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Abstract We study refined and motivic wall-crossing formulas in N = 2 super-
symmetric gauge theories with SU(2) gauge group and N f < 4 matter hypermulti-
plets in the fundamental representation. Such gauge theories provide an excellent
testing ground for the conjecture that “refined = motivic.”
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1 Introduction

Much can be said about the quantum physics of a supersymmetric system by look-
ing at the spectrum of its BPS states. In the present paper, we take a closer look
at the spectrum of BPS states in N = 2 supersymmetric gauge theories in four
dimensions. These theories serve as an excellent laboratory for testing various
predictions for wall-crossing behavior of the refined BPS invariants recently pro-
posed in (7), which carry information not only about the charge of BPS states but
about their spin content. In particular, we are able to test the general proposal that
refined = motivic.

As a byproduct of our study of wall-crossing formulas in N = 2 supersym-
metric gauge theories, we discover new mathematical identities for the quantum
dilogarithm function
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Fig. 1 Visualization of the wall crossing encoded in the pentagon identity, in terms of BPS
rays in a central charge plane. The presence of the bound state γ1 + γ2 depends on the relative
arguments of the central charges Z (γ1) and Z (γ2).
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The quantum dilogarithm function E(x) has many remarkable properties.1 Per-
haps one of the most beautiful and well-known properties is the so-called “pen-
tagon” identity

E(x1)E(x2) = E(x2)E(x12)E(x1), (1.2)

where x1x2 = qx2x1 and x12 = q−1/2x1x2 = q1/2x2x1. This identity describes
a basic wall-crossing process, in which two hypermultiplet states with primitive
charge vectors γ1 and γ2, and with symplectic product 〈γ1,γ2〉 = 1, form a bound
state of total charge γ = γ1 + γ2. On one side of the wall of marginal stability,
corresponding to the right-hand side of (1.2), the bound state is stable. On the
other side of the wall, the bound state decays and the space of single-particle BPS
states contains only the two stable particles of charge γ1 and γ2, represented by the
factors E(x1) and E(x2) on the left-hand side of (1.2) (Figure 1).

The pentagon identity (1.2) is the first relation in an entire tower of opera-
tor identities obeyed by the quantum dilogarithm function, which correspond to
〈γ1,γ2〉= k with arbitrary values of k ≥ 1. For example, in the next simplest case
k = 2, the following identity holds:

N f = 0 : U2,−1U0,1 = U0,1U2,1U4,1 · · ·Uvect
2,0 · · ·U6,−1U4,−1U2,−1, (1.3)

where we used the shorthand notation Un,m := E
(

q−
nm
2 xn

1xm
2

)
and

Uvect
2,0 := E(−q

1
2 x2

1)
−1E
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−q−

1
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1

)−1
. (1.4)

The identity (1.3) encodes the wall crossing in pure N = 2 super-Yang–Mills
theory with gauge group SU(2). Notice that its left-hand side is similar to that
of (1.2), whereas the right-hand side is now an infinite product. Just like in the
pentagon identity, the two sides of the equality (1.3) correspond to two chambers
separated by a wall of marginal stability, and each factor Un,m represents a stable
BPS state of electric charge n and magnetic charge m (Uvect

2,0 corresponds to a
vector multiplet of electric charge 2).

Besides the basic identity (1.3) we find the following identities:

1 See Section 3.3 of (8) for a recent review in the closely related context of quantization of
the moduli space Mflat(GC,Σ) of flat GC connections on a Riemann surface Σ .
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N f =1 : U1,−1 U1,0 U0,1 =U0,1 U1,1 U2,1 U3,1 · · ·U2
1,0 Uvect

2,0 · · ·U3,−1 U2,−1 U1,−1

N f = 2 : U2
1,−1 U2

0,1 = U2
0,1 U2

1,1 U2
2,1 U2

3,1 · · ·U4
1,0 Uvect

2,0 · · ·U2
3,−1 U2

2,−1 U2
1,−1 (1.5)

N f =3 : U1,−2 U4
0,1 =U4

0,1 U1,2 U4
1,1 U3,2 U4

2,1 · · ·U6
1,0 Uvect

2,0 · · ·U4
2,−1 U3,−2 U4

1,−1 U1,−2,

which describe the spectrum of BPS states, with spin content, in the SU(2)
Seiberg-Witten theory with N f = 1,2,3 fundamental matter multiplets. Note that
the classical limit, q→ 1, of Equations (1.3) and (1.5) describes the BPS spectrum
without spin content; for the N = 2 theories in question, it has been discussed in
both the mathematics (19) and physics (12; 13) literature. More generally, every
N = 2 gauge theory leads to identities like (1.3)–(1.5), one for each wall of
marginal stability. It would be interesting to extend the analysis of the present
paper to study refined wall crossing in N = 2 gauge theories with more general
gauge groups and matter content.

We begin this paper with an example-based discussion of BPS spectra and wall
crossing in N = 2 gauge theories with gauge group SU(2). The identities (1.3)–
(1.5) are first motivated directly via gauge theory, and then interpreted geometri-
cally, in terms of BPS states on a Calabi–Yau threefold. In Sections 3 and 4, we
then
re-evaluate formulas (1.3)–(1.5) in the general context of refined, quantum, and
motivic wall crossing. In particular, we show how these formulas may be derived
via the motivic Donaldson–Thomas invariants of (19).

2 HBPS in SU(2) Gauge Theory with N f Flavors

We wish to study the space of BPS states, HBPS, in N = 2 supersymmetric gauge
theories in four dimensions. Specifically, we revisit pure N = 2 super-Yang–
Mills with gauge group SU(2) and N = 2 supersymmetric QCD with N f ≤ 3
matter hypermultiplets in the fundamental representation. We will focus on the
case where these hypermultiplets have vanishing bare masses prior to symmetry
breaking.

The BPS spectra of N = 2 gauge theories with and without matter were first
considered in the seminal papers of Seiberg and Witten (26; 27). Brane construc-
tions (28) and geometric engineering (17; 18) of N = 2 gauge theories provided
a further interpretation of BPS states as geodesics (or “curves of constant central
charge”) on the Seiberg-Witten curve. Here, we begin by reviewing BPS spectra
and wall crossing purely in the gauge theory context. We then show that gauge the-
ory spectra are also related to collections of stable vector bundles on appropriate
complex surfaces. We motivate this correspondence via geometric engineering,
which supplies the dictionary between BPS states in gauge theory and BPS invari-
ants of
Calabi–Yau threefolds (which contain these complex surfaces).
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2.1 COULOMB BRANCHES AND BPS STATES

Let us recall some basic properties of SU(2), N = 2 gauge theories with N f ≤3
flavors of massless fundamental matter. At low energies, the gauge group of these
theories is broken to an abelian subgroup U(1)⊂ SU(2). The corresponding Coulomb
branches are then parametrized by a single complex modulus u, the expectation
value of the Casimir of the complex adjoint scalar in the N = 2 vector mul-
tiplet: u = 〈Trφ 2〉. We draw the basic structure of the Coulomb branches for
N f = 0,1,2,3 further below in Figure 2. Since the coefficient of the one-loop
beta-function is N f − 2Nc = N f − 4, the supersymmetric gauge theory is asymp-
totically free when N f < 4. With the expectation value |u| thought of as the energy
scale of the theory, the large-|u| region of the Coulomb branch corresponds to
weak coupling, while the small-|u| region corresponds to strong coupling. These
two regions are separated by a wall of marginal stability.

