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1 Introduction

Brane constructions in string or M-theory can tell us a great deal of non-perturbative

information about supersymmetric gauge theories. For example, four-dimensional N = 2

supersymmetric quiver gauge theories can be implemented using a system of D4-branes

suspended between NS5-branes in type IIA string theory. This configuration can be lifted to

M-theory, in which D4- and NS5-branes merge into a single M5-brane, physically realizing
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Figure 1. Left: a brane configuration in type IIA. Vertical lines are NS5-branes and horizontal

lines are D4-branes. Right: its lift to M-theory showing the M-theory circle.

Figure 2. Left: the system in figure 1 as the compactification of M5-branes on a sphere with defects.

The symbol • marks the simple punctures, and ⊙ the full punctures. Right: the compactification of

M5-branes corresponding to the T [AN−1] theory, with three full punctures. It has no obvious type

IIA realization.

the Seiberg-Witten curve which governs the low energy dynamics of the system [1]. The

setup is schematically drawn in figure 1. Vertical lines stand for NS5-branes extending

along x4,5 while horizontal lines are D4-branes extending along x6, suspended between

two NS5-branes, or ending on an NS5-brane and extending to infinity. All branes fill the

space-time, x0,1,2,3. The example shown has two SU(3) gauge groups, each with three

fundamental hypermultiplets, and one bifundamental hypermultiplet charged under the

two gauge groups.

The system lifts to a configuration of M5-branes in M-theory. It is natural to combine

the direction along the M-theory circle, x11, with the direction x6 to define a complex coor-

dinate t = exp(x6 + ix11). In this particular example, when all of the vacuum expectation

values (VEV’s) of the adjoint scalar fields are zero, three M5-branes wrap the cylinder

parameterized by t, and at three values of t, say t = t1,2,3, the stack of three M5-branes is

intersected by one M5-brane.

It was recently shown in [2] that the system can also be seen as a compactification of

N M5-branes on a sphere by a further change of coordinates which is only possible when

all of the gauge couplings are marginal. The resulting configuration is shown on the left

of figure 2. In this representation, both the intersections with other M5-branes, and the

two infinite ends can be thought of as conformal defect operators on the worldvolume of

the M5-branes. We call the defect corresponding to the intersection with another M5-

brane the simple puncture, and the defect corresponding to intersecting N semi-infinite

M5-branes the full or maximal puncture. It was found that marginal coupling constants

are encoded by the positions of the punctures on the sphere. From this point of view,

one can consider compactifications of N M5-branes with more general configurations of
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punctures. The most fundamental one is the sphere with three full punctures, depicted

on the right hand side of figure 2. This theory, called T [AN−1], is isolated in that it has

no marginal coupling constants because three points on a sphere do not have moduli. It

has (at least) SU(N)3 flavor symmetry, because each full puncture carries an SU(N) flavor

symmetry, as shown in [2]. It arises in an infinitely strongly-coupled limit of a linear quiver

gauge theory, as a natural generalization of Argyres-Seiberg duality [3]. Furthermore, it

is the natural building block from which the four-dimensional superconformal field theory

corresponding to the compactification of N M5-branes on a higher-genus Riemann surface

can be constructed as a generalized quiver gauge theory. Its gravity dual was found in [4].

It is clearly important to study the properties of this theory further, and it will be

nicer to have another description of the same theory from which the different properties

can be understood easily. One problem is that this theory no longer has a realization as a

brane configuration in type IIA string theory. It is basically because the direction x6 has

only two ends, which can account at most two special punctures on the sphere. Instead, we

propose that configurations of intersecting D5-, NS5- and (1,1) 5-branes in type IIB string

theory give the five-dimensional version of T [AN−1], in the sense that compactification on

S1 realizes the theory T [AN−1]. We will see that each of the punctures corresponds to a

bunch of N D5-branes, of N NS5-branes, or of N (1,1) 5-branes.

The realization of the field theory through a web of 5-branes makes manifest the moduli

space, as happens with the more familiar type IIA construction [5, 6]. The Coulomb branch

corresponds to normalizable deformations of the web which do not change the shape at

infinity. The Higgs branch can be seen by terminating all semi-infinite 5-branes on suitable

7-branes: it then corresponds to moving the endpoints of 5-branes around, as was the case

in type IIA with D4-branes ending on D6-branes.

It was shown in [4] that there are more general punctures or defects one can insert on

the M5-brane worldvolume, naturally labeled by Young tableaux consisting of N boxes.

This kind of classification arises straightforwardly from the web construction, once 7-branes

have been introduced: we can group N parallel 5-branes into smaller bunches, composed by

ki 5-branes, and then end ki 5-branes on the i-th 7-brane. This leads to a classification in

terms of partitions of N , in fact labeled by Young tableaux with N boxes. Recall that D5-

branes terminate on D7-branes, NS5-branes on [0, 1] 7-branes, and (1, 1) 5-branes on [1, 1]

7-branes. Therefore the resulting system has mutually non-local 7-branes, which are known

to lead to enhanced symmetry groups when their combination is appropriate [7]. This last

observation will naturally lead us to propose 5-brane configurations which realize five-

dimensional theories with E6,7,8 flavor symmetry, originally discussed in [8]. Our proposal

is, as stated above, that these configurations are five-dimensional versions of the theories

in [2]. It then gives a uniform realization of the four-dimensional superconformal field

theories with E6,7,8 symmetry [9, 10] in the framework of [2]. In particular it provides a

new realization of the E7,8 theories using a quiver gauge theory consisting only of SU groups,

along the line of Argyres, Seiberg and Wittig [3, 11]. In order to study configurations with

general punctures, application of the s-rule [6] will be crucial. We will need a generalized

version of the s-rule studied in [12–14] in the context of string junctions, which we will

review in detail, and its “propagation” inside the 5-brane web.
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0 1 2 3 4 5 6 7 8 9

D5 − − − − − −

NS5 − − − − − −

(1, 1) 5-brane − − − − − angle

7-branes − − − − − − − −

Table 1. Configuration of suspended (p, q) 5-brane webs. To get a 4d theory, the direction x4

is compactified on a circle. The symbol − signifies that the brane extends in the corresponding

direction.

Finally, the web construction makes it clear that a theory with generic punctures can

arise as an effective theory by moving along the Higgs branch of the T [AN−1] theory. When

two 7-branes are aligned in such a way that the 5-branes ending on them overlap, there

can be Higgs branch directions corresponding to breaking the 5-branes on the 7-branes

and moving the extra pieces apart. By moving the extra pieces very far away, one is

left with a puncture with multiple 5-branes ending on the same 7-branes, thus realizing

generic punctures.

The paper is organized as follows: we start in section 2 by considering a junction of N

D5-, NS5-, and (1, 1) 5-branes, which we argue is the five-dimensional version of T [AN−1].

We study the flavor symmetry and the dimensions of Coulomb and Higgs branches. To

see the Higgs branch, we need to terminate the external 5-branes on appropriate 7-branes.

We proceed then in section 3 to study how we can use 7-branes to terminate 5-brane junc-

tions, realizing more general type of punctures. The s-rule governing the supersymmetric

configurations of these systems will also be formulated in terms of a dot diagram, that

we will describe. Several examples illustrating the generalized s-rule will be detailed in

section 4, which naturally leads to our identification of certain 5-brane configurations as

the five-dimensional theories with E6,7,8 flavor symmetry. In section 5, which might be

read separately, we provide further checks of this identification using the machinery in [2],

by showing that the SCFTs with E6,7,8 flavor symmetry arise in the strongly-coupled limit

of quiver gauge theories with SU gauge groups. We conclude with a short discussion in

section 6. In appendix A we write down the Seiberg-Witten curve for the theory on the

multi-junction. Finally in appendix B we review some aspects of the En theories.

2 N -junction and T [AN−1] theory

2.1 N-junction

We begin by summarizing the type IIB or F-theory configuration we will use in table 1.

There, the symbol − under the column labeled by a number i means that the brane

extends along the direction xi. The most basic object in the brane-web construction is the

junction between a D5-brane, an NS5-brane and a (1, 1) 5-brane [15], see figure 3. This

system is rigid and does not allow any deformation, apart from the center of mass motion.

Accordingly, it does not give rise to any 5d low energy dynamics apart from the decoupled

center of mass. We can consider a configuration, which we refer to as the N -junction, where
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Figure 3. Left: single junction of a D5, an NS5 and a (1, 1) 5-brane. Center: multi-junction of

three bunches of N = 3 5-branes — this realizes the E6 theory. Right: the dual toric diagram of

C3/ZN × ZN , with a particular triangulation.

