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NONLINEAR QUANTUM FIELDS IN > 4 DIMENSIONS AND
COHOMOLOGY OF THE INFINITE HEISENBERG GROUP

J. PEDERSEN, I. E. SEGAL, AND Z. ZHOU

Abstract. Aspects of the cohomology of the infinite-dimensional Heisenberg

group as represented on the free boson field over a given Hubert space are

treated. The 1-cohomology is shown to be trivial in certain spaces of general-

ized vectors. From this derives a canonical quantization mapping from classical

(unquantized) forms to generalized operators on the boson field. An example,

applied here to scalar relativistic fields, is the quantization of a given classical

interaction Lagrangian or Hamiltonian, i.e., the establishment and characteriza-

tion of corresponding boson field operators. For example, if 4> denotes the free

massless scalar field in ¿-dimensional Minkowski space (d > 4 , even) and if q

is an even integer greater than or equal to 4, then /„ : <j>(X)q : dX exists as a

nonvanishing, Poincaré invariant, hermitian, selfadjointly extendable operator,

where : (t>(X)q : denotes the Wick power. Applications are also made to the

rigorous establishment of basic symbolic operators in heuristic quantum field

theory, including certain massive field theories; to a class of pseudo-interacting

fields obtained by substituting the free field into desingularized expressions for

the total Hamiltonian in the conformally invariant case d = q = 4 and to

corresponding scattering theory.

1. Introduction

The quantum action and interaction energy integrals of heuristic quantum

field theory, as well as the perturbative S-matrix coefficients, are symbolic

operators that have never been established in a clear-cut or rigorous sense in

the physical case of four-dimensional space-time. There is nevertheless a cer-

tain formal and quasi-rigorous property that these symbolic operators share.
Namely, they are all formally of finite "order" in the sense that their successive

commutators with the quantized field vanish after a finite number of bracket

operations. The last nonvanishing commutator is a (classical, i.e., unquantized)

multilinear form on a dense domain in the underlying space of classical fields

(or "single-particle" space) and mathematically well-defined modulo technical

details, such as the specification of the domains, or of associated test function

spaces. Moreover, this classical form represents a type of cocycle for the infinite

Heisenberg group, as represented by the boson field operators on the quantized

field for the underlying noninteracting (or "free") context.

By exploiting this connection between symbolic operators and Heisenberg

group cocycles, rigorous versions of these operators can be established and
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exploited, for certain classes of quantum fields. The method described here
applies to general types of fields, by virtue of a conformai mapping method,

which is described below. However, in order to provide explicit examples and

avoid undue abstraction in the presentation of the basic theory, we give detailed

treatments for certain scalar fields in Minkowski space. The basic cohomology

result is a kind of generalized Poincaré lemma that establishes a unique quan-

tization map from classical to quantized expressions having cogent regularity

and covariance properties.
Global cohomology of the finite-dimensional Heisenberg group was treated

in [15], in a small 'hard' space (that of all Hilbert-Schmidt operators). For ap-

plications to the singular operators of heuristic field theory, a large 'soft' space

is more useful; and when a suitable such space is designated, the infinitesimal

cohomology becomes tractable. We treat both global and infinitesimal cohomol-
ogy, but only the latter is required for the application to relativistic fields that

are made here.
Regularity properties of the quantum action for conformally covariant quan-

tum fields were first treated in [8]. Physical aspects of this and some aspects of

the present work are treated in [10].

2. Technical preliminaries

We use the notation and terminology of [9]. For convenience, we summa-

rize the basic features as follows. H will denote a complex Hubert space and
(K, W, Y, v) the free boson field over H. Thus, K is a complex Hilbert space;

W is a map from H to unitary operators on K satisfying the Weyl relations;

T is a unitary representation on K of the unitary group Î7(H) on H, which

intertwines appropriately with W ; and v is a unit vector in K that is invari-
ant under all Y(U) and is cyclic for the {W(z) : z e H} . Infinite-dimensional

integrals will be with respect to Gaussian measure v of variance parameter \
on a complex Hilbert space, the integrands being entire or anti-entire functions,

and are defined as the limit of such integrals in the usual Lebesgue sense over

finite-dimensional subspaces, as the subspaces tend to the full space. A domain
D in a Hilbert space that is given an intrinsic topology (stronger than that in the
ambient space) will be denoted as [D]. The continuous sesquilinear forms on

[D] will be denoted as ^[D]. We use especially the domains of differentiable,

analytic, and entire vectors for the basic Hamiltonians, denoted as B in the

underlying single-particle space H and as H in the field space K. For any

self adjoint operator i in H, the self adjoint generator of the one-parameter

unitary group Y(e"A) will be denoted as dY(A), e.g., H = dY(B). In the
basic theory, e~tB will be a trace class operator for all t > 0 (implying the

same for e~tH) ; relativistic Hamiltonians will be treated by reduction to this

case (exemplified for example by the generator of temporal displacement in the

Einstein Universe in conformally covariant theories).
The term form will mean continuous sesquilinear form on the specified do-

main [D]. A form F on the space E(H) of all entire vectors for H can be

represented by a kernel K(z, z') satisfying the inequality

\K(u,u')\<ce^Bu^e'Bu'^

for some positive constants c and t, where z, z' are in E(B), that is an

anti-entire function of z and an entire function of z', relative to the complex
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wave representation of the boson field over H, in which K is represented as

the space H~L2(H) of all square-integrable anti-entire functions on H (see

[14]). Notationally, forms may be expressed as operators so that the form F

evaluated on the pair (/, g) is expressible as

(Ff, g)= [     K(z, z')f(z')gjr)dV(z)du(z'),

in terms of the kernel for F. Here and elsewhere as indicated by context,

vectors / and g in K are identified with anti-entire functions on H. The

standard kernel for the identity operator / is e^z' • z> ; we use also the reduced

kernel, defined as e~^z'''^K(z, z'), where K(z, z') is the standard kernel.

Thus, the reduced kernel for / is 1.

Further notation is similar (e.g., H+L2(H) for the space of square-integrable

entire vectors on H and A(B) for the topological domain of all analytic vectors

for the selfadjoint operator B). We refer to loc. cit. for details.

3. Infinitesimal cohomology

Let D be a dense linear subset of H, having a given topology such that the
injection map is continuous; and let this topological space be denoted as [D]

when this is necessary to avoid confusion. Let D' be similarly a dense linear

subset of K. Two main cases of this configuration will be involved below, called

the entire and analytic cases. In the entire case, D is the space of entire vectors

for B and D' is the space of entire vectors for H. The analytic case is the

same with the substitution of analytic for entire.

Definition 3.1. An (infinitesimal) «-cocycle is a continuous multilinear map F

from [D]" to the space y[D'] of all continuous sesquilinear forms on [D']

satisfying the following conditions:
(i) F(zx,... , z„) is a symmetric function of the vectors Z\,..., zn.
(ii) For arbitrary zx,... , z„ and z' in D,

[F(zx,...,zn),4>(z')] = [F(z',...,zn),<t>(zx)].

Example. Let F be arbitrary in &~[D], and set

F(zx, ... , z„) = dZx---dZnF,

where dz denotes the operator F —► [F, <j)(z)] ; we assume that dz is a contin-

uous linear operator on F(D'). Then F(zx, ... , z„) is an exact «-cocycle and

will be called the n-derivative of F.

Remark. As indicated above, the requisite continuity on F(zx, ... , z„) is joint,

but in the entire and analytic cases this is implied by separate continuity, by
virtue of the fact that the spaces E(S) and A(S) are metrizable and barreled
for an arbitrary selfadjoint operator 5.

Theorem 3.1. In the entire and analytic cases, every infinitesimal n-cocycle is

exact.

Proof. The following proof for the entire case applies also to the analytic case,

with technical changes similar to those indicated in [9].

