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Topological orders describe a new class of gapped quantum phases of matter at zero temperature, that
has various patterns of many-body quantum entanglement. Previously, topological orders in one and two
spatial dimensions have been systematically understood and classified. This paper [together with Phys.
Rev. X 8, 021074 (2018)] develops a systematic and classifying understanding of topological orders in
three-dimensional bosonic systems, where the number of topological types for the pointlike and stringlike
excitations is assumed to be finite. Our systematic understanding comes from the unique canonical
boundary for each 3 + 1D topological order. We find that the pointlike and stringlike excitations on the
canonical boundary are described fully by a mathematical theory—the so-called fusion 2-categories. This
theory allows us to classify 3 + 1D topological orders in bosonic systems in terms of a subset of fusion
2-categories. This systematic understanding further leads to a systematic understanding of 3 + 1D
topological orders in bosonic and fermionic systems with arbitrary finite unitary symmetry.

DOLI: 10.1103/PhysRevX.9.021005

I. INTRODUCTION

The study of topological phases of matter has become a
very active field in condensed-matter physics. They can be
divided into two classes. The first class is the topologically
ordered states realized in strongly interacting quantum Hall
systems [1] and some strongly interacting quantum spin-
liquid materials [2-6]. The notion of topological order was
introduced in 1989 [7,8], and now we realize that topo-
logical orders are nothing but the patterns of many-body
entanglement [9]. Topological orders have pointlike and/or
stringlike excitations, which have nontrivial topological
properties (such as braiding statistics), as well as highly
nontrivial boundary properties. Those properties are robust
against any local perturbations. The robustness against
arbitrary local perturbations is the meaning of fopological
in the name topological order.

The second class of topological phases of matter, such
as topological insulators [10—16], can be described by the
noninteracting band theory, which is very familiar to
condensed-matter physicists. This class of topological
phases also has highly nontrivial boundary properties,
but no topological excitations. The nontrivial boundary
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properties require protection by some symmetries. They are
not robust against symmetry-breaking local perturbations;
on the contrary, the robust properties of the first class
survive even when all the symmetries are broken. The
topological insulators are noninteracting examples of
symmetry-protected topological (SPT) orders [17-20] (also
known as symmetry-protected trivial orders [21]).

This paper is about the first class of topological phases
of matter—topological orders [22]—in three-dimensional
bosonic systems. Previously, it was shown that there is no
topological order in one-dimensional bosonic systems
[23,24]. The topological orders in two-dimensional bosonic
and fermionic systems are also understood systematically in
terms of the tensor category theory [25-29]. The abstract
mathematical tensor category theory is nothing but a detailed
theory to describe topological pointlike excitations.

We remark that many-body entanglement (i.e., topological
order) is a totally new phenomenon. Usually, to understand a
truly new phenomenon, we need to introduce new languages
and new mathematical framework. Historically, we have
introduced group and its representation theory into physics
to describe symmetries in quantum systems. Now, we need
to introduce category and higher category theory into
physics to describe many-body entanglement.

The study and the systematic understanding of
many-body entanglement (i.e., topological order) has a
wide and deep impact in physics. Topological order reveals
a new class of quantum matter that enables a new kind
of quantum computing—topological quantum computing
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[26,30-32]. Topological order also reveals the quantum
information origin of elementary particles and fundamental
forces [33-36].

However, until not long ago, we lacked a systematic
understanding of topological orders in three-dimensional
systems. Reference [37] started an attempt to have a
systematic and classifying understanding of 3 + 1D topo-
logical orders. This paper is a sequel to Ref. [37].

In Ref. [37], we classified the so-called all-boson (AB)
3 + 1D topological orders—the 3 4 1D topological orders
whose emergent pointlike excitations are all bosons. We
found that all 3 4+ 1D AB topological orders are classified by
pointed unitary fusion 2-categories with trivial 1-morphisms,
which are one-to-one labeled by a pair (G, w,) up to group
automorphisms, where G is a finite group and @, its group
4-cohomology class: w, € H*(G;R/Z).

