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Chapter 1

Introduction

In the 1940’s quantum electrodynamics (QED), the quantum field theory
of electromagnetism, became fully developed by Freeman J. Dyson, Richard
P. Feynman and Julian S. Schwinger in the United States and Shinichiro
Tomonaga in Japan. QED deals with processes involving the creation of
elementary particles from electromagnetic energy, and with the reverse pro-
cesses in which a particle and its antiparticle annihilate each other and pro-
duce energy. The fundamental equations of QED apply to the emission and
absorption of photons by atoms and the basic interactions of photons with
electrons and other elementary particles. These photons are virtual; that
is, they cannot be seen or detected in any way because their existence vi-
olates the conservation of energy and momentum. The particle exchange
is merely the force of the interaction. Nowadays QED is part of the stan-
dard electroweak model [1–3], which describes all phenomena of both the
electromagnetic and weak interactions in the presently known energy range.

An important feature of QED (as well as of QCD) is the invariance under
local symmetry transformations. The local symmetry group is a continuous
one; it is the well known Abelian group U(1).

In principle, QED is able to describe the electromagnetic interactions of
charged particles with high accuracy within the framework of renormalizable
continuum perturbation theory. This is a result of the marginal strength
of the coupling constant. Thus, the study of lattice QED can neither be
motivated by as yet unexplained phenomena nor by a lack of computational
methods. But still there are several reasons why people study lattice QED:

• Compact lattice QED is the simplest (Abelian) gauge theory and may
serve as the prototype for all compact gauge theories on the lattice
in 4 dimensions. It exhibits a twofold phase structure, separated by
a mass gap: one phase with a massless particle, the photon, called
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CHAPTER 1. INTRODUCTION 2

the Coulomb phase and one phase which shows confining. Though the
QED confining phase is unphysical and is not realized in nature we can
probably learn something which will be useful in other theories showing
confinement (like QCD).

• Studying the phase transition behavior of QED will give useful in-
formation for other theories exhibiting phase transitions as well. To
understand the behavior and occurrence of phase transitions is also an
important subarea of statistical mechanics.

• In the confining region, where the coupling becomes strong, various
topological objects can be observed, like monopoles, Dirac sheets, Dirac
plaquettes, toron charges etc. Their possible connection to the appear-
ance of zero modes of the Dirac operator is of special interest.

• An apparent mathematical inconsistency in QED is the occurrence of
so called Landau poles in the perturbation regime of the renormalized
coupling constant. This pole would be absent if QED would have an
ultraviolet stable fixed point for the running coupling outside the per-
turbation region. The lattice provides a non-perturbative formulation
and seems thus to be a proper way to study the Landau pole problem.

Another not less important aspect is the numerical effort in computer sim-
ulations. Since numerical investigations of Abelian models are much easier
and faster than for other more complicated gauge groups, studying the U(1)
model may provide useful results applicable to more general theories.

1.1 Overview

The thesis is organized as follows. The next chapter is supposed to be a short
recapitulation of the QED basics in the continuum, including the introduction
of Euclidean space-time and an explanation of the Landau pole problem.

In the third chapter the lattice is introduced as a regularization scheme
and some lattice operations are defined. Being familiar with the lattice basics
we can discretize the gauge field part and the fermion part of the QED action.
When discretizing the fermion part a problem, called the fermion doubling
problem, occurs. Light is shed on this unwanted phenomenon before several
ways leading more or less out of this dilemma are discussed. Thereafter
attention is given to renormalization on the lattice and the phase structure
of compact lattice QED. The Metropolis method for updating the gauge
fields is discussed.



CHAPTER 1. INTRODUCTION 3

In chapter 4 Dirac operators which overcome the fermion doubling prob-
lem while still perpetuating chiral symmetry are covered. One of these so-
lutions is called the chirally improved Dirac operator. As I have done some
calculations on it this operator will be discussed in more detail.

Chapter 5 deals with the ideas and methods one can use in order to extract
physical relevant results. The importance of studying the gauge fields as well
as the zero momentum modes is shown and possibilities to bring the results
in relation are discussed.

The sixth chapter is devoted to the presentation and discussion of the
obtained results.

In the last chapter the obtained results are summarized and suggestions
for further studies are given.



Chapter 2

Continuum formulation

This chapter ought to be a summary of quantum electrodynamics in the con-
tinuum. The intention is after the discretization of space-time, maintaining
as many continuum symmetries as possible and taking the limit of infinitesi-
mal small lattice spacing to finally again attain at the results presented here.

2.1 QED in the continuum

The QED action in the continuum [4]

SQED = −SG + SF (2.1)

consists of the pure gauge field part SG

SG =
1

4e2

∫
d4x FµνF

µν (2.2)

and the fermion part SF

SF =

∫
d4x ψ̄(x)(i γµDµ −M)ψ(x), (2.3)

where Fµν = ∂µAν − ∂νAµ is the Abelian gauge field strength tensor, Dµ =
∂µ+i eAµ denotes the covariant derivative and Aµ is the vector potential. M
and e denote the bare fermion mass and bare electric charge (or the coupling
constant), respectively. Here, ψ̄(x) and ψ(x) represent the fermion fields and
obey the rules of Grassmann algebras (see the Appendix). The γµ are the
4× 4 Dirac matrices satisfying the algebra

{γµ, γν} = 2gµν , µ = 0, . . . , 3.

4
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There are two types of Abelian gauge transformations

ψ′(x) = e−i q θψ(x), θ ∈ U(1), (2.4)

which can be applied to the fields in (2.1) depending on whether or not θ is
a function of x:

θ = constant global gauge transformation

θ = θ(x) local gauge transformation.

A global Abelian gauge transformation is defined by

ψ(x)→ e−i q θψ(x)

ψ̄(x)→ ei q θψ̄(x)

}
complex fields

Aµ(x)→ Aµ(x) real fields,

(2.5)

and q can be a different number for each complex field. Later, q will be
associated with the electric charge.

If the Lagrangian is invariant under the transformations (2.5), Noether’s
theorem predicts the conserved quantity

Jµ = q ψ̄ γµ ψ. (2.6)

By identifying q = e, this is the electromagnetic current and we may charge
conservation interpret as a consequence of a global gauge symmetry of the
theory.

Let us now generalize the gauge transformation by requiring θ to de-
pend on the local space-time point, i.e. θ = θ(x). The QED-Lagrangian is
invariant under the following local Abelian gauge transformations:

ψ(x)→ G(x)ψ(x)

ψ̄(x)→ ψ̄(x)G−1(x)

Aµ(x)→ Aµ + i
e
G(x)∂µG

−1(x).

(2.7)

where
G(x) = e−i e θ(x). (2.8)

The requirement of local gauge invariance does neither allow for a possible
mass term for the vector field nor a possible symmetric field combination to
appear in the Lagrangian. Thus, we can infer that the requirement of local
gauge invariance dictates the form of QED.
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2.1.1 Chiral symmetry

The effect of breaking chiral symmetry is a key feature of the theory of strong
interactions, QCD. This theory is in the confining phase for all values of the
coupling constant. We shall see a bit later that QED also has a confining
phase for certain values of the coupling constant and hence we expect chiral
symmetry breaking to occur in this theory as well.

In the case of massless fermions, i.e. M = 0, the QED-action (2.1) is also
invariant under so-called chiral transformations

ψ(x)→ ei ε γ5ψ(x), ψ̄ → ψ̄(x)ei ε γ5. (2.9)

The suitable operator describing chiral symmetry is γ5 and is defined in the
following way:

γ5 = γ0γ1γ2γ3. (2.10)

When working with Euclidean coordinates γ5 has to be multiplied by i. Fur-
thermore γ5 is hermitean and has the following two properties:

γ5γµ = −γµγ5 and (γ5)2 = 1. (2.11)

At this stage one can define so-called projection operators out of the γ5

P± =
1

2
(1± γ5). (2.12)

Applied to a field ψ, P± projects out the components ψ± = P±ψ, which are
eigenstates of γ5 and take on the values ±1.

An indicator of spontaneous chiral symmetry breaking is the generation
of a chiral condensate, meaning

〈ψ̄ ψ〉 6= 0 (2.13)

even for massless fermions. This is indeed observed in the confining phase of
QED.

2.1.2 Euclidean formulation

Further calculations will be done in Euclidean space-time, meaning that we
choose the time coordinate to be purely imaginary

x0 = −ix4, with x4 ∈ R. (2.14)

This is the so-called Wick rotation. In order that Euclidean correlation
functions can be transformed back to Minkowski space-time they have to obey
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a positivity condition, called reflection positivity (see e.g. [5]). Performing
the Wick rotation we end up with a Euclidean metric δµν for the coordinates
x1, . . . x4

x · y ≡ δµνx
µyν = x1y1 + x2y2 + x3y3 + x4y4 = −x ∗ y. (2.15)

Here the dot (star) denotes the scalar product in Euclidean (Minkowski)
space-time. Note, that the covariant and contravariant components of a
Euclidean vector are identical. Choosing the γ-matrices in a hermitean way
γE4 = γ0 and γEi = −iγi we end up with the Euclidean QED action

SEQED = SEF + SEG (2.16)

where

SEG =
1

4e2

∫
d4x FµνFµν , (2.17)

SEF =

∫
d4x ψ̄(x)(γµDµ +M)ψ(x). (2.18)

Hence the action (2.1) goes over into iSEQED. Note, that in Euclidean coordi-
nates γ5 has to be multiplied by i.

2.2 Path integral formalism

Path integrals were first proposed by R. Feynman [6] and have many advan-
tages compared to the operator formalism when quantizing fields [4]. Almost
every book on quantum field theory devotes some pages to path integrals (see
for example [3, 4, 7, 8]) and therefore I will not go too deep into the details.

2.2.1 The path integral in quantum mechanics

The quantum mechanical transition amplitude is given by

〈x′, t′|x, t〉 = 〈x′|e−iH(t′−t)|x〉. (2.19)

Dividing the time interval t′- t into n equal parts and inserting (n-1) complete
sets of eigenstates one arrives at

〈x′, t′|x, t〉 =

∫
dx1 . . . dxn−1〈x′|e−iH(t′−tn−1)|xn−1〉 . . . 〈x1|e−iH(t1−t)|x〉.

(2.20)
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To further specify the Hamilton we make use of the Baker-Hausdorff formula
and by means of a Fourier transformation we arrive at

〈xk+1|e−iH(t′−t)|xk〉 =

∫
dx1 . . . dxn−1

(2πi∆t
m

)n/2
exp
(
i

n−1∑

k=0

∆t{m
2

(
xk+1 − xk

∆t
)2−V (xk)}

)
.

(2.21)
Let n → ∞ and the exponent becomes

∫ T

0

dt
{m

2
(
dx

dt
)2 − V (x)

}
=

∫ T

0

dt L(x, ẋ) ≡ S. (2.22)

This is the classical action for a particle moving along a path x(t) from x to
x’. The integration is over all possible paths x(t) and hence the measure of
integration can be written as

lim
n→∞

(
m

2πi∆t
)n/2dx1 . . . dxn−1 = Dx. (2.23)

Now we have arrived at the path integral representation of the quantum
mechanical amplitude

〈x′|e−iH(t′−t)|x〉 =

∫
DxeiS. (2.24)

2.2.2 Functional integrals

As we want to do quantum field theory we have to translate the representation
of quantum mechanics to path integrals. In field theory one has to deal with
vacuum expectation values of field operators, called the Green’s functions.
From these various correlation functions can be obtained.

The formalism developed in the last chapter holds for any quantum sys-
tem, so it should hold for a quantum field theory (QFT). The exact derivation
can be found in any field theory book (see e.g. [3,4,8,9]) and hence I will give
just the ’translation rules’ when going from quantum mechanics to quantum
field theory without deriving them exactly:

xi(t)←→ φ(~x, t)

i←→ ~x

∏

t,i

dxi(t)←→
∏

d

dφ(~x, t) ≡ Dφ

S =
∫
dt L←→ S =

∫
dt d3xL
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Euclidean field theory Classical statistical mechanics

Action SE Hamiltonian H

Units of action h̄ Units of energy β = 1
kT

e−SE/h̄ e−βH
∫
Dφ e−SE/h̄ Partition function

∑
conf.

e−βH

Vacuum energy Free energy

Vacuum expectation value 〈0|O|0〉 Canonical ensemble average 〈O〉
Time ordered products Ordinary products

Green’s functions Correlation functions

Mass M Correlation length ξ = 1/M

Regularization: cutoff Λ Lattice spacing a

Renormalization: Λ→∞ Continuum limit a→ 0

Table 2.1: The table shows the equivalence between a Euclidean field theory and
classical statistical mechanics.

Now we can write down the Green’s functions in terms of functional integrals

〈0|φ(x1)φ(x2) . . . φ(xn)|0〉 =
1

Z

∫
Dφ φ(x1)φ(x2) . . . φ(xn)eiS (2.25)

Z =

∫
Dφ eiS (2.26)

Note that the integrand is oscillating due to the imaginary exponent. But
again changing from Minkowski to Euclidean space-time will result in

Z =

∫
Dφ e−SE , (2.27)

with SE being the Euclidean action. The exponent has become real now and
it is a reasonable statistical weight for the fluctuations of φ.

As mentioned in the introduction there is a close connection between
Minkowski and Euclidean Field theory and statistical mechanics. This is
most transparent if the field theory is quantized using the Feynman path
integral approach. Table (2.1) shows the equivalences between classical sta-
tistical mechanics and Euclidean field theory. This will be seen even more
clearly when we are introducing the lattice as a regularization scheme.

From now on the Euclidean formulation will be used and unless explicitly
stated any labeling refering to this shall be dropped.
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2.3 The Landau pole problem

As mentioned in the introduction, an apparent mathematical inconsistency
in QED is the existence of the so-called Landau pole. It appears in the
perturbative behavior of the renormalized coupling constant as a function of
the cut-off parameter.
The Callan-Symanzik β-function is defined as

β(α) = −Λ
(∂α
∂Λ

)
e,mR

, (2.28)

where α is the renormalized fine structure constant, Λ the cut-off and the
derivative is to be taken at fixed bare coupling e and renormalized mR. The
dependence of α on Λ is obtained from the differential equation

dα

dlnΛ
= −β(α) (2.29)

and we obtain for the one-loop approximation to the β-function with only
one fermion species

α
( Λ

mR

)
=

α0

1 + α0β1ln(Λ/mR)
, β1 =

2

3π
, α0 =

e2

4π
. (2.30)

Trying to send Λ to infinity while keeping α0 fixed, α approaches zero and
the theory would be trivial. Two-loop contributions would not change the
result qualitatively.