We note first that for any real-linear function R from E(B) to a complex

vector space V, there exist unique complex-linear and antilinear functions R±
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from E(B) to V such that R(z) = R+(z) + R~(z). We define R* as the
function on E(B) x E(B) given by the equation

R*(z,z') = R+(z) + R-(z').

Lemma 3.1.1. Let F(u, u') be a function on HeH that is analytic as a function

of u' and antianalytic as a function of u. If F(u, u) — 0 and F(-, •) e
L2(Yi®n,dv), then F(-,-) = 0.

Proof. If H is finite dimensional, the power series expansion that F(u, u')

enjoys in the components of u' and the complex conjugate of the components

of u restricts to a power series on H on setting u - u'. The unicity of the
coefficients of such a power series then implies that if F(u, u) = 0 identically
in u, then f(u, u') = 0 identically in u and u'. If H is infinite dimensional,

then for any finite-dimensional subspace M, the restriction of F to M © M

vanishes by the case just considered and hence, vanishes on all of H © H (e.g.,

as the L2 limit of the corresponding function on M © M, obtained by setting

components orthogonal to M equal to 0).

Lemma 3.1.2. LetG(u, u') be the reduced kernel of the form F. Let z be

arbitrary in E(B). Then the reduced kernel for dzF is

F(z, u,u') = -—¡=.[dU'G(u, u')z + duG(u, u')z].
v2

Proof. Let / and g be arbitrary antianalytic functions in E(H).  Then by

direct calculation,

([F, C(z)]f, g) = jjp(z,u, u')f(u')W)dv(u)dv(u'),

where

iP(z,u, u') = -(z, u)e{u''u)G(u, u') + e{u'<u)G(u, u')(z, v').

The expression given for P(z, u, u') is not the standard kernel for [F, C(z)],

since the factor (z, u') in the second term is antianalytic in u'. To obtain the

standard kernel, recall that (C(z)f)(u') = -i(z, u')f(u') and (C(z)*h)(u') =

i(h)z, whence

i I P(z,u,u')f(u')dv(u')

-   /"[-<?<"'• ">rj(u, u')(z, u) + du.[e{u''u)G(u, u')]z]f(u')du(u')

= Je^'^[dulG(u,u')z]f(u')dg(u')

from which the standard kernel for [F, C(z)] can be read off.

Similarly,

([F, C*(z)]f, g) = JJQ(z,u, u')f(u')~gJÜ)dHu)dHu'),

where Q(z, u, u') = e^u'>u)duG(u, u')z . Lemma 3.1.2 now follows from the

equation 0(z) = -j?[C(z) + C(z)*] and the unicity of the standard kernel.   D
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Lemma 3.1.3. Let R(z) be a l-cocycle, and let the reduced kernel for R(z) be

R(z, u, u'). Then

duiR*(w,w',u, u')z' + duR*(w,w',u, u')z

= dU'R*(z, z', u, u')w' + duR*(z, z',u, u')w.

Proof. It follows from Lemma 3.1.2 and [R(w), 0(z)] = [R(z), <j)(w)] that

du,R(z, u, u')w + duR(z, u, u')w

= duiR(w, u, u')z + duR(w, u, u')z,

which is equivalent to, by the definition of R*,

duiR*(w, w, u, u')z + duR*(w ,w,u, u')z

= du>R*(z, z, u, u')w + duR*(z, z,u, u')w .

The last equality is to the effect that equation (3.1) is valid on the diagonal
w = w', z = z'. The equation now follows everywhere off the diagonal from

Lemma 3.1.1 on the unicity for a function onHffiH that is respectively analytic
and antianalytic in the two variables.

Lemma 3.1.4. The special case of Theorem 3.1 in which n = 1 is valid.

Proof. Let R(z) be a given l-cocycle and R(z,u,u') be the reduced kernel

for R(z). Let

(3.2) G(u, u') = i\/2 f R*(+u,u',su, su')ds,
Jo

and let G denote the form whose reduced kernel is G(u, u'). It will be

shown that R(z) — dzG. To this end it suffices to show that G(u, u') sat-

isfies the condition given in Lemma 3.1.2. By Lemma 3.1.3 and the linear-
ity/antilinearity of R*(z, z',u, u') as a function of z resp. z', it follows
(using dj to denote the partial differential with respect to the jth variable, e.g.,

d3R*(z, z', u, u')w = d/dt\t=oR*(z, z', u + tw, u')) that

=--=[dU'G(u, u')z + duG(u, u')z]
v2

=  / [R*(0, z, su, su') + dnR*(+u, u', su, su')(sz)
Jo
+ R*(z,0,su, su') + d3R*(+u,u',su, su')(sz)]ds

=  / [R*(z, z, su, su') + dnR*(sz, sz, su, su')u'
Jo

+ d3R*(sz, sz, su, su')u]ds

=   /   -j-R*(sz, sz, su, su')ds
Jo ds

= R*(z, z,u,u') = R(z,u,u').   D

Completion of Proof of Theorem 3.1. Let d~x denote the map from 1-cocycles to

forms given by Lemma 3.1.4. More specifically, we write d~xR(z) = F where

F is the form given by equation (3.2). If now R(zx, ... , zn) is an n-cocycle,

then d~xR(zx, ... , z„_i, zn) is easily seen to be a cocycle as a function of
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z\,..., z„_i. It follows that d~x • ■ • d~xR(zx,... , zn) is a form whose n-

derivative is R(zx,..., z„).   D
(Formula (3.2) can be extended to all n .)

The form whose derivative is a given cocycle is not at all unique, since in
the case of a l-cocycle, for example, the cocycle is unchanged if an arbitrary

constant scalar multiple of / is added to the form.

Corollary 3.1.1. Two forms whose derivatives are equal differ only by a constant.

Proof. Corollary 3.1.1 is equivalent to the claim that a form F that commutes
with all 0(z), z e E(B), is a multiple of identity. This follows from the
irreducibility of the <j>(z), z e E(B) [9].   D

We call d~x in the specific form given by equation (3.2) the quantization

map and denote it as ¿f. We extend S by linearity to finite sums of forms of

varying degree.

Corollary 3.1.2. S is continuous from n-cocycles to forms, in the E(B) and

E(H) topologies (or in corresponding analytic topologies).

Proof. This follows from straightforward estimation using successively the in-

tegral formula for S given above.   D

Example. Consider the quantization of the conformai wave equation

(d2-A+l)(f> = 0

on I1 x 53, where A denotes the Laplacian on S3. The Hubert space consists

of solutions of the equation of finite conformally invariant norm. All such
solutions are periodic with period 2n in the time variable and may accordingly
be identified with functions on Sx xS3, which is conformally equivalent to the

2-fold cover M of the conformai compactification of Minkowski space M0 ;

cf. [7]. Let B denote the Einstein energy (i.e., selfadjoint operator generating

time evolution) in H, and for arbitrary <f>x, ... , <j>n in E(B) let

F((f>x, ... ,(f>„) = ¡(j>x(u)--<j)n(u)du.
Jm

This is continuous on E(B) by a simple estimate that follows from [7]. Ac-

cordingly, F is an «-cocycle. Its antiderivative F on E(H), where H is the

Einstein energy in the quantized field K, is the integrated Wick product

L: <j)"(u):du.
Jm

It is straightforward to extend the analysis to arbitrary even space-time dimen-

sions (« > 4). More generally, the analysis may be extended to show the

existence of forms corresponding to the /rz-cocycles

/    : D\(j)(ux)■ ■ ■ Dn<(>(um) : T(ux, ... , um)dux ■ ■ ■ dum ,
Ji\im

where the Dj are differential operators on M that commute with the isometry

group K of Sx x S"~x  and T(ux, ... , um) is an arbitrary distribution on

Mm . Theorem 3.1 essentially establishes Wick product theory on the domains

of entire and analytic vectors of the field Hamiltonian, from which extension

to the domain of differentiable vectors may be made.
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In the case n = 4, conformai covariance and other considerations detailed
below show the corresponding existence and essential selfadjointness of the
antiderivative of the 4-cocycle

/   <f>x(x)---(f>4(x)dx
JMo

on E(Bq) , where the tj>'s are solutions of the wave equation on Mo and Bq

is an operator unitarily equivalent to B. This result is interpreted physically
as the existence and selfadjointness of the quantized JM : (¡)(x)4 : d4x for the

so-called massless (j>\ theory, <f> representing the quantized free field for the
wave equation.