In this paper, we classify 3 + 1D topological orders
whose emergent pointlike excitations are bosons and
fermions, which are called EF topological orders. The
results in Ref. [37] and in this paper classify all 3 + 1D
topological orders in bosonic systems, since there are only
two kinds of statistics for pointlike excitations in 3 + 1D:
Bose statistics and Fermi statistics. This result, in turn,
leads to a classification of 3 + 1D topological orders
with finite unitary symmetry for bosonic and fermionic
systems, which include 3 4+ 1D SPT orders with finite
unitary symmetry for bosonic and fermionic systems (see
Sec. IX). In addition, we argue that all 3 + 1D bosonic
topological orders always have a gappable boundary.

The pointlike excitations and the stringlike excitations in
3 + 1D bosonic topological orders [38-50] can fuse and
braid, and their fusion and braiding must form a self-
consistent structure. In particular, the self-consistent struc-
ture must satisfy the principle of remote detectability
[51,52]: A topological order is anomaly-free, if and only
if every nontrivial topological excitation can be detected by
other topological excitations via some remote operation.
This principle is called the anomaly-free condition in
Ref. [52]. Here, “nontrivial topological excitation” means
an excitation with a nontrivial type as defined in Sec. III B.
“Anomaly-free” means realizable by a local bosonic lattice
model in the same dimension [53].

Since the remote detection is done by braiding, the
self-consistency of fusion and braiding plus the remote

detectability can totally fix the structure of pointlike and
stringlike excitations. Those structures, in turn, classify the
3 + 1D EF topological orders.

II. SUMMARY OF RESULTS
A. A list of the results obtained in this paper

In this paper, we classify EF topological orders for
3 + 1D bosonic systems where some emergent pointlike
excitations are fermions. We assume the numbers of
different topological types for the pointlike and stringlike
excitations to be finite. To understand our result, a minimal
understanding of 2-category is required. The 2+ 1D
topological order is mathematically described by (braided)
fusion categories, whose objects correspond to pointlike
excitations (anyons), and morphisms (or 1-morphisms in
the context of higher category theory) correspond to
physical processes, such as braiding. In 3 + 1D topological
order, in addition to pointlike excitations, we have string-
like excitations; the categorical level is increased by
one, and we need (braided) fusion 2-categories. We con-
clude in Table I the physical meanings of the commonly
used 2-category terms in this paper for the reader’s
reference.

Here, we first list the main results. In the following
subsections, we explain those results in more physi-
cal terms.

(1) We argue that all 3 4+ 1D topological orders for

bosonic systems have a gappable boundary.

(2) All the pointlike excitations in EF topological
orders are described by the representations of G, =
sz Ne, Gp—a sz central extension of a finite group
G, characterized by a group cocycle e, € H*(G),, Z,).

(3) We find that every EF topological order one to one
corresponds a2 + 1D anomalous topological order A3}
on its unique canonical boundary, where the
3 4+ 1D EF topological order is given by the bulk
center Z(A3 ), which is the generalization of a Drinfeld
center to higher dimensions [52,54,55]. Here, Ai is
a unitary fusion 2-category with simple objects
labeled by G, = Z&' X,,, Gy, my € H*(G,,, Z). A3
also has one invertible fermionic 1-morphism
for each object as well as quantum-dimension-y/2

Physical meaning

TABLE I. Physical meanings of categorical terms.
2-category Notation
Object (0-morphism) 1 (trivial), s, g, h, ...
1-morphism Hom(1,1)
Hom(s, s)
Hom(g, h)
2-morphism

Stringlike excitation

Pointlike excitations
Pointlike excitations on string s
Pointlike domain wall between string g and &

Physical operators
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I-morphisms that connect two objects g and gm, where
g€ G, and m is the generator of Z7'.