N D5-branes, N NS5-branes and N (1, 1) 5-branes meet, see the diagram in the center of

figure 3. For a given 5-brane web, the dual diagram is formed by associating one vertex

to each face, both compact and non-compact, in the original brane web, and connecting

two vertices whenever the corresponding faces in the original diagram are adjacent, see

the rightmost diagram of figure 3. It is known that this procedure produces the toric

diagram of a non-compact Calabi-Yau threefold, and that M-theory compactified on this

threefold is dual to the original five-brane construction. Under this duality, the single

junction corresponds to the flat space C
3 whereas the multi-junction of N D5-, NS5- and

(1,1) 5-branes corresponds to the blow-up of the orbifold C
3/ZN ×ZN where ZN ×ZN acts

on (x, y, z) ∈ C
3 by

(x, y, z) → (αx, βy, γz). (2.1)

Here α, β, γ are N -th roots of unity such that αβγ = 1.

When compactified on S1, the web of 5-branes, or equivalently M-theory on the non-

compact Calabi-Yau, gives rise at low energy to a 4d field theory. The 5d vector multiplet

gives a 4d vector multiplet, and the real scalar pairs up with the Wilson line along S1 to

form a complex scalar. This is true for both dynamical and background vectors, therefore

parameters and moduli of the web end up in parameters and moduli of the 4d theory. The

main proposal of this paper is that the N -junction configuration compactified on S1 at

low energy gives rise to the T [AN−1] theory constructed in [2]. We devote the rest of this

section to perform various test of this proposal.

Let us first recall the salient properties of the T [AN−1] theory [2, 4]. It is a 4d N = 2

isolated SCFT, obtained by wrapping N M5-branes on a sphere with 3 full punctures,

each of which carries an SU(N) global symmetry. Therefore the flavor symmetry is at

least SU(N)3, with 3(N − 1) associated mass parameters. The complex dimension of the

Coulomb branch is

dimC MCoulomb =
(N − 1)(N − 2)

2
. (2.2)

The scaling dimensions of the operators parameterizing the Coulomb branch are 3, 4, . . . , N

and the multiplicity of the operators of dimension d is d − 2. The quaternionic dimension

of the Higgs branch can be easily found from the effective number nv and nh of vector-

and hypermultiplets calculated in [4], and is

dimH MHiggs = nh − nv =
3N2 − N − 2

2
. (2.3)
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These are the properties we wish to reproduce from the N -junction picture. First of

all notice that the N -junction has three copies of SU(N) global symmetry, each realized on

the worldvolume of N semi-infinite 5-branes extending in the different directions. In the

next section we will introduce 7-branes on which semi-infinite 5-branes terminate, without

changing the low-energy theory. Then the global symmetry is realized on the worldvolume

of the 7-branes.

2.2 Coulomb branch

Let us next count the dimension of the Coulomb branch, which corresponds to normalizable

deformations of the web inside the two-dimensional plane (x5, x6). Deformations of the web

are described by real scalars which are in 5d vector multiplets. These are background or

dynamical fields depending on the normalizability of the wave-functions. Practically it

means that a mode is background or dynamical depending on whether it changes the

boundary conditions at infinity. Each of the single junctions in the web contributes two

real degrees of freedom, and each of the internal 5-branes establishes one relation between

the positions of the junction points. We then need to subtract two rigid translations acting

on the system as a whole. Therefore

ndeformations = 2njunctions − ninternal lines − 2 . (2.4)

For the N -junction configuration,

njunctions = N2 , ninternal lines =
3

2
N(N − 1) , (2.5)

which means

ndeformations =
(N − 1)(N + 4)

2
, (2.6)

Each bunch of N semi-infinite 5-branes has N − 1 non-normalizable deformations which

break the SU(N) global symmetry factor and are in correspondence with its Cartan gen-

erators. In the toric diagram, these correspond to points on the edges. Then we find

dimC MCoulomb =
(N − 1)(N − 2)

2
, (2.7)

reproducing (2.2).

The dimension of the Coulomb branch can directly be determined as the number of

closed faces in the web diagram — this will be true even in the more general configurations

introduced in the next sections.

2.3 Higgs branch

In order to see the Higgs branch, which corresponds to local deformations as well, we

need to terminate the semi-infinite 5-branes on 7-branes at some finite distance. The same

procedure was adopted, for instance, in [8] to study some 5d conformal theories, or in [1]

(where D4-branes end on D6-branes) to study 4d gauge theories. A semi-infinite D5-brane

can end, without breaking any further supersymmetry, on an orthogonal spacetime filling

– 6 –
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D7-brane, and more generally a (p, q) 5-brane can end on a [p, q] 7-brane as obtained by

application of SL(2, Z)-duality of type IIB string theory. The configuration we adopt was

shown in table 1 and the 5-brane web is completely suspended between parallel 7-branes.

As analyzed in [6] in a T-dual setup, the low energy 5d dynamics on a 5-brane sus-

pended between a 5-brane and a 7-brane does not contain any vector multiplet. The motion

of the 7-brane in the direction of the 5-brane is not a parameter of the 5d theory, such

that the length of the 5-brane can be taken to infinity recovering the previous setup, or

kept finite. On the other hand the motion of the 7-brane orthogonal to the 5-brane is, as

before, a non-normalizable deformation.

Once all semi-infinite 5-branes end on 7-branes, the global symmetries can be seen as

explicitly realized on the 7-branes [7, 8]. Each of them has a U(1) gauge theory living on

its worldvolume. When 7-branes of various type can collapse to a point in the (x5, x6)-

plane, gauge symmetry enhancement will occur on their worldvolume, and states of the 5d

theory fall naturally under representations of this enhanced symmetry group. The simplest

case is when k 7-branes of the same type collapse to a point. In a duality frame this just

corresponds to k D7-branes at a point, showing SU(k) flavor symmetry.

The dimension of the Higgs branch is maximal when all parallel 5-branes are coincident,

that is when all mass deformations are switched off and the global symmetry is unbroken,

and we are at the origin of the Coulomb branch.1 In this case the central N -junction

can split into N separate simple junctions, free to move on the x7,8,9 plane. The compact

component along the (x5, x6)-plane of the gauge field on the 5-branes pairs up with the three

scalars encoding the x7,8,9 position to give a hyper-Kähler Higgs moduli space. Moreover

each bunch of N parallel 5-branes can fractionate on the 7-branes, in the same way as it

happens in type IIA [1]. After removing the decoupled center of mass motion we get the

dimension of the Higgs moduli space:

dimH MHiggs = N − 1 + 3

N−1
∑

i=1

i =
3N2 − N − 2

2
. (2.8)

Reassuringly, it agrees with the known value (2.3). Issues related to the s-rule will be

discussed in section 3. In section 4 we will discuss many specific examples.

2.4 Dualities and Seiberg-Witten curve

The web of 5-branes in type IIB string theory we consider here can be mapped to different

setups of string or M-theory by various dualities. For instance, consider a configuration

without 7-branes where all of them has been moved to infinity. Doing a T-duality along the

direction x4 after having compactified it, we get a system of D6-branes and KK monopoles

in type IIA. This can be further uplifted to M-theory, where everything becomes pure

geometry: a toric conical Calabi-Yau threefold singularity whose toric diagram is the dual

diagram to the 5-brane web. For the N -junction configuration, we have M-theory on

1Mass deformations reduce the Higgs branch dimension. Moreover along the Coulomb branch various

mixed Coulomb-Higgs branches originate, as in more familiar N = 2 theories, see for instance [16]. This

full structure of the moduli space could be studied as well.
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C
3/ZN × ZN . Our proposal was that at low energy this gives a 5d field theory, which

after further reduction to 4d flows to the T [AN−1] theory. The flavor symmetry SU(N)3

is then realized on the homology of the singularity, by M2-branes wrapping vanishing 2-

cycles. Webs of 5-branes which require mutually non-local 7-branes, of which we will see

many examples in section 4, are still expected to be mapped to pure geometry in M-theory,

however not to a toric geometry.

Another chain of dualities which we use is the following. Consider the 5d theory

compactified on a circle along x4. Type IIB string theory on a circle is dual to M-theory on

a torus. The web of 5-branes is then mapped to a single M5-brane wrapping a holomorphic

curve on C
∗ × C

∗. We can then send the IIB circle to zero to obtain the 4d theory. The

M5-brane now wraps a curve on C × C
∗. This chain of dualities is closely related to the

one described above: the fibration of A1 singularity over the curve thus obtained describes

the type IIB mirror of the toric Calabi-Yau singularity in the type IIA description. We

will use these well-developed techniques to find the SW curve of the N -junction theory

compactified on S1 in appendix A, and thus confirm that it indeed gives the SW curve of

the T [AN−1] theory found in [2] in the suitable limit.

3 General punctures and the s-rule

3.1 Classification of punctures

According to [2, 4] when N > 2 there are more than one possible kind of punctures in

the AN−1 (2, 0) theory. Wrapping N M5-branes on the sphere with 3 generic punctures

gives rise to an SCFT, up to some restrictions on the type of punctures [2, 4]. Since there

are no marginal parameters associated to a configuration of three points on a sphere, it

is an isolated SCFT, but with a more general global symmetry given by the type of the

punctures. The possible type of punctures in the AN−1 (2, 0) theory are classified by Young

tableaux with N boxes. We will see below that such classification naturally arises in our

construction. For that purpose, it is sufficient to consider a bunch of N semi-infinite 5-

branes extending in the same direction, because each of the three bunches corresponds to

each of the punctures.