4. Regularity, selfadjointness, and covariance

Temporal smoothing enhances regularity in many contexts, and we here re-

quire its manifestation in the entire and analytic cases.

Theorem 4.1. Let A be a selfadjoint operator in the Hubert space H that is

bounded below, and let F be a form on E(A) (resp. A(A)). Let f be in L2(R)

and such that \f(x)\ < Ce~K^ for all real k (resp. \f(x)\ < Ce~K^ for some
k > 0). Then the form

G(u, u') = / F(exp(itA)u, exp(itA)u')f(t)dt

is a continuous operator from E(A) to itself (resp. A(A) to itself).

Proof. The proof for the analytic case is parallel to that for the entire case, and

we give details only for the latter. To say that F is a form means that there

exist a bounded linear operator B on H and real number a such that

F(u, u') = (BeaAu,eaAu')

for arbitrary u, u' e E(A). It is no essential loss of generality to assume that
A is bounded below by /. Writing E(r) for the spectral resolution of A and

m for the regular measure on R2 such that

(BE(r)u, E(s)u') = m([(x, y) : x < r, y < s],

then for arbitrary u, u' e E(A),

G(u ,u')= / f(r - s) exp(ar + as) dm(r, s).

To say that G is a continuous operator from E(^4) to itself means that for

arbitrary real b,

\G(u,exv(bA)u')\<C(u,b)\\u'\\

for arbitrary u, u' e E(A). Since u is in the domain of exp[(a + k)A]

for arbitrary k, it suffices to show that this inequality holds when u is re-

placed by e\p(-kA)u . Note also that the total variation of m is bounded by
\\B\\dn(r)dp(s), where «(/•) = (E(r)u, u) and p(s) - (E(s)u', «').

Accordingly, it suffices to show that \f(r - s)\ e\v(ar - kr)exp(as + bs) is

bounded as a function of s and r in [1, oo). Noting that this expression is

bounded by

Cexp[-fc|/--s|]exp[(a - k)(r - s)]exp[(2a + b - k)s],
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it is clear that this is the case for sufficiently large k and larger ¡c .   D

We next establish a criterion for essential selfadjointness, of a type first
treated by Poulsen [11], that will be useful below. A self adjoint operator A in

a Hubert space H will be called regular in case it has pure point spectrum, and
only a finite number of eigenvalues are in any bounded interval. A hermitian op-

erator (or form) F (that is defined on the domain B of all finite combinations

of eigenvectors for A is called invariant under eltA incase e~"AFe"A — F for

all Í6R.

Theorem 4.2. Let A be a regular operator in a Hubert space H, and let the
hermitian operator F defined on B(A) be invariant under e"A, t e R. Then

F is essentially selfadjoint on B(A).

Proof. Essential selfadjointness for F is equivalent to denseness for the ranges

of F ± H. The argument for F - H is parallel to that for F + il we treat only

the latter case in detail.
The orthocomplement M of the range of F + H is invariant under the e'tA ,

which implies that the projection P with range M commutes with the e"A ,

t e R. The general such operator is a direct sum of projections Pj, each of

which has range in an eigenspace for A. Thus ((F - H)x, Pny) = 0 for all

x e B(A) and y e H. But P„y is itself in B(A) and taking x = Pny, it follows
that Pny = 0 for all « . Since y is arbitrary, this means P„ = 0, implying that

P = 0, and completing the proof.   D

Corollary 4.2.1. An invariant and hermitian form F under e"A on the domain

E(A) (resp. A(A)) is essentially selfadjoint on the domain B(A).

Proof. Theorem 4.1 implies that F is a continuous operator on E(A) (resp.
A(A)) (by taking / to be an arbitrary nonvanishing nonnegative function in the

indicated space) and in particular defined on B(^4). It follows from Theorem

4.2 that F is essentially selfadjoint on the domain B(^).   D

We next consider covariance aspects of the quantization map S.

Theorem 4.3. Let U be a unitary operator on H that is also an isomorphism of

[E(B)] (resp. [A(B)]) into itself Then Y(U) is an isomorphism of E(H) (resp.

A(H)) into itself.

Proof. The proof for the analytic case is similar to that for the entire case and

we detail only the latter. Using the complex wave representation for K, if

/ e E(H), then / = e"tHg for arbitrarily large t and i-dependent g eK.
The claim that Y(U)f e E(H) is equivalent to the claim that for arbitrary real
5, esHY(U)e~tHg is in K. This means that the function of z, g(e~tBUesBz)

is essentially in K (cf. [9]). Since U acts continuously on [E(B)], on this space

UesB = esBV, where F is a bounded linear operator on H. Taking t > s',

the question becomes whether g(e~eBVz) is square-integrable if e > 0. The

operator S = e~tBV is Hilbert-Schmidt, so it suffices to show that g(Sz) e K

for arbitrary such 5. Now since \g(z)\ < Ce"z"2/2, \g(Sz)\ < Ce^^l2, so

that the hypothesis of Lemma 1.6 of [9] is satisfied, apart from the condition

that \\S\\ < 1, which is seen to be redundant by a finite-dimensional adjustment.

This shows that Y(U) leaves E(H) invariant, and continuity of the action of

Y(U) on [E(//)] follows by similar estimates.   D
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Corollary 4.3.1. Let U be as in Theorem 4.3, and let F bean n-cocycleon E(B)

(resp. A(B)). Let Fv(zx, ... , z„) = Y(UyxF(Uzx,..., Uzn)Y(U). Then Fv
is a cocycle and @(FV) = Y(U)-X@(F)Y(U).

Proof. The two cases (entire and analytic vectors) are similar, and we treat in

detail only the entire case.
We show that dZx---dZn maps both Y(U)~xâ'(F)Y(U) and S(FV) into the

same cocycle, whence the corollary follows from the unicity part of Theorem

3.1. On the one hand,

dZv..ZHS(Fu) = Fu(zx,... , zn) = Y(U)~xF(Uzx, ... , Uzn)Y(U).

On the other hand, note that in the case « = 1, for arbitrary z e E(B),

dzY(U)-xQ(F)Y(U) = [Y(U)-x@(F)Y(U),cp(z)]

= Y(U)-x[@(F),Y(U)<p(z)Y(UTx]Y(U)

= Y(U)-xmF),<P(Uz)]Y(U).

It follows by a finite induction that

dZv..z„T(U)-x($(F)Y(U) = Y(U)~xF(Uzx,..., Uzn)Y(U),

which agrees with the «-derivative of the other side of the putative equality.   D

These results imply the essential selfadjointness of the quantizations of in-

variant hermitian cocycles, where a cocycle F(z\,..., z„) is hermitian in case
F(z1,...,z„)* = (-l)"F(z1,...,z„).

Corollary 4.3.2. Suppose that F is a given hermitian n-cocycle on E(H) (resp.

A(H)) such that
F(eitBzx,...,eitBzn)

Then the S(F) is essentially selfadjoint on E(H) (resp. A(H)).

Proof. Corollary 4.3.1 shows that S(F) is an invariant form under e"H . It is

accordingly a continuous linear operator on [E(H)] (resp. [A(H)]) by Theorem
4.1. S(F) is a hermitian operator since F is a hermitian form. Finally it

follows from Corollary 4.2.1 that it is essentially selfadjoint.   D

Symmetries other than time evolution commute with the quantization map

in appropriate cases by virtue of

Corollary 4.3.3. Let U(-) be a continuous unitary representation of a Lie group

G on the Hubert space H, which includes a one-parameter subgroup whose

action on H is generated by the operator B above. Suppose that B dominates

the other generators of G in this representation as regards entire vectors (resp.

as regards analytic vectors). If the cocycle F is U(g)-invariant, then &(F) and

its closure are Y(U(g))-invariant, for g e G.