The quantum properties of these theories are encoded in the geometry of their
Seiberg-Witten curves. For N f flavors, we have (26; 27) (see also (15))

Σ
(N f )
SW : y2 = (x2−u)2−Λ

4−N f
N f

xN f , (2.1)

where ΛN f is the strong-coupling scale, determined by the one-loop beta func-
tion. (The monomial xN f would be deformed to a product ∏i(x−mi) if bare masses
were turned on.) The Seiberg-Witten differential on this curve is a meromorphic
one-form satisfying

∂uλSW ∼ dx
y

.

Note that for vanishing bare masses, the genus-one curve ΣSW may have “punctures”—
in particular, there is a puncture for every fundamental hypermultiplet—but the
Seiberg-Witten differential has no residues at these punctures (27).

Since the low-energy theory is abelian with rank-one gauge group U(1), the
charge lattice Γ = Z⊕Z is two-dimensional. It is generated by an elementary
electric charge γe = (1,0) and an elementary magnetic charge γm = (0,1). This
charge lattice is identified with the homology of the Seiberg-Witten curve with all
punctures filled in,

Γ ' H1(Σ SW,Z). (2.2)

The central charge of any state with a charge γ ∈Γ is then given by the integral
of λSW along the corresponding one-cycle γ on the Seiberg-Witten curve:

Z (γ) =
∫
γ

λSW. (2.3)

In particular, letting γe and γm be a canonical basis of cycles on ΣSW and setting
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Fig. 2 The approximate structure of the Coulomb branch (u-plane) of SU(2) Seiberg-
Witten theories (cf. (2)). A wall of marginal stability separates strong and weak coupling. The
dots correspond to singularities where BPS states become massless.

a(u) =
∫
γe

λSW , aD(u) =
∫
γm

λSW , (2.4)

the central charge of a state with electric charge n and magnetic charge m is

Z (n,m;u) = a(u)n+aD(u)m. (2.5)

Recall that (by definition) the mass of a BPS state is determined by the absolute
value of its central charge:

M(γ)∼ |Z (γ)|. (2.6)

Note that, in these N = 2 theories, the massive W± bosons have electric
charge that is twice that of the fundamental electric charge (i.e., twice the charge
of a fundamental electric hypermultiplet). It is the fundamental charge that we
call γe. At large |u|, the central charges a(u) and aD(u) are then determined by the
one-loop beta function to be of the form

a(u) =
1
2

√
2u+ · · · (2.7)

aD(u) = i
4−N f

4π

√
2u log

u
Λ 2

N f

+ · · · , (2.8)

where the subleading terms are non-perturbative instanton corrections.
The structure of the Coulomb branches for the asymptotically free SU(2) the-

ories are depicted schematically in Figure 2. In each case, the weak-coupling and
strong-coupling regions are separated by a single wall of marginal stability W .
This wall is defined by the condition

arga(u) = argaD(u) , or
a(u)

aD(u)
∈ R+. (2.9)

Due to the BPS mass formula (2.6), BPS states are allowed to combine or
decay into other BPS states when the arguments of the central charges of electric
and magnetic states align as in (2.9).

Each Coulomb branch in Figure 2 has either two or three singular points where
dyonic hypermultiplet BPS states become massless. These are located at values of
u on the discriminant locus ∆SW where the Seiberg-Witten curve becomes sin-
gular. It turns out that in the strong-coupling region the two or three BPS states
corresponding to these singular points are the only stable BPS states. Due to the
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non-local nature of the charge lattice Γ (it is really a local system, fibered over
the Coulomb branch), there is no unique description of the charges of these BPS
states. In some of the different regions R+,R−,R0 indicated in Figure 2, the
strong-coupling spectra can be described as (see (2))

N f = 0 : [R+] (2,1) , (0,1) [R−] (−2,1) , (0,1) (2.10a)
N f = 1 : [R0] (0,1) , (−1,1) , (1,0) [R+] (2,−1) , (−1,1) , (1,0)

[R−] (0,1) , (1,1) , (1,0) (2.10b)
N f = 2 : [R+] (1,−1)2 , (0,1)2 [R−] (1,1)2 , (0,1)2 (2.10c)
N f = 3 : [R+] (−1,2) , (1,−1)4 [R−] (−1,2) , (0,1)4. (2.10d)

The notation list states in terms of their electric and magnetic charges (q, p);
subscripts denote multiplicities. Moreover, we have chosen a particle–antiparticle
splitting, and listed only the “particles” (the full spectrum must be completed by
adding antiparticles).

At weak coupling (large |u|), the spectrum must be invariant under the mon-
odromy of the charge lattice around u = ∞,

M∞ : (n,m) 7→ (n+N f m,m). (2.11)

The spectrum ends up being generated by the action of M∞ on the hypermulti-
plet states corresponding to singularities, with the addition of the vector multiplets
containing the massive W± bosons. (Note that the action of M∞ on the electric
states such as the W± is trivial.) Altogether, one finds weak-coupling spectra

N f = 0 : (2,0) , (2n,1) , n ∈ Z , (2.12a)
N f = 1 : (2,0) , (1,0)2 , (n,1) , n ∈ Z , (2.12b)
N f = 2 : (2,0) , (1,0)4 , (n,1)2 , n ∈ Z , (2.12c)
N f = 3 : (2,0) , (1,0)6 , (n,1)4 (2n+1,2) , n ∈ Z. (2.12d)

Now the reader should be able to recognize the wall-crossing formulas in pure
N = 2 super-Yang–Mills (1.3) and in N = 2 SQCD (1.5) stated in the introduc-
tion:

N f = 0 : U2,−1U0,1 = U0,1U2,1U4,1 · · ·Uvect
2,0 · · ·U6,−1U4,−1U2,−1

N f =1 : U1,−1 U1,0 U0,1 =U0,1 U1,1 U2,1 U3,1 · · ·U2
1,0 Uvect

2,0 · · ·U3,−1 U2,−1 U1,−1

N f = 2 : U2
1,−1 U2

0,1 = U2
0,1 U2

1,1 U2
2,1 U2

3,1 · · ·U4
1,0 Uvect

2,0 · · ·U2
3,−1 U2

2,−1 U2
1,−1

N f =3 : U1,−2 U4
0,1 =U4

0,1 U1,2 U4
1,1 U3,2 U4

2,1 · · ·U6
1,0 Uvect

2,0 · · ·U4
2,−1 U3,−2 U4

1,−1 U1,−2

In each case, the strong-coupling spectrum appears on the left and the weak-
coupling spectrum appears on the right. Or, to be more precise, exactly half of the
spectra appear: in order to write down these relations, we had to impose a split
between particles and antiparticles. On each side of these formulas, the operators
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Um,n corresponding to the BPS particles (vs. antiparticles) in the spectrum are
listed in increasing order of the argument of their central charges. When the wall
of marginal stability at arga(u) = argaD(u) is crossed, this ordering is reversed—
relating the two sides.