Now consider the renormalized coupling e2
R = 4πα instead of α. The

β-function now determines the change of e2
R as a function of µ, the renor-

malization scale. The differential equation is obtained to be

de2
R(µ)

dlogµ
= βe2(e2

R(µ)), βe2 = 4πβ (2.31)

and in the one-loop approximation we find

e2
R(µ) =

e2
R(µ0)

1− e2
R(µ0)(β1/4π)ln(µ/µ0)

. (2.32)

e2
R(µ) has a pole at the scale

µLandau = µ0exp
( 4π

β1e2
R(µ0)

)
, (2.33)
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if it is equal e2
R(µ0) at the scale µ0. The position of the Landau pole is

changed by the two-loop contribution to

µLandau = µ0

(β2e
2
R(µ0)

4πβ1

) β2
β2
1 exp

( 4π

β1e2
R(µ0)

)(
1 +O(e2

R(µ0)
)
, (2.34)

and substituting e2
R(µ0) = 4π/137 we end up with a very high scale, far away

from any reasonable scale. This mathematical inconsistency can be resolved
if the full β-function has the zero at e2

R = e2
∗, an ultra-violet stable fixed

point. This means that the solution of (2.31) for e2
R(µ) always tends towards

e2
∗ as µ goes to infinity. The zero of (2.29) implies that we can tune α0 near
α0∗ = e2

∗/4π in a way such that for Λ→∞, α gets an arbitrary finite value.
Thus, if such a fixed point exists, the continuum limit is non-trivial.

The zero of the β-function may be associated with a QED phase transition
in the bare parameter space. At this critical point e2

∗, which is in the strong
coupling regime, the chiral symmetry of the massless theory is spontaneously
broken and the chiral condensate 〈ψ̄ψ〉 becomes non-zero. Later on the phase
structure of QED is discussed in more detail.

To find a solution to the Landau pole problem, QED has to be formu-
lated in a non-perturbative way. Thus, it was self-evident to investigate the
problem on the lattice (see e.g. [10, 11]).

It should be mentioned that QED is not the only theory showing the
Landau pole problem. Every theory which is not asymptotically free suffers
from this problem.

Herewith the recapitulation of the basics of continuum quantum electrody-
namics is completed and it’s high time to continue with the introduction of
the space-time lattice.



Chapter 3

The space-time lattice

When doing QFT one has to deal with several types of divergencies. Reg-
ularization is an important tool to get rid of them. This in turn means a
kind of cut-off for some parameters. Up to the present several possibilities
are known to do so.

In 1974 K. Wilson [12] came up with the idea to introduce a space-time
lattice and put a field theory on it. The first question physicists were inter-
ested in was whether QCD is able to account for quark confinement. The
lattice allows one to use non-perturbative techniques and to keep gauge in-
variance; it therefore provides a way to make predictions in the low energy
range using numerical methods.

The next chapters will explain the main concepts of lattice gauge theory
with the focus on the U(1) gauge group.

3.1 Lattice regularization

In the quantum mechanical case the path integral is defined as a limit of a
finite-dimensional integral resulting from a discretization of time. This will
now be carried over to field theory by considering the functional integral as
a limit of a well-defined integral over discretized Euclidean space-time.

We begin with introducing a hyper-cubical lattice

Λ = aZ4 = {x|xµ/a ∈ Z} (3.1)

where a is the lattice constant and µ = 1, . . . , 4. A field φ(x) is defined on
the lattice points x ∈ Λ. Carrying over some analogies from the continuous
case we set

(f, g) =
∑

x

a4f(x)g(x) (3.2)

12



CHAPTER 3. THE SPACE-TIME LATTICE 13

and define the lattice forward and backward derivative by

4f
µf(x) =

1

a
(f(x+ aµ̂)− f(x))

4b
µg(x) =

1

a
(g(x)− g(x− aµ̂)) (3.3)

where µ̂ is the unit vector in the direction µ. We have

(4f
µf, g) = −(f,4b

µg) (3.4)

This implies
(4f

µf,4f
µf) = −(f,4b

µ4f
µf) ≡ (f,2f) (3.5)

where the lattice d’Alembert operator 2 = −4b
µ4f

µ acts on functions as

2f(x) =
4∑

µ=1

1

a2
(2f(x)− f(x+ aµ̂)− f(x− aµ̂)) . (3.6)

On such a lattice the fields ψ̄ and ψ are located on the sites, i.e. ψ̄(x) and
ψ(x).

3.2 Gauge field discretization

The gauge fields are described by variables connecting different lattice points
with finite separation a. They point and act in certain directions and hence
they are provided with a vector index µ. The local gauge invariance from the
continuum theory (2.7) has to be reflected by the transformation properties
of the lattice equivalent of the gauge field. Therefore we introduce so-called
parallel transporters. They are obtained from taking the path ordered expo-
nentials of the gauge field. Such a parallel transporter points from a lattice
point x in a certain direction µ and is called link variable

Uµ(x) = ei e aAµ(x). (3.7)

The link variables are elements of the gauge group U(1) and transform under
local U(1) gauge transformations as

Uµ(x)→ Λ(x)Uµ(x)Λ−1(x+ aµ̂). (3.8)

The link variable has the property

Uµ(x) = U †µ(x− aµ̂) (3.9)
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- �bbb b
x x+ µ̂ x x+ µ̂

Uµ(x) U−µ(x+ µ̂) = U †µ(x)

Figure 3.1: Graphical representation of link variables.

and is therefore a directed quantity.
Unfortunately the lattice regularization scheme breaks the rotational or

Lorentz-frame independence. But in the continuum limit, as a→ 0 all these
symmetries are restored.

The next step now will be to find gauge invariant quantities in terms of
these link variables.

In principle it is possible to consider the straightforwardly discretized
version of the gauge action (2.17). In this case the vector potential Aµ(x)
takes on values in the interval (−∞,+∞) and we are talking about non-
compact lattice QED. This theory can be used to study the Landau pole
problem (see for example [10, 11]).

Nothing forbids us to restrict the link variables to the interval (−π,+π].
The exponent can be seen as a phase, giving the same values for integer
multiples of 2π. These link variables are called compact link variables (3.7)
and in this case we are talking about compact lattice QED. For more details
on compactifying QED the reader is refered to [12] or promised to later
chapters.

The simplest way to obtain a gauge invariant variable is to consider the
path-ordered product of such link variables around a closed path

UP = Uµ,ν(x) ≡ Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν(x). (3.10)

where the hat on the µ and ν denotes the unit vector in the particular
direction. Up is called plaquette variable and is visualized in Figure 3.2.

From this quantity the so-called Wilson gauge action or plaquette action
can be constructed

SW = SP[UP] = β
∑

x,µ>ν

(1− ReUP(x)), (3.11)

where β = 1/e2 is the inverse squared bare coupling parameter. This can be
seen if we take a closer look at the plaquette action in the continuum limit.
Therefore we use (2.5) and

a ∂µAν(x) = Aν(x+ µ̂)− Aν(x) +O(a2). (3.12)
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?

�

6

-
Uµ(x)

Uν(x+ µ̂)

U †µ(x+ ν̂)

U †ν (x)

Figure 3.2: The simplest gauge invariant object on the lattice: a closed loop,
called the Wilson loop.

Then we take the limit a→ 0 and obtain for the plaquette action

S = −β
4

∑

x

a4Fµν(x)Fµν(x) +O(a2). (3.13)

We immediately see the connection between the electric charge e in the con-
tinuum limit and the parameter β in (3.11)

β =
1

e2
. (3.14)

By rescaling the gauge fields Aµ we can get rid of any explicit factor of a.
Therefore we can equally well put a = 1, i.e. use dimensionless quantities.

Such a discretization scheme is in a way arbitrary. But from universality
it follows that we can manipulate the behavior of the lattice theory by adding
terms which vanish as a→ 0 but do not alter the physical properties in the
continuum limit.

3.3 Fermions on the lattice

The next step will consist of a discretization of the fermion part of the action
(2.18). Actually we are left with the problem of finding a formulation for
the derivative of the continuum Dirac operator on the lattice. This turns
out to be quite a difficult task. Furthermore we demand the Dirac operator
to have as many continuum properties as possible. This includes the correct
behavior under gauge transformations as well as the invariance of the action
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under charge conjugation, parity, rotations and translations. In addition the
Dirac operator is required to be γ5-hermitean, i.e. Dγ5 = γ5D†.

The problems arising from the discretization (the occurrence of so-called
doublers) of (2.18) are discussed in the next section 3.3.1. A first solution of
this dilemma is provided by the Wilson fermions, which are subject of section
3.3.2. Other ways of improving the continuum limit of fermions are well-
known and are mentioned afterwards in a short way. A major disadvantage
of these solutions is that they explicitly break chiral symmetry. The best
improvement is obtained from operators, which obey the so-called Ginparg-
Wilson equation [13]. More about these operators is discussed in chapter
4.

3.3.1 The naive discretization

We begin by considering the Euclidean Dirac equation

SEF =

∫
d4xψ̄(x)(γEµ ∂µ +M)ψ(x), (3.15)

where the Euclidean γ-matrices γEµ satisfy the algebra

{γEµ , γEν } = 2δµν .

From now on we will use the Euclidean γ-matrices and the labels reminding
of this will be dropped again. The fields ψ and ψ̄ are four-component spinor
fields and will be labeled by Greek indices.

Let us begin with putting the fields on the space-time lattice. The fields
ψ and ψ̄ then live on the lattice sites n which are separated by the lattice
spacing a. To write the action in form of dimensionless lattice variables
(denoted with a ”hat”) we have to scale M , ψ and ψ̄. This can be achieved
by making the replacements

M → 1
a
M̂ ,

ψα(x)→ 1

a3/2
ψ̂α(n), (3.16)

ψ̄α(x)→ 1
a3/2

¯̂
ψα(n),

∂µψ(x)→ 1
a5/2 ∂̂µψ̂(n),
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and ∂̂µ is the antihermitean lattice derivative defined by

∂̂µψ̂α(n) =
1

2
[ψ̂α(n+ µ̂)− ψ̂α(n− µ̂] . (3.17)

The lattice version of (2.18) now reads

SF =
∑

n,m,α,β

¯̂
ψα(n)Kαβ(n,m)ψ̂β(n), (3.18)

where

Kαβ(n,m) =
∑

µ

1

2
(γµ)α,β[δm,n+µ̂ − δm,n−µ̂] + M̂δmnδαβ. (3.19)

The correlation function

〈ψ̂α(n) . . .
¯̂
ψβ(m) . . .〉 =

∫
D

¯̂
ψDψ̂ (ψ̂α(n) . . .

¯̂
ψβ(m) . . .)e−SF

∫
D

¯̂
ψDψ̂e−SF

, (3.20)

with the integration measure defined by

D
¯̂
ψDψ̂ =

∏

n,α

d
¯̂
ψα(n)

∏

m,β

dψ̂β(m), (3.21)

can now be obtained by differentiating the generating functional

Z[η, η̂] =

∫
D

¯̂
ψDψ̂ e−SF+

∑
n,α[η̄α(n)ψ̂α(n)+

¯̂
ψα(n)ηα(n)] (3.22)

with respect to the Grassmann sources (see Appendix A.1). The integral
(3.22) can be performed, giving (see Appendix A.1)

Z[η, η̄] = (detK)e
∑
n,m,α,β η̄α(n)K−1

αβ (n,m)ηβ(m). (3.23)

The simplest case we can consider is the two-point function, which is given
by

〈ψ̂α(n)
¯̂
ψβ(m)〉 = K−1

αβ (n,m). (3.24)

At this point let us take a look at the continuum limit of (3.24), which
corresponds to the physical correlation function

〈ψα(x) ψ̄β(y)〉 = lim
a→0

1

a3
Gαβ (

x

a
,
y

a
,Ma), (3.25)

where Gαβ(n,m, M̂) ≡ K−1
αβ (n,m).
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Let us switch to momentum space for a moment. On an infinite volume
lattice the Dirac δ-function δnm is given by

δnm =

∫ π

−π

d4p̂

(2π)4
eip̂ (n−m), (3.26)

whereby the hat on p̂ = ap again denotes the non-dimensionality of these
variables. Using the Fourier representation of the delta function (3.26) in
(3.19) and we obtain

Kαβ(n,m) =

∫ π

−π

d4p̂

(2π)4
K̃αβ(p̂) eik̂ (n−m) (3.27)

where
K̃αβ(p̂) = −i

∑

µ

(γµ)αβ sin(p̂µ) + M̂δαβ. (3.28)

Note that the integration in (3.27) is restricted to the interval [−π, π]. Now
let us make the ansatz

K−1
αβ (n,m) =

∫ π

−π

d4p̂

(2π)4
Gαβ(p̂) eik̂ (n−m)

where Gαβ(p̂) is the Green’s function in discretized momentum space and
execute the summation over α and β to obtain

K−1
αβ (n,m) = 〈ψα(n) ψ̄β(m)〉 =

∫ π

−π

d4p̂

(2π)4

[−i∑ γµp̂µ + M̂ ]αβ∑
µ p̂

2
µ + M̂2

eip̂ (n−m).

(3.29)
The most obvious thing now would be to rescale ψ̂ and M̂ and to take the
limit a→ 0, keeping the quantities ψ, M , x = na and y = ma fixed. But this
means that we must know which quantities are to be held fixed. However, in
our naive procedure we arrive at the correct continuum limit (3.25). After a
trivial change in the integration variables we find that

〈ψα(x) ψ̄β(y)〉 = lim
a→0

∫ π/a

−π/a

d4p

(2π)4

[−i∑ γµp̃µ +M ]αβ∑
µ p̃

2
µ +M2

eip (x−y), (3.30)

where p̃µ is given by

p̃µ =
1

a
sin(pµa). (3.31)

The integral will be dominated by momenta which are small compared to
the inverse lattice spacing and we may set p̃µ → pµ +O(a2). Then the above
integral would reduce to the well-known 2-point function in the limit a→ 0.
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p̃µ = 1/a

π/a

π/a

p̃µ

pµ

Figure 3.3: Plot of sin(pµa)/a versus a in the Brillouin zone to display the fermion
doubling problem.

This is still not entirely satisfactory since sin(pµ + π) = sin(pµ) all give the
same result p̃2

µ(pµ) = p̃2
µ(pµ + π). Thus, within the Brillouin zone the sine

function (3.31) has 16 zeros! This is the origin of the so-called fermion
doubling problem. Inside half of the Brillouin zone in each direction, near the
continuum limit, the deviation from the straight line behavior occurs only
for large momenta where both, pµ and p̃µ, are of order 1/a. What actually is
destroying the correct limit are the zeros of the sine function at the edges of
the Brillouin zone. The result is that there are sixteen regions of integrations,
where pµ takes a finite value in the limit a→ 0. Fifteen of these involve high
momentum excitations of the order π/a, which give rise to a momentum
distribution having the form of a single particle propagator. Hence these
lattice theory actually contains sixteen species of fermions. In d dimensions
the number would be 2d, meaning it doubles for each additional dimension.
The inclusion of the gauge fields does not solve the doubling problem either.