Proof. This follows from Theorem 4.3 in conjunction with Corollary 4.3.1.   D

Example. If G = SO(2, n), U is irreducible, and B generates the 0(2) sub-

group, it follows from the scalar character of dU(C) for the Casimir of G that
B analytically dominates all of G. For « = 4 and U the wave representation

of G, the quantized action integral for the 4>\ theory is a conformally invariant

essentially selfadjoint operator (cf. below).
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5. Integrals of local products of quantized fields

The quantum action and energy integrals of heuristic quantum field theorem

are symbolic operators that are formally of finite order, where a form T is said

to be of order « if dZl ■ ■ ■ dZm T = 0 for m = « + 1 but is not identically zero

(for the Zj e E(B)) for m = « . The derived cocycle

F(zx, ... , z„) = dZi ■■■dZnT

is in practice a well-defined multilinear form, and the theory above permits

rigorous versions of the cited heuristic operators to be established and explored.
The method presented here is general, but in order to avoid undue abstraction

and provide concrete examples, we treat explicitly only certain scalar fields in

Minkowski space. The criterion for essential selfadjointness and the conformai

mapping method that we use apply to fields of arbitrary spin.

For the reader's convenience we summarize the most basic notation and re-
sults used below which are drawn from Paneitz and Segal [7] and Branson [4].

Minkowski space is denoted as Mo, and it will be assumed in the following

that Mo has even dimension d > 4. The usual coordinates on Mo are de-

noted as Xj   (j = 0, I, ... , d - I) and the fundamental Lorentzian form as

x2 - xx-x2d_x.  M denotes the conformai compactification of M0 , M

the 2-fold cover of M, and M the universal cover of M. The universal cover

of the conformai group on M locally isomorphic to 0(2, d) is denoted G. P

denotes the Poincaré group on M0, as extended by the scaling transformations

Xj -» Ixj (I > 0), and P its universal cover. The isotropy subgroup in the

action of G on M is isomorphic to P, and the isomorphism will be denoted

as y. There is a canonical embedding / of M0 into M, in which a point at

infinity on Mo corresponds to a fixed point for y(P) and which is P-covariant:

l(gx) = y(g)i(x) for arbitrary g e P and x e M0 .

M is conformally equivalent to the 'Einstein Universe' E, the Lorentzian

manifold R x Sd~x of metric dt2 - ds2, where t is the 'Einstein time' or

component in R and ds is the element of arc length on Sd~x in radians.

We represent Sd~x as the unit sphere in Rd , {(ux, ... , ud) : u\ H-h ud =

1}. We define U-X = cosí, u0 = sini, and note that M is conformally

equivalent to E, whichjs covered by E by the conformally invariant map

(t, u) —► (e", u), where E is represented as Sx x Sd~x ; the coordinates t, w_i,

and «o are adapted to E in the obvious way. We set p for the distance on

Sd~x from the base point (0,0,..., 1) and set p for the function on E or E,

p(u) — j(cosr + cos/?). Relative to the standard embedding indicated above,
the Lorentzian and Einstein metrics on Mq and E are related by the equation

dt2 - ds2 = p2(dx2 - dx2 - • • • - dxd_x). We write dx for dxodxx ■ ■ ■ dxd_x

and du for dtdu, where du denotes the element of volume on Sd~x. The

relations du = pddx and du — pd~~xdx will be used below. For further details,
see loc. cit.

We denote as Ao and A the usual Laplacians on Rd~x and Sd~x and by

Do and D the usual wave operators on Mo or E (or on E, where it will be

clear from the context, it not entirely immaterial, whether E or E is meant).

We also set C0 = (-Aq)'/4 and C = (cd - A)'/4, where cd = ((d - 2)/2)2
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and A0 and A are formulated in the usual way as selfadjoint operators in
L2(Rd-x) and L2(Sd~x), which Hubert spaces we denote as F0 and F. We

denote as H0 the complex Hubert space of real normalizable solutions of the
wave equation Do</>o = 0, where the complex structure and the inner product

are as follows, in terms of Cauchy data, which may be at an arbitrary time and

in an arbitrary Lorentz frame. These data / = (j>o(t0, •) and g - 0o(ío, 0 »

at time t0, are in the Hubert spaces denoted F01/2 and F0;_i/2 consisting

of the completion of the domains of Co and C0~x in their natural Hubert

metrics. The complex structure j is given in matrix form on the direct sum

Fo, 1/2 © F0, -1/2, with which Ho is identified via the solution of the Cauchy

problem, as (    2  °  ). The real part of the inner product in H0 is the real
—c0   o

form obtained by polarization from the norm

H\\2 = \\Cof\\l2 + \\C^g\\l;
the imaginary part is determined by the given complex structure and the real

part. We note that vectors in Ho are determined by the restrictions of their
Fourier transformations to the positive-frequency region, in terms of which j

is represented by complex multiplication by /' ; the present formalism, how-

ever, has certain advantages in symmetry and generality over the more familiar

formulation of Ho in relativistic theory. Thus, we denote by H the complex

Hilbert space of all real normalizable solutions of the conformai wave equation

(0+cd)(j) = 0, with the complex structure and inner product defined in the same

way except for the replacement of C0 by C and L2(Rd~x) by L2(Sd~x). We

recall that if <f> e H, then </>0 G H0 , where (f>0(x) = p(i(x)){d~2)/2<t>(i(x)), and
that the mapping T : <¡> -* <f>o is unitary and intertwines the respective actions

of G on H and Ho that derive from and express the conformai invariance of
the equations. We refer to loc. cit. for further details.

It follows from the unicity of the free boson field over a given Hilbert space

that the fields over H0 and H are unitarily equivalent via a unique unitary

operator Y(T) from K onto Ko suchthat Y(T)W((f>) = W0(T(f>) and Y(T)v =
v0, where the subscript 0 distinguishes the field over H0 from that over H.

The notation Y(T) is convenient notwithstanding the fact that T is not in

(7(H), by virtue of covariance features.
The single-particle Hilbert spaces of heuristic quantum field theory are usu-

ally concretely formulated as function spaces, but they are more invariantly

expressible as sub- or subquotient spaces of the section spaces of induced bun-
dles, and the use of different presentations for the relevant bundles is in essence

the main difference between the spaces H0 and H. We next show that the

local products of field operators that are involved in the heuristic theory on Mo
and on E for the quantized wave equations are similarly essentially the same

except for their presentations. The treatment here exemplifies a general induced

bundle method and will be applied below to deal with massive fields.

The quantization of a general class of fields representable by induced bundles

including the wave equation fields on Mo and M may be given an invariant

form as follows. Let F be a Lie subgroup of the Lie group G, and consider the

bundle over G/P induced from a given finite-dimensional real representation
of P. Let R denote the space of C°° sections, and suppose that R has an

invariant subspace S on which the action of G is unitarizable. Let H denote

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



84 J. PEDERSEN, I. E. SEGAL, AND Z. ZHOU

the Hilbert space completion of S. Consider now the quantization of the fields

represented by S in terms of the free boson field over H as underlying single-

particle space.

Example 1. G is the connected Poincaré group on Mo, and P is its Lorentz
subgroup. G/P is identifiable with Mo, and the usual relativistic fields are

obtained. The massless scalar fields correspond to the invariant subspace defined

by the wave equation, and the massive scalar fields are those defined by the

Klein-Gordon equation. These subspaces are suitably unitarizable under G.