Note that the choice of splitting between particles and anti-particles that was
made here is not particularly relevant. One can divide the charge lattice Γ into
half in many different ways, resulting in formulas that are simply related via con-
jugation by some (typically) finite set of operators Um,n. In terms of the central
charge plane, a change of splitting rotates a distinguished sector of total angle π ,
removing BPS states from one side of this sector and adding them to the other—
hence conjugation by the corresponding operators in the wall-crossing formula.
For example, in the case N f = 1, the LHS of formula (1.5) corresponds to region
R0 at strong coupling. By changing the particle–antiparticle split we can obtain
equivalent formulas that correspond to regions R+ and R−:

N f =1 [R+] : U2,−1 U1,0 U−1,1 =U−1,1 U0,1 U1,1 U2,1 U3,1 · · ·U2
1,0 Uvect

2,0 · · ·U3,−1 U2,−1

N f =1 [R−] : U0,−1 U1,0 U1,1 =U1,1 U2,1 U3,1 · · ·U2
1,0 Uvect

2,0 · · ·U3,−1 U2,−1 U1,−1 U0,−1.

(A series of pentagon identities is used to rewrite conjugates of the LHS of
(1.5) in the forms appearing here.)

The validity of the N f = 0 formula (1.3) can be verified in several different
ways. In Section 4, we shall explain how it results from the study of motivic
Donaldson–Thomas invariants and quiver representations. The remaining formu-
las for N f > 0 can actually be derived from the N f = 0 case by simply applying
the pentagon identity (1.2) repeatedly in the form

Uγ1Uγ2 = Uγ2Uγ1+γ2Uγ1 for 〈γ1,γ2〉= 1. (2.13)

Thus, in terms of quantum wall crossing, one might say that the BPS spectrum
of N f = 0 SU(2) theory “predicts” the spectra for N f > 0!

2.2 STABLE BUNDLES ON F0

It is curious to note that the weak-coupling spectrum (2.12a) of stable BPS states
in the pure N = 2 super-Yang–Mills theory is closely related to the collection of
stable vector bundles—or, to be more precise, coherent sheaves—on the Hirze-
bruch2 surface F0 = P1

b×P1
f . Recall that a stable holomorphic vector bundle (or

sheaf) E on a complex surface S is distinguished by the condition

µ(E ′) < µ(E ) (2.14)

for all nontrivial proper sub-bundles E ′ ⊂ E . Here, µ(E ) is the slope of E ,
defined as

2 We use the subscripts b and f on the factors here to denote “base” and “fiber,” in line with
a more general geometric description coming in Section 2.3.
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µ(E ) =
1
r

∫
S

J∧ c1(E ) , (2.15)

where r is the rank of E and J is the Kähler form of S.
Topologically, a coherent sheaf E is described by the Mukai vector

γ = ch(E )
√

Â(S) , (2.16)

which takes values in Heven(S;Z). In the present case of S = F0, this is a rank-
4 lattice. Anticipating the connection with SU(2) gauge theory (cf. (2.24) in Sec-
tion 2.3), we wish to restrict to a rank-2 sublattice Γ ⊂ Heven(S;Z) characterized
by the conditions

∫
P1

f

c1(E ) = 0 ,
∫
F0

ch2(E ) = 0. (2.17)

In other words, the topological type of such a restricted bundle (or sheaf) E is
described by its rank r (which we identify with magnetic charge m) and

n =
∫
P1

b

c1(E ) , (2.18)

[which we identify with twice the electric charge in SU(2) gauge theory]. Note
that such bundles with γ = (n,m) ∈ Γ have zero discriminant

∆(E ) =
1

2r2 (c2
1−2r ch2) = 0 , (2.19)

so that the formula for the expected dimension of their moduli space takes a
very simple form (cf. (6; 10) or (22)):

d = 1+2r2
∆ − r2

χ(OF0) = 1− r2. (2.20)

This dimension must be non-negative for any stable bundles to exist. There-
fore, there are two basic choices to consider, corresponding to r = 1 and r = 0.
In the first case, all line bundles with γ(E ) ∈ Γ are stable, and they correspond to
the spectrum of dyons in SU(2) gauge theory at weak coupling. (The vanishing
dimension d = 0 implies that the classical moduli spaces of these states are points,
making them hypermultiplets.)

Similarly, in the case r = 0 it is easy to see that the only stable sheaf on
F0 with γ(E ) ∈ Γ is a torsion sheaf, corresponding to the trivial rank-1 bundle
E = O(0) on P1

b. Its classical moduli space is P1
f (in agreement with d = 1 from

the dimension formula), which implies that the corresponding BPS states form a
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vector multiplet. Of course, this is just the electric W boson. Altogether, we find
the following spectrum of stable bundles (sheaves) on the Hirzebruch surface F0
with Mukai vector γ(E ) ∈ Γ :

γ = (1,0) , (n,1) , n ∈ Z , (2.21)

This is the complete set of charges (2.12a) of stable BPS states in the weak-
coupling spectrum of the pure N = 2 super-Yang–Mills theory. A similar conclu-
sion holds for other N = 2 gauge theories with N f = 1,2,3 fundamental matter
multiplets, whose BPS spectra (2.12b)–(2.12d) correspond to the collection of
stable holomorphic vector bundles (sheaves) on a complex surface S obtained by
blowing up F0 at N f generic points. As we explain next, this is not an accident.

2.3 REALIZATION VIA BPS STATES ON A CALABI-YAU THREEFOLD

In (7), we described wall crossing for BPS states in N = 2 compactifications
of type II string theory on a Calabi–Yau threefold X . It is well known that the
N = 2 gauge theories considered in this paper have such a realization in string
theory, via geometric engineering (17). The stable BPS states in gauge theory then
correspond to stable bound states of BPS D-branes on the Calabi–Yau X .

This correspondence leads to interesting alternative interpretations of BPS
spectra and wall crossing in gauge theory. In particular, it is well known that the
finite strong-coupling spectrum of SU(2) theory is determined by the conifold sin-
gularities in the vector-multiplet moduli space of X . We will also see, as per the
previous section, that the infinite weak-coupling spectrum is determined by the
classically stable vector bundles on X . The interpretation of BPS states as stable
D-branes on a Calabi–Yau—and especially as stable holomorphic branes in type
IIA string theory—also provides an important starting point for the connection
between refined and motivic invariants considered in later sections.

An N = 2 SU(N) gauge theory with matter can be geometrically engineered
in type IIA string theory by “compactifying” on a noncompact Calabi–Yau three-
fold X that is the total space of the anti-canonical line bundle over a complex
surface S (16; 17),

X = O(−K)→ S.

For example, in the case of pure SU(2) gauge theory, this surface can be taken
to be the Hirzebruch surface F0 :

SU(2), N f = 0 : S = F0.

More generally, SU(2) theory with N f ≤3 flavors of fundamental matter is
constructed by blowing up N f generic points on F0.