Generically, instead of ending each 5-brane on a different 7-brane, we can group some

5-branes and end them together on the same 7-brane,2 which requires the 5-branes to

overlap, and reduces the number of mass deformations according to the fact that the flavor

symmetry carried by the bunch gets reduced. Given a bunch of N 5-branes, we can group

them according to a partition {ki} of N with
∑

i ki = N , and end ki of them on the i-th 7-

brane. Thus the possible kind of punctures are naturally classified by partitions. Partitions

can then be represented by Young tableaux, reproducing the classification in [2]. A similar

construction involving D3- and D5-branes was employed in [17] to understand the possible

boundary conditions of N = 4 super Yang-Mills theory.

A set of n bunches made of the same number k of 5-branes carries a U(n) flavor group.

However a diagonal U(1) for the whole set of N 5-branes is not realized on the low energy

2We thank D. Gaiotto for suggesting this possibility to us.
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theory [8]. Then the flavor symmetry of the puncture is S
(
∏

k U(nk)
)

, where nk is the

number of bunches of k 5-branes. This agrees with the flavor symmetry associated to a

puncture, found in [2]. The full puncture corresponds to the partition3 {1N}.

It is easy to count the dimension of the Higgs branch for an arbitrary choice of 3

punctures. The internal web always contributes N − 1 (decoupling the center of mass).

Each puncture contributes according to its defining partition {ki}i=1...J . Then the counting

of legs gives for the Higgs branch at the puncture Mp
H :

dimH Mp
H =

J
∑

i=1

(J − i)ki = NJ −
J
∑

i=1

i ki . (3.1)

It is easy to check that for the partition {1N} we get one of the three terms in (2.8).

Many examples and comparisons with known results are in section 4. In order to count the

dimension of the Coulomb branch, we need a precise understanding of the s-rule, to which

we devote the next subsection.

It is worth stressing how this construction makes it clear that a theory with punctures

of a lower type is effectively embedded into the Higgs branch of a theory with only punctures

of the maximal type, i.e. obtained using the maximal number of 7-branes. We saw that

when two or more 7-branes of a puncture are aligned in such a way that the parallel 5-

branes ending on them overlap, we can break the 5-branes on the 7-branes and move the cut

pieces around, to realize Higgs branches. When the extra pieces are taken very far away,

i.e. when one gives large VEV’s and goes to the Higgs branch, they effectively decouple

from the rest of the web, and some 7-branes can be left effectively disconnected. One is left

with a puncture composed of a smaller number of 7-branes, and multiple 5-branes ending

on the same 7-branes, that is a more generic puncture. This shows that the effective theory

along the Higgs branch under consideration is the SCFT related to the puncture of “lower

type”, plus some decoupled modes describing the motion of the extra 5-brane pieces.

3.2 Generalized s-rule

In general the Coulomb branch gets reduced by lowering the degree of the punctures. This

is due to the s-rule, which was originally introduced in [6] in the construction of 3d gauge

theories in order to correctly account for the dimension of mixed Coulomb-Higgs branches

when D3-branes end on D5’s and NS5’s, and later studied in e.g. [18–21].

The s-rule states that there are no supersymmetric states if more than one D3-brane

is suspended between a given pair of D5 and NS5. The same rule is necessary to correctly

describe the dynamics of D4-branes between D6’s and NS5’s, see for instance [5]. In simple

cases it would be enough for us to use a T-dual version of it, that is, we cannot have more

than one D5-brane between a D7 and an NS5. Any SL(2, Z)-dual version of this statement is

also an s-rule. However we need a version of the s-rule which applies to general intersections

of (p, q) 5-branes suspended between different numbers of 7-branes. This question was

answered in [12–14] in the context of string junctions in the presence of 7-branes, which

3Here and in the following, with the notation {Ab} we mean the partition {A, . . . , A
| {z }

b times

}.
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we can directly borrow because the supersymmetry conditions on space-filling 5-brane and

string junctions are essentially the same. We will also need to understand how the s-rule

propagates inside complicated 5-brane webs. Both issues, carefully described below, can

be understood using the brane creation effect [6] when a 7-brane crosses a 5-brane, and are

explained in section 3.3.

For the sake of clarity, we prefer to state the rule, leaving any derivation to the next

subsection. The s-rule is better visualized on the diagram dual to the web: we call it a

dot diagram instead of a toric diagram, since in the general case it does not represent a

toric geometry. Given a web of 5-branes which do not require 7-branes, the dot diagram

is constructed on a square lattice by associating a dot to each face (even non-compact) in

the web, and a line connecting two dots whenever the two faces are adjacent. The lines in

the dot diagram must be orthogonal to the 5-branes in the web. It is always possible to

go back and forth from the web diagram to the dot diagram, by exchanging 5-branes with

orthogonal lines and vice versa. Notice that the web diagram encodes the parameters and

moduli of the 5d field theory, whilst all this information is lost in the dot diagram. The

boundary conditions in the web determine the external lines in the dot diagram, which

form a convex polygon, whereas the details of the web determine a tessellation of such

polygon. In this particular case, the dot diagram is really a toric diagram. Moreover it

is completely triangulated by minimal triangles of area 1/2; this is because in the web all

junctions are trivalent.

In the presence of 7-branes, we proceed as follows.

• In the dot diagram, we can represent the fact that n parallel 5-branes end on the

same 7-brane by separating n − 1 consecutive segments by a white dot, as opposed

to a black one. These n − 1 segments act as one edge of the minimal polygons,

defined momentarily. We say that these segments bear an s-rule, in the sense that

supersymmetric configurations are now constrained. The boundary conditions in

the web determine a convex polygon, made of the external lines in the dot diagram.

Consecutive segments can be separated by white or black dots, depending on whether

the corresponding parallel 5-branes end on the same 7-brane or not, respectively; 5-

branes which do not end on the same 7-brane turn into segments separated by black

dots in the dot diagram.

• Then we proceed to tessellate the dot diagram with minimal polygons. Consecutive

segments separated by a white dot act as a single edge of a minimal polygon. A

minimal polygon can be either a triangle or a trapezium, and it must satisfy an extra

constraint:

– If it is a triangle, the three edges must be composed by the same number, say

n, of collinear lines.

– If it is a trapezium, there must be two integers n1 < n2 such that the four edges

are made of n2, n1, n2 − n1, n1 segments; furthermore the edges with n2 and

n2 − n1 segments must be parallel.
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Figure 4. Upper line: examples of minimal polygons with the dual 5-brane web. White dots

separate consecutive segments which act as a single edge. They represent s-rules, and come from

either multiple 5-branes ending on the same 7-brane, or propagation of the s-rule inside. In the

web, some 5-branes jump over another 5-brane, meaning that they cross it without ending. Lower

line: two examples of different allowed tessellations of a 2 × 2 square, given the same constraints

on the external edges. The webs of five-branes are related by a “flop transition”.

• In general the tessellation of the dot diagram leads to internal consecutive segments

which are separated by white dots, and they again act as a single edge of minimal

polygons. This is a propagation of the s-rule inside the dot diagram, and has to be

respected.

If no consistent tessellation exists, it means that the web has no SUSY vacuum and some

7-branes have to be added. Notice that for boundary conditions such that each 5-brane

ends on its own 7-brane, the prescription gives back a complete triangulation of the dot

diagram in terms of area 1/2 triangles and only black dots.

Once a consistent tessellation of the dot diagram has been found, we can go back to the

web diagram mapping lines to orthogonal 5-branes. Area 1/2 triangles are mapped to the

usual junction of three 5-branes. The other minimal polygons are mapped to intersections

of 5-branes in which, because of the s-rule, a 5-brane cannot terminate on another one and

has to cross it. We say that the 5-brane jumps over the other one, even though there is

no real displacement. In figure 4 there are some examples of minimal polygons with the

dual web. For instance, a triangle of edge n is mapped to the intersection of three bunches

of n parallel 5-branes in which, because of the s-rule, only n trivalent junctions can occur.

A trapezium of edges n2 and n1 is mapped to the intersection of four bunches of n2, n1,

n2 −n1, n1 5-branes in which only n1 junctions can occur, and n2 −n1 5-branes simply go

straight crossing everything.