The chiral transformations, defined in (2.9) are realized on the lattice if
γ5M + Mγ5 = 0. The naive lattice action satisfies the hermiticity property
γ5Mγ5 = M †. Thus the Euclidean lattice action has to be antihermitean in
the massless limit for chiral symmetry to hold.

The question now is under which general conditions a lattice theory ex-
hibits doublers. The answer is given by the Nielsen-Ninomiya theorem [14].
Consider a generalized action such that S−1(p,M = 0) = iF (p). Then the
corresponding lattice theory will have doublers, if:

• F (p) has a periode in momentum space of 2π
a
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• the momenta on the lattice are continuous in the range {0, 2π}.

• F (p) is continuous in the momentum space

• F (p) → pµγµ for small momenta and coincides with the continuum
theory in the limit a→ 0.

• the action possesses chiral symmetry.

We have seen now that our naive ansatz of discretizing the fermion fields is
accompanied by the occurrence of unwanted doublers. But fortunately there
are several possibilities to obtain the correct continuum limit, i.e. eliminate
the extra fermion species. They all have in common that one has to pay the
price that chiral symmetry on the lattice is explicitly broken. An alternative
way, neither without any problems, to retain a chirally symmetric formulation
(with only a local breaking of chiral symmetry) is provided by the Ginsparg-
Wilson relation [13] and is subject of later chapters.

3.3.2 Wilson fermions

This is the most popular way dealing with the doubling problem and was
first elaborated by Wilson in 1974. As already mentioned above there is
some freedom to add terms to the naive action in a way that the zeros of the
denominator at the edges of the Brillouin zone are lifted by an amount pro-
portional to the inverse lattice spacing. These terms of course have to vanish
in the continuum limit. A good candidate would be a second derivative:

S
(W )
F = SF −

r

2

∑

n

¯̂
ψ(n) ˆ̄2ψ̂(n), (3.32)

where ˆ̄2 is the four-dimensional lattice Laplacian

ˆ̄2ψ̂(n) =
∑

µ

[
2ψ̂(n)− ψ̂(n+ µ̂)− ψ̂(n− µ̂)

]
.

Here r is called the Wilson parameter, which is expected to be irrelevant at
the renormalization or finetuning of lattice observables. Therefore and also
for convenience we may set it later on equal to 1. By setting ψ̂ = a3/2ψ
and ˆ̄2 = a22, we see that the Wilson term vanishes with O(a) in the naive
continuum limit. Inserting for ˆ̄2ψ̂(n) one obtains for the Wilson fermion
action

S
(W )
F =

∑

n,m

¯̂
ψ(n)K(W )

nm ψ̂(m), (3.33)
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with

K(W )
nm = (M̂ + 4r)δnm (3.34)

− 1

2

∑

µn

[(r − γµ)δm,n+µ̂ + (r + γµ)δm,n−µ̂]

For r 6= 0 chiral symmetry is explicitely broken, even for M̂ → 0. The Wilson
action now leads to the following two-point function

〈ψ(x)ψ̂(y)〉 = lim
a→0

∫ π/a

−π/a

d4p

(2π)4

[−i∑ γµp̃µ +M(p)]∑
µ p̃

2
µ +M(p)2

eip(x−y), (3.35)

with

M(p) = M +
2r

a

∑

µ

sin2(pµ
a

2
). (3.36)

For any fixed value of pµ, M(p) approaches M as a → 0. But near the
boundaries of the Brillouin zone M(p) diverges as a approaches zero.

The interaction matrix is often expressed in a manner containing the links

K(W )
nm [U ] = δnm−κ

∑

µ>0

[(r−γµ)Uµ(n)δn+µ̂,m+(r+γµ)U †µ(n−µ̂)δn−µ̂,m] (3.37)

so that (3.33) becomes

S
(W )
F =

∑

n,m

¯̂
ψ(n)K(W )

nm [U ]ψ̂(m), (3.38)

with the so-called hopping parameter κ

κ =
1

2M̂ + 2dr
(3.39)

and rescaled fermion fields by the coefficient
√

2κ/a3. Here d is the num-
ber of dimensions. Figuratively the local term tries to keep the fermion at
the same site while the non-local term makes the fermion hop to the near-
est neighbour site with strength κ. The fermion matrix (3.37) exhibits the
following properties

• there is a remnant of discrete symmetries: γ5K
(W )†
nm [U ]γ5 = K

(W )
nm [U ],

i.e. it is γ5-hermitean

• ˆ̄ψ(n)Λ(n)K
(W )
nm [U ]Λ†(m)ψ̂(m) = ˆ̄ψ(n)K

(W )
nm [U ]ψ̂(m),

i.e. covariance under the gauge transformations (3.8).
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The adjoint K
(W )†
nm is taken with respect to the coordinate and spinor indices.

From (3.39) we see that for the free theory in 4 dimensions the fermion mass
is given in terms of the lattice parameters κ and r as

ma =
1

2κ
− 4r =

1

2κ
− 1

2κc
, (3.40)

with m = 0 at κ = κc = 1/8r. In the interacting case we perpetuate (3.40)
but demand κc depending on the lattice spacing a. The renormalization of
κc implies that the fermion mass has both multiplicative and additive renor-
malizations and follows from the explicit breaking of chiral symmetry by the
term proportional to r in (3.37). Thus, Wilson’s solution for the fermion dou-
bling problem is accompanied with the unwanted effect of explicitly breaking
chiral symmetry.

3.3.3 More Dirac operators

The so-called staggered fermion formulation will be mentioned here just for
the sake of completeness without working out the details. For details the
reader is refered to [15, 16].

To prevent the function (3.31) from vanishing at the corners of the BZ
we try to eliminate the unwanted fermion modes by reducing the BZ, i.e.
doubling the effective lattice spacing. Therefore in principle we have to dis-
tribute the fermionic degrees of freedom in such a way that the effective
lattice spacing for each type of Grassmann variable is twice the fundamental
lattice spacing and the action has to reduce to the continuum form in the
continuum limit. The doublers are transformed to 2d/2 fermion flavours by
means of the spin diagonalization of the naive action. This formulation is
invariant under global chiral symmetry transformations (2.9). However, in 4
dimensional space-time the staggered fermion model contains 4 mass degen-
erate flavours.

Yet another method to improve the fermion part of the action in the contin-
uum limit a → 0 comes under the name of clover improvement (for details
see e.g. [16–18]). Sheikholeslami and Wohlert proposed to add another term
to the fermionic Wilson action

SW + cSW

i

4
ψ̄(x)σµνFµν(x)ψ(x).

σµν are commutators of Dirac matrices (A.14) and Fµν the discretized field
strength tensor.
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This completes the discussion of Dirac operators breaking chiral symmetry
and we may now write down the full QED action for e.g. Wilson fermions:

SQED[U, ψ, ψ̄] = β
∑

P

[1− 1

2
(UP − U †P)]

+(M̂ + 4r)
∑

n

ψ̄(n)ψ(n)− 1

2

∑

n,µ

[
ψ̄(n)(r − γµ)Uµ(n)ψ(n+ µ̂) (3.41)

+ ψ̄(n+ µ̂)(r + γµ)U †µ(n)ψ(n)
]
.

To calculate any correlation function of the fermionic as well as of the link
variables, (3.41) has to be used in a path integral formulation. This is subject
to the next section.

3.4 Observables on the lattice

The lattice QED action for Wilson fermions (3.41) consists of the pure gauge
part (3.11) and the fermion part (3.38)

SQED[U, ψ̄, ψ] = SP[U ] + SWF [U, ψ̄, ψ]. (3.42)

In order to extract measurable quantities we have to insert (3.42) into path
integrals. The path integral will comprise integrations over all Uµ. These are
elements of a unitary group and the integrations have to be performed over
the whole group manifold, which in the present U(1) case is parametrized
by one real angular variable, restricted to the interval [0, 2π). As the gauge
invariance of the action should not be quashed during the integration process
the integration measure must be gauge invariant as well and is given by

DU ≡
∏

n,µ

dφµ(n). (3.43)

Here I have used the parametrization Uµ(n) = eiφµ(n). The integration mea-
sure (3.43) is called Haar measure (see e.g. [19]). Now we can compute corre-
lation functions of the Dirac fields and link variables from the path integral
expression

〈O〉 =
1

Z

∫
DUDψ̄DψO[U, ψ̄, ψ]e−SQED[U,ψ̄,ψ], (3.44)

with the partition function (or normalization constant)

Z =

∫
DUDψ̄Dψ e−SQED[U,ψ̄,ψ]. (3.45)
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The fermion part of the action is a bilinear form in the Grassmann valued
variables ψ̄ and ψ. The fermionic fields can be integrated out analytically
(see Appendix A.2). To this end we have to use the generating functional of
the theory. In our case it is given by

W [U, η̄, η] =
1

Z

∫
DUDψ̄Dψ e−SP[U ] (3.46)

e−
∑
n,m ψ̄α(n)Kαβ(n,m)ψβ(m)+

∑
n,α[η̄α(n)ψα(n)+ ¯ψα(n)ηα(n)],

where Kαβ(n,m) is the lattice Dirac operator (3.19). Making use of the
equations from Appendix A.2 we finally end up with

W [U, η̄, η] =
1

Z

∫
DUdetKe−SP[U ]e

∑
n,m,α,β η̄α(n)K−1

αβ (n,m)ηβ(m). (3.47)

With this expression fermionic fields appearing in the path integral can be
transformed into propagators, which depend on the gauge field only. Expec-
tation values can be obtained by differentiating (3.46) or (3.47) with respect
to the Grassmann valued sources ηα(n) and η̄α(n).

It is not possible to calculate ensemble averages for products of Grass-
mann variables using statistical methods. But the fermionic contributions
to the action are bilinear in the fermion fields ψ and ψ̄ and hence we can
perform the Grassmann integrals and rearrange the path integral expression
for the euclidean correlation function into a statistical mechanical average
with a new effective action. Unfortunately, this action (due to the determi-
nant) depends in a non-local way on the bosonic fields to which the fermion
fields are coupled. And it is this non-locality which makes computational
evaluations of correlation functions so time consuming.

3.5 Renormalization on the lattice

The most important question in lattice theories is whether in the continuum
limit the integrated theory corresponds to any theory like QED, QCD, etc.
Or in other words, if there is a critical region in parameter space where
correlation lengths diverge and one can remove the cutoff. The procedure is
a variant of the renormalization group methods and is non-perturbative.

Suppose a lattice theory contains parameters Qi. An example would be
β in (3.41). Multiplying by suitable powers of the lattice constant a, all
Qi can be defined as dimensionless quantities Q̂i = aQi. Suppose further
we must rely on a numerical calculation of (3.22) where the lattice spacing
does not appear. Now we introduce the physical correlation lengths ξi. The
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corresponding lattice quantity ξ̂i will vary as a is changed. In the case a→ 0,
ξ̂i must diverge in order to keep the physical quantity ξi fixed. Dimensionless
masses have the form

M̂i =
1

ξ̂i
, (3.48)

leading to the following expression of e.g. the exponentially decaying two-
point function with distance n between the two points in units of a:

〈φi(x)φi(x+ naµ̂)〉 ∝ e−n/ξ̂i . (3.49)

Inserting in this expression ξi from (3.48), the typical behavior of the propa-
gator for a particle with mass Mi is obtained. The divergence of ξ̂i if a→ 0
means that the continuum limit is realized for M̂i → 0 at a critical point
of the theory. Thus, a fundamental requirement for the construction of a
continuum limit is the existence of a continuous phase transition, i.e. the
transition must be of second or higher order for some critical values Qc

i .

Another important condition for the renormalizability of a lattice theory is
the validity of a scaling behavior of the parameters approaching the criti-
cal point Qi → Qc

i . Masses in lattice field theories usually have a scaling
behavior of the type

1

ξ̂i
= aMi ' αi|Qi −Qc

i |ν . ν > 0 (3.50)

or in the case Qc
i =∞,

1

ξ̂i
= aMi ' αie

−biQi , b > 0. (3.51)

If one of the equations (3.50) and (3.51) holds, the limit Qi → Qc
i for masses

can be performed resulting in

Mi

M1

=
αi
α1

. (3.52)

This is a nice result since taking a value for M1 from e.g. the experiment
in GeV we easily obtain predictions for the other masses in the continuum
limit. Additionally, by solving (3.50) and (3.51) for a information about the
size of the lattice constant in (GeV)−1 in the vicinity of the critical point is
obtained

a ' 1

M1

α1|Q−Qc|ν a ' 1

M1

α1e
−bQ. (3.53)
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This result shows that any calculation, both practical and analytical, should
be performed in the vicinity of the critical point.

Other physical quantities, like the coupling constant or the condensate,
are treated in a similar way.

QCD has the nice property of being asymptotically free and hence the
critical point is at βc =∞. The scaling behavior of (3.51) holds with a value
of b known from renormalization group analysis. Thus quite reliable results
have been obtained by extrapolating quantities into the limit a→ 0.

Figure 3.4: Tuning the lattice spacing a in order to keep physics the same.

To gain better insight into renormalization on the lattice the situation is
depicted in Figure 3.4. Suppose the number of lattice points within the en-
closing circle corresponds to a bare quantity living on the lattice, for example
the mass M̂ . We want to hold the quantity M (represented by the circle)
fixed by its physical value. As we make the lattice spacing finer and finer,
more and more lattice points migrate into the circle to keep the volume (M)
constant. Thus, if physics is to remain the same at all lattice spacings, the
bare parameters of the theory must be tuned to a in a way depending on the
dynamics of the theory.

3.6 The phase structure of compact lattice

QED

In the last section it was shown that a theory in order to be renormalizable
has to show critical behavior at certain points in parameter space. The
situation for QCD has already been mentioned above.

In the case of Abelian lattice gauge theory the situation is much more
complicated. For a more detailed discussion see [20]. For large values of β,
i.e. small values of the bare charge, these theories have properties which can
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be proved by a perturbation expansion. In the case of QED this includes
the massless photon field and the Coulomb force between static charges, up
to higher order. So far this sounds satisfactory but as we decrease β below
some critical parameter βc, the theory exhibits properties quite different from
those at large β. The expansion in this β-regime is called the strong coupling
or high temperature expansion. In this phase, the confining phase, phenom-
ena absent in the Coulomb phase, do occur: the gauge balls [21] acquire a
non-zero mass, the static potential between static charges is directly propor-
tional to the distance between them [12] and it amounts to the formation of
monopole-antimonopole pairs [22].

Including charged fermion fields will bring about additional parameters
to β. For the case of staggered fermions, leading to a 3-dimensional phase
structure, see [23].