(4) When Gh = 75" x G, the EF topological orders are
called EF1 topological orders, which is classified by
simple data (G, e,, n3,v,), where ny € H*(G,, Z,)
and v, is a 4-cochain in C*(G,,U(1)) satisfying
dl/4 _ (_)n3\1/n3+ezvn3

(5) When Gb is a nontrivial Z%' extension [i.e., when m,
is a nontrivial group cocycle in H*(G,, Z,)], the EF
topological orders are called EF2 topological orders,
where some junctions of three stringlike excitations
must carry Majorana zero modes.

(6) Every EF2 topological order with G, = ijc X Gy
can be associated with an EF1 topological order with
Gy = Zg PN Gb, which may lead to an understanding
of EF2 topological orders in terms of simpler EF1
topological orders.

(7) We find that all EF topological orders correspond
to gauged 3 + 1D fermionic SPT orders with a
finite unitary symmetry group. Our results can also
be viewed as a classification of the corresponding
3 4 1D fermionic SPT orders.

(8) We further propose that the general classification of
3 4 1D topological orders with finite unitary sym-
metries for bosonic and fermionic systems can be
obtained by gauging or partially gauging the finite
symmetry group of 3 + 1D SPT phases of bosonic
and fermionic systems.

B. Emergence of a group Gy

Since there is no braiding statistics in three-dimensional
space, the pointlike excitations are described by a sym-
metric fusion category sRep(G) [56]. In other words, each
type of pointlike excitation corresponds to an irreducible
representation of a finite group G;. The quantum dimen-
sion of the excitations is given by the dimension of the

representation. G is a Z{ central extension of G,:

xf
12— G5G, — 1. (1)

A pointlike excitation may correspond to a representation
where the subgroup Z{ is represented trivially. Such a

pointlike excitation is a boson. On the other hand, if Zg is
represented nontrivially, the corresponding pointlike exci-
tation is a fermion.

C. Unique canonical gapped boundary described
by a unitary fusion 2-category

Following a similar approach proposed in Ref. [37], in
this paper, we show that every EF topological order has a
unique canonical gapped boundary, which is described by a
unitary fusion 2-category A3. Let us describe such fusion
2-categories in detail. The simple objects of the fusion

2-category, corresponding to the boundary strings, are
labeled by Gy. Here, G, is an extension of G, by Z":

1 -2 — (A}bﬂGb - 1. (2)

The fusion of those boundary strings (the objects) is
described by the group multiplication of Gb.

In the fusion 2-category, there is a nontrivial 1-morphism
of unit quantum dimension that connects each simple
object g to itself. Such a I-morphism corresponds to a
pointlike topological excitation living on the string g.
Since it can live on a trivial string labeled by g = 1, these
pointlike excitations are actually not confined to certain
strings; they can move freely on the boundary and braid
among themselves. The statistics of this pointlike excitation
(the 1-morphism) is fermionic. So the canonical boundary
of an EF topological order also contains a fermion in
addition to the boundary strings.

There is also a 1-morphism of quantum dimension /2
that connects object g to object gm, where m is the
generator of ZJ'. Physically, it means that the domain wall
between string g and string gm carries a fractional degree of
freedom (d.o.f.) of dimension v/2 (i.e., like one-half of a
qubit). There are no other simple 1-morphisms.

For simplicity, we refer to the unitary fusion 2-categories
with the above special properties as EF 2-categories. In this
paper, we show that each EF topological order corresponds
to an EF 2-category. Reference [57] shows that, for each of
EF 2-categories, one can construct a bosonic model to
realize an EF topological order that has a boundary descri-
bed by the EF 2-category. Thus, the classification of EF
2-categories corresponds to a classification of 3 + 1D EF
topological orders. We mention that Ref. [58] also gave
explicit constructions of bosonic models to realize 3 + 1D
EF topological orders for the cases of Abelian G, in terms
of twisted Crane-Yetter models [59-62].