Let us stress that when multiple parallel 5-branes end on the same 7-brane, they have

to be coincident. As we saw this is represented by white dots in the dot diagram. When

the s-rule propagates and there are white dots inside, the corresponding 5-branes have to

be coincident as well, simply because of the geometric constraint. Notice that tessellations

respecting the s-rule are not unique, just as they are not in the unconstrained case: different

tessellations are related by changing parameters or moving along the Coulomb branch. One

can finally check that this prescription agrees with the usual s-rule when applicable.
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When a 5-brane cannot end on another one and therefore just crosses it, it can happen

that a face in the 5-brane web gets frozen and does no longer have a modulus related to

its size. This visually shows the effect of the Higgs mechanism: it gives mass to scalars

in vector multiplets which parametrize the size of internal faces, and so effectively freezes

some moduli. Indeed it can be checked then open faces, as the result of 5-branes jumping

over other ones, geometrically do not have moduli related to their size: they are completely

fixed by the structure of the web. Only (and all) closed faces have one modulus controlling

their size. The dimension of the Coulomb branch is then easily counted from the web of

5-branes: it is the number of closed internal faces. We will see many examples in the next

section. Example of consistent tessellations can be found in figures 10, 12, 14, 15, 16.

3.3 Derivation of the generalized s-rule

Let us now derive the generalized s-rule stated in the previous subsection. Mostly the same

rule was formulated by [12–14] in the case of the web of (p, q)-strings, and we shall soon

see that the same rule applies to the web of (p, q) 5-branes. We will also emphasize the

propagation of the s-rule which was not clearly mentioned in the previous literature.

We follow the derivation given by [14], which used the brane creation/annihilation

mechanism of [6]. Let us start by reviewing how the brane creation mechanism works

when a 7-brane crosses a 5-brane. A [p, q] 7-brane creates an SL(2, Z) monodromy Xp,q for

the axiodilaton τ given by

Xp,q =

(

a b

c d

)

=

(

1 + pq −p2

q2 1 − pq

)

(3.2)

which, following the conventions of [7], is measured counterclockwise. We represent the

monodromy as a cut originating from the 7-brane. Then τ is transformed as

τ →
aτ + b

cτ + d
(3.3)

when we cross the cut. Accordingly, when a 5-brane crosses a branch cut, it is generically

transformed by the monodromy and it changes its slope in the diagrams we show. This is

a schematic way to depict the correct situation in the true curved geometry, in which the

5-brane just follows a geodesic. In all our web constructions we choose the cut in such a

way that they do not intersect the web. Consider first the usual junction between a D5,

an NS5 and a (1, 1) 5-brane, and suppose the D5 ends on a D7. Let us take the cut to

run away without crossing the 5-branes. We can then move the D7 to the other side of the

NS5: when they cross the D5 disappears by the brane creation/annihilation mechanism,

however the NS5 now crosses the branch cut. We are left with an NS5 which becomes

a (1, 1) 5-brane when crossing the cut. The process is shown in figure 5. It is easy to

understand the s-rule in its standard formulation: in a SUSY configuration, no more than

one D5-brane can stretch between a D7 and an NS5. See figure 6. Suppose we cook up such

forbidden configuration. When moving the D7 to the other side of the NS5, all but one

D5’s remain as 5-branes stretched between the D7 and the NS5. Charge conservation at

the junction requires them to be anti-D5’s, showing that SUSY must be broken; moreover
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Figure 5. brane creation mechanism for 5-branes. On the left an NS5 becomes a (1, 1) 5-brane

because it meets a D5, which comes from a D7-brane shown by a ⊗ sign. The dotted line shows

the cut associated to the monodromy. On the right the D5 has disappeared because of the brane

creation/annihilation mechanism, but the boundary conditions are the same as before because of

the cut, along which τ → τ − 1.

Figure 6. Left: non-SUSY configuration, which violates the s-rule. SUSY breaking is apparent

in the second figures, where an anti-D5 is present. The polygon does not respect the s-rule either.

Right: SUSY configuration. Only one D5 ends on the NS5. The polygon is acceptable. The 5-brane

which cannot end on the other one and therefore just crosses it was shown as if it jumps over the

other one.

Figure 7. propagation of the s-rule. Left: non-SUSY configuration. Even though the s-rule is

respected where the D5’s meet the NS5’s, it is violated where both (1, 1) 5-branes meet the same

5-brane. The propagation of the s-rule is manifest in the second figure. The polygon violates the

s-rule as well. Right: a SUSY configuration, with the corresponding polygon.

tensions do not balance anymore. On the other hand, if only one D5 ends on the NS5

while all other ones cross without terminating, the configuration is still supersymmetric

after pulling the D7 to the other side.

In figure 6 we also showed the dual dot diagrams, whose precise construction has been

given above. It is easy to check that dot diagrams corresponding to non-supersymmetric

configurations, do not respect the s-rule prescription we gave. The generalization to more

involved configurations is straightforward. In particular let us show that the s-rule propa-

gates, see figure 7. Consider a configuration where two D5-branes, ending on the same D7,

meet two NS5-branes, ending on the same [0, 1] 7-brane. Each D5 can end on a different

NS5, resulting in two (1, 1) 5-branes. This is as in the previous example. The novelty is

that the two (1, 1) 5-branes still carry a constraint: they behave as if they came from the

same [1, 1] 7-brane — in particular they cannot end on the same 5-brane.
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In order to see why, let us pull the D7 to the other side of the NS5’s. We are left with

two NS5-branes, ending on the same [0, 1] 7-brane, which become two (1, 1) 5-branes when

crossing the cut. Now the usual s-rule applies, in a different S-dual frame. Namely, there

cannot be two NS5-branes stretching between a D5 and a [0, 1] 7-brane. In figure 7 we also

showed the dual dot diagrams with tessellation, one allowed and one not. Generalizing

these examples, one gets the set of rules we stated in the previous subsection.

4 Examples

In this section we consider many examples of increasing complexity, where all rules pre-

viously stated will become clear. Comparisons with known field theories will be made

when possible.

4.1 N = 2

The 4d low energy theory on the N = 2 multi-junction has SU(2)3 global symmetry, three

mass deformations corresponding to the Cartan generators of the flavor group, dimC MC =

0 and dimH MH = 4. This is the theory T [A1]; in fact, it is given by 8 free chiral superfields

Qijk, where each index is in the 2 of one SU(2).

Even though trivial, this system allows us to perform a nice check of the s-rule. The

superpotential for general mass deformations is

W = QijkQlmn(m1δ
ilǫjmǫkn + m2ǫ

ilδjmǫkn + m3ǫ
ilǫjmδkn) (4.1)

where mi is the mass parameter associated to the i-th SU(2) flavor symmetry. The masses

of the hypermultiplets are then ±m1 ±m2 ±m3. The dimension of the Higgs branch is the

number of the massless hypermultiplets. Let us reproduce this from the s-rule:

• If the three masses are generically non-zero and the flavor group is broken to U(1)3

there is no Higgs branch. If the masses satisfy m1 = ±m2±m3 there is a single Higgs

branch direction. In the web of 5-branes this corresponds to aligning the 7-branes

such that the multi-junction can split in two simple junctions, see figure 8.

• If one mass is zero and the other two generic, there is no Higgs branch. In the web of

5-branes this is guaranteed by the s-rule, see figure 8. If the two masses further satisfy

m2 = ±m3 there is a two-dimensional Higgs branch, corresponding to removing one

piece of 5-brane and splitting the remaining web in two simple junctions.

• If all masses are zero, all four Higgs branch directions open up.

4.2 N = 3 and the E6 theory

The N = 3 multi-junction was already shown in figure 3. It has SU(3)3 global symmetry,

6 mass deformations and then no marginal couplings, dimC MC = 1 and dimH MH = 11.

It has already been noticed in [2] that for N = 3 the visible SU(3)3 global symmetry is

actually enhanced to E6. We see here that even the Higgs branch dimension works out
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a) generic b) m1 = ±m2 ± m3 c) m1 = 0, m2,3 generic d) m1 = 0, m2 = ±m3

Figure 8. Higgs branches of the N = 2 multi-junction for various values of the mass parameters.

From left to right. a) Generic masses and no Higgs branch. b) m1 = ±m2 ± m3 and one Higgs

direction corresponding to splitting the multi-junction in two simple junctions. c) m1 = 0 and

no Higgs branch due to the s-rule. The piece of D5 on the left cannot be removed. d) m1 = 0

and m2 = ±m3, now one D5 can jump the NS5, the s-rule is satisfied and the piece of D5 can be

removed, as well as the junction can be split.

Figure 9. Extended Dynkin diagram of E6 showing the SU(3)3 subgroup.

correctly: indeed, the Higgs branch is the centered one-instanton moduli space of E6, whose

quaternionic dimension is 11. Some properties of the exceptional SCFT’s are collected in

appendix B. In fact, C
3/ZN × ZN is described by the equation xyz = tN in C

4. For

N = 3 it is an homogeneous cubic equation, and thus a complex cone over its projection.

Its projection gives a cubic in P
3, which is the del Pezzo surface dP6 at a particular point

of its complex structure moduli space where it is toric. Its homology realizes the lattice of

E6, and thus M-theory on the CY3 cone over dP6 has E6 global symmetry in 5d.