Here I will concentrate on Wilson fermions [24] with the additional pa-
rameter κ, which itself will depend on β at the critical point of the theory:

ma =
1

2

(1

κ
− 1

κc(β)

)
. (3.54)

Now the vacuum contains additionally a fermion condensate. Starting with

confining
phase

Coulomb phase

βc ≈ 1.010 ∞

0.25

0

κ

0.125

κ = κc(β)

chiral limit

Figure 3.5: The phase structure diagram for compact lattice QED.

zero fermion mass leads to a spontaneous breaking of chiral symmetry, the
fermions gain mass and furthermore a massless pseudoscalar Goldstone boson
is present.

All these effects lead to two phases with totally different properties. For
large values of β everything ever heard about Abelian gauge theories holds.
But for small values of β the theory shows completely different properties
similar to QCD. The two phases are separated by a phase transition in a
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region where both, the weak and strong coupling expansion, break down.
This happens at β ' βc where correlation lengths diverge. This is a point of
non-analycity.

Many interesting questions emerge concerning the confinement phase and
the phase transition. For example whether it is possible to construct a con-
tinuum theory preserving the properties from the confinement phase. If this
is the case there would exist a continuum theory which has not yet been
formulated as a lagrangian continuum theory. In order to push the contin-
uum limit the theory needs a critical point. An obvious candidate would be
the just mentioned phase transition. This point (and its immediate neigh-
borhood) is accessible only by numerical methods. It is of great interest
whether the phase transition is a continuous one or of first order. For the
Wilson action it turns out that the transition is of weak first order [25–27]
but still some calculations suggest a second order phase transition [20, 28].
For other actions the behavior at the phase transition is different.

Another thing of interest is the question whether the Landau pole problem
could be solved. No Landau poles occur if the phase transition would be of
second order. Other unexpected non perturbative results are obtained in the

0.98 1 1.02 1.04
β

0.55

0.6

0.65

0.7

<W
P>

L=12

0.98 1 1.02 1.04
β

0.55

0.6

0.65

0.7

<W
P>

L=16

Figure 3.6: The plots show the behavior of the mean plaquette action 〈WP 〉
around the phase transition βc ' 1.011 for two different lattices.

Abelian lattice gauge theory by including simultaneously scalar and fermion
fields of the same charge, called the χUφ4-model [29].

From lots of calculations the critical point of the theory in the infinite
volume limit was obtained to be βc ' 1.011. This can also be seen in figure
3.6. Although the average plaquette action is not an order parameter, the
steep increase is an indicator for critical behavior. Note, that the larger the
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lattice becomes the more exactly the critical point is approached. This is of
course what we expect because of finite size scaling.

In what follows the properties of zero modes and possible connections
to gauge field topology are investigated. As we shall see, the zero modes
only occur in the confining phase and thus it is of interest to know about
the precise value of the critical coupling. For a calculation of βc with high
accuracy see [30].

3.7 Gauge field generation

The so-called Metropolis method is in principle applicable to any system and I
will just talk about the basics. Suppose, we have a configuration C. Then we
propose another configuration C ′ with a transition probability P0(C → C ′)
which only has to fulfill the following microreversibility requirement:

P0(C → C ′) = P0(C ′ → C). (3.55)

In the case of a U(1) gauge theory we suggest a new configuration by just
choosing one of the link variables and multiplying it by exp(iρ), where ρ is
random variable from (−π, π]. In this case (3.55) is clearly satisfied. The next
step consists in the question whether C ′ should be accepted or not. The rule
for making the decision is the following: if the action has been lowered, i.e.
exp(−S(C ′)) > exp(−S(C)), then we accept the new configuration. In case
the action has increased, the new configuration is accepted with probability
P

P =
e−S(C′)

e−S(C)
. (3.56)

To this end a random number r from the interval [0, 1] is generated. Then
the new configuration is accepted if r ≤ P . Otherwise we reject C ′ and keep
the old configuration. It can be easily shown that this algorithm satisfies
detailed balance and is ergodic [15]. It is used in general to update a single
variable at a time.

The name overrelaxation stands for a particular way choosing the trial
element for updating. The aim of the overrelaxation algorithm is to speed
up the updating process. In this case a trial link variable is chosen far away
from the original one such that the action remains invariant. A possibility
then is to choose the new link as U ′ = U0U

−1U0, with U0 being an element of
the chosen gauge group. This method changes individual links although the
sum of plaquettes (and the action) remains unchanged. Hence the algorithm
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is non-ergodic. Instead of the canonical ensemble, this algorithm creates the
microcanonical ensemble with constant action. The main advantage of the
overrelaxation algorithm is hat it can be used to counteract critical slowing
down.

In practical computations these two algorithms are often used in common
and alternating to take advantage of both.



Chapter 4

Dirac operators and the GWR

In the last chapter several solutions to overcome the fermion doubling prob-
lem and to obtain the correct continuum limit have been discussed. But
they come with the unwanted concomitant effect of explicitely breaking chi-
ral symmetry. An abandonment of other essential properties like unitarity
and locality causes serious problems and hence usually chiral symmetry is sac-
rificed. However, in 1982 Ginsparg and Wilson wrote a paper [13] about the
lattice equivalent of continuum chiral symmetry, embodied in the Ginsparg-
Wilson relation, which will be the basis for the operators discussed in this
chapter. Although it is not possible to fully retain chiral symmetry on the
lattice some solutions which break chiral symmetry in a ’soft’ local way ap-
peared recently and are part of this chapter.

4.1 Ginsparg-Wilson fermions

Any chiral symmetric Dirac operator in the continuum limit satisfies the
relation

γ5D +Dγ5 = 0. (4.1)

As already mentioned, this relation is violated by all Dirac operators from
the previous section because of the additional terms, which are necessary to
remove the doublers. In order not to explicitly break chiral symmetry a new
expression for the definition of chirality on the lattice is needed. In doing so,
(4.1) is modified by a term which vanishes in the continuum limit as a → 0
and we arrive at the Ginsparg-Wilson relation (GWR) in its original, full
form [13]:

γ5D +Dγ5 = 2aDγ5RD. (4.2)

Here a is the lattice spacing and R some local function of the gauge fields,
which value depends on the chosen Dirac operator. It can be used to optimize

31
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the spectral properties and often R is set to 1/2, leading to an exactly circular
spectrum. If the Dirac operator has no zero modes (4.2) can be rewritten in
the following form

R =
1

2a
γ5{D−1, γ5} (4.3)

and R can be seen as the measure of the amount of chiral symmetry break-
ing of the inverse Dirac operator. Obviously the term on the right hand
side of (4.2), which causes the breaking of chiral symmetry, vanishes in the
continuum limit. Thus, the chiral symmetry in the continuum limit is re-
stored. The modification of the Ginsparg-Wilson relation corresponds to a
modification of the chiral symmetry transformations (2.9) (see also [31])

ψ → eiεγ5(1− 1
2
aD)ψ ψ̄ → ψ̄eiε(1−

1
2
aD)γ5 . (4.4)

Several operators are known to fulfill the Ginsparg-Wilson relation either
exactly or approximately. Two of them, Neuberger’s overlap operator and
the so-called chirally improved operator, will be discussed in more detail here.

But afore some spectral properties of an operator satisfying (4.2) will be
worked out.

• Suppose |ψ〉 to be an eigenvector of D with complex eigenvalue λ

(γ5D +Dγ5)|ψ〉 = (λ+ λ∗) γ5|ψ〉 = (aD γ5 D)|ψ〉 = a λλ∗γ5|ψ〉, (4.5)

where I have used the γ5-hermiticity of D. Reforming the last equation
yields

2

a
Reλ = |λ|2. (4.6)

As λ can be written as λ = x+ iy with x, y real, an equation describing
a circle around 1/a is obtained

2x

a
= x2 + y2 ⇒ (x− 1

a
)2 + y2 =

1

a2
. (4.7)

Thus the Dirac operator has its eigenvalues on a circle around λ = 1/a.
In the continuum limit, when a approaches zero, the circle becomes
larger, meaning that the unphysical doubler region moves in this limit
towards infinity and decouples from physical quantities.

• Consider an eigenvector ψe of the Dirac operator, satisfying the equa-
tion D|ψe〉 = λ|ψe〉. Multiplying from the left with 〈ψe|γ5 and using
γ5-hermiticity yields

〈ψe|γ5D|ψe〉 = λ〈ψe|γ5|ψe〉 = 〈ψe|D†γ5|ψe〉 = λ∗〈ψe|γ5|ψe〉. (4.8)

Thus 〈ψe|γ5|ψe〉 = 0 unless λ is real.
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• Looking again at the equation D|ψe〉 = λ|ψe〉 and making use of

D† = γ5Dγ5 (4.9)

it is easily seen that
〈ψe|γ5D = 〈ψe|γ5λ

∗. (4.10)

But this means that the complex eigenvalues come in complex conju-
gate pairs λ, λ∗.

Applying the projection operator (2.12) to eigenvectors ψr corresponding to
real eigenvalues, the zero modes, it is seen that

〈ψr|P±|ψr〉 = ±1 (4.11)

and vanishes for non-zero eigenvalues.
Currently three formal solutions to (4.2) are known: Neuberger’s overlap

operator [32, 33], domain wall fermions [34] and the perfect actions [35, 36].
The only operator which can be constructed exactly is the overlap operator.
The other operators obey the Ginsparg-Wilson relation only in certain limits.
The overlap operator and its properties will be discussed in more detail in
section 4.2. Aside from the above named solutions an approximate solution
of (4.2) is also known. This is the chirally improved operator, which is a
good compromise between chiral properties and computation time and will
be discussed at length in the next section.

4.2 Overlap Fermions

A Dirac operator satisfying the Ginsparg-Wilson relation (4.2) preserves chi-
ral symmetry on the lattice without fermion doubling. In general no ultralo-
cal solution of the GWR does exist.

A few years ago Neuberger and Narayanan [32, 33, 37] came up with the
idea of the overlap Dirac operator. Neuberger’s overlap operator possesses
the nice feature of realizing exact chiral symmetry on the lattice and it can
be shown to have no fermion doubler modes. The massless overlap operator
Dov has the form

Dov =
1

2
[1 + γ5ε(HW)] (4.12)

where HW is some Hermitian Dirac operator, constructed from an arbitrary
Dirac operator

HW = γ5(s−H0), (4.13)
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and ε is the sign function. In general one uses for H0 the usual Wilson Dirac
operator with negative mass term and s is a real parameter in the range
|s| < 1 which may be adjusted in order to minimize the probability for zero
modes of HW. If H0 is already an overlap operator Dov = H0 for s = 1
because ε(ε(HW)) = ε(HW).

The sign function may be calculated [38] by the spectral representation

ε(HW) =
∑

i

ελi|ψi〉〈ψi|, (4.14)

where |ψi〉 denotes the ith eigenvector. This definition cannot be used in
practical computations because for realistic calculations the Dirac matrix
is of size O(104 − 106). The overlap operator has to be used many times
by entering diagonalization or conjugate gradient inversion tools and has to
be constructed newly for each gauge field configuration. Thus, in practical
implementations the sign function in (4.12) is calculated using

ε(H) =
HW

|HW|
=

HW√
H2

W

. (4.15)

One possible approximation of the inverse square root is to use Chebychev
polynomials [39]. This method provides exponential convergence in [δ, 1],
where δ (and thus the order of the polynomial) depends on the ratio of the
smallest to largest eigenvalue of H2

W. For small δ a large number of terms is
needed.

A non-locality in Neuberger’s overlap operator can only arise from the
inverse square root in (4.15). In the SU(3) case the authors in [40] calculated
analytically bounds for the small field region and showed that Neuberger’s
operator is local with exponentially decaying tails. In the large field region
the locality could not be guaranteed for all fields but the authors [40] were
able to show that near zero modes of the inverse square root of (4.15) do not
by itself imply non-locality.

4.3 Chirally Improved Operator

The numerical implementation of the fixed point Dirac operator and the
overlap operator is a very (computation) time consuming and expensive task.
Thus, a new attempt for solving the Ginsparg-Wilson equation has been
suggested by [41, 42], called the chirally improved Dirac operator DCI. The
idea is simply to expand the most general lattice Dirac operator in a series
of simple basis operators on the lattice. As I have done some calculations
on the DCI its construction and some properties will be elucitated in more
detail.
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4.3.1 Expansion

The derivative term on the lattice is usually written as

1

2

4∑

µ=1

γµ

[
Uµ(x)δx+µ̂,y − Uµ(x− µ̂)−1δx−µ̂,y

]
. (4.16)

But likewise we can write the derivative term having regard to all the sym-
metries as

1

4

4∑

µ=1

γµ

[
Uµ(x)Uµ(x+ µ̂)δx+2µ̂,y − Uµ(x− µ̂)−1Uµ(x− 2µ̂)−1δx−2µ̂,y

]
. (4.17)

As there are many more terms one could think of, an ansatz for the most
general D must admit of a superposition of all discretization possibilities of
the derivative term.

In (4.16) we find a single hop in positive µ-direction and a single hop in
the negative direction, corresponding to the plus and minus signs. In (4.17)
the hops are of length 2 and this can be continued to arbitrary lengths. In a
short hand notation [42] a path of length n is denoted by

< l1, l2, l3, . . . , ln >, li ∈ {±1,±2,±3,±4}. (4.18)

With this notation and the sign(l) abbreviated by s(l) (4.16) and (4.17) can
be written as

1

2

∑

µ

γµ
∑

l=±µ
s(l) < l >, (4.19)

and
1

4

∑

µ

γµ
∑

l=±µ
s(l) < l, l > . (4.20)

As we do not want the doublers to appear a term which distinguishes between
the physical modes pµ = 0 and the doublers pµ = π is needed. Such a term
is included in the standard Wilson term and has to come with a

�
in spinor

space. Further generalization of the Dirac operator means an inclusion of the
remaining elements Γα of the Clifford algebra, i.e. tensors, pseudovectors,
pseudoscalar. We end with the following form of the lattice Dirac operator
[42]:

D =
16∑

α=1

Γα
∑

p∈Pα
cαp < l1, l2, l3, . . . , l|p| >, (4.21)

where the set Pα consists of paths p with length |p| and cαp being the complex
weight correponding to p.
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The next thing to do is to demand for some symmetries of D. We want
to maintain translation and rotation invariance, invariance under charge and
parity conjugation and additionally γ5-hermiticity. The first thing, transla-
tional invariance is achieved through requiring the paths Pα and their co-
efficients cαp to be independent of the starting point, whereas the rotation
invariance requires a path and its rotated image have the same weight.Parity
demands to include for each path p the parity-reflected copy with coefficient
sαparity · cαp . The signs sαparity are defined via γ4Γαγ4 = sαparity · Γα.

More exciting is the inclusion of C and γ5-hermiticity. Both of them relate
the coefficient for a path p and its inverse p−1 together. Thus all coefficients
cαp are restricted to be either real or purely imaginary. Furthermore, the
coefficents for p and p−1 only differ in their signs, defined by CΓαC = sαcharge ·
ΓTα , where T denotes transposition.