We note that the boundary fermion can form a topo-
logical p-wave superconducting (pSC) chain [63,64],
which is the nontrivial phase in Kitaev’s Majorana chain
model [63]. In fact, two boundary strings labeled by g and
gm differ by attaching such a pSC chain. The 1-morphism
of quantum dimension \/E at the domain wall between the
strings g and gm is nothing but the Majorana zero mode at
the end of the pSC chain.

D. Emergence of Majorana zero modes

The above classification of EF topological orders allows
us to divide those EF topological orders into EF1 topo-
logical orders when G, = 2% x G, and EF2 topological
orders when G, is a nontrivial Z2' extension of G,, des-
cribed by a group 2-cocycle m;(g,, hy,) € H*(G,. Z,). In
the following, we describe how to directly measure the
group 2-cocycle m, via the Majorana zero modes carried by
the junctions of three strings.
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8/
84
FIG. 1. A string configuration in the bulk described by a triple
(;(q/',)(g/-,)(q/), where y,/ is a conjugacy class in G containing
1 2 73 -

¢ € Gy and the triple satisfies gf gg = gg .

Consider a fixed set of strings labeled by y s, where y
is a conjugacy class in G, that containing ¢ € Gy.
Three strings Xyfr Xy and y g/ can annihilate if

71 J2 73

gffgé = 5/3‘ If the triple string junction has a Majorana zero
mode, we assign m§ (gf , gé ) = —1. If the triple string junc-
tion has no Majorana zero mode, we assign m’;( g, gg )=1.
(When G/ is Abelian, the appearance of Majorana zero
modes can be determined by the twofold topological
degeneracy for the configuration in Fig. 1.) m‘g (gf ng)

depends only on the conjugacy classes of gf , g/ , and gg .

Thus, m’z" satisfies

m}(g]. g4) = mh(hg{hi' haghhs"), hy,hy € Gy.

(3)

Under proper choices of the fixed set of strings (see

Sec. VIIIE), mf;(g",gé) is a function on G,; i.e., it has
the form

m}(gl.g5) = a2’ (g]). 7' (})]. (4)

11, in the above is cohomologically equivalent to m, that
describes the extension Gb; in other words, we measure
m, up to coboundaries. If the measured m, is trivial in
H?(Gy, Z,), the corresponding bulk topological order is
an EF1 topological order. If the measured m, is a
nontrivial cocycle, we get an EF2 topological order.
We emphasize that, for EF1 topological orders, emergent
Majorana zero modes can be removed by changing the
fixed set of strings, while, for EF2 topological orders,
the appearance of emergent Majorana zero modes is
inevitable.

We mention that, besides the junctions of three strings,
emergent Majorana zero modes may also be carried by
linked loops as first proposed in Ref. [65]. Appendix B
discuss the relation between the 2-cocycle m, and the
Majorana zero modes on the linked loops.

E. Classification of EF1 topological order by a
class of pointed unitary fusion 2-category

For an EFI1 topological order, the unitary fusion
2-category that describes its canonical boundary can be

simplified, since we can treat the pSC chain as a trivial
string when Gb = 75" x G, The simplified unitary fusion
2-category A} has simple objects labeled by G, and a
fermionic 1-morphism of unit quantum dimension that
connects each simple object to itself. There are no simple
noninvertible 1-morphisms. Thus, A3 is a pointed unitary
fusion 2-category. We study this case thoroughly and show
that A} are classified by data (G,,e,,ns,v,), where
G, = Gf/Z-g, e, € H*(Gy, Z,) is the 2-cocycle determin-
ing the extension Z} — G; — Gy, ny € H*(Gy. Z,), and
vy is a 4-cochain in C*[G,, U(1)] satisfying

dug = (=) T (5)

Here, - denotes the higher cup product which is defined in

Ref. [66]. The above data (G, e,, n3, v4) classify the EF1
topological orders. This result is closely related to a partial
classification of fermionic SPT phases [67], where a similar
twisted cocycle condition (5) was first obtained (without
the e,—n; term). Equation (5) is also discussed in
Ref. [58], for the cases when G, is Abelian, and in
Ref. [68] for arbitrary finite G, (as well as a generalization
to any dimensions).

