presence of exceptional
groups and a sizeable top Yukawa coupling. In F-theory the axio-dilaton of Type IIB is
promoted to be the complex structure parameter of an elliptic fibration over the ten
dimensional space-time. This allows to deal with the backreation of the 7-branes in a well
globally defined way and translates fields and properties of Type IIB into geometric aspects
of the elliptically fibered CY four-fold. For instance, 7-branes appear as singularities in the
elliptic fiber. The divisor SGUT wrapped by the GUT branes corresponds to a codimension
one singularity such that it yields a SU(5) gauge group. In the same way, matter curves
and Yukawa points correspond to codimension two and three singularities respectively.
On the other hand, both 3-form closed string fluxes and worldvolume fluxes on the branes
have the same origin. They all come from G4-fluxes in F-theory. Since we will mostly work
at the local level we will not need to use the algebraic geometry machinery associated to
F-theory. We will keep the language inherited from perturbative Type IIB, but keeping
in mind that most of our discussion regarding the embedding of the SM actually refers to
the local model of F-theory discussed here.

Another important issue is the relation between the different energy scales arising
in Type IIB/F-theory compactifications. The string scale Ms = α′−1/2 is related to the
Planck scale Mp by3

M2
p =

8M8
s V6

(2π)6g2
s

(3.33)

where V6 is the volume of the six dimensional internal manifold B3 and gs in the string
coupling constant. The above relation can be obtained by KK dimensionally reducing the
IIB effective action (3.1) to four dimensions. Note that one can lower Ms by having a
large volume V6 (or decreasing gs), so that the string scale is in principle a free parameter.

The volume V4 of the 4-fold SGUT which is wrapped by the 7-branes is usually
independent of the overall volume of B3. This volume V4 is indeed related to the inverse
GUT coupling constant αG, which can be obtained by using (3.27) and performing a KK
compactification to 4d. In particular one has at tree level

1

αG
= 4πRefSU(5) =

1

8π4gs

(
V4

α′2

)
(3.34)

with fSU(5) the gauge kinetic function. Parametrizing V4 = (2πRc)
4 one then obtains

Mc = Ms

(
2αG
gs

)1/4

(3.35)

where we have defined the compactification scale as Mc = 1/Rc. This is slightly below
the string scale (i.e. for gs = 1/2 and αG = 1/24 one has Mc ' 0.6Ms). This scale Mc

can be identified with the GUT scale at which SU(5) is broken down to the SM. Indeed

3The perturbative string scale Ms is not well defined in purely F-theoretical terms. Instead one can use
the mass scale of the supergravity action M∗ which also involves the gs dependence, so that M2

p ∼M8
∗V6.

The conclusions are unchanged.
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in F-theory GUTs (with the 4-cycle being a del Pezzo surface) there are no adjoint Higgs
multiplets nor discrete Wilson lines available and it is a hypercharge flux background
< FY >6= 0 which does the job [30–33]. These fluxes go through holomorphic curves Σ
inside SGUT and they are quantized,

∫
Σ FY = integer. Thus on dimensional grounds one

has < FY >' 1/R2
c = M2

c and indeed one can identify the compactification scale Mc with
the GUT scale.

There is an important feature to remark from these models. The strengths of grav-
itational and gauge interactions are independent since they arise from different sectors
of the theory, the closed string sector living in the bulk and the localised D-brane open
string sector respectively. This independence is fully related to the possible independ-
ence of the overall volume V6 and the smaller volume V4 wrapped by the 7-branes in CY
manifolds. This allows for the construction of local models of particle physics, in which
gravity can be decoupled from the SM physics. This is an attractive feature which is not
realizable in heterotic compactifications, where gravity and gauge interactions have the
same origin. Concretely, this decoupling limit exists in F-theory compactifications if the
4-cycle wrapped by the 7-branes is a del Pezzo surface (see e.g. [44]). Then gravity can
be succesfully decoupled sending Mp →∞ while keeping the gauge interactions on, or in
geometrical terms, the size of the del Pezzo surface can be shrunk to zero while keeping
the overall volume finite. In that case the 4d effective theory can be expanded in a power
series of

%3 ≡ Vol(S)3/4

Vol(B3)1/2
=

√
2

αGUT

MGUT

MPl
� 1 (3.36)

Many phenomenological properties depend only on the local configuration which motivates
the bottom-up approach in String Theory. In this approach one looks for local configura-
tions of Dp-branes (or local models in F-theory) resembling as much as possible the SM,
without worrying about the global aspects of the theory. As a second step one then tries to
embed the local model in a consistent global compactification to study the constraints that
the global theory may impose over the effective local models. We will follow this approach
in chapter 4 to study the flux-induced SUSY breaking soft terms for the fields living in a
system of 7-branes. However, the same phylosophy that works so well in particle physics,
fails to study most of the cosmological open issues in string theory. Many cosmological
observables depend on global properties of the compactification and the interaction with
gravity is essential. However, we will see in chapter 5 that the D-brane effective action
can still play a relevant role in the construction of inflationary models in which a careful
controll over all quantum corrections is mandatory.
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4
From String Theory to Particle Physics

In the previous chapter we have seen how closed string 3-form fluxes may lead to
spontaneous supersymmetry breaking of the initial 4d N = 1 supersymmetry on Type IIB
orientifold compactifications, and how this induces a scalar potential fixing the dilaton and
complex structure moduli. In this chapter we study the implication of flux-induced SUSY
breaking in the D-brane open string sector of the theory, and how the 3-form fluxes may
induce as well SUSY breaking soft terms for the fields of the Standard Model via gravity
mediation. The structure of soft terms for adjoint and bifundamental fields arising from
a system of D7-branes is studied in section 4.1, while in section 4.2 we will point out that
non-constant fluxes may give rise to sustantial flavor-non universalities in the soft terms.
In section 4.3 we will focus on the scale of these fluxes motivating an Intermediate SUSY
breaking scale MSS ' 1010−1012 GeV consistent with the Higgs mass and gauge coupling
unification.

4.1. Flux-induced SUSY breaking soft terms

A crucial ingredient to make contact with low-energy physics is the structure of the
SUSY breaking soft terms. In trying to study those, two complementary paths have been
followed:

Bottom-up local approach. In this case one studies the physics of a local set of D7-
branes (or D3-branes), without a full knowledge of the complete compact space.
SUSY-breaking is felt by the D-branes as induced by the closed string backgrounds
in the vicinity of the branes. These backgrounds include RR and NS 3-form fluxes
as well as a 5-form flux, dilaton and metric backgrounds. They parametrize our
ignorance of the full compactification details. The SUSY-breaking soft terms may
be obtained by expanding the DBI+CS 7-brane action around its location including
closed string background insertions.

N = 1 supergravity effective action. Here one starts from the effective supergavity
action in terms of the Kähler potential of the moduli fields and the Kähler metric
of the matter fields. The superpotential includes a Gukov-Vafa-Witten moduli-
dependent piece fixing the complex dilaton and the complex structure moduli as
well as non-perturbative superpotentials included to fix the Kähler moduli.

Both approaches have advantages and shortcomings. The first gives us a microscopic
description of the origin of the soft terms but no information on the global structure of
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the compactification, including how closed string moduli are fixed. On the other hand
the effective supergravity approach requires a detailed knowledge of the Kähler potential
of the moduli as well as the matter metrics and the allowed non-perturbative effects.
Having a full control of these latter aspects in specific compactifications is a challenge.
In this chapter we will follow the first bottom-up strategy to study SUSY-breaking soft
terms induced by closed and open string backgrounds on localised sets of bulk and/or
intersecting 7-branes.

We are working in a local limit where the volume of the 4-cycle submanifold SGUT
(wrapped by the 7-branes) is much smaller than the overall volume of the base B3, so that
the gravitational effects can be consistently decoupled from the gauge dynamics. Notice
that whereas closed string fields are non-dynamical in that limit, the 4d soft terms induced
by their backgrounds survive. From the supergravity point of view they are defined in
the limit Mp → ∞ keeping the gravitino mass m3/2 finite (ie, V ol(B3) → ∞ but V ol(S)
finite). Thus in order to obtain the soft terms we need only local information of the closed
string background around the position of the branes, justifying the bottom-up approach.

In Ref. [45] (see also [46]) soft terms induced by closed string 3-form G3 fluxes on
bulk D7-branes were obtained by starting with the DBI+CS action and inserting closed
string backgrounds. The matter fields transform in the adjoint representation, so that
the results are not of direct phenomenological interest. In this thesis we generalize those
computations to the phenomenologically more relevant case of chiral bi-fundamental fields
laying at 7-brane intersections. We apply the results to the study of soft SUSY breaking
terms on the local SU(5) F-theory GUT model described in 3.3, combining for first time
local wavefunctions for chiral matter fields and closed string fluxes giving rise to SUSY
breaking.

4.1.1. Bulk matter fields

In this section we review and extend the local computation of flux-induced SUSY-
breaking soft-terms that was performed in Ref. [45] for 7-brane scalars transforming in
the adjoint represention of the gauge group. However, we consider slightly more general
configurations than in [45], allowing for the simultaneous presence of imaginary self-dual
(ISD) and imaginary anti self-dual (IASD) 3-form fluxes as well as for magnetization on the
7-branes. Even though only ISD fluxes provide for solutions to the 10D classical equations
of motion, complete compactifications addressing moduli fixing typically include additional
non-perturbative ingredients that generically induce IASD fluxes and other closed string
backgrounds. That is why it is interesting to keep trace also of those.

More precisely, we consider closed string backgrounds of the general form

ds2 = Z(xm)−1/2ηµνdx̂
µdx̂ν + Z(xm)1/2ds2

CY (4.1)

τ = τ(xm)

G3 =
1

3!
Glmn(xm)dxl ∧ dxm ∧ dxn

χ4 = χ(xm)dx̂0 ∧ dx̂1 ∧ dx̂2 ∧ dx̂3

F5 = dχ4 + ∗10dχ4

with τ = C0 + ie−φ the complex axio-dilaton, G3 = F3 − τH3 (with F3 and H3 the RR
and NSNS flux respectively) and ds2

CY the Ricci-flat metric of the underlying Calabi-Yau.
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Hatted coordinates are along the non-compact directions.

At any point in the internal space the background can be decomposed according to
the SU(3)-structure preserved by the compactification. In general the relation between
local and global parameters of the background is however highly non-trivial, except for
simple cases like toroidal compactifications where the local SU(3)-structure can be straight-
forwardly extended into a global one.

From the viewpoint of the local SU(3)-structure the antisymmetric flux G3 trans-
forms as a 20 = 10 + 10, with the 10 and 10 representations corresponding respectively
to the ISD G+

3 and IASD G−3 components of the 3-form flux, defined as

G±3 =
1

2
(G3 ∓ i ∗6 G3) , ∗6G±3 = ±iG±3 (4.2)

These components can be further decomposed into irreducible representations of SU(3).
Thus, IASD fluxes in the 10 are decomposed according to 10 = 6 + 3 + 1, where the 6
and 3 representations read [47]

Sij =
1

2
(εiklGjk̄l̄ + εjklGik̄l̄) (4.3)

Aij =
1

2
(ε̄ik̄l̄Gklj̄ − εj̄k̄l̄Gkl̄i)

respectively, whereas the singlet is given by the G123 component of the flux, proportional
to the holomorphic 3-form Ω of the internal space. Local coordinates are complexified
according to the local complex structure as zm = 1√

2
(x2m+2 +ix2m+3), m = 1, 2, 3. Similar

definitions apply in the decomposition of ISD fluxes into G1̄2̄3̄, Sīj̄ and Aij . For simplicity
and to avoid cumbersome expressions, in this thesis we take S12 = A12 = S1̄2̄ = A1̄2̄ =
0. The dependence on these components can be obtained by requiring SO(4) × SO(2)
convariance in our expressions [45]. Furthermore, the tensors Aij and Aīj̄ correspond
respectively to (1,2) and (2,1) non-primitive components of the flux, that are incompatible
with the cohomology of a Calabi-Yau (although a local component in principle could be
allowed). In addition we set S3i = S3̄̄i = 0, where z3 is the complex direction transverse
to the D7-branes, since those flux components generically lead to Freed-Witten (FW)
anomalies in the worldvolume of D7-branes, as discussed in [45].

Being defined in the MPl. →∞ limit, soft-terms in the effective 8d theory of a stack
of 7-branes can be understood from the background in a local transverse patch around the
stack of 7-branes. Such local background receives in general contributions from globally
non-trivial fluxes as well as from the backreaction of distant sources, as we discuss in
section 4.2.4. Thus, we expand the background (4.1) around the stack of 7-branes as

Z−1/2 = 1 +
1

2
Kmny

myn + . . . (4.4)

τ = τ0 +
1

2
τmny

myn + . . .

χ = const. +
1

2
χmny

myn + . . .

Glmn(xr) = Glmn + . . .

where we have denoted by ym the two coordinates that are transverse to the stack of
7-branes and which for the sake of concreteness in what follows we take to be x8 and
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x9. Dots in the rhs of eqs. (4.4) represent higher order terms in the expansion, and will
only contribute to non-renormalizable couplings in the 4d effective action. In the next
subsections we make use of this local expansion to compute the flux-induced soft-breaking
terms for the adjoint fields of a stack of 7-branes.

4.1.1.1. Unmagnetized bulk D7-brane fields

We first address the case of unmagnetized 7-branes, leaving the case of magnetized
branes for the next subsection. We closely follow the procedure developed in [45]. Thus,
we expand the DBI+CS action of D7-branes in transverse coordinates in presence of the
local background (4.1) and (4.4), and make use of the identification

z3 = 2πα′Φ (4.5)

to derive an 8d effective action that contains flux-induced SUSY-breaking soft terms.
Dimensional reduction then leads to a soft-breaking Lagrangian in the 4d effective theory.

The relevant piece of the D7-brane DBI+CS action for the computation of flux-
induced soft terms is given by

S = −µ7 STr

[∫
d8ξ e−φ

√
−det (P [Eab] + σFab)− gs

∫
P [−C6 ∧ F2 + C8]

]
(4.6)

where

Eab = eφ/2Gab −Bab , σ = 2πα′, µ7 = (2π)−3σ−4g−1
s , F2 ≡ B2 − σF2 (4.7)

‘STr’ denotes the symmetrized trace over gauge indices and P [ · ] is the pull-back to the
7-brane worldvolume. Our conventions are such that the metric has signature diag(− +
+ + . . .) whereas dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 has negative signature.

The terms contributing to the determinant in the DBI piece of the action are given
by1

det(P [Eab]) = e4φ det
(
gab + 2σ2D(aΦDb)Φ̄− e−φ/2Fab

)
(4.8)

Expanding the determinant as well as the square root in the DBI piece then leads to the
following 8d Lagrangian2

L8d = µ7e
φ STr

(
−1− σ2DaΦDaΦ̄−

g−1
s

4
FabFab + C8 − C6 ∧ F2

)
. (4.9)

In order to proceed further we should relate the dilaton φ, the B-field and the RR-
fields that appear in this expression to fluctuations of the 8d field Φ in the limit MPl →∞.
Let us first address the case of the axio-dilaton. Complexifying the second equation in
(4.4) and making use of eq. (4.5) we write

τ = ig−1
s

(
1 +

σ2τ33

2
Φ2 +

σ2τ3̄3̄

2
Φ̄2 + σ2τ33̄|Φ|2 + . . .

)
(4.10)

1See appendix A for more details.
2The non-conventional sign for the kinetic term of Φ is due to the particular signature that we have

taken of the 8d metric.
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where for simplicity we have fixed 〈τ〉 = ig−1
s . The 10d supergravity equations of mo-

tion then put restrictions on the parameters of this expansion. More precisely, from the
equation

∇2τ =
1

i Im τ
∇Mτ ∇Mτ +

1

12i
GmnpG

mnp − 4κ2
10(Im τ)2

√
−g

δS7

δτ̄
(4.11)

we get the constraint

τ33̄ =
1

2i

(
G123G1̄2̄3̄ +

1

4

3∑
k=1

SkkSk̄k̄

)
(4.12)

and therefore in the presence of both ISD and IASD 3-form fluxes the dilaton is generically
non-constant. In this expression we have assumed that localised distant 7-brane sources
do not contribute to the soft terms, and thus have ignored last term in eq. (4.11). This
is the case if there are no anti-D7-brane charges present in the compactification, as we
assume in what follows.

Similarly, from the equation

dB2 = − Im G3

Im τ
(4.13)

we obtain for the B-field components

B12 =
gsσ

2i

[
(G1̄2̄3̄)∗Φ− 1

2
S3̄3̄Φ̄−G123Φ +

1

2
(S33)∗Φ̄

]
(4.14)

B12̄ =
gsσ

4i

[
−S2̄2̄Φ + (S1̄1̄)∗Φ̄− S11Φ̄ + (S22)∗Φ

]
And from the equations

dC6 = H3 ∧ C4 − ∗10 Re G3 (4.15)

dC8 = H3 ∧ C6 − ∗10 Re τ

we get respectively for the RR 6-form and 8-form potentials

C0̂1̂2̂3̂12 =
σ

2i

[
−(G1̄2̄3̄)∗Φ−G123Φ +

1

2
S3̄3̄Φ̄ +

1

2
(S33)∗Φ̄

]
(4.16)

C0̂1̂2̂3̂12̄ =
σ

4i

[
S2̄2̄Φ + (S22)∗Φ− (S1̄1̄)∗Φ̄− S11Φ̄

]
and

C0̂1̂2̂3̂11̄22̄ = −gsσ
2

16

[
(−2G123S33 + (S11S22)∗ − S1̄1̄S2̄2̄ + 2(G1̄2̄3̄S3̄3̄)∗) Φ2 + c.c.

+
(
|S33|2 − |S3̄3̄|2 − 4|G1̄2̄3̄|2 + |S1̄1̄|2 + |S2̄2̄|2 + 4|G123|2 − |S22|2 − |S11|2

)
|Φ|2

]
+
igsσ

2

4
[τ33 + (τ3̄3̄)∗] Φ2 + c.c. (4.17)

In particular the non-constant contribution (4.12) of the axio-dilaton is crucial for dC8 to
be locally integrable when ISD and IASD 3-form fluxes are simultaneously present.

Plugging eqs. (4.12), (4.14), (4.16) and (4.17) into the 8d Lagrangian (4.9) and
rescaling the fields in order to have canonically normalized 8d kinetic terms, we get the
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following Lagrangian for the worldvolume bosons of 7-branes

LB = Tr

(
DaΦDaΦ̄−

1

4g2
8

FabFab −
gs
4

[
2|G1̄2̄3̄|2 +

1

2
|S3̄3̄|2 +

1

2
|S11|2 +

1

2
|S22|2

]
|Φ|2

+
gs
4

[
(S3̄3̄)∗((G1̄2̄3̄)∗ −G123) +

1

2
(S11)∗((S22)∗ − S2̄2̄)− (G1̄2̄3̄)∗S33 −

1

2
(S22)∗S1̄1̄ − 2iτ33

]
Φ2

+h.c.− ig
1/2
s

2
Φ
[
(S22)∗

(
∂1̄A

2̄ − ∂2A
1 + g8[A1, A2̄]

)
+ (S11)∗

(
∂1A

2 − ∂2̄A
1̄ + g8[A1̄, A2]

)
+(S3̄3̄)∗

(
∂1A

2̄ − ∂2A
1̄ + g8[A1̄, A2̄]

)
+ 2(G1̄2̄3̄)∗

(
∂1̄A

2 − ∂2̄A
1 + g8[A1, A2]

)]
+ h.c.

)
(4.18)

where the 8d gauge coupling constant g8 is given by

g8 = g1/2
s (2π)5/2α′ . (4.19)

The closed string background therefore may induce scalar masses as well as trilinear coup-
lings for the fields in the worldvolume of the 7-branes. Apart from the terms that were
derived in [45], sourced by purely ISD or IASD 3-form fluxes, there are extra contri-
butions to the B-term coming from the simultaneous presence of ISD and IASD 3-form
fluxes as well as from the non-constant complex axion-dilaton. These contributions can
arise in non Calabi-Yau compactifications, but also may result from the backreaction of
non-perturbative effects in more conventional compactifications [48–50]. Observe also the
presence of quadratic derivative couplings induced by the 3-form fluxes. These couplings
were already noticed in [51], where it was shown that represent a mixing between massive
modes due to Majorana mass terms induced by 3-form fluxes. Such mixing however does
not affect the lightest mode of each KK tower and those derivative couplings therefore can
be safely neglected for the purposes of this thesis.3

Flux-induced masses for the 8d fermions localized in the worldvolume of 7-branes can
be computed similarly, starting in this case with the DBI+CS fermionic action. Following
closely the procedure described in [45], we obtain

LF =
g

1/2
s

2
√

2
Tr[(G1̄2̄3̄)∗λλ+

1

2
(S3̄3̄)∗Ψ3Ψ3 +

1

2
S11Ψ1Ψ1 +

1

2
S22Ψ2Ψ2] + h.c. (4.20)

where λ is the 8d gaugino and Ψi, i = 1, 2, 3, the three additional complex fermions that
live in the worldvolume of the 7-branes, and that in flat space form the fermionic content
of an N = 4 vector supermultiplet.

Having the bosonic and fermionic 8d Lagrangians for the lightest fields of 7-branes,
we can obtain the 4d soft SUSY-breaking Lagrangian by dimensional reduction. For the
case of fields transforming in the adjoint representation of the gauge group dimensional
reduction is straightforward, since their internal wavefunctions are constant over the 4-
cycle. In the same notation for the 4d soft-term Lagrangian of Ref. [52]

Lsoft = −(m2)ijφ
iφ̄j −

(
1

3!
Aijkφ

iφjφk +
1

2
Bijφ

iφj − 1

2
Mλλ +

1

2
µijψ

iψj

− 1

2
Cijkφ̄

iφ̄jφk + h.c.

)
(4.21)

3Note that even if the mixing were involving the lightest modes, it could be still safely neglected based
on the large separation between the SUSY-breaking and Planck scales.
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and for the case of 7-branes wrapping a T 4, we obtain the 4d soft-terms

m2
11̄ = m2

22̄ = 0 ; Bij = 0 , i, j 6= 3

m2
33̄ =

gs
2

(
|G1̄2̄3̄|2 +

1

4
|S3̄3̄|2 +

1

4
|S11|2 +

1

4
|S22|2

)
B33 =

gs
2

(
−(G1̄2̄3̄S3̄3̄)∗ − 1

2
(S22S11)∗ + (S3̄3̄)∗G123

+
1

2
(S11)∗S2̄2̄ + (G1̄2̄3̄)∗S33 +

1

2
(S22)∗S1̄1̄ + 2iτ33

)
Aijk = −hijk g

1/2
s√
2

(G1̄2̄3̄)∗

Cijk = − g
1/2
s

2
√

2

[
hjk1S11 + hjk2S22 − hjk3(S3̄3̄)∗

]
Ma =

g
1/2
s√
2

(G1̄2̄3̄)∗

µ33 = − g
1/2
s

2
√

2
(S3̄3̄)∗

µii = − g
1/2
s

2
√

2
Sii , i = 1, 2 ,

with

hijk = 2εijk
√

2gYM (4.22)

the Yukawa coupling and gYM = g8/
√

Vol(T 4) the 4d gauge coupling constant. Note that
only the geometric field Φ gets a mass at this level, whereas the Ai, Aī remain massless.
This is expected from 8d gauge invariance. This will be relevant in our generalisation to
the matter curve case below.

Although for concreteness here we have reduced the 8d theory in a 4-torus, we could
have equally performed dimensional reduction in a different type of 4-cycle, obtaining
analogous expressions for the soft terms of a stack of 7-branes that wraps such 4-cycle.
For that aim, note that no knowledge of the metric of the 4-cycle is required, but only
its topological features. Whereas the 7-brane field content will change according to the
homology of the 4-cycle, we expect expressions for the soft terms not far from those
obtained here in the toroidal case. This will be even more certain in the case of soft terms
for bifundamental matter fields discussed in the next section, since the wave-functions of
those fields are localized also along some of the directions of the 4-cycle.

4.1.1.2. Magnetized bulk D7-brane fields

We now consider the addition of magnetic fluxes on the world-volume of D7-branes.
Namely, we consider the presence of a local magnetic background

〈F2〉 = i(F+ + F−) dz1 ∧ dz̄1 + i(F+ − F−) dz2 ∧ dz̄2 (4.23)

where the D-term equations will in general require the vanishing of the self-dual compon-
ent F+. The magnetic flux F∓ induces a charge of D3(D3)-brane in the worldvolume
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of D7-branes, and therefore it is expected the presence of flux-induced D3-brane soft-
terms proportional to the magnetic background, apart from the soft-terms described in
the previous subsection for unmagnetized D7-branes.

In more precise terms, the effect of magnetic fluxes on the D7-branes can be under-
stood in terms of two different mechanisms. On one side the magnetic flux sources new
renormalizable couplings in the 4d Lagrangian that originate from higher order couplings
on which two or more of the gauge field-strengths are taken to be background. On the
other side, the magnetic flux deforms the internal wavefunctions of charged fields and in-
duces the mixing of massive modes in order to minimize the additional source of potential
energy introduced by the flux. In this subsection we address the first of these effects. This
is the only relevant one for the soft masses and B-terms of geometric moduli Φ in magnet-
ized non-intersecting D7-branes. In this subsection we compute those contributions to soft
masses. Then, in the next section we address the more interesting case of chiral-matter
bifundamental fields, where the effect of the magnetization in the internal wavefunctions
turns out to be the leading effect.

The microscopic computation of soft masses for magnetized bulk D7-brane fields
follows the same steps than in the previous subsection. We work to quadratic order in the
magnetization. The relevant piece of the DBI+CS action is again given by eq. (4.6) with
the addition of the CS coupling to the RR 4-form, that becomes also relevant in presence
of magnetization,

S = −µ7

∫
d8ξ STr

[
e−φ
√
−det (P [Eµν ] + σFµν)

]
+ µ7gs

∫
STr

(
P

[
1

2
C4 ∧ F2 ∧ F2 − C6 ∧ F2 + C8

])
. (4.24)

It is convenient to factorize the determinant that appears in the DBI piece of the action
in Minkowski and 4-cycle pieces as

det(P [Eµν ]) = g4
s det

(
ηµν + 2Zσ2∂µΦ∂νΦ̄ + Z1/2g−1/2

s σFµν

)
det
(
gab − Z−1/2g−1/2

s Fab
)
,

(4.25)
from which we get

det(P [Eµν ]) = −g4
s − g3

sZσ
2

(
1 +

Z−1g−1
s

2
FabFab

)(
2gs∂µΦ∂µΦ̄− 1

2
FµνFµν

)
− 1

2
g3
sZ
−1FabFab +

g2
s

4
Z−2FabFbcFcdFda −

g2
s

8
Z−2 (FabFab)2 . (4.26)

Plugging this expression into eq. (4.24) and expanding the square root that appears in
DBI part of the action, we find

L8d = µ7

∫
Σ4

eφ STr

[(
−1− Zσ2θ̂∂µΦ∂µΦ̄− g−1

s

4
σ2Zθ̂FµνFµν −

g−1
s

4
Z−1FabFab

+
g−2
s

8
Z−2FabFbcFcdFda −

1

32
g−2
s Z−2 [FabFab]2

)
dx4 + C8 − C6 ∧ F2 +

1

2
χF2 ∧ F2

]
,

(4.27)

where we have defined

θ̂ ≡ 1 +
Z−1g−1

s

4
FabFab = 1 + Z−1g−1

s σ2(F 2
+ + F 2

−) . (4.28)
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The contribution of magnetic fluxes to the soft masses of the 4d fields that descend from
Φ can be read from this expression. The relevant terms in this equation are

δLΦ2 = µ7σ
2

∫
Σ4

dx4 eφ STr
[
−Zθ̂∂µΦ∂µΦ̄− g−1

s Z−1(F 2
+ + F 2

−)− χ (F 2
+ − F 2

−)

+
g−2
s

2
Z−2

(
FabFbcBcdBda +

1

2
FabBbcFcdBda −

1

8
BabBabFcdFcd −

1

4
FabBabFcdBcd

)]
.

(4.29)

Expanding eφ = (Im τ)−1 as in eq. (4.10), Z and χ as

Z−1/2 = Z
−1/2
0 +

σ2

2

(
K33Φ2 + (K33)∗Φ̄2 + 2K33̄|Φ|2

)
+ . . . (4.30)

χ = χ0 +
σ2

2

(
χ33Φ + (χ33)∗Φ̄ + 2χ33̄|Φ|2

)
+ . . .

making use of the identities (4.14)-(4.17),4 dimensionally reducing over a T 4 and rescaling
the fields to have canonically normalized 4d kinetic terms, we obtain the following addi-
tional contributions to the soft-masses and B-term (4.22) induced by the magnetization
in the worldvolume of D7-branes

δm2
33̄ = −σ2

(
1

8
[4|G1̄2̄3̄|2 + |S3̄3̄|2 + |S1̄1̄|2 + |S2̄2̄|2 + 2|S11|2 + 2|S22|2]

−1

4
Re (S11S1̄1̄ + S22S2̄2̄)− 2g−1

s K33̄ − χ33̄ − (Im τ)33̄

)
F 2

+

− σ2

(
1

8
[|S11|2 + |S22|2 + 4|G123|2 + |S33|2 + 2|S3̄3̄|2 + 8|G1̄2̄3̄|2]

−Re

(
G123G1̄2̄3̄ +

1

4
S33S3̄3̄

)
− 2g−1

s K33̄ + χ33̄ − (Im τ)33̄

)
F 2
−

δB33 = σ2

(
1

4
[2(S3̄3̄G1̄2̄3̄)∗ + S1̄1̄S2̄2̄ + 2(S11S22)∗ − 2S2̄2̄(S11)∗ − 2S1̄1̄(S22)∗

−2G123(S3̄3̄)∗ − 2S33(G1̄2̄3̄)∗] + 2g−1
s K33 + χ33 + (Im τ)33

)
F 2

+

+ σ2

(
1

4
[(S11S22)∗ + 2G123S33 + 4(S3̄3̄G1̄2̄3̄)∗ − 4S33(G1̄2̄3̄)∗ − 4G123(S3̄3̄)∗

− S2̄2̄(S11)∗ − S1̄1̄(S22)∗ ] + 2g−1
s K33 − χ33 + (Im τ)33

)
F 2
− . (4.31)

where we have defined

(Im τ)33 ≡
τ33 − (τ3̄3̄)∗

2i
, (Im τ)33̄ ≡

τ33̄ − (τ3̄3)∗

2i
(4.32)

In particular, note that among the contributions of antiself-dual magnetic fluxes to soft-
masses there are terms proportional to (2g−1

s K33̄ − χ33̄ + (Im τ)33̄), in agreement with
the expressions for soft-masses in the worldvolume of D3-branes that were obtained in
Ref. [52]. Similarly among the contributions of self-dual magnetic fluxes we identify terms
that are proportional to (2g−1

s K33̄ + χ33̄ + (Im τ)33̄), identified with the expressions for
soft-masses in the worldvolume of anti D3-branes.

4The identities (4.15)-(4.17) in general receive additional contributions from the magnetization, however
one may check that those contributions turn into sub-leading corrections to the soft-masses of Φ.
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We can also compute the leading corrections of magnetic fluxes to trilinear couplings
of the form Φ×A×A. The starting point is again eq. (4.27). The relevant terms in that
equation are now

LΦAA,F = µ7σ
2

∫
Σ4

dx4STr

(
−Zθ̂gs∂µΦ∂µΦ̄− θ̂

4
FµaFµa−

−1

2
Z−2g−1

s σBabFbcFcdFda +
1

8
Z−2g−1

s σBabFabFcdFcd

)
(4.33)

Some little algebra shows that

− 1

2
BabFbcFcdFda +

1

8
BabFabFcdFcd =

=
σ

2i

(
F 2
−
[
ΦA[1̄A2̄] (−2(G1̄2̄3̄)∗ + 2G123) + Φ̄A[1̄A2̄] (S3̄3̄ − (S33)∗)

]
+

+F 2
+

[
ΦA[1̄A2] (S2̄2̄ − (S22)∗) + Φ̄A[1̄A2] (−(S1̄1̄)∗ + S11)

])
+ h.c. (4.34)

where we are keeping only terms that contribute to soft trilinear couplings. Plugging this
expression into eq. (4.33), dimensionally reducing over a T 4 and rescaling the fields to
have canonically normalized 4d kinetic terms, we get the following corrections to trilinear
soft couplings from magnetization in the worldvolume of D7-branes

δAijk = −hijk σ2

√
2gs

[
F 2
− (G123 − 2(G1̄2̄3̄)∗)− F 2

+(G1̄2̄3̄)∗
]

(4.35)

δCijk = − σ2

2
√

2gs

{
hjk1

[
F 2

+ ((S1̄1̄)∗ − 2S11)− F 2
−S11

]
+ hjk2

[
F 2

+ ((S2̄2̄)∗ − 2S22)− F 2
−S22

]
+hjk3

[
F 2
− (2(S3̄3̄)∗ − S33) + F 2

+(S3̄3̄)∗
]}

These corrections are quadratic in the magnetic fluxes, as expected.

Dimensional reduction of eq. (4.24) also includes corrections to the gauge coupling
constants upon replacing 〈F 2〉 by its vev. In the context of F-theory SU(5) unification,
corrections from the hypercharge flux FY are particularly relevant, since they generically
induce non-universal thresholds for the three SM gauge coupling constants (see [32,33,53]),
which may have interesting phenomenological implications, as we will discuss in section
4.3.3. Let us also remark that the SM gauginos also become slightly non-universal once
the corresponding gaugino fields are normalized to one. We will not consider these gaugino
mass corrections in what follows, since they are expected to be generically small if gauge
coupling unification is to be maintained.

4.1.2. Chiral matter bifundamental fields

In the previous section we have considered soft-breaking terms for 4d fields that
descend from geometric moduli Φ in non-intersecting magnetized branes. We have done
this in two steps. First, a 8d field theory with the relevant operators induced by the closed
string background has been derived in the limit MPl → ∞. Next, we have dimensionally
reduced that 8d theory to obtain the soft-breaking Lagrangian in 4d. For the case of bulk
fields, e.g. adjoints in non-intersecting magnetized D7-branes, this last step is straightfor-
ward. However, this general procedure can in principle be equally applied in more involved
settings, such as intersecting magnetized D7-branes with 3-form fluxes.
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In this section we compute 4d soft-breaking terms for chiral matter bifundamental
fields localised at D7-brane intersections (or matter curves). Although the procedure de-
scribed above is in principle feasible (see e.g. [51]), in practice it quickly becomes technically
too involved as the background gets more general. Thus, we instead exploit a short-cut
by making use of the general ideas behind Higgssing in 4d supersymmetric theories and
the 4d soft-breaking Lagrangians for bulk fields obtained in the previous section.

4.1.2.1. Fields at matter curves

When computing the 4d effective theory of a stack of magnetized/intersecting D7-
branes one dimensionally reduces an 8d supersymmetric gauge theory, as we have described
in the previous section. In the case of locally vanishing closed string fluxes this 8d theory
is simply given by topologically twisted 8d N = 1 SYM [30,32].5 The bosonic part reads

LSYM = Tr

(
DaΦDaΦ̄−

1

2
([Φ, Φ̄])2 − 1

4
FabFab

)
(4.36)

where DaΦ = ∂aΦ + i[Aa,Φ] and F2 = dA + A ∧ A. To linear order in the fluctuations,
the corresponding equations of motion are

DaD
aΦ = 0 , DaF

ab = 0 (4.37)

We take here for simplicity an underlying U(N) gauge symmetry group, although the
results may be extended easily to SO(N) and En groups, as we will see later. U(N) is
broken to some product of smaller groups by the magnetization/intersections. The latter
are parametrized in terms of backgrounds for F2 and Φ

〈F2〉 =
[
i(Fα+ + Fα−) dz1 ∧ dz̄1 + i(Fα+ − Fα−) dz2 ∧ dz̄2

]
Qα (4.38)

〈Φ〉 = mα
i ziQα ,

where Qα are the generators of the Cartan subalgebra of U(N). Dimensionally reducing
eq. (4.37) to 4d amounts to solving the following system of second-order differential equa-
tions for the internal wavefunction Ψ of a 4d scalar with mass m and U(1)α ⊂ U(N)
charges qα (see e.g. [54])

(D+D− + qαF
α
+I)Ψ = m2Ψ (4.39)

(D−D+ − qαFα+I)Ψ̄ = m2Ψ̄

with

D± ≡


0 D±1 D±2 D±3
−D±1 0 −D∓3 D∓2
−D±2 D∓3 0 −D∓1
−D±3 −D∓2 D∓1 0

 , Ψ =


0
a1

a2

φ

 , Ψ̄ =


0

a1̄

a2̄

φ̄

 (4.40)

5For simplicity we take the normal bundle of the magnetized/intersecting D7-branes to be trivial, so
that we can ignore the effect of the twist. In the more general case, this can be however easily implemented
by shifting the magnetization along the canonical bundle [40].
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and

D−1 = ∂1 −
qα
2

(Fα+ + Fα−)z̄1 D+
1 = ∂̄1̄ +

qα
2

(Fα+ + Fα−)z1 (4.41)

D−2 = ∂2 −
qα
2

(Fα+ − Fα−)z̄2 D+
2 = ∂̄2̄ +

qα
2

(Fα+ − Fα−)z2

D−3 = −qα[(mα
1 )∗z̄1 + (mα

2 )∗z̄2] D+
3 = qα(mα

1 z1 +mα
2 z2)

In these expressions a1,2 and φ are respectively the components of the internal wavefunction
A along the Wilson lines and the geometric scalar Φ, and [Qα,Ψ] = −qαΨ. Besides
this local diffeo-algebraic equation, wavefunctions must also satisfy the global periodicity
conditions of the 4-cycle S.

In order to solve eq. (4.39) note that D+D− can be expressed as

D±D∓ = −I
3∑
i=1

D±i D
∓
i + B± (4.42)

with

B± =


0 0 0 0
0 [D±2 , D

∓
2 ] [D∓2 , D

±
1 ] [D∓3 , D

±
1 ]

0 [D∓1 , D
±
2 ] [D±1 , D

∓
1 ] [D∓3 , D

±
2 ]

0 [D∓1 , D
±
3 ] [D∓2 , D

±
3 ] [D±2 , D

∓
2 ] + [D±1 , D

∓
1 ]

 (4.43)

Diagonalising this matrix

J† · B+ · J = diag(0, λ1, λ2, λ3) (4.44)

we get

D̃−p =
∑
j

ξp,jD
−
j , D̃+

p =
∑
j

ξ∗p,jD
+
j (4.45)

where ξp is the p-th eigenvector of B. These operators span the algebra of three quantum
harmonic oscillators, namely

[D̃+
p , D̃

−
p ] = −λp , p = 1, 2, 3 (4.46)

leading to three KK towers of 4d scalars. The matrix B has a single negative eigenvalue
that, without loss of generality, we take here to be λ1. Making use of eqs. (4.42), (4.44)
and (4.46) we can explicitly solve eqs. (4.39). The wavefunction for the lightest mode of
each tower is given by

Ψp = ξpϕp (4.47)

with ϕp a function on the 4-cycle S satisfying locally

D̃−p ϕp = D̃+
q ϕp = 0 , p, q = 1, 2, 3 , q 6= p (4.48)

The mass of the lowest mode for each tower of scalars is given by

m2
Ψp = λp − λ1 + qαF

α
+ (4.49)

And similarly for the complex conjugate degrees of freedom.
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To give a concrete example, consider a stack of three D7-branes with gauge group
U(3) (see [34,35,40]), wrapping a 4-torus parametrized by the holomorphic condition

z3 = 0 (4.50)

In section 4.1.4 we will consider the phenomenologically most interesting case of SO(12)
or E6 gauge groups, relevant for SU(5) F-theory unification. However, this simpler U(3)
model suffices to illustrate the main ideas of this section.

Let us tilt one of the D7-branes of the stack an angle so that instead of (4.50) it
wraps a 4-torus parametrized by the condition

z3 −maz1 = 0 (4.51)

with ma a constant of the order of the string scale that determines the number of intersec-
tions in the complex 2-torus spanned by z1. For future reference, we denote this matter
curve as Σa = {z1 = 0}.

The original U(3) gauge group is broken as

U(3) → U(2)× U(1) → SU(2)× U(1) (4.52)

8 → 30 + 10 + 2̄+ + 2−

where the diagonal U(1) ⊂ U(2) becomes massive due to the presence of Stückelberg
couplings. From the point of view of the 8d U(3) SYM theory the breaking (4.52) is
encoded in a background for the geometric modulus

〈Φ〉 =
1√
6
maz1(Q1 +Q2 − 2Q3) (4.53)

where Qα, α = 1, 2, 3, are the Cartan generators of U(3). The 8d fields Φ and A can be
decomposed according to (4.52) as

Φ =

(
Φ30 Φa+

Φa− Φ10

)
+ 〈Φ〉 A =

(
A30 Aa+

Aa− A10

)
(4.54)

with the 4d scalars in the bifundamental representation arising from the U(3) off-diagonal
fluctuations.

One may easily check that eq. (4.43) gives rise in this case to

B+ =


0 0 0 0
0 0 0 ma

0 0 0 0
0 ma 0 0

 , (4.55)

with eigenvalues 0 and ±|ma|. Thus, according to our discussion above, the internal
wavefunctions for the lightest mode in each of the three KK towers of 4d scalars are given
by

Ψa+
1

=
1√
2

−1
0
1

ϕ , Ψa+
2

=
1√
2

1
0
1

ϕ , Ψa+
3

=

0
1
0

ϕ (4.56)
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where ϕ is a real function of the coordinates of the 4-cycle S, locally given by

ϕ = f(z2) exp

[
−|ma|

2
|z1|2

]
, (4.57)

and f(z2) are holomorphic functions specified by the global properties of the 4-cycle S
such that the wavefunctions (4.56) are orthonormalized. The exponential factor in (4.57)
shows in particular the localization of the energy density along the matter curve Σa. The
resulting 4d masses for the modes (4.56) are respectively

m2
a+

1
= 0 , m2

a+
2

= 2|ma|2 , m2
a+

3
= |ma|2 (4.58)

Wavefunctions and 4d masses for the charge conjugated sector a− follow exactly the
same expressions (4.56)-(4.58), with the role of Ψa−1

and Ψa−2
exchanged with respect to

eq. (4.56). Thus, in total we obtain a massless vector-like pair of 4d charged fields localized
in Σa and transforming in the 2̄+ + 2− representation of the gauge group, as expected.

This simple setting can be extended in several ways. First, one may consider mag-
netization in the worldvolume of D7-branes. The effect of magnetization is to modify the
wavefunctions (4.56) and (4.57) and to lift one of the two chiral components of the above
vector-like pair of 4d zero modes. Thus, turning on a magnetic flux in the above U(3)
D7-brane setting of the form

〈F2〉 =
iF a−√

6
(dz1 ∧ dz̄1 − dz2 ∧ dz̄2) (Q1 +Q2 − 2Q3) (4.59)

leads to the modified wavefunctions

Ψa+
1

=
1√

2λa(λa − F a−)

F a− − λa0
ma

ϕ− , Ψa+
2

=
1√

2λ(λa + F a−)

F a− + λa
0
ma

ϕ+

(4.60)
where λa =

√
(F a−)2 +m2

a and

ϕ± = f(z2)exp

[
−λa

2
|z1|2 ±

F a−
2
|z2|2

]
(4.61)

We have introduced subscript a to refer to quantities associated to curve Σa. Such notation
is useful in later sections when several matter curves are present. Similar expressions
to (4.60) again apply for a−1,2. Note that only one of the two wavefunctions (4.60) is
normalizable in the presence of the magnetic flux and thus a chiral spectrum is indeed
obtained, with local chirality determined by the sign of the magnetization. Besides those,
there can be additional chiral fermions localized in other regions of the matter curve, with
the total chirality determined by the integral of the magnetic flux along the matter curve
(see also [55] for a discussion of local versus global chirality).

We now want to extend this simple setting to consider the effect of closed string
3-form fluxes in the neighbourhood of D7-branes. As we have discussed in the previous
section, the effect of 3-form fluxes (and other closed string backgrounds) in the limit
MPl → ∞ is to deform the 8d theory (4.36) by adding new renormalizable couplings
sourced by the closed string background. Hence, we should consider the more complicate
8d Lagrangian (4.18), which includes closed string fluxes, instead of (4.36). Dimensional
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reduction of this Lagrangian in presence of non-trivial magnetization and intersections
becomes rather complicated. In particular, internal wavefunctions for chiral matter fields
such as (4.56) and (4.60) receive also contributions from the closed string background.

In what follows, we pursue a simpler route to obtain the 4d soft-breaking Lagrangian
for chiral matter fields. However before moving to the details, a comment regarding the
consistency of the 3-form flux background in presence of intersecting D7-branes is in order.
Note that the 3-form flux background has to satisfy some restrictions in order not to induce
Freed-Witten anomalies in the worldvolume of the tilted D7-branes. Indeed, the condition
for a NSNS 3-form flux not to induce a tadpole for the gauge field in the worldvolume of
a stack of D7-branes is given by [56] ∫

Πa

P [H3] = 0 (4.62)

for any 3-cycle Πa ⊂ S, as can be easily seen by integrating by parts the D7-brane CS
coupling

∫
S B2∧F2. This condition puts constraints on the intersection parameters mα

i in
presence of non-trivial 3-form fluxes. For instance, in the above simple example of a tilted
D7-brane wrapping the 4-torus parametrized by eq. (4.51) it leads to the local constraints

ma[(S11)∗ − S1̄1̄]−m∗a[S11 − (S1̄1̄)∗] = 0 (4.63)

ma[(S3̄3̄)∗ − S33]−m∗a[S3̄3̄ − (S33)∗] = 0

and hence the phases of the intersection parameter ma and those of the complexified 3-
form fluxes must be suitably aligned. Note however that the constraint (4.62) is a global
condition, and for generic 4-folds the toroidal constraints (4.63) need not apply locally.
Thus, we do not impose them in what follows.

4.1.2.2. Soft terms for fields on matter curves

To compute the expression of soft terms for bifundamental fields localised on matter
curves, we combine the information about 4d soft terms for bulk fields obtained in section
4.1.1 with our discussion on matter field wavefunctions of previous subsection. For sim-
plicity we first consider the case with no magnetic fluxes and only pure ISD closed string
fluxes, namely only the flux components Gīj̄k̄ and S3̄3̄ are non-vanishing. The effect of
magnetization on the soft terms for bifundamental fields will be discussed in subsection
4.1.2.3. For simplicity we also assume that closed string fluxes are approximately con-
stant over the 4-cycle S, so that they can be factored out when performing dimensional
reduction. The case of locally varying closed and open string fluxes will be considered in
section 4.2.

The reader may easily check that the soft scalar terms for D7-brane adjoints that
we found in eqs. (4.22) can be rewritten in terms of a 4d scalar potential of the form

VISD = |M∗Φ∗ + FΦ|2 + |FA1̄
|2 + |FA2̄

|2 (4.64)

where M = g
1/2
s (G1̄2̄3̄)∗/

√
2 is the gaugino mass, and Fi are the auxiliary fields for the

different 4d complex scalar fields,

FΦ = ∂ΦW , FA1̄
= ∂A1̄

W , FA2̄
= ∂A2̄

W . (4.65)
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In these expressions W is the physical superpotential of the 4d effective theory (with

normalised fields) and it includes a µ-term for Φ, with µ = −g1/2
s (S3̄3̄)∗/(2

√
2), and a

cubic term proportional to the Yukawa coupling, i.e.

W =
µ

2
Φ2 + h123A1̄A2̄Φ + . . . (4.66)

The scalar potential (4.64) is positive definite. This is consistent with the fact that
ISD fluxes locally preserve a no-scale structure [7]. In terms of the physical scalar fields
we have

VISD =
(
|M |2 + |µ|2

)
|Φ|2 + MµΦ2 + µh∗123 ΦA1̄A2̄ + Mh123 ΦA1A2 + h.c. (4.67)

Indeed, comparing with eq. (4.21) we read out the following pattern of soft terms,

m2
33̄ = |M |2 + |µ|2 ; Aijk = −Mhijk (4.68)

B33 = 2Mµ ; C3jk = −µh∗3jk (4.69)

This reproduces the result for non-magnetized and non-intersecting 7-branes obtained
in eq. (4.22) when only ISD closed string fluxes are turned on. We will see in subsection
4.1.2.4 that this pattern corresponds to modulus dominance SUSY-breaking in an effective
supergravity approach.

Let us now turn to the case of bifundamental fields living on intersecting 7-branes. To
simplify the discussion we consider the above simple U(3) example with no magnetization,
although the results are valid for more realistic (e.g. SU(5), see section 4.1.4) group theory
structures. We slightly generalize the setting by considering the three D7-branes in the
original stack to be tilted an arbitrary angle, so that the gauge group is fully broken to
U(1)3. As before, 4d bifundamental scalars arise from U(3) off-diagonal fluctuations of
the adjoint fields

Φ =

 Φ10 Φa+ Φc−

Φa− Φ′10 Φb+

Φc+ Φb− Φ′′10

 , A =

 A10 Aa+ Ac−
Aa− A′10 Ab+
Ac+ Ab− A′′10

 (4.70)

In absence of magnetic fluxes the three sectors a, b and c are vector-like and contain
massless chiral matter fields a±, b±, c± that are described by wavefunctions of the form
(4.56). For concreteness we take the curves Σa, Σb and Σc to be given by

Σa = {z1 = 0} , Σb = {z2 = 0} , Σc = {z1 = z2} (4.71)

as in the U(3) model presented in section 2.3 of [35].