Collecting all the results we see that the paths in the ansatz group to-
gether and we obtain for the most general D (see also [43]):

D ≡ � [
s1 + s2

∑

l1

< l1 > +s3

∑

l2 6=l1
< l1, l2 > +s4

∑

l1

< l1, l1 > . . .
]

+
∑

µ

γµ
∑

l1=±µ
s(l1)

[
v1 < l1 > +v2

∑

l2 6=±µ
(< l1, l2 > + < l2, l1 >)

+ v3 < l1, l1 > . . .
]

(4.22)

+
∑

µ<ν

γµγν
∑

l1=±µ
l2=±ν

s(l1)s(l2)
2∑

i,j=1

εij

[
t1 < li, lj > . . .

]

+
∑

µ<ν<ρ

γµγνγρ
∑

l1=±µ,l2=±ν
l3=±ρ

s(l1)s(l2)s(l3)
3∑

i,j,k=1

εijk

[
a1 < li, lj, lk > . . .

]

+ γ5

∑

l1=±1,l2=±2
l3=±3,l4=±4

s(l1)s(l2)s(l3)s(l4)
4∑

i,j,k,n=1

εijkn

[
p1 < li, lj, lk, ln > . . .

]
.

The γµ-matrices are chosen to be in the Euclidean chiral representation, i.e.
γµ = γ†µ, and hence all the coefficients si, vi, ti, ai and pi remain real. The ε’s
denote the totally anti-symmetric tensors with 2, 3 and 4 indices, respectivly.

All paths in a group have the same length, are related by symmetries and
must come with the same coefficient (up to sign factors).

In (4.22) only the leading terms of an infinite series of groups of paths
is shown. Thus the dots in (4.22) indicate that longer paths are omitted.
Actually an expansion of (4.2) contains infinitely many terms as it is known
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that no ultra-local solutions of the Ginsparg-Wilson equation exists. Until
the practical implementation starts, the chirally improved operator is kept
in its most general form, i.e. no truncation is performed.

4.3.2 System of coupled equations and boundary con-
ditions

Having expanded the lattice Dirac operator we can insert (4.22) into the
Ginsparg-Wilson equation (4.2) and reform it to obtain

E ≡ −D − γ5Dγ5 + γ5Dγ5D. (4.23)

Now E is hermitean since D is γ5-hermitean. An exact realization of the
GWR would correspond to E = 0.

To find a solution to the linear part of E is no problem. A little bit more
complicated is the computation of γ5Dγ5D but it can be done in a formally
straight-forward manner. First the two elements of the Clifford algebra are
multiplied together giving again an element of the algebra. Then the paths
of the two terms have to be multiplied. This works quite comfortable in the
above introduced short hand notation (4.18):

< l1, l2, l3, . . . , ln > × < l′1, l
′
2, l
′
3, . . . , l

′
n >=< l1, l2, . . . , ln, l

′
1, l
′
2, . . . , l

′
n > .
(4.24)

In the case that two consecutive hops are opposed they cancel each other

< l1, l2, . . . lj−1, lj,−lj, lj+1, . . . , ln >=< l1, l2, . . . lj−1, lj+1, . . . , ln > . (4.25)

Applying this rule all products of paths are reduced to their true length. Then
the paths are rearranged with regard to their symmetry properties and one
again ends up with an infinite series. From that series the coefficients, each
itself representing an infinite series, are obtained. In order to find a solution of
the Ginsparg-Wilson equation the left hand side of (4.23) must be zero. This
means that the coefficients have to vanish simultaneously and we are left with
the problem of solving a system of coupled equations. Before trying to solve
the system of coupled equations we have to add boundary conditions on our
system. This leads to two additional equations: one including only terms
from the scalar sector and the other including only terms from the vector
sector. An additional degree of freedom is added by introducing parameters
zs(β) and zv(β). Each term in the boundary conditions is multiplied by a
certain power of these parameters, making high order terms less important.
The generalized boundary conditions take the form

0 = s1 + 8s2zs + 48s3z
2
s + 8s4z

3
s . . . (4.26a)

1 = 2v1zv + 24v2z
2
v + 4v3z

3
v + . . . . (4.26b)
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The parameters are chosen such that they optimize the spectrum properties
of D near the origin.

4.3.3 Truncation

The expansion of the most general D led to a system of coupled equations
with infinitely many terms. The same is valid for the boundary conditions.
Therefore an appropriate truncation of D is needed in order to leave a finite
solvable problem. The arising question is where the truncation should be
performed.

In the beginning of this section when expanding the most general D we
have included paths of different length. Thus, the appropriate choice for
a cutoff parameter is given by the length of paths in each term in (4.22).
Figure 4.1 shows that the coefficients taken from table 4.1 roughly exhibit
an exponential decrease. Hence the negligence of longer paths provides the
searched cutoff parameter. Though a solution of the Ginsparg-Wilson cannot
be ultra-local [44], locality is achieved if the Dirac operator Dx,y decreases
exponentially as |x − y| increases. But there is also a practical part which
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Figure 4.1: Half-logarithmic plot of the coefficients. The cross corresponds to the
values obtained for β →∞, the diamonds to β = 1.03. The lattice size is 84.

justifies the truncation. Of course, the more terms one includes from (4.22)
the better gets the approximation of the Ginsparg relation. But every new
term included increases the computing time. So one has to make a satisfac-
tory compromise between quality and numerical cost. It turned out that the
storage cost lies below the ones of the overlap operator but above the ones
of the usual Dirac operator.

At this place I add some remarks on the parameters and equations. A
solution of all equations for a finite parametrization of the Dirac operator
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would lead to an ultra-local solution. But this is not the case because the
system of coupled equations is overdetermined and a solution can only be
found for the leading terms, the path length again being the cutoff parameter.

After the truncation, leaving only paths with maximum length of 4 in
lattice units, one is left with a set of 51 parameters (13 scalars, 18 vectors,
15 tensors, 4 pseudovectors, 1 pseudoscalar and zs, zv from the boundary
conditions) and 99 equations (including the two boundary conditions). This
is the starting position for further calculations.

4.3.4 Solving the system of coupled equations

Many lattice calculations involving the chirally improved Dirac operator have
been done recently [38,41,42,45,46] for QCD and it turned out that the DCI

provides a completely alternative possibility to do lattice calculations within
an acceptable amount of time and costs.

My aim was to implement DCI for lattice QED. First of all I should
mention that I was able to do some calculations in the Coulomb phase but
didn’t succeed in solving the system of coupled equations for the confining
phase satisfactorily.

In order to obtain values for the huge set parameters for the chirally im-
proved operator first of all I tried to find some similarity in the their behavior.
To solve the system of coupled equations I have used the Minpack -package,
providing several ways to deal with systems of non-linear, coupled equations,
a conjugate gradient program and Mathematica. Especially Mathematica was
quite handy to use when one already has a good idea for the starting values.
In the free case, with all gauge links set to 1.0, a calculation and plot of the
eigenvalue spectrum was quickly obtained. I started with a set of 6 param-
eters and continued by adding more and more parameters. For every new
parameter I recommenced from the free case, slowly approaching the critical
value of βc = 1.01 until β = 1.03, where I still obtained good results for the
parameters I have chosen. To match the number of expansion coefficients a
new equation had to be included for every new parameter. The criterions for
choosing these equations were:

- the equation which contains all parameters was always included;
the boundary conditions (4.26a) and (4.26b) were always implemented

- in order to meet locality requirements of the Dirac operator the shortest
paths should be more important then larger ones

- large coefficients of the parameters will give bigger contributions
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Figure 4.2: The free case, β → ∞, all gauge links are set to 1, lattice size 84.
The parameters are taken from table 4.1. Note, that near the origin, the region of
physical interest, the eigenvalues lie on the Ginsparg-Wilson circle. The plot was
done with Mathematica.

- linearly occurring parameters are more important, because all param-
eters (except the first one in the scalar sector) are (much) smaller than
1

Despite the above named criteria giving at least a short guide line, the equa-
tions have to be chosen very carefully because many combinations do not fit
together.

The equations for the boundary conditions still contain some freedom for
adjusting the spectrum. A reduction of zs leads to a displacement of the
spectrum on the real axis to the left and is used to adjust the spectrum so
that it runs through the origin, corresponding to m = 0. A reduction of zv
stretches the spectrum in imaginary direction. Choosing these parameters
identical led just in the case for big β (β ≈ 5 and higher) to some proper
results. The splitting between zs and zv becomes larger and larger as β
reaches βc. Actually one can impose boundary conditions also on the tensor,
pseudovector and pseudoscalar sector [43], but this has only been done for
the tensor sector without improving the result significantly.

Table 4.1 shows the parameter values for the free case and for two values
of β near the phase transition. Figure 4.3 shows the physical interesting part
of the spectrum close to the origin. All the above named results were actually
easily obtained in the Coulomb phase.

The next step would of course lead into the confining phase. But this
was not that easy. Going below β = 1.03 the spectrum started to shrink, the
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β =∞ β = 1.03 β = 1.05
s1 1.390137 1.621192 1.620093
s2 -0.023669 -0.022216 -0.022109
s3 -0.019902 -0.021383 -0.021137
s5 -0.001719 -0.001435 -0.001421
s8 -0.003074 -0.003773 -0.003763
s10 -0.000612 -0.000420 -0.000410
s13 0.009736 0.001171 0.001663
v1 0.017454 0.019790 0.019665
v2 0.034295 0.040631 0.039696
v4 0.000776 0.003264 0.003362
v5 0.001406 -0.000333 0.000388
t1 0.000043 -0.002169 -0.001545
t2 -0.041665 -0.027316 -0.028861
t3 0.010719 0.011143 0.011073
t5 0.017047 -0.048020 -0.042481
zs 1.0 0.963 0.973
zv 1.0 0.883 0.878

Table 4.1: The first column shows the DCI parameter values for the free case,
whereas the other two columns show parameter values somewhat above the phase
transition.

eigenvalues crowded in the middle of the Ginsparg-Wilson circle. Neither
a big change in the adjusting parameters zs and zv nor choosing different
parameters and sets of equations helped out of this dilemma. Also the above
named criteria did not apply. It seems that the phase transition has big
influence on the parameters. But as there are no general rules for selecting
those one is quite lost.

What remains are some open questions and ideas which could eventually
apply to the QED confining phase.

The phase transition seems to destroy the ’memory’ of the parameters
from the Coulomb phase. Maybe one has to start again with a small set of
equations in the confining phase. Also other equations and parameters may
become important and in general new criteria for selecting those should be
chosen. Possibly two boundary conditions are too less and other ones may
become relevant as well.

This was a short summary of the calculations and the results I did on the
chirally improved operator. As already mentioned, without finding general
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Figure 4.3: Results from 84 lattices. (a) shows the lowest 80 eigenvalues
at β = 1.05. (b) shows the lowest 50 eigenvalues at β = 1.03. The circle
indicates the GW-circle with radius 1 and center at 1.

applying rules for involving new parameters and/or equations, this is quite
an extensive task. Nevertheless, spectrum information can be obtained in a
much faster way than using the overlap operator and in a much more precise
way than using only the usual Wilson operator.



Chapter 5

Technical part

In this chapter the motivation and technical background for the study of zero
momentum modes is presented. First the topology of the gauge background
is explored. Thereafter the essential features of zero-modes are discussed.
Whenever possible a connection between those subjects will be established.

5.1 Motivation

The Atiyah-Singer index theorem [47] relates the topological charge of the
background gauge field configuration to the number of fermionic zero-modes
of the Dirac operator. A major progress in understanding the manifestation
of the index theorem on the lattice was the realization that the eigenvectors of
the lattice Dirac operator with real eigenvalues should be interpreted as the
lattice counterparts of the continuum zero-modes (cf. collection of results
in [48]). This can be understood from the fact that only eigenvectors ψ
with real eigenvalues can have non-vanishing pseudoscalar matrix elements
〈ψ|γ5ψ〉, like the zero-modes in the continuum.

The Atiyah-Singer index theorem states a particular connection between
the background gauge field and the fermionic fields. Hence it is of interest
to study the topology of the gauge background as well as the properties of
the zero modes of the Dirac operator. The next step would be to look for
possible connections between those.

In this chapter the background and technical details of both, the zero
momentum modes and their possible relation to the gauge background are
discussed.

43
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5.2 Topology of the gauge background

In three dimensions a theory with internal symmetry group U(1) shows con-
finement for all values of β. This can be understood as the result of topologi-
cal excitations [49,50]. Thus it is naturally to ask which topological artefacts
are contained in 4-dimensional QED. In the next subsections topological ob-
jects of the gauge field configurations like monopoles, Dirac sheets and others
will be discussed and possible connections to the zero mode occurence of the
Dirac operator will be established. The authors in [51] conjecture that chi-
ral symmetry breaking in compact lattice QED can be ascribed entirely to
monopoles.

The appearence of confinement in three dimensions can be led back to the
occurrence of magnetic monopoles. The search for monopoles makes use of
Gauss’s law. By measuring the total magnetic flux passing through a closed
surface in the lattice we can determine whether or not the surface closes
about a monopole.

As we shall see in the next section lots of effort have been invested in
order to ascribe confinement in QCD to monopole condensation. In compact
lattice QED, magnetic monopoles occur naturally in the confining phase.
The study of those may serve to better understand the confining mechanism
in QCD. The interested reader is refered to [51–56].

First we rewrite the Wilson action (3.11) in the form

S[U ] = β
∑

x,µ>ν

(1− cos θx,µν), (5.1)

where the link variable Ux,µ = exp(iθx,µ) ∈ U(1) and θx,µ ∈ (−π, π]. The
plaquette angles are given by θx,µν = θx,µ+θx+µ̂,ν−θx+ν̂,µ−θx,ν ∈ (−4π, 4π).

Then the flux can be defined for small angles θ by [22]

ds ·B =
∑

surface

dsµ
1

2
εµνρ(∇νθρ −∇ρθν) =

∑

surface

θP, (5.2)

where θP is the oriented plaquette angle. According to this definition the net
flux for any closed surface would be zero because each link appears twice,
once with plus and once with minus sign.

Now we assume according to [22] that the plaquette angle θx,µν consists
of a physical flux θ̄x,µν which lies in the range (−π, π] and Dirac strings which
carry 2π units of flux. Then we obtain

θx,µν = θ̄x,µν + 2πnx,µν , (5.3)

where nx,µν = 0,±1,±2 is the number of Dirac strings passing through the
plaquette θx,µν . Plaquettes with nx,µν 6= 0 shall be called Dirac plaquettes.
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The monopole content of 3d cubes is obtained by simply counting the number
of Dirac strings entering or exiting the cubes

2πMx,ρ = ∇σερσµν θ̄x,µν = 2περσµν∇σnx,µν . (5.4)

The middle part of (5.4) is the lattice equivalent of M(x) = ~∇ · ~B. Adding
multiples of 2π to any of the link variables can move the Dirac strings but
cannot change the net number entering or exiting a volume. From the above
said it is clear that we have to choose the compact formulation of QED in
order to extract the topology discussed here.