Although F0 is just a simple product, F0 = P1×P1, it is convenient to treat it
as a trivial fibration and to distinguish the two P1 factors as fiber and base. The
area of (say) the “base” P1, in string units, is then proportional to the bare gauge
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theory coupling defined at the string scale, Vol(P1
b) ∼

1
g2 , while the area of the

“fiber” P1 is proportional to the mass of the W bosons, Vol(P1
f )∼ mW `s. In order

to send both the string scale and the four-dimensional Planck scales to infinity
(to decouple stringy and gravitational physics and retain a pure gauge theory with
finite mW and renormalized coupling), one must consider an infinitely large base
and an infinitesimally small fiber. Specifically, one can take base and fiber Kähler
classes

exp(2πitb) ∼Λ 4ε ,
2πit f f ∼−εa ,

ε → 0. (2.22)

(As usual, we define t = B+ iVol.) The Coulomb branch of the resulting gauge
theory, parametrized by u, is identified with a complex codimension-one slice of
the Kähler moduli space of X in the neighborhood of the “Seiberg-Witten point”
(e2πitb ,e2πit f )∼ (0,1).

BPS states in gauge theory correspond to type IIA D-branes wrapping even
cycles in X (and extending along the time direction in R4). In the string realization,
the full lattice of D-brane charges is identified3 with Heven(X ;Z)'Z4. The lattice
of gauge theory charges is a sublattice of Heven(X ;Z),

Γ ⊂ Heven(X ;Z) , (2.23)

and includes only those states that remain light in the geometric engineering
limit.

For pure SU(2) theory with N f = 0 engineered on F0 ' P1
b ×P1

f , it is clear
that the W boson comes from a D2-brane wrapped on a fiber. It turns out (see the
end of this section) that the dual fundamental magnetic charge corresponds to a
D4-brane wrapped on the entire surface F0:

2γe ↔ [P1
f ] ,

γm ↔ [F0].
(2.24)

The electromagnetic product of the two charges is consistent with the intersec-
tion product in (co)homology,

〈2γe,γm〉=−
∫
X

[P1
f ]∧ [F0] =−

∫
F0

[P1
f ]∧ [KF0 ] = 2. (2.25)

Note that on X = O(−K)→ F0 there are no compact cycles with intersection
number ±1: all intersections are multiples of 2. Likewise, in pure SU(2) gauge
theory with N f = 0, all electric charges are multiples of γW± =±2γe.

3 One should be careful considering H∗(X) for a noncompact Calabi–Yau manifold. Being
more precise, we could (e.g.) take a compactification X̂ of X and consider the part of H∗(X̂) that
is dual to cycles in H∗(X̂) that come from H∗(X).
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Equivalently, one can engineer gauge theory in type IIB string theory by com-
pactifying on the mirror Calabi–Yau X̃ . Local mirror symmetry (4; 17) determines
X̃ to have the form

ζ ζ̃ = H(z,w) (2.26)

for ζ , ζ̃ ∈ C and z,w ∈ C∗. The Riemann surface

Σ : H(z,w) = 0. (2.27)

captures all relevant data of the Calabi–Yau geometry.
For example, in the case X = O(−K)→ F0, the mirror curve Σ is given by

H(z,w) =
√

qb

(
z+

1
z

)
+
√

q f

(
w+

1
w

)
−1. (2.28)

The complex structure moduli qb and q f are related to the Kähler moduli of X
near large volume as qi ' e2πiti . Upon setting

√
qb =−Λ

2
ε ,

√
q f =

1
2

e−2ε2u ,
(2.29)

redefining w = −1 + 2εx and z = Λ−2(y + u− x2), and taking ε → 0, the

curve Σ reduces to the pure SU(2) Seiberg-Witten curve Σ
(N f =0)
SW from (2.1). The

Coulomb branch of the SU(2) theory, parametrized by u, is realized as a slice of
the complex structure moduli space of X̃ , parametrized by qb and q f .

The compact “even” D-branes on the IIA side are all generally mapped to
compact D3-branes on X̃ . All compact three-cycles γ̃ on X̃ , however, can be rep-
resented as one-cycles4 γ on Σ . Moreover, integrals of the holomorphic three-form
Ω over γ̃ ⊂ X̃ descend to integrals of a (logarithmic) one-form λ over the corre-
sponding cycles in Σ . In the Seiberg-Witten limit, this one-form becomes propor-
tional to ε times the Seiberg-Witten form λSW, leading to the usual formula (2.3)
for the central charge of states in N = 2 gauge theory.

Coming back again to the local F0 example with mirror curve (2.28), we expect
to see the D0, D2(fiber), D2(base), and D4 branes from the type IIA side represented
as one-cycles on Σ . The surface Σ is a torus with four punctures, but the integrals
of λ around these punctures are not all independent: the punctures come in pairs
and yield only two distinct integrals. Therefore, the “relevant” homology of Σ is
H1(Σ ,Z)' Z4, generated by two punctures alongside the ordinary longitude and
meridian (α and β cycles) of the torus. This matches the charge lattice on the

4 Specifically, any compact three-cycle γ̃ on X̃ is an S1 fibration over a disc D in the (z,w)-
plane with boundary γ = ∂D on Σ . The fibration degenerates on γ ⊂D. These three-cycles have
the topology of either S2×S1 or S3, and cycles of the two types are (electromagnetically) dual
to one another.
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IIA side, given by the (co)homology of F0.5 In the Seiberg-Witten limit ε → 0,
the two pairs of punctures collide and become invisible to λSW. The only relevant
remaining cycles are linear combinations of the α and β cycles on the effectively
puncture-less torus ΣSW. These define the sublattice Γ ⊂ Z4 of gauge theory
charges. (Note, however, that the electric and magnetic gauge theory charges are
not simply the basic α and β cycles, since their intersection number must be 2,
while 〈α,β 〉= 1; cf. a nice discussion of cycles on ΣSW in (23).)

It is well known that the complex structure moduli space of the curve Σ

contains conifold singularities at points where the discriminant of the equation
H(z,w) = 0 vanishes. For (2.28), the discriminant is

∆ = ∏
η1,η2=±1

(
1+2η1

√
qb +2η2

√
q f
)
, (2.30)

containing four irreducible components. In the Seiberg-Witten limit, only two
components survive, yielding

∆SW = (u+Λ
2)(u−Λ

2), (2.31)

which precisely corresponds to the two singular points on the Coulomb branch
of SU(2) N f = 0 theory. Lifted back up to ∆ , these points are the loci where a pure
D4 brane (i.e., a pure magnetic state) and a D4 brane with one unit of D2(fiber)
charge (a dyonic state) become massless.

In the preceding discussion, we simply declared that electric and magnetic
charges correspond to D2 and D4 branes as in (2.24). It is physically clear that
the electric charge must correspond to a D2 brane on the fiber P1, since the latter
is what generates the mass of the W boson. It is then also easy to see from an
intersection calculation (or the simple fact that four-cycles are dual to two-cycles)
that the magnetic charge must correspond at least to a D4 brane. However, it is not
clear a priori that magnetic charge could not correspond to some bound state of
D4, D2(fiber), and D0 branes. (A D2(base) contribution is not allowed, again due to
the intersection theory.)