One important effect of turning on a background for the transverse scalar Φ is
that the eigenstates (4.56) that solve the equations of motion in the internal space are
generically a combination of A1, A2 and Φ. Since the rotation induced in the space of
internal wavefunctions commutes with dimensional reduction, we can think of the follow-
ing three-step procedure to obtain the 4d Lagrangian of bifundamental fields. We first
dimensionally reduce the 8d Lagrangian (4.18) to obtain a 4d Lagrangian for bulk fields,
as we have already done in section 4.1.1. Next, we trace over the gauge indices in order
to express this Lagrangian in terms of bifundamental fields. Last, we rotate the 4d fields
to a new basis that diagonalizes eqs. (4.39) and decouple massive modes that are at the
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string scale. Note that the rotation is different for each of the sectors of the theory, a, b
and c, involved in a Yukawa coupling.

For instance, for the matter fields localized in curve Σa = {z1 = 0} the rotation in
the space of wavefunctions is given by(

ϕa+
1

ϕa+
2

)
=

1√
2

(
−1 1
1 1

)(
A1
a+

Φa+

)
; ϕa+

3
= A2

a+ (4.72)

Neglecting the effect of closed string fluxes on the internal wavefunctions (based on the
assumed large hierarchy of scales Mss �Ms), the fields ϕai correspond to mass eigenstates
with m2

ϕ
a+
1

= 0, m2
ϕ
a+
2

= 2|ma|2 and m2
ϕ
a+
3

= |ma|2, as we saw in the previous subsection.

For the sector a− the rotation is equivalent but the role of the fields ϕa1 and ϕa2 is
interchanged. Moreover, by supersymmetry the same rotation also acts on the auxiliary
fields, namely (

FAa+

FΦa+

)
=

1√
2

(
−1 1
1 1

)( Fϕ
a+
1

Fϕ
a+
2

)
. (4.73)

Since the fields ϕa+
2

, ϕa−1
and ϕa±3

are very heavy (with masses of order the string

scale), correct decoupling in the effective theory dictates that in the effective 4d Lagrangian
we should set

Fϕ
a+
2

= Fϕ
a−1

= Fϕ
a±3

= 0 (4.74)

along with
ϕa+

2
= ϕa−1

= ϕa±3
= 0 (4.75)

Thus, we can make use of the following replacements in the effective action (4.64),

FAa+ = −
Fϕ

a+
1√
2

, FΦa+ =
Fϕ

a+
1√
2

, Φa+ =
ϕa+

1√
2

(4.76)

and the analogous ones for a−2 and for the sectors b and c. This leads to a scalar potential
of the form

V =
∑

α=a,b,c

(
1

2
|M∗ϕ∗

α+
1

+ Fϕ
α+

1

|2 +
1

2
|Fϕ

α+
1

|2 + (α+
1 ↔ α−2 )

)
(4.77)

where the first term in this expression originates from FΦ whereas the second term comes
from FA. To see explicitly how the soft terms for matter fields arise from this expression
we expand the squared sum that appears in the above potential,

V =
∑

α=a,b,c

(
1

2
|M |2|ϕα+

1
|2 + |Fϕ

α+
1

|2 +
1

2
MFϕ

α+
1

ϕα+
1

+ h.c. + (α+
1 ↔ α−2 )

)
.

(4.78)
The first term corresponds to a soft mass for the scalar fields ϕα+

1
, which is a factor 1/2

smaller than the one that we had for adjoint fields. Moreover, in absence of magnetization
the superpotential contains µ-terms proportional to ϕα+

1
ϕα−2

and hence we can express the

auxiliary field of ϕa+
1

as

Fϕ
a+
1

=
1√
2

(
FΦa+ + FAa+

)
=

µΦa−√
2

+ . . . =
µ

2
ϕa−2

+ . . . = µabifϕa−2
+ . . . (4.79)
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where the dots represent higher-order superpotential terms such as Yukawa couplings.
Therefore, µabif = µ/2 and similarly for the other two matter curves, if they host vector-
like states. The second term in eq. (4.78) hence gives rise to supersymmetric masses for the
scalar fields, given by |µαbif |2, and to the usual supersymmetric trilinear coupling, that can
be written as a product of µαbif and the effective Yukawa coupling. Finally, the last term
in eq. (4.78) gives rise to B-terms and SUSY-breaking trilinear couplings A. Comparing
with the case of adjoint fields, they are also suppressed by a factor 1/2.

Summing over the three curves a, b and c we therefore obtain soft masses of the
form |M |2/2 for each of the 4d scalars. In addition, we get µ-terms, B-terms and a
supersymmetric trilinear coupling for each non-chiral curve. Recall that for the soft SUSY-
breaking trilinear coupling we get the same result three times (one for each curve), leading
to an extra multiplicative factor 3.

Summarizing, we have obtained the following set of soft terms for bifundamental
fields in a system of intersecting non-magnetized D7-branes with ISD 3-form fluxes,

m2
bif,α =

|M |2

2
+
|µ|2

4
=

gs
4

(
|G1̄2̄3̄|2 +

1

8
|S3̄3̄|2

)
(Bbif µbif)

α =
1

2
BΦ µ

α
bif = M µαbif = − gs

8
(G1̄2̄3̄)∗(S3̄3̄)∗

Aijkbif =
3AΦ

2
= − 3

2
Mhijk = −3g

1/2
s

2
√

2
(G1̄2̄3̄)∗hijk. (4.80)

where α = a, b, c and we have now factored out in this expression explicitly the µbif factor
from the definition of the B-parameter. Gaugino masses remain unaltered since they are
not localized by the non-trivial background of Φ. Hence, for the fermonic masses we have

M =
g

1/2
s√
2

(G1̄2̄3̄)∗

µαbif =
µ

2
= − g

1/2
s

4
√

2
(S3̄3̄)∗ (4.81)

We can also guess the contribution to soft scalar masses coming from the IASD fluxes Sii,
i = 1, 2. Indeed, looking at the results for the bulk D7-brane fields in eq. (4.22), we expect
an additional dependence on IASD fluxes through the replacement

|S3̄3̄|2 → |S3̄3̄|2 + |S11|2 + |S22|2 (4.82)

in the mass squared and

G1̄2̄3̄S3̄3̄ → G1̄2̄3̄S3̄3̄ +
1

2
(S11S22)∗ . (4.83)

for the B-term. This is suggested by symmetry arguments similar to those used in section
3.1 of [45]. However, no contribution to trilinear couplings or fermion masses is expected
from Sii IASD fluxes, since there are no holomorphic gauge components A1,2 present in
the chiral matter fields.

We now turn to discuss how magnetization modifies this pattern of soft terms for
matter fields.
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4.1.2.3. Effect of magnetic fluxes on soft terms for fields at matter curves

Magnetization leads to 4d chiral spectra, as reviewed in section 4.1.2.1, with total
chirality determined by the integral of 〈F2〉 over the various matter curves of the theory.
For concreteness, let us assume that the curves Σa and Σb in our U(3)→ U(1)3 toy model
above are now charged under the flux, such that only the modes a+ and b+ survive in the
4d spectrum. We take the matter curve Σc however to be neutral under the flux, and so
the spectrum arising from this curve is unaffected, containing the vector-like pair given
by c+ and c−. In this toy model we may think of the non-chiral sector localized in Σc

as the Higgs sector, whereas the chiral sectors localized in the curves Σa and Σb can be
thought as MSSM chiral sectors. A more realistic example is given in section 4.1.4, where
we apply the results of this section to study the hypercharge dependence of soft terms in
a local F-theory SU(5) GUT model.

As we have already mentioned, magnetic fluxes affect the 4d soft SUSY-breaking
Lagrangian in two ways. On one side, the presence of a non-trivial background for F2 leads
to new renormalizable couplings in 4d which can be traced back to higher-dimensional
couplings in the 8d theory where some of the fields-strengths present in the coupling are
replaced by the background flux. These corrections were computed in subsection 4.1.1.2 for
the case of bulk D7-brane fields. They are quadratic in the magnetic flux density and from
the point of view of the 4d effective supergravity correspond to renormalizable thresholds
to the Kähler potential and/or the gauge kinetic function of the 4d effective theory. The
other effect of magnetic fluxes, relevant for matter fields, is to modify the profile of the
internal wavefunctions, as it has been described in subsection 4.1.2.1, and therefore also
the rotation in the space of internal wavefunctions. For instance, in our U(3) example
above the internal wavefunctions for 4d charged fields in presence of magnetic fluxes were
given in eq. (4.60). The rotation eq. (4.72) in the space of fields is thus modified such that(

ϕa+
1

ϕa+
2

)
=

 Fa−−λa√
2λa(λa−Fa−)

ma√
2λa(λa−Fa−)

Fa−+λa√
2λa(λa+Fa−)

ma√
2λa(λa+Fa−)

(A1
a+

Φa+

)
; ϕa+

3
= A2

a+ (4.84)

Mass eigenstates therefore still originate from a mixture between Wilson lines and trans-
verse scalars, but this mixture now depends on the magnetic flux in the curve Σa. Only
in the case without magnetic flux, Φ and A contribute equally to the mass eigenstates.
Moreover, this correction begins at linear order on the magnetic flux, and therefore for
bifundamental fields the quadratic corrections described in section 4.1.1.2 are sub-leading.
We thus ignore those and just consider the leading effect coming from the modification of
the Φ−A mixing induced by magnetic fluxes.

In order to compute the soft terms of matter fields localized in the curves Σa, Σb

and Σc, we follow the same procedure described in the previous subsection. The rotation
matrix for the fields localized in the matter curve Σa is now given by eq. (4.84). A similar
rotation also applies to the fields localized in curve Σb, after interchanging A1 ↔ A2.
The rotation for auxiliary fields is modified in the same way than for the scalar fields.
Therefore, for the fields localized in the matter curves Σa,b we can make the replacements

FAα+ = −

√
λα − Fα−

2λα
Fϕ

α+
1

, FΦα+ =

√
λα − Fα−

2λα

λα + Fα−
mα

Fϕ
α+

1

, α = a, b

(4.85)

43



Chapter 4. From String Theory to Particle Physics

where we have already set the auxiliary fields of massive modes to zero. In these expressions
λα =

√
(Fα−)2 +m2

α. Note that only the fields coming from the sector a+ and b+ are
normalizable and therefore those coming from the sectors a− and b− are not present in
the low energy spectrum of the theory. This implies that µ- and B-terms are absent in the
matter curves Σa and Σb. Curve Σc on the other hand is not affected by magnetic fluxes,
and therefore the same expression (4.73) for the rotation of auxiliary fields in absence of
magnetic fluxes still applies for Σc.

Making all these substitutions in the potential (4.64) we get

V =
∑
α=a,b

(
λα − Fα−

2λα

(λα + Fα−)2

m2
α

|M∗ϕ∗
α+

1
+ Fϕ

α+
1

|2 +
λα − Fα−

2λα
|Fϕ

α+
1

|2
)

+

+
1

2
|M∗ϕ∗

c+1
+ Fϕ

c+1

|2 +
1

2
|Fϕ

c+1

|2 + (c+
1 ↔ c−2 ) (4.86)

and expanding perturbatively in powers of the ratio Fα−/mα between the magnetization
and the intersection parameter, the contribution to the scalar potential that comes from
the sectors α = a, b becomes

Vα =
1

2

[
1−

∣∣∣∣Fα−mα

∣∣∣∣+O

(∣∣∣∣Fα−mα

∣∣∣∣3
)]
|M |2|ϕα+

1
|2 + |Fϕ

α+
1

|2 +

+
1

2

[
1−

∣∣∣∣Fα−mα

∣∣∣∣+O

(∣∣∣∣Fα−mα

∣∣∣∣3
)]

MFϕ
α+

1

ϕα+
1

(4.87)

The µ-term µcbif is not modified to linear order on the fluxes, since the curve Σc is neutral
under the magnetic flux. Hence, to leading order we still have µbif = µ/2, as in the case
with no magnetization discussed in the previous subsection.

Summarizing, from eqs. (4.86) and (4.87) we have therefore derived the following
set of flux-induced soft terms for intersecting magnetized 7-branes in the above U(3) toy
model, for fields localized in each of the matter curves Σα,

m2
bif,α =

|M |2

2

(
1−

∣∣∣∣Fα−mα

∣∣∣∣) =
gs
4
|G1̄2̄3̄|2

(
1−

∣∣∣∣Fα−mα

∣∣∣∣) α = a, b

m2
bif,c =

|M |2

2
+
|µ|2

4
=

gs
4

(
|G1̄2̄3̄|2 +

1

8
|S3̄3̄|2

)
(Bbif µbif)

c =
1

2
BΦ µ

c
bif = Mµcbif = −gs

8
(G1̄2̄3̄)∗(S3̄3̄)∗

Aijkbif = −M
2

(
3−

∣∣∣∣F a−ma

∣∣∣∣−
∣∣∣∣∣F b−mb

∣∣∣∣∣
)
hijk = −g

1/2
s hijk

2
√

2
(G1̄2̄3̄)∗

(
3−

∣∣∣∣F a−ma

∣∣∣∣−
∣∣∣∣∣F b−mb

∣∣∣∣∣
)

(4.88)

Note in particular that µ- and B-terms do not receive corrections linear in the magnetic
fluxes, as we have already mentioned. This is because in this particular case there are no
magnetic fluxes along the curve c, which is the one hosting the Higgs fields. On the other
hand there would appear corrections quadratic in the magnetic fields, analogous to those
appearing for adjoint fields in the previous chapter.

Let us mention for completeness that there is also a third possibility for brane
distributions with consistent Yukawa couplings, even in compactifications with a rigid S

44



Chapter 4. From String Theory to Particle Physics

divisor. Indeed, we can have a coupling of the form (I-I-A) involving two fields coming
from the intersection of D7-branes and one field coming from the reduction of the gauge
field A living in the 7-brane worldvolume. If this is the case, it is natural to assume
that the Higgs field arises from the worldvolume of the D7-branes while the MSSM chiral
matter arise from intersections (labelled by a, b). Hence the soft mass and the B-term for
the Higgs are forbidden by gauge invariance, whereas the soft masses for the chiral fields
take the form described above. We can summarize this structure in the following scalar
potential,

V =
∑
α=a,b

Vα + |FA|2 (4.89)

where Vα is described in eq. (4.87) and FA is the auxiliary field for the A field. Recall that
it does not include a µ−term by gauge invariance. Thus the trilinear coupling will have
only two contributions coming from Va,b. To sum up, this brane distribution leads to the
following flux-induced soft SUSY-breaking terms,

m2
H = 0 , BH = 0 (4.90)

m2
bif, a,b =

|M |2

2

(
1−

∣∣∣∣∣F a,b−ma

∣∣∣∣∣
)

AHij = −M
2

(
2−

∣∣∣∣F a−ma

∣∣∣∣−
∣∣∣∣∣F b−mb

∣∣∣∣∣
)
hHij .

4.1.2.4. Comparison with effective N = 1 supergravity

As emphasized in refs. [45, 52], the pattern of flux-induced soft terms that arise in
the worldvolume of D3/D7-branes for ISD 3-form fluxes can be also understood in terms
of effective N = 1 supergravity. For the case of adjoint fields with no magnetization,
discussed in section 4.1.1.1, soft terms agree with those obtained from a simple no-scale
Kähler potential for a single Kähler modulus T and a gauge kinetic function of the form

K = −3 log(T + T ∗) , fa = T , (4.91)

as well as a Kähler metric for matter fields

Kij =
δij

(T + T ∗)ξi
(4.92)

with ξi the so-called modular weight of the scalar field φi. This structure is more than a
toy model. Indeed, one obtains such a simple structure in isotropic toroidal orientifolds in
which T is the overall Kähler modulus with T = T1 = T2 = T3, and a stack of D7-branes
wraps a 4-torus T 2 × T 2 within the T 6. The modular weight of 4d adjoint fields that
descend from Φ and A is given respectively by ξ = 0 and ξ = 1. We ignore the dependence
of these expressions on the complex axion-dilaton, the complex structure moduli and the
other Kähler moduli present in the theory, since those are not relevant for the computation
of soft terms below.

Assuming that the F-term auxiliary field FT of the modulus T is non-vanishing
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(modulus dominance), the standard N = 1 supergravity formulae (see e.g. [57]) yield

m2
φi

= |M |2(1− ξi) (4.93)

Aijk = −Mhijk
∑

α=i,j,k

(1− ξα)

Bi = M
∑

α=φiu,φ
i
d

(1− ξα)

where φiu,d represent possible vector-like states allowing for a supersymmetric µ-term. In
particular, for adjoint fields that descend from Φ and A we get

m2
Φi = |M |2 , Aijk = −Mhijk , BΦ = 2M (4.94)

and BA = m2
A = 0. This is consistent with the more general result shown in eq. (4.22)

particularized to case in which only ISD fluxes G1̄2̄3̄ and S3̄3̄ are present. In the case on
which magnetic fluxes are also present, the Kähler metric (4.92) is suitably corrected by
the magnetization as [58,59]

Kij =
δij
tξi

(
1 + cξt

ξ−1
)

(4.95)

with t = T + T ∗ and cξ some flux-dependent constant whose value will depend on the
modular weight and the flux quanta. The corrections to the soft terms that arise from this
Kähler metric are in agreement with those found in eqs. (4.31) and (4.35) particularized to
the case of ISD 3-form fluxes and anti self-dual magnetic flux F− once we identify the flux
correction of (4.95) with our microscopic description of the flux density, ρ ≡ cΦ

t = g−1
s σ2F 2

−.
One also finds that for A fields, which have ξ = 1, one has cA = 0 and the fields that
descend from A remain massless even after the addition of magnetic fluxes.

Similarly, the soft terms for matter fields in intersecting D7-branes given in eqs. (4.80)
and (4.81) can be also reproduced by the above N = 1 supergravity formulae. Indeed, the
modular weight of chiral fields localized at intersecting D7-branes is given by ξ = 1/2. In
absence of magnetic fluxes, standard supergravity formulae then leads to

m2
bif,i =

|M |2

2
, Aijk = −3M

2
hijk , Bi

bif = M (4.96)

in agreement with eqs. (4.80). The corrections from magnetic fluxes arising from (4.95) to
the different soft terms are parametrized for the case of fields with modular weight ξ = 1/2
by ρbif ≡ cbif

t1/2
. Note that in the large t limit (corresponding to the flux diluted regime)

these corrections are dominant since ρbif > ρ. This is consistent with the linear (instead
of quadratic) dependence on the fluxes found in (4.88).

Finally we can also derive the structure of soft terms in a (I-I-A)-type configuration
using the Kähler metric above. In this case we have two matter fields coming from D7-
brane intersections with modular weight ξ = 1/2 and one adjoint field that descends from
A with modular weight ξ = 1. The standard N = 1 supergravity formulae yield

m2
f =

|M |2

2
, Aijk = −Mhijk , BH = m2

H = 0 (4.97)

in agreement with eq.(4.90) as expected. The flux correction for the matter fields will be
also parametrized by ρf =

cf
t1/2

consistent with the linear dependence found in (4.90).

46



Chapter 4. From String Theory to Particle Physics

The above structure of soft terms does not only arises in toroidal settings but also
in swiss-cheese compactifications [14–17] in which a stack of 7-branes containing the SM
fields wraps a small cycle of size ts = Re(Ts) inside a large-volume CY manifold with
overall volume modulus Tb. This is also the type of configurations that one expects in
local F-theory GUT models, where Ts would correspond to the local Kähler modulus
associated to the local divisor S.

In the simplest type IIB swiss-cheese examples the Kähler potential for the moduli
Ts and Tb is given by [60]

K = −2 log (t
3/2
b − t3/2s ) , (4.98)

with tb = Re(Tb) � ts, whereas to leading order the gauge kinetic function is given by
f = Ts. The Kähler metric for the matter fields reads

Kα =
t
(1−ξα)
s

tb
, (4.99)

with ξα the corresponding modular weights. Expanding the action in powers of ts/tb and
assuming Ftb,ts 6= 0 we obtain the same patterns of soft-terms as in the above toroidal
case, where now M = Fts/ts [58].

Note however that the microscopic derivation of soft-terms in section 4.1.1 and in
this section go beyond these N = 1 supergravity results in various respects. In particular
they do not assume any form for the N = 1 Kähler potential but give explicit expressions
for the soft-terms in terms of the underlying general closed string background. In this
regard, they are expected to be valid in more complicated non-toroidal settings and may
also include the effect of IASD sources. Obtaining the closed string background around
the D7-branes in a general compactification is usually a too complicated task, but once
the closed string background is known, the techniques developed in the above sections
allow to obtain the soft-breaking patterns for the fields in the worldvolume of D7-branes.
This approach might be particularly useful for fields localized at D7-brane intersections,
since their Kähler metrics are only fully known in the case of toroidal compactifications,
whereas for the case of local systems like the swiss-cheese kind of setting discussed above
the structure of the Kähler metrics for matter fields can at present only be guessed in
terms of scaling arguments [58,60].

4.1.3. Effect of distant branes on the local soft terms

When building phenomenological type IIB orientifold compactifications the degrees
of freedom of the SM typically are located in the worldvolume of D7-branes and/or D3-
branes subject to closed string and open string fluxes. The type of settings that are
typically considered is shown in figure 4.1. Apart from the branes of the SM sector,
there may also be additional localised sources at other regions of the compact space.
For instance, there could be distant D7-branes giving rise to gaugino condensation and
stabilizing some of the Kähler moduli of the compactification. There might also be anti-
D3-branes, as in the KKLT setting [8], required to uplift the vacuum from AdS to dS.
Alternatively, this role might also be played by distant D7-branes with self-dual magnetic
fluxes in their worldvolume [61]. The effect of distant localised sources on the SM branes
may be discussed in terms of their backreaction near the SM branes, as discussed e.g. in
[41, 49] for the particular case of gaugino condensation on D7-branes. In this section we
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discuss the effect of distant localised sources on the pattern of soft breaking terms by
computing the backreaction of localised sources on the local geometry.

Figure 4.1: Summary of the type of sources that are present in a standard phenomenological
IIB orientifold compactification. The SM is located in a stack of intersecting D7-branes with a
higher dimensional SU(5) GUT structure. Apart from topologically non-trivial closed string 3-
form fluxes G3 , there are distant localized sources that may also contribute to SUSY-breaking
and/or moduli stablization. These include gaugino condensation in the worldvolume of D7-branes,
self-dual magnetic fluxes also in the worldvolume of D7-branes and/or anti-D3-branes. The effect
of distant sources in the effective theory on the worldvolume of the SM D7-branes can be studied
in terms of their backreaction in the local patch.

For concreteness we focus on the case of distant anti-D3-branes. In general these
backreact the metric and the RR 5-form field-strength through the equations of motion.
We have seen in previous sections that in absence of magnetization soft-terms for fields on
D7-branes (both bulk and on intersections) do not depend on the metric nor on the RR
5-form and thus the presence of distant D3- or anti-D3-branes does not modify D7-brane
soft terms within this approximation. This is expected, since unmagnetised D7-branes
have no net D3-brane charge. However, once anti self-dual or self-dual magnetic fluxes
are switched on in the worldvolume of D7-branes, some D3- or anti-D3-brane charge is
respectively induced in their worldvolume. This implies that distant anti-D3-branes (or
D3-branes, respectively) are now expected to give rise to corrections for the soft-terms
in the worldvolume of magnetized D7-branes. Indeed, we saw in section 4.1.1.2 that
magnetization leads to corrections to D7-brane soft terms that depend on the background
for the metric and the RR 5-form. Although these corrections are quadratic in the magnetic
fluxes, they can lead to relevant physical effects if 3-form fluxes are suppressed or in the
context of fine-tuned scalar potentials, in which minute effects become important.

We begin this section by reviewing the computation of soft scalar masses induced on
the worldvolume of D3-branes by distant anti-D3-branes in flat space [52]. We then move
to the same computation for magnetised D7-branes in flat space. Finally, we consider
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compactification effects in these computations.

4.1.3.1. Scalar masses for D3-branes in the presence of distant anti-D3-branes

We first consider the case of a probe D3-brane located in (non-compact) locally flat
space and a distant stack of N anti-D3-branes, and compute the induced soft scalar masses
in the worldvolume of the D3-brane. This computation was addressed in Ref. [52], but we
revisit it here with the aim of extending it to other settings in the next subsections.

In general, anti-D3-branes backreact the metric and the RR 4-form potential through
the following type IIB supergravity equations of motion

−∇̃2Z =
gs
12
GmnpḠ

m̃np + (2πσ)2ρ̃loc
3 + Z−1

[
∂mZ∂̃

mZ − (Zχ)4∂mχ
−1∂̃mχ−1

]
(4.100)

−∇̃2χ−1 =
igs(Zχ)2

12
Gmnp ∗6 Ḡm̃np + (2πσ)2Q̃loc

3 + 2
[
Z−1∂mχ

−1∂̃mZ − χ∂mχ−1∂̃mχ−1
]

where tilded quantities are taken with respect to the unwarped metric and ρ̃loc
3 (z) and

Q̃loc
3 (z) are the energy density and D3/D3-brane charge density associated to localized

sources. These equations are easily solved for backgrounds that only involve same-sign
D3-brane charges (recall that we are taking the D3-branes as probes). For the particular
case of a stack of N anti-D3-branes and vanishing 3-form fluxes

Q̃loc
3 (z) = −ρ̃loc

3 = −N δ(~z0 − ~z)√
g̃

, Z = −χ−1 (4.101)

where ~z0 denotes the position of the stack of anti-D3-branes in the internal space Eqs. (4.100)
are then proportional to each other and reduce to a standard Poisson equation in the in-
ternal space

− ∇̃2Z = (2πσ)2ρ̃loc
3 (4.102)

When the internal space is non-compact flat space this leads to the standard supergravity
solution for anti-D3-branes in asymptotically flat space, namely

Z = 1− gsNσ
2

π |~z − ~z0|4
(4.103)

Soft terms in the worldvolume of the probe D3-branes are fully determined in terms
of the local backreaction around the D3-branes. Concretely, for the soft scalar masses [52]

m2
ij̄ = 2Kij̄ − χij̄ + gs(Im τ)ij̄ (4.104)

Bij = 2Kij − χij + gs(Im τ)ij .

where K, χ and τ were defined in eq.(4.4). For concreteness we take the probe D3-branes
to be located at the origin of coordinates. Expanding eq. (4.103) around the origin leads
in real coordinates to

Z = 1− gsNσ
2

π r6
0

[
r2

0 + 4xm0 x
m + 2

(
6xm0 x

n
0

r2
0

− δmn
)
xmxn + . . .

]
. (4.105)

where r2
0 =

∑
n(xn0 )2. The linear term shows the expected instability due to the attraction

between branes and anti-branes. We assume in what follows that such a term is absent,
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leading to a static configuration. That may originate in a variety of ways like e.g. an orbi-
fold projection, a particularly symmetric configuration or the D3-branes being fractional
and stuck at a singularity.

Comparing to eqs. (4.4) and making use of eqs. (4.101) and (4.104) we then obtain
the following scalar masses and B-term in the worldvolume of the probe D3-brane

m2
ij̄ = const.

(
6

r2
0

zi0z̄0
j − δij

)
, Bij = const.

6

r2
0

zi0z
j
0 (4.106)

where the proportionality constant is 8gsNσ
2/(πr6

0 − gsNσ2r2
0). We would have obtained

the same result if we have instead considered the reverse situation, namely soft terms
induced on a anti-D3-brane by the presence of a distant D3-brane.

These mass terms by themselves may easily trigger instabilities for the scalars on
the D3-brane, since they may be tachyonic. For instance, if along the i-th complex plane
|zi0| � |z

j
0| with i 6= j, the second piece in the first equation (4.106) dominates and the

D3-brane scalar field Φi becomes tachyonic. In the isotropic case, where z1
0 = z2

0 = z3
0 and

thus
zi0
r0

= 1√
6
, one gets

m2
ij̄ = const. (1− δij) , Bij = const. (4.107)

Hence, in that case diagonal masses vanish and off-diagonal ones are equal to the B-term.
Still, there are tachyonic mass eigenstates, since the mass matrix is traceless. Note that,
as emphasized in [52] this source of SUSY breaking by itself would lead in addition to
no gaugino masses nor µ-terms and would therefore not be phenomenologycally viable for
MSSM soft terms without the addition of further ingredients.

4.1.3.2. Scalar masses for magnetized D7-branes in the presence of distant
anti-D3-branes

We can perform the same analysis as above for the case of magnetised D7-branes
in the presence of distant anti-D3-branes in asymptotically flat space. To simplify the
presentation let us consider only a non-vanishing anti self-dual magnetic flux F− in the
worldvolume of some probe D7-branes. From eq. (4.31) we get for the scalar bilinears

m2
33̄ = σ2

(
2g−1
s K33̄ − χ33̄

)
F 2
− , B33 = σ2

(
2g−1
s K33 − χ33

)
F 2
− . (4.108)

Note that K33̄, K33, χ33̄ and χ33 obtained in the previous subsection depend on the
coordinates of the D7-branes along the internal space, z1 and z2, and dimensional reduction
to 4d is therefore non-trivial. However, if the wavefunctions of the 4d fields are strongly
localized in the internal space, as occurs for instance for fields localized at Yukawa coupling
enhancement points in F-theory GUTs, we can approximate wavefunctions by a delta
function. Here we take for instance the case of a vector-like pair of scalars localized at the
origin of coordinates. Then, making use of eqs. (4.101) and (4.105) in (4.108) we find for
|z3

0 | � |z1
0 |, |z2

0 |

m2
33̄ = const. g−1

s σ2F 2
− , B33 =

3

4
const. g−1

s σ2F 2
− (4.109)

where we have included an extra factor 1/2 with respect to eq. (4.108) to account for the
fact that we are now considering a vector-like pair of bifundamental scalars, according to
what we found in section 4.1.2.
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4.1.3.3. Compactification effects

The situations discussed in this section so far are unrealistic in that they are non-
compact. However, they served us to illustrate how the expressions that we found in
sections 4.1.1 and 4.2.1 for the soft breaking terms can capture the contributions from
distant localised sources that break supersymmetry. We would like now to consider a
slightly more complete toy model on which the internal space is taken to be compact, in
order to illustrate compactification effects on soft terms. Thus, we consider again the case
of a stack of magnetized probe D7-branes and N distant anti-D3-branes, but we now solve
eq. (4.102) in a 2-torus transverse to the D7-branes (and we smear the D3-brane charge
along the remaining internal directions). Concretely, we take the magnetized D7-brane to
be at the origin of coordinates and the anti-D3-branes exactly at the opposite point in the
transverse T 2, as depicted in figure 4.2. In that case, linear terms automatically vanish
due to the balance between the attraction forces on the two sides of the D7-branes.

Figure 4.2: A stack of D3-branes on the opposite side of the magnetized D7-branes.

Following [62] we can express the solution to eq. (4.102) in terms of the Green’s
function G(x− y) on the transverse space to the D7-branes as

Z(z) = (2πσ)2NG(z3
0 − z3) (4.110)

The Green function for a 2-torus with unit volume is

G(z) =
1

2π
log

∣∣∣∣ϑ1(z;U)

ϑ′1(0;U)

∣∣∣∣2 − (Im z)2

Im U
(4.111)

where U is the complex structure of the torus and ϑi are the usual Jacobi theta functions.
Expanding around zk = 1/2 reads

G(z) = − 1

π

(
log π + log |ϑ4(0; 2U)|2

)
−
∣∣z − 1

2

∣∣2
2 Im U

− π

12
(Ê2(U)+ϑ4

3(0; U)+ϑ4
4(0; U))

(
z − 1

2

)2

− π

12
(Ê2(U) + ϑ4

3(0; U) + ϑ4
4(0; U))∗

(
z̄ − 1

2

)2

+ . . . (4.112)

where Ê2 is the modified second Eisenstein series defined as

Ê2(U) = E2(U)− 3

πIm U
(4.113)

and

E2(U) = 1− 24

∞∑
n=1

nqn

1− qn
(4.114)
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and q = e2πiU . From eqs. (4.110) and (4.31) then we get in this case the following set of
scalar bilinears in the worldvolume of magnetized D7-branes

m2
33̄ = −

g−1
s σ4π2F 2

−N

4 Vol(T 6) ImU
, (4.115)

B33 =
g−1
s σ4π2F 2

−N

4 Vol(T 6) ImU

[
1− 3 ImU

π
(E2(U) + ϑ4

3(0; U) + ϑ4
4(0; U))

]
where we have introduced the volume of the internal space back in these expressions.
Note that soft-terms in particular now depend on the complex structure of the transverse
2-torus. It is also interesting to recall the interpretation of the different terms in these
expressions from an effective field theory point of view. Indeed, scalar masses and the
first contribution in the B-term are tree-level contributions similar to those computed in
the previous subsections. However, in the present compact case the B-term receives in
addition loop threshold corrections that are exponential in the complex structure of the
2-torus. Those come from integrating out heavy modes that propagate in the transverse
T 2 and stretch between the D7-branes and the anti-D3-branes.

This example, as it stands, is a toy model with no direct phenomenological interest.
In particular, scalar masses are tachyonic, showing the instability of D7-branes under
small fluctuations. The tachyonic instability in this setting was expected, since once the
anti-D3-branes move a bit from their original position, the attractive forces on the two
sides of the anti-D3-branes are no-longer balanced and they quickly decay towards the
magnetized D7-branes. In this regard, it might be interesting to extend this example by
including closed string fluxes and see whether it is possible to make it stable.

4.1.4. Hypercharge dependence of soft terms in F-theory

In this section we study the effect of fluxes on soft terms for fields on local F-theory
SU(5) models with enhanced SO(12) and E6 symmetries. We are particularly interested
in the dependence on the hypercharge flux, required for the breaking from SU(5) to the
SM gauge group.

4.1.4.1. Hypercharge dependence at SO(12) point

In previous sections we have considered corrections of open string magnetic fluxes
to the soft terms of 7-brane fields, including also fields localized at intersections. To sim-
plify the discussion, we considered a toy model with an underlying U(3) gauge symmetry.
The generalization to gauge symmetries of phenomenological interest is however straight-
forward. Indeed, we now apply the results of the above sections to SU(5) unification in
the context of type IIB/F-theory compactifications. More precisely, in this subsection we
concentrate in the case of local F-theory SU(5) GUTs with gauge symmetry enlarged to
SO(12) at complex co-dimension 3 singularities. This is the gauge symmetry enhancement
that is relevant for the presence of local Yukawa couplings of the form 5̄×10×5̄H that lead
to masses for charged leptons and D-type quarks. In particular, we identify the possible
(e.g. hypercharge) magnetic flux dependence of the scalar soft masses, as it might be of
phenomenological relevance.

We consider the same local SO(12) F-theory structure as introduced in Ref. [42] (see
also [63]). To avoid expressions with two many indices, throughout this section we use the
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alternative notation x ≡ z1 and y ≡ z2 to denote the two local complex coordinates in the
4-cycle S. The vev for the transverse 7-brane position field is given by

〈Φxy〉 = m2(xQx + yQy) (4.116)

where m is related to the intersection slope of the 7-branes, as we have already discussed,
and it is generically of order the string scale. Qx and Qy are SO(12) Cartan generators
breaking the symmetry respectively down to SU(6) × U(1) and SO(10) × U(1). As in
the U(3) toy model of previous sections, we have matter curves Σa, Σb and Σc at x = 0,
y = 0 and x = y respectively. Matter curves Σa and Σb host respectively 5-plets and
10-plets associated to quarks and leptons, while Σc hosts 5H -plets that include the Higgs
multiplets. In order to get chiral matter and family replication we must add magnetic
fluxes to this setting. We follow Ref. [42] and consider the above local system of matter
curves subject to approximately constant magnetic fields, that break the gauge symmetry
down to that of the SM and give rise to chirality. The magnetic flux background comes
in three pieces,

〈F2〉 = 〈F(1)〉 + 〈F(2)〉 + 〈FY 〉 (4.117)

with

〈F(1)〉 = i (Mx dx ∧ dx̄+My dy ∧ dȳ) QF (4.118)

〈F(2)〉 = i (dx ∧ dȳ + dy ∧ dx̄) (NaQx +NbQy)

〈FY 〉 = i
[
(dx ∧ dȳ + dy ∧ dx̄)NY + (dy ∧ dȳ − dx ∧ dx̄) ÑY

]
QY .

and QF = −Qx − Qy. The first piece leads to chirality (and matter replication) for
fields that are localized in the matter curves Σa,b. The second piece leads to chirality for
the Higgs fields, localized in the matter curve Σc. This is interesting in order to obtain
doublet-triplet splitting and a suppressed µ-term. Finally, the third piece corresponds to
a magnetic flux along the hypercharge direction, that breaks SU(5) down to the SM gauge
group and for the particular choice NY = 3(Na − Nb) is consistent with doublet-triplet
splitting. We refer to [42] for further details on this configuration.

Thus, putting all pieces together the complete flux may be written as

〈F2〉 = i(dy∧dȳ−dx∧dx̄)QP +i(dx∧dȳ+dy∧dx̄)QS+i(dy∧dȳ+dx∧dx̄)MxyQF (4.119)

where

QP = M̃QF + ÑYQY , QS = NaQx +NbQy +NYQY (4.120)

and

M̃ =
1

2
(My −Mx) , Mxy =

1

2
(My +Mx) (4.121)

The local D-term SUSY condition would imply Mxy = 0.

The local internal wavefunctions of the fields must satisfy the system of differential
equations that we have described in section 4.2.1 and were solved in [42] for this particular
case. The zero modes for each sector are given (in the holomorphic gauge) by

Ψρ =

− iλx
m2

iλy
m2

1

χiρEρ , χiρ = e−qΦ(λxx̄−λy ȳ)fi(λxy + λyx) ρ = a±, b±, c± (4.122)
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where Eρ are the corresponding SO(12) step generators for fields in Σa,b,c. The values of
the parameters qΦ and λx,y are given in table 4.1 for each of the fields in the curves Σa,b,c.
The physical, normalizable, wavefunctions in the real gauge can be obtained from

χreal
ρ = eiΩχhol

ρ (4.123)

where

Ω = i
2

[(
|y|2 − |x|2

)
QP + (xȳ + yx̄)QS +Mxy

(
|y|2 + |x|2

)
QF
]
. (4.124)

The constants λ± that appear in table 4.1 are defined as the lowest eigenvalue for the

ρ qΦ λx λy SU(5) rep.

a+
p −x λ+ −qs λ+

λ+−qp 5̄

a−p x λ− qs
λ−

λ−+qp
5

b+q y −qs λ+

λ++qp
λ+ 10

b−q −y qs
λ−

λ−−qp λ− 10

c+
r x− y qsλ+−m4

λ++qp−qs −λ+ − qsλ+−m4

λ++qp−qs 5̄

c−r −(x− y) − qsλ−+m4

λ−−qp+qs
−λ+ + qsλ−+m4

λ−−qp+qs
5

Table 4.1: Wavefunction parameters.

sectors a±p , b
±
q and c±r and satisfy the following cubic equations [42]

(λai )
3 − (m4 + (qap)2 + (qas )2)λai +m4qap = 0 (4.125)

(λbi)
3 − (m4 + (qbp)

2 + (qbs)
2)λbi −m4qbp = 0

(λci )
3 − (2m4 + (qcp)

2 + (qcs)
2)λci + 2m4qcs = 0

where for simplicity we have assumed the D-term condition Mxy = 0. To first order in the
fluxes the constants λ± are given by

λa± = ∓m2 − 1

2
qap + . . . ; λb± = ∓m2 +

1

2
qbp + . . . ; λc± = ∓

√
2m2 − 1

2
qcs + . . . (4.126)

In order to compute the physical soft masses we need to normalize these local wave func-
tions. It is useful to factorize the normalization of the vector in eq. (4.122) from the
normalization of the scalar function χiρ so that

〈Ψi
ρ|Ψj

ρ〉 = m2
∗

∫
S

Tr(Ψi
ρΨ

j
ρ) dvolS = 2m2

∗||~vρ||2
∫
S
χiρ(χ

j
ρ)
∗ dvolS = δij (4.127)

where

~vρ =

 − iλx
m2

iλy
m2

1


ρ

(4.128)
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and hence ||~vρ||2 = 1 + λ2
x

m4 +
λ2
y

m4 . By using the definition of λx and λy in table 4.1 and
eq. (4.126), we get

||~va± ||−2 ' 1

2

(
1∓

qa
±
p

2m2
+ . . .

)
(4.129)

||~vb± ||−2 ' 1

2

(
1±

qb
±
p

2m2
+ . . .

)

||~vc± ||−2 ' 1

2

(
1∓ qc

±
s

2
√

2m2
+ . . .

)

Having the normalized internal wavefunctions, we can compute the soft masses for these
fields by making use of the results of previous sections. For simplicity we only consider soft
scalar masses in the presence of an ISD (0,3)-form closed string background. We expand
the non-Abelian DBI+CS action of the 7-brane in powers of the transverse adjoint SO(12)
scalar Φ in the presence of a non-trivial G(0,3) flux, as we did in section 4.1.1, obtaining

L8d = Tr

(
DaΦD

aΦ̄− 1

4
FabF

ab − gs
2
|G|2|Φ|2 + . . .

)
(4.130)

The local flux density induces a 8d mass term for the transverse scalar Φ. Upon dimen-
sional reduction in the presence of non-trivial backgrounds 〈Φ〉 and 〈F2〉 this leads to 4d
soft masses for the fields localized at the matter curves. The scalar Φ transforms in the
adjoint representation of SO(12) and can thus be decomposed as

Tr(|Φ|2) = |Φa+
p
|2 + |Φa−p

|2 + |Φb+q
|2 + |Φb−q

|2 + |Φc+r
|2 + |Φc−r

|2 + . . . (4.131)

where Φρ corresponds to the third component of eq. (4.122), namely the internal wave-
function of the transverse scalar that solves the equation of motion in each sector. The
induced 4d soft masses for the matter fields living in the sector a+ therefore read

(m
a+
p

ij )2 =
gs

2 Vol(S)

∫
S
dvolS |G|2|Φa+

p
|2 =

gs
2Vol(S)||~vap ||2

∫
S
dvolS |G|2χia+

p
(χj
a+
p

)∗

(4.132)
Using the definition of λx and λy in table 4.1 we obtain

(mij

a+
p

)2 =
gs

4Vol(S)

∫
S
dvolS |G|2

(
1−

qa
+

p

2m2

)
χi
a+
p

(χj
a+
p

)∗ . (4.133)

Note that in the presence of magnetic fluxes, scalar kinetic terms get also flux corrections.
However, those start at quadratic order in the magnetic flux, so that they only give rise to
subleading corrections to this expression for the soft masses. When the flux G is constant
over the 4-fold we recover the results of eq. (4.88), extended to the SU(5) GUT case here
considered. Analogously for the sector a− we get,

(mij

a−p
)2 =

gs
4Vol(S)

∫
S
dvolS |G|2

(
1 +

qa
−
p

2m2

)
χi
a−p

(χj
a−p

)∗ (4.134)
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Taking into account that the zero mode in the sector a+
p (a−p ) is normalizable only if

qa
+

p > 0 (qa
−
p < 0), we can rewrite these expressions as

(mij
ap)

2 =
gs

4Vol(S)

∫
S
dvolS |G|2

(
1− |q

ap
p |

2m2

)
χiap(χ

j
ap)
∗ (4.135)

assuming that only one of the two modes is actually present in the massless spectrum.
The result for the sector b±q reads

(mij
bq

)2 =
gs

4Vol(S)

∫
S
dvolS |G|2

(
1− |q

bq
p |

2m2

)
χibq(χ

j
bq

)∗ (4.136)

where we have used that the zero mode in the sector b+q (b−q ) is normalizable only if qb
+

p < 0

(qb
−
p > 0). Finally for the sector c±r we obtain

(mij
cr)

2 =
gs

4Vol(S)

∫
S
dvolS |G|2

(
1− |qcrs |

2
√

2m2

)
χicr(χ

j
cr)
∗ . (4.137)

Thus we observe that only fields with different absolute value of hypercharge have different
soft masses at the unification scale. In particular, both Higgs fields Hu and Hd have
equal soft masses as long as they feel the same amount of hypercharge flux. This will be
important in section 4.3.4.

Making use of the SO(12) chiral spectrum summarized in table 4.2, we can express
the above results in a more compact form

(mij)2 =
gs

4Vol(S)

∫
S
dvolS |G|2

(
1− 1

2m2

∣∣∣ηM̃ − qY ÑY

∣∣∣)χicr(χjcr)∗ (4.138)

where η = +1,−1, 0 respectively for matter fields in the 5, 10 and 5H multiplets, and qY
is the usual SM hypercharge (i.e.Y (ER) = 1). Moreover, for the case of the Higgs doublets
the replacement ÑY → 5

3
√

2
NY should be also made in this expression.

If the fluxes are approximately constant over the 4-cycle S we can perform the
integral over the normalized wave functions, getting

(mij)2 =
M2δij

2

(
1− 1

2m2

∣∣∣ηM̃ − qY ÑY

∣∣∣) (4.139)

where we have expressed G in terms of the gaugino mass M , see eq. (4.22).

The possible phenomenological relevance of the magnetic flux contributions depend
on the size of the fluxes. A naive estimate shows that these corrections are potentially
important. Indeed, flux quantization imply

∫
Σ2
〈F2〉 ' 2π, so that we expect M̃ ' NY '

ÑY ' (2π)/Vol
1/2
S . On the other hand we know that αG ' 1/(M4

sVolS) ' 1/24, so that
flux contributions are expected to be of order ∼ 0.2M2

s .

We can extract some additional information on the structure and size of the fluxes
from other phenomenological considerations. Indeed, magnetic fluxes have also been shown
to play an important role in the computation of Yukawa couplings in local F-theory mod-
els. In [42] it was found an expression relating ratios of second and third generation
quark/lepton masses to local fluxes in an F-theory SO(12) setting,

mµ/mτ

ms/mb
=

(
(M̃ + 1

2ÑY )(M̃ + ÑY )

(M̃ − 1
3ÑY )(M̃ + 1

6ÑY )

)1/2

(4.140)
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Sector Chiral mult. SU(3)× SU(2) qY qp
a+

1 DR 3(3̄,1) 1
3 M̃ − 1

3ÑY

a+
2 L 3(1,2) −1

2 M̃ + 1
2ÑY

b+1 UR 3(3̄,1) −2
3 −M̃ + 2

3ÑY

b+2 QL 3(3,2) 1
6 −M̃ − 1

6ÑY

b+3 ER 3(1,1) 1 −M̃ − ÑY

Sector Chiral mult. SU(3)× SU(2) qY qs
c+

1 Dd (3̄,1) 1
3 0

c+
2 Hd (1,2) −1

2
5
6NY

Table 4.2: SO(12) chiral spectrum.

This expression is independent of the hierarchical (non-perturbative) origin of Yukawa
couplings and is based on the fact that holomorphic Yukawas must respect the SU(5)
gauge symmetry, even after flux-breaking to the SM gauge group. The difference in
Yukawas of charged leptons τ, µ and b, s quarks originates exclusively from the differ-
ent (hypercharge-dependent) fluxes present at the matter curves, which appear through
wavefunction normalisation. Eq. (4.140) applies at the unification scale. Including the RG

running and uncertainties one finds agreement with low-energy data for
mµ/mτ
ms/mb

= 3.3± 1

at the GUT scale, therefore implying ÑY /M̃ = 1.2− 2.4 [42].

In order to see the implications of this relation on the structure of soft terms, let us
demand without loss of generality that the local zero modes arise from the sectors a+, b+

and c+. In terms of the local flux densities, that requires

− M̃ − qY ÑY < 0 < M̃ − qY ÑY and NY > 0 (4.141)

for every possible value of the hypercharge qY . Eq. (4.139) then implies a hierarchy of soft
scalar masses for each generation

m2
E < m2

L < m2
Q < m2

D < m2
U , (4.142)

at the unification scale. This non-degenerate structure is different from those induced by
the RG running or D-terms in the MSSM, and may have interesting phenomenological
consequences. Moreover, the average scalar squared mass for fields in the 5-plet and
10-plet of each generation, m2

0, is independent of the hypercharge flux,

m2
0 =

1

5

(
3m2

D + 2m2
L

)
=

1

10

(
6m2

Q + 3m2
U +m2

E

)
=

M2

2

(
1− M̃

2

)
(4.143)

where fluxes are written in units of m2. Thus, we can write soft masses for the 5-plet, the
10-plet and the Higgs Hd respectively as

m2
5̄ = m2

0 +
qY
4
ÑYM

2 (4.144)

m2
10 = m2

0 −
qY
4
ÑYM

2

m2
Hd

= m2
0 +

M2

2

(
M̃

2
− 5

6
√

2
|qYNY |

)
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These equations neatly show the linear dependence of the soft masses on the hypercharge
fluxes.

In [42] it was also shown that certain choices of the magnetic fluxes lead to hb/hτ
Yukawa ratios that are consistent with the experimentally observed values, for example,
M̃ ' 0.3, ÑY ' 0.4 and NY ' 0.6 in units of m2. With the above expressions, such values
lead to the following pattern of soft masses at the unification scale

m2(Q,U,D,L,E,Hd) =
M2

2
(0.82, 0.98, 0.92, 0.75, 0.65, 0.82). (4.145)

Thus, we observe that squark squared masses and slepton and Higgs squared masses
become respectively 10 − 20% and 25 − 35% smaller than the hypercharge-uncorrected
value. Note however that the precise results depend on the particular values for the
fluxes, and there are other flux choices also leading to Yukawa couplings consistent with
experimental constraints. It would we interesting to do a full scan over flux parameters
giving consistent Yukawa results to see their impact on the obtained soft masses.