In close respect to the monopoles are the Dirac sheets. The dual integer
valued plaquettes

n∗x,µν =
1

2
εµνρσnx,ρ,σ (5.5)

form Dirac sheets bounded by the worldlines of monopole-antimonopole pairs.
Dirac sheets can also be closed surfaces in the absence of monopoles and an-
timonopoles due to the periodic boundary conditions. Monopoles are topo-
logically point-like objects in 3 dimensions and their worldlines on the dual
lattice are closed, either within the lattice volume or by the periodic bound-
ary conditions. A Dirac sheet in a 2-dimensional plane on a 4-dimensional
lattice must contain at least L · L Dirac plaquettes.

In 4 dimensions the monopoles become 1-dimensional, and, due to the
magnetic flux conservation, they form closed loops. Instead of (5.4) one can
also calculate the net flux through the volumes

2πMρ,x =
1

2
ερσµν(θ̄µν,x+σ − θ̄µν,x), (5.6)

where Mρ(x) can adopt the values 0,±1,±2. It is clear that adding multiples
of 2π to any of the link variables can move the Dirac strings but does not
change the net number entering a volume. To count the monopoles in the
whole system the monopoles from the subsystems (in my case cubes of unit
volume) are simply added up.

The magnetic charge M , which is defined in (5.6) and has the following
properties:

• M is quantized and assumes the values 0,±1,±2

• In the case M 6= 0 there exist a magnetic current j.

• The monopole currents are conserved and form closed loops on the
lattice. The loops are closed either by the lattice volume or by the
periodic boundary conditions.
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5.3 Zero modes of the Dirac operator

In chapter 4 we have seen that 〈ψ|γ5|ψ〉 is zero unless the eigenvalue λ, sat-
isfying D|ψ〉 = λ|ψ〉, is real. Furthermore, applying the projection operator
P±, defined in (2.12), we obtain the chirality ±1 of the zero modes. Only
exact zero modes should have definite chirality. For later convention a zero
mode with 〈ψ|P±|ψ〉 = ±1 is called right-(left-)handed.

Having obtained a lot of spectra we have to identify eigenmodes as zero
modes. Using the overlap operator from the last chapter we know that the
eigenvalues have to come in complex conjugate pairs (4.10) and are projected
somehow on the unit circle. The real eigenvalues of the kernel Dirac operator
in the physical part of the spectrum are projected to the left and characterized
by having a zero imaginary part.

5.3.1 Localization properties of zero momentum modes

It is well-known in QCD that if we have an instanton configuration, the Dirac
operator will show a zero mode localized in space-time around the center of
the instanton [46,57]. Nothing is known about the localization properties of
zero modes in QED. In order to quantify the localization, gauge invariant
observables, which inherit this localization, have to be consulted. To gain
a bit more insight into the properties of these zero modes is subject of this
chapter.

The simplest gauge invariant quantity which displays this localization is
obtained by summing |ψ(x, d)|2 over the Dirac indices d at each space-time
point x. The lattice version of this scalar density ρ(x) is given by

p(x) =
∑

d

ψ(x, d)∗ψ(x, d) ≡ ψ†(x)ψ(x), (5.7)

where ψ(x, d) is an eigenvector of the lattice Dirac operator, normalized in a
way that ∑

x

p(x) = 1. (5.8)

For an eigenvector ψ, being a zero-mode of our Dirac operator, γ5ψ is also
an eigenvector with γ5ψ = ±ψ because as γ2

5 = 1, the eigenvalues of γ5 can
only be ±1. With this knowledge the so-called chirality is defined as

p5(x) =
∑

d

ψ(x, d)∗γ5ψ(x, d) ≡ ψ†(x)γ5ψ(x), (5.9)

The chirality actually provides a measure for the amount of chiral symmetry
breaking because it takes on its largest value for the zero modes, namely
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±1, and is zero otherwise. Again it is assumed that the eigenvectors are
normalized.

Of course one can define many more gauge invariant densities pσ(x) in
the same manner as (5.7) and (5.9).

A convenient localization measure taken over from condensed matter
physics, the so-called inverse participation ration, is introduced for further
quantization of the localization (see for example [38]). It is defined as

I = V
∑

x

p(x)2, (5.10)

where V is the volume of the lattice. To become acquainted with this variable
a closer look at some extreme values I can take on may be helpful [58].

• I is largest if the whole contribution to the density results from one
lattice point x. With the normalization condition (5.8) this states that

p(x) = δxy and p(x)2 = δxy. (5.11)

Summing p(x)2 over all lattice points x we obtain 1 and thus the inverse
participation ratio (5.10) is I = V .

• Now we assume the opposite case, namely the density is equally dis-
tributed on all lattice sites,

p(x) =
1

V
and p(x)2 =

1

V 2
. (5.12)

In this case the summation of p(x)2 over all lattice points is V and the
inverse participation ratio gives 1.

• Another case of interest occurs if we have n non-overlapping objects,
each occupying a volume V0 and p(x) = r inside the volume. Outside
of the volume p(x) = 0 and hence r = 1/nV0. The inverse participation
ratio now gives

I = V
n∑

i=1

1

n2V 2
0

=
V

nV 2
0

=
1

ρV0

, (5.13)

where ρ = nV0/V is the density of the objects. Note that for ρ = const,
I should be independent of the volume V .

From the cases considered above we can conclude that the inverse partici-
pation ratio is large if the scalar density is localized and decreases to 1 the
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more the density is spread out. Thus it is an appropriate measure for the
localization of an eigenmode.

Analogously to (5.10) the pseudoscalar inverse participation ratio is de-
fined by

I5 = V
∑

x

p5(x)2. (5.14)

This is a measure for the localization of the pseudoscalar density p5(x). In
the case of exact zero modes, I5 is equal to I because p(x) = |p5(x)| for these
configurations. This is because of the chirality of the zero modes which is
±1. Generally it follows from (5.7) and (5.9) that

p(x) ≥ |p5(x)| (5.15)

and from (5.10) and (5.14) we obtain

I ≥ I5. (5.16)

If we consider an eigenmode corresponding to an eigenvalue far from the
origin, p5(x) will be much smaller then p(x) and fluctuate around zero. In
this case I5 is expected to be significantly smaller than I. But the closer the
eigenvalues come to zero the more increases I5 and the ratio I5/I is expected
to be close to 1.

5.3.2 Γσ densities

In the last section we have seen by looking at the inverse participation, a
measure for localization, that we can expect clearly localized objects in the
confinement phase of QED. As already mentioned there are more then only
the scalar and pseudoscalar densities which one can consider. For every
element of the Clifford algebra we can define a density in the same manner
as (5.7) or (5.9)

pσ(x) =
∑

d

ψ(x, d)∗Γσψ(x, d) ≡ ψ†(x)Γσψ(x), (5.17)

where Γσ denotes an element of the Clifford algebra (for the notation and
numbering of Γσ see the appendix). The idea behind the calculation of the
different densities is to see whether the right and left handed zero modes are
sensitive to different topological sectors and whether there are interrelations
between the different Γσ densities.

When analytically calculating 〈ψ(x, d)|Γσψ(x, d)〉 a certain correlation
between the elements of the Clifford algebra Γσ is expected concerning the
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〈ψ̄|Γ15ψ〉 = +1 〈ψ̄|Γ15ψ〉 = −1

p1 = p11 p1 = −p11

p2 = p12 p2 = −p12

p3 = p13 p3 = −p13

p4 = p14 p4 = −p14

p5 = −p10 p5 = p10

p6 = p9 p6 = −p9

p7 = −p8 p7 = −p8

Table 5.1: The table shows the interrelation between the densities of the different
topological sectors, expected from the commutation relations between the Dirac
matrices.

chirality of the eigenmodes. Table 5.1 shows the expected interrelation in
the densities (5.17) between the Γσ’s for different chirality. Note, that the
usual used γ5 is denoted by Γ15 now! The results in the table are simply
obtained by using the anti-commutation relation for the Dirac matrices γµ
and γ5 (Γ15).



Chapter 6

Results and Discussion

The first sections contain a summary of the results I have obtained by fol-
lowing the afore described methods and ideas. An attempt of interpretation
and discussion of the results is attached. At the end of this chapter some
visualization of the localization of modes is presented.

6.1 Gauge fields and Diagonalization

To obtain the background gauge fields I have used the Metropolis updating
algorithm discussed in section 3.7. All configurations are well uncorrelated,
separated by 5000 updating sweeps, each sweep consisting of 3 Metropolis
and one overrelaxation step applied to every link on the lattice. Different
values of β were used in the Coulomb phase as well as in the confining phase
but most of the calculations were done for β = 0.99, just below the phase
transition in the confining phase (this is actually only valid for a lattice size
≥ 84).

For the values of β near the phase transition I have produced several hun-
dred well uncorrelated configurations on the 44, 64 and 84 lattices and 100 on
124 lattices. The number of configurations deep in the confining phase and
in the Coulomb phase was kept lower.

For the computation of the eigenvalues and eigenvectors the so-called implic-
itly restarted Arnoldi method [59] was used. This is a diagonalization routine
for large, sparse non-hermitean matrices. As input operator I have used the
overlap operator with the usual Wilson operator, built up from the before
produced gauge field configurations, as kernel. From the overlap formalism
(section 4.2) we know the physical part of the spectrum to be near the origin.
Thus, only the lowest 12 eigenvalues and eigenvectors were calculated for the
84, 64 and 44 lattices, whereas on the 124 lattices the lowest 10 eigenvalues

50
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were calculated. The search criterion for the eigenvalues was their modulus,
meaning the computation of eigenvalues around the origin until the desired
number and accuracy was achieved.

6.2 Zero mode statistics

In the next step it was of interest to look for exact zero modes of the Dirac
operator. The criterion for identifying an eigenvalue as a real one was the
condition, that the chirality is ±1.

L #conf n
(0)
0 n

(1)
0 n

(2)
0 n

(3)
0 ntot

0

4 400 397 3 0 0 3

6 400 376 24 0 0 24

8 500 323 173 4 0 181

12 100 36 44 15 5 89

Table 6.1: Number of zero momentum modes n
(ν)
0 with degeneracy ν for different

lattice sizes and β = 0.99.

L #conf n
(0)
0 n

(1)
0 n

(2)
0 ntot

0

4 400 321 76 3 82

6 400 253 143 4 151

8 400 165 206 29 264

Table 6.2: Number of zero momentum modes n
(ν)
0 with degeneracy ν for different

lattice sizes and β = 0.9.

In the confined phase lots of zero modes were found whereas no zero
modes appeared in the Coulomb phase. The zero-mode number is depicted
in table 6.1 for β = 0.99 and in table 6.2 for β = 0.9. n

(ν)
0 denotes the number

of configurations showing n0 zero modes with degeneracy ν. Thus, the total
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number of zero modes of all configurations for a given lattice size is

ntot
0 =

∞∑

ν=1

νnν0. (6.1)

For β = 0.99 the highest observed degeneracy was 3 on the 124 configurations.
No zero modes were found in the Coulomb phase.

The small number of zero modes on the 44 lattices can possibly be ascribed to
the fact that phase transitions on smaller lattices take place somewhat below
βc or that the lattice is to small and finite size effects become important.

β = 0.99 β = 0.9

0

0.5

1

L=4

0

0.5
L=6
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-3 -2 -1 0 1 2 3
zero mode degeneracy ν

0

0.5
L=12

0

0.5

1
L=4
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zero mode degeneracy ν
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L=8

Figure 6.1: The plots show the number of zero momentum modes versus the zero
mode degeneracy for two values of the inverse coupling. On the y-axis the number
of zero modes is divided by the number of configurations.

The importance of finite size effects can be visualized even more clearly.
Figure 6.1 shows the number of exact zero modes with plus or minus chirality
for two different values of β. The scale on the x-axis denotes the degeneracy
ν with the sign being the chirality ±1. The scale on the y-axis represents
the number of zero modes divided by the number of configurations. Clearly
a volume dependence of the degeneracy of the zero modes is seen. The zero
mode degeneracy is increased the more volume is available. This can be
observed for both β = 0.99 and β = 0.9.
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Figure 6.2: This figure shows the logarithm of the number of the zero modes
normalized by the number of configurations versus the logarithm of the volume.

In figure 6.2 the total number of zero modes, defined in equation (6.1),
divided by the total number of configurations is plotted against the volume
in a double logarithmic plot for two values of β. Both lines tend to reach
the value ntot

0 /nconf = 1 as the volume increases. But this implies that in the
infinite volume limit all configurations should exhibit zero modes. On the
other hand this again supports the importance of finite size effects in small
lattice volumes.

6.3 Monopole statistics

Having obtained the configurations exhibiting exact zero modes the next
step was to look at the topology of the configurations themselves. Possible
relationships between the zero mode degeneracy and the topological objects
are tried to be established.

Following the definitions from section 5.2 the percentage of monopoles of
the whole lattice volume was calculated. To obtain the correct normalization
the monopole number is divided by 4 · L4 because on the dual lattice the
monopoles are one-dimensional objects and from equation (5.4) we see that
we also have to take the four directions ρ into account. The number of
Dirac plaquettes in a 2-dimensional plane is calculated as well. This quantity
is called a Dirac sheet by the authors in [55]. As Dirac sheets defined in



CHAPTER 6. RESULTS AND DISCUSSION 54

L ν nDp/V %nm

4 0 0.034(7) 6.15

4 1 0.075(52) 11.98

6 0 0.026(8) 11.90

6 1 0.028(9) 12.1

8 0 0.016(4) 11.88

8 1 0.016(5) 11.85

8 2 0.016(7) 11.2

12 0 0.0065(18) 11.75

12 1 0.0075(20) 11.90

12 2 0.0063(23) 11.85

12 3 0.0065(29) 12.13

Table 6.3: Percentage of monopoles %nm of the whole lattice volume and number
of Dirac plaquettes in a two-dimensional plane nDp per lattice volume for different
lattice sizes and zero mode degeneracy ν at β = 0.99. The values in the table
are averages over all configurations. The numbers in brackets denote the relative
error.

equation (5.5) are gauge invariant objects I will refer to them simply as
Dirac plaquettes. In the same step the magnetic charge M from equation
(5.6) was calculated.

The results for the monopoles and Dirac plaquettes are shown in tables
6.3 and 6.4 for two different values of β in the confining phase. The second
column denotes the zero mode degeneracy ν. At these β values a large
number of monopoles was found. At β = 0.99 more than 10 percent of
the lattice volume consisted of monopoles. This value is increasing as the
coupling becomes stronger and at β = 0.9 we observe nearly 20 percent
monopoles. All lattice sizes and topological sectors ν show nearly the same
monopole percentage except the 44 lattice at β = 0.99. The reason was
suggested in the last section and may be due to finite size effects or the
smaller βc value for smaller lattices.