One way to resolve this ambiguity is to analytically continue the quantum-
corrected periods on X̃ (computed by use of Picard–Fuchs equations) from the
large-volume region around (qb,q f )= (0,0) to the Seiberg-Witten regime (qb,q f )'
(0, 1

4 ). At large volume, the periods are identified with type IIA D-branes by their
leading-order terms:

D0 ↔ Π0 = 1,

D2(base) ↔ Πb =
1

2πi
log(qb)+O(qb,q f ),

5 For a more detailed complementary discussion of this correspondence, see e.g. (1).
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D2(fiber) ↔ Π f =
1

2πi
log(q f )+O(qb,q f ),

D4 ↔ Π4 =
1

(2πi)2 log(qb) log(q f )+
1
6

+O(qb,q f ). (2.32)

Note that the constant term χ(F0)/24 = 1/6 in (2.32) is the natural D0 charge
induced on a single D4 brane due to its curvature. Analytically continuing these
to the Seiberg-Witten regime, we find

Π f = 2Cε a(u)+O(ε3),

Π4 = Cε aD(u)+O(ε3),

for the same proportionality constant C (=−
√

2/iπ), confirming the identifi-
cation (2.24) of D-branes with gauge theory charges.

In light of the identification (2.24), the result of Section 2.2 relating the weak
coupling spectrum of SU(2) theory to an appropriate subset of the stable vec-
tor bundles on F0 is not too surprising. Indeed, one generally expects that BPS
D-branes in a type IIA compactification are described by π-stable (Bridgeland-
stable) objects in the derived category of coherent sheaves on X , and these in turn
are well-approximated by slope-stable sheaves near large volume. Nevertheless,
we saw that the weak-coupling (|u| → ∞) region of the Coulomb branch is not
quite equivalent to large volume in Calabi–Yau moduli space. It is interesting to
note that the two regions do not seem to be separated by any walls of marginal
stability that are relevant for gauge theory charges.

3 Refined Wall Crossing

So far, our approach to wall crossing in gauge theory has been based on examples.
We would now like to describe the general formalism underlying the results of
Section 2, interpreting identities such as (1.3)–(1.5) in terms of the “quantum wall
crossing” described in (7). The proceeding discussion applies equally well to BPS
invariants of a Calabi–Yau threefold as to BPS invariants in gauge theory, realized
via geometric engineering.

3.1 REFINED AND QUANTUM

We begin by making the precise connection between refined and quantum BPS
invariants. In an N = 2 theory, whether gauge theory or effective supergravity
in a Calabi–Yau compactification of string theory, the BPS Hilbert space HBPS is
(Γ ⊕Z)-graded by the charge γ ∈ Γ and the three-dimensional spin 2J3 ∈ Z of
BPS states. It is therefore convenient to write HBPS =

⊕
γ∈Γ HBPS(γ), separating

components of different charge. We know of course that this Hilbert space also
depends on Coulomb-branch (or vector multiplet) parameters u in a piecewise-
constant manner, undergoing discontinuous jumps at walls of marginal stability.
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All BPS states in 3+1 dimensions have at least a half-hypermultiplet (i.e., a
hypermultiplet without its CPT conjugate) of spin degrees of freedom correspond-
ing to their center-of-mass position in R3. Put differently, all BPS multiplets are
N = 2 supersymmetric, so they are at least the size of a hyper. Factoring out these
center-of-mass degrees of freedom to obtain a reduced Hilbert space H ′

BPS,

HBPS =:
([

1
2

]
+2[0]

)
⊗H ′

BPS , (3.1)

one can calculate a refined index of states as

Ω
ref(γ;u;y) := TrHBPS(γ;u)′(−y)2J′3 = ∑

n∈Z
Ω

ref
n (γ;u)(−y)n. (3.2)

(The integers Ω ref
n defined in this way are all positive, and typically all but

finitely many of them vanish.) Physically, refined simply means keeping track of
the spin content, as is done here with the formal variable y. For example, the
contributions of a (half) hypermultiplet and a (half) vector multiplet to the refined
index are

hyper : Ω ref = 1 or Ω ref
0 = 1 ,

vector : Ω ref =−y− y−1 or Ω ref
−1 = Ω ref

1 = 1.
(3.3)

In order to express wall crossing for the refined indices Ω ref in terms of quan-
tum operators, one must in general construct an operator êγ for every charge γ ∈Γ

and a more complicated combination

Uγ = ∏
n∈Z

E
((
−q

1
2

)n
êγ

)(−1)nΩ ref
n

= 1+
Ω ref

(
γ;−q

1
2

)
q

1
2 −q−

1
2

êγ + · · · (3.4)

for every state of charge γ in the BPS Hilbert space. Here, E(x) is the quantum
dilogarithm function described in the introduction,

E(x) :=
∞

∑
n=0

(
−q

1
2 x
)n

(1−q) · · ·(1−qn)
=

∞

∏
i=0

(
1+qi+ 1

2 x
)−1

, (3.5)

and the quantum operators êγ , γ ∈ Γ , satisfy relations

êγ êγ ′ = q
〈γ,γ ′〉

2 êγ+γ ′ = q〈γ,γ ′〉êγ ′ êγ , (3.6)
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where 〈γ,γ ′〉 is the antisymmetric electromagnetic product of charges. The
algebra generated by the êγ is called the quantum torus and plays a key role in our
discussion here as well as in the intrinsically motivic analysis later in Section 4.

Now, suppose that one defines a local splitting of Γ into particles and antipar-
ticles close to a wall of marginal stability. This divides the central charge plane in
half, distinguishing a sector of total angle π where the central charges of putative
particles (versus antiparticles) must lie. Given Coulomb branch (or vector multi-
plet moduli space) parameters u± on either side of the wall, one can then form
composite operators

A(u±) =
y

∏
statesγ∈HBPS(u±)

Uγ , (3.7)

taking a product over all BPS particles (not antiparticles) in order of increasing
phase of the central charge. The quantum wall-crossing formula (cf. (7)) states that

A(u+) = A(u−) . (3.8)

Let us illustrate this in the special case of N = 2 super-Yang–Mills theories
with gauge group SU(2). The charge lattice Γ is two-dimensional, generated by
electric and magnetic charges γe,γm. Therefore, the quantum torus is generated by
êe and êm, where

êeêm = qêmêe , (3.9)

and for a general state of charge γ = nγe +mγm we have

êγ = q−
nm
2 ê n

γe ê m
γm . (3.10)

The only spin multiplets that arise in SU(2), N = 2 super-Yang–Mills theories
are hypers and vectors. For every hypermultiplet BPS state of charge γ = nγe +
mγm, it follows from (3.3) and (3.4) that the wall-crossing operator is

Un,m := Uγ = E(êγ) , (3.11)

and for the vector multiplet of electric charge γ = 2γe we find the operator

Uvect
2,0 = E

(
−q

1
2 ê2

e

)−1
E
(
−q−

1
2 ê2

e

)−1
. (3.12)

The quantum identities (1.3)–(1.5) then become direct specializations of the
wall-crossing formula (3.8) for theories with N f = 0,1,2,3.
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3.2 CLASSICAL LIMIT AND FACTORIZATION

We conclude this short section with some brief comments about the factorization
of refined/motivic wall crossing factors in physics and mathematics—leading in
to the mathematical analysis of wall crossing in N = 2 gauge theory of Section 4.