It is interesting to note how in this scheme the fermion mass spectrum gives inform-
ation on the structure of sfermion masses, whereas in the standard context of supersym-
metric field theory these would be independent quantities. We have not studied in detail
the phenomenology of a MSSM model subject to a hierarchy of soft scalar masses of the
form (4.142), but we note that a particularly interesting feature is that in such a scheme
the stau has the smallest soft mass (after taking into account the running of the gauge
and Yukawa couplings) and may easily be the next-to-lightest SUSY particle (NLSP).
This in particular might be relevant for having the appropriate amount of neutralino dark
matter through stau-neutralino coannihilation. It would be interesting to perform a RGE
analysis and study the generation of EW radiative symmetry breaking in a model with
this structure, including this new hypercharge degree of freedom. This would correspond
to an extension of the work in [58,64,65].

We now turn to describe the effect of magnetic fluxes on the trilinear couplings, in
the context of this local SO(12) F-theory setting. As we discussed in section 4.1.2.3, the
leading effect of the magnetization results from the modification of the Φ − A mixing.
Since by supersymmetry this modification is the same for the scalar and auxiliary fields,
we can factorize the correction induced by the fluxes in the scalar potential (see eq. (4.86)).
Consequently, both scalar masses and trilinear couplings receive the same correction, that
we have already derived in eqs. (4.135)-(4.137). After summing over the three matter
curves that are involved in the coupling, the soft trilinear coupling takes the form

A = −M
2

(
3− |q

ap
p |

2m2
− |q

bq
p |

2m2
− |qcrs |

2
√

2m2

)
(4.146)

where the parameters qp and qs are given in table 4.2 for the relevant sectors of the theory
(see also table 2 in [42] for the complete spectrum, including the non-normalizable modes).
Requiring the flux densities to satisfy eq. (4.141) is equivalent to imposing qa

+

p > 0, qb
+

p < 0

and qc
+

s > 0. Thus, making use of table 4.2 in eq. (4.146), we can recast the down- and
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lepton-type trilinear couplings as

Ad = −M
2

(
3− M̃ +

ÑY

12
− 5NY

12
√

2

)
(4.147)

Al = −M
2

(
3− M̃ − 3ÑY

4
− 5NY

12
√

2

)

where fluxes have been expressed in units of m2.

A more complicate issue is that of the induced B-terms. Indeed, in these local F-
theory SO(12) and E6 settings the Higgs fields Hu and Hd are chiral and live on different
matter curves. A µ-term would have to be generated by some e.g. non-perturbative effect.
The final physical µ-term is related to the integral of the two wavefunctions and is only
non-vanishing if the Hu and Hd matter curves overlap. It would be interesting to study a
local configuration in which, in addition, the two Higgs matter curves intersect at a point
with SU(7) enhancement, leading to an effective µ-term from the coupling to a singlet, as
suggested e.g. in [31].

4.1.4.2. Soft terms at E6 enhancement points

In the above subsection we have considered F-theory SU(5) unification with an
underlying SO(12) gauge symmetry enhancement at the point where the internal wave-
functions localize. Such configuration is incomplete in that up-type 10×10×5H Yukawa
couplings are not generated, as those require an E6 gauge symmetry enhancement [30]. In
order to reproduce the desired rank-one structure of Yukawas, one must take into account
non-trivial 7-brane monodromies, which may be conveniently described in terms of T-
brane configurations [66]. From the point of view of the effective 8d theory, this amounts
to considering non-Abelian profiles for the transverse scalar [37]. This approach was in
particular used in [43] to perform the explicit computation of up-type Yukawa couplings
in local F-theory SU(5) GUTs.

In this subsection we address the computation of soft masses for fields localized at a
10 matter curve near a point of E6 gauge symmetry enhancement. The novel feature with
respect to the SO(12) case discussed above is that the profile of the transverse scalar 〈Φ〉
does not necessarily commute with other elements of the background and, in particular,
[〈Φ〉, 〈Φ̄〉] 6= 0. Thus, in order to satisfy the D-term condition,

ω ∧ F +
1

2
[Φ, Φ̄] = 0 (4.148)

with ω the Kähler form, we must turn on a non-primitive background flux 〈FNP〉. This
non-trivial background can be parametrized in terms of a real function f such that

[〈Φ〉, 〈Φ̄〉] = m̂2(e2f − m̂2|x|2e−2f )P , 〈FNP〉 = −i∂∂̄fP (4.149)

where P is some combination of the Cartan generators of E6 and x a local coordinate of
the 4-cycle S. At short distances the function f can be expanded as

f(r) = log c + c2m̂2|x|2 + m̂4|x|4
(
c4

2
− 1

4c2

)
+ . . . (4.150)
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Hence, we can parametrize the solution in terms of a real dimensionless constant c that
encodes the details of the global embedding of the 7-brane local model.

Near the Yukawa point we can approximate f(r) = log c+ c2m̂2|x|2 + . . . such that
the flux FNP is constant and we can compute analytically the wavefunctions around that
point. The two 10 matter curves, although coming from the same smooth curve Σ10, seem
locally different. They have a different local zero mode associated to each curve, given by

ψj
10+ =

1

||~v10||

 iλ10
m̂2

− iλ10ξ10
m̂2

0

 ef/2χj10 , ψj
10−

=
1

||~v10||

0
0
1

 e−f/2χj10 (4.151)

where ||~v10|| is the normalization factor of the wavefunction across the entire Σ10 matter
curve and λ10 is the negative root of the equation

m̂4(λ10 − qp) + λ10c
2
(
c2m̂2(qp − λ10)− λ2

10 + q2
p + q2

s

)
= 0 (4.152)

and ξ10 = −qs/(λ10 − qp). The scalar wavefunction χj10 takes the same form than in the
SO(12) model above. Indeed the only difference with respect to the above local model
resides in the value of λ10 due to the presence of the parameter c in eq. (4.152). Solving
that equation for small magnetic fluxes qp, qs we find that to first order in the fluxes λ10

is given by

λ10 = −m̂2g1(c)− g2(c)
qp
2

+ . . . = −m̂
2

2c

(
c3 +

√
4 + c6

)
− 1

2

(
1 +

c3

√
4 + c6

)
qp + . . .

= −m̂2

(
1

c
+
c2

2
+ . . .

)
−
(

1 +
c3

2
+ . . .

)
qp
2

+ . . . (4.153)

where in the last line we have expanded for small c. Thus, to linear order λ10 ' − m̂2

c −
qp
2

and the wavefunctions (4.151) are well approximated by

ψj
10+ '

1

||~v10||

−i (1 +
qpc
2m̂2

)
i qsc
m̂2

0

 1√
c
χj10 , ψj

10−
' 1

||~v10||

0
0
1

 1√
c
χj10 (4.154)

To first order in the fluxes, the normalization factor reads

||~v10||−2 =
1

2

(
1− qpc

2m̂2
+ . . .

)
(4.155)

Soft masses for fields living in the 10 matter curve are (for constant fluxes) given by

m2
10 = |M |2

∫
S
dvolS |Φ10|2 = |M |2

∫
S
dvolS

(
|Φ10+ |2 + |Φ10− |2

)
(4.156)

where M is the gaugino mass and Φ10± is the lower entry of the vectors (4.154), including
the normalization factor. Therefore, we obtain the following result for the soft masses

m2
10 = |M |2 1

1 + c2g2
1

(
1− c2g1g2

1 + c2g2
1

qp
m̂2

+ . . .

)
' |M |

2

2

(
1− qpc

2m̂2

)
. (4.157)

where we have kept only the leading contribution of the primitive fluxes and taken the
limit for small c in the last step. Note that the magnetic flux correction depends now on
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the parameter c, that parametrizes the non-primitive flux. Moreover, note that the limit
c → 0 does not correspond to the result that we obtained in the previous section for the
curve Σb in the SO(12) case. This is in fact something expected. Indeed, looking at the
commutator in eq. (4.149)

[〈Φ〉, 〈Φ̄〉] = m̂2

(
c2 − m̂2|x|2 1

c2

)
+ . . . (4.158)

we observe that there is not a continuous way to make [〈Φ〉, 〈Φ̄〉]→ 0 by turning off c, as
it diverges for c → 0. Hence, this T-brane configuration gives rise to a new qualitative
behaviour that is encoded in the non-trivial dependence of the soft masses on c. From a
phenomenological point of view though this parameter can be seen just as a redefinition
of the flux density that modifies the soft masses. In particular, the hierarchy between
the masses for the fields living in the 5̄ curve or the 10 curve depends on the value of
c. Interestingly, extending the solution for f(r) to all the real axis and requiring absence
of poles leads to c ∼ 0.73. If this is the case, there is only a small suppression on the
flux correction and the scalars living in the 10 matter curve are only slightly heavier than
those in the 5̄ curve.

Let us conclude with the soft mass corresponding to Hu. In this setup the Higgs
sector is chiral and both Higgses Hd and Hu live in different matter curves, 5̄ and 5
respectively. In the previous section we studied the soft mass for Hd near a point of
SO(12) gauge symmetry enhancement. However, in order to allow for an up-type Yukawa
coupling we have seen that we need to go to a point of E6 gauge symmetry enhancement.
Fortunately, unlike the 10 curve, the 5 curve does not feel the presence of the non-primitive
flux 〈FNP 〉 so the wavefunctions are the same than those obtained in the previous section
for the 5̄ curve but with the opposite chirality. We can borrow then the result for the soft
mass obtaining

m2
Hu =

|M |2

2

(
1− |qs|

2
√

2m2

)
=
|M |2

2

(
1− 5|NY |

12
√

2m2

)
. (4.159)

We can see that the soft mass does not depend on the hypercharge sign, so in this setup
the soft Higgs masses are universal whenever they feel the same amount of hypercharge
flux density NY . This is a good approximation since both curves 5 and 5̄ can not be
very far away from each other in order to reproduce the known flavor structure and CKM
matrix of the SM. It would be interesting though to apply these results to a more realistic
F-theory compactification with E7 or E8 enhancement in which we could consider both
Yukawa points and all the matter curves simultaneously.

4.2. String origin of Flavor violation

One of the most relevant aspects of low-energy supersymmetry is the potentially
large contribution of supersymmetric particles to processes that involve Flavor Changing

Neutral Currents (FCNC’s). These include the K0 − K
0

oscillation and CP-violating
parameters ∆mK and εK , as well as lepton number violating transitions like µ→ eγ and
other hadronic and leptonic processes involving heavier generations. All these transitions
may be induced by SUSY particles in the presence of flavor changing SUSY-breaking soft
parameters like off-diagonal scalar masses m̃ij , i 6= j [67–71] . These flavor violating
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contributions may be too large and violate experimental bounds unless the squark masses
of the first two generations are almost degenerated and off-diagonal masses are much
suppressed. Otherwise the SUSY spectrum should be very heavy, effectively decoupling
from these low-energy transitions.

The presence or not of flavor violating couplings depends, of course, on what the
underlying source of SUSY-breaking is and on how it is transmitted to the visible sector.
In the context of gravity mediation, off-diagonal flavor violating scalar masses may appear
e.g. if the Kähler metric of the MSSM quark/lepton superfields and their derivatives on
SUSY-breaking scalars do not align in flavor space, see e.g. [57] and references therein.
Other schemes like gauge or anomaly mediation which transmit SUSY-breaking in a flavor
universal manner were put forward in order to avoid the presence of too large flavor
violating transitions.

The question that we want to address in this section is whether in the more funda-
mental setting of String Theory one can obtain information about the presence of flavor
violating SUSY-breaking soft terms. This is a question which has been controversial and
somewhat author-dependent in the last two decades (for some discussions on this issue see
e.g. [63,72–75].) The reason being that it is a general question which is difficult to answer
without both a scheme giving rise to a MSSM compactification as well as a tractable source
of SUSY-breaking. In this theis we have combined for the first time these two ingredients
(closed string fluxes and local wavefunctions for chiral matter fields). Our results then
give a microscopic derivation of the flux-induced soft terms which allow to deal with issues
like flavor non-universalities.

Although we concentrate on the general setting of type IIB orientifold/F-theory
local SU(5) compactifications, the idea is quite general and can be applied to large classes
of type IIA, type IIB and heterotic compactifications; and more generally, to theories
with extra dimensions in which chirality is induced by magnetic fluxes along the internal
dimensions. In all such theories with the gauge and matter degrees of freedom localized
within a compact 2n-dimensional manifold S in the extra dimensions, SUSY-breaking
masses arise from terms of the general form

Φi(x)Φj(x)∗
∫
S
dnz dnz̄ C(z, z̄) φ

(0)
i (z, z̄)φ

(0)
j (z, z̄)∗ (4.160)

where z denote collectively the complex coordinates of S. The indices i, j = 1, 2, 3 are

SM generation indices and φ
(0)
i are zero mode wavefunctions corresponding to 4d SM

matter fields Φi. The function C(z, z̄) is a background factor, that in the case of String
Theory depends on the internal geometry and the closed and open string fluxes. In general
the internal wavefunctions of the three SM generations depend differently on the compact
dimensions. Taking an orthonormal basis for the zero modes, the resulting 4d mass matrix
is diagonal and degenerate when C(z, z̄) is constant over S. On the other hand, in the
most general situation on which C(z, z̄) is not constant, the mass matrix is generation
dependent and non-diagonal.

From now on we will focus on the local IIB/F-theory SU(5) models of section 3.3,
with the aim of being more specific for the general expression (4.160) and estimate the
bounds that FCNC currents impose over the size of the soft terms.
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4.2.1. Flavor non-diagonal soft terms

Before turning to compute the flavor non-universailities coming from (4.160) let us
introduce the mixing parameters which allow a direct comparison of our results with the
experimental bounds coming from FCNC.

In the leptonic sector, the strongest flavor violating constraints come from limits
for the branching ratio for µ → eγ. From the hadronic constraints, the strongest limits

on flavor dependent soft terms come from the kaon system, in particular from K0 −K0

oscillations and CP violation. The relevant quantities are the real and imaginary parts of
the off-diagonal d̃− s̃ squark and ẽ− µ̃ slepton soft masses m̃2

12. In both the leptonic and
hadronic sectors, to directly compare with the experimental constraints it is customary to
work in a fermion basis in which the fermion mass matrix is diagonal. In particular, for
the kaon system one has

m̃2
ij =

(
Udm

2
soft U

†
d

)
ij
, i, j = 1, 2, 3 (4.161)

where m2
soft is the original squark mass matrix before quark diagonalisation and Ud is

the unitary matrix that diagonalises the down-quark mass matrix. It is also customary
to work in the mass insertion approximation [76] where we expand on the ratio of the
off-diagonal terms over the averaged squark mass m̃2

q̃ ,

δ̃d
ij =

m̃2
ij

m̃2
q̃

. (4.162)

There are in fact four 3×3 squark mass matrices (4.161), depending on the particular
chirality of the squarks, namely m2

RR, m
2
LL, m

2
LR and m2

RL. In the scheme for local SU(5)
GUT’s that we have described in the previous section, m2

LR and m2
RL are much suppressed

for the two lightest generations, which are the ones relevant for the kaon system. This
is because left- and right-handed squarks live in different matter curves and their mass
terms are proportional to the Yukawa couplings, being those negligible for the first two
generations. On the other handm2

LL andm2
RR have both an analogous structure so that our

results below apply to m2
RR or m2

LL irrespectively. Note that the down-quark mass matrix
is in general not symmetric and it is actually diagonalized by a bi-unitary transformation
involving matrices UR

d and UL
d simultaneously. Thus in eq. (4.161) we should actually take

Ud = UL
d for m2

LL and Ud = UR
d for m2

RR.

Focusing on the first two generations and taking Ud real for simplicity, we can
parametrize Ud by an orthogonal 2× 2 matrix

Ud =

(
cos θ sin θ
− sin θ cos θ

)
(4.163)

From eq. (4.161) we obtain

δ̃d
12 =

2m2
12 cos 2θ + (m2

22 −m2
11) sin 2θ

2m̃2
q̃

. (4.164)

Barring accidental cancellations, the value of δ̃d12 is therefore controlled by the ratios
δd

12 ≡ m2
12/m̃

2
q̃ and ρd

12 ≡ (m2
22−m2

11)/2m̃2
q̃ . Totally analogous formulae, with the obvious

changes, may be written for the slepton mass matrices relevant for the µ→ eγ decay.
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In the next two subsections we evaluate the size of δ̃12 in local SU(5) GUTs by
making use of the expression (4.169) for the soft scalar masses that we have derived
microscopically in the previous section. Note however that such expression is only valid
at the unification scale MGUT. To compare with the low-energy data we therefore have
to take into account the renormalisation group (RG) running from the unification scale
down to the electroweak scale. Since the Yukawa couplings of the first two generations are
negligible, it is only the SUSY-gauge couplings that contribute to this running. Integrating
the RG equations we find [77]

m2(1st, 2ndgen.) = m2
0 + g(t)M2

1/2 (4.165)

where we are assuming universal gaugino and scalar masses, M1/2 and m0, at the scale
MGUT.6 We have defined

g(t) = 2
3∑

k=1

Ckbk

(
1− 1

(1 + βkt)2

)
(4.166)

where Ck is the quadratic Casimir corresponding to the particular scalar field (namely,

Ck = N2−1
2N , k = 2, 3, for the fundamental of SU(N)k and C1 = Y 2 for U(1)Y ) and the

β-functions are

βk =
αk(0)bk

4π
. (4.167)

For the evaluation of the β-functions we consider a MSSM spectrum, which yields (b1, b2, b3) =
(11, 1,−3) with α3(0) = α2(0) = 5

3α1(0) = αGUT ' 1
24 the gauge unification constants.

Finally, t = 2 log (MGUT/MSS) where MSS is the scale of supersymmetry-breaking.

In the case of squarks, the leading contribution to the running (4.165) comes from
its SUSY-QCD part and thus the averaged squark mass m̃q̃ has a substantial low-energy
running. On the other hand, due to the universality of gauge couplings both (m2

22 −m2
11)

and m2
12 have negligible low-energy running. This is important because it means that in

going from MGUT down to MSS, the ratio δ̃12 is diluted by a RG factor which is typically
of order

δ̃d
12 →

δ̃d
12

1 + g(t)ξ2
, ξ ≡

M1/2

m0
. (4.168)

For instance, for the type of 3-form fluxes with M2
1/2 = 2m2

0 that we have discussed in the

previous section, and taking MGUT ' 1016 GeV and MSS ' 2 TeV, we obtain g(t) ' 4.5
and therefore a suppression of order ' 1/10 for the ratio δ̃d

11 with respect to its value at
the unification scale. This RG dilution turns out to be important in comparing with the
low-energy data and, in particular, in evaluating the squark mass limits. On the other
hand for the case of sleptons the dilution is weaker and for the above parameters g(t) ' 0.5
so the suppression is only of order ' 1/2. This different dilution will eventually make the
slepton limits stronger than those coming from the kaon system.

In what follows we compute the flavor mixing induced by variations of closed and
open string fluxes. We consider these two cases separately since, as it will become clear
below, terms coming from the simultaneous variation of closed and open string fluxes are
either suppressed or contribute to transitions between the first and third families rather
than between the two lightest families.

6The effect of the non-universalities of the squark masses on the running can be safely neglected.
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4.2.2. Flavor mixing from non-constant string fluxes

In the derivation of the soft masses for chiral matter curves in section 4.1, the
closed string fluxes were assumed to be constant so that the integration over the internal
dimensions was trivial. However if the fluxes are non-constant, we have to take a step
back and recover the expression for the soft masses before the integration was done, which
yields

m2
ij =

gs
4Vol(S)

∫
S
d2zd2z̄

√
g4 |G|2

(
1−

∣∣∣∣Mm
∣∣∣∣)ψ+

i (ψ+
j )∗ (4.169)

where g4 is the determinant of the metric in S and Vol(S) =
∫
S d

2zd2z̄
√
g4. Kinetic terms

are diagonal and canonically normalized. We have used the internal wavefunctions for
matter chiral fields computed in eq.(4.60) and that we repeat here for the convenience of
the reader7,

Ψ
(0)

5̄i
(z, z̄) =

1√
2λ(λ−M)

M − λ0
m

ψ+
i (z, z̄) , i = 1, . . . , r (4.170)

which are normalizable for M < 0 and where the functions ψ+
i are defined as

ψ+
i (z, z̄) ≡ Nifi(y) exp

[
−qλ

2
|x|2 +

qM

2
|y|2
]

(4.171)

Here Ni is a normalization constant, λ ≡
√
M2 +m2, q =

√
3/5 is the U(1) charge

normalization and fi(y) are holomorphic functions of y. We have also introduced an index
i to label the number of families. The degeneracy r and the holomorphic functions fi(y)
can only be determined in terms of the global topology of S and the gauge bundle. We
take here r = 3, corresponding to the three families of the Standard Model. In that case
we can take a basis such that the expansion of the holomorphic functions fi(y) around the
origin reads

fi(y) = y3−i +O
(
y4
)
, i = 1, 2, 3 (4.172)

In particular wavefunctions of different families localize in slightly different regions of the
4-cycle S due to their different holomorphic pieces fi(y).

Due to the Gaussian localization in both x and y the replacement S ∼ C2 is a suitable
approximation when Vol(S) is large in string units. Normalizing the wavefunctions in C2

we get

Ni =

√
qλ|qM |

4−i
2

π
√

(3− i)!
. (4.173)

For constant densities of magnetization M(z, z̄) = M0 and 3-form flux G(z, z̄) = G0

the integral in (4.169) becomes trivial and the standard supergravity formula for the soft
scalar masses in intersecting magnetized 7-branes is recovered [58,78,79,90]

m2
ij =

gs
4
δij |G0|2

(
1−

∣∣∣∣M0

m

∣∣∣∣) . (4.174)

This mass matrix is diagonal and flavor universal, so that there are not new FCNC’s
induced beyond those of the Standard Model. However, in general there is no reason for the

7Notice the change of notation on the worldvolume flux, F− ≡M .
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flux densities M(z, z̄) and G(z, z̄) to be constant over the GUT 4-cycle S. In that case non-
universal soft masses are expected to arise from eq. (4.169). Morally, as different families
of sfermions are localized in slightly different regions of S because of their holomorphic
factors, each family feels a different density of 3-form flux and/or magnetization and
therefore gets different soft masses, see figure 4.3.

Figure 4.3: The 4-cycle S embedded in the ambient 3-fold B3. The density of three-form flux G3

(black arrows) and magnetization F2 (red arrows) vary over S. Since wavefunctions of different
families are localized in different regions of the 5̄M matter curve, each family feels a different
density of G3 and F2, leading to non-universal soft masses in the 4-dimensional effective theory.

As we have already commented, such (non-constant) flux densities can arise from
the backreaction of distant sources or non-perturbative effects. The local background
near the GUT D7-branes can be understood in that case as originating from massive open
string modes that propagate between the distant sources and the stack of GUT branes,
and eq. (4.169) computes the thresholds to the sfermion mass matrix that result from
integrating out those heavy modes, in the same spirit than the supergravity computation
of gauge thresholds [62,80].

In this section we make use of eq. (4.169) to estimate the size of non-universal soft
masses with non-constant magnetization and 3-form flux and compare the resulting FCNC
transitions with the current experimental bounds.
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4.2.2.1. Non-constant closed string fluxes

For concreteness we consider the 5̄ matter curve x = 0 introduced above, with a
non-constant density of closed string 3-form flux G(z, z̄) and a constant density of magnet-
ization M0 along the 4-cycle S. The soft scalar masses for the right-handed down squarks
and the left-handed sleptons that are contained in the 5̄ matter curve can be computed
microscopically by means of eq. (4.169). Due to the Gaussian localization of the wave-
functions ψ+

i around the point x = y = 0, the dominant contribution to the integral in
(4.169) comes from the background near the localization point. It is therefore convenient
to perform an expansion of the closed string flux density in powers of the local coordinates
x, y of the 4-cycle

|G(z, z̄)|2 = |G0|2
(
1 + G∗y y +Gy ȳ + Gyȳ |y|2 + . . .

)
(4.175)

where G0, Gy, here defined, are complex constants and Gyȳ is real. We have only displayed
terms of the expansion that contribute to the flavor dependence of the two lightest families.
In particular, we have not shown the expansion in x since it has no consequences for the
flavor dependence.

For sufficiently large sizes of S we can extend the domain of integration to infinity,
so that (4.169) reads

m2
ij =

gsNiNj

4

∫
C2

d2xd2y
[
|Ĝ0|2

(
1 + G∗yy +Gyȳ + Gyȳ|y|2 + . . .

)
y3−iȳ3−j e−qλ|x|

2−q|M0||y|2
]

(4.176)

where we have defined

|Ĝ0|2 ≡ |G0|2
(

1−
∣∣∣∣M0

m

∣∣∣∣) (4.177)

Let us compute first the diagonal terms i = j. Linear terms on x, y vanish upon
integration, so that the only non-vanishing contributions are

m2
ii =

gsNiNj

4

∫ ∞
0

2πx dx

∫ ∞
0

2πy dy |Ĝ0|2
(
1 +Gyȳ|y|2

)
e−qλ|x|

2−q|M0||y|2 |y|2(3−i)

=
gs
4
|Ĝ0|2

(
1 +Gyȳ

4− i
q|M0|

)
. (4.178)

Similarly, for the off-diagonal ∆F = 1 soft masses we have

m2
ij =

gsNiNj

4

∫ ∞
0

2πx dx

∫ ∞
0

2πy dy |Ĝ0|2
(
G∗yy +Gyȳ

)
e−qλ|x|

2−q|M0||y|2y3−iȳ3−j

=
gsk

4

|Ĝ0|2Gy√
q|M0|

, where k ≡
{ √

2 for i = 1, j = 2
1 for i = 2, j = 3

(4.179)

Finally, the off-diagonal ∆F = 2 mass term m2
13 is proportional to higher derivatives of

the 3-form flux and is therefore subleading with respect to m2
12 and m2

23.

Summing up, the structure of the soft mass matrix (4.176) is given bym2
q̃ + δm2

1 m2
12 m2

13

(m2
12)∗ m2

q̃ + δm2
2 m2

23

(m2
13)∗ (m2

23)∗ m2
q̃ + δm2

3

 (4.180)
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where m2
q̃ is the universal soft mass for constant density of fluxes, eq. (4.174), and the

flavor violating terms have the following hierarchical structure

m2
q̃ > m2

12, m
2
23 > δm2

i , m
2
13 (4.181)

Making use of eqs. (4.178) and (4.179) we can estimate the size of the non-universalities
for the first two families in a generic model. Indeed, flux quantization gives us an estimate
of the dependence of the flux densities on the volumes of S and B3∫

Σi

F2 = 2πni ⇒ M0 ∼
2πn

Vol(S)1/2
(4.182)

1

2πα′

∫
γj

G3 = 2πfj ⇒ G0 ∼
4π2α′f

Vol(B3)1/2

where Σi ∈ H2(S) and γj ∈ H3(B3) denote the 2-cycles and 3-cycles that support the
open and closed string fluxes, ni and fj are integer numbers, and the parameter n (f)
denote complex combinations of the various ni (fj) and the complex structure moduli of
B3. In the same vein, the derivatives of G(z, z̄) scale as

Gy ∼
2 cy,G

Vol(B3)1/6
, Gyȳ ∼

4 cyȳ,G

Vol(B3)1/3
, (4.183)

where cy,G (cyȳ,G) is an adimensional complex (real) constant.

A comment on the scale of SUSY-breaking is in order here. Defining the scale of
SUSY-breaking as MSS ' mq̃, from the above expressions we have

MSS ∼ 2π2α′|f |
(

gs
Vol(B3)

)1/2

∼
|f |M2

GUT

2πMPl
√
αGUT

(4.184)

Hence, for |f | ' 1 and standard unification values MGUT ' 1016 GeV and α−1
GUT ' 24

we would obtain MSS ' 6.5× 1012 GeV. However, it should be noted that the parameter
f in general receives contributions from a large number of 3-cycles (c.f. eq. (4.182)), so
that large cancellations can take place that lead to |f | � 1 and lower the scale of SUSY-
breaking. This is similar to what occurs for the small superpotential parameter W0 in
KKLT vacua [8] and more generally for the cosmological constant in flux compactifications
[81–84]. In this work we therefore take |f | (and thus MSS) to be a tunable parameter,
perhaps selected on anthropic grounds (see section 4.3). Nevertheless, the reader may note
that the dependence on f of the flavor mixing parameters δij and ρij cancels, and thus the
limits that we obtain below for the sfermion masses do not actually depend on the tuning
of f .

Making use of the scalings (4.182) and (4.183) we can estimate the dependence of the
non-universal soft scalar masses on the local expansion parameter % defined in eq. (3.36).
Indeed, from eqs. (4.178) and (4.179) we observe that (δm2

22 − δm2
11) is of order O

(
%2
)

while the off-diagonal mass m2
12 is of order O (%) and is thus dominant. For the two lightest

families we have

δ̃d
12 =

m̃2
12

m̃2
q̃

=

√
2Gy√
q|M0|

∼
2 cy,G√
π|n|

(
5

3

)1/4

% (4.185)

In particular, when % � 1 the closed string flux varies very little over S and the flavor
dependence is suppressed, as expected. In terms of physical scales

δ̃d
12 =

m̃2
12

m̃2
q̃

∼ 1.4×
cy,G√
|n|

(
MGUT

MPl αGUT

)1/3

. (4.186)
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Figure 4.4: Left: Constraints on squark masses m̃q̃ vs the unification scale MGUT coming
from the kaon mass difference ∆mK induced by non-constant densities of closed string
fluxes along the GUT 4-cycle. Right: Analogous constraints coming from the CP violation
parameter εK .

The same estimate applies also to the off-diagonal flavor transitions for sleptons,
parametrized by δ̃l

12. Note however that the effective local magnetization parameter n
is expected to differ for sleptons and squarks, as they are differently charged under the
hypercharge flux that breaks SU(5) down to the SM gauge group [31–33]. This effect
is also responsible for the breaking of the degeneracy between down-quark and lepton
Yukawa couplings [35]. Making use of the numerical estimates of [35] for the local density
of hypercharge flux one may check that the effect of the latter on the off-diagonal soft
masses is small and, within the model-dependent uncertainties of the above estimation,
we can take δ̃d

12 ∼ δ̃l
12 at the unification scale. Thus, the difference in the limits below for

sleptons and squarks comes mainly from their different running under the RG. We will
further comment on these differences in section 4.2.3.

Note from eq. (4.186) that off-diagonal soft masses turn out to be parametrically
suppressed by the ratio between the unification and the Planck scales. In a standard
unification scheme with MGUT ' 1016 GeV this suppression is only of order ∼ 0.1 and
the actual value at MGUT therefore depends substantially on the particular details of the
magnetization parameter n and the closed string flux variation parameter cy,G, allowing
for relatively large amounts of non-universal soft masses at the unification scale. On the
other hand, as we have discussed in the beginning of this section, at low-energies there
is an extra suppression factor (1 + g(t)ξ2)−1 that comes from the RG running between
the unification scale and the SUSY-breaking scale MSS and that dilutes the non-universal
terms substantially in the case of squarks and more weakly in the case of sleptons.

Measurements of the kaon mass difference ∆mK put constraints on the real part of
the mixing δ̃d

12 at the low-energy scale. The current experimental bounds require [85]

∣∣∣Re δ̃d
12

∣∣∣ =
m̃2

12

m̃2
q̃

< 4.2× 10−2 m̃q̃

350 GeV
(4.187)

where m̃q̃ is the averaged squark mass at the scale MSS. From eq. (4.186) we then get a
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lower bound on the averaged squark mass

m̃q̃ &
|Re cy,G|

(1 + g(t)ξ2)
√
|n|
×
(
MGUT

MPl

)1/3

× 35 TeV (4.188)

where we have taken α−1
GUT = 24. Note that for typical values MGUT ' 1016 GeV,

n ' cy,G ' 1 and ξ2 ' 2, this expression leads to m̃q̃ & 350 GeV, which is in the range
already excluded by direct LHC searches. Thus ∆mK does not provide strong bounds
on the non-universalities induced by non-constant densities of closed string fluxes. This
is also shown in figure 4.4 (left) where we have represented the low-energy bound on the
averaged squark mass as a function of the unification scale. The bound becomes weaker
as the unification scale is lowered, due to the decreasing of the flux variation over S.

The situation becomes much tighter if we consider the experimental constraints that
come from the measured CP violation parameter εK . These yield [85]∣∣∣Im δ̃d

12

∣∣∣ < 1.8× 10−3 m̃q̃

350 GeV
. (4.189)

The local density of closed string flux G(z, z̄) is complex and so is the parameter cy,G. We
therefore expect the real and imaginary parts of m̃12 to be generically of the same order.
In that case, the strong constraints coming from εK translate into a more stringent limit
for the averaged squark mass

m̃q̃ &
|Im cy,G|

(1 + g(t)ξ2)
√
|n|
×
(
MGUT

MPl

)1/3

× 8.1× 102 TeV (4.190)

A standard unification scale MGUT ' 1016 GeV and typical values n ' cy,G ' 1 and ξ2 = 2
imply an averaged squark mass of at least m̃q̃ & 8 TeV, well above the current bounds
coming from direct searches at the LHC. Thus, while we have seen that the constraint on
the real part of m̃2

12 is not very relevant in this context, the constraint on the imaginary
part turns out to be much stronger. We have depicted the bound on the averaged squark
mass versus the unification scale in figure 4.4 (right).

The limits coming from the (yet unmeasured) µ → eγ decay turn out to be quite
strong. Using results from [86] we can obtain an estimate based on recent experimental
data [87]

|δ̃l
12| < 4× 10−4

(
m̃l̃

500 GeV

)2

. (4.191)

From the leptonic analogue of eq. (4.186) we then obtain

m̃l̃ &

√
|cy,G|

(1 + g(t)ξ2)|n|1/2
×
(
MGUT

MPl

)1/6

× 51 TeV . (4.192)

If MGUT ' 1016 GeV, ξ2 = 2 and cy,G ' n ' 1 then m̃l̃ & 11 TeV. This is a remark-
ably strong bound which, of course, may be substantially weakened by playing with the
model-dependent parameters, but it suggests that large masses for sleptons are generically
required.
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4.2.2.2. Non-constant open string fluxes

We now study the non-universalities that arise from non-constant local densities of
open string fluxes. For that aim, we consider the same 5̄ matter curve of the previous
sections, in this case with a constant density of closed string 3-form flux G0 and a non-
constant density of magnetization M(z, z̄) along the 4-cycle S. In order to evaluate (4.169)
we proceed in the same way as we did for non-constant densities of closed string fluxes.
Thus, we expand the density of magnetization around the point x = y = 0 where the
wavefunctions (4.56) localize

M(z, z̄) = M0

(
1 +M∗y y +Myȳ +Myȳ|y|2 + . . .

)
(4.193)

We have not displayed the expansion on x since it plays no role in the generation of
non-universalities, as it will become clear below.

In order to obtain the soft scalar mass matrix we must evaluate (4.169) on this
background, namely

m2
ij =

gs
4

∫
C2

d2xd2y|G0|2
[
1−

∣∣∣∣M0

m

∣∣∣∣ (1 +M∗y y +Myȳ +Myȳ|y|2 + . . .
)]
ψ+
i (ψ+

j )∗

(4.194)

Note that the local Gaussian wavefunctions introduced in section 4.1.2 were actually de-
rived for constant open string fluxes and are in principle not directly applicable to this
case. However, it was shown in [34] that the wavefunctions for non-constant open string
fluxes have the same Gaussian structure (4.61) multiplied by a polynomial expansion on
the local variables x, x̄, y and ȳ. Thus, to first order in the coordinate expansion the effect
of this factor is to contribute a further term, linear on y, on the integrand. This in practice
amounts to a redefinition of the coefficient My in (4.193). Therefore, in what follows My

represents an effective coefficient that includes not only the effect from the varying flux
density M(z, z̄) but also the correction from the modified wavefunction.

The integral (4.194) with the wavefunctions (4.171) is formally equivalent to (4.176),
so that we can borrow the results of the previous subsection to obtain

m2
q̃ =

gs
4
|G0|2

(
1−

∣∣∣∣M0

m

∣∣∣∣) , δm2
i =

gs
4
|G0|2

Myȳ

q|m|
(4− i) (4.195)

m2
12 =

gs
4
|G0|2

My

|m|

√
2|M0|
q

, m2
23 =

gs
4
|G0|2

My

|m|

√
|M0|
q

where we have organized the soft scalar mass matrix accordingly to eq. (4.180). To estimate
the size of the non-universalities we note in addition to eqs. (4.182) that the coefficients
of the magnetization expansion scale with the volumes as

My ∼
2 cy,F

Vol(S)1/4
, Myȳ ∼

4 cyȳ,F

Vol(S)1/2
, (4.196)

where cy,F and cyȳ,F are adimensional complex constants. Moreover, the parameter m in
the background for Φ, eq. (4.53), scales as (see e.g. [54])

m ' η

2πα′
(4.197)
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where η is a complex adimensional parameter related to the angle of the intersection
between the GUT branes and the extra U(1) D7-brane. Plugging these scalings into
eqs. (4.195) we obtain

δd
12 =

m2
12

m2
q̃

∼
8π3/2 cy,F |n|1/2

η

(
5

3

)1/4 α′

Vol(S)1/2
(4.198)

ρd
12 =

δm2
2 − δm2

1

2m2
q̃

∼ −
4π cyȳ,F

η

(
5

3

)1/2 α′

Vol(S)1/2

Thus, unlike the case of varying closed string fluxes, for a non-constant density of open
string flux along S, both δd

12 and ρd
12 are parametrically of the same order. Making use of

eq. (4.164) and expressing the result in terms of the physical scales we have that in the
basis where the quarks mass matrix is diagonal, δ̃d

12 reads

δ̃d
12 ∼

1

η

(
MGUT

Mst

)2 (
1.28 · cy,F

√
|n| cos 2θ − 0.41 · cyȳ,F sin 2θ

)
(4.199)

where Mst = α′−1/2 is the string scale.

These results show that there are potentially sizeable off-diagonal transitions, which
are parametrically suppressed by MGUT/Mst = (2αGUT/gs)

1/4. Barring fine-tunings, for
generic θ the second contribution in (4.199) is somewhat smaller than the first for n ≥ 1,
so that we use the first term for our estimation of squark limits. From the constraints
on ∆mK discussed in the previous subsection we obtain that the averaged squark mass is
bounded from below as

m̃q̃ &
1

1 + g(t)ξ2

√
|n|
gs

cy,F
η
× 3.1 TeV . (4.200)

In particular, for gs ' n ' cy,F ' η ' 1 and ξ2 = 2, we get m̃q̃ & 330 GeV, and as in the
closed string flux case, the constraints are weaker than the direct limits from LHC.

The bound for the imaginary part of δ̃d
12 coming from the CP violation parameter

εK is stronger and gives

m̃q̃ &
1

1 + g(t)ξ2

√
|n|
gs

cy,F
η
× 72 TeV . (4.201)

so that for gs ' n ' cy,F ' η ' 1 and ξ2 = 2 we get a lower bound m̃q̃ & 7.6 TeV for the
squarks, similar to the bound that arises for non-constant closed string flux densities.

We show in figure 4.5 the lower averaged squark mass bound from closed and open
string fluxes as a function of the magnetization parameter n, coming from both ∆mK and
εK . Combining closed and open string fluxes, squarks should be heavier than m̃q̃ & 8 TeV
to suppress sufficiently the contribution to CP violation in the kaon system.

It is also illuminating to look at the dependence of these bounds on the unification
scale. Note in particular that the ratio MGUT/Mst in eq. (4.199) can be fixed in terms
of gs and αGUT. Thus, for fixed gs and αGUT the non-universal corrections from the
magnetization do not have a direct dependence on the value of the unification scale.
Despite of this, an indirect dependence appears due to the renormalization of squark
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Figure 4.5: Bounds on the averaged squark mass due to non-constant closed and open flux densities along
the 4-cycle S if MGUT ' 1016 GeV. Left: bound coming from kaon mass mixing parameter ∆mK . Right:
bound coming from the kaon CP violation parameter εK .
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Figure 4.6: Lower bound on the squark mass from CP violation as a function of the unification scale
MGUT. The contribution of both closed and open string fluxes is shown.

masses from MGUT down to low-energies. The higher the value of MGUT, the larger is the
effect of the running and the induced non-universalities are further diluted. This indirect
dependence onMGUT is of course also present for the non-universal terms induced by closed
string fluxes, but in that case the direct dependence on (MGUT/MPl)

1/3, c.f. eq. (4.186),
dominates over the indirect dependence. As a consequence the bounds on the averaged
squark mass decrease in this case for lower MGUT. This is displayed in figure 4.6 for the
limits that come from the CP violation parameter εK . Interestingly, the weakest bounds
are obtained for the standard values of the unification scale MGUT ' 1016 GeV suggested
by gauge coupling unification.

Let us finally turn to the limits that come from the yet unobserved branching ratio
BR(µ→ eγ). From eq. (4.191) and the leptonic analogue of (4.199) one obtains

m̃l̃ &
1√

1 + g(t)ξ2

(
|n|
gs

)1/4
√
|cy,F |
η
× 15.2 TeV (4.202)

If MGUT ' 1016 GeV then one gets m̃l̃ & 10.6 TeV, quite similar to the results obtained
from non-constant closed string fluxes.
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Figure 4.7: Bounds on the average slepton masses as a function open string flux n and unification scale
MGUT. Contributions from non-constant open and closed string fluxes are shown.

At MGUT At TeV scale Experimental constraint∣∣∣Re δ̃d
12

∣∣∣ 0.39 a
0.37 b

4.1× 10−2 a
3.9× 10−2 b

4.2× 10−2 m̃q̃

350 GeV∣∣∣Im δ̃d
12

∣∣∣ 0.39 a
0.37 b

4.1× 10−2 a
3.9× 10−2 b

1.8× 10−3 m̃q̃

350 GeV∣∣∣δ̃l
12

∣∣∣ 0.39 a
0.37 b

1.9× 10−1 a
1.8× 10−1 b

4× 10−4

(
m̃l̃

500 GeV

)2

Table 4.3: Prediction and experimental constraints for the mixing parameters δ12 coming
from ∆mK , εK and BR(µ→ eγ) measurements/limits. The model-dependent parameters

a and b are defined as a = cy,G/|n|1/2 and b = cy,F |n|1/2/(g1/2
s η) and are expected to be

of order ∼ 1.

In figure 4.7 we show a summary of the bounds on the selectron and smuon masses
for different values of n and MGUT. Note that in settings like this, where slepton and
squark masses unify at MGUT, having sleptons with masses of order ∼ 10 TeV would
imply much heavier squarks, with masses as large as ∼ 25 TeV, quite above the bounds
coming from the kaon system.

As a general summary of the numerical results obtained in this section for varying
closed and open string fluxes, we present in table 4.3 the expected values of the real and
imaginary parts of δ̃d

12 and of δ̃l
12, both at the MGUT and the TeV scales, as well as the

corresponding experimental limits.

4.2.3. Flavor non-universalities in F-theory matter curves

Open string fluxes are required in order to get chirality in the matter curves. In
the previous sections we have denoted this magnetic flux as M for simplicity. However we
have seen in 4.1.4 that in order to recover the MSSM spectrum a much richer strucure of
magnetic fluxes than the one used so far is required. Here we provide for completeness
the dictionary between the magnetic fluxes of the F-theory SU(5) local model of 4.1.4 and
the general results for flavor violating soft terms obtained above. We also estimate the
non-universalities coming from the trilinear terms.
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Let us consider eq. (4.135) and discuss the case of sfermion masses. To simplify
the discussion we set qs = 0, since this is only required to be non-vanishing for having
doublet-triplet splitting of the Higgss multiplet, but it plays no role in the sfermion sector.
For the wavefunction of 5̄ matter fields then we have λy = 0 and λx = λ+ ' −m2 − 1

2q
a
p ,

and zero modes read

Ψa+
i

=

− iλx
m2

0
1

 χreal
a+
i

=

i+
iqap
2m2

0
1

 χreal
a+
i

(4.203)

where i = 1, 2, 3 labels the three SM generations and

χreal
a+
i

= γia+ m4−iy3−i e−m
2|x|2e−

qp
2
|y|2 , (4.204)

The normalisation factors γia+ are given by

||γia+ ||2 =
1

π2(3− i)!
m4

m4 + λ2
+

( qp
m2

)4−i
. (4.205)

where we have extended the domain of integration to C2. This is indeed a good approx-
imation in the limit on which the volume of the 4-cycle S is large. Inserting the local
expansion (4.175) of the non-constant flux G(0,3) in eq. (4.135) and extending the domain
of integration to C2, we get

m2
ij =

gsγiγj
4

∫
C2

d2x d2y
[
|Ĝ0|2

(
1 + G∗yy +Gyȳ + Gyȳ|y|2 + . . .

)
y3−iȳ3−j e−2m2|x|2−|qp||y|2

]
(4.206)

where we have defined

|Ĝ0|2 ≡ |G0|2
(

1−
∣∣∣ qp
2m2

∣∣∣) . (4.207)

Sizeable flavor non-diagonal transitions δRRij or δLLij that do not mix the left and right
sectors generically arise from soft mass terms. In particular, the leading contributions to
FCNC transitions come from the off-diagonal mass terms. For ∆F = 1 soft masses we
have

m2
ij =

gsγiγj
4

∫ ∞
0

2πx dx

∫ ∞
0

2πy dy |Ĝ0|2
(
G∗yy +Gyȳ

)
e−2m2|x|2−|qp||y|2y3−iȳ3−j

=
gsk

4

|Ĝ0|2Gy√
|qp|

, where k ≡
{ √

2 for i = 1, j = 2
1 for i = 2, j = 3

(4.208)

The off-diagonal ∆F = 2 mass term m2
13 is proportional to higher derivatives of the 3-form

flux and is therefore subleading with respect to m2
12 and m2

23. The relevant quantity in
the generation of FCNC effects in the Kaon system is

δd
12 =

m2
12

m2
q̃

=

√
2Gy√
|qp|

=

√
2Gy√

|M̃ − 1
3ÑY |

(4.209)
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whereas for the left-handed leptons we have

δL
12 =

m2
12

m2
L̃

=

√
2Gy√
|qp|

=

√
2Gy√

|M̃ + 1
2ÑY |

. (4.210)

Hence, flavor violation induced by non-constant 3-form fluxes in this context is slightly
larger for sleptons than for squarks. From now on the same estimations and constraints of
section 4.2.2 apply here. Recall (4.186). The size of these flavor-violating terms depends
on the variation of the closed string fluxes over S through cy,G and is inversely propor-
tional to the square root of the open string flux, which is what determines the width of
the wavefunctions. As expected, the more localised the wavefunction is, the smaller the
amount of flavor violation. However, within the current approximation it is not possible
to suppress the size of flavor-violating effects by making the open string flux qp large, since
the perturbative flux expansion that we are assuming in our computations would break
down. Also in that limit the soft scalar masses in eq. (4.135) may become tachyonic. On
the other hand, these flavor-violating effects may be suppressed if the closed string fluxes
G vary slowly over S, namely if cy,G is small.

Finally flavor non-diagonal transitions δLRij mixing left and right also generically
appear from soft trilinear scalar couplings with non-constant closed string fluxes. By
reducing the DBI+CS action in the presence of closed string fluxes and backgrounds for
Φ and F2 we obtain

Aijk = −3gYM g1/2
s

∫
G∗ det(~vα, ~vβ, ~vγ) fαβγ χ

i
a+
p
χj
b+q
χk
c+r
dvolS (4.211)

where fαβγ = −iTr([Eα, Eβ], Eγ). When G1̄2̄3̄ varies over the 4-cycle S, flavor-dependent
trilinear couplings appear. Once the Higgs boson takes a vev at the EW scale, these give
rise to flavor-violating soft masses of the form δm2

LR. Although they are suppressed by
the Higgs vev, they still might be relevant since the experimental constraints for δm2

LR are
rather strong. Indeed, the relevant terms in the local expansion of the G(0,3) flux around
the triple intersection point are in this case

G∗ = G∗0
∑
n,m

Gnmx̄
nȳm + . . . (4.212)

When performing the integral (4.211) the rest of the terms in the expansion vanish. To
leading order in the magnetic fluxes, the above expression becomes

Aij ' const.G∗0
∑
nm

Gnm

∫
x̄nȳm χi

a+
p
χj
b+q
χc+r dvolS (4.213)

where all the flavor independent factors have been absorbed in the constant in front of
this expression. Note that we have set k = 1 since the matter curve Σc only has one single
generation corresponding to the Higgs, while the matter curves Σa,b must accommodate
three generations corresponding to the three chiral families of the SM (i, j = 1, 2, 3).
The computation of this integral is cumbersome but we can easily estimate the order of
magnitude of the flavor non-universalities that appear. Since Gnm scales as

Gnm ∼
cnm

Vol(B3)
n+m

6

(4.214)
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with cnm an adimensional parameter, making use of eqs. (3.33) and (3.34) we find for
cnm ' 1,

Aij ' G∗0

(
MG

αGMPl n3/2

)2− i+j
3

(4.215)

The induced flavor-violating soft masses are given by

(δm2
LR)ij '

Aij〈v〉
m2

soft

(4.216)

where 〈v〉 is the EW vacuum expectation value of the Higgs and m2
soft ∼ |G0|2. Thus,

from the above expressions we obtain that flavor-violating soft masses mixing the first two
generations scale as

(δm2
LR)12 ∼

〈v〉√
m2

soft

c12

n3/2

(
MG

αGMPl

)
∼ 6√

m2
soft(GeV)

(4.217)

where in the last equation we have used MG ' 1016 GeV, αG = 1/24, MPl ' 1019 GeV,

〈v〉 = 246 GeV and n, c ∼ O(1). If the SUSY breaking scale is of order
√
m2

soft ∼ 1 TeV,

then these flavor non-universalities are of order 10−2−10−3, whereas experimental bounds
from µ → eγ require (δm2

LR)eµ < 10−5 − 10−6 for slepton masses of order 1 TeV, see
[67–70,85,86]. This suggests again sefermion masses should be in the multi-TeV range.