The number of Dirac plaquettes slightly differs on the different lattices
but is nearly constant for all topological sectors for a given lattice size.
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L ν nDp/V %nm

4 0 0.062(9) 19.40

4 1 0.064(18) 19.48

4 2 0.054(20) 18.93

6 0 0.027(8) 19.45

6 1 0.026(9) 19.38

6 2 0.034(13) 18.73

8 0 0.016(4) 19.56

8 1 0.016(5) 19.45

8 2 0.016(7) 19.28

Table 6.4: Percentage of monopoles %nm of the whole lattice volume and number
of Dirac plaquettes in a two-dimensional plane nDp per lattice volume for different
lattice sizes and zero mode degeneracy ν at β = 0.9. The values in the table are
averages over all configurations. The numbers in brackets denote the relative error.
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Figure 6.3: The plot shows the exponential suppression of monopoles in the
Coulomb phase.

On the other hand the number of monopoles is exponentially decreasing
(Figure 6.3) as β shifts through βc but doesn’t vanish completely until β ≈
1.6, depending on the lattice size. The stronger the coupling the more the
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monopole number increases. As β → 0 it is expected that the whole lattice
volume consists of monopoles.

The same exponential decrease in the Coulomb phase was also observed
for the number of Dirac plaquettes.

Concerning the magnetic charge it was found that for β ≈ βc almost all
monopoles have magnetic charge M = ±1. As a cross-check the net magnetic
flux (see section 5.2) through the whole lattice volume was calculated and
always obtained to be zero.

By looking at the tables 6.3 and 6.4 and comparing the values for different
topological sectors obviously no clear correlations can be concluded. Some
values are somewhat different from others but this may be due to the low
statistics. We may draw the conclusion that no relevant relationship bet-
ween the zero mode degeneracy of the Dirac operator and the occurrence of
topological objects of the corresponding background gauge field at this stage
can be established.

6.4 Density of the smallest eigenvalues

Interesting conclusions can also be drawn by the studies of the near zero
modes and hence it may be worth to throw a short glance at those.

Chiral symmetry breaking is a key feature of the theory of strong inter-
actions, QCD. This is accompanied by the creation of a chiral condensate
〈ψ̄ψ〉. It is related to the density of eigenvalues ρ(λ) of the Dirac operator
at the origin via the Banks-Casher relation [60] and this in turn is related to
the pion mass via the Gellmann-Oakes-Renner relation [61]. Compact lattice
QED shows a confining phase for certain values of the coupling constant and
hence we might also expect the appearance of a chiral condensate. The con-
densate is built up from the small eigenvalues and hence it was self-evident
to look at the smallest eigenvalues of the Dirac operator.

The distribution of the smallest eigenvalue p(λmin) for a given lattice size
L is obtained by binning the imaginary part of the eigenvalue and counting
the number of eigenvalues in each bin. The result is shown in figure 6.4 for
two different values of β and the topological sectors ν = 0, 1. The exact zero
modes have been left out. The sector ν = 2 and the distribution for L = 4, 6
in the ν = 1 have been left out because of the low statistics.

A common feature of all of the figures in 6.4 is that the smallest eigenval-
ues start to crowd near the origin as the lattice size increases and β decreases.
In the sector ν = 0 and β = 0.9, p(λmin) reaches zero already on 44 lattices
whereas at β = 0.99 only larger lattices have eigenvalues near the origin. The
distribution in the topological sector ν = 1 is clearly farther from the origin
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Figure 6.4: The plots show the distribution of the smallest non-zero eigenvalue
p(λmin) on the y-axis versus the imaginary part of the eigenvalue. The left-hand
plot (a) corresponds to β = 0.99 whereas the right-hand plot (b) represents the
data at β = 0.9. Notice the difference in scaling on both axis.

then in the sector ν = 0. This may be understood from the fact that the
’space’ at the origin is already occupied by a zero mode (which have been left
out in the distributions p(λmin)) and is a typical feature in random matrix
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theory.
From the presence of near zero modes very close to the origin the build-up

of a chiral condensate is supported.
On the whole the distributions in figure 6.4 show a similar shape. This

can be explained by random matrix theory, which predicts the statistical
properties of the spectrum near the origin based on universality arguments
[62]. For a study of the statistical properties of the low lying edge of the
spectrum in lattice QED see for example [55, 56].

6.5 Localization

Until now it has not been checked whether the zero modes and near zero
modes are localized or not. In subsection 5.3.1 the inverse participation ratio
as a suitable measure for the localization of eigenmodes was introduced. In
order to observe the predicted localization also the exact zero modes have
been included.

The inverse participation ratio (5.10) is shown in figure 6.5. It is obtained
by binning according to Im(λ). The obtained distributions are symmetric
with respect to the real axis and hence only the part with Im(λ)> 0 is
shown. For all values of β and lattice sizes 〈I〉 is large in the vicinity of the
origin, meaning that the zero and near zero modes are localized objects. It
should be mentioned here that for single exact zero modes 〈I〉 reached values
of about 5 − 7, which is significantly larger than for the non-zero modes.
Thus we can conclude in agreement with assumptions made in subsection
5.3.1 that the exact zero modes are localized are well localized objects.

The also mentioned pseudoscalar inverse participation ratio has not been
calculated explicitely but its properties will be clear when discussing the
results for the densities from different topological sectors in the next section.

6.6 Other densities

In subsection 5.3.2 it was pointed out that the scalar and pseudoscalar den-
sities are not the only ones one can consider. Actually there are 14 more and
the question is whether the left- and right-handed zero modes are sensitive
to the different densities and if the expected interrelations from table 5.1 are
fulfilled.

The definition of the Γ-matrices can be found in A.3. For the calculation
of the densities equation (5.17) was used. Note, that Γ15 in this context is the
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Figure 6.5: The graphs show the inverse participation ratio for different lattice
size and different β. Notice the difference in scaling on the y-axis for the L = 12
lattice.

usual γ5! In order to check whether the interrelations predicted in table 5.1
hold, certain densities are compared because they are expected to give the
same result. If we consider for example an eigenmode with 〈ψ|Γ15ψ〉 = +1,
it follows that |ψ〉 = |Γ15ψ〉 and thus e.g.

p1 = 〈ψ|Γ1Γ15|ψ〉 = 〈ψ|Γ1|ψ〉. (6.2)

The pseudoscalar density was obtained to be exactly ±1 in case of exact
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zero modes and zero otherwise. The densities in the vector (p1 − p4) and in
the axialvector (p11 − p14) sector fulfill the relations predicted in table (5.1).
They have zero magnitude in case of exact zero modes and take on values
O(10−1 − 10−2) for non-zero eigenmodes.

The densities in the tensor sector (p5− p10) adopt values O(10−1− 10−2)
in magnitude in case of zero momentum modes whereas the interrelations
from table (5.1) are fulfilled.

For non-zero modes the predicted relations are not valid any longer in all
sectors whereas the magnitude is O(10−1 − 10−2).

From the obtained results it can be concluded that the vector, tensor and
axialvector sector are not very useful concerning the studies of localization
properties. With the exception of the scalar and pseudoscalar density, there
seems to be no clear sensitivity of the different Γσ’s to the zero momentum
modes.

To anticipate part of the next section, no clear structure in the 3-dimensional
visualization of the respective density has been observed.

6.7 Visualization

In order to better understand the body structure of the occurring density
objects it is desirable to have a visualization of these objects. The visual-
ization of the 4-dimensional objects was performed by making 3-dimensional
cuts through the lattice, namely in all 4 directions. Thus, on a L4 lattice I
obtained all in all 4 ·L 3d volumes, L in each direction. Then the 3d cuts in
each direction have been joined into a movie in order to visualize the ’time
evolution’ of the density objects in certain directions.

The 3-dimensional cuts through the lattice and their visualization have
been done with IDL. The picture sequence in figure (6.6) shows the evolution
of the scalar density for the 4 directions on a 84 lattice. The density corre-
sponds to an eigenvector of an exact zero-mode with positive chirality. For
negative chirality states the density would not change in form, just in sign.
The down-arrows point in the different directions of the evolution. Due to
the periodicity of the boundary conditions the sequence does not end at pic-
ture 8 but starts at picture 1 again. The number on the right shows the order
in which the pictures should be viewed and the arrows pointing to the right
indicate the respective cut number for the different cuts. The density isosur-
face was chosen large enough to show the the dominating localized objects
and small enough to not overwhelm the plot with background fluctuations.
The value of the depicted isosurface is the same for all pictures showed in
the sequence.
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Evolution of the scalar density on a 84 lattice

t x y z
↓ ↓ ↓ ↓

1→

2→

3→

4→

↓ ↓ ↓ ↓
continue on the next page
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t x y z
↓ ↓ ↓ ↓

5→

6→

7→

8→

Figure 6.6: The four sequences show the ’time’-evolution for the scalar density
for a zero-momentum mode with positive chirality. The down arrows denote the
direction (x,y,z,t) in which the cuts 1. . .8 have been done.
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Some structures occurring in the scalar density

(a) (b)

(c) (d)

(e) (f)

Figure 6.7: The six plots show some density structures which frequently occur
when cutting the scalar density. All graphs are obtained from exact zero modes.
Figures (a) and (b) are from 84 lattices, whereas (c)-(f) are from 124 lattices.
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Different topological objects are seen in these plots. There are clearly
localized loop-like objects which are closed by the periodic boundary condi-
tions. Localization in this context means that these object do not change
very much in size and their position on the lattice. That these objects form
closed loops on the periodic lattice can be seen if the sequences are used
as a never-ending flip-book following the down pointing arrows. This might
be the worldlines of monopole-antimonopole pairs. Follow for example the
arrow pointing down in t- or y-direction. But there are also such objects
which are not closed by the boundaries. Again making use of the flip-book,
these objects will appear as a kind of pulsars.

In all observed sequences no direction was somehow outstanding con-
cerning the structure, meaning that the anti-periodicity of the boundary
conditions has no influence on the density.

For zero modes with definite chirality we have for the eigenvectors γ5|ψ〉 =
±|ψ〉. Thus the density is equal for right-handed eigenmodes and differs in
sign for the left-handed modes. This has also been observed.

Figure (6.7) shows some special objects which have been observed more
or less often in the density structure. 6.7(a) shows two localized structures
distinct from each other. Sometimes they are stable over some evolution
steps and may connect to each other. The result is an ’elongated bubble’
shown in 6.7(f). The larger the lattice the more separated localized objects
occur. This can be seen on the cutout 6.7(c) from a 124 lattice. Quite
often the localization is accompanied by a lot of fluctuations, which appear
and vanish from one picture in the sequence to the next (see figure 6.7 and
6.7(e)). Objects, as depicted in 6.7(b) and 6.7(d), only occur very seldom,
though they are very ’beautiful’ in their structure.

Generally, the structures were observed to be much more distinct on the
larger lattice volume. On 44 lattices the finite size effects made it almost
impossible to detect a single localization. This confirms the results obtained
from the inverse participation ratio, namely the increase of the localization
as the lattice size increases.

Going to near zero modes and maybe even further away from the origin
such structures do occur but only for a short part in the sequence. In this
case it is almost impossible to speak about localization because these objects
are hardly to distinguish from the increasing fluctuations.

The same procedure was repeated for configurations deep in the confining
phase, at β = 0.9. Objects exhibiting the same structures do occur with an
even narrower localization. On the other hand though their ’life-time’ was
much shorter than at β = 0.99.

Conclusive we may say that the localizations in the scalar density have
been proved by eye, too, and the results obtained from the inverse participa-



CHAPTER 6. RESULTS AND DISCUSSION 65

tion ratio have been confirmed.

It should be mentioned here that the study of these visualizations has to
be done by hand. Thus, only a short amount out of the huge set of eigen-
vectors has been elaborated and seen through. The results here may not
have statistical significance, though the expected localization is confirmed
and interesting graphical material to think about has originated.

6.8 Further checks on the topological objects

The confining phase of QED clearly shows well localized objects. In order to
gain further insight into the occurrence and behavior of the different density
objects, two tests concerning the behavior of the densities under a change in
the gauge fields, were applied to the gauge fields.

First I have added a phase φµ to the link variables on each lattice site x,
defined by

φx,µ = 2π n/L, n = 1, . . . , L, µ fixed (6.3)

where L denotes the lattice extension in the considered direction and µ can be
one of the four euclidian space-time directions. Than, for a certain direction
µ, the angle of the link variable is shifted to θx,µ → θx,µ+φx,µ. The reason to
do so was to eventually observe a kind of winding of the topological objects
in 3 dimensions.

The link angle φx,µ was added to θx,µ in a single direction µ, whereas
this was done for a fixed µ = (e.g. µ = 1). This procedure was applied
only to configurations exhibiting a zero mode. Such an additional phase
leaves the plaquette action invariant. However, due to the finiteness there
is no gauge transformation connecting the two systems. The characteristic
polynomial coefficients of the eigenvalue equation involve traces over closed
loops and thus may differ due to periodically closed loops. The number of
monopoles and Dirac plaquettes did not change, either. Only the number of
Dirac plaquettes was different for the gauge fields with the new phase.

The Dirac matrix was diagonalized again and the eigenvalues were com-
pared with the ones without an added phase. The result was that the config-
urations with the new phase only sometimes showed the zero mode contained
in the original configuration. This means that adding a phase in one direction
will not always result in a configuration again exhibiting a zero mode.

When looking at the 3 dimensional density structure of the new eigenvec-
tors we obtain a completely different picture, no matter in which direction
the phase was added. Thus, changing θx,µ in e.g. the t-direction will alter
the density structure in the x−, y− and z−direction as well.
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Secondly, when discretizing the Dirac operator for a given gauge configu-
ration the boundary conditions were changed from mixed-periodic to periodic
ones. The idea was again to eventually observe a certain change in the density
structure.

The eigenvalues and eigenvectors were calculated again and the corre-
sponding densities were compared with the ones obtained from mixed-periodic
boundary conditions. Also in this case the observed new 3-dimensional struc-
ture had no similarity with the old one at all. There was also a change in
the monopole and Dirac plaquette number observable.

No certain pattern in the manner the density structure changes by adding
a phase or changing the boundary conditions has been. Nevertheless, the
structures do change and it will be part of future work to maybe find such a
pattern.

Again this has to be done by hand and only a few configurations have
been exploited.
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Conclusions and Outlook

The first practical part of my thesis consisted of searching for parameters for
the chirally improved operator. This was possible for all values of β in the
Coulomb phase, even quite close to βc. Below the phase transition several
problems prevented me to find suitable parameters keeping the eigenvalues
on an approximate Ginsparg-Wilson circle.

The second step was to study the properties of the zero momentum modes
and eventually exhibit a possible connection between the zero-mode degener-
acy of the Dirac operator and the underlying gauge field configurations. To
this end the eigenvalues and eigenvectors for the overlap operator were cal-
culated. In the confined phase zero modes were found, its number depending
on the lattice size and the value of the inverse coupling. Some statistics con-
cerning the zero mode degeneracy of the Dirac operator at different values
of β has been obtained.