The main conjecture of (7) is that, for BPS invariants, refined = quantum = motivic. In
(19) (see also (21)), motivic operators Amot(u), analogous to the A(u) appearing
here, are defined using methods of motivic integration. In particular, such oper-
ators Amot

V (u) are defined for every convex sector V (of angle smaller than π) in
the central charge plane, and it is shown that if V is split into disjoint subsectors
V =

⋃
i Vi, then

Amot
V =

y

∏
i

Amot
Vi

, (3.13)

where the product is again taken in order of increasing argument of the central
charge. In the limit that each Vi contains a single BPS ray, this looks almost like
the formula (3.7).

The complete factorization of motivic invariants into states as in (3.4), (3.7)
is suggested by simple examples in (19), and especially by a factorization of the
corresponding classical invariants obtained in the limit q

1
2 →−1. Recall that the

operators A or Amot
V generate automorphisms T of the quantum torus via conjuga-

tion:

TV : êγ 7→ Amot
V êγ(Amot

V )−1. (3.14)

While the Amot
V can have poles at q

1
2 →−1, it is conjectured in (19) that the

TV are regular; in the classical limit q
1
2 →−1, they become symplectomorphisms

KV of a classical, symplectic torus. It is shown in (19) that these KV ’s factorize
completely.

In the upcoming work (20), it is also shown that motivic Donaldson–Thomas
invariants Amot

V have a structure exactly like that of (3.4), (3.7) in situations where
the underlying Calabi–Yau category can be described via representations of a
quiver with potential.

Physically, the decomposition (3.4), (3.7) is quite natural. The operators A(u)
can in fact be thought of as encoding the Fock space structure of BPS states on
either side of a wall of marginal stability—this can be seen, for example, by deriv-
ing the refined semi-primitive wall-crossing formula of (5; 7) from (3.8). A very
interesting interpretation of our full wall-crossing formula (3.8) in N = 2 gauge
theory, based on a chain of string dualities, was also recently proposed in (3).

As a final remark, we observe that in order to compare physical refined for-
mulas with motivic invariants one must always choose a finite, positive basis for
the set of BPS particles, given a certain particle–antiparticle split. In other words,
one needs a basis γi for Γ +, the half of the charge lattice containing particles,
such that all BPS states have charges γ = niγi with ni > 0. It is believed that this
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is always possible.6 For example, the wall-crossing formula (1.3) for pure SU(2)
Yang–Mills theory in a positive basis γ1 = 2γe−γm,γ2 = γm (now with 〈γ1,γ2〉= 2)
looks like

N f = 0 : U1,0U0,1 = U0,1U1,2U2,3 · · ·Uvect
1,1 · · ·U3,2U2,1U1,0. (3.15)

Given a particle–antiparticle split and an ordering of the central charge, the
existence of a finite, positive basis guarantees unique factorization of a composite
operator A(u) into operators Uγ . Further implications of this for the structure of
physical moduli spaces will be discussed in (9).

4 Motivic Wall Crossing

In the previous sections we discussed wall crossing for refined BPS invariants,
and began to look at how refined/quantum wall crossing is related to motivic wall
crossing. It was proposed in (7) that refined BPS invariants in physics are equal
to the motivic BPS invariants of (19), where the spin content of Ω ref is identified
with the “motivic” content of Ω mot,

Ω
ref(γ;y) = Ω

mot(γ;q) , y↔−q
1
2 . (4.1)

In this section, we present further evidence for this identification by analyzing
motivic BPS invariants in the simple examples related to N = 2 supersymmetric
gauge theories with SU(2) gauge group and N f < 4 matter hypermultiplets in the
fundamental representation. In particular, in the case of pure N = 2
super-Yang–Mills theory we find that motivic BPS invariants obey the same wall-
crossing formula (1.3) as the refined BPS invariants, and we comment on the
examples related to N = 2 super-QCD.

In the case of these N = 2 gauge theories, there are actually several ways
to derive the motivic wall-crossing formulas. We first present an approach based
on representations of quivers that directly invokes the methods of (19), and then
consider a complementary approach based on the so-called “cohomological Hall
algebra,” which will appear in the upcoming work (20). The latter strongly indi-
cates that motivic Donaldson–Thomas invariants indeed satisfy the factorization
properties discussed in Section 3.2.

4.1 WALL CROSSING AND QUIVERS

Recall (19; 21) that motivic Donaldson–Thomas invariants are formulated in the
context of ind-constructible 3d Calabi–Yau categories. Physically, such a category
C should be thought of as the category of D-branes on a given Calabi–Yau three-
fold. The K-theory K0(C ) is mapped to the charge lattice Γ , and these categories
are endowed with an additive map Z : Γ →C corresponding to the central charge,

6 In the mathematical context, the particle–antiparticle split defines a t-structure, with the
positive basis as its heart.
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Fig. 3 The quiver K2 for SU(2) super-Yang–Mills with N f = 0.

which is part of the mathematical definition of the stability condition that singles
out BPS objects.

To a 3d Calabi–Yau category C , one associates a quantum torus R(C ) over
the coefficient ring, which is the localization of the ring of motivic stack functions
on the space of objects (D-branes) in C . It specializes precisely in the quantum
torus described in Section 3.1, with relations (3.6). Given a convex sector V in
the central charge plane, motivic Donaldson–Thomas invariants Amot

V are defined
based on the theory of motivic integration (and in particular based on the notion
of motivic Milnor fiber of the “superpotential” associated to objects in C ). The
abstract quantum variable q corresponds to the motive of the affine line L. As
we have seen (in the case of the quantum operators A(u)), these invariants are
invertible elements of a suitable completion of the quantum torus R(C ).

In the case of pure SU(2) super-Yang–Mills theory, we saw that states in the
gauge theory are identified with a subset of the D-branes on the noncompact
Calabi–Yau X = O(−K) → F0. For this subset, the corresponding category C
can also be thought of as a category of representations 7 of the Kronecker quiver
K2 (Figure 3). The motivic wall-crossing formula can then be derived from the
representation theory of this quiver, which we briefly review.

The Kronecker quiver K2 has two vertices 1,2 and two arrows from 1 to
2. Representations consist of vector spaces Vi assigned to each node and maps
φ j : V1 →V2 assigned to each arrow. The dimension vector γ = (dimV1,dimV2) of
a representation corresponds to the electric and magnetic charges of states written
in the positive basis (γ1,γ2), as described at the end of Section 3.2. (Thus γ = (a,b)
corresponds to 2aγe +(b− a)γm.) We will be looking for stability conditions on
the derived category of finite-dimensional representations of K2. More precisely,
we fix the t-structure given by finite-dimensional representations of K2 and vary
the central charge Z . The central charge of a quiver representation with dimen-
sion γ = (a,b) can be identified with a pair of non-negative integers (Θ1,Θ2), in
terms of which the representation has slope µ = aΘ1+bΘ2

a+b . The notion of stability
can be defined via this slope function in the standard way: a representation R is
(semi)stable if for all nontrivial proper subrepresentations R′ one has

µ(R′) <
(—)

µ(R). (4.2)

It is easy to see that besides the trivial stability condition, there are only two
other distinct choices: Θ = (0,1) and Θ = (1,0). In the case of the former there
are only two stable objects, which are irreducible representations of dimensions
(0,1) and (1,0) (i.e., the monopole and dyon stable at strong coupling), and any
semistable is the direct sum of copies of either of these.