4.2.4. Flavor violation, symmetries and the LHC reach

Given the stringent results obtained in 4.2.2 and 4.2.3, with squark and slepton
masses above the ∼ 10 TeV range, inaccessible to LHC, a natural question arises. Under
what conditions these bounds may be released and allow for a SUSY spectrum within
experimental reach at LHC?

The answer is obviously that those compactifications in which the fluxes vary very
slowly on S will get relaxed bounds. Examples of such models are the toroidal Type IIB
orientfolds (and orbifolds there-off) of e.g. [56, 88–90] in which indeed constant fluxes are
used. On the other hand one may reasonably argue that such models are not completely
realistic and in any event rather un-generic.

It could be argued though that we have to some extent assumed the most pessim-
istic scenario in which the variation of fluxes within the manifold S is linear in the local
coordinates with coefficients cy,G and cy,F of order one. The bounds on squark masses
are proportional to these coefficients so that if for some reason they are suppressed (say,
|cy,G| ' |cy,F | ' 1/4) squarks could be accessible to LHC. One possibility is that some
symmetry (e.g. x, y → −x,−y) forbids the linear variation of the fluxes, see e.g. [91–99]
for some recent papers on discrete flavour symmetries in string compactifications. In this
case the first terms contributing to the flux expansion would be quadratic. We can repeat
the analysis in this case to find, for non-constant closed string flux density a contribution
to the mass difference (contributing through eq. (4.164) to δ̃d

12)

ρd
12 =

δm2
2 − δm2

1

2m̃2
q̃

=
|Gyȳ|

2q|M0|
=
|cyȳ,G|
π|n|

(
5

3

)1/2

%2 = 0.5
∣∣∣cyȳ,G
n

∣∣∣ ( MGUT

MPl αGUT

)2/3

(4.218)
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that leads to the lower bound

m̃q̃ &
|cyȳ,G|

(1 + g(t)ξ2)|n|
×
(
MGUT

MPl

)2/3

× 35.9 TeV . (4.219)

For MGUT ' 1016 GeV and parameters of order one, one gets a very weak bound with
m̃q̃ & 34 GeV. Note that to quadratic order there is no imaginary contribution to δd

12 so
there is no contribution to CP violation from this correction. Similar results are obtained
from the quadratic term coming from non-constant open string fluxes which yield

ρd
12 =

δm2
2 − δm2

1

2m̃2
q̃

=
Myȳ

2q|m|
=

4π|cyȳ,F |
η

(
5

3

)1/2 α′

Vol(S)1/2
= 0.41

|cyȳ,F |
η

(
MGUT

Mst

)2

(4.220)
and gives rise to

m̃q̃ &
1

1 + g(t)ξ2

1
√
gs

|cyȳ,F |
η
× 0.99 TeV . (4.221)

For MGUT ' 1016 GeV and parameters of order one, one gets again a very weak bound
with m̃q̃ & 105 GeV, since there is no CP violating contribution to the kaon system in
this case. In fact one can also check that similar limits to these may be obtained from
the quadratic contribution to Im δ̃d

13. In this case the quadratic contribution is complex
and a contribution to CP violation in the B0

d system exists. We skip this analysis here for
simplicity.

Regarding the limits that come from the µ → eγ rate, it is possible to check that
one gets from the leptonic analogues of (4.218) and (4.220) the lower bounds

m̃l̃ &

√
|cyȳ,G|

(1 + g(t)ξ2)|n|
×
(
MGUT

MPl

)1/3

× 52 TeV (closed string flux) (4.222)

m̃l̃ &
1√

1 + g(t)ξ2

1

g
1/4
s

√∣∣∣∣cyȳ,Fη
∣∣∣∣× 8.6 TeV (open string flux) .

With MGUT ' 1016 GeV and parameters of order one, the resulting limits on the averaged
slepton mass are m̃l̃ & 3.4 TeV from the first and m̃l̃ & 6 TeV from the second. Altogether
we see that the limits on squark masses are totally relaxed if linear terms are absent
whereas those from lepton number violation are only somewhat released. This is mostly
due to the fact that the RG dilution is larger for squarks than for leptons. Additional
uncertainties in factors could allow for lighter slepton masses, within reach of LHC, but
certainly the slepton limits are harder to relax.

In a different vein, it would be interesting to perform similar computations in other
compactification schemes. For example, very similar results are expected in the case of
type IIA models with intersecting D6-branes or their relatives, models based on M-theory
compactifications on manifolds with G2 holonomy. In particular, the three generations of
SU(5) 5-plets will arise at different intersections of a SU(5) stack with a U(1) stack. These
intersections happen at different points in compact space and soft terms induced by (non-
constant) closed string fluxes will be different for the different generations. Furthermore
the intersection angles for the three generations (which are T-dual to the open string fluxes
in IIB) will be generically different. This is the dual of having non-constant open string
fluxes in the IIB side. All in all, the same structure that we find in a IIB/F-theory is
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expected in this other large class of compactifications. In the alternative models in which
SM fields live on D3-branes located at singularities, the cause of non-universalities would
not be the non-uniformity of fluxes but the generic non-isotropy of the compactifications.

Given the numerical uncertainties we cannot exclude squarks being discovered at
the LHC. In particular we have shown how e.g. symmetries can substantially relax the
obtained mass limits, although this relaxation seems more difficult in the case of the first
two generations of sleptons. On the other hand a heavy SUSY spectrum seems to be
preferred by the observed mass of the Higgs mH ' 126 GeV. Our results seem to go in
the same direction.

4.3. Intermediate SUSY breaking scale

String theory, by providing specific microscopic mechanisms of SUSY breaking, is
able to constrain the huge parameter space a priori available in an effective approach of
the MSSM. Up to here, we have studied the particular structure of soft terms and the
presence of non-universalities arising from flux induced supersymmetry breaking. But it
can also give us information about the SUSY breaking scale. We will see that closed
string fluxes push this scale to a quite high value, around 1010 − 1013 GeV. Much effort
in string phenomenology has been devoted to lower this SUSY scale to the TeV range for
phenomenological reasons. However, the so far absence of SUSY at the TeV scale and
the high mass of the Higgs boson are driving us to rethink about this choice. In this
section we reanalyze the problem and discuss several phenomenological and theoretical
hints pointing out indeed to an Intermediate scale of SUSY breaking. We also study the
realisation of this scenario together with gauge coupling unification in Type IIB/F-theory
compactifications. Furthermore, we compute the Higgs mass as a function of the SUSY
breaking scale obtaining a very constrained result, mH = 126 ± 3 GeV for MSS ≥ 1010

GeV, supporting the idea of SUSY being realised at a high scale.

4.3.1. Motivation

The only thing we know for sure about supersymmetry is that (if it exists) it has
to be broken at some energy scale above MEW . While there is no fundamental reason to
pick out a specific scale (a priori any value from the current energy reached at the colliders
to the Planck scale would be possible) the prefered and most popular scale is undoubtely
the TeV-range. We call this scenario low energy or TeV-scale supersymmetry. The reason
being is that low energy supersymmetry provides a solution to the EW hierarchy problem
of the SM. Without supersymmetry or any other BSM extension, the Higgs mass receives
quantum corrections depending quadratically in the cutoff of the theory. If this cutoff
is taken to be the Planck scale, a huge fine-tuning of order 1 part in 1032 is required
to keep the Higgs boson light. In the supersymmetric extension of the SM the quadratic
divergences are cancelled by those coming from the corresponding superpartners. However
this cancellation is succesful only if the superpartners are not very far from the EW scale.
Otherwise, we have to appeal again to a fine-tuning on the mass parameters to keep the
Higgs light. Therefore supersymmetry as a solution to the hierarchy problem must lay on
the TeV range, implying that can be detected by the LHC. However this has not been
the case so far. As of today, there is no sign of Supersymmetry (or any BSM physics) at
the LHC. In fact, the LHC has pushed the mass of the squarks to the multi-TeV range,
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implying already a fine-tuning of one per mil in the Higgs mass. If this pressure persists,
the proposal of low energy supersymmetry as a solution to the hierarchy problem will
be strongly questionable and the original motivation for breaking supersymmetry at low
energy will be lost. In that case, the two primary questions about SUSY have to be
rethought: why we need SUSY even if it does not solve the hierarchy problem, and if
so what is the scale of SUSY breaking chosen by nature. In what follows we attempt to
answer these questions giving some phenomenological and theoretical motivations about an
atractive alternative: supersymmetry broken at an Intermediate scale around 1010 − 1013

GeV.

4.3.1.1. Phenomenological motivations

Let us assume that there is no sign of TeV-scale supersymmetry at the next run of
the LHC. From a phenomenological point of view, once the original motivation of the fine-
tuning is lost, one could think of abandoning completely the idea of supersymmetry as an
extension of the SM. So far all the predictions of the SM work extremely and surprisingly
well so apparently there would be no reason to pursue with supersymmetry if it can not
solve the hierarchy problem. For instance, one could think of recovering old non-susy
GUT’s. However these theories have several problems, like the loss of gauge coupling
unification, too fast proton decay, or the absence of a candidate for dark matter.

In any event, one could bet on the SM and assume its validity up to the Planck scale,
where an UV completion including quantum gravitational effects would then be required.
However the recent discovery of the Higgs mass call into question this scenario. If one
runs up via the renormalization group equations (RGE) the Higgs quartic coupling from
the EW scale to higher energies, one can see how λ decreases with the energy due to the
large top Yukawa coupling and in fact it seems to vanish at scales 1010 − 1013 GeV. A
detailed study of the non-SUSY SM Higgs potential indicates that the theory becomes
metastable before reaching the unification scale [100–107]. Although in principle there is
no fundamental obstruction about living in a metastable vaccum as long as the lifetime of
the vacuum is bigger than the age of the universe, this could be interpreted as a hint of
the nature telling us that something is going on at that scale.

In addition, studies about the cosmological implications of the Higgs mass meas-
urement show that a high scale of inflation might be incompatible with a metastable SM
vacuum [108] (see [109–111] for recent work). Quantum fluctuations in the Higgs field
during inflation might locally drive the Higgs vacuum expectation value to the unstable
part of the potential. Therefore in the case that BICEP2 results [3] are confirmed and
primordial gravitational waves are detected in forthcoming experiments, the resulting high
scale of inflation would imply that new BSM physics is indeed required at an Intermediate
scale to stabilize the SM vacuum.

Supersymmetry would be an excellent candidate for that new physics, since in the
MSSM the quartic Higgs coupling is automatically positive definite and the stability of the
SM would be ensured. This provides a new interesting motivation for supersymmetry in
Particle Physics. If present at some intermediate scale, the role of supersymmetry would
not be to stabilize the Higgs mass but the SM vacuum, which is not a less important task.
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4.3.1.2. Theoretical motivations

As explained in the Introduction of the thesis, at some point one would like to have
an ultraviolet completion of the SM, unifying both gravitational and gauge interactions.
As of today the best candidate for that UV completion is String Theory, so a natural
question is whether String Theory can tell us something about the existence and energy
scale of SUSY.

Supersymmetry is one of the key ingredients of String Theory. It is absolutely ne-
cessary in the worldsheet in order to obtain fermions in the space-time. But SUSY in the
worldsheet does not imply necessarily SUSY in the space-time, so to be fair, supersym-
metry in the space-time is not strictly indispensable. However, it is highly recommended,
since it protects the theory from undesired instabilities and allows to have a parametric
controll over partially computable quantities that would not be possible otherwise. In
fact, without supersymmetry we would not even have the necessary machinery and tools
to do any reliable computation. This is the reason why all promising string theories have
also supersymmetry in the space-time.

Nevertheless, supersymmetry can be broken in the compactification of the theory.
In fact, String Theory does not force SUSY to be broken near the EW scale at all. It could
also be consistently broken at some intermediate/high scale (below the compactification
scale) so that the SUSY particles would be out of the LHC reach. Therefore, by ruling
out low energy supersymmetry we are not ruling out any of the string theories.

One could then ask if there is a prefered value for the SUSY breaking scale within
String Theory. The answer depends of course on the mechanism of SUSY breaking. We
have argued in section 3.1 that a natural source of SUSY breaking in String Theory are
the closed string fluxes. From the point of view of the effective supergravity action, these
fluxes correspond to the auxiliary fields of closed string moduli. Supersymmetry is then
broken in the (hidden) closed string sector and transmitted to the SM fields via gravity
mediation. If this is the case, there is indeed a natural scale of SUSY breaking in the
theory, as we proceed to explain in what follows.

Defining the scale of SUSY breaking as the size of the soft terms MSS ' mq̃, from
the results of the previous section we have

M2
SS '

gs
4
|G3|2 (4.223)

As was explained in 3.1 these fluxes are quantized and its size can be estimated by

1

2πα′

∫
γj

G3 = 2πfj → G3 '
4π2α′f

V
1/2

6

(4.224)

where γj ∈ B3 denotes the 3-cycle that supports the closed string fluxes and f the corres-
ponding flux integer. This implies a natural scale of SUSY breaking given by

MSS '
g

1/2
s√
2
G3 =

f

π

M2
s

g
1/2
s Mp

(4.225)

where we have used eq.(3.33). Taking into account eq.(3.35) we get the SUSY breaking
scale

MSS '
f M2

c

2πα
1/2
G Mp

. (4.226)
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in terms of the compactification/unification scale.

Notice that for f ' 1 and standard unifcation values MGUT ' 1016 GeV and α−1
GUT '

24 we obtain MSS ' 6.5 × 1012 GeV. Therefore the natural scale of SUSY breaking by
closed string fluxes is actually quite high and lays within the range to provide a good
solution to the stability problem of the SM vacuum. Remark though that this does not
imply that low energy supersymmetry is not possible in this scenario. It should be noticed
that the parameter f in general receives contributions from a large number of 3-cycles so
that large cancellations can take place leading to f � 1 and lowering the scale of SUSY-
breaking. This is similar to what occurs for the small superpotential parameter W0 in
KKLT vacua [8].8 Notice though that in order to have a SUSY breaking scale around 1
TeV, we need a huge fine-tuning or suppression in the fluxes such that f ∼ 10−10. But if
we wanted low energy SUSY indeed to solve the fine-tuning in the Higgs, it seems that we
are just hidding this hierarchy problem into a fine-tuning on the fluxes in order to lower
the scale of SUSY breaking. From this perspective, there are two special situations: low
energy SUSY with a natural Higgs but with a fine-tuned scale of SUSY breaking, or a fine-
tuned Higgs with a natural scale of SUSY breaking. Of course, it is not our call to choose
what scenario is exhibited in nature, but of the experiments. If in the next run of the LHC
there is still no sign of supersymmetry, the second posibility will score some points. And if
supersymmetry is pushed to higher and higher energies, we should be open to think that
maybe the EW scale is indeed fine-tuned and supersymmetry is present at a much higher
scale. This fine-tuning of the EW scale could be understood in the context of the flux
landscape of String Theory, perhaps selected on anthropic grounds. The problem would
be very similar to that of the cosmological constant in flux compactifications [81–84].

So far, much work in String Phenomenology has gone in the direction of lowering the
scale of SUSY breaking, resorting to huge cancellations between a large number of 3-cycles
or warping factors to suppressed the effect of the fluxes over localised sectors (see [4] for
details). Here we would like to follow the opposite direction. Let us consider that SUSY is
broken indeed at the natural scale suggested by String Theory once we impose a standard
unification scale, ie. MSS ' 1010 − 1013 GeV, and study what are the phenomenological
implications of such a high scale.

4.3.2. Implications for the Higgs mass

Since the scalars are sensitive to the cutoff scale of the theory, the Higgs boson
ocupies the first place in the study of the phenomenological implications of an Intermediate
scale of SUSY breaking.

To start with, let us consider the general scenario in which MSS is a free parameter,
so the SM is extended to the MSSM above a certain scale MSS not necessarily tied to
the EW scale but possibly much higher. In this case, as we have already explained, a
fine-tuning of the underlying theory is required in order to have a light Higgs. We can
use this fine-tuning condition to fix the EW vacuum expectation value of the Higgs to its
experimental result. Then the Higgs mass depends only on the quartic coupling, which is
still a free parameter in the SM. However, since the SM will be extended to the MSSM at a

8In the large volume scenario of moduli stabilization [14–17], low energy supersymmetry is achieved
without tuning W0 but instead lowering the string scale. So if we want to keep a unification scale around
1016 GeV there is no other way than suppressing the fluxes or considering huge delicate cancellations such
that f � 1.
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higher scale, this quartic coupling will be given by the gauge couplings and the proportional
composition of the MSSM Higgs doublets in the linear combination corresponding to the
SM Higgs. Hence the Higgs mass is not a free parameter and can be computed once taking
into account the running from MSS to the EW scale.

In section 4.3.2.1 we start the discussion by being more precise about what we mean
with the statement that the EW scale has to be fine-tuned. We will see how to quantify
this fine-tuning in the Higgs mass matrix. In section 4.3.2.2 we describe the different steps
required to compute the Higgs mass as a function of the SUSY-breaking scale MSS , and
show the results.

4.3.2.1. Fine-tuning of the Higgs

Let us consider a situation in which SUSY is broken at some high scale MSS with
MEW � MSS � MC , where MC is the unification/compactification scale. For previous
work on a fine-tuned Higgs in a setting with broken SUSY at a high scale see e.g. [112–120,
124,133,138–140]. With generic SUSY breaking soft terms one is just left at low energies
with the SM spectrum. In addition the scalar potential should be fine-tuned so that one
Higgs doublet remains light and thus is able to trigger EW symmetry breaking. To see
this let us recall what is the general form for the Higgs masses in the MSSM at the scale
MSS , (

Hu , H
∗
d

)( m2
Hu

m2
3

m2
3 m2

Hd

)(
H∗u
Hd

)
. (4.227)

where we will take m2
3 real for simplicity. If all these mass terms were zero we would get two

Higgs doublets in the massless spectrum. However this would require extra unnecessary
fine-tuning. The minimal Higgs fine-tuning would only require a single Higgs doublet to
remain at low-energies. This is achieved for a single fine-tuning

m4
3 = m2

Hum
2
Hd

at MSS (4.228)

to get a zero eigenvalue in the above matrix. The massless eigenvector is then

HSM = sinβ Hu + cosβ H∗d (4.229)

with

tanβ =
|mHd |
|mHu |

. (4.230)

One would say that no trace would be left from the underlying supersymmetry after
breaking to the SM. However this is not the case [114]. Since dimension four operators
are not affected (to leading order) by spontaneous SUSY breaking, the value λ(MSS) of
the Higgs self-coupling at the MSS scale will be given in the MSSM by the (tree level)
boundary condition

λSUSY (MSS) =
1

4
(g2

2 + g2
1) cos22β (4.231)

which is inherited from the D-term scalar potential of the MSSM. Here g1,2 are the EW
gauge couplings and β is the mixing angle which defines the linear combination of the
two SU(2) doublets Hu, Hd of the MSSM which remains massless after SUSY breaking.
Thanks to this boundary condition, for any given value of tanβ one can compute the Higgs
mass as a function of the SUSY breaking scale MSS .
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Schematically, the idea is to run in energies the values of g1, g2 up to the given
MSS scale. For any value of tanβ one then computes λ(MSS) from eq.(4.231). Starting
with this value we then run down in energies and obtain the value for the Higgs mass
from m2

H(Q) = 2v2λ(Q). Threshold corrections at both the EW and SUSY scales have
to be included. This type of computation for different values of tanβ was done e.g in
ref. [107, 121–123]. We show results for a similar computation in fig.4.8 (grey bands) in
section 4.3.2.2. The Higgs mass may have any value in a broad band below a maximum
around 140 GeV. One may easily understand the general structure of these curves. The
mass is higher for higher tanβ since the tree level contribution to the Higgs mass through
eq.(4.231) is higher. On the other hand the Higgs mass slowly grows with larger MSS as
expected.

What we want to emphasize here is that the natural assumption of Higgs soft mass
unification at the unification scale MC , i.e.

mHu(MC) = mHd(MC) (4.232)

leads to a much more restricted situation with trajectories converging to a very narrow
strip in the mHiggs−MSS plane rather than a wide band. Note that this equality is quite
generic in most SUSY, unification or string models. In particular it appears in gravity
mediation as well as in almost all SUSY breaking schemes, including those arising from
compactified string theory, see e.g. [4].

One can then compute the value of tanβ(MSS) by running the ratio in (4.230) from
the unification scaleMC down to the SUSY breaking scaleMSS . One computes the value of
the Higgs self-coupling λ(MSS) from eq.(4.231) and then runs down in energies to compute
the Higgs mass for any given value of MSS . In a general MSSM model we can compute
this in terms of the underlying structure of soft terms at MSS . In particular one expects
generic SUSY-breaking soft terms of order MSS . For definiteness we will assume here a
universal structure of soft terms with the standard parameters m (3-d generation scalars
masses), M (gaugino masses), A (3-d generation trilinear parameter) and µ (mu-term).
As we will see in section 4.3.2.3, the results are very little dependent on this universality
assumption which simplifies substantially the computations. This universality assumption
is also consistent with the (weaker) assumption of Higgs mass unification, eq.(4.232).

Let us remark that in this approach the only relevant condition is mHu = mHd at the
unification scale MC . There is no need for a shift symmetry which imposses m4

3 = m2
Hu
m2
Hd

at the unification scale as in ref. [124], since then the fine-tuning would be destroyed by
the running from MC to MSS . The idea is that enviromental selection should ensure
that at the scale MSS (not MC) the fine-tuning condition m4

3 = m2
Hu
m2
Hd

is impossed
with high accuracy. Although for the time being these two conditions will be taken as
assumptions, in section 4.3.4 we will see how indeed they can be naturally accomodated
in Type IIB/F-theory models.

4.3.2.2. Higgs mass as a function of the SUSY breaking scale

The main question we want to address in this section is: what would be the mass
of the Higgs boson if SUSY is broken at a high scale?

Although this is a quite generic question, the answer turns out to be much more
constrained than expected. Under standard unification assumptions (mHu = mHd at the
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unification scale Mc) it gives rise to a prediction of the Higgs mass as a function of the
SUSY breaking scale, with a very little dependence on the soft SUSY breaking parameters.

We now turn to a description of the different steps required to compute the Higgs
mass as a function of the SUSY-breaking scale MSS .

Computing the couplings at MSS. We start by computing the electroweak couplings
at the MSS scale. We take the central values for the masses (in GeV) and couplings at
the weak scale

MZ = 91.1876 , MW = 80.385 , mt = 173.1 (4.233)

sin2 θW (MZ) = 0.23126 , α−1
em(MZ) = 127.937 , α3(MZ) = 0.1184 . (4.234)

We will allow to vary the top mass with an error mt = 173.1 ± 0.7 GeV obtained from
the average from Tevatron [125] and CMS and ATLAS results as in ref. [126]. We will
neglect the error from α3 which is much smaller than that from the top quark mass. To
extract the value of the top Yukawa coupling ht(mt) we take into account the relationship
between the pole top-quark mass mt and the corresponding Yukawa coupling in the MS
scheme [127]

ht(mt) =
mt

v
(1 + δt) (4.235)

where the dominant one-loop QCD corrections may be estimated ( [127], [107,122])

δQCDt (mt) = − 4

3π
α3(mt)− 0.93α2

3(mt)− 2.59α3
3(mt) ≈ −0.0605 . (4.236)

One then obtains ht(mt) = 0.934. We run now the couplings g1,g2 and ht up to the given
scale MSS . We do this by solving the RGE at two loops for the SM couplings. Those
equations are shown for completeness in appendix B.1.

Computing tanβ and λ(MSS). With g1,2(MSS) at hand we want now to compute
the value of λ(MSS) from eq.(4.231). To do that we need to compute tanβ(MSS) from
eq.(4.230), which in turn requires the computation of the running of the masses mHu ,mHd

from the unification scale at which mHu = mHd down to MSS .

The value of the unification scale MC is usually obtained from the unification of
gauge coupling constants. In our case, with two regions respectively with the SM (below
MSS) and the MSSM (in between MSS and MC) the value of MC is not uniquely determ-
ined. In fact it is well known that precise unification is only obtained for MSS ' 1 TeV, as
in standard MSSM phenomenology [128–130]. However, approximate unification around
a scale MC ' 1014− 1015 GeV is anyway obtained for much higher values of MSS , even in
the limiting case with MSS ' MC in which case SUSY is broken at the unification scale,
so a simple approach would be to take MC ' 1015 GeV to compute the runing of tanβ.
We find more interesting instead to achieve consistent gauge coupling unification from ap-
propriate threshold corrections. In particular, in a large class of string compactifications
like F-theory SU(5) GUT’s there are small threshold corrections respecting the boundary
condition at the GUT scale [53,131–134]

1

α1(MC)
=

1

α2(MC)
+

2

3α3(MC)
. (4.237)
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This boundary condition is consistent (but more general) than the usual GUT boundary
conditions α3 = α2 = 5/3α1. It arises for example from F-theory SU(5) GUT’s [25–29,135]
once fluxes along the hypercharge direction are added to break the SU(5) symmetry down
to the SM [32, 33, 53] (see section 4.3.3.2). Using the RGE for gauge couplings in both
SM and MSSM regions (at two loops for the gauge couplings and one loop for the top
Yukawa) one finds that unification of couplings is neatly obtained at a scale MC related
with MSS by the approximate relationship

logMC = −0.23 logMSS + 16.77 . (4.238)

As one varies MSS in the range 1 TeV-MC one obtains MC ' 1016− 1014 GeV. In section
4.3.3 we will delve into this issue of gauge coupling unification, discussing in more detail the
threshold corrections that give rise to (4.237) and the computation of the gauge coupling
unification condition (4.238) (black line in fig.4.13). In the matter at hand, to compute
tanβ(MSS) we will use the unification scale MC obtained from eq.(4.238). It is important
to remark though that this has very little impact in the numerical results. There is no
detailed dependence on the value of MC as long as it remains in the expected 1014 − 1017

GeV region.

To compute tanβ at MSS one solves the RGE for the Higgs mass parameters
mHu ,mHd . At this point one needs to make some assumptions about the structure of
the SUSY-breaking soft terms of the underlying MSSM theory. We will thus assume a
standard universal SUSY breaking structure parametrized by universal scalar masses m,
gaugino masses M and trilinear parameter A. The results are independent from the value
of the B parameter which is fixed by the fine-tuning condition (4.228) at MSS . Given
these uncertainties it is enough to use the one-loop RGE for the soft parameters, which
were analytically solved in ref. [77]. Thus one has tanβ(MSS) = |mHd(MSS)|/|mHu(MSS)|
with

m2
Hd

(t) = m2 + µ2q2(t) + M2g(t)

m2
Hu(t) = m2h(t)− k(t)A2 + µ2q2(t) + M2e(t) + AMf(t) (4.239)

where m,M,A, µ are the standard universal CMSSM parameters at the unification scale
MC , t = 2log(MC/MSS) and q, g, h, k, e, f are known functions of the top Yukawa coup-
ling ht and the three SM gauge coupling constants. Except for regions with large tanβ,
appearing only for low MSS , one can safely neglect the bottom and tau Yukawa couplings,
hb = hτ = 0. For completeness these functions are provided in appendix B.2. The value
taken for ht to perform the running of soft terms is a bit subtle since at MSS one has
to match the hSMt value obtained from the SM running up to MSS with the SUSY value
hSUSYt which are related by

hSMt = hSUSYt sinβ . (4.240)

Since the value of hSUSYt depends on β through eq.(4.240), the computation of tanβ is
done in a self-consistent way: a value is given to sinβ(MSS), hSUSYt is run up in energies
and one has a tentative ht(MC). One then runs mHu/mHd down in energies and computes
tanβ at MSS . When both values for β at MSS agree the computation of tanβ is consistent.

Once computed the value of tanβ as described above, one then obtains the Higgs
quartic coupling λ(MSS) from eq.(4.231). In addition there are threshold corrections
at MSS induced by loop diagrams involving the SUSY particles. The leading one-loop
correction is given by

δλ(MSS) =
1

(4π)2
3h4

t

(
2Xt −

X2
t

6

)
(4.241)
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where ht is the SUSY top Yukawa coupling at MSS and the stop mixing parameter Xt is
given by

Xt =
(At − µ cotβ)2

mQmU
. (4.242)

with mQ(mU ) the left(right)-handed stop mass. This term comes from finite corrections
involving one-loop exchange of top squarks. There are further correction terms which are
numerically negligible compared to this at least for not too low MSS , in which case the
SUSY spectrum becomes more spread and further threshold corrections become relevant,
see e.g. [122]. We have computed the parameter Xt using the one loop RGE for the soft
parameters that are provided in appendix B.2 and the value of tanβ obtained above.

Computing the Higgs mass Starting from (λ + δλ)(MSS) one runs back the self-
coupling down to the EW scale (using the SM RGE at two loops) and computes the Higgs
mass at a scale Q (taken as Q = mt) through

m2
H = 2v2(λ(Q) + δEWλ(Q)) , (4.243)

where v = 174.1 GeV is the Higgs vev and δEWλ(Q) are additional EW scale threshold
corrections. At one-loop these corrections are given by [136]

δEWλ = −
λGFM

2
Z

8π2
√

2
(ξF1 + F0 + F3/ξ) ≈ 0.011λ (4.244)

where ξ = m2
H/M

2
Z and the functions F1, F0 y F3 depend only on EW parameters and are

shown in appendix B.3 for completeness. This completes the computation procedure for
the Higgs mass as a function of MSS .

Figure 4.8 plots the value of m2
H as a function of MSS . For definiteness we plot

the results for universal soft terms with M =
√

2m, A = −3/2M . This choice of values
is motivated by modulus dominance SUSY breaking in string scenarios, see e.g. [58], [4].
In particular, they arise from models in which the MSSM is localised at a system of
intersecting 7-branes and closed string fluxes are the main source of SUSY breaking, as
we discussed in section 4.1. However, as we will explain below, other different choices
for soft parameters m,M,A lead to analogous results. The grey bands correspond to the
computation of the mass for tanβ = 1, 2, 4, 50 and Xt = 0. The results are similar to
those obtained in ref. [107, 121–123]. The other colored bands correspond to the Higgs
mass values obtained under the assumption of Higgs parameter unification as in eq.(4.232).
Results are displayed for a mu-term µ = −M/4,−M/2,−3/4M,−M with the value for Xt

computed from the obtained running soft terms 9. The width of the grey and colored bands
corresponds to the error from the top quark mass. Finally the horizontal band corresponds
to the average CMS and ATLAS results for the Higgs mass (we take mH = 125.5± 0.54,
see [107]).

The figure shows that above a scale ' 1010 GeV the value of the Higgs mass is
contained in the range

mH = 126 ± 3 GeV . (4.245)

This is remarkably close to the measured value at LHC and supports the idea that SUSY
and unification underly the observed Higgs mass. This result is quite independent of the

9The results are very weakly dependent on the sign of µ through the Xt appearing in the threshold
corrections.
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Figure 4.8: Higgs mass versus SUSY breaking scale MSS . The grey bands correspond
to the Higgs mass for different values of tanβ, for Xt = 0, without impossing unification
of Higgs soft parameters. The other colored bands correspond to impossing tanβ values
consistent with unification of soft terms, mHu = mHd . Results are shown for a choice of
universal soft terms M =

√
2m, A = −3/2M and four values for the µ-term. The stop

mixing parameter Xt is computed from the given soft parameters. The width of the bands
correspond to the error from the top quark mass which is taken to be mt = 173.1 ± 0.7.
The horizontal band corresponds to the ATLAS and CMS average Higgs mass result.
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Figure 4.9: The black line shows the value of the SM self-coupling λ as a function of
MSS , using as input the LHC Higgs data. The remaining curves show values of λSUSY
consistent with mHu(MC) = mHd(MC) for different values of µ. When these λSUSY lines
cross the λ curve the SUSY model is consistent with LHC Higgs data.

details of the soft terms. Below 109 GeV the Higgs mass becomes more model dependent.
In particular the Higgs mass is reduced as |µ| increases. This is easy to understand from
eq.(4.239) since for larger µ the ratio mHu/mHd approaches one, yielding tanβ ' 1. One
still gets a Higgs mass consistent with LHC results for not too large |µ|. As one approaches
MSS ' 10 − 100 TeV one reaches the region of standard fine-tuned MSSM with a Higgs
mass which may be as large as 130 GeV. As we approach that region our treatment
becomes incomplete since some neglected SUSY threshold corrections beyond those in
(4.244) become important, and the SUSY spectrum spreads out. However, that region
corresponds to the well understood situation of the MSSM with a heavy SUSY spectrum
with masses in the 10-100 TeV region.

Let us finally note that, within uncertainties, the figure also favours values for the
SUSY breaking scale MSS . 1013 GeV.

One may also interpret graphically the above results in terms of the unification
of the SM Higgs self-coupling λSM and the SUSY predicted self-coupling λSUSY = (g2

1 +
g2

2)cos22β/4. This is depicted in fig.4.9, in which we have not included the uncertainty from
the mt error to avoid clutter. Note that the dependence of λSUSY on MSS is qualitatively
similar to the running of λSM . This may be understood as follows. In the definition of
λSUSY , (g2

1 + g2
2) runs very little and remains practically constant. On the other hand one

has cos22β = (m2
Hu
−m2

Hd
)2/(m2

Hu
+ m2

Hd
)2. The difference on the numerator goes like

h4
t , which is also the order of the leading correction to the λSM coupling.
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Figure 4.10: Higgs mass versus SUSY breaking scale MSS for µ = −M/2 (red band). Its
width reflects the uncertainty on mt = 173.1± 0.7. The grey bands, as in fig.4.8 show the
Higgs mass for several values of tanβ = 1, 2, 4, 50 and are displayed to guide the eye.

4.3.2.3. Model dependence

In this section we discuss the dependence of our results on the specific structure of
the underlying soft terms. With sufficiently precise information about the top quark and
Higgs masses one might even obtain interesting constraints on the possible structure of
the SUSY-breaking terms.

Let us concentrate first in the case with universal soft terms and µ = −M/2 but
still keeping the relationships M =

√
2m, A = −3/2M . As we said these values are

interesting since, as discussed in ref. [58], they may be understood as arising from a
Giudice-Masiero mechanism in a modulus dominance SUSY breaking scheme. In the
the microscopic description of section 4.1 they correspond to the structure of soft terms
induced by an isotropic configuration of fluxes (with G1̄2̄3̄ = S3̄3̄/2) on matter fields living
at brane intersections. The dependence of the Higgs mass as a function of MSS in this
particular case is shown in fig.4.8 with the red band, a zoom is provided in fig.4.10. Given
the uncertainties, in this particular case (µ = −M/2) essentially any value for MSS in
the 104 − 1014 GeV region is consistent with the observed Higgs mass, although regions
around 104 − 105 and 108 − 1010 GeV are slightly favoured. This second possibility with
MSS ' 1010 GeV will be explored in more detail in section 4.3.3.2 (see also [124, 137])
in which it will be argued that such intermediate SUSY breaking may be interesting for
additional reasons coming from the Type IIB/F-theory compactifications.

It is interesting to explore how relaxing the above mentioned relationships M =
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√
2m, A = −3/2M modify the results for the Higgs mass. In fig.4.11 we show how

the prediction for the Higgs mass is changed as one varies the value of m away from
m = M/

√
2. The figure remains qualitatively the same but one observes that as m/M

increases the Higgs mass tends to be lighter. Above MSS ' 107 GeV the Higgs mass
remains in the region mH ' 126± 3 GeV. The effect of varying A away from A = −3/2M
is shown in fig.4.12. Although we have not included the error coming from the top quark
mass to avoid clutter, one concludes that the overall structure remains the same and the
Higgs mass stays around 126±3 GeV for MSS & 1010 GeV. However now values of MSS in
between 100 TeV and 1010 GeV are more easily consistent with the observed Higgs mass
for particular choices of soft terms. Thus one can conclude that the specific structure of
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Figure 4.11: Higgs mass versus SUSY breaking scale MSS for µ = −M/2 and various
values of the scalar mass parameter m in units of the gaugino mass M .

soft terms generally does not change qualitatively the main result of the previous section:
If SUSY is broken at high energy and we assume unification on the Higgs soft masses, the
SM Higgs mass is naturally centered around 126 GeV.

On the other hand, we could try to use the experimental value of the Higgs mass to
constrain the possible structure of the soft terms. Unfortunately we do not have yet enough
precision on the top quark and Higgs masses to really rule out any specific SUSY breaking
mechanism. The way to proceed would be to compute λ(MEW ) from the experimental
value of the Higgs mass and run up in energies to obtain λ(MSS) and extract from it
tanβ(MSS). Then, for a given value of MSS one could put constraints on the values of
the soft terms that would give rise to this tanβ(MSS) starting with tanβ(Mc) = 1 at the
unification scale. We leave this for future work when the experimental uncertainties on
the top and Higgs masses could be notably improved.

Let us finally comment that our results do not directly apply to the case of Split
SUSY [112,113,138–140] in which one has M,µ,� m, since then the effect of light gauginos
and Higgssinos should be included in the running below MSS . In that case however it has
been shown (see e.g. [121–123]) that split SUSY is only consistent with a 126 GeV Higgs
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Figure 4.12: Higgs mass versus SUSY breaking scale MSS for µ = −M/2 and various
values of the trilinear A parameter.

for MSS . 100 TeV and no intermediate scale scenario is possible. Essentialy Split SUSY
becomes a fine-tuned version of the standard MSSM. One relevant issue is also that in Split
SUSY, due to the smallness of gaugino masses, in running down from the unification scale
the scalar quarks of the third generation may easily become tachyonic, which restricts a
lot the structure of the possible underlying SUSY breaking terms [138–140].

4.3.3. Gauge coupling unification

In the previous section we have computed the Higgs mass as a function of the SUSY
breaking scale, being the latter a free parameter. The results are independent of the
possible embedding in String Theory or in any ultraviolet completion of the MSSM. We
have seen that an Intermediate SUSY breaking scale of MSS = 1010 − 1013 GeV leads to
mH = 126 ± 3 GeV, indicating that the experimental value of the Higgs mass is indeed
the most typical one if SUSY is broken at an Intermediate/High scale. The down side of
this universality is that then the Higgs mass can not constrain much the SUSY scale. In
order to be more specific, we need an extra input. From a phenomenological point of view,
this extra input could come from cosmological data, since the scale at hand is far away
from the energies attainable at the colliders. We will delve more in this point in chapter
5. However, one can also look for constraints from the UV theory to narrow the allowed
range for MSS . If closed string fluxes are the main source of SUSY breaking, they lead
to a SUSY breaking scale between MSS = 1010 − 1013 GeV (assuming no fine-tuning or
suppression at all on the fluxes). The exact value depends on the GUT scale (see (4.226)).
Therefore we can try to be more explicit about MSS by imposing correct gauge coupling
unification and fixing MC . We proceed to do that in what follows.
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4.3.3.1. Hypercharge threshold corrections

One of the most appealing features of low energy SUSY is precisely the quite suc-
cessful unification of the three guage couplings of the strong and electroweak interactions.
However in our work we allow the scale of SUSY breaking MSS to be a free parameter
so a priori the unification gets worse as we take MSS away from the TeV scale. For the
extreme case in which MSS ≈ Mc we have the SM below Mc and we know that coupling
unification fails. On the basis of this one could conclude that gauge coupling unification
forces MSS to be close to the weak scale. Interestingly enough, F-theory GUT’s described
above can solve this problem because the breaking of the SU(5) symmetry via fluxes has
a novel type of threshold corrections compared to the field theory case that have the form
and size needed to reduce and even cancel the spliting of the gauge couplings.

To leading order the gauge kinetic function for the SU(5) group within the 7-branes is
given by the local Kähler modulus T whose real part is proportional to V4, consistently with
eq.(3.34). However in the presence of hypercharge fluxes fY the gauge kinetic functions
get corrections [33,53,141]. These corrections can be obtained by dimensionally reducing
the Dirac-Born-Infeld (DBI) + Chern-Simons (CS) action of the D7-branes in the presence
of a background for the worldvolume field strength of the form [53]

F =
8∑

a=1

F aSU(3)

(
λa/2 0

0 0

)
+

3∑
i=1

F iSU(2)

(
0 0
0 σi/2

)
+

1

6
FY

(
−23×3 0

0 32×2

)
+

+ (fa +
2

5
fY )

(
13×3 0

0 12×2

)
+

1

5
fY

(
−23×3 0

0 32×2

)
(4.246)

where the capital letters FG denote the four-dimensional gauge fields and the small letters
f the internal background fluxes. fa are fluxes along the U(1) contained in the U(5) gauge
group of the 7-branes which are needed for technical reasons10 but are not relevant in our
discussion. The relevant terms of the DBI+CS action that will give rise to the Yang-Mills
kinetic terms are

S ∝ µ7

∫
Σ4×R1,3

STr

[
1

4

(
1 +

g−1
s

4
FabFab

)
FµνFµν

]
+ µ7

∫
Σ4×R1,3

C0 ∧ tr(F 4) (4.247)

Inserting eq.(4.246) in eq.(4.247) and computing the traces for each gauge group of the
SM, one can obtain that the tree level gauge kinetic functions are given by

4πfSU(3) = T − 1

2
τ

∫
S
fa ∧ fa (4.248)

4πfSU(2) = T − 1

2
τ

∫
S

(fa ∧ fa + fY ∧ fY )

3

5
4πfU(1) = T − 1

2
τ

∫
S

(
fa ∧ fa +

3

5
(fY ∧ fY )

)
.

where τ = 1
gs

+ iC0 is the complex dilaton. This implies that at the compactification scale
one has the condition

1

α1(Mc)
=

1

α2(Mc)
+

2

3α3(Mc)
. (4.249)

10These fluxes are needed in order to satisfy the Freed-Witten anomaly condition since the D7-branes
are wrapping a del-Pezzo surface which is non-Spin, see e.g. [142].
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which is a generalization of the standard relationship 5/3α1 = α2 = α3. In addition it
turns out that in order to get rid of exotic matter massless fields beyond those of the
MSSM the topological condition

∫
fY ∧ fY = −2 should be fulfilled [30–33], in which case

one also obtains

3

5

1

gs
=

3

5α1(Mc)
− 1

α3(Mc)
=

3

5

(
1

α2(Mc)
− 1

α3(Mc)

)
. (4.250)

Thus the size of the threshold corrections is determined by the inverse of the string coupling
gs. The corrections by themselves imply an ordering of the size of the fine structure
constants at Mc given by

1

α3(Mc)
<

1

α1(Mc)
<

1

α2(Mc)
. (4.251)

We will neglect in what follows other possible sources of threshold corrections which are
subleading in general. However, we will come back to this issue at the end of next section.

If one wants to keep MSS ≈ 1TeV the corrections in eq.(4.248) may in fact spoil the
standard joining of gauge coupling constants in the MSSM, which works quite well, unless
they are suppressed by assuming gs � 1. Furthermore the above ordering of couplings
goes in the wrong direction if one wanted to use such corrections to further improve the
agreement with experiment [53].

However as we have commented, in our setting with 1TeV < MSS < Mc the correc-
tions have just the required form and size to get consistency with gauge coupling unification
without the addition of any extra matter field beyond the MSSM (see also ref. [133]). The
one-loop renormalization group equations lead to the standard formulae

1

αi(Mc)
=

1

αi(MEW )
− bNSi

2π
log

MSS

MEW
− bSSi

2π
log

Mc

MSS
(4.252)

where bNSi , bSSi are the one-loop beta-function coefficients of the SM and the MSSM re-
spectively. These are given by (b1, b2, b3)NS = (41/6,−19/6,−7) and (b1, b2, b3)SS =
(11, 1,−3). Combining these equations and including the boundary condition (4.249) one
obtains

2π

(
1

α1(MEW )
− 1

α2(MEW )
− 2

3α3(MEW )

)
= (4.253)

=

(
bNS1 − bNS2 − 2

3
bNS3

)
log

(
MSS

MEW

)
+

(
bSS1 − bSS2 −

2

3
bSS3

)
log

(
Mc

MSS

)
In our case this yields

44

3
log

MSS

MEW
+ 12 log

Mc

MSS
= 2π

(
1

α1(MEW )
− 1

α2(MEW )
− 2

3α3(MEW )

)
. (4.254)

so we obtain a constraint between Mc and MSS that has to be satisfied in order to have
gauge coupling unification. For completeness we have improved the computation by using
the 2-loop RGE for the gauge couplings in both SM and MSSM regions, obtaining the
following approximate relation between Mc and MSS

logMC = −0.23 logMSS + 16.77 . (4.255)

This latter constraint is plotted in Figure 4.13 as a black line, although actually it changes
very little compared to the one obtained just using the RGE at one loop (eq.(4.254)).
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4.3.3.2. ISSB in F-theory GUT’s

In what follows we combine the information collected about gauge coupling unific-
ation and flux-induced SUSY breaking to determine the prefered scale of SUSY breaking
in flux F-theory compactifications.

Throughout this thesis we have seen how, in Type IIB/F-Theory compactifications,
the different scales of the theory are not independent from each other. In the general setup
where closed string fluxes are the main source of SUSY breaking one can find a relation
between the unification scale Mc and the SUSY breaking scale MSS given by eq.(4.226)
and plotted in fig.4.13 as a red line. On the other hand gauge coupling unification is
easily accomodated in F-theory. We have seen how the hypercharge flux that breaks the
unification group to the SM induces some threshold corrections to the couplings that drives
us to a corrected gauge unification condition given by eq.(4.254) and represented by the
black line in fig.4.13. One can get consistent unification for values of MSS up to slightly
below 1014 GeV, which is required by the condition MSS < Mc. The unification scale has
also a lower bound at the same scale.
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Figure 4.13: Constraints on MSS and Mc from gauge coupling unification using the hy-
percharge threshold corrections (black line) and closed string flux induced SUSY breaking
(red line).

Taking into account both conditions (gauge coupling unification and flux induced
SUSY breaking) the scales of SUSY breaking and gauge unification are totally determined.
As we can see in the fig.4.13 both lines intersect at

MSS ' 2.5× 1010 GeV ; Mc ' 2.4× 1014 GeV . (4.256)

Thus one gets correct coupling unification consistent with closed string flux SUSY breaking
for SUSY broken at intermediate scale ' 1010 GeV and a slightly low SU(5) unification
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scale of order 1014 GeV. This immediately poses an apparent problem with proton decay
that we will deal with in section 4.3.3.3.

It is also interesting to display the value of gs as a function of MSS from eq.(4.250).
This is shown in fig. 4.14. For the values in eq.(4.256) one finds gs = 0.28. This shows
that the string coupling here is in a perturbative regime. On the other hand for values
MSS ' 1 TeV, corresponding to standard MSSM low-energy supersymmetry one needs
gs � 1. Note that in the context of F-theory the dilaton value gs varies over different
locations in extra dimensions and may be large or small, so both situations are possible
in F-theory GUTs.
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Figure 4.14: The string dilaton coupling constant versus MSS for consistent gauge coupling
unification. Left: With an MSSM content in the region MSS − Mc; Right: With an
additional vector-like triplet set D +D in that region.

Another interesting point is that the unification line (at one loop) in fig. 4.13 does
not change if in the region MSS −Mc there are incomplete SU(5) 5-plets, as equation
(4.254) does not change. Thus for example the curve remains the same if the SU(5)
partner of the Higgs doublets, the triplets D,D transforming like (3, 1, 1/3) + c.c., remain
in the spectrum below Mc. These triplets are potentially dangerous since their exchange
give rise to dimension 6 proton decay operators. The rate is above experimental limits
unless MD ≥ 1011 GeV [143], see section 4.3.3.3. That is why in GUTs one needs to
perform some form of doublet-triplet splitting so that the Higgs fields remain light but
the triplets are superheavy. In our case however these triplets will get a mass of order
MSS ≈ 1011 GeV anyhow so they may be tolerated below Mc and no doublet-triplet
splitting is necessary. The presence of these triplets does however affect the size of the
threshold corrections and gs. In this case one gets typically smaller gs which slowly grows
as MSS increases, see fig. 4.14. For MSS ' 1011 GeV one gets gs = 0.20.

As discussed in section 4.3.2, an intermediate SUSY breaking scale with the only
assumption of unification of the soft Higgs masses at Mc, automatically predicts a Higgs
mass around 126 GeV. Following the procedure explained there, one can compute the
Higgs mass for the scales given by eq.(4.256), obtaining

mH = 126.1± 1.2 GeV (4.257)

where the error includes only that coming from the top mass uncertainty. This is clearly
consistent with the findings at ATLAS and CMS. In this scheme with an intermediate
scale MSS the Higgs self-coupling unifies with its SUSY extension as depicted in fig.4.15
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λSUSY = (g2

1(t) + g2
2(t))/4 × cos2(2β)(MSS) in the model with µ = −M/2 and an in-

termediate scale MSS ≈ 3 · 1010GeV. They unify at MSS where SUSY starts to hold.
Right: Values of the 3-d generation squark soft masses mQ,U,D as well the Higgs mass
parameters mHu ,mHd , µ and trilinear At at the scale MSS obtained from the running
below the unification scale MC .

(left). The soft masses evolve logarithmically from MC down to MSS as depicted in fig.4.15
(right). The value of tanβ increases as the value of m2

Hu
decreases and m2

Hd
remains almost

constant, so that tanβ increases as MSS decreases.