In Ref. [57], we give explicit constructions and show that
all such pointed unitary fusion 2-categories correspond
to 3+ 1D EF topological orders. In fact, all 3+ 1D
EF1 topological orders can be realized [57] by 2-gauge
theories [62].

F. A map from EF topological orders
to EF1 topological orders

Let us now shift our attention from EF1 topological
orders to general EF topological orders. Although general
EF 2-categories are more complicated, we can nevertheless
obtain some understanding of them by constructing, for any
general EF 2-category A3 defined in Sec. IIC, an asso-
ciated pointed unitary fusion 2-category ./le which is just
the pointed sub-2-category of Az. In le?,, the quantum-
dimension-v/2 1-morphisms are thrown away, but the
simple objects remain as Gb. Note that ]lz should be
distinguished from .,le, where not only the quantum-
dimension-v/2 1-morphisms, but also the pSC chains,
are thrown away, and simple objects become the smaller
G,. Throwing away pSC chains is possible only when
Gb = G, x 77, ie., the EF1 case. Thus, there is a map
from the EF 2-categories A; to the pointed unitary fusion
2-categories Aj3. In other words, there is a map from EF
topological orders to EF1 topological orders. This relation
may make it possible to construct a generic EF topological
order from a simpler EF1 topological order by adding some
additional structure.
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G. A general classification of 3+ 1D topological
orders with finite unitary symmetry for
bosonic and fermionic systems

With the above classification results, we further propose
that the general classification of 3 + 1D topological orders
with symmetries can be obtained by gauging 3 4+ 1D SPT
phases. Partially gauging a SPT phase leads to a phase with
both topological order and symmetry, namely, a symmetry-
enriched topological (SET) phase, while fully gauging
the symmetry leads to an intrinsic topological order. In
the same gauging sequence, the starting SPT phase, the
partially gauged intermediate SET phases, and the ending
topological order share the same classification data; the
equivalence relations for SPT, SET, and topological order
can be different, though. See Sec. IX for a more detailed
discussion.

H. The line of arguments

The key result of this paper, the classification of 3 + 1D
EF topological orders, is obtained via the following line of
arguments.

(1) In Sec. III, we show that condensing all the bosonic

pointlike excitations in a 3 + 1D EF topological

order always gives rise to a unique ijc topologi-
cal order.
(2) In Sec. IV, we argue that the domain wall between

the EF and the Z"; topological orders, induced by the
condensation of all the bosonic pointlike excitations,
can be gapped. Since there is a canonical gapped
boundary of the Z‘é topological order, we obtain a
unique canonical gapped boundary of every 3 + 1D
EF topological order.

(3) Then, in Secs. V and VI, we further study the
properties of the domain wall and the boundary.
We show that they have strings whose fusion is
described by group multiplication, also a fermionic
pointlike excitation and a Majorana zero mode at the
junction of certain pairs of strings. Thus, the domain
wall and the boundary are described by unitary
fusion 2-categories with certain special properties,
which are discussed in more detail in Secs. VII
and VIIL

(4) By the principle that boundary uniquely determines
bulk [52,54,55], the above leads to a classification of
3 4 1D EF topological orders in terms of a subclass
of unitary fusion 2-categories.