Another way to understand the symmetry enhancement is to study the monodromy of

the system of 7-branes. Let us recall that the SL(2, Z) monodromy around a [p, q] 7-brane

is given by (3.2). Let us denote the monodromy matrices of the 7-branes we use as

P = X1,0 , Q = X0,1 , R = X1,1 . (4.2)

In the literature, the basis is usually given instead by

A = X1,0 , B = X1,−1 , C = X1,1 (4.3)

so that a single O7-plane splits into CB non-perturbatively. The combined monodromy

of our system is then R3Q3P 3, which is conjugate to (CB)2A5, known as the affine E6

configuration.4 It is known that eight out of nine 7-branes can be collapsed together,

making the F-theory 7-brane of type E6. Our configuration shows instead that we can

4Following the conventions of [7], the 7-branes are an ordered system according to the order we meet

their cuts circling counterclockwise. Obviously, the corresponding monodromies have to be multiplied in

the opposite order. Here and in the following we always report the monodromy matrices.
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Figure 10. web of 5-branes for the E7 theory. On the left dot diagram of C3/Z4 × Z4 where the

tessellation realizes, on the external edges, the partitions {1, 1, 1, 1} and {2, 2}. White dots on the

edges separate collinear lines that have to be thought of as a single line. In red the only closed dual

polygon, which is a closed face in the web. On the right, dual web with jumps corresponding to the

tessellation. The visible symmetry is SU(4)2 × SU(2). The only closed face is well visible.

Figure 11. extended Dynkin diagram of E7 showing the SU(2) × SU(4)2 subgroup.

collapse three bunches of three 7-branes, displaying the SU(3)3 subgroup of E6, see figure 9.

More arguments supporting this identification will be presented in section 5.

We can realize the other puncture, represented by the partition {1, 2} and giving rise

to U(1) flavor symmetry, from the {1, 1, 1} puncture by moving away 2 pieces of 5-brane

along the Higgs branch. Performing this operation on one of the three punctures, we get

a theory with SU(3)2 × U(1) symmetry, dimC MC = 0 and dimH MH = 9. The Coulomb

branch is lifted by the s-rule. This theory corresponds to 9 free hypermultiplets Qij , each

index being in the 3 of one SU(3).

4.3 N = 4 and the E7 theory

The N = 4 multi-junction has SU(4)3 global symmetry, 9 mass deformations, dimC MC = 3

and dimH MH = 21. This is the theory T [A3]. It is particularly interesting to realize the

SU(4)2×SU(2) theory, using punctures of partition {14} and {22}. It has dimC MC = 1 and

dimH MH = 17, see figure 10 for its 5-brane web and application of the s-rule. The rank-7

global symmetry is believed to enhance to E7. Indeed, the Higgs branch has the correct

dimension as the one-instanton moduli space of E7. Let us study the monodromy as we did

for E6. The total monodromy is R2Q4P 4, which is conjugate to (CB)2A6 that is known

as the affine E7 configuration of the 7-brane. Nine out of ten 7-branes can be collapsed to

one point, making an F-theory 7-brane of type E7. In our description we instead grouped

four, four and two 7-branes together, showing an SU(4)2 × SU(2) subgroup, see figure 11.

Notice that the dual geometry we have to compactify M-theory on is non-toric, because we

cannot remove the 7-branes without changing the boundary conditions. In fact the 7-th

del Pezzo does not have toric points in its complex structure moduli space. Again, more
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Figure 12. web of 5-branes representing the E8 theory. On the left dot diagram of C3/Z6×Z6 where

the tessellation realizes the partitions {16}, {23} and {32}. In red the only closed dual polygon.

On the right, dual web with jumps corresponding to the tessellation. The visible symmetry is

SU(6) × SU(3) × SU(2). The only closed face is well visible.

Figure 13. extended Dynkin diagram of E8, showing the SU(2) × SU(3) × SU(6) subgroup.

support for this identification is given in section 5.

4.4 N = 6 and the E8 theory

The N = 6 multi-junction has SU(6)3 global symmetry, dimC MC = 10 and dimH MH =

50. This is the theory T [A5].

Note that E8 ⊃ SU(6) × SU(3) × SU(2). Inspection of partitions shows that {23}

realizes SU(3) and {32} realizes SU(2). Thus one suspects that the theory T [A5] contains

the E8 theory in its Higgs branch, specified by the three partitions {23}, {32} and {16}.

The Coulomb and Higgs branch dimensions can be found from the description as the web

of 5-branes, and are dimC MC = 1 and dimH MH = 29, see figure 12. These numbers

match those of the E8 theory.

Let us study the monodromy produced by the 7-branes. This is now R2Q3P 6, which

is conjugate to (CB)2A7 known as the affine E8 configuration. It is known that ten out

of eleven 7-branes can be collapsed to a point, giving us an F-theory 7-brane of type E8.

Instead in our description an SU(2) × SU(3) × SU(6) flavor symmetry is manifest, see

figure 13.

4.5 Higher-rank En theories

There are higher-rank versions of the theories we saw above which have E6,7,8 flavor sym-

metry, and whose properties are summarized in appendix B. We can construct all these

theories with the multi-junctions. To get the rank-N E6 theory, we start from T [A3N−1],

and move on the Higgs branch such that N 5-branes end on the same 7-brane on each side
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Figure 14. the rank N E6 theory, in the example rank = 2. On the left: dot diagram with three

{N3} partitions on the external edges, tessellated respecting the s-rule. In red the two polygons

which become closed faces in the web of 5-branes. On the right: dual web of 5-branes. The two

concentric closed faces are well visible.

of the multi-junction; therefore three 7-branes on each edge are needed. The dimension of

the Higgs branch is

dimH MH = 3 · 3N + 3N − 1 = 12N − 1 . (4.4)

We can work out the web of 5-branes that respects the s-rule and count the dimension of

the Coulomb branch: dimC MC = N . The web of 5-branes turns out to be, due to the

jumps, a superposition of N copies of the E6 web, see figure 14.

In the same way, we can get the rank N E7 and E8 theories. More generally, given some

set of punctures in a T [Ak−1] theory, we can construct a new theory with the same global

symmetry but larger Coulomb branch starting with the T [ANk−1] theory and substituting

each 5-brane with N 5-branes ending on the same 7-brane. More precisely, the number and

type of 7-branes in the new theory is the same as in the original one, such that the flavor

symmetry is the same. However whenever m 5-branes end on the same 7-brane in the

original theory, Nm 5-branes end on it in the new theory. The total number of external

5-branes was 3k in the original theory, and is 3Nk in the new one. The Higgs branch

dimension is easily determined:

dimH Mnew
H + 1 = N

(

dimH Mold
H + 1

)

. (4.5)

The Coulomb branch dimension has to be worked out by tessellating the dot diagram

according to the s-rule, and then counting the number of closed faces in the dual web of

5-branes. It turns out that when the dimension is 1 in the original theory, the dimension

is N in the new theory.

The rank-N E7 theory is embedded in T [A4N−1]; the punctures are two {N4} and one

{2N, 2N}. The Coulomb branch has dimension N , see figure 15, and the Higgs branch

dimension 18N − 1. The rank-N E8 theory is embedded in T [A6N−1]. the punctures are

one {N6}, one {2N, 2N, 2N} and one {3N, 3N}. The Coulomb branch has dimension N ,

see figure 16, and the Higgs branch dimension 30N − 1.
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Figure 15. the rank N E7 theory, in the example rank = 2. On the left: dot diagram with

partitions {N4} and {2N, 2N} on the external edges. On the right: dual web of 5-branes. The two

concentric closed faces are emphasized in blue.

Figure 16. the rank N E8 theory, in the example rank = 2. On the left: dot diagram with

partitions {N6}, {2N, 2N, 2N} and {3N, 3N} on the external edges. On the right: dual web of

5-branes. The two concentric closed faces are emphasized in blue.

The process can be applied to any multi-junction configuration with three generic

punctures. In particular it can be applied to the basic k-junction itself, that corresponds

to the T [Ak−1] SCFT, to obtain a higher rank version of it. The dimensions of the moduli

space are

dimMH =
N(3k2 − k)

2
− 1

dimMC =
k
[

(k − 9)(N − 1) + (k − 3)N2
]

+ 20N − 18

2
for k > 2 .

(4.6)

The Higgs branch dimension is directly obtained from the general formula (4.5) and the di-
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En N punctures manifest flavor symmetry

E6 3 {13} {13} {13} SU(3)3

E7 4 {14} {14} {22} SU(4)2 × SU(2)

E8 6 {16} {23} {32} SU(6) × SU(3) × SU(2)

Table 2. SCFTs with E6,7,8 symmetry via compactifications of the 6d AN−1 theory. For each En,

the number N of the M5-branes, the types of the punctures, and the manifest flavor symmetry are

listed.

mension for the T [Ak−1] theory (2.8). The Coulomb branch dimension has to be worked out

from the dot diagram and the web of 5-branes. We do not know an F-theory construction

for these theories.