Example 2. Let d = 4, and consider the one-dimensional representation of

P in which the scaling transformation, which acts in M0 as Xj —► lx¡, acts

as /. R is then the space of scalar fields of conformai weight 1 and has a
unique irreducibly invariant subspace S. In a suitable parallelization, R may

be represented by the space of all C°° fields on M, and S then becomes

the subspace of solutions of the conformai wave equation, which as noted is

unitarizable.

The sections <f> e S in these examples are representable by point functions,
but it is only in the simplest case, of the usual relativistic fields, that there is an

entirely canonical way to do so (e.g., in Example 2, the parallelization involved

is not unique). In general, the notion of the value <j>(x) of the section <f> at the

point x e G/P is well defined only relative to choices of parallelization or local
trivializations. In order to treat integrals given symbolically as JG,p <l>(x)q dx ,

some preliminaries are therefore needed.
The concept of the quantized fields at a point, say tj>(x), where boldface let-

ters distinguish quantized from classical fields, involves in its simplest rigorous

form, a linear mapping from a space of test functions / into operators, given

in symbolic form as / —> J (¡>(x)f(x) dx . However, in order for this mapping
to have an invariant significance, it is in general necessary to formulate what

appears as test functions in the simplest cases as sections of the bundle dual to
that of which the corresponding classical fields, whose quantization is in ques-

tion, are sections. To clarify this matter, we use underlined letters to distinguish

abstract sections, defined by induction as above, from concrete representatives,

obtained by divers parallelizations or trivializations.
Assuming now that G/P is compact, or alternatively using sections of com-

pact support, the real bilinear pairing (</>, /) is invariantly defined. This bilin-

ear expression defines a linear functional on S, which we assume is continuous

in the topology on H, as is often the case in practice, and so may be repre-

sented in the form lm(0, Pf), where F is a linear map from the section space

S* of the dual bundle into H. If (K, W, Y, v) denotes the free boson fields
over H and <f) denotes the map d W from H into selfadjoint operators on

K, the map / —> <£(/) = <f>(Pf) defines the rigorous and invariant form of the

symbolic map f -* J tf>(x)f(x) dx ; for quasi-bookkeeping purposes, it may be

helpful to denote <D(/) as " / 4>(x)f(x) dx ".
In order to treat the nonlinear operations involved in local quantum field the-

ory, we must now similarly invariantly formulate products such as (¡>(xx)<f>(x2)

■ ■ ■ <f)(x„). This product will be realized as a form on a suitable domain, whose
formulation requires some additional assumptions. We assume there is given an

infinitesimal generator X of G (or similarity class of such) called infinitesimal

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



COHOMOLOGY OF THE INFINITE HEISENBERG GROUP 85

time evolution (e.g., d/dxo for the Poincaré group on Mo or d/dt for the

conformai group on E). We set U for the unitary action of G on H, A for

dU(X), and H for dY(A) ; colloquially, A is the single-particle Hamiltonian
and H is the quantized field Hamiltonian. We assume that A is bounded be-

low by a positive scalar and that e~'A is of trace class for arbitrary t > 0. This
condition is satisfied by the Einstein Hamiltonian but not by the Minkowski

Hamiltonian, which nevertheless may be effectively treated in terms of the Ein-

stein Hamiltonian (e.g., every C°° vector for the latter is also a C°° vector

for the former). Let[Doo(//)] denote the space of all C°° vectors for H, in

it usual topology. The concept of the quantized field as a point function may
now be given invariant formulation by

Scholium 5.1. There exists a unique continuous map u -+ 0(w) from E to forms

on [Doo (//■)] such that for arbitrary feS*, and w, w' e DM(/i),

(<P(f)w,w') = (({4(.)w,w'), /(.)»

where (<j>(u)w , w') denotes the inner product in the fiber at the point u.

The proof is by arguments similar to those given in Paneitz and Segal [7] and

is omitted.   D

The case of products of fields may now be treated in the same format as

follows. Since the quantized field at a point is merely a form and not a bona fide

operator, a product such as <j>(ux ) • • • 0(w«) is a priori undefined; a presumptive

'finite part', known as the Wick product, and denoted by enclosing the symbolic

product in : ... : is used in the heuristic literature. It has been treated in

various contexts in the rigorous literature (e.g., [2] or references therein), and

the following formula adapts these treatments.

Scholium 5.2. There exist unique continuous maps 0„ (n = 1, 2,... ) from

S*" to the space L([D00(/f)] of all continuous linear operators on [Doo(H)] (in

the weak operator topology) such that the following relations hold:

(i) // f is a direct product section, f = fx x ••• x fn (f eS* and g e S*,

then setting h¡ — f\ x f¡ x ■•• x fn (i.e., the factor f is omitted),
n

[<!>„(/), *(*)] = -»£<*>n-i(hj)lm(Pfj, Pgj)H,

j=i

where for « = 1, «i = 1 and <I>o(l) = 1 .
(ii) (Qn(f)v,v) = 0  («>0).

Proof. Cf. loe. cit. for similar arguments.   D

The mappings 0„ extend from smooth sections to distributions, by argu-
ments similar to those treating the case of functions in loc. cit., as stated finally

in

Theorem 5.1. There exist unique continuous maps from distribution sections of

S*" to forms on [D^H)] (in weak operator topology) that extend the maps given

by Lemma 5.2 and satisfy the corresponding extensions of(i) and (ii). In particu-

lar, for arbitrary u\,...,un in E", there exists a form denoted

: (j>(u\) ■ • ■ <£(m„) : such that for any distribution f(ux,...,u„) in S*",

<P(/)= /   :^(ux)---±(un): f(ux,... ,un)dnu.
Jm-
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And if f e C°° , then i>(/) is a continuous operator on [Doo(//)].

Proof. We refer to loc. cit. for details in quite representative special cases.

6. Applications to scalar fields

We now specialize to the case of the scalar bundles over Mo or M of certain

weights, corresponding to the cases of massless and massive relativistic fields.

The massless case corresponds to the weight w = (d - 2)/2, and we denote
by S" the space of abstract sections <I> that are C°° and transform according

to the generator Ç of the infinite cyclic center of G as O —> (-1)W<S>. <9*

has a unique irreducibly invariant subspace under G that is stably unitarizable,
giving rise to a corresponding Hilbert space 7%? and a unitary representation f¿

ofGon J.
(ß?, %) may be concretely represented as the solution manifolds of wave

equations in M or Mo, with their transformation properties and spatio-

temporal localizations, using appropriate concrete functional representations

for the sections O; cf. [4] and [7]. More specifically, 7%f is equivalent in the

indicated aspects to the space H earlier treated and, with restriction to Mo
(which by virtue of the action of Ç is an isomorphism), by Ho. The isomor-

phisms O —» 4>o give rise to the following relation between <f>o and <j> :

Mx) = Po(x)w<j>(ix),        po(x) = p((rlx)) = [(1 - x2/4)2 + Xo2]"1.

The quantization theory earlier presented then implies

&o(x)=po(x)wQ(ix),

and similarly for the local Wick products. Noting that the designated measures
du in M and dx in Mo are connected by the equation du = pddx , relativistic

and similar quantized action integrals in Mo are seen to be unitarily equivalent
to well-defined action integrals in M and therefore finite.

Scholium 6.1. If b is bounded and in C°°(Mo) and q > 4 when d = 0 mod 4
or q > 3 when d = 2 mod 4, then

L0= [   b(x):<&o(x)q :dx
Jm0

exists as a continuous linear operator on [Doo(.r7')], where H' = Y(T)~XHY(T).

Proof. This is an immediate consequence of Scholium 5.2 together with the

considerations regarding the conformai mapping of Wick products.   D

L0 may also be expressed as L0 = r(r)_1Lr(F), where

L=\ íb(rxu)p(u)"w-d: &(u) : du
2 Jm

is a continuous linear operator on [Doo(.r7)].