III. CONDENSING ALL THE BOSONIC
POINTLIKE EXCITATIONS TO OBTAIN
A UNIQUE Z, TOPOLOGICAL ORDER

Some pointlike excitations in a 3 4+ 1D EF topological
order are bosons, and the others are fermions. In this
section, we show that, by condensing all the bosonic
pointlike excitations, we will always ends up with a simple

ZJ; gauge phase
E?PQ phase condense all bosonic particles
_________ 5T Qzéﬂux
( o
______________ - .
of & f

FIG. 2. Condensing all bosonic pointlike excitations in a
3+ 1D EF topological order Cfp gives rise to 3+ 1D Z’;
topological order C,.. Cf: contain a fermionic pointlike excitation

f and a stringlike excitation, Z-’zc flux, which behave like the

7-flux line for the fermion f. The domain wall A3, between Cy.

and C‘;f contain strings labeled by elements g € G, and only one
2

fermionic particle f. The strings and the fermion have quantum
dimension 1.

Zg topological order—a topological order described by the
3+ 1D Z,-gauge theory, but with a fermionic Z, charge
[38] (see Fig. 2). In the next few subsections, we introduce
related concepts and pictures that allow us to obtain such a
result.

A. Pointlike excitations and group structure
in 3+ 1D EF topological orders

The pointlike excitations in 3 + 1D EF topological
orders are described by the symmetric fusion category.
According to Tannaka duality (see Appendix A), the
symmetric fusion category gives rise to a group Gy such
that the pointlike excitations are labeled by the irreducible
representations of G . In addition, G, contains a Z, central

subgroup, denoted by Z"; ={1,z}. In each irreducible
representation of Gy, z is represented by either [ or —/
(where I is an identity matrix). If z = I, the corresponding
pointlike excitation is a boson. We note that all the bosonic
pointlike excitations are described by representations of
Gy, Rep(G,), where G, = G;/Z}. If z = —I, the corre-
sponding pointlike excitation is a fermion. We denote such
a symmetric fusion category by sRep(Gy). In addition,
irreducible representations correspond to simple pointlike
excitations, while reducible representations correspond to
nonsimple, or composite, pointlike excitations. Composite
excitations always split as the direct sum of simple ones.

B. Stringlike excitations in 3+ 1D
EF topological orders

The pointlike excitations have trivial mutual statistics
among them. One cannot use the pointlike excitations to
detect other pointlike excitations by remote operations.
Thus, based on the principle of remote detectability, there
must be stringlike excitations in 3 + 1D EF topological
orders, so that every pointlike excitation can be detected
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by some stringlike excitations via remote braiding.
Similarly, every stringlike excitation can be detected by
some pointlike and/or stringlike excitations via remote
braiding. We see that the properties of stringlike excitations
are determined by the pointlike topological excitations [i.e.,
sRep(Gy)] to a certain degree.

Let us discuss some basic properties of stringlike
excitations. First, similar to the particle case (see
Appendix A), a stringlike excitation s; can be defined
via a trap Hamiltonian AH . (s;) which is nonzero along a
loop. Such a trap Hamiltonian AH,(s;) can be understood
as modifying the original Hamiltonian H,, by adding a
potential energy configuration that makes it energetically
favorable to trap a topologically nontrivial excitation in a
certain location, so that it becomes the ground state of the
modified Hamiltonian. The ground-state subspace of total
Hamiltonian Hy + >, AH . (s;) defines the fusion space of
strings s; [and particles p; if we also have particle traps
AH(p)]: V(M, py, pss ..., S1, 82, ...). We note that such a
definition relies on an assumption that all the on-string
excitations are gapped. We argue that such is always the
case in Ref. [37] provided that the number of topological
types for strings is finite.

It is important to first clarify what are the “fundamental,”
or simple, strings: A stringlike excitation s; is called simple
if its fusion space cannot be split by any nonlocal
perturbations along the string; i.e., the ground-state degen-
eracy cannot be split by any nonlocal perturbations of
AH.(s;). We stress that here we allow nonlocal perturba-
tions which are nonzero only along the string. In addition,
we say that two simple strings are of the same type if they
can be deformed into each other without closing the energy
gap by nonlocal perturbations along the string. The
motivation to use nonlocal perturbations is that we want
to separate out the degeneracy that is “distributed” between
strings and particles.