5 S-dualities and theories with E6,7,8 flavor symmetry

In the previous sections, we found that the 4d SCFTs with E6,7,8 flavor symmetry originally

found by Minahan and Nemeschansky can be constructed by means of 5-brane junctions

compactified on S1. Equivalently, they correspond to compactifications of the 6d AN−1

theory on a sphere with three specific punctures, see table 2.

In this section we perform further checks of our proposal using the formalism by

Gaiotto [2].

5.1 Formalism

Let us start by briefly recalling the formalism. Consider N = 2 superconformal linear

quiver gauge theories with a chain of SU groups

SU(d1) × SU(d2) × · · · × SU(dn−1) × SU(dn) , (5.1)

a bifundamental hypermultiplet between each pair of consecutive gauge groups SU(da) ×

SU(da+1), and ka extra fundamental hypermultiplets for SU(da). We require ka = 2da −

da−1−da+1 to make every gauge coupling marginal, where we defined d0 = dn−1 = 0. Since

ka is non-negative, we have

d1 < d2 < · · · < dl = · · · = dr > dr+1 > · · · > dn . (5.2)

We denote N = dl = · · · = dr; we refer to the parts to the right of dr and to the left of dl as

two tails of this superconformal quiver. Requirement that ka ≥ 0 means that da − da+1 is

monotonically non-decreasing for a > r; thus we can associate naturally a Young tableau

to the tail by requiring that it has a row of width da − da+1 for each a ≥ r. Therefore we

can naturally label a puncture by a Young tableau.

The Seiberg-Witten curves for these quivers were originally found in [1]. It was then

shown in [2] that they can be realized as a subspace of the total bundle T ∗Σ of holomorphic

differentials on a Riemann surface Σ, given by the equation

0 = xN + xN−2φ2 + xN−3φ3 + · · · + φN , (5.3)
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where x is a holomorphic differential on the Riemann surface Σ which parameterizes the

fiber direction, and φd is a degree-d differential with poles at the punctures, encoding

VEV’s of Coulomb branch operators of dimension d. We call this set of a Riemann surface

Σ and punctures marked by Young tableaux the G-curve of the system, to distinguish it

from the Seiberg-Witten curve. One finds that, for the general quivers (5.1), one has n + 1

punctures of the same type, which we call ‘simple punctures’ and denote by •, and two

extra punctures labeled by Young tableaux which encode the information on the tails.

At a simple puncture φd is allowed to have a simple pole. At a more general puncture,

φd is allowed to have a pole of higher order. We denote by pd the order of the pole

which φd is allowed to have at the puncture; the method to obtain pd from the Young

tableau was detailed in [2]. At a given puncture specified by the partition {ki} and the

corresponding Young tableau, the orders pd of the allowed poles of the degree-d differentials

φd are determined as follows. The Young tableau has columns of height kJ ≥ · · · ≥ k1,

aligned at the bottom. We order the N boxes from left to right and then from bottom up,

starting from the bottom left corner. Then pi = i − h(i), where h(i) is the height of the

i-th box, and the bottom row has height 1. The number of the Coulomb branch operators

of dimension d is then given by the dimension of the space of degree-d differentials with

the prescribed singularities. The formula is

# of operators of dim. d =
∑

punctures

(pd at the puncture) − (2d − 1) . (5.4)

The marginal couplings of the theory are encoded in the shape of the punctured Rie-

mann surface Σ. For example, by studying the quivers of the form (5.1) we can show that

a sphere containing N − 1 simple punctures splits off and leaves a puncture labeled by

the tableau with one row of N boxes, when the coupling of the SU(N − 1) group inside a

superconformal tail with the gauge groups

SU(N − 1) × SU(N − 2) × · · · × SU(2) (5.5)

becomes weak. Now, this splitting of N − 1 simple punctures can also occur in the very

strongly-coupled regime. Following [2, 3] we identify this situation as having a weakly-

coupled S-dual description, with the superconformal tail of the form above arising non-

perturbatively.

5.2 Rank-1 En theories

The way to obtain the rank-1 E6 theory as a limit of a field theory with Lagrangian was

first obtained in [3]; we follow the presentation in [2]. The construction starts from the

quiver shown in the first line of figure 17, whose G-curve is also shown there. It is an SU(3)

gauge theory with six hypermultiplets in the fundamental representation. The limit where

the coupling constant of SU(3) is infinitely strong corresponds to the degeneration of the

G-curve such that two simple punctures of type • come together and develop a neck. A

dual weakly-coupled SU(2) gauge group with one flavor appear. In the zero coupling limit

of this new SU(2) gauge group, the neck pinches off and produce another puncture {13}.
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⇓ ⇓

Figure 17. Construction of the rank-1 E6 theory. A circle or a box with a number n stands for a

SU(n) gauge group or flavor symmetry, respectively. The line connecting two objects stands for a

bifundamental hypermultiplet charged under two groups. The symbol ⊃ between a flavor symmetry

and a gauge symmetry signifies that the gauge fields coupled to the subgroup of the flavor symmetry

specified. The triangle with three SU(3) flavor symmetries is the Minahan-Nemeschansky’s E6

SCFT. The G-curve is shown on the right.

⇓ ⇓

Figure 18. Construction of the rank-1 E7 theory. The triangle with two SU(4) and one SU(2)

flavor symmetries represents the Minahan-Nemeschansky’s E7 SCFT.

We end up with a theory whose G-curve is a sphere with three punctures of type {13}.

On the one hand, in the original description as an SU(3) gauge theory with six flavors, it

was manifest that SU(3)2 enhances to SU(6). On the other hand, in the description with

the G-curve, it is manifest that the three SU(3) flavor symmetries are on the same footing;

therefore any pair of two out of the three SU(3) groups should enhance to SU(6), which is

possible only if this theory has E6 flavor symmetry.5

The E7 theory was found in the infinitely strongly-coupled limit of a USp(4) gauge

theory with six fundamental hypermultiplets in [3], which was also directly realized in the

quiver language in [2]. Another realization was recently found in [22]. Here instead, we

present a method to construct it using a quiver consisting solely of SU groups. We start

from the quiver shown in the first line of figure 18. The gauge group is SU(4)×SU(2) with

the bifundamental hypermultiplets charged under the two SU factors, and there are in

addition six fundamental hypermultiplets for the node SU(4). Its G-curve has three simple

punctures, one puncture {14} and one {22}. We can go to a limit where a sphere with

5The authors thank Davide Gaiotto for explaining this argument of the enhancement to E6.
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⇓ ⇓

Figure 19. Construction of the rank-1 E8 theory. The triangle with one SU(6), one SU(3) and

one SU(2) flavor symmetries stands for the Minahan-Nemeschansky’s E8 SCFT.

three simple punctures splits. A dual superconformal tail with gauge groups SU(3)×SU(2)

appears. After the neck is pinched off, we have a theory whose G-curve is a sphere with

one puncture of type {22} and two punctures of type {14}. This description shows the

flavor symmetry SU(2) × SU(4)2. In the original description, it is clear that SU(2) ×

SU(4) enhances to SU(6). In the description using the G-curve, the two SU(4) cannot be

distinguished. This is only possible when the total flavor symmetry enhances to E7.

The rank-1 E8 theory was found in the infinitely strongly-coupled limit of several kinds

of Lagrangian field theories in [11]; the realization we present here does not seem to be

directly related to the cases listed there. We start from the quiver shown in the first line

of figure 19. The original quiver has the gauge group

SU(3) × SU(6) × SU(4) × SU(2) (5.6)

with bifundamental hypermultiplets between the consecutive SU factors; one has in addi-

tion five fundamental hypermultiplets for SU(6). Its G-curve has five simple punctures,

one puncture {23} and one {32}. We can go to a limit where a sphere with five simple

punctures splits off. A dual superconformal tail with gauge groups

SU(5) × SU(4) × SU(3) × SU(2) (5.7)

appears. We tune the gauge coupling of the SU(5) group to zero, leaving a theory whose

G-curve is a sphere with one puncture of type {16}, one of type {23} and another of

type {32}. This description shows the flavor symmetry SU(2) × SU(3) × SU(6). In the

original description, it is clear that SU(3)×SU(2) enhances to SU(5). This SU(5) does not

commute with the SU(6) associated to the puncture {16}, because if it did, the generalized

quiver drawn in the second line of figure 19 would have SU(5) × U(1)5 symmetry while

the original quiver clearly has only SU(5) × U(1)4. The only possibility is that SU(5) and

SU(6) combine to form E8 (we refer the reader to tables 14 and 15 in [23]).

Indeed, the structure of the Coulomb branch indicates that this is the E8 theory of

Minahan and Nemeschansky. It can be easily found, using the formula (5.4), that the

theory whose G-curve has three punctures of type {16}, {23}, {32} has only one Coulomb

branch operator, whose dimension is 6. This agrees with the known fact of the E8 theory.