Let us remark again that this does not imply that in F-theory GUT’s with closed
string fluxes as the main source of SUSY breaking one is forced to break SUSY at 1011GeV.
If one wants low energy SUSY (MSS ∼ 1TeV ) the usual procedure is to set Mc ∼ 1016GeV
consistent with MSSM gauge coupling unification and consider that the effect of the fluxes
is somehow suppressed, as we explained in section 4.3.1. Possible suppressions could come
from fine-tuning in the flux or warping factors leading to a flux dilution. This is the
implicit assumption in models with flux induced SUSY breaking, Ms ' 1016 GeV and a
standard SUSY solution to the hierarchy problem. However what we want to emphasize
here is that avoiding any kind of fine-tuning or supression in the fluxes the most natural
scale for SUSY breaking arising in this class of string compactifications corresponds to an
intermediate SUSY breaking scale (ISSB)11 instead of the usual low energy MSSM.

Before concluding, let us comment on other possible sources of threshold corrections
to the gauge couplings beyond the classical contribution coming from the hypercharge
fluxes considered here. In general, gauge couplings can also receive quantum corrections
coming from KK massive modes running on internal loops, as emphasized in [144]. In [145]
it was performed a detailed analysis considering both kind of corrections, but the results
do not differ much from the ones obtained here and the conclusions are basically the same.
On the other hand, the hypercharge gauge coupling might also receive corrections from
mixing of the U(1)Y with hidden U(1)’s, as has been recently studied in [146]. Since
this mixing is very model dependent, an alternative to fix Mc would be to focus only on
α2, α3 and forgetting about α1. We define then the unification scale as the one at which

11Note that the Intermediate Scale SUSY Breaking (ISSB) described above corresponds to a variant of
the High Scale SUSY Breaking (HSSB) scheme of Hall and Nomura in ref. [114].

97



Chapter 4. From String Theory to Particle Physics

10
11

10
12

10
13

10
14

10
15

10
16

10
17

10
18

10
4

10
6

10
8

10
10

10
12

10
14

10
16

U
n

if
ic

at
io

n
 s

ca
le

 M
C

SUSY breaking scale MSS

Gauge coupling unification

Flux−induced SUSY breaking
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closed string flux induced SUSY breaking (red line). Mc is defined as the value at which
α2 = α3 due to possible unknown corrections to α1 from U(1) mixing.

α2 = α3, considering that α1 receives unknown threshold corrections from U(1) mixing so
that coupling unification is satisified. The 2-loop unification condition then reads

logMc = 0.025logMSS + 15.94 (4.258)

yielding Mc ' 1016 GeV, roughly independent of MSS . This scenario is plotted in fig.4.16.
Once the condition for flux-induced SUSY breaking is taken into account, this yields

MSS ' 1.5× 1014 GeV ; Mc ' 2× 1016 GeV . (4.259)

corresponding to a SUSY breaking scale in the upper limit to stabilize the SM vacuum.

4.3.3.3. Proton decay and axions

In this section we discuss some phenomenological issues arising in the Intermedi-
ate SUSY breaking scale scenario described above, regarding proton decay and possible
candidates for dark matter.

Proton decay. As we already advanced with a unification scale as low as Mc = 3×1014

GeV there is a danger of dimension 6 operators giving rise to proton decay rates much
faster than experiment. In standard field theory GUTs, the proton decay dim=6 operators
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obtained after integrating out the massive X,Y doublet of gauge bosons are [143]

O1 =
4παG

2M2
X,Y

U caLγ
µQaLEcbLγµQbL (4.260)

O2 =
4παG

2M2
X,Y

U caLγ
µQaLDc

bLγµLbL . (4.261)

The first operator arises from the exchange of the heavy gauge bosons with masses MX,Y

between two 10-plets whereas the second from the exchange between a 10-plet and a 5-plet.
Experimentally, the Super-Kamiokande limit on the chanel p → π0e+ gives an absolute
lower limit τp > 5× 1033 years [147]. This corresponds to a bound on MX,Y

MX,Y ≥
√

αG
1/39

1.6× 1015 GeV (4.262)

A value MX,Y = Mc = 3 × 1014 GeV is 5 times smaller and that could pose a problem.
In F-theory GUTs the same proton decay operators as above will appear, the difference
now being that the symmetry is broken due to a hypercharge flux. Due to this fact the
coefficients of the operators may change substantially, as we now discuss.

Indeed, considering proton decay in the context of F-theory SU(5) unification provides
a new interesting mechanism to suppress proton decay. A microscopic computation of the
above dimension 6 proton decay operator would involve first computing couplings of the
form e.g. U caLXµQaL and then integrating out the massive doublet X,Y . The computa-
tion of such trilinear couplings is rather similar to the computation of Yukawa couplings,
in the sense that it also involves a triple overlap of internal wavefunctions, namely

Γij1 = 2m∗

∫
S

(Ψi
10)†Ψj

10ΦX,Y Γij2 = 2m∗

∫
S

(Ψi
5̄)†Ψj

5̄
ΦX,Y (4.263)

where now ΦX,Y are the internal wavefunctions of the broken SU(5) bosons X,Y . These
form a doublet of massive gauge bosons with quantum numbers (3, 2, 5/6) + c.c..

In standard 4d GUTs, the value of such couplings does not depend on the vev of the
Higgs in the 24 of SU(5), and so it is exactly the same before and after SU(5) breaking
(to leading order). Hence, one may extract the trilinear couplings like U caLXµQaL directly
from the SU(5) Lagrangian as the strength by which SU(5) gauge bosons couple to chiral
matter, namely (4παG)1/2.

Now, the key point for proton decay suppression in F-theory is the fact that the
ingredient that triggers SU(5) breaking is not a vev for a scalar in the adjoint of SU(5),
but the presence of the hypercharge flux FY along the GUT 4-cycle S. The mass of the
X,Y gauge bosons is given by

M2
X,Y =

5µ

6π
(4.264)

where µ =
√
N2
Y + Ñ2

Y measures the density of hypercharge flux, which we take constant

for simplicity. The flux quantization condition implies that 5/3(FY /2π) is quantized in

S (i.e., its integral over 2-cycles of S is an integer), so that NY , ÑY ≈ 6π/5Vol
−1/2
S and

indeed MX,Y ' Mc ' Vol−1/4. Finding the wavefunctions in (4.263) involves solving a
Dirac or Laplace equation for them, in which any flux threading S will enter. We then
have that both the wavefunctions for chiral fields and massive gauge bosons X, Y depend
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on the internal fluxes on S, and in particular on the hypercharge flux FY . As a result,
adding an hypercharge flux will necessarily change the value of the effective 4d couplings

(4.263): while in the absence of FY such couplings must be ∝ α
1/2
G in its presence they

will have a new value.

To show that this new value will be suppressed with respect to α
1/2
G we need to

compute explicetely the internal wavefunctions for the matter fields. The basics of the
computation was explained in section 4.1.2 for a toy model with gauge group U(3). Here
we will use the more ellaborated wavefunctions obtained in the local SO(12) F-theory
GUT model described in [42] to account for a realistic embedding of the SM. Such a
model was also introduced in section 4.1.4 to compute the hypercharge dependence of the
soft terms. Here we will try to be schematic, referring the reader to section 4.1.4 and
to [42] (see also [34–41, 63] for more details on the subject). In F-theory SU(5) models
there are basically two kinds of wavefunctions: the ones that are peaked at the matter
curves of S, namely Ψi

10, Ψj
5̄

and ΦHU,D , and the ones that are spread all over the 4-cycle
S, namely the SU(5) gauge bosons and in particular ΦX,Y . As they come from different
sectors of the theory, these two kinds of wavefunctions feel the effect of the hypercharge
flux in a different way.

Indeed, let us consider the wavefunctions involved in the coupling Γ1 in (4.263).
Solving for them in a local patch of S and assuming that the 4-cycle S is sufficiently large
(see [42] for more details) we have that

Ψi
10 =

(
0
~v

)
ψi10, ψi10 = γi10m

4−i
∗ x3−i e−

|Mx+qY ÑY |
2

|x|2e−m
2|y|2−qSRe(xȳ)(4.265)

ΦX,Y = γX,Y m∗ e
− 5

12
µ(|x|2+|y|2) (4.266)

where (x, y) stand for local complex coordinates of the 4-cycle S, and we have assumed that
matter curve supporting the chiral fields 10 is given by Σ10 = {y = 0}. The hypercharge
dependence of the wavefunction Ψ10 is encoded in the hypercharge value qY and in qS =
NF + qYNY , so that for a non-vanishing FY particles with different hypercharge have
different wavefunctions. Here Mx, ÑY , NY and NF stand for densities of fluxes threading
the 4-cycle S, and in particular Mx is the density of the flux necessary to have three families
of 10’s along Σ10. The parameter m2 stands for the slope of the intersection between the
SU(5) 4-cycle S and the U(1) 7-brane intersecting S in Σ10. Such intersection scale is
typically of the order of the fundamental scale of F-theory m∗ ('Ms in a perturbative IIB
orientifold), which implies that Ψi

10 are highly peaked along the matter curve Σ10 = {y =
0}. Finally, ~v is a three-dimensional vector that depends on m2 and the flux densities, and
the γ’s are normalization factors that insure that such fields are canonically normalized.

Both ~v and the quantities that appear in the exponential factor of ψi10 are family
independent: the only dependence of the family index i corresponding to the power of x
(the matter curve Σ10 coordinate) that appears in the wavefunction. It has been found
[34–41] that with this prescription (that assigns the power x2 to the first family, etc.) one
can reproduce the mass hierarchy between families observed in nature.

Notice that the fact that Mx, ÑY and m2 are non-zero gives a gaussian profile to
these wavefuctions, and this allows to carry the integral for Γ1 by replacing S with IR4.
This is important since otherwise we would need geometrical information about the full
manifold B3, which is in general not available. Notice also that the wavefunction for
the boson X,Y is only affected by the hypercharge flux density µ, and that in the limit
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µ→ 0 we recover a constant wavefunction. This is to be expected, since at this limit the
SU(5) symmetry is restored and X,Y become massless gauge bosons, which always have
a constant profile.

Given these facts we are now ready to compute the coupling Γ1 above. First notice
that in the limit µ→ 0 the integral is trivial in the sense that ΦX,Y = γX,Ym∗ is constant,
since

2m∗

∫
S

(Ψi
10)†Ψj

10ΦX,Y = 2γX,Ym
2
∗

∫
S

(Ψi
10)†Ψj

10 ≈ α
1/2
G δij (4.267)

where used that for µ = 0, the normalization factor is simply γX,Y = Vol
−1/2
S m−2

∗ ≈ α
1/2
G .

Hence in this limit we recover the result expected from SU(5) gauge invariance.

This result is no longer true when µ 6= 0 and so the wavefunction ΦX,Y has a non-
trivial profile. Then one finds that there is a suppression in the above coupling which is
family dependent, and bigger for lower families. Indeed, to get an estimate of this coupling
it is useful to take the approximation m2 ∼ m2

∗ � Mx, µ and treat the Gaussian profile
exp(−m2|y|2) as a δ-function in the coordinate y, which is nothing but asking that the
matter wavefunctions Ψi

10 are fully localized in Σ10. That is, we take the limit m2 → ∞
in which

(ψi10)∗ψj10 → γi10γ
j
10m

8−i−j
∗ x̄3−ix3−j e−|Mx+q̄Y ÑY ||x|2 π

m2
δ(y) (4.268)

and so the integral must be basically taken over Σ10. Here q̄Y = (qYp + qYq)/2 is the mean
value of hypercharge for the two particles of the 10-plot participating in the amplitude.
Taking into account that in this limit the normalization factors are [42]

γi10 =
1√

2(3− i)π

(
|Mx + qY ÑY |

m2
∗

) 4−i
2

γX,Y =
1√
2π

5µ

6m2
∗

(4.269)

we obtain that

2m∗

∫
S

(Ψi
10)†Ψj

10ΦX,Y = δij
5µ

6
√

2πm2
∗

(
|Mx + qYpÑY |1/2|Mx + qYqÑY |1/2

|Mx + q̄Y ÑY |+ 5
12µ

)4−i

≈ δijα
1/2
G

(
|σ2 + ( 5

12ÑY )2|1/2

σ + 5
12µ

)4−i

(4.270)

where we have defined σ = |Mx + q̄Y ÑY | and used |qYp − qYq | = 5/6 and µ ≈ 6π/5Vol
−1/2
S .

Nevertheless, this result can be reproduced with a bit more of effort without taking the
δ-function approximation.

Since µ > ÑY , the coupling (4.270) is indeed suppressed with respect to the 4d GUT

result α
1/2
G , and the suppression is bigger the lighter the family. Since we are interested

in proton decay operators one could in principle focus on the first family i = 1, in which
by assuming Mx ≈ NY 5/12 ≈ ÑY 5/12 we already obtain a suppression factor of around
1/5, and much bigger if NY > ÑY . In fact, being more rigorous, we would really need to
take into account the fact that the actual physical first generation wave functions will be
proportional to a linear combination of the x2, x, 1 monomials. Even if this extra terms
are present, one expects the first generation to be dominated by the x2 monomial with
a small contamination (related to mixing angles) from the other two. In any event, the
presence of a suppression will be generic.
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Figure 4.17: Coupling of SU(5) off-diagonal gauge bosonsX,Y . Before symmetry breaking
by hypercharge fluxes the wave function of X,Y is extended over the whole 4-cycle S. After
the hypercharge flux FY in introduced their wavefunction is localized and their coupling
to 10, 5̄ fields is supressed.

The fact that the suppression factor is bigger for each family can be given an intuit-
ive understanding, since in F-theory families with smaller Yukawa couplings are those that
have a higher polynomial degree xn in their wavefunction (see eq.(4.265)). Such higher
power gives a compensating effect to the localization that arises from the family independ-
ent exponential factor exp(−a|x|2), that tends to localize the triple overlap around x = 0.
The lighter the family the bigger the compensating effect, thus the smaller the coupling.

This understanding of the coupling strength in terms of exponential factors gives
yet another mechanism for suppressing the dimension six proton decay operators. Indeed,
notice that in (4.266) we have described the wavefunction for the massive X,Y bosons in
terms of a Gaussian function on S peaked at x = y = 0. However, that the wavefunction
ΦX,Y peaks there is in fact a choice that we have made biased by the local patch description

of our F-theory model setup. Unlike for the wavefunctions Ψj
10, whose equations of motion

force them to be localized at the matter curve Σ10 = {y = 0}, there is nothing special
about y = 0 for the wavefunctions of the gauge bosons X,Y which only depends on the
hypercharge flux FY and on the geometry of the 4-cycle S. Only these two factors will
determine where the peak of the wavefunction ΦX,Y is, so there is a priory no reason
to think that it will be peaked at any matter curve. Now, if the wavefunction ΦX,Y is
not peaked at y = 0 but somewhere else the δ-function in (4.268) will yield an extra
suppression upon integration on the complex coordinate y, as the wavefunction density
for ΦX,Y will be exponentially suppressed away from its peak.

To summarize, F-theory SU(5) models have naturally suppressed dimension 6 pro-
ton decay operators, because the mechanism that breaks the SU(5) symmetry - the hyper-
charge flux FY - also affects the couplings where these operators come from. Indeed, the
presence of the hypercharge flux deforms the wavefunction profile for the fields 10, 5̄ and
X,Y , as illustrated in figure 4.17. In particular it affects the X,Y bosons, which instead
of being massless gauge bosons extended evenly over the whole 4-cycle S, are due to FY
massive modes peaked at some point of it. Such localization effect indeed changes the
value of the couplings (4.263) as we have shown in the computation above. Moreover, for
the sake of simplicity we assumed above that the peak of the X,Y wavefunction lied on top
of the matter curve Σ10 where the 10-plet resides. There is no reason for this assumption
to hold in a global description of our setup, so the X,Y wavefunction will in general be

102



Chapter 4. From String Theory to Particle Physics

suppressed in the region of Σ10 and there will be a further suppression to the coupling
of X,Y to quarks-leptons. It is easy to see that any of these suppression mechanisms
allow to have a rate for proton decay consistent with experimental limits. Note however
that the precise value of the coefficient of the operators depends on the details (i.e. local
fluxes) of the model. Still these results allow for the possible detection of proton decay
through e.g. the channel p → π0e+, typical of non-SUSY unification, in future proton
decay experiments.

If Higgs triplets D,D with a mass MD ' MSS ' 1011 GeV are present in the
spectrum, there will appear additional contributions to proton decay close to the present

experimental limits [143]. They would come from the exchange of the scalar fields D̃, D̃
among quarks and leptons of the first and second generations from Yukawa couplings,
with p→ µ+K0 the dominant channel. In field theory GUTs these Yukawa couplings are
directly related to the Yukawa couplings of the Higgs doublets due to the SU(5) symmetry.
In our case however the relevant D-field Yukawas are different to those of the Higgs, again
due to the presence of the hypercharge flux [42]. One still expects those Yukawas to be of
the same order of magnitude, i.e. of order 10−5 for the first generation. The combination
of a massive D-field with the smallness of Yukawa couplings make these extra dimension
6 contributions compatible with experimental bounds, given the uncertainties.

Note in closing that dimension 5 proton decay operators are very much suppressed
in the present framework due to the large mass of the SUSY partners. Additional sources
of proton decay could appear if the underlying MSSM contains dimension 4 R-parity
violating couplings. These could give rise to new dimension 6 operators by the exchange
of sfermions but the rate will be again suppressed by the large mass of the SUSY partners
combined with the expected smallness of the R-parity violating couplings involving the
first generations.

Axions. The strong CP problem is a naturality problem with no obvious anthropic
solution. In this sense it is quite satisfactory that string theory has natural candidates for
the axion solution of the strong CP problem. As shown in eq.(4.248) the imaginary part
of the local Kähler modulus Im T has axionic couplings to the QCD gauge bosons, and
hence is in principle an axion candidate which could solve the strong CP problem 12. In
the Type IIB/F-theory scheme under discussion it is an important point the decoupling
of the local GUT physics sitting on the local S 4-cycle from the global physics of the full
six extra dimensions. A good model for this structure is considering the CY manifold
P4

[1,1,1,6,9] in ref. [14,15] with one small Kahler modulus T and one big Kahler modulus Tb
with Kahler potential

K = −2log(t
3/2
b − t3/2) . (4.271)

with t = 2ReT and tb = 2ReTb. Here one takes tb � t and take both large so that the
supergravity approximation is still valid. In the F-theory context the analogue of these
moduli t, tb would correspond to the size of the 4-fold S and the 6-fold B3 respectively.

One can compute the associated axion scale Fa from the kinetic term of the modulus
T (see e.g. [4])

F 2
a =

M2
p

4π(8π2)2

∂K(T, T ∗)

∂T∂T ∗
=

M2
p

4π(8π2)2

3t−1/2

8t
3/2
b

(4.272)

12The τ complex dilaton scalar has also axionic couplings but Imτ gets generically massive in the presence
of closed string fluxes.

103



Chapter 4. From String Theory to Particle Physics

where in the last equality we have used eq.(4.271), which correctly features the decoupling
of the local SU(5) physics from the global properties of the compact manifold. For the
local modulus one has t = 1/αG and

tb =
V

2/3
6

gsα′2(2π)4
=

(
α′1/2g

1/4
s√

8
Mp

)4/3

(4.273)

where in the last equality we have used eq.(3.33). Using eq.(3.35) one finally obtains

Fa =

(
18

π2

)1/4 Mc

16π2
. (4.274)

Note that the axion decay constant is directly related to the compactification scale (or
the string scale via eq.(3.35)) and hence may be naturally low. This is to be contrasted
to the heterotic model-independent axion ImS whose axionic coupling is directly tied to
the Planck scale through F heta = αGMp/(8π

3/2) ' 1016 GeV (see e.g. [4] and references
therein). In our case, for the preferred value Mc = 2.4× 1014 GeV one obtains

Fa ' 1.8× 1012 GeV . (4.275)

This is an interesting value since Fa it is in the allowed QCD invisible axion range. It is
at the upper limit of the allowed window, which is in fact required for the axion to be a
viable dark matter candidate. This is also fortunate because in this scheme there are no
light neutralinos as in the MSSM or split SUSY which could play the role of dark matter.

The mass of the axion is given through standard formulae by (see. e.g. [148])

ma =
z1/2

(1 + z)

fπmπ

Fa
=

0.6× 103 µeV

Fa/(1010GeV)
(4.276)

where we have taken z = mu/md = 0.56. For the Fa value in (4.275) one gets an axion
mass

ma ' 3.3 µeV . (4.277)

Due to the underlying SU(5) symmetry the coupling of the axion to photons is directly
related to Fa by a factor sin2θW = 3/8 (this is analogous to the DFSZ axion case [149,150]).
In particular, defining the (normalized) axion-photon coupling as

Gaγγ
4

a F γ ∧ F γ (4.278)

one obtains

Gaγγ =
αem
2πFa

(
8

3
− 2

3

(4 + z)

(1 + z)

)
' 0.42× 10−15(GeV)−1 . (4.279)

These values are not far from the limits obtained from searches with the microwave cavity
experiment ADMX for cosmic axion dark matter [151]. They obtain

|Gaγγ |
ma/µeV

< 5.7× 10−16(GeV)−1

√
0.45 GeV/cm3

ρDM
(4.280)
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for ma in a range ma = 1.9− 3.55 µeV. Here ρDM is the local dark matter density. In our
case we have |Gaγγ |/(ma/µeV) ' 1.3× 10−16 (GeV−1). The upgrading of ADMX should
be able to test the axion parameters of the present scheme 13. This would be an important
test of these ideas.

Let us finally comment that a possible problem for the axion in the local modulus T
to become a QCD axion is moduli fixing. Indeed one may wonder whether the dynamics
fixing the moduli could also give a large mass to Im T . However this is not necessarily
the case see e.g. [153–155].

4.3.4. Higgs finetuning in Type IIB/F-theory GUT’s

As we have seen, an Intermediate SUSY breaking scale is consistent both with
gauge coupling unification from appropiate threshold corrections and flux-induced SUSY
breaking by 3-form fluxes. Besides, it gives rise to a Higgs mass of approximately '
126GeV, consistent with LHC results. In the computation of the Higgs mass (described
in detail in section 4.3.2) we made two assumptions that are worthy of further study:
universality on the soft Higgs masses

m2
Hu = m2

Hd
at Mc (4.281)

and the fine-tuning condition

m4
3 = m2

Hum
2
Hd

at MSS (4.282)

required to keep light a Higgs doublet to be identified with the SM Higgs field. The
question is whether there is any SUSY/string based scheme in which these two conditions
are satisfied naturally. The first condition points at an underlying symmetry under the
exchange of Hu and Hd. The second condition does not necessarily imply any underlying
symmetry, but rather a fine-tuning constraint which has to be satisfied if we want to have
a light Higgs. The latter could just have an anthropic explanation in a string landscape
of possibilities.

The aim of this section is to discuss how these two conditions can be accomodated
in string Type IIB/F-theory compactifications (see [124,137] for similar work).

4.3.4.1. Universal Higgs soft masses

The universality condition (4.281) is generic and can naturally appear in any type
II configuration in which the D-brane system contains an N = 2 subsector with the HIggs
fields living in an N = 2 hypermultiplet. In F-theory GUT’s the matter fields are localized
in the extra dimensions at the so called matter curves, which in the perturbative picture
of Type IIB correspond to intersections of D7-branes. In order to get chirality one turns
on a magnetic flux in the worldvolume of the branes such that the matter curve is charged
under it and just one of the two matter fields survives, ending up with a chiral spectrum.
If we want the two Higgs doublets to come from the same matter curve ΣH we need that
the integral of the gauge field flux over the curve ΣH vanishes. In that case we get a non-
chiral N = 2 subsector of the theory that can be identified with the Higgs sector. In the
typical MSSM constructions within F-theory this usually happens the other way around

13See ref. [152] and references therein for recent ideas of about axions in the context of fine-tuning.
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(see [24–26, 28, 29] for reviews). In order to solve the doublet-triplet splitting problem
people turn on a net hypercharge flux on the curve such that just one of the two doublets
survives while the triplets remain uncharged an then typically adquire a large mass of the
order of the string scale. Thus these constructions require the existence of two different
matter curves 5H and 5̄H , one for each Higgs supersymmetric doublet. However, in our
scheme SUSY will be broken at high energy so the triplets will already take a large mass
and we do not need to worry about them. Therefore we can consider

∫
ΣH

FY = 0 and get
Hu and Hd living in the same matter curve. In that case any source of SUSY breaking
will induce generically a mass matrix of the form (4.227) symmetric under the exchange
of the two Higgses, satisfying the condition (4.281).

Even if both Higgses live in different matter curves, they can still have approx-
imately the same mass. Let us consider the expressions for the soft masses derived in
(4.137). Throughout the previous sections we have discussed two possible sources of
non-universalities: hypercharge dependence and flavor mixing from non-constant fluxes.
Matter curves feeling different amount of hypercharge flux will lead to matter fields with
different soft masses, as we discussed in section 4.1.4. However, since both up and down
Higgses have the same (absolute value of) hypercharge, the resulting soft masses are also
the same. Therefore, the only way to get an splitting between mHu and mHd is by allowing
for non-constant densities of the closed and/or open string fluxes. Since both Higgses live
in different curves slightly localised at different loci in the internal dimensions, they will
feel a different flux density and therefore get a slightly different soft mass. However, this
splitting can not be very pronounced because both Higgs curves are expected to be very
close to each other in order to recover the experimental values for the entries of the CKM
matrix. Therefore the condition mHu ' mHd is expected to be approximately satisfied in
any event.

4.3.4.2. Tuning a light Higgs

In order to have a light Higgs scalar hSM at scales MEW �Ms we need to fine-tune
m4

3 = m2
Hu
m2
Hd

at the scale MSS at which SUSY is broken, with soft terms of order MSS .
If we had an exact symmetry implying (4.282) at the unification scale Mc (like an exact
shift symmetry, see [124, 137]) the running from Mc to MSS would spoil that condition.
Therefore the idea is to start at the string scale with m2

Hu
m2
Hd

> m4
3, such that MSSM

loop corrections lead eventally to m4
3 = m2

Hu
m2
Hd

at the SUSY-breaking scale MSS , so
that a massless Higgs doublet survives. In the flux compactifications of Type IIB and
F-theory studied in this thesis these soft terms are related to the flux background, so
we can translate this condition into a fine-tuning condition in the flux background of the
vacuum. This vacuum could then be anthropically selected within a string landscape of
possibilities in order to satisfy eq.(4.282).

Another type of fine-tuning, based on anthropic arguments, was previously put for-
ward by Weinberg as a potential explanation of the smallness of the cosmological constant
(c.c.). In that case the existence of a huge landscape of string theory vacua, parametrized
by a large number of discrete choices for fluxes in type IIB string theory, makes plausible
the existence of vacua with small (and slightly positive) c.c. [81]. In the simple KKLT set-
ting [8] such fine-tuning is possible because of two ingredients: i) there is a large number of
3-form flux choices, making possible to fine-tune a constant superpotential in the effective
action and ii) there is an uplift mechanism provided by anti-D3 branes trapped on flux
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throats with tunable wrapping factor. The latter might be replaced by D7-branes with self-
dual magnetic fluxes, such that they carry an effective anti-D3-brane charge. This scheme
has been generalised in different directions, as in the LARGE volume scenario [14–17]. It
is also fair to say that the introduction of anti-D3 branes to uplift the vacuum energy to
a sufficiently long metastable deSitter vacuum is under debate nowdays. Although at the
moment there is not a complete example fulfilling all the phenomenological requirements,
it is reasonable to think that type IIB string theory vacua with fluxes and D-brane sources
is sufficiently rich to allow for a landscape solution to the c.c. problem.

It is then natural to ask whether type IIB string theory also allows for a simultaneous
fine-tuning of the Higgs mass. If so, has anything to do with the c.c. fine-tuning in e.g. the
KKLT scheme? What would be in this case the microscopic description of the tuning?
There is of course an obvious difference with the fine-tuning of the c.c., namely the smaller
amount of tuning that is required. Indeed, the fine-tuning of the electroweak scale is much
less severe, with (MEW/MX)2 of order (10−2)2 − (10−14)2, where MX is either the string
scale Ms or the SUSY-breaking scale MSS . This is to be compared to the (10−30)4 tuning
required for the (almost) cancellation of the c.c.

It is very difficult at present to give a complete answer to the above questions. More
modestly, in this subsection we would like to display the different leading microscopic
contributions to the Higgs mass matrix that we can envisage in the bottom-up context
of the present thesis. The question that we would like to address is whether flux-induced
soft masses allow for this structure.

For definiteness we consider the case in which the SM fermions and scalars are
localised on matter curves (or intersecting 7-branes) on a 4-fold S wrapped by a stack of
7-branes, as in local SU(5) F-theory models. For simplicity we take the case of a non-chiral
Higgs matter curve in which a µ-term is generated by an ISD 3-form flux S(2,1) and the
dominant source of SUSY-breaking also comes from ISD fluxes. According to our results
in previous sections, at the string scale the Higgss mass matrix (4.227) has a qualitative
structure of the form

m2
Higgs =

gs
8

(
2|G(0,3)|2 + 1

4 |S(2,1)|2 −G(0,3)S(2,1)

−G∗(0,3)S
∗
(2,1) 2|G(0,3)|2 + 1

4 |S(2,1)|2
)

+ O(〈F2〉2)

+ O(S(1,2), G(3,0)) + . . . (4.283)

The first term shows the structure of soft terms that we found in section 4.1.2 for the
Higgs field on a matter curve with ISD fluxes. The reader can check that this matrix is
positive definite and hence has only positive eigenvalues. Thus, at the unification scale
there is no zero eigenvalue, and thus no light Higgs, for arbitrarily large 3-form fluxes.
On the other hand, as we have already argued, the RG running from Ms down to the
SUSY-breaking scale MSS should lead to det(MHiggs)

2 = 0 so that a light Higgs scalar
becomes possible. In fact it can be shown that this choice of soft terms when applied to the
MSSM leads to a massless Higgs upon running down to an intermediate SUSY breaking
scale MSS ' 1010 − 1012 GeV, for certain ranges of the µ-parameter. This is consistent
with the assumption of closed string fluxes as the main source of SUSY breaking.

The simultaneous presence of G(0,3) fluxes breaking SUSY and S(2,1) fluxes indu-
cing a supersymmetric mass can also be understood from the N = 1 4d supergravity
action, given by a Kahler potential invariant under shifts of the SM Higgs field, plus an
additional supersymmetric µ-term in the superpotential. Even if the Kahler potential
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is shift invariant, the µ-term breaks the shift symmetry in the scalar potential, leading
to det(MHiggs)

2 > 0 at Mc. The zero eigenvalue arises dynamically only after running
the soft masses down, at a scale roughly given by the relation between the µ-term and
the Giudice-Masiero contribution (or microscopically, between both kind of fluxes). Both
parameters must be tuned to yield a zero eigenvalue exactly at MSS . We will further
discuss about the suprgravity description in section 5.2.

It is important to remark that the condition (4.282) has to be satisfied with a
precision of 16 orders of magnitude at MSS . Therefore all subleading corrections (and not
only the leading contribution coming from the 3-form fluxes) become important. It is here
where the delicate fine-tuning required between all the contributions is manifest.

There are various types of corrections in eq. (4.283). The factor O(〈F2〉2) denotes
corrections quadratic in the magnetic fluxes that appear in non-chiral Higgs matter curves,
such as those computed in section 4.1.1.2. Those corrections may have different origins,
as we have already discussed. For instance, they may encode contributions induced by
distant anti-branes, computed in section 4.1.3. We can illustrate those by summing over
the contributions of n distant stacks of Ni anti-D3-branes located at distances r0i from
the SM 7-branes,

δm2
Higgs =

2σ4

π

n∑
i

Ni

Z0i

F 2
−
r6

0i

(
4 3
3 4

)
(4.284)

with Z0i = 1 − gsNσ2π−1r−4
0i . These corrections are higher order in the magnetic flux

since, as we have already mentioned, only in the presence of magnetic flux F− in the
worldvolume of the 7-branes the backreaction of anti-D3-branes is felt by 7-branes. Ana-
logous contributions could be induced by distant 7-branes with self-dual magnetic fluxes
F+ in their worldvolume.

There may be also contributions from IASD closed string 3-form fluxes, denoted by
O(S(1,2), G(3,0)) in eq. (4.283). In fact, specific scenarios of moduli fixing include additional
7-branes with gaugino condensation or instanton effects that generate superpotentials
which are crucial in fixing the Kähler moduli of the compactification. It was shown in [62]
that such non-perturbative effects generate both ISD and IASD 3-form fluxes as part of
their backreaction.

The size of the various contributions to eq. (4.283) is very model-dependent. For
instance, in certain class of LARGE volume compactifications the main source of SUSY-
breaking is modulus domination [14–17], being locally given by the contribution of ISD
3-form fluxes above. In others, including the original KKLT scenario, the contribution of
distant anti-D3-branes and IASD fluxes turns out to be non-negligible. We can make a
naive estimate of the relative size of ISD 3-form flux contribution with respect to that of
distant anti-D3-branes. Considering uniform fluxes G(0,3) ' α′/R3, we expect flux-induced
soft terms of order

m2
Higgs '

gsα
′2

2R6
' M4

s

gsM2
Pl

(4.285)

where we have used the type IIB equation

M2
Pl =

8Vol(B3)

(2π)6g2
sα
′4 (4.286)

with Vol(B3) ≈ (2πR)6 the volume of the compact space. On the other hand, assuming
that the distance between the branes r0i is of the order of the size of the CY, we can
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replace r0i ∼ R and from eq. (4.284) we obtain that the contribution of anti-D3-branes to
the Higgs mass matrix scales as

δm2
Higgs ∼

M4
s

gsM2
p

×
(
nNσ2F 2

−
)
. (4.287)

The contribution of distant anti-D3-branes to soft masses is thus comparable to that of
3-form fluxes, except for the fact that the first are suppressed by the magnetic flux factor
σ2F 2

−. The latter is assumed to be small if the open string fluxes are diluted, so that the
3-form flux contribution is expected to dominate in many situations. Nevertheless 3-form
fluxes might be diluted at the position of the SM 7-branes or alternatively the local 3-form
flux could be fine-tuned.

The above discussion shows the abundance of possible contributions to the fine-
tuning of the Higgs mass. Even in cases where ISD 3-form fluxes dominate SUSY-breaking,
the contributions from open string magnetic fluxes, distant anti-branes or IASD fluxes
can probably not be neglected in what concerns the Higgss fine-tuning. All of them are
important, along with loop corrections, as long as the SUSY breaking scale is much above
1 − 10 TeV. For instance, if MSS ' 1011 GeV, a fine-tuning of 16 orders of magnitude
is required in which all these effects can potentially become important. In particular,
the same anti-D3-branes which play a role in (almost) cancelling the c.c. in KKLT and
related scenarios, generically influence the fine-tuning of the Higgss mass. In this regard,
one important point to remark is that the Higgss mass is really directly sensitive to the
local values of closed and open string flux densities, rather than to the integrated fluxes.
Of course, in a putative compactification with all moduli fixed, the full geometry (including
also the local values of fluxes near the SM branes) depend on the global features of the
compactification such as the integer flux quanta, and therefore the Higgs mass, like the
c.c., will eventually depend on the flux integers.
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5
From String Theory to Cosmology

In this chapter we turn to describe the construction of inflationary models within
String Theory. We start section 5.1 with a review of the basic concepts of inflation, followed
by a detailed discussion about the extreme sensitivity of inflation to UV physics and the
problems arising in the effective field theory approach. We finish the section by discussing
the realization of large field inflation in string theory and the different proposals to get a
transplanckian field range for the inflaton. In section 5.2 we propose and study in detail a
new inflationary model called Higgs-otic inflation, in which the MSSM Higgs sector leads to
a 2-field inflationary model interpolating between chaotic and linear inflation. We embed
the model in Type IIB orientifold compactifications in which the inflaton corresponds to
the position modulus of a D7-brane. We also discuss the effects of higher order corrections
and compute the relevant cosmological parameters.

5.1. Inflation in String Theory

Our current understanding of the universe is encoded in the so called standard
model of cosmology (ΛCDM), which provides a succesful explanation of the observation
of the cosmic microwave background (CMB), the distribution of large scale structure, the
abundance of light atoms and the accelerating expansion of the universe. The CMB is
the most precise picture that we have of our universe, when it was only 300000 years
old. At first glance, it reflects that our universe is in overall homogeneous and isotropic,
the two basic principles which lay behind the modern cosmology. But more interestingly,
the temperature anisotropies of the CMB are the product of tiny density fluctuations of
the primordial universe which are indeed the origin of all structure of the universe. The
understanding of the evolution from these primordial density fluctuations to the formation
of the large structure we observe today (billion of years later) is a success of the modern
cosmology. However the origin of these primordial fluctuations is a mistery for conventional
cosmology. Besides, the experimental measurements combined with the ΛCDM model
show that our universe can only arise from some very extremely special and fine-tuned
initial conditions in order to reproduce the overall homogeneity, isotropy and flatness we
see today. The theory of inflation solves dynamically this puzzle of initial conditions at the
same time that it provides an understanding of the physical origin of all structure of our
universe. Inflation refers to an early period of accelerating expansion of the universe (only
10−34 seconds after Big Bang) which modifies the causal structure of spacetime. This
would allow our universe to arise from generic initial conditions, solving the puzzle of the
initial conditions. In addition, microscopic quantum fluctuations during the inflationary
period would be the seed of the cosmological formation structure today. Nevertheless, in
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our eagerness to know, a remaining question stays: what is the microphysical origin of
inflation? And here is where String Theory, as a consistent UV quantum completion of
gravity, comes into play.

5.1.1. Inflation basics

Inflation can be defined as a period at which the comoving Hubble radius decreases,
or equivalently a period of accelerating expansion,

d

dt

(
1

aH

)
< 0→ ä > 0 (5.1)

where we have used the definition of the Hubble parameter, H = ȧ
a (see [156–159] for

reviews of inflation in the context of string theory).

The background Ḣ required for inflation can be parametrized in terms of a scalar
degree of freedom, which corresponds to the Goldstone boson associated with the spontan-
eous breaking of time translational invariance. That is the reason being inflation is usually
described by a scalar field φ called the inflaton rolling down a potential (see fig.5.1). The
dynamics of the scalar field yields an approximate de Sitter background with a “clock”, ie.
φ is an order parameter (or clock) which parametrizes the time-evolution of the inflationary
energy density. The action for the inflaton can be written as

S =

∫
d4x
√
−g
(

1

2
R+

1

2
gµν∂µφ∂νφ− V (φ)

)
(5.2)

Acceleration of the universe occurs when the potential energy V (φ) dominates over the

Figure 5.1: Scalar particle rolling down a potential and yielding inflation.

kinetic energy 1
2 φ̇

2. This can only be achieved for a sufficiently long period of time if in

addition the second time derivative of the field φ̈ is small enough. These two conditions
can be expressed as constraints on the shape of the inflationary potential,

ε =
M2
p

2

(
V ′

V

)2

< 1 (5.3)

η = M2
p

V ′′

V
< 1 (5.4)
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where V ′ and V ′′ stand for first and second derivatives of the potential with respect to φ.
The smallness of the above parameters is known as the slow-roll conditions for inflation.
Inflation ends when these conditions are violated, ie. ε(φend) ∼ 1, implying that the
kinetic energy starts dominating over the potential energy. Then hot Big Bang occurs:
the inflaton starts oscillating around the minimum, converting all the inflationary energy
via decays in SM degrees of freedom. This process is known as reheating, a rich and
complicated subject by itself. The duration of the inflationary period is parametrized in
terms of the number of efolds, defined as

N =

∫ tend

t
Hdt =

∫ φ

φend

dφ√
2ε

(5.5)

The fluctuations observed in the CMB must be created 50-60 efolds before the end of
inflation, in order to solve the horizon problem.

So far we have only reviewed the classical dynamics of a scalar field rolling down a
potential, leading to a background evolution φ̄(t) responsible for the accelerating expansion
of the universe. However the origin of the cosmological structure formation is indeed in the
quantum fluctuations around this background. We refer to [158] for a pedagogical review
on how these quantum fluctuations during inflation are converted into fluctuations of the
primordial power spectrum. Intuitively, these fluctuations give rise to a local delay in the
time at which inflation ends, ie. different parts of the universe will end inflation at slightly
different times inducing relative density fluctuations. Since we can have fluctuations both
in the scalar field φ(t) and the metric gµν(t) they will be translated into density fluctuations
as well as gravitational waves. In order to compare the theoretical predictions with the
cosmological observations it is useful to compute the power spectrum of both scalar and
tensor fluctuations, which is often approximated by the power law

∆2
s(k) = As(k∗)

(
k

k∗

)ns(k∗)−1

, ∆2
t (k) = At(k∗)

(
k

k∗

)nt(k∗)
(5.6)

where k∗ is the wave length of a pivot scale. Deviations from this power law leads to
non-gaussianities which are predicted to be small in single slow-roll inflations and are also
highly constrained by the cosmological observations. The primordial scalar and tensor
tilt, ns and nt respectively, measure the scale dependence of the power spectrum. Any
deviation from perfect scale invariance (ns = 1 and nt = 0) is an indirect proof of inflation
and can be related to the slow-roll parameters

ns = 1 + 2η − 6ε , nt = −2ε (5.7)

evaluated 50 or 60 efolds before inflation ends. The amplitudes of the cosmological per-
turbations created by inflation are

As(k) =
1

8π2

H2

M2
p

1

ε
, At(k) =

2

π2

H2

M2
p

(5.8)

which have to be evaluated at the moment at which the corresponding fluctuation exits
the horizon (ie. k = aH), corresponding to 40-60 efolds before inflation ends (the exact
value depends on the inflationary model and the physics of reheating). An useful quantity
is the tensor-to-scalar ratio,

r =
At
As

= 16ε (5.9)
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which can be related to the energy scale of inflation

V
1/4

0 ∼
( r

0.01

)1/4
1016GeV (5.10)

According to experimental Planck results [160] of the power spectrum of CMB temperature
fluctuations, the best fit value for the scalar amplitude is

As = (2.196 + 0.051− 0.060)× 10−9 (5.11)

while the spectral index has been measured with a high precision obtaining

ns = 0.9603± 0.0073 (5.12)

consistent with slow-roll inflation. The recent combined results of Planck/BICEP2 [161]
yield un upper limit for the tensor to scalar rario, r < 0.12 at 95% level of confidence.

5.1.2. Lyth bound and UV sensitivity

Inflationary physics is extremely sensitive to UV physics, specially in models which
involve transplanckian excursions of the inflaton. To that end, let us first comment on the
Lyth bound [162], which relates tensor modes with field displacements of φ,

∆φ

Mp
= O(1)

( r

0.01

)1/2
(5.13)

It is remarkable that observable tensor modes r > 0.01 require transplanckian field excur-
sions of the inflaton. This allows to distinguish between two classes of inflationary models,
small field inflation (∆φ < Mp) and large field inflation (∆φ > Mp), with non-detectable
or detectable tensor modes respectively.

The notion of effective field theories is the core on which we have built the current
understanding and formulation of the physical theories describing the behaviour of nature.
The idea is to integrate out all massive modes above a certain energy scale Λ to get an
effective theory which is valid up to the cutoff Λ. In this way we can work in condensed
matter physics without considering the internal degrees of freedom of the atoms, or in
nuclear physics without considering quark physics. UV physics has two effects over the
effective theory in the IR: quantum corrections that renormalize the couplings in the
effective theory and new higher order dimensional non-renormalizable operators suppresed
by inverse powers of the cutoff. In general, the first effect can give rise sometimes to
naturalness or hierarchy problems while the second one becomes important only when
we approach the cutoff. However, the delicate flatness required for inflation is extremely
sensitive to any UV correction, so the naturalness problem is generically present in any
effective inflationary model. In addition, for displacements of ∆φ ∼ Λ the infinite tower of
higher dimensional operators becomes important and can not be neglected, which makes
the effective theory intractable. These two effects give rise to the weak and strong eta-
problem respectively, as we proceed to explain in the following (for a recent review see
e.g. [158] and references therein).

Weak eta-problem: renormalizable operators
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The typical imprint of UV physics in the effective theory is the renormalization of
the IR couplings of the light states of the effective theory coming from the heavy
fields running in internal loops. In general scalar masses receive quantum corrections
which drive the masses to the cutoff scale,

∆m2 ∼ Λ2 (5.14)

unless they are protected by some symmetry. These corrections imply in turn cor-
rections on the slow-roll eta-parameter of order

∆η ∼ ∆m2

V
∼ Λ2

3H2
(5.15)

where we have used H2 ≈ 1
3V (φ) with H being the Hubble scale. Since the cutoff

of the theory is always above the Hubble scale Λ ≥ H, the mass term is radiatively
unstable leading to a violation ∆η ≥ O(1) of the slow-roll condition and preventing
succesful inflation. This problem is present in both small and large field inflation-
ary models. In the absence of symmetries, a severe fine-tuning between quantum
corrections and the bare value of the mass term is required to keep η < 1. This
naturalness problem is similar to the hierarchy problem of the EW Higgs mass.
However, here the presence of supersymmetry is not enough to solve it. During
inflation supersymmetry is spontaneously broken by the positive vacuum energy, so
the corrections to the inflaton mass will be at least of order of the Hubble scale,
implying still ∆η ∼ O(1). Frecuencies above the Hubble scale will not be sensible to
the expanding background and the corresponding loop corrections cancel each other,
but the same does not apply to frequencies below the Hubble scale. Therefore super-
symmetry diminishes the eta-problem but can not solve it completely. The way out
is to impose some additional global symmetry preserved by the effective lagrangian
and only slightly broken to generate the potential. In other words, in order to forbid
the presence of all perturbative renormalizable couplings, the inflaton should be a
pseudo-goldstone boson with an approximate shift symmetry of the form φ→ φ+a.
All perturbative quantum corrections will be then suppresed by the parameter re-
sponsible for the weak breaking of the shift symmetry giving rise to small corrections
to the eta-parameter.

Strong eta-problem: non-renormalizable operators

In addition to the renormalizable part of the lagrangian, any effective theory contains
higher dimensional operators

Leff (φ) = LR(φ) +
∑
i

ci
Oi(φ)

Λδi−4
(5.16)

suppressed by inverse powers of the cutoff scale. If they disappear when the cutoff
is send to infinity Λ → ∞ then the theory can be succesfully decoupled from UV
physics. In general they are negligible unless we approach energies close to the cutoff
scale. In other contexts these operators can be used to estimate the scale of new
physics or to put constraints on the possible UV embedding. In inflation, they easily
can spoil the delicate flatness required of the potential. For instance let us consider
the dimension six operator

O6 = c6VR(φ)
φ2

Λ2
(5.17)
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where VR contains the renormalizable terms of the potential. Even if the renormal-
izable potential preserves an approximate shift symmetry this does not have to be
the case of the higher dimensional operators (the UV theory might not preserve the
symmetry). Therefore the mass term receives corrections of order the Hubble scale
since VR ∼ H2, implying again ∆η ∼ 1.

Not all symmetries of the IR theory can be realized in a consistent UV theory.
Whether a desired symmetry in the IR remains in the UV completion is a question
that can not be addressed in the effective theory. Here lies the importance of having
an UV completion of inflation in a consistent quantum theory of gravity.

For small field inflation, ∆φ < Mp, operators of dimension δ > 6 can be neglected
(assuming the conservative cutoff Λ = Mp). Therefore to address the eta-problem it
is enough to consider operators with δ ≤ 6. The exact threshold at which operators
of higher dimensions become important depends on the model and in particular
on the ratios Λ/Mp and φ/Mp. For large field inflation the problem is much more
dramatic. For ∆φ > Mp all higher dimensional operators become important even far
below the cutoff, so in order to avoid the eta-problem one would need to fine-tune the
full infinite tower of non-renormalizable operators. This makes the effective theory
untractable.

For both small and large field inflation, assumptions in the UV theory are required
to guarantee the presence of a symmetry protecting the potential. However for large
field inflationary models the problem is more pressing because it can not be solved by
simply fine-tuning a finite number of parameters. It is required a careful analysis of the
symmetries preserved by the UV completion to determine the precise form and value of
the survival non-renormalizable operators. We need then a theory valid at scales of order
Mp which accounts simultaneously for quantum effects and gravity. The best candidate
for such a theory is String Theory.

Kaloper-Sorbo lagrangian. Before turning to the discussion of inflationary models
within String Theory, let us comment on a proposal at the level of the effective theory
to protect the potential from non-desired UV corrections [163–165] (see also [166–170]).
We have seen that a shift symmetry on the inflaton can help to avoid the presence of UV
corrections which spoil inflation. However, from the bottom-up approach, to impose an
approximate global shift symmetry in the IR is not enough to guarantee the absence of
higher order dimensional operators. It is known that global symmetries will probably be
broken by gravity in the UV completion, unless they are promoted to gauge symmetries.
The natural following step is then trying to gauge the global symmetry. The standard
way to gauge a shift symmetry is by introducing a vector gauge field Aµ. Then the shift
symmetry is promoted to a local gauge symmetry and the axion becomes the Stuckelberg
field for Aµ. This induces a gauge invariant mass for the gauge field. However, what we
want for inflation is rather the opposite, to give a mass for the axion in a shift invariant
way. There is an alternative way to gauge the global symmetry and give mass to the
axion without breaking explicitly the shift symmetry and without adding more degrees of
freedom. The way is to introduce a coupling between the axion and a gauge three-form
Cµνρ (see [168]). A three form in four dimensions has no propagating degrees of freedom.
Nevertheless, it can give rise still to an electric field in the vacuum F4 which in the absence
of sources can take any constant value. In the presence of 2-branes (domain walls) the
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value of F4 changes by an integer quantity at the location of the membrane. The action
is given by

S =

∫
d4x
√
−g

(
M2
p

2
R− 1

2
(∇φ)2 − 1

48
FµνρσF

µνρσ − µ

24
φεµνρσF

µνρσ

)
(5.18)

Upon integrating out the four-form field via its equation of motion we get the following
potential for the scalar,

V =
1

2
(q + µφ)2 (5.19)

where q is an integration constant related to the charge of the membranes under the
three-form field. The variation on φ is cancelled by a shift on q. Therefore, although the
axion gets a mass the shift symmetry remains unbroken in the lagrangian. This can also
be understood from the dual picture, in which a three-form gets a mass after eating a
two-form field. The lagrangian in this dual picture is still gauge invariant, implying that
the action (5.18) remains shift symmetric. Only when we select a specific vacuum (specific
value of q) the shift symmetry is spontaneously broken. The presence of this underlying
shift symmetry protects the potential from non-desired corrections. For instance, it implies
that the couplings of the axions with other fields can only appear via derivative couplings,
so they will not induce radiative corrections to the mass. Higher dimensional operators are
also under controll. They must respect the gauge symmetry of the three-form field (and
consequently the shift symmetry of φ) so they can only come as powers of the 4-form field

strength over the cutoff, F
n+2

M2n
p

. It can be checked that they will give rise, upon integrating

out the 4-form, to corrections going as powers of the potential itself, V n

M4n
p

[163–165],

instead of the naive expansion in terms of the field φ performed in (5.16). As long as
the potential remains subplanckian V < M4

p , these corrections will be subleading and will
not spoil inflation. We will show in 5.2.3.2 that our inflationary model can be reduced
to an effective Kaloper-Sorbo lagrangian, leading to a consistent string embedding of this
scenario.