A similar analysis applies to integrals only over space, such as those represent-

ing putative interaction energy operators, but without the strongly regularizing

effect of time integration, the result is only a form.
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Scholium 6.2. If b is a bounded C°° function on Sd~x and if q > 2, then

H¡= f     b(x):^(0,xY:dx
Js*-1

exists as a form on [Doo(.r7)].

Proof. The same argument applies in conjunction with the observation that
dx = pd~xdu at t = x0 = 0.   D

Remark. It is not difficult to show that J™ : <t>3 : dx has a selfadjoint exten-

sion, for q > 4. However, the integral is in general not invariant under Einstein

temporal evolution, so its essential selfadjointness does not follow. The integral

is invariant under Minkowski temporal evolution, and [11] would imply essen-

tial selfadjointness if the domain were [D^H)], but it is doubtful whether the

integral can be extended to a form on this domain, due to the softness of the
Minkowski Hamiltonian.

We now turn to the consideration of massive fields. Whereas in Minkowski

space the conformai weight w does not affect the relativistic transformation

properties, the value of w is quite material to considerations in M. In the

scalar bundle of weight d/2 - 1 earlier treated, the positive-energy section

subspace is indecomposable under the conformai group, so the massive subspace
is at best only invariant under K or is conformally invariant only as a quotient

space. The quantization of an indecomposable section space as a whole presents

problems theoretically distinct from those of the present paper. Accordingly

we treat here rather the scalar bundle of weight d/2, whose positive energy

subspace is unitarily equivalent to the massive positive energy quotient of the

section space of the scalar bundle with w = 1, modulo the wave equation
subspace when d = 4. Moreover, the usual invariant inner product in the Klein-

Gordon single-particle subspace results from the direct integral decomposition

of the inner product in the w = d/2 bundle positive-energy subspace.
For applicability, we describe the present massive fields primarily in terms

of relativistic theoretical usage and make the

Definition 6.1. The general massive field in Mo is that consisting of all L2 real

functions O whose Fourier transforms vanish in the 'tachyonic' region of the

dual ('momentum') space, consisting of energy-momenta K for which K2 is

negative.

We note that, as earlier, the real Hilbert space Hreai of all <S> becomes a

complex space H in which energy is positive on defining the action of i as

the Hilbert transform with respect to the time xq . This is clearly Poincaré

invariant. In order to formulate the conformai transformation properties of the

4>, it is convenient to map conformally as earlier into the Einstein universe.

The singularity of the global action of the conformai group in Mo produces an

awkwardness whose resolution is tedious without the use of conformai mapping.

Accordingly we note that the positive-energy subspace of the w = | bundle

section space on M transforming under £ as (-l)d/2_1 is unitarily equivalent

to H, via the canonical imbedding of Mo into M together with corresponding

unitarization by multiplication by the square root of the Jacobian. Thus the

action of G is unitary, taking the form for / e L2(M) :

f(u)^f(g-xu)J(g-x)x'2      (geG),
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where J(g) is the Jacobian of g . It is known that L2(M) splits into irreducible
positive and negative energy subspaces and a tachyonic two-sided energy spectral

subspace under the action of G (when d = 4, [7]; for the general case, [4]; we

thank T. P. Branson for reference to the relevant computations).

Now taking account of the differences in weight, we may apply a similar

analysis to that above. Observing that Sx is a well-defined element of F(E(B))

(i.e., for 4> e E(B) and x e M0, 4> —> <ï>(x) is continuous), the quantized
boson field Q>(x) is correspondingly defined.

Scholium 6.3. Let Q>(x) denote the quantized massive scalar field (of weight

d/2) in Mo. Let b be a bounded function in C°°(Mo). Then for all integrals

q > 1, / : <t>(x)q : b(x)dx is a continuous linear operator on E(H').

Proof. The argument is parallel to that for the case w = 1 treated above.   D

Remark. The proceeding results apply without essential change to multicom-

ponent fields involving similar polynomial interactions between different fields,

both massless and massive. The Lagrangian <¡>2 y/, where 4> is massless and yi

is massive, provides a conformally invariant, essentially selfadjoint operator on

the tensor product of the respective free field Hilbert spaces. The results also

apply to Ä>invariant subspaces of the massive field without essential change in

the argument. These cases include Einstein Universe analogs of the generalized

free fields in Minkowski space [6] and provide models for particles of finite

width.

7.  PSEUDO-INTERACTING FIELDS AND SCATTERING

By a pseudo-interacting field we mean one whose Hamiltonian is obtained

by substituting the free field in an expression for the classical Hamiltonian of
the interacting theory. The pseudo-interacting field itself is then obtained by

prescribing Cauchy or temporally asymptotic (here equivalent to Goursat [1])
data for it, consisting in practice of its coincidence with the corresponding data

for the free field. In two-dimensional constructive quantum field theory, the

Cauchy problem at an arbitrary fixed finite time was used; and this approach
has been fruitful. However, physically it appears unjustified to assume that

the free and the putative interacting fields are unitarily equivalent at any finite

time. In physical theory it is rather the asymptotic coincidence between the free

and interacting fields at infinite Minkowski times (within unitary equivalence)

that is assumed and appears conceptually appropriate. The analysis here uses a

rigorous form of this assumed coincidence.

We treat here the prototypical case of the 4>\ theory, which has been of topi-

cal interest in connection with particle theory [3]. It will be seen that the method

is a general one for conformally invariant interactions and is adaptable to in-

teractions that are merely ÄT-invariant. We begin by deriving expressions for

the classical Hamiltonian of §\ theory that are less singular than the fixed-time

formulation of the Hamiltonian, using temporal smoothing to desingularize.
The Hamiltonian naturally depends on a particular choice of temporal evo-

lution group. All Minkowski evolution groups are conjugate within the scaling-

extended Poincaré group and all Einstein evolution groups are conjugate within

the conformai group, but these two classes of evolution group are not conju-

gate to each other (as is clear from the differing spectra of the corresponding
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Hamiltonians). From a classical viewpoint there is ultimately a correspondence

between the results using the one Hamiltonian or the other (e.g., [1]), the issue

being essentially a choice of one-parameter family of spacelike surfaces for a

given hyperbolic equation and thus, basically a matter of technical convenience.

In the quantum case there is only a formal presumption of basic equivalence

between the Minkowski and Einstein temporal evolution formats; in rigorous

terms (including its precise formulation) the question is open. The key different

between the classical and quantum cases is the concept of the vacuum in the

latter case; and as the lowest eigenstate of the Hamiltonian, the vacuum is not

clearly independent of the choice of conjugacy class of the temporal evolution

group. The theory above suggests a possibly more fundamental role for the
Einstein format, which will be used here (cf., e.g., [10] for comment on the
Minkowski format).

Scholium 7.1. Let S denote the class of C°° finite-Einstein energy solutions of
the nonlinear wave equation

(D+ \)4> + g^ = o

in E.  Let f be a continuous nonnegative function on Rx  that is periodic of

period 2n and f0* f(t)dt = 1. For an arbitrary C°° function </> let

Ef(4>) = f ^ [¿(V¿)2 + \(dá)2 + \ft + \g~tf duf(t) dt.

Then
(i) If 4> £ S, then £/(</>) is the Einstein energy of 4> ■
(ii) The restriction of Ef to the space E(B) of solutions of the free wave

equations is the sum of quadratic ('free'') and biquadratic ('interacting) cocycles.

(iii) If S(Ef) is essentially selfadjoint on E(H), then its closure is a continu-

ous univalent function of the coupling constant g (in the strong topology on not
necessarily bounded selfadjoint operators in K).

Proof. The coincidence on S of £/(</>) with the energy of 4> is immediate
from energy conservation. The continuity of the total Hamiltonian

H(f)= closure of (H0 + gM(f)),

where M(f) = €(C), C being the cocycle

C(4>i, 02, <f>3, <¡>4) = /    /  f(t)4>xhh4>4dtdu,
J-n Js*

follows from the continuity of H(f)w as a function of g, for arbitrary w e

E(H0). The univalence of H(f) as a function of g follows from the non-

identical vanishing of C and the unicity part of Theorem 3.1.   D

We are now in a position to define the pseudo-interacting fields </> to be

treated here. These fields depend on /, which will be held fixed unless other-

wise indicated. It is convenient here to define <f> as an operator-valued function

on test functions in a lightcone format; regarding classical aspects (cf. e.g., [1]).