– 23 –



J
H
E
P
0
9
(
2
0
0
9
)
0
5
2

Figure 20. a linear quiver whose G-curve has a tableau {N3}. Here N = 3.

One can also easily calculate the central charges a and c, or equivalently the effective

number nv and nh of hyper- and vector multiplets. In the original linear quiver, we have

nv(total) = 61, nh(total) = 80, (5.8)

whereas the tail contains

nv(tail) = 50, nh(tail) = 40. (5.9)

We conclude

nv(E8) = 11, nh(E8) = 40 (5.10)

or equivalently

a(E8) =
95

24
, c(E8) =

31

6
. (5.11)

They agree with what was found in [11, 24].

The same procedure works for the E6 and E7 theories treated above. The result is

that they have only one Coulomb branch operator each, of dimension 3 and 4 respectively,

which again agrees with the known properties of these theories. The central charges a and

c can also be easily calculated, correctly reproducing the known data.

5.3 Higher-rank En theories

In the previous section we argued that the theory with three punctures of type {N3}

has the right properties to be identified with the higher-rank E6 theory. In this section

we provide further pieces of evidence. First, let us determine the spectrum of Coulomb

branch operators. Using the algorithm explained in section 5.1, the poles of the degree-d

differential φd at the puncture of type {N3} have degrees

(p2, p3; p4, p5, p6; p7, p8, p9; . . . , p3N ) = (1, 2; 2, 3, 4; 4, 5, 6; . . . , 2N) . (5.12)

Using (5.4), we find that this theory has operators of dimension

3, 6, 9, . . . , 3N (5.13)

and the number of operators of each dimension is one. This agrees with the known fact of

the rank-N E6 theory.

The central charge of the SU(3) flavor symmetry can also be determined; the tableau

{N3} appears for instance in the G-curve of a quiver with gauge groups

SU(3N)a × SU(3N − 3) × SU(3N − 6) × SU(6) × SU(3) , (5.14)
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with 3N and 3 hypermultiplets in the fundamental representation for the leftmost and

the rightmost SU(3N) gauge groups to make them superconformal. See figure 20 for the

case a = 3, N = 3. There are 3N hypermultiplets transforming under the SU(3) flavor

symmetry, therefore we have

kSU(3) = 6N (5.15)

which is consistent with the known fact kE6
= 6N for the rank-N E6 theory.

We would also like to compute the central charges a and c of the superconformal

current, or equivalently the effective numbers of vector and hypermultiplets nv and nh of

this theory, and compare them to the known values. Unfortunately it is not known how

to construct this theory in the framework of [2], in which the class of theories of this type

was called ‘unconstructible.’ Our web construction suggests that these theories can be

found along the Higgs branch of a parent theory, rather then at corners of its marginal

coupling parameter space. However this procedure involves an RG flow, along which a and

c generically vary. It would be worthwhile to study such theories further, and to determine

their central charges.

The analysis for our candidate higher-rank E7,8 theories are similar. For the E7 theory,

the candidate is a theory whose G-curve has two punctures of type {N4} and one of type

{2N, 2N}. The pole structure at the puncture {N4} is

(p2, p3, p4; p5, p6, p7, p8; . . . p4N ) = (1, 2, 3; 3, 4, 5, 6; . . . 3N) , (5.16)

while at the puncture {2N, 2N} is

(p2; p3, p4; p5, p6; p7, p8; . . . p4N ) = (1; 1, 2; 2, 3; 3, 4; . . . 2N) . (5.17)

Combined with the formula (5.4) above, one concludes that this theory has Coulomb branch

operators of dimension

4, 8, . . . , 4N , (5.18)

each with multiplicity one. The manifest flavor symmetry is SU(2)×SU(4)2, and the flavor

symmetry central charges are easily found to be

kSU(2) = kSU(4) = 8N , (5.19)

which is consistent with the known result kE7
= 8N for the rank-N E7 theory. The case

for E8 is left as an exercise to the reader.

6 Future directions

In this paper we proposed that all the isolated four-dimensional N = 2 SCFT’s constructed

in [2] by wrapping N M5-branes on a sphere with 3 generic punctures, can be equivalently

obtained starting with a web configuration of 5-branes in type IIB string theory suspended

between parallel 7-branes, and then further compactifying the resulting low energy 5d

field theory on S1. This alternative construction plays the role that systems of D4-branes

suspended between NS5-branes and D6-branes play in order to describe linear or elliptic
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quivers of four-dimensional SU gauge groups with extra fundamental matter, or systems of

D3-branes suspended between 5-branes play to describe 3d field theories. In particular, the

dimension and structure of the Coulomb and Higgs moduli space as well as mixed branches

become manifest.

In the particular case in which all three punctures are maximal, that is each external

5-brane ends on its own 7-brane and thus the type is {1N}, the 7-branes could be actually

removed without changing the low energy 5d and consequently 4d dynamics. This allows

us to use known string dualities, and to argue that the low energy dynamics of M-theory

on the CY3 singularity C
3/ZN × ZN is described by a 5d version of the T [AN−1] theory,

while after further compactification on S1 we get the 4d isolated SCFT T [AN−1]. Another

chain of dualities leads to write down the SW curve of the compactified 5d theory, and in

a suitable scaling limit the SW curve of the 4d theory.

The first interesting question is how can 7-branes be incorporated in this chain of

dualities. For instance, one would like to obtain the SW curve for the theory with three

generic punctures. We already know what the result is [2], however it would be interesting

to rederive it from the web construction. In particular, in the duality from type IIB on

a circle and M-theory on a torus, we find a T 2 fibration over R
2, with a [p, q] 7-brane

mapped to a point where the (p, q) one-cycle of the torus shrinks. This space is essentially

the elliptically fibered 2-fold which gives the F-theory description of the 7-brane. The web

of 5-branes is thus mapped to a single M5-brane wrapping an holomorphic curve in the

2-fold, and this curve is exactly the SW curve of the compactified 5d theory. It would be

interesting to work out this curve explicitly.

On the other hand, another chain of dualities maps the web to pure geometry in M-

theory. When 7-branes are present, the dual geometry is non-toric. For the particular case

of the En theories, the dual geometry is known to be the total space of the canonical line

bundle of the del Pezzo dPn. It would be interesting to understand other examples, for

instance the higher rank E6,7,8 theories.

Another question is the extension of the web construction to SO and USp groups.

From the point of view of the compactification of the six-dimensional (2, 0) DN theory

on a Riemann surface, the problem was analyzed in [22]. In our construction, isolated

SCFT’s with SO and possibly USp global symmetries should arise after the introduction

of orientifold planes.

One could also be interested in realizing all SCFT’s presented in [2], that is those

with more than three punctures on the sphere, and more generally those arising from the

compactification of M5-branes on higher genus surfaces. Even though we have not discussed

this in the paper, it is indeed possible to glue together the multi-junctions by attaching

two bunches of N semi-infinite 5-branes. They correspond to the ‘constructible’ theories

in [2]. However some care is required because the parent 5d theories have generically more

rich dynamics at particular points of their parameter space with respect to the pure 4d

theories. Such problems do not arise for the multi-junction.

Finally, N = 2 theories have the property that, moving along the Coulomb branch,

they can be deformed in such a way that a cascading RG flow takes place in which the

ranks of the non-abelian gauge groups progressively reduce [25–27]. It could be interesting

to study if similar phenomena take place in the present case.
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A Seiberg-witten curves

The Seiberg-Witten curves for the 5d and 4d low energy theories are readily obtained from

our construction [28–30]. If we compactify the 5d theory on a circle x4 ≃ x4+LB , then type

IIB on S1 is dual to M-theory on a torus of modular parameter τ equal to the axiodilaton

τB of type IIB. The relation between IIB and M-theory quantities is:

Lt =
gsB(2π)2α′

LB
LA =

(2π)2α′

LB
l3p =

Ltα
′

2π
, (A.1)

where Lt and LA ≡ Lt Im τ are the lengths of the two sides of the M-theory torus (the area

is LtLA) and lp is the 11d Planck length. In the duality between IIB on S1 and M-theory

on T 2, the web of 5-branes is mapped to an M5-brane wrapping a curve in T 2 × R
2. The

curve is obtained from the toric diagram through:

0 = F (α, β) =
∑

dots (i,j)

Ci,j αiβj , (A.2)

where we sum over the dots of the toric diagram, (i, j) are the integer coordinates of the

dots, Ci,j are parameters, and (α, β) ∈ C
∗ × C

∗. This is the SW curve for the 5d theory

compactified on a circle. We could eliminate three parameters by rescaling F , α, β. The

parameters Ci,j are either Coulomb branch moduli or parameters like masses, couplings,

etc. . . The number of moduli is given by the internal dots. The SW differential is defined

by the holomorphic 2-form dλSW = Ω = d log α ∧ d log β.

Once the 5d theory is compactified on a circle, we obtain the 4d theory at low energies.