For the pure gauge field part the monopole number and number of Dirac
plaquettes were calculated for all gauge field configurations at different values
of β, both, in the confining phase and in the Coulomb phase. A large number
of monopoles and Dirac plaquettes was found in the confining phase.

Apart from the exponential decrease of monopoles and Dirac sheets and
the absence of zero modes in the Coulomb phase no clear evidence for an in-
terrelation between these topological objects and the number of zero modes
of the Dirac operator was found. The obtained statistics suggests to the con-
clusion that magnetic monopoles play an important role in the confinement
mechanism of lattice QED.

In a third step properties of the zero and near zero modes of the Dirac
operator were computed. The smallest eigenvalues were binned according to
their imaginary part. After having obtained this distribution the so-called
inverse participation ratio was calculated. It provides a way to measure
the localization of eigenmodes. The evidence for localization comes from an

67



CHAPTER 7. CONCLUSIONS AND OUTLOOK 68

increase of the inverse participation ratio for near zero modes. For exact zero
modes it is significantly larger than for only near zero modes and hence the
conclusion is that the exact zero modes are well localized.

The scalar density, included in the inverse participation ration, is only
one out of 16 which have been calculated. The density 〈ψ(x)|Γ15ψ(x)〉, rep-
resenting the chirality of eigenmodes, was obtained to be exactly ±1 for the
right-(left-)handed zero modes. All other densities were obtained to fulfill
certain interrelations but are not a skilled help concerning the study of lo-
calization properties.

After having found that the exact zero modes are well localized it is prefer-
able to visualize these localizations. Therefore 3-dimensional cuts through
the lattice were performed in order to get further insight into the localization
properties of the eigenvectors. The above mentioned localization is certainly
seen for values of β not too far beneath the phase transition and as long as the
density 〈ψ(x)|Γiψ(x)〉 is exactly ±1, i.e. for exact zero modes. The stronger
the coupling the smaller the localization of these objects. A lot of interesting
structures did occur whereas they are not yet understood completely. Some
of these objects were also closed by the periodicity of the boundary condi-
tions and might be the worldlines of monopole anti-monopole pairs. Others
showed clear localization but no closure within the lattice volume.

Two tests concerning a shift in the phase of the link variables have been
applied to the gauge fields in order to further shed light on the structure of
these objects.

Content of further studies may be to apply a cooling procedure to the
gauge fields which could eventually remove the fluctuating background seen
in the density pictures. This could in turn improve the localization.

The localization of the zero momentum modes has been shown by looking
at the inverse participation ration and confirmed by their visualizations. Lots
of structures did occur during the visualization whereby also a lot of new
questions arose. Though the visualized densities have to be seen through by
eye and hence their studies are quite time consuming, it may be helpful in
order to get more insight into the localization properties of zero modes.
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Technicalities

A.1 Elements of the Grassmann algebra

The mathematics or formalism to deal with anticommuting c-numbers was
already developed by Grassmann in the latter half of the 19th century.

The Grassmann numbers are constructed from real or complex numbers
and generators. For every fermion state we define a pair of Grassmann vari-
ables (Ci, C

†
i ), which are called generators of an Grassmann algebra, if

{C†i , Cj} = {Ci, Cj} = {C†i , C†j} = 0, i, j = 1, . . . N.

Note that C2
i = 0. In applications, we are interested in functions of products

of η and η̄, where
η = ψCi, η̄ = ψ̄Cj.

ψ and ψ̄ are Dirac c-number spinors and conjugate spinors. A general element
of this algebra is defined as a power series in the ηi’s. This power series has
only a finite number of terms, i.e. for one η and one η̄:

f(η̄, η) =
∞∑

n=0

fn(η̄η)n = f0 + f1η̄η. (A.1)

The coefficients fn are assumed to be complex numbers. The addition of
Grassmann numbers and multiplication with ordinary numbers is ensured by
means of addition and scalar multiplication in any vector space. The main
thing in dealing with Grassmann numbers is to integrate them. To define
functional integration, we just need an analog of

∫∞
−∞. A given Grassmann

variable η can at most appear to the first power in a function f . Therefore
the following rules are sufficient to calculate an arbitrary integral:

∫
dηi = 0

∫
dηiηi = 1.

69
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In multiple integrals one has to keep in mind that the integration measures
{dηi} anticommute among themselves as well as with all ηi’s

{dηi, dηj} = {dηi, ηj} = 0, ∀i, j,

i.e. they are also Grassmann variables. η† and dη† are defined by the anti-
commutator

{η, η†} = 0, {dη, dη†} = 0.

With these rules the integration of a function is defined as follows

∫
dη dη†f(η†, η) = −

∫
dη†dηf(η†, η) ≡ f1.

A simple application of this rule is

∫
dη†dηeλη

†η =

∫
dη†dη(1 + λη†η) = −λ.

Another example shows the case with an additional pair of Grassmann vari-
ables ξ̄ and ξ ∫

dη̄dηe−λη̄η+ξ̄η+η̄ξ = λeλ
−1ξ̄ξ.

Derivatives with respect to Grassmann variables can also be defined on the
space of functions (A.1). Assume we want to differentiate f(η) with respect
to ηi. Then we define the following rules:

• f(η) does not depend on ηi −→ ∂
∂ηi
f(η) = 0

• f(η) depends on ηi −→ define a left (right) derivative by bringing the
variable ηi all the way to the left (right) and then apply the rule

∂

∂ηi
ηi = 1 (left), ηi

←
∂

∂ηi
= 1 (right). (A.2)

Two examples should help to become confident with the above rules:

∂

∂ηi
ηjηi = −ηj i 6= j,

η̄i ηj

←
∂

∂η̄i
= −ηj.
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Notice that the integration over ηi is entirely equivalent to partial differenti-
ation with respect to ηi,

∫
dηif(η) =

∂

∂ηi
f(η).

Some applications, which are needed very often in field theory to deal with
Feynman path integrals, are easily derived from what was said above about
dealing with Grassmann variables and are discussed in Appendix A.2.

A.2 Functional Integrals

As an application of the integration rules for Grasmann variables we try to
obtain a path integral representation of fermionic Green functions.
Consider the integral

Z[A] =

∫ N∏

l=1

dξ̄ldξle
−∑N

i,j=1 ξ̄iAijξj . (A.3)

This can be rewritten as

e−
∑N
i,j=1 ξ̄iAijξj =

N∏

i=1

e−ξ̄i
∑N
j=1 Aijξj

and since η̄2
i = 0, only the first two terms in the expansion of the exponential

will contribute, giving

e−
∑N
i,j=1 ξ̄iAijξj = (1− ξ̄1A1i1ξi1) . . . (1− ξ̄NANiN ξiN ).

The integration rules from Appendix A.1 imply that the integrand in (A.3)
must contain the product of all Grassmann variables and therefore the only
term to be considered is

G(ξ, ξ̄) =
∑

i1,...,iN

ξi1 ξ̄1ξi2 ξ̄2 . . . ξiN ξ̄NA1i1A2i2 . . . ANiN .

The product of Grassmann variables in the above equation is antisymmetric
under the exchange of any pair of indices and hence we may introduce the
antisymmetric ε-tensor to find

G(ξ, ξ̄) = ξ1ξ̄1ξ2ξ̄2 . . . ξN ξ̄N
∑

i1,...,iN

εi1i2...iNA1i1A2i2 . . . ANiN .
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But the expression under the sum is nothing other then the determinant and
we get

G(ξ, ξ̄) = (detA)ξ1ξ̄1ξ2ξ̄2 . . . ξN ξ̄N .

Now we replace this expression in (A.3) to obtain
∫
D(ξξ̄)e−

∑N
i,j=1 ξ̄iAijξj = detA, (A.4)

where the integration measure has the form

D(ξξ̄) =
N∏

l=1

dξ̄ldξl.

Another integral which is needed quite often is the following one:

Z[η, η̄] =

∫ N∏

l=1

dξ̄ldξle
−∑N

i,j=1 ξ̄iAijξj+
∑
i(ξ̄iηi+η̄iξi), (A.5)

where the sources {η̄i} and {ηi} now are elements of the Grassmann algebra
as well. In order to evaluate (A.5) we first make a shift in the ξ̄i and ξi
variables

ξ̄′i = ξ̄i −
∑

k

η̄kA
−1
ki ,

ξ′i = ξi −
∑

k

A−1
ik ηk

and rewrite the integral (A.5) as follows

Z[η, η̄] =

(∫ N∏

l=1

dξ̄ldξle
−∑N

i,j=1 ξ̄
′
iAijξ

′
j

)
e−

∑N
i,j=1 η̄iA

−1
ij ηj .

As the integration measure (A.2) is invariant under the above transformations
and with the help of (A.4) we find that (A.5) finally becomes

Z[η, η̄] = (detA)e−
∑N
i,j=1 η̄iA

−1
ij ηj . (A.6)

What one now wants to do with these functional integrals is to differentiate

them in order to obtain expectation values of fermion operators. To this
purpose we look at integrals of the following type:

Ki1...ili
′
1...i
′
l
[A] =

∫
D(ξ̄ξ)ξi1 . . . ξil ξ̄i′1 . . . ξ̄i′le

−∑N
i,j=1 ξ̄iAijξj (A.7)
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and show that

Ki1...ili
′
1...i
′
l
[A] =

N∏

l=1

{
δ

δηil

δ

δη̄i′l

}
Z[η, η̄]

∣∣∣∣∣
η=η̄=0

. (A.8)

We start by expanding the exponential in (A.6) into a power series and
making some careful resorting of the η̄’s and η’s by using the anticommutation
rules for Grassmann variables. Then we apply the left and right derivatives
(A.2) and finally obtain the important result

∫
D(ξ̄ξ)ξi1 . . . ξil ξ̄i′1 . . . ξ̄i′le

−∑N
i,j=1 ξ̄iAijξj (A.9)

= (−1)l(l−1)/2(detA)
∑

P

(−1)σPA−1
i1i′P1

. . . A−1
ili
′
Pl

,

where the sum extends over all permutations

P :

(
i′1 i′2 . . . i′l
i′P1

i′P2
. . . i′Pl

)

and (−1)σP is the signum of this permutation.
As a particular case of (A.10) we obtain

∫
D(ξξ̄)ξiξ̄je

−∑i,j ξ̄iAijξj = (detA)A−1
ij . (A.10)

from where we can define the two-point correlation function

〈ξiξ̄j〉 =

∫
D(ξξ̄)ξiξ̄je

−∑i,j ξ̄iAijξj

∫
D(ξξ̄)e−

∑
i,j ξ̄iAijξj

and we obtain with help of (A.4) and (A.10)

〈ξiξ̄j〉 = A−1
ij .

This can be generalized to arbitrary correlation functions

〈ξi1 . . . ξil ξ̄i′1 . . . ξ̄i′l〉 =

∫
D(ξξ̄)ξi1 . . . ξil ξ̄i′1 . . . ξ̄i′le

−∑i,j ξ̄iAijξj

∫
D(ξξ̄)e−

∑
i,j ξ̄iAijξj

.
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A.3 Euclidean definition of γ-matrices

Lattice field theory is done in Euclidean space-time. Hence the metric in
Minkowski space-time gµν has to be replaced by a Euclidean one δµν It is
convenient when doing lattice calculations in Euclidean space-time to also
replace the usual Dirac matrices by a new set of γ-matrices γµ(µ = 1, . . . , 4),
satisfying the algebra

{γµ, γν} = 2δµν . (A.11)

The Euclidean γ-matrices are hermitean 4× 4 matrices and I have used the
following representation in my calculations:

γ1 =




0 0 0 − �
0 0 − � 0
0 � 0 0

� 0 0 0


 γ2 =




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




γ3 =




0 0 − � 0
0 0 0 �

� 0 0 0
0 − � 0 0


 γ4 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




The γ5 matrix is defined in the following way:

γ5 = γ1γ2γ3γ4 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 .

γ5 anti-commutes with all other Dirac matrices

{γ5, γµ} = 0 (A.12)

and has the property
(γ5)2 = 1. (A.13)

The commutators of the Dirac matrices define the σµν matrices in the fol-
lowing way:

σµν = − i
2

[γµ, γν ]. (A.14)



APPENDIX A. TECHNICALITIES 75

σµν is anti-symmetric in the indices µ and ν and therefore vanishes for µ = ν.
Thus we obtain 6 σ matrices.

One more subset of matrices can be constructed by multiplying each γµ
from the left by γ5.

Thus, all in all, one is left with a set of 16 4 × 4 matrices, which are
specified and named according to their symmetry properties:

scalar S: Γ0 =
�

vector Vµ: Γ1 = γ1 , Γ2 = γ2 , Γ3 = γ3 , Γ4 = γ4

tensor sector Tµν : Γ5 = −
�
2
[γ1, γ2] Γ6 = −

�
2
[γ1, γ3] , Γ7 = −

�
2
[γ1, γ4] ,

Γ8 = −
�
2
[γ2, γ3] , Γ9 = −

�
2
[γ2, γ4] , Γ10 = −

�
2
[γ3, γ4]

axialvector Aµ: Γ11 = γ5 · γ1 , Γ12 = γ5 · γ2 , Γ13 = γ5 · γ3 , Γ14 = γ5 · γ4

pseudoscalar Pµ: Γ15 = γ1 · γ2 · γ3 · γ4

The capital Greek letters are the abbreviations I have used in the text and
my programs. Note, that γ5 is denoted by Γ15 now!
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[41] C.Gattringer, Phys.Rev.D 63 (2001) 114501.

[42] C.Gattringer, I.Hip, and C.B.Lang, Nuc.Phys.B 597 (2000) 451.

[43] P.Hasenfratz et al., Int.J.Mod.Phys.C 12 (2001) 691.

[44] I.Horvath, Phys.Rev.Lett. 81 (1998) 4063.

[45] C. Gattringer et al., hep-lat/0307013 (2003).

[46] C.Gattringer and C.B.Lang, Comp.Phys.Comm. 147 (2002) 398.

[47] M.Atiyah and I.M.Singer, Ann.Math.93 139 (1971).

[48] C. Gattringer, I. Hip, and C. B. Lang, Nucl.Phys.B 508 (1997) 329.

[49] A.M.Polyakov, Nucl.Phys.B 120 (1977) 429.

[50] G. Hooft, Nucl.Phys.B 79 (1974) 276.

[51] T.Bielefeld, S.Hands, J.D.Stack, and R.J.Wensley, Phys.Lett.B 416
(1998) 150.

[52] W.Kerler, C.Rebbi, and A.Weber, Phys.Lett.B 348 (1995) 565.

[53] W.Kerler, C.Rebbi, and A.Weber, Phys.Rev.D 50 (1994).
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