The "reference lightcone" in E may be defined as the manifold (with singular-
ities, which however have measure 0 in the present L2 context and thus are

immaterial) of all points (t, u) in E such that t — p(u), where p(u) is the
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distance on S3 from u to the origin (0,0,0,1), which may be interpreted

as the point of observation. Other lightcones are obtained as conformai trans-

forms of the reference one, and we use especially the cones C(r) obtained

from the reference cone by Einstein temporal translation through t . Thus

C(t) = {(t, u)\t - p(u) = t} [1]. If <f> is any vector in A(B), its values (or

Goursat data) on C(t) are in L2 with respect to the measure on C(t) ob-

tained by its identification with S3 given in [1] (but this association of S3

with lightcones is distinct from its association with the spacelike surfaces ob-

tained by fixing the Einstein time). Thus instead of describing the free field as
an operator-valued function at any fixed time on test functions defined on space
(corresponding to the Cauchy data for the field at that time and thus involving

also the first time derivative of the field in an irreducible set of field variables),
we describe it as an operator-valued function at any fixed 'Goursat' time x on

test functions on C(x), whose test functions form a dense subset D of L2(C).

The map V(x) from perito its Goursat data on C(x) is unitary, in an ap-

propriate metric, on the class D of functions on C(x) corresponding to vectors
in A(B) via the Goursat problem. Moreover, V(s) — exp(isB)V(0)exp(-isB).

If Y is any rotation (in 50(4)) on physical space S3 in E, U(Y) commutes

with B, and there is therefore a corresponding unitary transformation V(Y)

on the Hilbert space completion of D with respect to the conformally invariant
metric in this space corresponding to that in H. In summary, it follows that
for any fixed x, H is unitarily equivalent to a Hilbert space of Goursat data on
C(x) and that this unitary equivalence is Ä"-covariant. We denote by ^o(t > h)

the free field operator corresponding to the Goursat datum h on C(x) and

note explicitly the A^-covariance in the form

exp(-itHo)y/o(T:, h)exp(itH0) = y/0(x + t, «),

Y(U(g))-xy/(x,h)Y(U(g)) = y,(x,V(g)h),

where g is arbitrary in the group Ks of purely spatial transformations in K,

representable as SU(2) x SU(2), which act as rotations on space, but whose

action on Goursat data consists of point transformations only on the diagonal
subgroup (geometrically, rotations leaving fixed the base point in space).

The pseudo-interacting field will be defined by giving its weighted averages

on the cones C(t) with respect to test functions h in the space of functions

on the cone corresponding to E(B) :

y/(x, h) = e^+n)Hy/0(-n,h)e-i{x+K)H.

We now take up the properties of the pseudo-interacting field. To treat the

scattering we use its formulation in E, according to which the ¿"-operator is

the unitary operator that implements the action of the conformally invariant
element Ç on the interacting field, modulo the free action of C • C is the

generator of the infinite cyclic center of G and takes the form

(t, U) —> (t + K , Au) ,

where A is the antipodal map on S3. It maps the infinite past in Minkowski

as imbedded in E into the infinite future in Minkowski space, Poincaré-

covariantly.
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Theorem 7.1. If f=\ or, more generally, if the closure of @ (Ef) is selfadjoint,
the pseudo-interacting field has the properties:

(i) on C(-n) (i.e., in the infinite Minkowski past) it is coincident with the

free field;
(ii) it is K-covariant: for a suitable (unique, within possible constant phase

factors) unitary representation rint of K on K, and test pair T = (t, h)

rr¿(g)<P(T)rini(g) = <Í>(g(T)),

where g = s x gx sends T into (t + s, V(gx)h) ;

(iii) the field operators are selfadjoint and satisfy the canonical relations on
lightcones (in the Weylform);

(iv) the S operator exists, is a continuous function of g > 0, and is univalent

as a function of g for sufficiently small g ;

(v) Sw is for w e E(H0) a differentiable function of g at g = 0, with

derivative \ JSixS3 '■ (¡>(t, u)4 : dtdu (independent of fl) ;

(vi) the Hamiltonian H(f) as a form on E(H0) converges as f -> ô(t) to
the Hamiltonian for the putative interacting field.

Proof. When / = 1, the interaction Hamiltonian is essentially selfadjoint as
seen earlier and, being invariant under Einstein temporal displacement, com-
mutes (strongly) with the free Hamiltonian; it then follows from spectral theory

that their sum has selfadjoint closure. Now assuming that <§(Ef) has this

property, we verify the conclusions of Theorem 7.1 seriatim. Regarding (i), on

setting t = -it, (f> and <f>o agree as functions of the test function « . Thus the
fields coincide on C(—n), and the infinite past in Minkowski space is repre-

sented precisely by C(-n).

Regarding (ii), the general element g of K takes the form gxg2 where

gx is an Einstein time translation, say i-»/ + j, and g2 is a purely spatial

transformation on 53 as the Einstein space. A"-covariance means that there

exists a unitary representation rint of K with the property that

rintUrV(t,«)rint(^) = ̂ ((r,«)),

whereg(x, h) = (gx(t), g2(h)). Here gx(t) = t + s and g2(h) = V(g2)h, this
being the action of K on the present test functions, irrespective of the fields
being 'tested'. Now setting

Yint(g) = eisHY(U(g2)),

it is straightforward to check, noting the invariance of M under r¡nt(/í), that

this covariance relation is satisfied; and r,m is evidently a continuous unitary
representation of K.

Assertion (iii) is immediate from the Weyl relations for the free field.
Regarding (iv), Ç is carried by the action of K on the interacting field into

exp(inH(f))Yint(A), while on the free field its action is exp(í7r.í/o)rint(yí),
whence the S-operator is

S = einH(f)e-inHa _

This is a continuous function of g by definition of the strong topology in the

space of selfadjoint (not necessarily bounded) operators. To show its differ-

entiability as a function of g, note that Duhamel's formula is applicable to
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exp(itH(f)) in the form

eitH{f)e-i'"°w = w+ f   eisH(f)gMe-is"°wds,
J-n

if w e A(Ho). This follows from the observation that e"H^^e~"H° is a differ-

entiable function of / with derivative elsH^\H(f) - Ho)e~lsHaw , followed

by integration with respect to t. It results that

/n „e'sHif)gMe~'sH°wds,
-n

whence

{Sw-w)/g= f   eisH{f)Me-is"°wds.
J-n

As g —► 0, the right side converges by strong continuity to

e'sH°Me-'sHow ds.
-n

But as a function of /, eisii*M(f)e-isH« = M(fs), where fs(t) = f(t + s).

Accordingly the integral over 5 is $\M(fs)ds = M(\), showing that S'(0)

exists and has the value iM( 1 ).
Finally, the convergence of H(f) as a form on A(H0) to H0 + H(S(t))

follows by the same argument as the establishment of H(ô(t)) as a form (cf.

Scholium 6.2).   D

Remark. Heuristic perturbation theory gives a formally similar determination

of S'(0), modulo an infinite 'coupling constant renormalization'. The higher

terms in the symbolic power series expansion of S(g) as a function of g on

which heuristic theory is based correspond to higher derivatives of S(g) at
g = 0. These higher derivatives may be computed as above but are materially

dependent on /. The third author has shown in work to be presented elsewhere
that as /-»¿, the vacuum expectation value of S"(g) approaches +00 . How-

ever, the question of whether S(g) converges in the space of unitary operators

as / —> S remains open.
It is not expected that H(f ) itself converges as / -+ ô but possibly that

the expectation value functionals for ground states of the H(f ) converge on

bounded functions of a finite number of field operators of the form <f>(z), where

z is a A"-finite vector in H. It is presently an open question whether H(f)

is bounded below. We note finally that H(f ) and all of the other hermitian

operators treated here have selfadjoint extensions by a reality argument similar

to that given in [13].