5.1.3. Large field inflation in String Theory

From now on we will focus on large field inflationary models. They are interesting
by themselves due to their extremely sensitivity to UV physics, which can be seen as
an opportunity to test the physics at closely Planck scales via cosmological observations.
We will also see that the embeding of large field inflation in String Theory is not trivial
and forces us to push the theory to the boundary of our knowledge. In addition, recent
BICEP2 observations [3] point to a large tensor to scalar ratio favoring large field inflation,
although the results are under debate and need to be confirmed.

The prototypical example of large field inflation is chaotic inflation [171], in which
the inflationary potential is quadratic on the field,

V (φ) =
1

2
m2
Iφ

2 (5.20)

and the cosmological observables read

r =
8

N
, ns − 1 = − 2

N
, N ' 1

4

(
φ0

Mp

)2

(5.21)
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Transplanckian field excursions of the inflaton about ∆φ ∼ 10 − 15Mp are required in
order to get 50-60 efolds. Besides, it implies using (5.10) a quite high scale of inflation,

V
1/4

0 ' 1016GeV (5.22)

and a Hubble scale of order H ' 1014 GeV. These energy scales can also be used to
estimate the inflaton mass, obtaining mI = 1012− 1013 GeV, which is also consistent with
the cosmological bounds on the amplitude of the density scalar perturbations.

If the BICEP2 results are confirmed, it would the first experimental hint about a
scale of new physics beyond the Standard Model. We want to remark that a high scale of
inflation could also be an indication of a high scale of supersymmetry breaking. Assuming
a similar height of the potential for inflation and SUSY breaking Vinfl ∼ VSS , we get

VSS ' (m3/2Mp)
2 ⇒MSS '

V
1/2

0

Mp
' 1013GeV (5.23)

where we have used that the gravitino mass m3/2 gives also the typical size of SUSY
breaking soft terms. This estimation is reinforced if we consider that the inflationary
potential is indeed generated by the same source responsible for supersymmetry breaking.
In chaotic inflation the inflaton mass would then correspond to the scale of the SUSY
breaking soft terms mI ∼ MSS ∼ 1012 − 1013 GeV. This is the idea behind our proposal
in section 5.2, where closed string fluxes (responsible for supersymmetry breaking) also
induce the inflationary potential.

The scheme of chaotic inflation is simple and attractive, but requires an implement-
ation in which trans-Planckian inflation excursions make sense, which in turn requires a
consistent theory of quantum gravity. Our most firm candidate for such a theory is string
theory, and indeed string models with large field inflation have been constructed in the
last decade, see [158,159] for reviews. There are mainly two research branches, depending
if one wants to preserve a discrete shift symmetry in the background solution (natural
inflation for one or multiple fields) or fully spontaneously break it upon choosing a va-
cuum (monodromy inflation). We briefly comment on both possibilities and extend the
discussion for the latter, since it will be the one used in section 5.2.

Natural inflation and multiple axion models

Let us consider an axion φ whose continous shift symmetry is broken to a discrete
periodicity φ → φ + 2π by non-perturbative effects. They induce a periodic scalar
potential given by

L = f2(∂µφ)2 − Λ4cos(φ) (5.24)

where f is the so called decay constant. For small perturbations it is reduced to
chaotic inflation with a quadratic potential. The maximum physical displacement in
field space is given by 2πf , so a transplanckian decay constant f > Mp is required
to get transplanckian field excursions of the inflaton. This leads to a problem when
one tries to embed the model in String Theory. In [172] it was shown for several
examples that in order to have a transplanckian decay constant for a single axion in
String Theory, one is always forced to go beyond the controlled perturbative regime
of the effective theory. New contributions, usually in the form of higher harmon-
ics to the potential, become then relevant at scales O(Mp), reducing the effective
field range to a subplanckian value. People have tried to evade these difficulties by
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considering models of multiple axions in which one might hope to engineer a direc-
tion in the moduli space with an enhanced effective field range. However there is
not a completely succesful embedding of any of these models yet in string theory
(see [173, 174] for the original proposals of N-flation and lattice alignment). The
relation between the Weak Gravity Conjecture [175] and the difficulties found to get
transplanckian field ranges in String Theory has ben discussed recently in [176–183].
Concretely, [178] study the effect of gravitational instantons over the different propos-
als of large field inflation with multiple axions. The results show that parametrically
large transplanckian decay constants can not be realised for any direction in the
moduli space in any quantum theory of gravity, and belong instead to the swamp-
land of string theory. However, there is not a priori fundamental obstruction for
slightly transplanckian decay constants in specific cases, and the stringy realisation
of these models is still under debate.

Axion monodromy inflation

Let us consider a scalar with a periodic moduli space, typically an axion. Even
if all directions in the moduli space are subplanckian one can get transplanckian
field excursions by travelling several times in the compact dimension. The idea is
to add an extra contribution to the vacuum energy which increases each time the
inflaton completes a period. In other words, one can unfold the periodic moduli
space of the axion due to extra ingredients like space-time filling branes, allowing
for the required large field excursions. This class of models go under the name of
axion monodromy inflation because the corresponding potential grows as the axionic
inflaton completes a cycle [184, 185]. An intuitive picture of these models is given

Figure 5.2: System of multibranches of an axion monodromy potential.

by the system of branches of fig.5.2. Each branch corresponds to a specific solution
of the theory. Even if the inflaton is defined modulo 2πf , once a specific vacuum
is selected one can continue going up in the corresponding branch increasing the
energy and reaching large (even transplanckian) field values. The shift symmetry
is spontaneously broken by the vacuum, although it is preserved by the full theory.
This underlying shift symmetry is enough to keep under control the appearance of

Planck suppressed terms in the potential of the form Vp ' M
(4−p)
p φp with p > 4.

They will be at least suppresed by the parameter controlling the small breaking
of the shift symmetry. If one continous increasing the energy indefinitely there
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are two effects that must be taken into account: the modification of the structure
of branches at large energies due to the backreaction with gravity, and tunneling
effects to branches of smaller vacuum energy. However, it has been argued that
these effects are negligible for the scales and field ranges required for inflation, so a
slight enhancement of the field range to transplanckian values sounds reasonable.

Some of the first such axion models [186,187] made use of non-SUSY configurations
of NS-brane-antibrane pairs in type IIB theory (see [188] for a related F-theory
construction). This structure was required in order to cancel unwanted D3 tadpoles
and makes the stability of these models difficult to handle. More recently it has
been realised that the same idea can be implemented in SUSY configurations if the
monodromy is induced by an F-term potential for the axion [189]. Typical examples
of this framework, dubbed F-term axion monodromy inflation, involve closed string
axions whose potential is created by the presence of closed string background fluxes,
see [189–194] for concrete realisations. A further novelty of this framework is that one
can also implement the monodromy idea in models identifying the inflaton with either
continuous Wilson lines or their T-dual, D-brane position moduli, see [189,195–197].
In the latter case large inflaton excursions correspond to a D-brane position going
around some cycle in the internal compact space.

Another advantage of F-term axion monodromy is that it allows to connect with the
4d axion monodromy framework developed in [163–165]. Indeed, it was found in [189]
that upon dimensional reduction one obtains an effective Kaloper-Sorbo Lagrangian
describing the coupling of an axion with a non-dynamical four-form. As we explained
in section 5.1.2 the presence of this four-form creates a quadratic potential for the
inflaton which is protected against dangerous corrections to the slow-roll potential
that arise upon UV completion of the theory. Up to now, the Lagrangian (5.18) has
been obtained from F-term axion monodromy constructions involving either closed
string axions or open string axions arising from massive Wilson lines [189] (see
also [170]). As part of our analysis we will see that (5.18) can also be reproduced
from models where the inflaton is a D-brane position modulus, which is one specific
realisation of our scenario in 5.2.

We have seen that natural candidates for large field inflatons are axion-like fields,
which are indeed abundant in string compactifications. Typical examples of such axions
are the scalars coming from dimensionally reducing the NSNS and RR fields. In Type
IIB possible axionic candidates are those coming from B2, C2 and C4 (recall eqs.(3.5)-
(3.6)) and wilson lines of the open string sector. Another possible candidate from the
closed string sector is the universal axion C0. All these fields present a continous shift
symmetry (broken by non-perturbative effects or the addition of fluxes) coming from the
gauge invariance in higher dimensions. However, one can also consider geometric fields
which present an approximate shift symmetry in some corners of the moduli space. This
shift symmetry is inherited from the properties of the compactification. In particular, it is
the remnant of the monodromy discrete transformations (which leave invariant the Kahler
potential) around special points of the moduli space. This allows us to extend the list of
candidates also to the complex structure Ua moduli and the D7-brane position moduli.
In [198] it was performed a systematic study of the special points in the complex structure
moduli space of CY manifolds at which axions (potential candidates for inflation) may
arise. Here we will focus on the case of D7-brane position moduli.
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Before concluding this section it is important to remark the challenges arising in
string inflation. As commented, scalar fields (known as moduli) are abundant in string
compactifications. For simplicity, it is usually assumed that all remaining scalars (except
for the inflaton) are heavier than the Hubble scale and then can be integrated out during
inflation. However, this is easier said than done. And even if we manage to keep the
inflaton light over all the other moduli of the compactification, we still have to keep
controll over the contributions coming from integrating out these fields, in order to avoid
the weak and strong eta-problem. Therefore, strictly speaking the moduli stabilization
problem can not be decoupled from inflationary dynamics. Needless to say that if there
is some scalar with mass m2 < H2 it has to be included in the dynamics of inflation. For
a few fields this is doable but for many fields it becomes technically unfeasible. Unlike
the SM of particle physics, inflation is intimately related to gravity and all the moduli of
the compactification. This difficulties the construction of succesfull inflationary models in
string theory. But it is also a motivation to do it, because it forces us to develop a better
understanding of global aspects of the compactification and go beyond our confortable
perturbative decoupled models. Moreover, the study of inflation in String Theory leads us
to think about fundamental and interesting questions regarding the set of vacua yielding
the landscape of String Theory. Thus these difficulties can be seen as an opportunity to
study the theory at the frontiers of knowledge, and perhaps even being able to test some
predictions via cosmological observations.

5.2. Higgs-otic inflation

Higgs-otic inflation refers to theories in which the inflaton is a complex scalar giving
rise to gauge symmetry breaking, while attaining large field inflation. The most obvious
and natural candidate for that is the SM Higgs field itself. Nevertheless the same idea
may be applied to other BSM fields introduced for other purposes, as we briefly discuss
below. The essential ingredient is the identification of a complex inflaton with the position
moduli of some Dp-brane system in string compactifications. The motion of the brane
corresponds to the gauge symmetry breaking through a scalar vev and the scalar potential
is induced upon switching on closed string fluxes. They lead to a quadratic (chaotic)
potential which is flattened for large values of the field. In this section we propose and
discuss the main phenomenological features of Higgs-otic inflation as well as study in detail
a specific realization in Type IIB orientifold compactifications.

5.2.1. Setting the idea

As of today, the only scalar detected experimentally is the Higgs boson. Its discovery
at LHC completes the minimum set of particles required for a consistent understanding of
the properties of the SM of Particle Physics. In a different direction, evidence is mounting
in favour of the existence of a second fundamental scalar in the theory, the inflaton. Given
these two inputs, an obvious question has been around for some time: Can the Higgs
boson be identified with the inflaton?. Before we knew the value of the Higgs boson mass
this possibility looked unlikely, since the Higgs potential is quartic with no obvious region
which could lead to slow roll inflation (see e.g. [199] for a review and references therein).
However, as we said, for a Higgs mass value around 126 GeV the Higgs self coupling λ
evolves down to zero at a scale 1011−1013 GeV. In fact, if one takes a 2σ uncertainty for the

121



Chapter 5. From String Theory to Cosmology

measured value of the top-quark mass and αstrong, it could still be possible that we have
λ ' 0 close the the Planck scale Mp. It has been proposed that this could be the signal
of some new conformally invariant physics [200], [201–204]. In this case inflation could
also appear with the inflaton identified with the SM Higgs if non-minimal gravitational
couplings of type

∫
α|h|2R are assumed. While it has been debated whether this scheme

has problems with unitarity (see e.g. [205] and references therein), for appropriate values
of the parameters one may still obtain a Starobinsky-like inflation with negligible tensor
perturbations. See also [206] for a SUSY Higgs inflation with small field leading also to
small tensor perturbations.

Here we propose a new scenario, dubbed Higgs-otic inflation, in which the inflaton
can be identified with the Higgs boson, with minimal couplings to gravity and giving rise
to large field inflation. The key point that makes possibe these features is the assumption
of an Intermediate/High SUSY breaking scale which is identified with the scale of the
inflaton mass.

Let us quickly review the results obtained in section 4.3 to clarify notation and set
the basis of the forthcoming identification of an MSSM Higgs boson with the inflaton. As
we discussed in section 4.3.2, admitting the possible presence of Higgs mass fine-tuning,
one can consider leaving the scale of soft masses MSS as a free parameter and ask for
consistency with the measured Higgs mass. We found that that if the MSSM SUSY-
breaking scale is MSS ' 109 − 1013 GeV, and a fine-tuned SM Higgs survives below that
scale, then one necessarily gets mh = 126±3 GeV, in agreement with LHC data. Imposing
gauge coupling unification and flux-induced isotropic SUSY breaking further points to a
Higgs with a mass around 126 GeV. This is true if one assumes the unification boundary
condition for the two MSSM doublets mHu = mHd , but no other further input. One could
then interpret the observed Higgs mass as indirect evidence for large scale SUSY breaking
in a unification scheme. The fine-tuned light SM Higgs is obtained from the general MSSM
Higgs mass matrix (

Hu , H
∗
d

)( m2
Hu

m3

m∗3 m2
Hd

)(
H∗u
Hd

)
. (5.25)

If one fine-tunes |m3|2 = m2
Hu
m2
Hd

, there are massless (HL) and massive (HM ) eigenstates

HL = sinβ eiγ/2Hu − cosβ e−iγ/2H∗d , HM = cosβ eiγ/2Hu + sinβ e−iγ/2H∗d , (5.26)

with

tanβ =
|mHd |
|mHu |

(5.27)

and γ = Argm3. All these quantities must be evaluated at the soft mass scale MSS '
1010−1013, below which all the SUSY spectrum decouples and just the SM survives. Note
in particular that at some unification scale Mc > MSS one might expect mHu(Mc) =
mHd(Mc) (i.e. tanβ = 1), and that then the running from Mc down to MSS will make
|tanβ(MSS)| slightly larger than one. Moreover at such scale Mc both scalars HL, HM will
be massive, although one will still have mHM � mHL due to the short running in between
Mc and MSS .

The fact that large quadratic terms appear for the Higgs fields above MSS suggests
to study whether such fields can indeed lead to some form of chaotic inflation. If that
were the case, the inflaton would have a large mass of order MSS ' 1010−1013 GeV. This
question is interesting by itself, but would become particularly relevant if the indications
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of BICEP2 of large tensor perturbations [3] were confirmed. In section 5.1 we proposed
to identify the large SUSY breaking scale suggested by the measured Higgs mass with
the inflaton mass suggested by the BICEP2 data. This indeed would be very attractive
and economical, connecting two apparently totally independent physical phenomena, the
Higgs mass with possible cosmological tensor perturbations.

In fig.5.3 we plot the running of the Higgs mass parameters from Mc down to MSS .
In the left plot we see the running of |m3| and mHumHd . When both curves intersect the
fine-tuning condition is satisfied and we have a massless eigenvalue at the SUSY breaking
scale MSS . This is also depicted in the right plot, in which although both mass eigenstates
are massive at Mc, one of them (HL) becomes massless after the running from Mc down to
MSS . To correctly interpret these figures recall that the running stops at the point MSS

in which all SUSY-particles become massive and one is left just with the SM at energies
below that given value of MSS .
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Figure 5.3: Running from Mc down to MSS of the parameters of the Higgs mass matrix
(left) and of the mass eigenvalues mHM and mHL (right).

In addition to the mass terms there is the SU(2)×U(1) D-term contribution to the
scalar potential given by

VSU(2) =
g2

2

8

(
|Hu|4 + |Hd|4 + 2|Hu|2|Hd|2 − 4|HuHd|2

)
(5.28)

VU(1) =
g2

1

8

(
|Hu|4 + |Hd|4 − 2|Hu|2|Hd|2

)
(5.29)

where we have

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−d

)
(5.30)

all four fields being complex. Note that here HuHd = (H+
u H

−
d − H

0
uH

0
d), so in general

|HuHd|2 6= |Hu|2|Hd|2. The SU(2) piece of the potential is however minimised if the
charged fields have no vev, in which case |HuHd|2 = |Hu|2|Hd|2, so that the complete
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potential is then given by (with now only neutral components included)

V = m2
HM
|HM |2 + m2

HL
|HL|2 +

g2
1 + g2

2

8

(
|Hu|2 − |Hd|2

)2
(5.31)

= m2
HM
|HM |2 + m2

HL
|HL|2

+
g2

1 + g2
2

8

(
cos2β(|HM |2 − |HL|2) + 2sin2βRe(HLH

∗
M )
)2

with mHL(MSS) ' 0. At this level the HL eigenvalue is (approximately) massless and HM

decouples below MSS , leading to the following SM quartic potential at MSS

V =
g2

1 + g2
2

8
cos22β|HL|4 . (5.32)

For tanβ(MSS) ' 1, as implied by the mHu(Mc) = mHd(Mc) boundary condition, one has
cos2β ' 0, explaining why the SM Higgs self-coupling seems to vanish at the MSS scale.
This in turn explains, after running the Higgs self coupling down to the EW scale, why
mHL ' 126 GeV.

Note that the D-term potential has a general neutral flat direction given by

σ = |Hu| = |Hd| Hu = eiθH∗d (5.33)

with σ ∈ R+ and θ the relative phase of Hu and H∗d . Denoting Hu = |Hu|eiθu and
Hd = |Hd|eiθd then θ = θu + θd. Since at MSS one has tanβ ' 1, it is useful to define the
doublet linear combinations

h =
eiγ/2Hu − e−iγ/2H∗d√

2
, H =

eiγ/2Hu + e−iγ/2H∗d√
2

. (5.34)

Then at MSS the SM doublet is approximately given by h ' HL whereas H ' HM is
massive. Note that for the neutral components of h and H one has

H =
√

2σcos

(
θ + γ

2

)
ei(θu−θd)/2 , h = i

√
2σsin

(
θ + γ

2

)
ei(θu−θd)/2 , (5.35)

where θ = θu + θd, and the universal phase on both fields may be rotated away through a
hypercharge rotation. Then

|H| + i|h| =
√

2σei
θ+γ

2 . (5.36)

Along the above mentioned flat direction the potential is reduced to quadratic terms. This
suggests to consider these neutral Higgs fields |h|, |H| (or σ, θ) as candidates to give rise
to inflation in the manner prescribed by chaotic inflation, as we will describe below.

Before considering specific embeddings of our scheme let us briefly discuss the scale
structure of a large field inflation string model, see figure 5.4. The fundamental scale
is the string scale which is in the region Ms ' 1016 − 1018 GeV. The (reduced) Planck
scale is Mp ' 1018 GeV and the inflaton initial value Φ∗ is typically of order 10-15 Mp to
obtain the appropriate number of e-folds. Using field theory and a scalar potential makes
sense only at energies below the compactification/unification scale Mc, which should be
sufficiently below Ms so that the 10d action we start with makes sense. The Hubble scale
at inflation is HI ' 1014 GeV and the inflaton mass is mI ' 1013 GeV. In the Higgs-otic
scenario the latter is also of the order of the SUSY breaking scale MSS .
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HL ~ h |h|, |H|

Figure 5.4: Energy scales in the Higgs-otic Inflation scenario. Below 1013 GeV the light degrees of
freedom in the Higgs sector are given by the SU(2) doublet HL. Above this scale SU(2) is broken
and they lie within the neutral components of h and H.

5.2.2. String theory embeddings

In order to allow for consistent large field inflaton/Higgs, we will search for string
constructions in which a MSSM Higgs sector of doublets Hu, Hd appear. We want the
neutral components of these doublets to be associated with either continuous Wilson lines
or position D-brane moduli. In this chapter we will provide examples of both possibilities.
The first example is a compact Z4 toroidal heterotic orbifold in which Higgs fields are
identified with certain scalars in the untwisted sector. In the second example we will
identify the Higgs scalars with the position moduli of a D7-brane in a IIB orientifold with
Z4 singularities. The subsequent analysis will focus on this second possibility since the
addition of ingredients that give rise to monodromy is better understood.

5.2.2.1. The MSSM Higgs system in heterotic orbifolds

As a first example we will consider a Heterotic compactification in which a MSSM-
like Higgs sector appears. We start with the Spin(32) heterotic string compactified on a
T2 × T2 × T2 torus, with each 2-torus defined in terms of an SO(4) lattice. The model
is subject to a twist in the compact dimensions defined by a Z4 shift v = 1/4(1, 1,−2)
acting on the lattices as π/2 rotations in the first two tori and a reflection z3 → −z3 in
the third torus. The embedding of this twist in the Spin(32) weight lattice is given by the
16-dimensional shift (see e.g. [207] for notation and examples)

V =
1

4
(1, 1, 1, 2, 2, 0 ; 1, 1, 3, 0, 0, 0, 0, 0, 0, 0) , (5.37)

where the SM group SU(3) × SU(2) lives in the first five entries. In addition we add
discrete order-4 Wilson lines a1 and a2 around the first and second torus respectively,
with

a1 =
1

4
(1, 1, 1, 1, 1,−1 ; 0, 0,−1, 1, 0, 0, 0, 0, 0, 0) (5.38)

a2 =
1

4
(−1,−1,−1,−1,−1, 1 ; 0, 0,−1, 1, 2, 0, 0, 0, 0, 0) . (5.39)
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As required both 4V and 4a1,4a2 belong to the Spin(32) weight lattice. The shift and
Wilson lines verify the modular invariance constraints (see e.g. [207])

4×
(
(V ± a1 ± a2)2 − v2

)
= 2s, s ∈ Z , (5.40)

which automatically guarantee anomaly cancellation. The projections P.V = n, P.a1 = m,
P.a2 = q, with PI ∈ ΛSpin(32) and n,m, q ∈ Z, give us the invariant gauge group which is

SU(3)× SU(2)× U(1)× (SO(10)× SU(2)′ × U(1)6) . (5.41)

The chiral matter fields in the untwisted sector are obtained from PI verifying P.V = −1/4
(mod integer) but P.ai ∈ Z for the first two complex planes and P.V = 1/2 mod integer
for the third. One gets

2(3, 2) + 2(3̄, 1) + (1, 2) + (1, 2̄) + hidden (5.42)

under the SM gauge group SU(3)× SU(2). By hidden we denote matter fields not trans-
forming with respect to this SM group. Note there is a minimal set of Higgs fields, which
is vector like, and can be identified with the Hu, Hd scalars of the MSSM. They are associ-
ated to the third complex plane. In addition the untwisted sector contains two generations
of left- and right-handed quarks, associated to the first two complex planes. In addition
to the above matter fields, there will be additional ones from the θ, θ2 and θ3 twisted
sectors. They will provide for the rest of the two MSSM generations plus additional stuff,
cancelling all anomalies. We will not display those since they are not relevant for our
purposes.

As discussed in refs. [208–212] the vevs of untwisted fields in an orbifold along D-
flat directions correspond to switching on continuous Wilson lines in the underlying torus,
in this case along the third torus. So this is an example of a consistent global string
construction in which MSSM-like Higgs vevs are parametrised by continuous Wilson lines.

The inflation potential is however flat so far. In order to obtain a potential (and
hence a mass) for the Higgs/inflaton system we would need some source of monodromy.
A natural source could be the presence of some sort of fluxes, like those geometric fluxes
present in the definition of massive Wilson lines given in [189]. However our understanding
of fluxes in heterotic compactifications is still quite incomplete compared to that in type
IIB compactifications. This is why in the next section we turn to the description of the
Higgs/inflaton system in type IIB orientifolds.

Before turning to the IIB case let us recall what is the structure of the Kähler
potential involving untwisted matter and moduli fields in Z2N orbifolds in which one
complex plane (i.e., the third) suffers only a twist of order 2. In this case the untwisted
matter fields associated to the third complex plane are vector like, i.e., chiral matter
multiplets A,B with opposite gauge quantum numbers, like is the case for Hu, Hd in the
MSSM. This is what happens in the Z4,Z

′
6,Z

′
8 and Z′12 heterotic orbifolds, (see e.g. [207]).

Then the Kähler potential has a contribution of the form

K = −log

[
(T3 + T ∗3 )(U3 + U∗3 ) − α′

2
(A+B∗)(A∗ +B)

]
, (5.43)

where T3 and U3 are the Kähler and complex structure modulus of the T2 in the third
complex direction. In the above Z4 example we will have that A + B∗ = Hu + H∗d . The
consequences of this structure, which is also present in the type IIB orientifold model of
next subsection, will be discussed in sections 5.2.3.5 and 5.2.5.1.
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5.2.2.2. The MSSM Higgs system in type IIB orientifolds

In this second example we will concentrate on type IIB compactifications with
O3/O7 orientifold planes, in which the addition of RR and NS 3-form fluxes is at present
best understood. The addition of these fluxes will give rise to the desired monodromy
for the inflaton/Higgs. This is so for the position moduli of D7-branes which are directly
sensitive to the presence of ISD closed string 3-fluxes.1 In what follows we will thus con-
centrate on the case in which one identifies the Higgs/inflaton field with a D7 position
modulus in a IIB orientifold

In particular, we will consider a type IIB O3/O7 orientifold with a stack of D7-branes
sitting on a Z4 singularity, with a local geometry of the form (X ×T2)/Z4, with X some
complex two-fold. The D7-branes are transverse to the T2 and are initially located at its
origin, on top of the singularity. The D7-branes wrap the compact 4-cycle X which may
be taken to be T4 for simplicity, but whose structure will not be crucial for the relevant
Higgs sector. We will consider this setting as a local model and do not care much about
global RR tadpoles.

Examples of D-brane models in the case where X = T4 have been given in [45,213].
Such orbifold has a geometric action of the form

θ : (z1, z2, z3) 7→ (e−2πi/4z1, e
−2πi/4z2, e

2πi/2z3) = (−iz1,−iz2,−z3) (5.44)

encoded in the shift vector v = 1
4(1, 1,−2), as in the previous heterotic example. We then

consider a stack of N D7-branes extended over the first two complex coordinates, and such
that the action of the orbifold generator θ on the Chan-Paton degrees of freedom is

γθ,7 = diag (1n0 , i1n1 ,−1n2 ,−i1n3) (5.45)

with
∑4

i=1 ni = N . Implementing the standard procedure (see e.g. [207]) one obtains the
following spectrum for open strings in the 77 sector:

Vector Multiplets
∏4
i=1 U(ni)

Chiral Multiplets
∑3

r=1

∑4
i=1(ni, n̄i+4vr)

(5.46)

where the index i is to be understood mod 4.

Let us now consider the case where n0 = 1, n1 = 3, n2 = 2, n3 = 0. The spectrum
in the 77 sector is then given by a gauge group U(3)× U(2)× U(1) and matter spectrum

2× (3̄, 1)+1 + 2× (3, 2̄)0 + (1, 2̄)+1 + (1, 2)−1 (5.47)

where the subscript stands for the charge under the U(1) of the 0th node.

What is more relevant for us is how these representations arise in terms of the
original stack of D7-branes and its fields, which correspond to three adjoints (A1̄, A2̄,Φ) of
U(6). After performing the orbifold projection we obtain that these matrices get projected
down to off-diagonal entries that contain the above matter fields. More precisely

Aī =

 03 QiL
02

U iR 0

 Φ =

 03

02 Hu

Hd 0

 (5.48)

1The case of D3-branes (or rather anti-D3-branes) would be more subtle since they may feel the presence
of ISD fluxes only through the back-reaction of the geometry, see [52].
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where we used standard notation to label the matter fields.2 In particular the hypercharge
generator is given by the non-anomalous U(1) combination

QY = −Q3

3
− Q2

2
−Q1 (5.49)

where Qn is the generator for U(1) ⊂ U(n). This justifies the following notation for the
Higgs sector

Hu = (1, 2)−1 Hd = (1, 2̄)1 (5.50)

The other two U(1)’s within the local model are anomalous and become massive through
the GS mechanism. From (5.48) one can compute the Yukawa couplings of this system by
using the D7-brane superpotential formula

W = tr ([A1̄, A2̄]Φ) → Q2
LHuU

1
R −Q1

LHuU
2
R (5.51)

or simply orbifold CFT techniques. Here superindices denote generations. Notice that the
representation Hd does not enter in the superpotential, which is to be expected because
the representation DR will only appear when we include fractional D3-branes that cancel
the twisted tadpoles of the model. One can also compute the D-term potential of this
model from VD ∼ tr DD† with D = [A1̄, A1]+[A2̄, A2]+[Φ, Φ̄]. From here one obtains the
D-term quartic potential described in section 5.2.1.

The twisted tadpole cancellation conditions allow for sets of D7-branes with traceless
contribution to quit the singularity and to travel to the bulk. In particular if one of the
two U(2) branes combines with the U(1) brane, they do not give net contribution to the
tadpole and can travel through the bulk, in particular they can travel over through T2 in
the z3 direction. They should do that in a way consistent with the Z4 symmetry, which
acts on z3 through a the reflection z3 → −z3, and so the two wandering D7-branes should
travel at mirror locations z3 and −z3 respectively. When that happens, the 4 D7-branes
remaining on the singularity have gauge group U(3)×U(1) whereas the wandering couple
carries a single U(1). Taking into account that the GS mechanism gave masses to two
U(1)’s, a single U(1)em remains unbroken, corresponding to electromagnetism. All in all
there is a symmetry breaking process

U(3)× U(2)× U(1)→ SU(3)× SU(2)× U(1)Y → SU(3)× U(1)em , (5.52)

whereas the first symmetry breaking is due to the GS mechanism, and the last one is due
to the Higgs mechanism induced by the wandering pair of branes.

The fact that the wandering D7’s can travel freely through T 2 corresponds to the
existence of a flat direction |〈(1, 2)〉| = |〈(1, 2)〉|, i.e., |Hu| = |H∗d |. The position of the
D7-brane as it moves in the third T2 is parametrised by the vevs (σ, θ). In particular one
has for this coordinate3

z2
3 = (2πα′)2σ2eiθ = (2πα′)2HuHd = (2πα′)2 (|H|+ i|h|)2

2
e−iγ (5.53)

Thus 2πα′σ corresponds to the distance of the wandering D7-branes to the branes remain-
ing at the Z4 singularity. This separation corresponds to spontaneous gauge symmetry

2In (5.48) we have made a change of basis so that (5.45) reads γθ,7 = diag (i13,−12, 1).
3Note that it is z2

3 , which is invariant under the Z2 reflection, which is well defined in the orbifold
quotient space, rather than z3 itself.
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Figure 5.5: Left:A possible trajectory of the inflaton/Higgs D7-brane cycling around the
T2 before fluxes are turned on. Right: A pictorial sketch of the system of D7-branes.

breaking. A possible trajectory of the wandering-D7/Higgs/inflaton branes over T2 is
illustrated in figure 5.5, where we assume γ = 0. The open strings going from the D7 to
the singularity will give rise to massive W±, Z0 gauge bosons and their SUSY partners.
In particular, consider a D7-brane at the point z3 = x + iU3y, where iU3 is the complex
structure of the third T2. Then the mass formula for the open string states between the
singularity and the D7-brane is given by

M2 =
1

(2πα′)2
|z3 − (w1 + iU3w2)2πR|2 , (5.54)

where w1,2 are the winding numbers around the two cycles of the transverse T2, whose
radius along x is given by R. We thus obtain M2 = σ2 for w = 0 and small x, so that the
mass is controlled by 〈σ〉.4

The massive states include not only W±, Z0, but also three massive scalars H±, h0,
which are the scalars included in the N = 1 SUSY massive vector multiplets. The counting
of degrees of freedoms is as follows: We start with 8 real scalars from Hu, Hd. Three of
them become goldstone bosons, whereas other three (H±, h0), complete a massive vector
multiplet. The two remaining scalars are massless at this level, and correspond to the
two neutral scalars from σ, θ, which parametrise the position of the D7 wandering branes
through the third T2. In the model the 2 families of quarks become also massive due to
the Yukawa couplings in eq.(5.51).

Note that the Higgs vev σ may be arbitrarily large, even larger than the Planck scale.
This however does not lead to new states with masses larger than Mp. In particular this
applies to the massive W±, Z0 boson and their partners, which can never get masses larger
than the KK scale of the T2. Indeed, as shown in eq.(5.54), for |z3| > πR, the lightest
states to be identified with these bosons correspond to winding numbers w1,2 6= 0, and no
longer to the initial states with w1,2 = 0. In this sense the effect of the inflaton/Higgs vev
in this string context is very mild, not deforming the structure of the KK/string spectra
in a substantial manner. This is to be contrasted to a purely 4d field theory model of the

4The familiar factor proportional to the square of the gauge coupling appears upon normalising the
fields canonically.
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MSSM in which the gauge boson masses are proportional to the vev of the scalar and
hence would produce masses larger than Mp, with physics difficult to control, if at all.

Note that an interesting property of the wandering D7-branes is that, as the position
varies and the inflaton vev decreases, the masses of W±, Z0 etc. decrease in an oscillating
manner, since the distance of the brane to the singularity also oscillates. In some particular
limits in which the brane travel along one of the axis or the diagonal, these fields become
periodically massless as the vev of the inflaton decreases. This is however not generically
the case, and it will not be the case in the relevant Higgs-otic model.

5.2.3. Effective inflationary potential

In the previous section we have discussed how a vev within the MSSM Higgs sector
may be understood in terms of the motion of a D7-brane on a T2. However, up to now
the full scalar potential is flat along such D-term flat direction. We will now induce mass
terms for the inflaton/Higgs as required in oder to obtain a chaotic-like potential. To do
that we will consider the case in which there are imaginary self-dual (ISD) 3-form fluxes
G3 acting as a background. As is well known, such classes of ISD fluxes are solutions of the
type IIB 10d equations of motion in warped Calabi-Yau backgrounds [7]. In such type IIB
compactifications there are two types of ISD fluxes, with tensor structure G(0,3) and G(2,1)

respectively. The first class breaks SUSY and induces SUSY-breaking soft-terms: scalar
and gaugino masses. The second class preserves SUSY and may induce supersymmetric
F-term masses to the chiral multiplets. These flux-induced terms were analysed in section
4.1 and in refs. [45, 46, 52, 58, 214]. In our discussion below we will consider the generic
case in which both classes of fluxes are turned on simultaneously. More precisely, we will
consider the following closed string background

ds2 = Z(xm)−1/2ηµνdx̂
µdx̂ν + Z(xm)1/2ds2

CY (5.55)

τ = τ(xm)

G3 =
1

3!
Glmndx

l ∧ dxm ∧ dxn

χ4 = χ(xm)dx̂0 ∧ dx̂1 ∧ dx̂2 ∧ dx̂3

F5 = dχ4 + ∗10dχ4

with τ = C0 + ie−φ the 10d axio-dilaton, Z a warp factor that depends on the internal
coordinates xm, and ds2

CY the Ricci-flat metric of the internal covering space, namely
T4 × T2. Finally, G3 = F3 − τH3 is the complexified three-form flux, with F3 and H3

the RR and NSNS fluxes respectively. As mentioned before we take this flux to be of the
form G3 = G(0,3) + G(2,1), and in particular we choose G(0,3) = G1̄2̄3̄ dz̄1 ∧ dz̄2 ∧ dz̄3 and
G(2,1) = G1̄2̄3 dz1 ∧ dz2 ∧ dz̄3, as these are the two fluxes that are invariant under the Z4

action (5.44). Since we are considering only ISD 3-form fluxes, the background dilaton
τ must be holomorphic in order to satisfy the IIB supergravity equations of motion. For
simplicity we will consider τ to be constant, although our results can easily be generalised
for a non-constant profile.

The potential for the fields living in the D7-brane worldvolume can be obtained by
evaluating the D7-brane DBI+CS action in the above background, as we now describe.
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5.2.3.1. Flux induced scalar potential from DBI+CS

We will consider again the toroidal setting and compute the effect of the G3 fluxes
on the U(6) adjoint complex scalar existing in the model in the previous section before
orbifolding. This adjoint contains off-diagonal components containing the Hu,d fields of
interest, which we will display at the end.

The effective action for the microscopic fields of a system of D7-branes in the 10d
Einstein frame is given by the Dirac-Born-Infeld (DBI) + Chern-Simons (CS) actions

SDBI = −µ7g
−1
s STr

(∫
d8ξ
√
−det(P [EMN ] + σFMN )det(Qmn)

)
(5.56)

SCS = µ7gsSTr

(∫
d8ξP [−C6 ∧B2 + C8]

)
(5.57)

where

EMN = g1/2
s GMN −BMN Qmn = δmn + iσ[φm, φρ]Eρn µ7 = (2π)−3σ−4g−1

s (5.58)

and σ = 2πα′. Here M,N are D7-brane worldvolume indices and P [·] denotes the pullback
of the 10d background onto such worldvolume, while m,n are indices transverse to the
D7-brane. Finally, ‘STr’ stands for the symmetrised trace over gauge indices.5

The D7 world volume spectrum compactified to 4d contains before orbifolding two
adjoints A1,2 which come from 8d vectors and an adjoint Φ which parametrises the D7-
position and that will be the subject of our interest. The determinant in the DBI action
can be factorised between Minkowski and the internal space (labelled by µ, ν and a, b
indices respectively) and after some calculations we obtain

det(P [EMN ] + σFMN ) = −g4
sf(B)2

[
1 + 2Zσ2DµΦDµΦ̄ +

1

2gs
σ2ZFµνF

µν

]
(5.59)

and

det(Qmn) = 1− Zgsσ
2

2
[Φm,Φn]2 (5.60)

where

f(B)2 = 1 +
1

2
Z−1g−1

s BabB
ab − g−2

s

4
Z−2BabB

bcBcdB
da +

g−2
s

8
Z−2

[
BabB

ab
]2

(5.61)

The details of the computation can be found in Appendix A. Recall that Z is a possible
warp factor which we will often set to unity when doing explicit computations. Neverthe-
less, a non-constant warp factor might have interesting phenomenological consequences,
as we will briefly discuss later on. The contribution coming from (5.60) will give rise to
the usual D-term potential. Since this term does not change formally when including the
α′ corrections, we will skip it in the computation below and restore it only at the end of
the section, to avoid clutter.

For simplicity we are not considering neither Wilson lines nor magnetic fluxes on
the branes worldvolume, that is, we are setting 〈Aa〉 = 0. In our configuration only the

5The parameter σ in here should not be confused with the inflaton field σ defined in eq.(5.33).
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adjoint field Φ will take a non-zero vacuum expectation value, which will parametrise the
position of the D7-branes in their transverse space z3 via the equation

det
(
〈Φ〉 − σ−1z3I

)
= 0 . (5.62)

For this reason, in (5.59) we have already neglected all the terms that are not relevant
for the scalar potential (like BF , FF and [A,Φ] couplings), since they vanish for 〈F 〉 =
〈A〉 = 0. Notice however that we have kept all those depending only on B to all orders.
The reason is that, in the presence of a background three-form flux H3, changing the vev
of Φ induces a B-field on the D7-brane worldvolume. Hence, since our model of inflation
the vev 〈Φ〉 is going to take large values, we cannot neglect the dependence on B to any
order in the DBI expansion.

Let us for now ignore the contribution coming from det(Qmn), which gives the D-
term scalar potential. Then, plugging (5.59) into the DBI action (5.56) we obtain

SDBI = −µ7gsSTr

∫
d8ξ

√
f(B)2

[
1 + 2Zσ2DµΦDµΦ̄ +

1

2
Zg−1

s σ2FµνFµν
]

(5.63)

with f(B) the same as in (5.61). One can check that whenever the B-field is a (2, 0)+(0, 2)-
form on the D7-brane internal worldvolume f(B) can be written as

f(B) = 1 +
1

2
Z−1g−1

s B2 (5.64)

where we have denoted B2 ≡ BabBab/2 and used that 4BabB
bcBcdB

da =
[
BabB

ab
]2

. This
implies that all corrections in α′, which appear as powers of the B-field in f(B)2, can
be completed into a perfect square. The reason is the underlying supersymmetry of the
system, which imposes that for a worldvolume flux F which is a self-dual two-form on the
D7-brane internal dimensions the D7-brane gauge kinetic function must be holomorphic
on the axio-dilaton τ , while for an anti-self-dual two-form it must be anti-holomorphic.
In both cases (ours being the second) no square roots should appear multiplying FµνF

µν ,
because there are none multiplying FµνF̃

µν . We refer to Appendix A for further details.

Even if Φ is supposed to take large vacuum expectation values their derivatives
must remain small, since we are interested in slow-roll dynamics. We can then expand the
square root neglecting higher orders in ∂µΦ, obtaining

SDBI = −µ7gsSTr

∫
d8ξf(B)

[
1 + Zσ2DµΦDµΦ̄ +

1

4
Zg−1

s σ2FµνF
µν +O(∂4)

]
(5.65)

where we have taken the same approximation for Aµ and its derivatives.

In order to proceed further we have to express the B-field in terms of the fluctuations
of the 8d field Φ. Recalling that G3 = F3−τH3 (with F3(H3) being the RR(NSNS) 3-form
flux), we can integrate

dB2 =
ImG3

Imτ
(5.66)

to obtain the B-field induced on the brane due to the presence of a constant G3 background
flux. The result for the B-field components is given by

B12 =
gsσ

2i
(G∗(0,3)Φ−G(2,1)Φ̄) ; B1̄2̄ = −gsσ

2i
(G(0,3)Φ̄−G∗(2,1)Φ) (5.67)

132



Chapter 5. From String Theory to Cosmology

where recall that, in tensorial notation the (0,3)-form flux corresponds to components G1̄2̄3̄

while the (2,1)-form flux to G1̄2̄3. From now on we will denote the fluxes as G ≡ G1̄2̄3̄

and S ≡ ε3jkG3j̄k̄ for simplicity in the notation. Plugging this in (5.64) we get that f(B)
becomes

f(Φ) = 1 +
Z−1gsσ

2

4
|G∗Φ− SΦ̄|2 , (5.68)

Let us now consider the Chern-Simons piece. From the equations of motion of type
IIB supergravity one can derive the following relations between the RR fields and the
3-form fluxes

dC6 = H3 ∧ (C4 +
1

2
B2 ∧ C2)− ∗ReG3 (5.69)

dC8 = H3 ∧ C6 − ∗Re dτ (5.70)

Integrating these equations and using that the background for the dilaton is constant, we
obtain the following RR 6-form and 8-form potentials

(C6)12 = −Z
−1σ

2i
(G∗Φ− SΦ̄) (5.71)

(C8)11̄22̄ =
Z−1gsσ

2

4

(
(|G|2 + |S|2)|Φ|2 − 4G∗S∗Φ2 + c.c.

)
(5.72)

Plugging these expressions in the Chern-Simons action of the D7-branes we get

SCS = µ7gsSTr

∫
d8ξ

(
−Z

−1gsσ
2

4
|G∗Φ− SΦ̄|2

)
(5.73)

which combined with the DBI part results in the following 8d action

S8d = −µ7gsSTr

∫
d8ξ

(
f(Φ)

(
Zσ2DµΦDµΦ̄ +

1

4
Zg−1

s σ2FµνF
µν

)
− Ṽ (Φ)

)
(5.74)

where the scalar potential is given by

Ṽ (Φ) = 2(f(Φ)− 1) =
Z−1gsσ

2

2
|G∗Φ− SΦ̄|2 (5.75)

In this last step we have also subtracted the D7-brane tension (which is cancelled by the
contribution of the orientifold planes). Notice that once done so the DBI and the CS parts
of the action contribute the same amount to the scalar potential, so we cannot neglect the
contribution from the CS action, as is oftentimes done in the literature.

Finally, integrating over the internal T4 wrapped by the D7-branes (using that the
internal profile of the wavefunctions for Φ is constant, see [54,215]) and rescaling the fields
such that

Φ→ Φ(V4µ7gsZσ
2)−1/2 ; Aµ → Aµ(V4µ7Z

−1σ2)−1/2 (5.76)

we obtain the following 4d effective Lagrangian

L4d = STr

(
f(Φ)DµΦDµΦ̄ +

1

4g2
YM

FµνF
µν − V (Φ)− 1

2
g2
YM [Φ, Φ̄]2

)
(5.77)
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where we have restored the D-term. Notice that all the dependence of the D-term on the
higher order corrections is absorbed in g−2

YM = V4µ7Z
−1σ2f(Φ), with V4 being the volume

of the internal T4. The rescaled scalar (F-term) potential and f(Φ) become

V (Φ) =
Z−2gs

2
|G∗Φ− SΦ̄|2 , (5.78)

f(Φ) = 1 +
Z−2(V4µ7)−1

4
|G∗Φ− SΦ̄|2 . (5.79)

As expected, this potential looks like a quadratic potential for the adjoint scalars.
However, one has to take into account the field redefinition required to have canonical
kinetic terms in eq.(5.77), which becomes important for large values of 〈Φ〉. As we will
describe in section 5.2.4, this redefinition modifies the large Φ behaviour of the system,
which turns close to a linear potential. Note that this flattening effect is similar to that
obtained in previous examples of monodromy inflation models [185,186,216]. It is however
important to realise that in the present case the flattening effect is purely due to the field
redefinition, and not to the square root of the DBI action. In fact notice that the CS piece
suffers the same flattening effect with no square root involved whatsoever.

5.2.3.2. Kaloper-Sorbo Lagrangian

While it may not be obvious from the above discussion, the system of D7-branes
described above is an example of F-term axion-monodromy inflation model [189], in the
sense that for small values of 〈Φ〉 the scalar potential can be understood as a standard
F-term potential. This has already been shown for the case of D7-branes in smooth Calabi-
Yau geometries, see for instance [45, 217, 218]. For the orbifold model of interest to this
paper the connection with N = 1 supergravity turns out to be more involved, but as we
will show in section 5.2.3.5 a similar result applies. Hence, we can also consider this model
as an example of F-term monodromy inflation.

Now, as pointed out in [189], in general models based on F-term axion monodromy
have a direct connection with the 4d effective framework developed in [163–165], which
features a Lagrangian of the form (5.18). Following [189], it is for instance straightforward
to obtain the Kaloper-Sorbo Lagrangian from a heterotic or type I model where the inflaton
is a massive Wilson line in a twisted torus, this being the most direct way to give a mass
to the Higgs system of the model of section 5.2.2.1. Nevertheless, a similar derivation for
F-term monodromy models where the inflaton is a D-brane position has so far not been
worked out.

In order to see how to derive the 4d Lagrangian (5.18) from a model of wandering
D7-branes, let us consider a single D7-brane transverse to z3 and in the presence of the
ISD three-form fluxes G ∼ G1̄2̄3̄ and S ∼ G123̄. Now, looking at the DBI action in the
Yang-Mills approximation we have that

µ7

∫
1

2
(σF2 +B2) ∧ ∗8(σF2 +B2) = µ7

∫
1

2
σ2F6 ∧ ∗8F6 + σB2 ∧ F6 + . . . (5.80)

where we have only kept terms that depend on F6 = dA5, the magnetic dual of F = dA. If
we assume that the D7-brane has a position modulus φ, then it means that the four-cycle
S4 wrapped by the D7-brane contains a (2,0)-form ω2 [219], in which we can expand the
magnetic potential A5 as

A5 = iC3 ∧ ω̄2 − iC̄3 ∧ ω2 (5.81)
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where C3 is a complex three-form in 4d. For instance, if S4 = T4 such (2,0)-form will be
given by ω = dz1∧dz2. Plugging this decomposition into the kinetic term for A5 in (5.80)
and performing dimensional reduction we obtain

µ7σ
2 1

2

∫
IR1,3×S4

F6 ∧ ∗8F6 → ρ

∫
IR1,3
d4x |dC3|2 , ρ = µ7σ

2

∫
S2

ω2 ∧ ∗4ω̄2 (5.82)

which is nothing but the complex generalisation of the term
∫
|F4|2 in (5.18), in the sense

that F4 = dC3 is now a complex four-form in 4d.