7 Physically, the relation between SU(N) gauge theories and quivers is explained e.g., in (11)
(see also (10)). It is interesting to note that the “natural” stable representations of quivers, corre-
sponding to a small-volume limit of Calabi–Yau manifolds, make manifest the finite LHS of the
wall-crossing formulas – in contrast to the large-volume analysis of stable bundles (Section 2.2),
which produces the infinite RHS.
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In the case of the stability condition (1,0) the picture is more complicated, but
the classification of stable and semistable representations is well known (see e.g.
(24, Section 6.1) or (10, Appendix A)). First, one observes that any semistable
representation is a direct sum of indecomposable representations of K2 of the
same slope. Second, one uses the classification of indecomposable representa-
tions (which is basically due to Kronecker) in order to obtain the description of
semistable representations. Here is the result:
(a) There is a unique stable representation for any dimension vector (k,k+1) or

(k + 1,k). In the equivalent geometric description these correspond to mor-
phisms between ample sheaves O(k) and O(k + 1) on P1

b (which are pulled
back to F0 = P1

b×P1
f to describe dyonic D4 branes). Semistable representa-

tions that have the corresponding slopes k
2k+1 , k+1

2k+1 are direct sums of stable
ones (they are also so-called polystable), since the dimensions are relatively
prime to the stability condition. Each stable representation Ek of the one of
these dimensions is a Schur object in the category of representations, i.e.,
its automorphism group is C∗, and there are no Exti(Ek,Ek) for i < 0. Fur-
thermore Ext1(Ek,Ek) = 0. Thus, for a semistable object nEk = En

k of one of
these slopes the only non-zero group Exti(nEk,nEk) with i ≤ 1 appears for
i = 0, and it is isomorphic to Mat(n,C).

(b) We have a P1-family of stable representations of dimension vector (1,1),
and no stable representations of dimension vector (k,k) for k≥2. For γ =
(1,1) every semistable representation is stable. In contrast to case (a), the
stability condition is not coprime to γ = (k,k), and there is a P1-family of
indecomposable semistable representations for each dimension (k,k). One
can think that the first arrow in the K2 quiver is represented by the identity
map, while the second one is represented by the k× k Jordan block with
eigenvalue λ ∈ C∗ (one can upgrade λ to a point on P1). In the geometric
description such an object corresponds to the torsion sheaf with the support
at a point λ ∈ P1

b (which can be pulled back to become the electric D2 brane
supported on the fiber P1

f of F0). Then the moduli space of semistables of
dimension (k,k) can be identified with the moduli space of torsion sheaves
on P1 of length k.

The factorization formula (3.13) expresses the motivic Donaldson–Thomas
invariant Amot

V as a product of invariants Amot
`(µ) associated to BPS rays `(µ) with

slopes µ ∈ V . The above considerations (a) and (b) imply that with stability con-
dition Θ = (0,1) the only nontrivial factors A`(µ) entering this product occur for
slopes µ = 1

2 , µ = k
2k+1 , and µ = k+1

2k+1 , k = 0,1,2, . . ..
For representations described in (a), the abelian category C` corresponding

to the ray ` is generated by one Schur object Ek, of dimension either (k,k + 1)
or (k + 1,k) depending on the slope. The computation of Amot

` in these cases is
completely analogous to the one for the category generated by one spherical object
from (19), Section 6.4. More precisely, recall that the explicit formula from (19)
can be schematically written as

Amot
` = ∑

[E]

w(E)
[Aut(E)]

êcl(E), (4.3)
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where the sum is taken over the isomorphism classes of objects of the category
generated by semistables that have slope belonging to the ray `, the
quantum-torus element êcl(E) corresponds to the (K-theory) class of E, and w(E) is

a certain motivic weight. In the case of a quiver the weight is equal to q
dim Hom(E,E)−dim Ext1(E,E)

2 .
In case (a), however, we have Ext1(E,E) = 0, and the isomorphism class of any
object E = nEk is uniquely determined by its dimension. This means that the
motive of representations of the dimension n(k,k +1) (resp. n(k +1,k)) is trivial.
Therefore, the motivic weight is equal to qn2/2, n = dim Hom(nEk,nEk). Together
with the formula [Aut(nEk)] = [GL(n)] = (qn − qn−1)...(qn − 1) (and êcl(nEk) =
ên

cl(Ek)
) this gives Amot

` as the quantum dilogarithm function E
(
êcl(Ek)

)
.

In the case (b) all semistables have slope 1/2. Recall that they correspond to
torsion sheaves on P1. The Euler pairing between K-theory classes of two tor-
sion sheaves is trivial, so w(E) = 1. On the other hand, the isomorphism class
of the torsion sheaf is no longer determined by its dimension, so we will have a
non-trivial motive of such sheaves with a fixed class in the K-theory (or, equiva-
lently, with fixed dimension of the representation). An important fact, however, is
that Amot

` factorizes as the product of the generating functions for torsion sheaves
on C and torsion sheaves concentrated at one point, e.g. at zero. Indeed, torsion
sheaves concentrated at different points are orthogonal in the derived category
with respect to the Ext• pairing. Thus we can write Amot

`(1/2) = Amot
C Amot

0 , with fac-
tors corresponding to torsion sheaves on C and torsion sheaves supported at 0∈C.

The torsion sheaf on C of length n is the same as the n-dimensional representa-
tion of the algebra C[x]. Isomorphism classes are parametrized by n×n matrices;
hence the motive of sheaves of length n is qn2

(equivalently one can count Fq-
points of the scheme of finite-dimensional representations of the algebra Fq[x],
where Fq is the finite field with q elements). Thus we see that

Amot
C = ∑

n≥0

qn2

(qn−qn−1) . . .(qn−1)
tn, (4.4)

where t = êcl(E1) = ê(1,1) is the class of the representation (1,1). It is easy to
rewrite this series as

Amot
C = ∑

n≥0

qn2/2

(1−q) . . .(1−qn)
(−q1/2t)n = E

(
−q1/2t

)−1
. (4.5)

In order to compute Amot
0 one observes (by the same reasoning as before) that

Amot
C = Amot

0 Amot
C∗ , where the second factor corresponds to the moduli space of

torsion sheaves on C∗. In order to compute the latter, one uses the fact that a
torsion sheaf on C∗ of length n corresponds to an n-dimensional representation of
the algebra C[x] for which the variable x is represented by an invertible matrix.
Such representations form the motive [GL(n)]; hence

Amot
C∗ = ∑

n≥0

[GL(n)]
[GL(n)]

tn = ∑
n≥0

tn =
1

1− t
. (4.6)
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Fig. 4 The acyclic quiver for N f = 1 SU(2) theory.