8. Global cohomology

The following notion of cocycle applies generally to representations of the

infinite Heisenberg group, but we treat here only the case of the free field repre-
sentation. The simplest nontrivial example of the type of cohomology involved

in the treatment of the Heisenberg group action on the Hilbert-Schmidt opera-

tors on L2(Rn) in [15]. Here R" is replaced effectively by Hilbert space and the

Hilbert-Schmidt operators are replaced by operators of the much more singular

type that arise in quantum field theory.
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Definition 8.1. A global l-cocycle isa map z —> F(z) from E(B) to E(H) that
satisfies the conditions

(8.1) W(z')-xF(z)W(z') + F(z') = F(z + z')       (z,z'eE(B)).

A global «-cocycle is a map from E(B)n to E(H), F(zx, ... , zn), that is a

symmetric function of Z\,..., zn , and is a l-cocycle as a function of zi when

z2, ... , zn are fixed.

The structure of such cocycles can be characterized in terms of the holo-
morphic ('standard') kernels that provide representations for forms as integral

operators on K in terms of its representation by anti-entire functions on H

[9]. The case « = 1 is basic, as in §3, and is treated by

Theorem 8.1. For the given form   F   on   E(H),   there exists a function

Kz,z'(u, u') defined for z, z', u, u' e E(B), that is holomorphic in z', u'

and anti-holomorphic in z, u, such that:

(i) for some c, s > 0 and arbitrary u, u', z, z' e E(B),

\KZyZ,(u, u')\ < cexpfllAll2 + ||e>jV||2 + ||eíi?z||2 + ||<?íBz'||2);

(ii) the standard kernel for 6ZF is Kz>z(u, u'), where 6ZF denotes the 1-

cocycle W(z)~xFW(z)- F.

Conversely, given a cocycle F(z) whose kernels Kz have the form

Kz(u,u') = Kz<z(u,u') where Kzz\u,u') is holomorphic in z', u' and

antiholomorphic in z, u and which satisfies the estimate

\KZ>2,(0, 0)| < cexp(||^z||2 + Hí^z'll2)

for some c, s > 0, there exists a form F on E(H) such that

F(z) = SZF = W(z)~xFW(z) - F.

Proof. Note first that a given map z —> F(z) from E(B) —> E(H) forms a

l-cocycle if and only if the standard kernel Kz for F(z) satisfies the equation

(where a = ^)

(8.2) Kz+Z,(u,u') = Kz,(u, u') + Kz(u + (tz', u' + oz')e-^z'U2-°{z'•"ï-'i"''z>).

This is an immediate deduction from Lemma 4.3 of [9] and the uniqueness of

the standard kernel for a given form. Lemma 4.3 of [9] also implies that if F

is a given form on E(H) and if F(z) = 5ZF , then the standard kernel of F(z)

has the form

Kz(u, u') = K(u + az, u' + az)e-iß\M2-^■.«>-'<«'7*) _ K(u, «').

By an observation above, a cocycle F(z) cannot be of the form SZF for some

form F unless the kernels Kz of the F(z) are obtainable as restrictions to the

diagonal of the kernels Kz t z< that are holomorphic in z' and anitholomorphic

in z. If the form F(z) — ÔZF, then kernel Kz for F(z) is obtainable by
setting z = z' in

Kz,zi(u, u') = K(u+az, i/+erz')exp[-5(z', z)-a(u', z)-a(z', u)]-K(u, u')

which is holomorphic in u' and z' and antiholomorphic in u and z. By

Theorem 1 of [9], there exist, c, s > 0 such that

3       \Kz,z,(u, u')\ < cexp[||^s(M + az)\\2 + \\esB(u' + az')\\2]

< cexp[||^w||2 + \\etBu'\\2 + \\elBz\\2 + \\esBz\\2]
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for some t > 0, completing the proof of the direct part of the theorem. To

establish the converse, set

K(u,u') = Ka-lu,a-tu,(0,0)e<u'*

for u, u' e E(B). The assumed bound ensures that K is the standard kernel
of some form F on E(H). To show that F(z) = 3ZF , recall that a function

of two variables that is holomorphic in one variable and antiholomorphic in the

other is determined by its values on the diagonal (Lemma 3.1.1). Using this in

conjunction with the observation at the beginning of the proof, it follows that

Kz+z¡,z'+z2(U, U )

= Kz¡¡Z2(u,u') + Kz,z,(u + (jzi, u, + <7z2)<?~<Z2,Zl>/2~<r<Z2'u)'a{u',Zl>-

It follows that the kernel of W~x(z)FW(z) - F is

K(u + az,u' + <7z)e-ff<z•">-'<"' ■ z>~<2• z>/2 - K(u, u')

= Ka-iu+Zi(r-,u,+z(0, Q-)e-a{z,u)-a{u',z)-{z,z)ß+{ul+az,u+az)

-*,-.«,.-.«.(0,0)e<"'-«>

= e<"''">(^-„+Z)ff-v+z(0,0)-Jrrff-1(/)ff-ll/,(0,0))

= e{u'-u){KZyZ(u, u')e-{a~'u'^~'">/2}

= KZyZ(u, «')•

Thus the given cocycle F(z) = SZF, where F is the form whose kernel is K,

completing the proof.

Corollary 8.1.1. The form F in the converse part of the theorem is unique within

addition of an additive multiple of I.

Proof. This follows from the irreducibility of the Heisenberg group (or Weyl
system) action on the space of entire vectors for H, in the generalized sense

of the absence of any invariant sesquilinear forms other than multiples of the

inner product in K (cf. [9]).   D

Corollary 8.1.2. Let U be a unitary representation of a topological group G on

H, and suppose that the cocycle F(-) is invariant under the corresponding action

on K; Y(U(g))F(z)Y(U(g))~x = F(U(g)z) for all g e G and z e E(H). Let
F be the unique form such that SZF = F(z) and (Fv, v) = 0. Then F is
invariant under the Y(U(g)).

Proof. It is immediate that for an arbitrary form F,

Y(V)ÔZFY(V)-X = ôVz(Y(V)FY(V)-x)

for arbitary V e U(H). In particular, Sz(Y(U(g))FY(U(g))~x) = F(z). By
Corollary 8.1.1, Y(U(g))FY(U(g))~x = F+c(g)I, but since the Y(U(g)) leave
v fixed, c(g) = 0.   D

The following corollary extends to the infinite-dimensional case the existence

part of [15] (but not the inversion formula).

Corollary 8.1.3. Let F(zx, ... , zn) be a bounded, continuous, and symmetric

map from E(B)n to the space L2(B(K)) of all Hilbert-Schmidt operators on K;

and suppose that it is a cocycle as a function ofz\ for arbitrary fixed z2,..., z„.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



COHOMOLOGY OF THE INFINITE HEISENBERG GROUP 95

Then there exists a unique operator F e L2(B(K)) such that F(z{,..., z„) =

¿z, • ■ • öZnF for all zx,... ,zn in E(B).

Proof. The case « = 1 follows from [9] and Corollary 8.1.1, which establishes

the bound ||F||2 < supz||F(z)|| (where the subscript 2 indicate the Hilbert-

Schmidt norm). The general case proceeds by induction on « .   □

As earlier, the arguments for the entire vector case carry over without non-

trivial change to the analytic case.

Corollary 8.1.4. Theorem 8.1 and its Corollaries 8.1.1 and 8.1.2 apply equally if
the spaces E(B) and E(H) are replaced by the spaces A(B) and A(H) and the

bounds required for all s > 0 are replaced by the same bounds for some s > 0,

together with the same replacement in the conclusion.
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