Let us now dimensionally reduce the second term in the rhs of (5.80). By taking
into account that

B2 =
gsσ

2i
(G∗φ− Sφ̄)ω2 + c.c. (5.83)

as derived in the previous section we obtain

µ7σ

∫
IR1,3×S4

B2 ∧ F6 → −gsρ
∫

IR1,3
φ(G∗dC3 − S∗dC̄3) + c.c. (5.84)

where we have used that ∗4ω2 = −ω2. Again, we obtain a generalisation of the axion-four-
form term

∫
φF4 in (5.18), where a complex scalar φ couples to the four-form F4 = dC3

and its complex conjugate via the presence of fluxes. Notice that a similar expression was
found in [170] for the coupling of a complex scalar to a complex four-form. In our case we
find a more general expression, in the sense that φ can couple to both F̄4 and F4 due to
the respective presence of supersymmetric (S) and non-supersymmetric (G) background
fluxes respectively.

From this Lagrangian and following the general philosophy of [163–165] one finds
that after integrating out F4 the potential generated for the scalar field φ is given by

V (φ) =
gs
2
|G∗φ− Sφ∗|2 (5.85)

just as found in the previous section when setting Z = 1, as we have done here. Of course
this will only be the potential in the small field regime, receiving corrections for large values
of 〈φ〉. Nevertheless, due to the symmetry properties of the Kaloper-Sorbo Lagrangian
such corrections can only arise in powers of the initial scalar potential V (φ) and not of the
field φ itself, see [163–165] and also [167–169]. In our analysis of the previous section we
have seen that this is the case, occurring in the form of a redefinition for the kinetic term
of φ, and giving rise to flattening effect for the potential. In section 5.2.5.1 we will discuss
from an independent, string theoretical viewpoint why the Planck suppressed corrections
to the inflaton potential should be of this form.

Finally, in this section we have only discussed the appearance of the Kaloper-Sorbo
Lagrangian for the case of a single D7-brane with an Abelian gauge group. This is indeed
the case of interest in our Higgs-otic D7-brane model, since away from the orbifold singu-
larity we have a single wandering D7-brane. We nevertheless expect that a similar result
applies to the non-Abelian case, given that the results of the previous section involving the
large field corrections, flattening etc. are valid for any U(N) gauge group or even orbifolds
thereof. Such non-Abelian analysis is however beyond the scope of this paper and we hope
to return to this problem in the near future.
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5.2.3.3. Estimation of the scales of the model

The coefficient of the quadratic term in the inflation potential, and hence the inflaton
mass, is determined by the size of the fluxes. We can try to estimate the size of the
fluxes in terms of the energy scales in the theory, assuming an approximate isotropic
compactification.

Since the 3-form fluxes have to be quantised over the internal 3-cycles γj that they
wrap, they are expected to scale as

1

2πα′

∫
γj

G3 = 2πnj → G3 '
4π2α′n

V
1/2

6

(5.86)

where V6 is the volume of the internal dimensions and n are integer quanta. Using the
following identities from type IIB compactifications for the Planck mass and the compac-
tification/unification scale [207]

m2
p = (8π)M2

p =
8M8

s V6

(2π)6gs
, Mc = Ms

(
2αG
gs

)1/4

, (5.87)

where we have defined the compactification/unification scale as Mc = 1/Rc with V4 =
(2πRc)

4, we find

G3 =
n

π

M2
c

α
1/2
G mp

. (5.88)

One can then estimate the scale of SUSY breaking which is given by

MSS =
Z−1g

1/2
s√

2
G3 =

Z−1n

π

M2
s

g
1/2
s mp

(5.89)

For n ∼ O(1) one gets MSS ∼ 1012 − 1013 GeV if Ms ' 1016 GeV. Thus the above simple
dimensional argument implies a SUSY breaking scale of the required order so that the SM
Higgs potential is saved from its instability.

We have seen that the effect of considering higher order corrections on Φ is the
presence of a function f(Φ) multiplying the kinetic terms given by

f(Φ) = 1 +
Z−2(V4µ7)−1

4
|G∗Φ− SΦ̄|2 . (5.90)

For small field this function is approximately 1 and we recover canonically normalised kin-
etic terms. To estimate how important is the effect for large field we define the parameter

Ĝ ≡ Z−1V
−1/2

4 µ
−1/2
7 G3 and using (5.88) we get

[Ĝ] = [Z−1V
−1/2

4 µ
−1/2
7 G3] ' 0.3Z−1g−1/2

s n
1

Mp
(5.91)

For n ∼ O(1) one obtains Ĝ ∼ 0.3 1
Mp

, so this effect becomes appreciable approximately

for 〈Φ〉 > 7Mp. We can also write the SUSY breaking scale in terms of Ĝ such that

M2
SS = V4µ7gs|Ĝ|2 ∼ 0.05M4

s |Ĝ|2 (5.92)

so Ĝ gives us the relation between the SUSY breaking scale and the string scale. This
relation will be useful later on when checking that the potential energy never becomes
larger than the string scale.
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5.2.3.4. The Higgs/inflaton scalar potential

Even if the analysis in section 5.2.3.1 is done for an adjoint field of a U(N) gauge
theory, it also applies after we have made an orbifold projection that converts the adjoint
into a set of bifundamental fields charged under the orbifolded gauge group. In particular,
we may consider the Z4 orbifold projection of section 5.2.2.2 and hence take Φ to be the
6× 6 matrix containing the Higgs system of the model

Φ =

 03

02 Hu

Hd 0

 (5.93)

as in (5.48). Then applying the results from section 5.2.3.1 we obtain the standard D-term
contribution to the scalar potential and the F-term contribution which is given by

V (Φ) = STr

(
Z−2gs

2
|G∗Φ− SΦ̄|2

)
, (5.94)

which in terms of the bifundamental fields Hu, Hd gives rise to

V =
Z−2gs

2

[
(|G|2 + |S|2)(|Hu|2 + |Hd|2)− 4Re(G∗S∗HuHd)

]
(5.95)

once we trace over the gauge indices. This potential can be rewritten in terms of the
combinations

h =
eiγ/2Hu − e−iγ/2H∗d√

2
and H =

eiγ/2Hu + e−iγ/2H∗d√
2

(5.96)

where γ = π −Arg(GS) as

V =
Z−2gs

2

[
(|G| − |S|)2|h|2 + (|G|+ |S|)2|H|2

]
(5.97)

Note that, at this level, before field rescaling to canonical kinetic terms, the potential has
the structure of double chaotic inflation. Note also that for |S| = |G|, h becomes massless.
Thus, if eventually we want to fine-tune a massless SM Higgs, we would need to be close
to a situation where |S| = |G|. The subsequent running from Mc down to the scale MSS

of soft parameters will give rise to a massless SM Higgs.

We may now write this potential in terms of the real scalars (σ, θ) which we defined
in eq.(5.33). They parametrise the neutral Higgs along the D-flat direction. One finds

V (σ, θ) = Z−2gs(|G|2 + |S|2)
(

1−A cos θ̃
)
σ2 (5.98)

where we have defined

A =
2|SG|

|G|2 + |S|2
and θ̃ = θ −Arg(GS) . (5.99)

Note that 0 ≤ A ≤ 1 and one also has

A =
m2
H −m2

h

m2
H +m2

h

= |cos2β| ;
mH

mh
=

√
1 +A

1−A
, (5.100)
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with tanβ = mH/mh. The potential in eq.(5.98) will be our inflation potential. It is es-
sentially a quadratic potential in σ modulated by the dependence on θ̃. Note however that
we still have to include the effect that the kinetic terms are non-canonical and field de-
pendent, as we will discuss later. However, the qualitative structure of the scalar potential
can already be discussed at this point.

Roughly speaking, the shape of the potential depends on the value of the parameter
A which parametrises the relative size of both types of ISD fluxes. In figure 5.6 we show
the structure of the scalar potential for three characteristic values A = 0.1, 0.5, 0.95. For

Figure 5.6: Scalar potential for three different values of A, A = 0.1 (left), A = 0.5 (centre)
and A = 0.9 (right).

A ' 0, which can happen if either G or S vanish, the potential is simply given by

V =
Z−2gs

2
|G|2(|H|2 + |h|2) = Z−2gs|G|2σ2 (5.101)

which is θ̃-independent. This case will be essentially identical to a single inflaton case with
a chaotic, quadratic potential for σ (before flattening). This case with A ' 0 is depicted in
the left plot in figure 5.6. Getting the same result with either G = 0 or S = 0 is expected
by symmetry arguments, since a D7-brane which is point-like in the third complex plane
cannot locally distinguish between the real and imaginary parts of z3, and both choices of
fluxes are related by interchanging z3 by z̄3.

For the case A = 1 one has the fluxes related as |G| = |S|, and h is massless. The
potential is then given by

V = 4Z−2gs|G|2cos2(θ̃/2)σ2 = 2Z−2gs|G|2|H|2 (5.102)

This corresponds to the right plot in figure 5.6. This choice of fluxes corresponds to a
non-supersymmetric situation in which the NSNS 3-form flux H3 only has a leg in one of
the real directions of the transverse space, so the other direction is a flat direction for the
D7-branes. In the 4d effective theory this is reflected by the presence of a massless real
scalar which is given by |h|.

These two cases A = 0, 1 are limiting cases in which the potential reduces to a single
field inflation model. For a generic choice of fluxes, one expects a situation in between,
with both scalars playing an important role in inflation. In section 5.2.4 we will compute
the slow-roll parameters first for the cases A = 0, 1 and then for the general 2-field inflation
case.

Notice however that if we want to have a massless eigenstate at the SUSY breaking
scale (in order to get a light SM Higgs), A is not a free parameter anymore. In terms of
the mass parameters of the Higgs mass matrix in (5.25), A parametrises the ratio between
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the off-diagonal entries |m3| and the diagonal ones m2
Hu

= m2
Hd

at Mc. Thus a massless

eigenstate implies |m3|2 = m2
Hu
m2
Hd

which corresponds indeed to A = 1 as we already
commented. However, as we discussed in section 5.2.1, we need the eigenstate to become
massless at MSS ∼ 1012−1013 Gev and not at the inflation scale ∼ 1016 GeV, so A needs to
be slightly lower than 1. We have computed the running between both scales and obtained
that the optimal value to have a zero eigenvalue at MSS is A ' 0.83, corresponding to
mH/mh = 3.28. We take here the unification scale Mc as the scale at which α2 = α3. Of
course this result depends on the exact value of MSS which is in turn parametrised by
the global factor in the potential, whose size was estimated in section 5.2.3.3 obtaining
MSS ∼ 1012− 1013 Gev. In figure 5.7 we plot the value of A that we need to start with in
order to have a light SM Higgs boson, as a function of the SUSY breaking scale. We have
also imposed to get the experimental value of the top and Higgs mass at the EW scale.
We can see that for MSS ∼ 1012 − 1013, we have 0.8 < A < 0.85, so in any case, we will
be in a situation quite close to the single field case A = 1, in which the heavy Higgs H is
the scalar which plays the role of the inflaton.

 0.55
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 0.75

 0.8

 0.85
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A

SUSY breaking scale MSS (GeV)
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 mhiggs=125.5 ± 0.55 GeV

Figure 5.7: The required value of A in order to have a massless eigenstate at MSS as a
function of the SUSY breaking scale.

5.2.3.5. N = 1 supergravity description

Before turning to the computation of the slow roll parameters, let us compare the
scalar potential of the previous section with the one that we would have obtained from
a N = 1 supergravity computation. As we will see, upon introducing the appropriate
Kähler potential and superpotential one recovers an F-term scalar potential with the same
structure as the one found microscopically via the D7-brane action. The exact matching
does however only occur for small values of the inflaton vev. For large field values there
will be α′ corrections that the supergravity approach fails to capture, and can only be
seen by means of our previous DBI+CS analysis.

In eq.(5.43) we showed the Kähler potential for the Higgs fields in a Z4 heterotic
orbifold. It is easy to convince oneself (e.g. by application of S-duality and T-duality
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along the third complex plane) that the corresponding Kähler potential for the type IIB
model with a stack of D7’s is given by

KH = −log[(S + S∗)(U3 + U∗3 ) − α′

2
|Hu +H∗d |2] − 3log(T + T ∗) (5.103)

where S is the complex type IIB dilaton. We have also added the well known Kähler
moduli dependent piece in terms of a diagonal Kähler moduli field T (i.e. we are taking
(Ti + T ∗i ) = (T + T ∗), ∀i). We have also set the other matter fields A1,2 = 0 since they do
not play any role in the discussion and also the complex structure moduli to U1 = U2 = 1.
These simplifications are not important and the general case can be easily included in the
discussion. The important point is that this dependence of the Kähler potential on T yields
a no-scale structure for the F-term scalar potential, typical of type IIB compactifications
with ISD fluxes [7].

In fact, it is well known that the effect of ISD fluxes on D7-brane fields can be
understood macroscopically in terms of an N = 1 supergravity description in which the
SUSY-breaking effects are induced by the auxiliary fields of the Kähler moduli,see [45,46,
52,58,214]. In our case the relevant superpotential in this effective description includes a
constant term W0 and a µ-term

W = W0 + µHuHd . (5.104)

Due to the no-scale structure of the Kähler potential, the scalar potential is simply given
by

V = eK(Kij̄DiWDj̄W̄ ) (5.105)

where the indices run over the dilaton and complex structure moduli. Let us assume that
the above potential is minimised when

DSW = 0 ; DUW = 0 (5.106)

which implies V0 = 0. Moreover, as mentioned before, we assume that supersymmetry
breaking comes from the Kähler moduli sector, namely

F t = eK/2K T̄ TDTW = −W0√
st
6= 0 , (5.107)

where s = (S + S∗), t = (T + T ∗). This is nothing but the assumption of modulus
dominance SUSY breaking in type IIB which was studied in detail in [45, 46, 52, 58, 214].
Plugging all these data in standard N = 1 sugra formulae [57] leads to a bilinear scalar
potential of the form

V = (m2
Hu + µ̂2)|Hu|2 + (m2

Hd
+ µ̂2)|Hd|2 +Bµ̂HuHd + h.c. (5.108)

where µ̂ is the Higgsino mass with fields canonically normalised, and

m2
Hu = m2

Hd
= |M |2 , µ̂ =

W0 + µs

t3/2
√
s

, B = −2M , (5.109)

where

M = − W ∗0
t3/2
√
s
, (5.110)
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is a universal gaugino mass. Note that the physical µ-term µ̂ has two contributions, one
coming from the original µ-term of the superpotential, and the other arising after SUSY
breaking from the Kähler potential via a Giudice-Masiero mechanism, which is implicit in
the form of the Kähler potential. All in all the scalar potential is given by

V = (|M |2 + |µ̂|2)(|Hu|2 + |Hd|2)− 2Mµ̂HuHd + h.c. (5.111)

This scalar potential is identical to the one we derived from explicit fluxes eq.(5.95) upon
the identifications

G∗ =
(gs

2

)−1/2 W ∗0√
st3/2

, S∗ = −
(gs

2

)−1/2 W0 + µs
√
st3/2

(5.112)

which implies M = −gs
2 G
∗ and µ̂ = −gs

2 S
∗, in agreement with the results of [45].

Finally we can write the scalar potential in terms of the fields H,h obtaining6

V =
[
(|µ̂|+ |M |)2|H|2 + (|µ̂| − |M |)2|h|2

]
(5.113)

Note that in the absence of an explicit µ-term one has µ̂ = −M∗ so that the h doublet is
massless. So from the N = 1 sugra point of view, the desired situation with m2

h � m2
H

would correspond to a suppressed explicit µ-term in the superpotential. This limit with a
massless h field corresponds in terms of fluxes to a situation with G = −S∗. It is interesting
to have this N = 1 sugra description for this equality which could be unmotivated from a
microscopic point of view. Note finally that we will also have a similar situation whenever
|W0| = |W0 + µs|.

Since the N = 1 sugra formalism is quite familiar one may be tempted to discuss
inflation only in terms of the above formulae (see e.g. [220] for a recent two-field analysis
in no-scale supergravity). The structure would be just the one of double chaotic inflation.
However this N = 1 sugra formulation misses important α′ stringy corrections. On the
other hand, the DBI+CS D7-brane action on which we have based our analysis contains
corrections to all orders in α′, and so include all higher order terms in the expansion on
the Higgs field vevs. These higher order terms are missed by the sugra formulation. In
particular, the flattening of the inflation potential due to the kinetic field redefinitions is
such an α′ correction, and the sugra scalar potential would only capture the first term in
the α′ expansion.

5.2.4. Computing slow roll parameters for large inflaton

In this section we compute the slow-roll dynamics of our inflation model and the
resulting cosmological observables. We first review the generalisation of the slow roll para-
meters to multiple field inflationary models in which the kinetic terms are not canonically
normalised. Then we will solve the slow roll equations of motion and show the results for
different values of A, distinguishing between the single field and two-field cases.

6In terms of H and h (5.103) reads −log[(S + S∗)(U3 + U∗3 )− α′(cos2(γ/2)|H|2 + sin2(γ/2)|h|2)]. It is
then quite remarkable that the scalar potential is independent of which combination of H and h appears
in the Kähler potential.
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5.2.4.1. Slow roll equations of motion

In the previous section we derived the effective action for the Higgs/inflaton sec-
tor obtaining for a general choice of fluxes a two-field inflation model. The 4d effective
Lagrangian in terms of the neutral Higgs scalars Hu, Hd is given by

L4d = f(Hu, Hd)(|DµHu|2 + |DµHd|2)− VF (Hu, Hd)− VD(Hu, Hd) (5.114)

where we have explicitly separated the F-term (5.95) and D-term (5.32) contribution of
the potential. The function multiplying the kinetic terms is given also in terms of the
F-term potential such that

f = 1 +
(V4µ7gs)

−1

2
VF . (5.115)

We saw that the D-term potential is minimised for

Hu = H∗de
iθ , |Hu| = |Hd| = σ (5.116)

with θ = θu + θd. Thus in terms of the remaining scalar degrees of freedom σ, θ the
potential becomes

VF = Z−2gs(|G|2 + |S|2)(1−A cos θ̃)σ2 (5.117)

as we derived in (5.102). Recall that θ̃ = θ−Arg(GS) and A gives the relative size of the
moduli of the fluxes (see (5.99)). The kinetic terms read

|DµHu|2 + |DµHd|2 → 2(Dµσ)2 +
σ2

2
(Dµθ)

2 (5.118)

implying the following 4d effective Lagrangian for the fields σ, θ,

L4d = f(σ, θ)

(
2|Dµσ|2 +

σ2

2
(Dµθ)

2

)
− Z−2gs(|G|2 + |S|2)(1−A cos θ̃)σ2 (5.119)

One could think that the first step is to absorb the prefactor f(σ, θ) in a redefinition of the
fields in order to have canonically normalised kinetic terms. Comparing with the general
form of a Lagrangian of multiple fields

L4d =
1

2
Gab(φ)Dµφ

aDµφb − V (φ) (5.120)

this is equivalent to ask if there exists an appropriate field redefinition such that Gab = δab,
where in our case the metric is given by

Gab =

(
4f(σ, θ) 0

0 σ2f(σ, θ)

)
(5.121)

This is always possible for a single field, making a field redefinition of the form

φ′ =

∫
dφf1/2(φ) (5.122)

where we have assumed Gφφ = f(φ). However, in general this can not be done globally (i.e.
for all values of φ) for two or more fields simultaneously. Notice that Gab transforms as a
rank two tensor under field redefinitions of the form φ→ f(φ) and is positive definite, so it
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can be interpreted as a metric on the moduli space parametrised by the fields. Therefore
a change of variables which brings the metric to the flat metric Gab = δab can only be
done globally if the curvature scalar vanishes everywhere. In fact, the metric (5.121) is
conformal to the flat metric, so the Ricci scalar of curvature will be proportional to the
Hessian of the function f . It can be checked that this scalar vanishes

R ∝ 1

f
∆(Ln f) = 0 (5.123)

if the function f can be written as f = |h(z3)|2 where h(z3) is a holomorphic function
on z3. By absorbing all the global factors in the potential into a single overall parameter
given by

|Ĝ|2 = Z−2(V4µ7)−1(|G|2 + |S|2) (5.124)

as in section 5.2.3.3 we obtain the function

f = 1 +
|Ĝ|2

2
(1−A cos θ̃)σ2 (5.125)

Then, recalling that z3 = (2πα′)σeiθ/2, we see that f is not a holomorphic function in
general so it does not exist any field redefinition that canonically normalises simultaneously
both fields σ and θ. Therefore for the general 2-field case we will have to keep track of the
non-flat metric all over the computation of the slow roll parameters.

The scalar equations of motion for several inflaton fields are given by

φ̈a + Γabc(φ)φ̇bφ̇c + 3Hφ̇a = −Gab∂V (φ)

∂φb
. (5.126)

with H being the Hubble constant. The slow roll condition for inflation implies that the
potential energy has to be dominant with respect to the kinetic energy over the whole
inflationary trajectory, so we can drop the first two terms in (5.126) leading to the well
known slow roll equations of motion

3Hφ̇a = −Gab∂V (φ)

∂φb
. (5.127)

This is a good approximation whenever the slow roll parameters ε, η remain smaller than
one. The generalisation of the ε parameter for multiple field inflation is given by (see
e.g. [156])

ε =
M2
p

2
Gab

V ′aV
′
b

V 2
(5.128)

where the primes denotes derivatives with respect to the fields V ′a = ∂V
∂φa . The η parameter

would correspond though to the smallest eigenvalue of the matrix of second derivatives of
the potential given by

Na
b = M2

p

GacV ′′cb
V

(5.129)

where V ′′cb = ∂V ′a
∂φb
− ΓabcV

′
a is the covariant derivative.

The ε-parameter can also be defined in the multi-field case in terms of the number
of efolds as

ε =
1

2
Gab

dφa

dNefolds

dφb

dNefolds
. (5.130)
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This implies the following formula that we will use to compute Nefolds in terms of ε,

N∗ =

∫ φ2
end

φ2
0

1√
2ε

√
G11

(
dφ1

dφ2

)2

+G22 dφ
2 (5.131)

in the two field case.7 Finally, the scalar spectral index and the tensor to scalar ratio are
defined as in section 5.1.1 (for single field) but using the multi-field generalisation of ε and
η explained here.

Below we show the results first for the single field limit cases (A = 0 and A = 1)
and then for a general two field case with arbitrary A, but with special focus on the case
of special interest A ' 0.83.

5.2.4.2. Single field limit cases

We showed in section 5.2.3.4 that for specific choices of fluxes the potential reduces to
a single field inflationary potential where the inflaton has a clear geometric interpretation.
In particular, we get the potential

V = Z−2gs(|G|2 + |S|2)φ2 (5.132)

with φ ≡ σ for A = 0 (G = 0 or S = 0) or φ ≡ |H| for A = 1 (|G| = |S|). Recall that the
position of the D7-branes in the transverse torus is parametrised by

z3 = 2πα′ σeiθ/2 = 2πα′
1√
2

(|H|+ i|h|)e−iγ/2 (5.133)

If A = 0 the inflaton σ parametrises the distance of the travelling D7-branes to the
singularity Z4, while if A = 1 the inflaton corresponds to the distance along one of the
1-cycles of the torus, the orthogonal 1-cycle being a flat direction.

Before taking into account the field redefinition the potential is quadratic on the
fields, corresponding to a soft mass induced by breaking SUSY with the closed string
fluxes. However, since we are interested in large field values, higher order corrections
to the potential become important and can not be neglected. These corrections were
computed from the DBI+CS action of the D7-brane and their effect is to induce non-
canonical kinetic terms, with a prefactor

f = 1 +
(V4µ7gs)

−1

2
V = 1 +

|Ĝ|2

2
φ2 (5.134)

where we have again defined |Ĝ| by (5.124). In the single field case, the kinetic term can
always be canonically normalised by an appropriate redefinition of the field. Therefore the
effect of the higher order corrections can be encoded on a field redefinition given by

ϕ =

∫
dφf1/2(φ) (5.135)

which becomes important for large field. Inserting (5.134) in (5.135) we get

ϕ =
1

2
√

2
|φ|
√

2 + |Ĝ|2|φ|2 +
1√
2
|Ĝ|−1sinh−1[|Ĝ||φ|/

√
2] (5.136)

7Note that here φ2 stands for φb with b=2, so it is not an exponent but an index.
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In fig.5.8 we plot the new normalised field ϕ in terms of the old one φ. Notice that for
large field this yields

ϕ ' 1

2
√

2
|Ĝ|φ2 (5.137)

and the potential becomes linear in the new normalised field ϕ. Hence the effect of the
higher order corrections is indeed a flattening of the potential. In fig.5.9 we plot the scalar
potential in terms of the new canonically normalised field, for different values of Ĝ. The
bigger Ĝ is, the sooner the flattening effect takes place. To work this plot out we have used
the fact that the overall factor in the potential (which parametrises the SUSY breaking
scale) is related to |Ĝ| by

M2
SS = Z−2gs(|G|2 + |S|2) = V4µ7gs|Ĝ|2 ' 0.05gsM

4
s |Ĝ|2 (5.138)

where Ms is the string scale. Hence the scalar potential interpolates between quadratic
and linear depending on the SUSY breaking scale (through Ĝ). For |Ĝ| > 1/Mp the
potential becomes bigger than the string scale during inflation (i.e. V 1/4 > M4

s ) and the
computation is inconsistent, since new KK and string modes should be taken into account.
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Figure 5.8: Field redefinition (new field ϕ vs old field φ) for different values of Ĝ.
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Figure 5.9: Scalar potential in terms of the canonically normalised field ϕ for different
values of Ĝ.

Let us compute now the tensor-to-scalar ratio r and the scalar spectral index ns.
We compute the field value φ0 at which inflation starts by imposing to get between 50
and 60 efolds before inflation ends. Notice that inflation ends when ε(φend) = 1. Once we
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Nefolds ϕend ϕ0 r ns
60 1.38 13.38 0.080 0.972
50 1.38 12.33 0.098 0.966

Table 5.1: Results for Ĝ = 0.3/Mp in isotropic compactifications.

know the initial value φ0, we can compute r and ns by evaluating the slow roll parameters
at φ = φ0. We plot the result in fig.5.10. The result for Higgs-otic inflation (red band)
has been superimposed over the figure with the Planck experimental exclusion limits and
some inflationary models in the literature. Remark those corresponding to quadratic and
linear potentials, given respectively by black and yellow points. Our model interpolates
precisely between both of them, recovering a quadratic potential in the small Ĝ limit,
and a linear potential in the large Ĝ limit. There is a special value for Ĝ (corresponding
to the blue line inside the red band) given by considering generic fluxes in an isotropic
compactification, as estimated in section 5.2.3.3. It corresponds to Ĝ ' 0.3/Mp, implying
a SUSY breaking scale around 1012−1013 GeV (depending on the exact value of the string
scale). The numerical results for Ĝ ' 0.3/Mp are shown in table 5.1. Notice that the field
range is given in units of the reduced Planck mass Mp. We can see that the prediction for
the tensor to scalar ratio is around r ' 0.09.

Figure 5.10: Tensor to scalar ratio vs scalar spectral index for A = 0, 1 in Higgs-otic
inflation (red band).

Finally one could also wonder about the density of scalar perturbations. These have
been measured experimentally by Planck obtaining an order of magnitude of

Ps =
V

24π2M4
p ε
∼
(
δρ

ρ

)2

∼ (10−5)2 (5.139)
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Using that V = MSSφ(ϕ)2 where MSS is the SUSY breaking scale and taking into ac-
count the field redefinition φ(ϕ), we can use the experimental result for the density scalar
perturbations to estimate the SUSY breaking scale. The result is MSS ' 1012− 1013 GeV
depending on the exact value of the string scale, in agreement with the assumption of
closed string fluxes as the main source of SUSY breaking. More precisely, for Ĝ ' 0.3/Mp

fixed, we obtain MSS ' 3 · 1012 GeV.

We can also estimate the number of times that the inflaton has to travel along the
torus. For simplicity let us assume that the overall internal space is a direct product of
the internal 4d space wrapped by the D7-branes and the transverse torus such that

Vol(B3) = Vol(X4)Vol(T2) (5.140)

where also X4 = T4. Then Vol(X4) = (2πRc)
4 and Vol(T2) = (2πr)2. The position of the

branes is parametrised by

z3 = 2πα′〈ϕ〉 (5.141)

and the inflaton completes a period when 〈ϕ〉0 = r
α′ . Using eq.(5.140) and the identities

(5.87) one period along the transverse torus is given by

〈ϕ〉0 =
1

2πα′

(
Vol(B3)

Vol(X4)

)1/2

=
g

1/2
s mp

2α
−1/2
G

∼ 0.5g1/2
s Mp (5.142)

Hence if we need ∆ϕ ' 10Mp, we will need about 20 periods. Of course this is the worst
case in which we are assuming the same radius for both cycles of the torus and that the
inflaton is circling only around one of them. In general

∆ϕ =
R

α′
|m+ iU3n| (5.143)

with m,n the number of periods along both 1-cycles, so the effective number of periods
can be considerably smaller (although always bigger than 1).

Note that all these A = 0, 1 results are independent on whether the inflatons have
the quantum numbers of the MSSM Higgs bosons. If they were describing any other
scalar field, but still corresponding to the position of a D7-brane in such closed string
flux background, then their potential would be described by the analysis of section 5.2.3.1
or and orbifold thereof and the same results would apply. However, the case in which
the inflaton is a Higgs field is further constrained by known Higgs physics. In particular,
for Higgs-otic inflation we are interested in obtaining a massless eigenstate at the SUSY
breaking scale that could play the role of SM Higgs boson, so we need a specific choice of
fluxes satisfying A ' 0.83. This leads us to the two-field inflation case. However, if we
start with initial conditions such that < H >�< h > (implying Hu = H∗d) the inflaton
is mostly H and the analysis here described is a good approximation. For generic initial
conditions, however, both fields are relevant for inflation and a more general analysis is
needed. We turn now to describe the more general case of two fields.

5.2.4.3. The general 2-field Higgs/inflaton case

In this section we deal with the more general and interesting case of the two field
inflationary potential.
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Results for small field. As a first approximation we assume that the fields take only
small values such that the function f is approximately f(σ, θ) ≈ 1+. . . and we do not have
to worry about the field redefinition. Notice that this is not consistent for our inflationary
model in which the fields necessarily have to take large trans-planckian values in order to
obtain of the order of 60 efolds during inflation. But this simplification allows us to solve
analytically the equations of motion making easier the presentation of the new features
that arise in a 2-field inflationary model with respect to the previous single field case. It
is also a good approximation for very small values of Ĝ. In the next subsection we will
deal with the more general case including the field redefinition and obtaining a flattening
of the potential. This will imply a reduction in the tensor to scalar ratio obtained in this
subsection.

Neglecting the field redefinition coming from higher order corrections on α′ in the
DBI+CS action, the metric is simply given by Gab = diag(4, σ2). This leads the following
slow roll equations of motion

dσ(t)

dt
= −c σ(t)(1−A cosθ̃(t)) (5.144)

dθ̃(t)

dt
= −c 2A sinθ̃(t) . (5.145)

where c = Z−2gs(|G|2 + |S|2)/6H. These equations can be solved analytically, obtaining

σ(t) = σ(0)e−c(1+A)t

1 + e4Actcot
(
θ̃(0)

2

)2

1 + cot
(
θ̃(0)

2

)2


1/2

(5.146)

tan

(
θ̃(t)

2

)
= e−2Acttan

(
θ̃(0)

2

)
(5.147)

which can be combined to obtain the slow roll trajectory σ(θ̃). This trajectory will be
independent of the parameter c, recovering the well known result that the observables
r, ns, Nefolds are independent of the global factor of the potential in chaotic-like inflation
models. Instead, these observables will depend only on the relative size of the fluxes
parametrised by A.

By looking at the above equations, we can see that the phase remains unchanged
θ̃(t) = θ̃(0) for the case A = 0, while σ(t) = σ(0)e−ct. This is the typical exponentially
decreasing behaviour of single field inflation and we recover the results described in the
previous section. The case A = 1 is a bit special since the minimum of the potential is
at θ̃ = 0 for any value of σ, including σ 6= 0, which implies that at the end of inflation
the gauge group SU(2) × U(1) remains broken. This is an unwanted situation, since we
want to maintain the SM gauge symmetry unbroken after inflation. So this particular
limit would not be viable generically. This case can also be reduced to single field inflation
as we explained in the previous section. Here we are going to focus on an intermediate
situation in which A takes a value in between 0 and 1, so both fields may be important
for inflation.

There is a novel feature of the 2-field case comparing with single field inflation: the
dependence of the results on the initial conditions σ(0) and θ(0). Depending on which
initial point on the field space inflation starts, the slow roll trajectory will be different
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giving rise to different values of the cosmological observables. Although one of the initial
conditions can be fixed by imposing a specific number of efolds (as in single field inflation)
the other one remains as a free parameter. This extends the range of possibilities but in
principle also makes the model less predictive.

As we argued above, for the SM Higgs to be fine-tuned and (approximately) corres-
ponding to the h linear combination we need to have m2

h � m2
H at the string scale. This

corresponds to a value of A ' 1. In fact in section 5.2.3.4 we estimated the required value
of A in order to have a vanishing SM Higgs eigenvalue at a scale ' 1013 GeV, obtaining a
value around A = 0.83. For this case of interest (A = 0.83) we have plotted the trajectory
followed in the (σ, θ̃)-plane in fig.5.11, for different initial values θ̃(0). We see that for
an initial value at the top of the hill (θ̃(0) ' π, σ ' 7) the inflaton goes downhill in the
σ direction keeping θ̃ almost constant. Eventually the opposite happens and the phase
goes fast to zero. For initial values at large σ(0) but smaller θ̃(0) both σ and θ̃ decrease
simultaneously. For small values of θ̃(0) the inflaton goes fast to θ̃ = 0 and then goes
downhill in σ.
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Figure 5.11: Trajectory σ(θ̃(t)) described by the slow roll eqs. of motion for A = 0.83 and
the different initial values θ̃(0) = 3, 3π/4, π/2, π/4.

By using (5.128) we get the following formula for the slow roll ε parameter,

ε =
M2
p

2σ2

(
1 +A2 sin2θ̃

(1−A cos θ̃)2

)
(5.148)

Given a value for A and for the initial conditions σ(0), θ̃(0), we can compute the ε-
parameter along the inflationary trajectory σ(θ̃). The result is shown in fig.5.12 for the
same choices of trajectories depicted in fig.5.11, and this time also for different values of
A. Inflation ends when this parameter becomes order 1, or alternatively when both fields
reach their minima.

Replacing the metric in (5.131) we get the following formula for the number of efolds,

Nefolds =

∫ θ̃end

θ̃(0)

1√
2ε(θ̃, A, σ(0), θ̃(0))

√√√√4

(
dσ(θ̃)

dθ̃

)2

+ σ(θ̃)2 dθ̃ (5.149)
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Figure 5.12: The slow roll parameter ε as a function of θ̃ for different values of A and
different possible trajectories.

The value θ̃end is the one at which ε = 1 and inflation ends. For some choices of initial
conditions, we can see that ε remains ε < 1 until the fields almost reach the minimum
of the potential, so θ̃end ' 0. Finally the tensor-to-scalar ratio is proportional to the
ε-parameter evaluated at the beginning of inflation,

r = 16ε|θ̃(0),σ(0) (5.150)

and the same for the primordial tilt,

ns = 1 + 2η|θ̃(0),σ(0) − 6ε|θ̃(0),σ(0) (5.151)

We have studied the possible trajectories in our parameter space that give rise to Nefolds =
50 − 60 before inflation ends. This constraint implies a curve in the parameter space of
initial conditions (θ̃(0), σ(0)) for each value of A (fig.5.13). Note that the number of efolds
(for A < 1) is almost independent of θ̃(0). All the dependence comes from the fact that
ε, η do depend on θ̃(0), and thus θ̃end may be different for different initial values θ̃(0). The
dependence of Nefolds on A also comes from the slight dependence of θ̃end on A. Therefore,
the behaviour for A < 1 is quite similar to that of A = 0, in which σ is the only inflaton.
For A = 1 the situation changes drastically and Nefolds only depends on H(0), being
this field the inflaton. Notice that in this case 60 efolds are obtained if H(0) = 11Mp.
Taking into account the definition of canonically normalised fields (5.120) for which the
physical field would actually be

√
2H, this implies a physical field range of 15.5Mp, as

usual in chaotic inflation. Therefore we recover the results of chaotic inflation in the cases
A = 0, 1.

Although the behaviour of Nefolds does not differ much from the single field cases,
the results for r and ns do. Let us explain the reason. We can use the constraint of
getting 50-60 efolds to fix one of the initial conditions (σ(0)), as we can see in fig.5.14
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Figure 5.13: Possible initial values that will give rise to Nefolds = 60. Each curve corres-
ponds to a different value for A = 1, 0.83, 0.5, 0.17. For simplicity in the right plot we have
assumed Arg(GS) = 0.

(left). In the single field cases this determines completely r and ns, but here we have
another free parameter, the other initial condition θ̃(0). We can then plot r and ns in
terms of θ̃(0) obtaining the functions depicted in fig.5.14 (right) for the case A = 0.83. It
is clear that these observables do depend on θ̃(0). The minimum value for r that we can
get corresponds to the result of chaotic inflation (r ' 0.13), while the freedom of choosing
θ̃(0) allows us to get bigger values for the tensor to scalar ratio. However if we impose
the experimental constraint for the primordial tilt ns only the region θ̃(0) > 1.7 survives,
implying 0.13 < r < 0.15 again.
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Figure 5.14: Left: Number of efolds vs the initial point σ(0) for A = 0.83 before flattening.
Right: Tensor-to-scalar ratio (blue curve) and scalar spectral index (red curve) as functions
of the initial point θ̃(0) for A = 0.83.
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In fig.5.15 we plot the value of the tensor-to-scalar ratio (left) and the scalar spectral
index (right) without imposing a specific Nefolds in the parameter space of initial conditions
for the relevant case A = 0.83. It has been imposed that the potential energy remains lower
that the string scale (V 1/4 < Ms). This implies a lower bound in r and an upper bound in
ns. Therefore although we allowed for more than 60 efolds, we could not get parametrically
smaller values for r. It has also been superimposed a black band corresponding to the set
of initial points which gives rise to 50 < Nefolds < 60, to guide the eye. Notice however
that the region from the black band to the right part of the plot is also allowed (whenever
the potential remains subplanckian) corresponding to Nefolds > 60 and a smaller r. These
values for r will decrease in the next section when including the flattening of the potential.

Figure 5.15: Left: Tensor-to-scalar ratio (contour plot) in the parameter space of initial
conditions for A = 0.83 before flattening. Only plotted those points which imply a poten-
tial V 1/4 < Ms. The black band corresponds to those points which lead to 50-60 efolds.
Right: The same for the primordial tilt.

Results for large field. Once we take into account higher order corrections in he
DBI+CS action, the kinetic terms turn out to be non-canonically normalised. The metric
in the field space is given by (5.121)

Gab =

(
4f(σ, θ̃) 0

0 σ2f(σ, θ̃)

)
(5.152)

with

f = 1 +
|Ĝ|2

2
(1−A cos θ̃)σ2 (5.153)

In the previous section we neglected this effect assuming Ĝ small. There the results did
not depend on Ĝ because this parameter entered only as a global factor in the scalar
potential. In this section we consider the most general case in which both Ĝ and A can
take arbitrary values. Hence, we have to deal with a two field inflationary model in which
the kinetic terms are not canonically normalised, so we will use the generalisation for the
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slow roll parameters derived in 5.2.4.1. Now the results will also depend on Ĝ (and so in
the SUSY breaking scale) as it enters in the field redefinition above. As we explained in
the single field cases, the effect of the field redefinition will be a flattening of the potential
giving rise to a decrease in the tensor to scalar ratio (more important as Ĝ increases). The
structure will no longer be that of double chaotic inflation.

In the following we show the results for Ĝ = 1/Mp, corresponding to the biggest
value for Ĝ that still implies a potential energy lower than the string scale. For this value,
in the single field cases the potential was almost linear, so here we expect to recover the
results of linear inflation for A = 0, 1. We show the same plots than in the previous section
but now for Ĝ = 1/Mp, to highlight the flattening effect. Notice in fig.5.16 that 60 efolds
are achieved now when H(0) ' 4.7Mp for A = 1. This field is not canonically normalised,
so in order to compare with the physical field we have to compute the field redefinition,
possible in this single field case. In fact, the result is H ′(0) ' 11Mp, recovering the result
for linear inflation.
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Figure 5.16: Possible initial values that will give rise to Nefolds = 50 − 60. Each curve
corresponds to a different value for A = 1, 0.83, 0.5, 0.17.

In fig.5.17 we plot Nefolds, r and ns for A = 0.83. The tensor to scalar ratio is
smaller than in the previous section for a bigger range of θ̃(0). In fact, after imposing
the experimental bound on ns, the value for r is constrained to the range 0.07 - 0.1,
corresponding again to the result of a single field with a linear potential. Therefore, after
imposing the experimental constraints, the results look quite similar to the single field
case, as in the previous section.

In fig.5.18 we illustrate the decrease on the tensor to scalar ratio due to the flattening
of the potential. Notice also that the bound of getting V 1/4 < Ms is stronger, and the
value Ĝ = 1/Mp corresponds to the limit case in which this bound is still satisfied.

All these figures show the results for Ĝ = 1/Mp. The figures of the previous section
can be recovered in this general analysis by fixing Ĝ small, around Ĝ ' 0.01/Mp. For
intermediate values of Ĝ we would have an intermediate situation between both sections.
Recall that we have four free parameters in the model, two of them giving the absolute and
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Figure 5.17: Left: Number of efolds vs the initial point σ(0) for A = 0.83. Right: Tensor-
to-scalar ratio and scalar spectral index as functions of the initial point θ̃(0) for A = 0.83.
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Figure 5.18: Left: Tensor-to-scalar ratio (contour plot) in the parameter space of initial
conditions for A = 0.83. Blank regions in the plots correspond to those points where
V 1/4 > Ms. The black band corresponds to those points which lead to 50-60 efolds.
Right: The same for the primordial tilt.

relative size of the fluxes (Ĝ and A), and the other two parametrising the initial conditions
of the two fields. We have seen that the initial conditions can be highly constrained by
imposing a specific number of efolds and the experimental bound on the primordial tilt ns.
The relative size of the fluxes (given by A) is fixed by imposing the condition of getting
a massless eigenstate at MSS which could play the role of the SM Higgs boson. Hence,
only Ĝ remains as a free parameter. Although we are assuming an intermediate scale
of SUSY breaking around MSS = 1011 − 1013 GeV (consistent with the density scalar
perturbations), this flexibility still has a big impact in the results of the cosmological
observables.
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Figure 5.19: Allowed region of the parameter space (r vs ns) that gives rise to 50-60 efolds.
Left: For different values of A = 1, 0.83, 0.5, 0.17 and Ĝ = 0.3/Mp. Right: For A = 0.83
and any Ĝ (grey points). The blue points corresponds to Ĝ = 0.3/Mp.

In fig.5.19 (right) we plot all the values for r and ns that we can get for any possible
value of Ĝ. We only require to get between 50 and 60 efolds during inflation, and a light
SM Higgs (so A = 0.83). The minimum value for the tensor to scalar ratio that we can
get is that one of linear inflation, around r ' 0.07. We have marked in blue those points
that corresponds to an isotropic compactification with generic fluxes, ie. Ĝ ' 0.3/Mp.

For completeness, we also show the results for r and ns for different values of A and
Ĝ = 0.3/Mp (fig.5.19 (left)). Although for arbitrary values of A the inflaton could not
be identified with a Higgs boson, the results still apply for a generic D7-brane position
modulus playing the role of the inflaton in such a closed string background.

In figure 5.20 we plot our final results in the r − ns plane superimposed over the
experimental Planck exclusion limits. The data correspond to A = 0.83 and arbitrary Ĝ.
The color pattern from red to blue refers to the density of points, being the red regions
the most populated. This could have been anticipated from figure 5.17, where most of the
initial conditions gave rise to values of r and ns closer to the single field prediction. The
spreading of the results to smaller values of the spectral index is due to the freedom on the
choice of the initial conditions, but the blue region corresponds to very fine-tuned values
of θ0 and the majority of the points is localised at ns ' 0.96− 0.97 and r ' 0.07− 0.12. It
is remarkable that the most populated regions are indeed those in better agreement with
experiments.

5.2.5. Inflaton potential corrections, backreaction and moduli fixing

We will consider here in turn several properties of our inflaton system concerning
corrections and the possible back-reaction of the closed string sector on the potential. We
first discuss the Planck suppressed corrections to the inflaton potential, which are under
control and fully given by the DBI+CS action. We then study the possible induction of
D3-brane RR-tadpoles for non-vanishing values of the Higgs/inflaton. We show how there
is a delicate cancellation coming from the closed string 10d action which sets to zero such
tadpoles. Finally, we briefly discuss the issue of the moduli fixing potential and how one
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Figure 5.20: Tensor to scalar ratio and spectral index for Higgs-otic inflation with A = 0.83
and arbitrary Ĝ. The data is superimposed over the recent Planck exclusion limits. The
color pattern (from red to blue) corresponds to (higher or lower) density of initial condition
points.

could hope to separate their dynamics from that of the inflaton sector.

5.2.5.1. Planck mass suppressed corrections

Higher dimensional Planck-supressed operators, i.e. terms of the form (φ4+2n/M2n
p )

correcting the inflaton potential are a potential danger for the slow-roll conditions. The
simplest such corrections to a an inflation potential V0 are possible terms of the form

Vn ' V0 ×
(

Φ2

M2
p

)n
(5.154)

with n > 0. Such terms can give large contributions to the slow-roll parameters driving
ε, η ' 1 for transplanckian excursions of the inflaton. To avoid the presence of such terms
it is customary to assume the existence of a shift symmetry under which φ → φ + c and
the Kähler potential remains invariant.

The presence of such a symmetry helps also in trying to solve a second related prob-
lem, the η problem in N = 1 supergravity. The idea is that the pre-factor eK appearing
in the supergravity potential will tend to give a large (of order H) mass to the inflaton,
once one expands K to leading order in the inflaton field. In the case of chaotic inflation
this problem is not severe because mI needs to be only one order of magnitude smaller
than H, which can easily be done by a modest fine-tuning. If the inflaton does not appear
explicitly in the Kähler potential, as happens in the presence of a shift symmetry, such
mass term for the inflaton does not appear to leading order.
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The effective action of string axions are known to possess shift symmetries which
could protect the inflation potentials against these effects. In fact such shift symmetries
are typically part of larger non-compact groups leaving invariant the N = 1 supergravity
effective action. These large continuous groups are broken by instanton effects down to
discrete (infinite) groups which are 4d duality groups in general. These shift symmetries
are particularly welcome in models with large inflaton excursions, in which one expects
that the above Planck-supressed corrections could be very important.

In the case we are considering here, the N = 1 supergravity η problem is mixed
up with the fine-tuning required to have a massless SM doublet left below the SUSY-
breaking scale MSS . There is a fine-tuning in the flux parameters such that both a SM
doublet survives and the inflaton mass is slightly below H. Both fine-tunings cannot be
disentangled.

Concerning the first problem, in the case we studied above in which the inflaton is
a D7-brane modulus corrections to the inflation potential of the type (5.154) do indeed
appear. The important point however is that those corrections are computable to all orders
in inverse Planck masses and are under control. Indeed, in our case the inflaton/Higgs
fields are open string fluctuations and their action, including their interaction with closed
string moduli are given to all orders in α′ by the DBI+CS action.8 For illustrative purposes
let us look at the DBI+CS action for the U(N) adjoint that we discussed in section 5.2.3.1.
There we see that the full effect of those corrections is just a field redefinition. In particular
one gets a structure of the form

L4D = STr
([

1 +
κ

2
V0(Φ)

]
DµΦDµΦ̄ − V0(Φ) + ...

)
. (5.155)

with κ = (V4µ7gs)
−1 a constant. After a field redefinition one sees that corrections will

always appear in powers of the initial fiducial potential V0. Thus indeed large corrections to
the potential of the form in (5.154) do appear but in the D-brane case here considered these
corrections are under control and lead to a flattening of the potential, i.e., the potential
becomes of linear type rather than quadratic, leading to a new potential consistent with
slow-roll.

It is interesting to consider the N = 1 sugra avatar of this property. We have seen
how the Kähler potential involving the Higgs/inflaton fields is

KH = −log[(S + S∗)(U3 + U∗3 ) − α′

2
|Hu +H∗d |2] − 3log(T + T ∗) . (5.156)

As shown in refs. [221–224] for the S-dual heterotic case, the Lagrangian described by
this Kähler potential is invariant under a SL(2,Z)U3 geometric symmetry associated to
reparametrisation of the corresponding T2. In particular it is easy to check that under

8Corrections in α′ to the non-Abelian DBI action which describes our MSSM system are to date not
fully understood. However, notice that for large values of the inflaton, the inflationary system is described
by a single D7-brane plus orbifold images. Thus, all α′ corrections relevant to inflation should be captured
by those of the Abelian DBI action.
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the continuous transformations

U3 −→ aU3 − ib
icU3 + d

(5.157)

S −→ S − ic

2

HuHd

icU3 + d
(5.158)

Hu −→ Hu

icU3 + d
(5.159)

Hd −→ Hd

icU3 + d
, a, b, c, d ∈ R (5.160)

with ac− bd = 1, the Kähler potential transforms like

KH −→ KH + log|icU3 + d|2 . (5.161)

The latter is a Kähler transformation, so the Lagrangian will be invariant under it even
if the Kähler potential is not. One can also easily check that the addition of a µ-term
does not spoil this symmetry. In fact the low-energy effective action is invariant under
these continuous symmetries, while the discrete subgroup with a, b, c, d ∈ Z is preserved
to all orders in perturbation theory or sigma model expansions and it is only broken
spontaneously once the moduli are fixed. Note that these transformations act both on
the moduli and the Higgs/inflaton fields so that e.g. the particular dependence on the
combination Hu+H∗d is dictated by the symmetries. In particular the linear combinations
of Higgs fields transform as

Hu ±H∗d −→
d(Hu ±H∗d) + ic(U3H

∗
d ∓ U∗3Hu)

|icU3 + d|2
. (5.162)

In the case with a = d = 0, b = 1, c = −1, one has U3 → 1/U3 and

eiγ/2Hu ± e−iγ/2H∗d −→ −i

(
e−iγ/2H∗d

U∗3
∓ eiγ/2Hu

U3

)
. (5.163)

For a square torus U3 = 1 and the above transformation just exchanges the fields h and H.
This is somehow expected because in this case the transformation U3 → 1/U3 corresponds
to the exchange of the two cycles of the torus. The transformation also implies a shift of
the complex dilaton S → S − 1

2HuHd, as expected from the fact that HuHd parametrises
the wandering D7-brane position. Finally, an analogous symmetry SL(2,Z)S acting on the
complex dilaton S exists. The transformations look the same as the ones above replacing
U3 ↔ S. However this S-duality symmetry is in general broken by quantum corrections.