The 4d limit arises as LB → 0, which means that the circle LA decompactifies. On the

other hand the (classical) 4d coupling is

g2
4d =

gsBα′

LBLw

=
Lt

(2π)2Lw

, (A.3)

where Lw is the characteristic size of the web. To keep the coupling fixed, we take the web of

the same size as the M-theory circle. However the field theory is essentially independent of

lp, and we can send it to zero. In this way, the non-perturbative 4d dynamics is captured by

weakly coupled M-theory [31]. Summarizing, the 4d limit corresponds to decompactifying
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one circle of the M-theory torus and scaling the parameters Ci,j in such a way to keep the

curve finite.

To be concrete, the curve for the compactified 5d N -junction (see the toric diagram in

figure 3) is

0 = F (α, β) =
∑

i,j≥0, i+j≤N

Ci,j αiβj . (A.4)

To get the 4d limit, we first of all do the following redefinition:

α = t eǫw β = (t − 1) eǫw , (A.5)

in terms of which the SW differential is dλSW = ǫ t−1(t− 1)−1 dw ∧ dt. To decompactify a

circle, which will come from a combination of α and β, we will take ǫ → 0. The curve in

terms of t and w reads:

0 = F (w, t) =
∑

i,j≥0, i+j≤N

Ci,j e(i+j) ǫw

j
∑

k=0

(−1)k
(

k

j

)

ti+j−k . (A.6)

We can change indices to l = i+ j−k and p = i+ j to reorganize the summation in powers

of t:

0 = F (w, t) =

N
∑

l=0

tl
N
∑

p=l

(−1)p−l ep ǫw
l
∑

i=0

(

p − l

p − i

)

Ci, p−i . (A.7)

Now we take a scaling limit ǫ → 0 allowing the coefficients Ci,j to diverge as 1/ǫ at some

power, as long as this does not lead to divergences in the curve.

Consider the coefficient of tN (l = N in the first summation): it will be some power

series in ǫw whose coefficients are linear functions of the Ci,j . However p = N , therefore

only one linear combination of the Ci,j appears, multiplying the whole series expansion of

eNǫw. Such single combination must be finite in the ǫ → 0 limit: we get aN,0 tN , where

aN,0 =
∑N

i=0 Ci,N−i, without powers of w. Now consider the coefficient of tN−1: this time

there are two linear combinations of the Ci,j appearing in front of two exponential functions

of w, corresponding to p = N, N − 1. We can set the coefficients in such a way that the

two linear combinations diverge as 1/ǫ, so that the term aN−1,1 tN−1 ǫw survives but the

term aN−1,0 tN−1 does not diverge. In general the coefficient of tl is the sum of N − l linear

combinations of the Ci,j multiplying exponential functions of ǫw, for p = N, . . . , l. This

allows to set the Ci,j in such a way that all linear combinations diverge as 1/ǫN−l, but in

the power series of the coefficient all divergences cancel. Taking ǫ → 0 we are left with the

N − l terms (al,N−l w
N−l + · · · + al,0) tl. Eventually, we get the most general polynomial

in t and w with combined degree N :

0 = F (t, w) = P0 wN + P1(t)wN−1 + · · · + PN−1(t)w + PN (t) , (A.8)

where Pj are polynomials of degree j. Notice that the total number of parameters is

(N + 1)(N + 2)/2, as in the 5d curve (A.4). We can then rescale w to set P0 = 1, and shift

it w → w−P1(t)/N to set P1(t) = 0. As remarked in [2], keeping the SW differential fixed

under such a shift corresponds to a harmless redefinition of the flavor currents.
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Finally, we introduce a new coordinate x = t−1(t − 1)−1w in terms of which the

curve reads:

xN =
P2(t)

t2(t − 1)2
xN−2 + · · · +

PN−1(t)

tN−1(t − 1)N−1
x +

PN (t)

tN (t − 1)N
. (A.9)

The polynomials Pj(t) encode all parameters, i.e. Coulomb branch moduli and mass defor-

mations, of the T [AN−1] theory. We can rewrite it in a more inspiring way as

xN = φ2 xN−2 + · · · + φN−1 x + φN , (A.10)

where

Φk ≡ φk dtk =
Pk(t)

tk(t − 1)k
dtk (A.11)

are rank k holomorphic differentials on the sphere with poles of order k at t = 0, 1, ∞.

The holomorphic 2-form is dλSW = dx ∧ dt, and in fact

λSW = x dt . (A.12)

The curve (A.10) and the differential agree with what found in [2].

B En theories

Here we provide a brief review of what was known about non-gravitational supersymmetric

theories with En flavor symmetry. In the main part of our paper we provided new, dual

realization of these theories in four and five dimensions. The paper [32] would be a good

starting point to the huge literature on this subject.

The most basic theory is the six-dimensional (1, 0)-theory with E8 global symmetry,

which is realized on an M5-brane very close to the 9-brane ‘at the end of the world’ of the

heterotic M-theory. It has one tensor multiplet, the scalar component of which measures the

distance between the M5-brane and the end of the world. The M5-brane can be absorbed

into the end of the world, becoming an E8-instanton which describes the Higgs branch of

the theory; therefore this theory arises on a point-like E8-instanton of the E8×E8 heterotic

string. This system has a dual geometric realization as a compactification of F-theory with

vanishing S2 in the base. The total space contains the ninth del Pezzo.

Compactification of this theory on S1 gives five-dimensional theories with En flavor

symmetry. On the side using branes, we have a D4-brane probing a stack of an O8-plane

and a few D8-branes such that the dilaton diverges at the orientifold. The Coulomb branch

is real one dimensional, and at the origin the Higgs branch emanates, which describes the

process where a D4-brane turns into an E6,7,8-instanton. On the purely geometric side, it

is given by compactification of M-theory on Calabi-Yau’s containing vanishing 6, 7, 8-th del

Pezzo. The Higgs branch is realized here by the extremal transition of the Calabi-Yau.

Further compactification on S1 gives four-dimensional N = 2 SCFT’s with En flavor

symmetry, originally discussed in [9, 10]. Let us discuss them using branes. T-duality along

the compactified S1 gives us a D3-brane probing a system of O7-planes and D7-branes. It
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is then better to use the F-theory language which clearly describes the non-perturbative

properties of 7-branes, which we provide below in a slightly more detail.

We start from a flat 10-dimensional spacetime of type IIB or F-theory, and put a 7-

brane of type En extending along x0,1,2,3 and x6,7,8,9 on which an 8d En gauge theory lives.

We probe this background with N D3-branes, extending along x0,1,2,3. The worldvolume

theory on the D3-branes is the rank-N En theory.

Its Coulomb branch has N complex dimensions, parameterized by the positions of the

N D3-branes along the directions x4,5. The scaling dimensions of these Coulomb branch

operators are

∆, 2∆, . . . , N∆ (B.1)

where ∆ is the dimension of the lowest dimension operator,

∆E6
= 3 , ∆E7

= 4 , ∆E8
= 6 . (B.2)

One way to understand this result is to recall that the 7-brane is a codimension-two

object and produces a deficit angle. The transverse space to a 7-brane with E6,7,8 gauge

group is of the form C/Z3,4,6. The coordinate z of C parametrizes the Coulomb branch

and is of scaling dimension 1. The natural coordinate around the 7-brane is then u = z3,4,6

respectively, whose dimension is 3, 4, 6. When there are N D3-branes, we have parameters

ui for each D3-brane. However the D3-branes are indistinguishable, therefore the Coulomb

branch is parametrized invariantly by symmetric polynomials of ui, whose dimensions are

exactly as shown in (B.1).

Central charges of these theories was found in [24, 33]. In particular, the two-point

function of the En currents are characterized by the number

kEn
= 2N∆ (B.3)

which is normalized so that one hypermultiplet in the fundamental of SU(N) contributes

2 to kSU(N).

When a D3-brane hits the 7-brane, the former can be absorbed into the latter as an

instanton. In the four-dimensional language, the Higgs branch emanates from the origin

of the Coulomb branch and it is identified with the N -instanton moduli space of the gauge

group En. The center-of-mass of the instanton configuration along x6,7,8,9 is completely

decoupled from the rest of the system, so the true Higgs branch is the so-called ‘centered

moduli space.’ The quaternionic dimension of this space is given by

Nh∨
En

− 1 , (B.4)

where h∨
En

is the dual Coxeter number of the respective group, given by

h∨
E6

= 12 , h∨
E7

= 18 , h∨
E8

= 30 . (B.5)

In a similar manner we can consider rank-N versions of the five-dimensional E6,7,8

theories and six-dimensional E8 theory, by putting N D4-branes or N M5-branes probing

the O8-plane or the ‘end-of-the world’ brane, respectively. These theories have real N -

dimensional Coulomb branch, and the Higgs branch is the N -instanton moduli space of

E6,7,8 which describes the process of branes being absorbed into branes as instantons. Dual,

purely geometric realizations of these higher-rank versions have not been well understood.
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