Therefore,

Amot
0 = Amot

C (1− t) = ∏
i≥0

(1−qit) = E
(
−q−1/2t

)−1
, (4.7)

and we finally conclude that

Amot
`(1/2) = E

(
−q1/2t

)−1
E
(
−q−1/2t

)−1
= “Uvect(t)”. (4.8)

Altogether, taking the sector V to have angle sufficiently close to π in the
central charge plane (i.e., including all the slopes we have just discussed), and
equating the factorization of Amot

V into BPS rays for the stability parameter Θ =
(1,0) to the factorization for Θ = (0,1), we have derived from first principles the
quantum/motivic wall-crossing formula for pure SU(2) theory in the form (3.15)

Remark 1 Another way to derive the same quantum wall-crossing formula is to
use the approach of (19, Section 7) and (24), where the difference equation A`(qt)=
F̀ (t)A`(t) was studied. The idea is to interpret F̀ (t) as the generating function of
framed cyclic representations of the quiver K2 (see (24) for the definitions).

The above considerations as well as the techniques of (24) (and (19, Section
7)) can be generalized to other quivers which appear in N = 2 gauge theory. For
example, in the case of SU(2) super-QCD with N f = 1, the geometry of the surface
F0 blown up at one generic point leads to a quiver with three vertices and three
(single) arrows, as shown in Figure 4. The potential is trivial. The charges γ1,γ2,γ3
associated to the three vertices are related to gauge theory charges as γ1 = γm,
γ2 = γe, and γ3 = γe− γm.

There is an obvious stability condition, for which the motivic DT-invariant
is given by the product of three quantum dilogarithm functions corresponding to
the three vertices of the quiver (this follows, e.g. from (19, Proposition 16)). Of
course, these are the three stable BPS states in the strong-coupling region of N f =
1
theory.

Now, a stable representation of a given slope µ is indecomposable, and since
our quiver is of extended Dynkin type, indecomposable representations corre-
spond to positive roots of the quiver. In order to reproduce the RHS of the N f = 1
wall-crossing formula, we would like to find a stability condition for which all
such indecomposable representations appear in the product. Markus Reineke8 has
suggested to use the central charge Z (γ1,γ2,γ3) = −(γ2 + γ3)+ i(γ1 + 2γ2 + γ3),
which means that the slope function is µ(γ1,γ2,γ3) = (γ2 + γ3)/(γ1 + 2γ2 + γ3).
The moduli spaces of stable representations are either empty, or single points, or

8 We thank to him for kindly sending us the results of his computations.
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an affine line (for dimension vector (1,1,1)), similar to the case of K2. In the clas-
sical limit q

1
2 → −1, the product on the RHS of the wall-crossing formula was

obtained by Reineke via (24). He defines automorphisms of Q[[x1,x2,x3]] as:

Kγ(xi) = xi(1+σxγ)〈γi,γ〉, (4.9)

where γ = (a,b,c) = aγ1 +bγ2 +cγ3, and the number σ is −1 if γ1 +γ2 +γ3 is
divisible by 3, and +1 otherwise. He then arrives at a classical product formula in
the form

K001K010K100 =K100K110K211K221K322K332 · · ·K · · ·K233K223K122K112K011K001,

(4.10)

where K = (K111)−2K101K010. This is indeed (a slight generalization of) the
classical wall-crossing formula for N f = 1 theory (cf. (13)), as can be checked
by converting to charges γe and γm. It can be “upgraded” to the quantum case in a
fairly straightforward manner via the same methods we presented above for N f = 0
theory.

Remark 2 In a very interesting recent paper (14), the “classical” product for-
mula was interpreted in a completely different fashion, by using relative Gromov–
Witten theory. The exponents (“classical DT-invariants”) appear there as the num-
ber of rational curves in P2 which pass through given points on two given divisors
and have a prescribed tangency order at the third divisor “at infinity”. It would be
interesting to understand the quantum analog of this result.

4.2 FACTORIZATION AND COHOMOLOGICAL HALL ALGEBRA

In this final section, we briefly discuss another approach to motivic DT-invariants
suggested in (20). The results of (20) are proved for arbitrary quivers with poten-
tial. Every such quiver gives rise to a 3d Calabi–Yau category. We reproduce here
a very special case of the general theory of (20) in the case of a quiver with trivial
potential.

In (20), Kontsevich and the third-named author (Y.S.) introduce a new struc-
ture of associative unital algebra (called cohomological Hall algebra) on the
ZI
≥0-graded abelian group

A :=⊕γ Aγ , (4.11)

where each component is defined as an equivariant cohomology

Aγ := H•
Gγ

(Mγ) (4.12)

of the vector space Mγ of quiver representations of fixed dimension γ ∈ ZI
≥0,

and Gγ is the complexified quiver “gauge group” acting on Mγ . The algebra prod-
uct (which we do not recall here in full generality) admits a very explicit form via
torus localization with respect to the maximal torus Tγ ⊂ Gγ .
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As an example, let Qd be the quiver with one vertex and d loops. Then A
is the sum of equivariant cohomology of the point, with appropriate shifts: A '
H•(BGL(n),C)[(d−1)n2]. Elements of the cohomological Hall algebra can then
be identified with polynomials, and the explicit formula for the product reads

( f1 · f2)(x1, . . . ,xn+m)

:= ∑
i1<···<in
j1<···< jm

{i1,...,in, j1,..., jm}
={1,...,n+m}

f1(xi1 , . . . ,xin) f2(x j1 , . . . ,x jm)

(
n

∏
k=1

m

∏
l=1

(x jl − xik)

)d−1

(4.13)

for symmetric polynomials f1 (in n variables) and f2 (in m variables). The
product f1 · f2 is a symmetric polynomial in n + m variables. The algebra has a
double grading such that a homogeneous symmetric polynomial of degree K in
n variables has bigrading (n,2K + (1− d)n2) (the bigrading corresponds to the
shifts by (d−1)n2 above). The resulting Hilbert–Poincaré series is

Ed(z,q1/2) = ∑
n≥0,m∈Z

dim(An,m)znqm/2

= ∑
n≥0

q(1−d)n2/2

(1−q) . . .(1−qn)
zn ∈ Z((q1/2))[[z]].

The results of (20) imply the following factorization formula:

PROPOSITION 1 For any d ≥ 0 there exist integers δ (n,m) = δ (d)(n,m)≥ 0 for
all n ≥ 1 and m ∈ (d−1)n + 2Z = (1−d)n2 + 2Z, such that for a given number
n we have δ (n,m) 6= 0 only for finitely many values of m, and

Ed(z,q1/2) = ∏
n≥1

∏
m∈Z

E
((

−q
1
2

)m−1
zn
)(−1)m−1δ (n,m)

. (4.14)

Notice that Ed(z,q−1/2) coincides with the motivic DT-invariant of the 3d
Calabi–Yau category associated with the quiver Qd (see (19), Section 8 about
the details of the correspondence between 3d Calabi–Yau categories and quivers
with potentials). The above factorization formula is generalized in (20) to more
general quivers with non-zero potentials. It is shown there that by introducing a
stability condition on the category of finite-dimensional representations of Q one
obtains a factorization formula for the motivic DT-invariant of the corresponding
3d Calabi–Yau category. These factorizations can be thought of as a further gener-
alization of the motivic wall-crossing formulas and coincide with the “expected”
factorization of refined/quantum invariants (3.4), (3.7). They also generalize the
results of (24; 25). Applying the results of (20) to (e.g.) the Kronecker quiver K2
leads to yet another derivation of the quantum/motivic wall-crossing formulas for
super-Yang–Mills theory.
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