A direct consequence of the modular symmetries is that, since the Kähler potential
is not invariant and only the Lagrangian and the potential are, one expects corrections of
higher order in α′ to appear as powers of the potential itself, that is

δVH '
∑
n>1

(V0)n

(Mp)4(n−1)
(5.164)

Indeed this is consistent with the higher order corrections in α′ given by the DBI+CS
action that we studied, and with the fact that such action is related to a Kaloper-Sorbo
4d effective Lagrangian. As stressed, in our case these Planck suppressed corrections are
known and give rise to the flattening of the inflaton potential at large field.
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Note that a corollary of this discussion is that using the (two-derivative) N = 1
sugra standard formalism does not capture these corrections leading to the flattening of
the scalar potential for large fields. This is particularly the case for any model in which
the inflaton is an open string mode.

Let us finally comment that above the inflaton mass, where SUSY couplings are
recovered, the loop corrections to the potential are only expected to lead to logarithmic
corrections with small coefficients, and should not modify in any important way the shape
of the potential. Among these loop corrections one expects the presence of minute mod-
ulations for the overall linear potential at large field. They would arise from the fact
that, as we mentioned at the end of section (5.2.2.2), as the D7-brane position varies over
the torus, the masses of the massive fields W±, Z0, H± etc. oscillate. This oscillation
should induce in turn one-loop minute field dependent oscillations on the inflaton mass
parameters.

5.2.5.2. Backreaction and induced RR-tadpoles

In general one expects that wandering D7-branes may lead to some level of backreac-
tion in the surrounding geometry. This is a well known fact present in all perturbative IIB
orientifolds with D7-branes. However our setting is initially supersymmetric, with SUSY
broken spontaneously, and in this sense is more stable that settings in which there are
both branes and antibranes and SUSY is broken at the string scale. In any event, taking
into account this back reaction would require to go to a F-theory setting. We will have
nothing to add concerning this issue other than pointing out that it would be interesting
the embedding of this type of models into an F-theory background. For previous proposals
of large field inflation models within F-theory see [188,195–197,225].

Other than that, the presence of a non-vanishing vev for the inflaton may have also
an impact on the surrounding geometry. In particular as we have seen in section 5.2.3.1
the inflaton vev induces a background for the B-field in the D-brane worldvolume, which
in turn leads to induced lower dimensional D-brane RR charges. This fact has already
appeared in previous monodromy inflation models, leading to the introduction of brane-
antibrane pairs to cancel the tadpoles. We show here that this is not the case in our
setting, and therefore there is no need to introduce anti-branes.

The different sources of D3-brane tadpole in a type IIB compactification with O3/O7-
planes are captured by the 5-form Bianchi identity as follows

dF̃5 = F3 ∧H3 +
∑
i

δ6(piD3) +
∑
j

δ4(πjD5) ∧B +
∑
k

δ2(SkD7) ∧ 1

2
B2 + . . . (5.165)

ignoring factors of α′, etc. Here piD3 runs over all points where D3-branes are located,

πjD5 over the 2-cycles where D5-branes are located, and SkD7 over the divisors wrapped
by the D7-branes. The ∂2n’s are 2n-form bump functions localised on their respective
worldvolumes.9 Finally, the dots represent similar delta function contributions of opposite
sign that come from the O3 and O7-planes. Typically, it is this negative contribution that
allows for the integral of the r.h.s of (5.165) over the compact manifold X6 to vanish, in

9In general the D7 and D5-branes will be magnetised by an open string worldvolume flux F , so one
should replace B → F = B+F everywhere in (5.165). For the sake of simplicity we will stick to the above
notation, the generalisation being straightforward.
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agreement with the fact that F̃5 should be globally well-defined. If this integral over X6

does not vanish we say that we have a D3-brane tadpole.

The problem arises when we have a non-trivial H3 in our compactification, because
then the contribution from D5-branes and D7-branes, which depends on the pull-back
of the B-field in their worldvolume, is position-dependent. Hence it is not clear if, given
that we can solve the tadpole condition in one particular point in open string moduli space
{piD3, π

j
D5, S

k
D7}, we can solve it for a different point {pi ′D3, π

j ′
D5, S

k ′
D7}. In other words, when

we move a D7-brane from SD7 to S′D7 the pull-back of B2 on its worldvolume changes,
and so does its induced D3-brane charge. It then seems that, during inflation, we will
generate a D3-brane tadpole as soon as we move the D7-brane from its initial location.

In the following we will show that this is not the case. Basically, when we move
D5 and/or D7-branes their induced D3-brane charge changes, but the contribution to the
D3-brane tadpole coming from F3 ∧H3 changes by a similar amount. Both effects cancel
each other upon integration over X6, and so F̃5 is always well-defined and there is no
tadpole. We will show this first for the case where we only have D5-branes in our model
(which is unrealistic in SUSY compactifications) and then for the more interesting case of
models with D7-branes.

Magnetised D5-branes. Let us consider the case where in our compactification there
are only space-time filling D3-branes, D5-branes and fluxes (F3, H3). Take a D5-brane
in a 2-cycle π2 and move it to a new location π′2 within the same homology class. The
difference in the contribution to the D3-brane tadpole can be measured by the integral∫

X6

∂4(π′2) ∧B −
∫
X6

∂4(π2) ∧B =

∫
π′2

B −
∫
π2

B =

∫
Σ3

H3 (5.166)

where Σ3 is a 3-chain such that πΣ3 = π′2−π2. So in general we see that the contribution
to the D3-brane tadpole changes when we move one or several D5-branes.10

We should however take into account that, in the presence of D5-branes, F3 is not
a harmonic form, which is the case when we only have D3-branes. On the contrary, it
satisfies the equation

dF3 =
∑
j

δ4(πjD5) (5.167)

which we assume corresponds to a globally well-defined but non-closed F3. As a result,
when we move the D5-brane from π2 to π′2 the field strength F3 will change because (5.167)
changes. Let us represent by F3 the background flux with the D5 located at π2, and by
F ′3 the flux with the D5 located at π′2 and ∆F3 = F ′3 − F3. Then it is easy to see that

d∆F3 = δ4(π′2)− δ4(π2) (5.168)

Moreover notice that, even if non-closed, F3 and F ′3 are quantised 3-forms on X6. Hence
so is ∆F3, and this fact together with (5.168) can be used to show that [146]∫

X6

∆F3 ∧ ω3 = −
∫

Σ3

ω3 (5.169)

10Together with this D5 we should move its orientifold image on ΩR(π2). Taking this into account will
not change much the discussion, so we will ignore the effect of orientifold images in the following.
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for any closed 3-form ω3, and where again πΣ3 = π′2 − π2 is a 3-chain describing the
deformation of the D5-brane location.

We can now use (5.169) to prove that the D3-brane tadpole induced by the back-
ground fluxes changes. Indeed, assuming that there are no NS5-branes in our compacti-
fication H3 is a harmonic form and we can apply (5.169). Hence∫

X6

F ′3 ∧H3 −
∫
X6

F3 ∧H3 =

∫
X6

∆F3 ∧H3 = −
∫

Σ3

H3 (5.170)

This is precisely the opposite as the previous change (5.166), so tadpoles still cancel when
we change the D5-brane position.

Magnetised D7-branes. Let us now consider the case where we have D3-branes and
D7-branes, as in the inflationary model of section 5.2.2.2, and that we move one of the
latter as S4 → S′4. The change in D3-brane tadpole is given by

1

2

[∫
X6

∂2(S′4) ∧B2 −
∫
X6

∂2(S4) ∧B2

]
=

1

2

[∫
S′4

B2 −
∫
S4

B2

]
=

∫
Σ5

H3 ∧B (5.171)

with Σ5 a 5-chain with πΣ5 = S′4 − S4 and describing the above deformation.

Because the D7-branes are magnetised by the B-field they carry a D5-brane charge,
and so again F3 is not a closed 3-form. Instead it must satisfy the equation

dF3 =
∑
k

δ2(SkD7) ∧B = dF1 ∧B (5.172)

where we have used that

dF1 =
∑
k

δ2(SkD7) (5.173)

So when we move a D7-brane as S4 → S′4, the RR fluxes (F1, F3) change to (F ′1, F
′
3) and

we can define (∆F1,∆F3) as their difference. In particular we have that

d∆F3 = ∂2(S′4) ∧B − ∂2(S4) ∧B = d∆F1 ∧B (5.174)

Now it is ∆F1 the flux that is quantised, and applying the reasoning of [146] we get∫
X6

F1 ∧ ω5 = −
∫

Σ5

ω5 (5.175)

for any closed 5-form ω5 and Σ5 defined as above. In particular we can take ω5 = B ∧H3.
Putting all these things together we arrive at the following variation for the background
flux D3-brane charge∫

X6

F ′3∧H3−
∫
X6

F3∧H3 =

∫
X6

∆F3∧H3 =

∫
X6

∆F1∧B∧H3 = −
∫

Σ5

B∧H3 (5.176)

which again cancels the variation (5.171) and guarantees D3-brane tadpole cancellation.
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5.2.5.3. Decoupling of moduli fixing from inflation sector

The DBI+CS derived inflaton scalar potential that we used assumes implicitly that
all the other moduli of the theory, in particular the complex dilaton S and Kähler (T i)
and complex structure (Ua) moduli are fixed at a scale well above the inflation scale. That
is, we are assuming a full scalar potential of the form

V (σ, θ;S, T i, Ua) = Vinflation(σ, θ;S, T i, Ua) + Vmoduli(S, T
i, Ua) (5.177)

In particular we are assuming that the potential barriers fixing S, T i, Ua are such that the
inflaton scalar potential does not modify in a substantial manner the moduli dynamics.
This may proof hard for an inflaton scale ' 1016 GeV as suggested by BICEP2, since that
would require the compactification Mc and string scale Ms not much below the reduced
Planck scale Mp ' 1018 GeV. This is a general problem for all string inflation models with
large field inflation, see [193,194,197].

Here we would only like to add that the string models with the inflaton identified
with open string moduli may be more flexible than closed string axion models in this
regard. Indeed, the inflaton dynamics is localised in a D-brane sector of the theory rather
than in the bulk. Then, as shown in eq.(5.91), the local G3 flux felt by the D7’s (fixing the
inflaton mass) may be suppressed compared to the flux felt by the moduli in the bulk by a
warp factor Z−1/2. In this way the barriers of the potential Vmoduli could be substantially
higher than those in Vinflation. This would help in understanding the decoupling of the
moduli fixing dynamics from the inflaton dynamics in a natural way.

5.2.6. Some further cosmological issues

Our study of the cosmological perturbations induced in the Higgs-otic scenario has
been incomplete in several respects. In particular, while single inflaton models predict
a Gaussian and adiabatic spectrum, it is well known that multi-inflaton models may in
general give rise to non-Gaussianities as well as isocurvature (entropy) perturbations [226,
227], and such effects may significantly alter the observational signatures of a given model.
The Higgs inflaton potential here studied has two fields involved in inflation, σ and θ, so
that in principle one can think that non-Gaussianities and/or isocurvature perturbations
could arise. Concerning non-Gaussianities, one does not expect any effect in our scheme
since it is known that 2-field models yield non-linear parameters fNL proportional to the
slow roll parameters ε, η, see e.g. [229, 230]. On the other hand, a full analysis of the
isocurvature perturbations have been carried out in [231] while this thesis was about to
be finished. As expected, adiabatic and isocurvature perturbations form a coupled system
and there is super-horizon evolution of the curvature perturbations. This leads in general
to a relative increase of adiabatic perturbations and consequently to a reduction of the
tensor to scalar ratio r compared to the computation here. The range of variation of ns
gets smaller and is centered around the region alowed by Planck data with a tensor to
scalar ratio in a range r = 0.08 − 0.12. Moreover, the isocurvature component is always
very suppressed at the end of inflation, consistent with upper Planck bounds. Therefore
the predictivity of the model is increased compared to the adiabatic approximation, more
in line with the results of the joint Planck/BICEP analysis [161].

Another interesting issue is that of reheating, which is expected to be quite efficient
in this Higgs-otic scenario. At the end of inflation the universe is extremely cold and
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a reheating process occurs in which the inflaton oscillates around its minimum. The
inflaton transfers all its energy through its decay into relativistic particles. The inflaton
must couple to the SM particles which will end up in thermal equilibrium and give rise
to the big-bang initial conditions. A generic problem in string cosmologies in which the
inflaton is identified with a closed string mode (like e.g. an axion) is that the inflaton
reheats predominantly into hidden sector fields or moduli rather than into SM fields. In
our case, obviously, the inflaton is a Higgs field which will decay predominantly into top
quarks and gauge bosons and this problem is automatically avoided. The decay rate will
typically be of order

ΓH '
h2mI

8π
, (5.178)

with h the top Yukawa coupling or a gauge coupling and mI ' MSS ' 1013 GeV is
the inflaton mass, which is of the order of the SUSY breaking scale MSS . Perturbative
reheating ends when the expansion rate of the universe given by the Hubble constant

H =
√

8πρ/3M2
p is of order of the total inflaton decay rate. The SM interactions are

strong enough so that thermal equilibrium is reached with a reheating temperature (see
e.g. [232–234])

TR ' 0.2
√

ΓHMp ' 1013 GeV , (5.179)

where we have set h ' 1/2,mI ' 1013 GeV. This is high enough so that leptogenesis may
take place in the usual way at an intermediate scale.
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6
Conclusions

In this thesis we have studied different aspects of Particle Physics and Cosmology
within the framework of Type IIB/F-theory compactifications in String Theory. As a key
ingredient, we can remark the 3-form closed string fluxes, which are the main source of
supersymmetry breaking as well as the origin of the inflationary potential in our model.
These fluxes are generically present in Type IIB compactifications and are essential to
stabilize the dilaton and the complex structure moduli. Its presence can also induce soft
SUSY breaking terms via gravity mediation in the D-brane open string sector, where the
MSSM fields are supposed to live.

In section 4.1 we have studied the pattern of flux-induced soft SUSY breaking terms
over fields living in a system of D7-branes. We have followed a bottom-up approach ex-
panding the DBI+CS effective action of the D7-brane in the presence of local densities
for the closed string background, which parametrize our ignorance of the full compact
space. For the case of bulk worldvolume fields (position moduli and wilson lines of the
branes) we have performed a careful analysis considering the most general closed string
background including simultaneously both ISD and IASD 3-form fluxes and also magnetic
worldvolume fluxes on the branes. The computation is then generalized for the most phe-
nomenologically interesting case of chiral bifundamental fields living at the intersections
of 7-branes. To compute these soft terms, we combine for first time information about
the closed string background and the local wavefunctions of the matter fields, the latter
previously used in the computation of the Yukawa couplings. The results for ISD fluxes are
consistent with those obtained from the 4d N = 1 supergravity effective action in the case
of modulus dominated SUSY breaking. However we provide a microscopic interpretation
of the supergravity variables in terms of the closed and open string fluxes, which allows
us to go beyond the simpler situations. We also apply the results to the local F-theory
SU(5) GUT model and show that in general the soft terms will be hypercharge dependent
due to the presence of the hypercharge flux necessary to break the GUT group to the SM.

Our microscopic computation shows that the soft terms come from the overlap
integral of the internal wavefunctions in the presence of a closed string background. Since
different families live at slightly different regions in the internal space, non-constant flux
densities induce flavor non-universalities on the soft terms, as we have studied in section
4.2. These flavor non-universalities are strongly constrained from FCNC transitions and
CP violation at low energy, requiring sfermion masses in the multi-TeV region for natural
background parameters.

In section 4.3 we start studying the typical size of the soft terms induced by closed
string fluxes. For natural values of the background this scale turns out to be around
MSS ' 1010 − 1013 GeV, depending on the exact value of the compactification/GUT
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scale. Imposing gauge coupling unification using some threshold hyperharge dependent
corrections coming from F-theory implies MSS ' 1010 GeV and MGUT ' 1014 GeV. The
prize to pay in this scenario is the fine-tuning of the Higgs mass. Such a high scale of
supersymmetry can not solve the EW hierarchy problem. However it is not so different
from the fine-tuning which is usually implicitely assumed in the closed string fluxes to
lower the SUSY breaking scale at least seven orders of magnitude from its natural value
to the EW scale. Therefore, in this thesis we take the less conventional choice in which
the EW scale is fine-tuned but the SUSY breaking scale stays at its most natural value
in Type IIB, ie. MSS ' 1010 − 1013 GeV. This proposal is further motivated by the
absence of any sign of supersymmetry at the LHC so far. If the situation persists after
the next run of the LHC, the alternative of low energy supersymmetry as a solution to the
hierarchy problem will be strongly questionable. The fine-tuning of the Higgs mass might
have then an anthropic explanation in a flux landscape of possibilities within string theory.
Interestingly, the role of supersymmetry at such a high scale would not be to stabilize the
Higgs mass but the SM vacuum, which otherwise becomes metaestable (or even inestable
due to the fluctuations during inflation) before reaching the Planck scale.

Following with this approach, we have computed the Higgs mass as a function of
the SUSY breaking scale, considering the latter as a free parameter from MEW to MGUT .
Under the standard unification assumption of universal soft Higgs masses, the result turns
out to be highly constrained. For MSS ' 1010 − 1013 we get that the Higgs mass is
centered around mH ' 126 ± 3 GeV, consistent with LHC results. Below that scale the
mass depends more on the details of the SUSY breaking mass parameters and the Higgs
mass tends to the value of a standard fine-tuned MSSM scenario with mH . 130 GeV.
The predictivity for high scales of SUSY is remarkable, since the SM by itself would have
allowed for any value from 100 GeV to 1 TeV approximately. This supports the idea that
the experimental value of the Higgs mass might be an indirect evidence of an underlying
supersymmetry (and some sort of unification) at a large scale.

Obviously, this scale of SUSY breaking is very far from the reach of any particle col-
lider we can imagine to build. However, this does not imply that supersymmetry has no
detectable implications for physics. For instance it could have implications for inflation, by
being the source of the inflationary potential. In chapter 5 we work under the assumption
that this Intermediate SUSY breaking scale indeed corresponds to the inflationary scale
suggested by BICEP2 results. The fact that at this scale we have already the MSSM Higgs
sector with soft masses of order 1013 GeV naturally suggests the identification of the in-
flaton with an MSSM Higgs boson, giving rise to a sort of chaotic inflation with a quadratic
potential. We have developed this proposal in section 5.2 under the name of Higgs-otic
inflation, which refers to models in which a scalar particle is responsible for both gauge
symmetry breaking and inflation. Models with detectable gravitational waves and a high
scale of inflation are known as large field inflation because a transplanckian field range for
the inflaton is indeed required. This makes the models extremely sensitive to UV physics
and a consistent embeding in a quantum theory of gravity like String Theory becomes es-
sential. We have embedded Higgs-otic inflation in String Theory, identifying the inflaton
with a D7-brane position modulus parametrizing the position of the brane in a transverse
torus. We show specific examples and study in detail a IIB orientifold in a toroidal com-
pactification with D7-branes at singularities. The inflationary potential is induced from
3-form fluxes and can be computed from the DBI+CS action to all orders in α′, while the
transplanckian field range is achieved in a similar way to monodromy inflation. The result
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is a 2-field inflationary quadratic potential with non-canonical kinetic terms. We have
shown that the non-canonical kinetic terms come from summing over all α′ corrections,
which in the effective theory correspond to the naively dangerous Planck-suppressed oper-
ators. Interestingly, the effect of all these corrections is a flattening of the potential after
field redefinition to get canonical kinetic terms. This behaviour can be traced back to the
duality simmetries associated to reparametrizations of the torus, protecting the potential
over transplanckian distances. From the point of view of the effective theory, our model
can also be reduced to a Kaloper-Sorbo-like lagrangian which exhibits the protectection
from UV corrections. Finally we have computed the cosmological parameters including
the spectral index and the tensor-to-scalar ratio obtaining r = 0.08−0.12, consistent with
combined PLANCK/BICEP results.

More clear now, the Higgs boson has been the bridge which has allowed us to jump
from Particle Physics to Cosmology, always in the search of the specific vacuum of String
Theory hosting our universe.
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7
Conclusiones

En esta tesis hemos estudiado diferentes aspectos de F́ısica de Part́ıculas y Cosmo-
loǵıa derivados de compactificaciones de Type IIB/F-theory en Teoŕıa de Cuerdas. Como
hilo conductor podemos destacar los flujos de cuerda cerrada, siendo la fuente principal
tanto de ruptura de SUSY como del potencial inflacionario en nuestro modelo. Estos flujos
se encuentran genéricamente en compactificaciones de Type IIB, siendo esenciales para la
estabilización del dilatón y los moduli de estructura compleja. Su presencia también pue-
de inducir términos de ruptura de SUSY (mediada por gravedad) en sectores de cuerdas
abiertas de D-branas, donde se encuentran los campos del MSSM.

En la sección 4.1 hemos estudiado la estructura de los términos de ruptura de SUSY
(soft terms) inducidos por los flujos sobre campos viviendo en un sistema de D7-branas.
Hemos seguido la bottom-up approach expandiendo la acción efectiva DBI+CS de la D7-
brana en presencia de densidades locales del fondo de cuerda cerrada, el cual parametriza
nuestra ignorancia sobre el espacio compacto al completo. Para campos viviendo en las
dimensiones expandidas por las branas (posiciones y wilson lines) hemos realizado un
estudio detallado considerando la presencia simultánea de flujos de 3-forma ISD y IASD
junto con flujos magnéticos de cuerda abierta en las branas. Después hemos generalizado
el cálculo a campos chirales bifundamentales viviendo en las intersecciones de 7-branas, de
mayor interés fenomenológico. Para calcular los soft terms hemos combinado por primera
vez información sobre el fondo de cuerda cerrada y las funciones de onda locales de los
campos de materia, estas últimas usadas en el cálculo de los acoplos de Yukawa. Los
resultados para flujos ISD son consistentes con los obtenios a partir de la acción efectiva
de supergravedad N=1 en 4d en el caso de ruptura de SUSY dominada por un campo
Kahler. Sin embargo, nuestra formulación proporciona la interpretación microscópica de
las variables de supergravedad en términos de los flujos de cuerda cerrada y abierta, lo
que permite ir más allá de los casos más sencillos. También hemos aplicado los resultados
al modelo local SU(5) GUT de F-theory y mostrado cómo en general los soft terms van
a depender de la hipercarga del campo en cuestión debido a la presencia del flujo de
hipercarga necesario para romper el grupo GUT al grupo gauge del SM.

Nuestro derivación microscópica de los soft terms muestra que estos vienen de inte-
grales de solapamiento de las funciones de onda interna en presencia del fondo de cuerda
cerrada. Como las diferentes familias de part́ıculas se encuentran localizadas en regiones
ligeramente distintas del espacio interno, densidades de flujo no constantes en el espacio
dan lugar a no universalidades en los soft terms, como hemos estudiado en la sección 4.2.
Estas violaciones de universalidad están fuertemente restringidas debido a las cotas ex-
perimentales en transiciones FCNC y violación de CP a baja enerǵıa, lo que implica que
para valores naturales de los flujos las masas de los sfermiones deben ser por lo menos del

169
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orden de varios TeV.

En la sección 4.3 empezamos estudiando el tamaño t́ıpico de los soft terms inducidos
por flujos de cuerda cerrada. Para valores naturales de los parámetros la escala de los soft
terms resulta estar en torno a MSS ' 1010 − 1013 GeV, dependiendo del valor exacto de
la escala de compactificación/unificación. Si además imponemos unificación de los aco-
plos gauge usando las correcciones de umbral dependientes de la hipercarga que vienen
de F-theory, obtenemos MSS ' 1010 GeV y MGUT ' 1014 GeV. El precio a pagar en este
escenario es el fine-tuning de la masa del bosón de Higgs. Una escala tan alta de supersi-
metŕıa no puede resolver el problema de las jerarqúıas. Sin embargo, este fine-tuning no
es tan diferente del que normalmente se asume de manera impĺıcita en los flujos de cuerda
cerrada para bajar la escala de ruptura de SUSY al menos siete órdenes de magnitud desde
su valor natural a la escala EW. Por tanto, en esta tesis hemos tomado una alternativa
poco convencional en la cual la escala EW está fine-tuned pero la escala de ruptura de
SUSY se encuentra a su valor natural en Type IIB, es decir, MSS ' 1010−1013 GeV. Esta
propuesta se ve a su vez motivada por la ausencia de cualquier signo de supersimetŕıa en el
LHC por ahora. Si la situación continúa aśı tras el próximo conjunto de medidas a mayor
enerǵıa en el LHC, habrá que cuestionarse seriamente la alternativa de supersimetŕıa a
baja enerǵıa como solución al problema de las jerarqúıas. En tal caso, el fine-tuning del
Higgs podŕıa tener una explicación antrópica dentro del conjunto de posibles soluciones
(flux landscape) de Teoŕıa de Cuerdas. Es interesante que el papel de supersimetŕıa a esas
altas enerǵıas ya no seŕıa estabilizar la masa del Higgs sino estabilizar el vaćıo del SM, el
cual si no pasa a ser metaestable (o incluso inestable debido a las fluctuaciones durante
inflación) antes de alcanzar la escala de Planck.

Siguiendo con esta idea, hemos calculado la masa del Higgs en función de la escala
de ruptura de SUSY, considerando esta última un parámetro libre que vaŕıa desde MEW

hasta MGUT . Bajo la hipótesis usual de tener masas soft universales para el Higgs en
MGUT , el resultado pasa a estar muy restringido. Para MSS ' 1010 − 1013 obtenemos
que la masa del Higgs tiene que estar en torno a mH ' 126± 3 GeV, consistente con los
resultados del LHC. Por debajo de esta escala en cambio el resultado depende en mayor
medida de los detalles de los parámetros de ruptura de SUSY y recuperamos el estándar
MSSM fine-tuned con mH . 130 GeV. La predictividad que se obtiene con SUSY a alta
enerǵıa es remarcable, en especial si se tiene en cuenta que el SM por śı mismo habŕıa
permitido cualquier valor entre 100 GeV y 1 TeV aproximadamente. Esto apoya la idea
de que el valor de la masa del Higgs medida experimentalmente puede ser una evidencia
indirecta de la presencia de supersimetŕıa (y unificación) a alta enerǵıa.

Claramente, esta escala de SUSY está demasiado lejos del alcance de cualquier acele-
rador de part́ıculas que nos podamos imaginar construir. Sin embargo, esto no implica que
supersimetŕıa no tenga implicaciones detectables para la f́ısica. Podŕıa tener por ejemplo
implicaciones en inflación, si la ruptura de SUSY es la fuente del potencial inflacionario.
En el caṕıtulo 5 trabajamos bajo la hipótesis de que esta escala intermedia de ruptura de
SUSY de hecho corresponde a la escala de inflación sugerida por los resultados de BICEP2.
El hecho de que a esta escala tenemos el sector de Higgs del MSSM con masas soft del
orden de 1013 GeV sugiere de manera natural identificar el inflaton con un bosón de Higgs
del MSSM. Esta idea es propuesta y posteriormente desarrollada en la sección 5.2 bajo
el nombre de Higgs-otic inflation, refiriéndonos a modelos en los que un mismo escalar es
responsable a la vez de la ruptura de simetŕıa de un grupo gauge y de inflación.

Modelos que predicen ondas gravitacionales detectables y escalas altas de inflación
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se conocen como large field inflation, pues requieren valores transplanckianos para el in-
flaton. Esto provoca que los modelos sean extremedamente sensibles a la f́ısica en el UV y
que un embedding adecuado en una teoŕıa consistente de gravedad cuántica como Teoŕıa
de Cuerdas se vuelva imprescindible. En esta tesis hemos embebido Higgs-otic inflation en
Teoŕıa de Cuerdas, identificando el inflatón con un campo parametrizando la posición de
una D7-brana en un toro transverso. Mostramos ejemplos concretos estudiando en detalle
una compactificación toroidal con orientifolds en Type IIB y con D7-branas en singulari-
dades. El potencial inflacionario se genera debido a la presencia de flujos de 3-forma de
cuerda cerrada y puede calcularse a partir de la acción de DBI+CS a todos órdenes en
α′; mientras que distancias transplanckianas se consiguen de manera similar a monodromy
inflation. El resultado es un potencial cuadrático de dos campos con términos cinéticos
no canónicos. Hemos visto que los términos cinéticos no canónicos son producto de sumar
sobre todas las correcciones en α′, las cuales dan lugar a operadores de dimensión mayor
a priori peligrosos en la teoŕıa efectiva. Es interesante que el efecto de todas estas co-
rrecciones resulta ser aplanar el potencial una vez que redefinimos los campos para tener
términos cinéticos canónicos. Este comportamiento es el remanente de las simetŕıas de
dualidad asociadas a reparametrizaciones del toro, protegiendo el potencial en distancias
transplanckianas. Desde el punto de vista de la teoŕıa efectiva, nuestro modelo se puede
reducir a un lagrangiano tipo Kaloper-Sorbo poniendo de manifiesto de nuevo la protec-
ción sobre correcciones del UV. Finalmente hemos calculado los parámetros cosmológicos
incluyendo el ı́ndice espectral y la relación entre fluctuaciones tensoriales y escalares, ob-
teniendo r = 0,08− 0,12, consistente con los resultados combinados de PLANCK/BICEP.

Más evidente ahora, el bosón de Higgs ha sido el puente que nos ha permitido unir
F́ısica de Part́ıculas y Cosmoloǵıa, siempre en la búsqueda de esa solución espećıfica de
Teoŕıa de Cuerdas que corresponde a nuestro universo.
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A
The DBI+CS computation

The effective action for the microscopic fields of a system of D7-branes in the 10d
Einstein frame is given by the Dirac-Born-Infeld (DBI) + Chern-Simons (CS) actions

S = −µ7g
−1
s STr

∫
d8ξ

√
−det (P [EMN + EMi(Q−1 − δ)ijEjN ] + 2πα′FMN ) det(Qij)

+ µ7STr

∫
P [C8 + C6 ∧ F2 +

1

2
C4 ∧ F2 ∧ F2] (A.1)

where

EMN = g1/2
s GMN −BMN ; Qij = δij + i2πα′[Φi,Φk]Ekj (A.2)

σ = 2πα′ ; µ7 = (2π)−3σ−4g−1
s ; F2 = 2πα′F2 −B2 (A.3)

P [·] denotes the pullback of the 10d background onto the D7-brane worldvolume and
‘STr’ is the symmetrised trace over gauge indices. The indices M,N denote the directions
extended by the D7-brane while i, j denote the transverse directions.

Neglecting derivative couplings1, the determinant in the DBI action can be factorised
between Minkowski and the internal space as follows

det(P [EMN ] + σFMN ) = g4
s det

(
ηµν + 2Zσ2∂µΦ∂νΦ̄ + Z1/2g−1/2

s σFµν

)
· det

(
gab + Z−1/2g−1/2

s σFab − Z−1/2g−1/2
s Bab − σ2([Aa,Φ][Ab, Φ̄] + [Aa, Φ̄][Ab,Φ])

)
(A.4)

where µ, ν label the 4d non-compact directions and a, b the internal D7-brane dimen-
sions. We have neglected the cross terms mixing internal and transverse coordinates in
the pullback of the DBI action because they are only relevant if some of the 4-cycles are
non-trivially fibered in the normal direction, which we do not consider here for simplicity.

1This is justified as long as the the fields have constant profiles in the internal 4-cycle, as in toroidal
compactifications. Notice though that even if this is not the case, these contributions in general will induce
a mixing only between massive modes, so it is still a good approximation if we are interested in the lightest
modes.
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Then, using the matrix identity

det(1 + εM) = 1 + ε tr M − ε2

[
1

2
tr M2 − 1

2
(tr M)2

]
(A.5)

+ ε3

[
1

3
tr M3 − 1

2
(tr M)(tr M2) +

1

6
(tr M)3

]
− ε4

[
1

4
tr M4 − 1

8
(tr M2)2 − 1

3
(tr M)(tr M3)

+
1

4
(tr M)2(tr M2) +

1

24
(tr M)4

]
+O(ε5)

we obtain on the one hand that

− det
(
ηµν + 2Zσ2∂µΦ∂νΦ̄ + Z1/2g−1/2

s σFµν

)
= 1 + 2Zσ2

(
∂µΦ∂µΦ̄− g−1

s

4
FµνF

µν

)
(A.6)

where we have neglected terms with more than two derivatives in Minkowski2. This is
consistent with the slow-roll condition that will be imposed on the system in section 5.2.
On the other hand we have that

det
(
gab + Z−1/2g−1/2

s Fab
)

= det(gab) f(F)2 (A.7)

where Fab = σFab −Bab and

f(F)2 = 1 +
1

2
Z−1g−1

s FabFab −
g−2
s

4
Z−2FabFbcFcdFda +

g−2
s

8
Z−2

[
FabFab

]2
(A.8)

Notice that for simplicity in the l.h.s. of (A.7) we have not included couplings of the form
[A,Φ] which will not be relevant for the F-term contribution of the scalar potential. These
terms, together with the quartic term coming from

det(Qij) = 1 + gsσ
1Z([Φ, Φ̄])2 (A.9)

will give rise to the D-term potential, as discussed in the main text. It is important to
remark that, unlike in (A.6), when deriving (A.7) we have not made any approximation.
Indeed by taking

M = g−1F and ε = (gsZ)−1/2 (A.10)

and using the fact that M is a 4× 4 matrix it is easy to see that the expansion of eq.(A.5)
ends at order ε4. Finally, using that

tr g−1F = tr F tg−1 t = − tr g−1F (A.11)

so that tr M = tr M3 = 0, we are led to the above result. Up to here, the computation
applies both to section 4.1 and 5.2, but differ from now on. In section 4.1 we proceed by
Taylor expanding the square root of the DBI action and keeping only the terms which in
the presence of a closed/open string background lead to renormalizable couplings in the
4d effective theory. The computation can be found in the main text. However, this local

2Notice that in the computation of the soft SUSY breaking terms in section 4.1 this is not an ap-
proximation but the right result, because we are interested in the soft lagrangian which is given only by
renormalizable couplings.
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expansion is not valid for 5.2, in which we are interested in the vacuum energy density
during inflation, when the scalar Φ takes large field values. In order to be consistent with
large field inflation, we must not expand in powers of Φ but keep all the terms in the
position modulus. In what follows we show that in the presence of only self or anti-self
dual fluxes, the computation simplifies enormously obtaining a nice analytic result without
any further approximation.

The discussion of 5.2 and eqs.(5.59) and (5.61) in the main text follow by simply
replacing here F → −B. In fact, for a 4×4 matrix M satisfying that tr M = tr M3 = 0,
we also have the identity

det(1 + εM) = 1− ε2 1

2
tr M2 + ε4detM (A.12)

which is easy to prove by looking at the characteristic polynomial of M . This allows us
to write

det(1 + εM) = 1 + ε2F2 + ε4 1

4
(F ∧ F)2 (A.13)

where the square of a p-form ω is defined as ω · ω with

ωp · χp =
1

p!
ωa1...apχ

a1...ap (A.14)

Now, whenever F is a self or antiselfdual two form

F = ± ∗4 F (A.15)

we will have that

(F ∧ F)2 = (F ∧ ∗4F)2 =
(
F2dvolS4

)2
= (F2)4 (A.16)

and so

det(1 + εM) =

(
1 +

1

2
ε2F2

)2

(A.17)

obtaining a perfect square. This will be the case for our wandering D7-brane system, since
there F = −B will be a (2, 0) + (0, 2) form due to (5.67).3

Putting everything together we find that the relevant part of the DBI action is given
by

SDBI = −µ7gsSTr

∫
d8ξ

√
det(gab)f(F)2

(
1 + 2Zσ2DµΦDµΦ̄ +

1

2
Zg−1

s σ2FµνFµν
)

(A.18)
Expanding this expression to second order in 4d derivatives and setting F = −B we obtain

SDBI = −µ7gsSTr

∫
d8ξ
√

detgf(B)

[
1 + Zσ2DµΦDµΦ̄ +

1

4
Zg−1

s σ2FµνF
µν)

]
(A.19)

3To connect with the derivation of the perfect square in eq.(5.64) notice that in our case we have the
identity

detM = −1

4
tr M4 +

1

8
(tr M2)2

and that F (anti)selfdual translates into 4 tr M4 = (tr M2)2 so that finally 16 detM = (tr M2)2 = 4B2.

175



Appendix A. The DBI+CS computation

which is the expression used in the main text (c.f.(5.65)) where for simplicity
√

detg = 1
has been taken. Notice that the same function which leads to the scalar potential, also
multiplies the kinetic term. This function is the result of summing over all the terms in
an expansion of the position modulus (or equivalently, all the higher order corrections in
α′). This relation between the potential and the kinetic term is characteristic of the DBI
action.
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B
Renormalization group equations and threshold

corrections

B.1. RGE for the gauge couplings

Here we first present the renormalization group equations at two loops for the SM
couplings (the three gauge couplings, the top Yukawa and the Higgs quartic coupling).

dg1

dt
=

1

(4π)2

41

6
g3

1 +
g3

1

(4π)4

(
199

18
g2

1 +
27

6
g2

2 +
44

3
g2

3 −
17

6
h2
t

)
(B.1)

dg2

dt
= − 1

(4π)2

19

6
g3

2 +
g3

2

(4π)4

(
9

6
g2

1 +
35

6
g2

2 + 12g2
3 −

3

2
h2
t

)
(B.2)

dg3

dt
= − 1

(4π)2
7g3

3 +
g3

3

(4π)4

(
11

6
g2

1 +
9

2
g2

2 − 26g2
3 − 2h2

t

)
(B.3)

dht
dt

=
1

(4π)2
ht

(
9h2

t

2
− 17g2

1

12
− 9g2

2

4
− 8g2

3

)
+

1

(4π)4
ht

(
−12h4

t +
6λ2

4
−

−12

2
λh2

t +
131

16
g2

1h
2
t +

225

16
g2

2h
2
t + 36g2

3h
2
t +

1187

216
g4

1 −
23g4

2

4
−

−108g4
3 −

3

4
g2

1g
2
2 + 9g2

2g
2
3 +

19

9
g2

3g
2
1

)
(B.4)

dλ

dt
=

1

(4π)2

(
12λh2

t − 9λ

(
g2

1

3
+ g2

2

)
− 43h4

t +
3

4
g4

1 +
3

2
g2

2g
2
1 +

9

4
g4

2 + 12λ2

)
+

+
1

(4π)4
2

(
−312

8
λ3 +

36

4
λ2
(
g2

1 + 3g2
2

)
− 1

2
λ

(
−629

24
g4

1 −
39

4
g2

1g
2
2+

+
73g4

2

8

)
+

305g6
2

16
− 289

48
g2

1g
4
2 −

559

48
g4

1g
2
2 −

379

48
g6

1 − 32g2
3h

4
t −

−8

3
g2

1h
4
t −

9

4
g4

2h
2
t +

1

2
λh2

t

(
85

6
g2

1 +
45g2

2

2
+ 80g2

3

)
+

+g2
1h

2
t

(
−19

4
g2

1 +
21g2

2

2

)
− 144

4
λ2h2

t −
3

2
λh4

t + 30h6
t

)
(B.5)

And finally the RGE (at 2 loops for gauge couplings, leading order in ht) for the
SUSY case:
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dg1

dt
=

11g3
1

(4π)2
+

g3
1

(4π)4

(
199

9
g2

1 + 9g2
2 +

88

3
g2

3 −
26

3
h2
t

)
(B.6)

dg2

dt
=

g3
2

(4π)2
+

g3
2

(4π)4

(
3g2

1 + 25g2
2 + 24g2

3 − 6h2
t

)
(B.7)

dg3

dt
= − 3g3

3

(4π)2
+

g3
3

(4π)4

(
11

3
g2

1 + 9g2
2 + 14g2

3 − 4h2
t

)
(B.8)

dht
dt

=
ht

(4π)2

(
6h2

t −
13g2

1

9
− 3g2

2 −
16g2

3

3

)
(B.9)

B.2. RGE solutions for the soft terms

In the following we display all the functions that appear in the solution of the RGE
for the Higgs mass parameters mHu and mHd (see ref. [77]).

First we define the functions

E(t) = (1 + β3t)
16/(3b3)(1 + β2t)

3/(b2)(1 + β1t)
13/(9b1) , F (t) =

∫ t

0
E(t′)dt′ (B.10)

with βi = αi(0)bi/(4π) and t = 2 log(Mc/MSS). The beta-functions coefficients for the
SUSY case are (b1, b2, b3) = (11, 1,−3) and we define α0 = α(0) = αi(0) = g2

i (0)/(4π2)
for i = 2, 3, α1(0) = (3/5)α(0) = g2

1(0)/(4π2) where α0 is the unified coupling at Mc. In
our case the couplings do not strictly unify, only up to 5% corrections. In the numerical
computations we take the average value of the three couplings at Mc, which is enough for
our purposes.

We then define the functions in eqs.(4.239)

q(t)2 =
1

(1 + 6Y0F (t))1/2
(1 + β2t)

3/b2(1 + β1t)
1/b1 ; h(t) =

1

2
(3/D(t)− 1)

k(t) =
3Y0F (t)

D(t)2
; f(t) = −6Y0H3(t)

D(t)2
; D(t) = (1 + 6Y0F (t)) (B.11)

e(t) =
3

2

(
(G1(t) + Y0G2(t))

D(t)
+

(H2(t) + 6Y0H4(t))2

3D(t)2
+ H8

)

where Y0 = Yt(0) and Yt = h2
t /(4π)2. The functions g,H2, H3, H4, G1, G2 and H8 are

independent of the top Yukawa coupling, only depend on the gauge coupling constants
and are given by
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g(t) =
3

2

α2(0)

4π
f2(t) +

1

2

α1(0)

4π
f1(t)

H2(t) =
α0

4π

(
16

3
h3(t) + 3h2(t) +

13

15
h1(t)

)
H3(t) = tE(t) − F (t)

H4(t) = F (t)H2(t) − H3(t)

H5(t) =
α0

4π

(
−16

3
f3(t) + 6f2(t) − 22

15
f1(t)

)
H6(t) =

∫ t

0
H2(t′)2E(t′)dt′

H8(t) =
α0

4π

(
−8

3
f3(t) + f2(t) − 1

3
f1(t)

)

G1(t) = F2(t) − 1

3
H2(t)2

G2(t) = 6F3(t) − F4(t) − 4H2(t)H4(t) + 2F (t)H2(t)2 − 2H6(t)

F2(t) =
α0

4π

(
8

3
f3(t) +

8

15
f1(t)

)
F3(t) = F (t)F2(t) −

∫ t

0
E(t′)F2(t′)dt′

F4(t) =

∫ t

0
E(t′)H5(t′)dt′ (B.12)

where fi(t) and hi(t) are defined by

fi(t) =
1

βi
(1 − 1

(1 + βit)2
) ; hi(t) =

t

(1 + βit)
. (B.13)

The low energy of the top mass may be obtained from the solutions of the one-loop
renormalization group equations, devided into two pieces, SUSY and non-SUSY, i.e. (here
Yt = h2

t /(16π2))

Yt(mt) = sin2βYt(MSS)
E′(tEW )

(1 + (9/2)sin2βYt(MSS)F ′(tEW ))
(B.14)

where

Yt(MSS) = Yt(Mc)
E(tSS)

(1 + 6Yt(Mc)F (tSS))
(B.15)

The functions E,F are as defined above, with tSS = 2log(Mc/MSS) and tEW = 2log(MSS/MEW ),
while the functions E′, F ′ are analogous to E,F but replacing the bi and anomalous di-
mensions by the non-SUSY ones, i.e.

E′(t) = (1+β′3t)
8/(bNS3 )(1+β′2t)

9/(4bNS2 )(1+β′1t)
17/(12bNS1 ) , F ′(t) =

∫ t

0
E′(t′)dt′ (B.16)

with β′i = αi(MSS)bNSi /(4π), bNSi = (41/6,−19/6,−7) and t = tEW . For the an-
omalous dimensions we have made the change in the definition of E(t) (13/9, 3, 16/3)
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→ (17/12, 9/4, 8). And we take the value of ht(mt) computed in eq.(4.235) taking into
account the threshold corrections at electroweak scale. For this particular computation
we take actually as electroweak scale the top mass, so tEW = 2log(MSS/mt).

Finally, in order to compute the value of the stop mixing parameter Xt we need the
following equations for the running of the soft parameters:

At(t) =
A

D(t)
+M(H2(t)− 6Y0H3(t)

D(t)
)

µ(t) = µ0q(t)

m2
4(t) = M2(−3

α2(0)

4π
f2(t) +

α1(0)

4π
f1(t))

m2
5(t) = −1

3
m2 +M2(−8

3

α3(0)

4π
f3(t) +

α2(0)

4π
f2(t)− 5

9

α1(0)

4π
f1(t))

m2
D(t) = m2 + 2M2(

4

2

α3(0)

4π
f3(t) +

3

4

α2(0)

4π
f2(t) +

1

36

α1(0)

4π
f1(t))

m2
U (t) =

2

3
m2
Hu(t)− 2

3
µ2(t)−m2

5(t)

m2
Q(t) =

1

2
m2
D(t)− 1

2
m2

4(t) +
1

2
m2
U (t) (B.17)

B.3. Threshold corrections at the EW scale

The functions appearing in the computation of the threshold corrections to the Higgs
self-coupling at the weak scale are given by [136]:

F1 = 12 log

[
Q

mh

]
+

3 log[ξ]

2
− 1

2
Z

[
1

ξ

]
− Z

[
c2
W

ξ

]
− log

[
c2
W

]
+

9

2

(
25

9
− π√

3

)
(B.18)

F0 = −12 log

[
Q

MZ

](
1 + 2c2

W −
2m2

t

M2
Z

)
+

3c2
W ξ log

[
ξ
c2W

]
ξ − c2

W

+ 2Z

[
1

ξ

]
+ 4c2

WZ

[
c2
W

ξ

]
+

+
3c2
W log

[
c2
W

]
s2
W

+ 12c2
W log

[
c2
W

]
− 15

2

(
1 + 2c2

W

)
−

−
3m2

t

(
2Z
[
m2
t

M2
Zξ

]
− 5 + 4 log

[
m2
t

M2
Z

])
M2
Z

(B.19)

F3 = 12 log

[
Q

MZ

](
1 + 2c4

W −
4m4

t

M4
Z

)
− 6Z

[
1

ξ

]
− 12c4

WZ

[
c2
W

ξ

]
− 12c4

W log
[
c2
W

]
+

+8
(
1 + 2c4

W

)
+

24m4
t

M4
Z

(
Z

[
m2
t

M2
Zξ

]
− 2 + log

[
m2
t

M2
Z

])
(B.20)

where ξ = m2
h/M

2
Z , cW = cos θW , sW = sin θW and

Z(z) =

{
2ζ arctan

[
1
ζ

]
for z > 1/4

ζ log[1+ζ
1−ζ ] for z < 1/4

(B.21)
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where ζ =
√
Abs[1− 4z]. In the computation we have taken the central experimental

values for MZ , mt and sW given by eqs.(4.233,4.234) and the tree level value for the Higgs
mass, i.e. m2

h = 2λv2 with v = 174.1.
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[35] L. Aparicio, A. Font, L. E. Ibáñez and F. Marchesano, “Flux and Instanton Effects
in Local F-theory Models and Hierarchical Fermion Masses,” JHEP 1108 (2011)
152 [arXiv:1104.2609 [hep-th]].

[36] J. J. Heckman and C. Vafa, “Flavor Hierarchy From F-theory,” Nucl. Phys. B 837
(2010) 137 [arXiv:0811.2417 [hep-th]].

[37] H. Hayashi, T. Kawano, R. Tatar and T. Watari, “Codimension-3 Singularities
and Yukawa Couplings in F-theory,” Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941
[hep-th]].

[38] G. K. Leontaris and G. G. Ross, “Yukawa couplings and fermion mass structure in
F-theory GUTs,” JHEP 1102 (2011) 108 [arXiv:1009.6000 [hep-th]].

[39] S. Cecotti, M. C. N. Cheng, J. J. Heckman and C. Vafa, “Yukawa Couplings in
F-theory and Non-Commutative Geometry,” arXiv:0910.0477 [hep-th].

[40] J. P. Conlon and E. Palti, “Aspects of Flavour and Supersymmetry in F-theory
GUTs,” JHEP 1001 (2010) 029 [arXiv:0910.2413 [hep-th]].

[41] F. Marchesano and L. Martucci, “Non-perturbative effects on seven-brane Yukawa
couplings,” Phys. Rev. Lett. 104 (2010) 231601 [arXiv:0910.5496 [hep-th]].
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