For example, in a 3 4+ 1D Z,-gauge theory, the Z,-gauge
charge has a mod 2 conservation. Those Z, charges can
form a many-body state along a large loop, that sponta-
neously breaks the mod 2 conservation which leads to a
twofold degeneracy. We do not want to regard such a string
as a nontrivial simple string. One way to remove such kinds
of string as a nontrivial simple string is to require stability
against nonlocal perturbations along a simple string.
Mathematically, if we allow nonlocal perturbations as
morphisms, the above string from Z,-charge condensation
becomes a direct sum of two trivial strings.

The fusion of simple strings may give us nonsimple
strings which can be written as a direct sum of simple
strings:

5;i®s; = ?M;jsk. (6)

Strings, when they are contractable loops, can also shrink to
a point and become pointlike excitations:

Si = @Lj'l’j- (7)
J

We say that a string is pure if and only if its shrinking
contains trivial pointlike excitation 1. A nonpure string can
be viewed as a bound state of a pure string with some
topological pointlike excitations.

Using M}/ together with shrinking, we can calculate the
dimension of fusion space of unlinked loops, as well as the
quantum dimension d; of the s; string. Here, d; is defined
similarly as that for pointlike excitations [see Eq. (A16)]; it
is the effective dimension of “internal d.o.f” of the
excitation at a large excitation number limit. More pre-
cisely, let V(S3,s?") be the fusion space of n unlinked
loops s;, and we have d; = lim,_,[dim V(S3, s®")]'/". A
string s with quantum dimension 1 is always simple. Such a
string is called invertible or pointed; i.e., there exists
another string s’ such that

SR =5 s=1. (8)

Since, in general, it is not easy to determine whether a
string is simple by directly checking whether its fusion
space can be split or not, in the following we try to make
use of the shrinking operation to do the job. In fact, not only
strings have a shrinking operation; particles also have a
shrinking operation. We note that a zero-dimension sphere
§? is two points, which may correspond to a pair of particles
(p1, p2)- In higher dimensions, we may have excitations
described by S¢. For d =0,1,2, ..., they correspond to a
pair of particles (py, p,), a loop excitation s, a spherical
membrane excitation m, etc. Those excitations are pure if
their shrinking contains 1. For example, an SO excitation
(p1, p2) is pure if and only if p, is the antiparticle of p;.

There is a well-known result that p is simple if and only
if the shrinking of p and p (i.e., the fusion of p and p)
contains only a single trivial particle 1. In this case, we also
say that the corresponding pure S° excitation (p, p) is
simple. By analog, we conjecture a similar condition for
higher-dimensional excitations: A pure S¢ excitation is
simple if and only if its shrinking contains only one trivial
particle 1. Thus, the shrinking of a pure simple string s must
have the form s — 1 @ - - - where no other 1’s appearin - - -.

For a more detailed discussion about stringlike excita-
tions and their related membrane operators, see Ref. [37].

C. Dimension reduction of generic topological orders

We can reduce a 3+ 1D topological order C* on
spacetime M?> x S' to 2 + 1D topological orders on space-
time M? by making the circle S' small [see Figs. 3 and 4(a)]
[42,43]. In this limit, the 3 + 1D topological order C* can
be viewed as several 2+ 1D topological orders C3,
i=12,...,N{, which happen to have degenerate
ground-state energy. We denote such a dimensional reduc-
tion process by
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FIG. 3. The dimension reduction of 3D space M? x S' to 2D
space M. The top and the bottom surfaces are identified, and the
vertical direction is the compactified S' direction. A 3D pointlike
excitation (the blue dot) becomes an anyon in 2D. A 3D stringlike
excitation wrapping around S' (the red line) also becomes an
anyon in 2D. The picture describes the untwisted sector where the
3D pointlike excitations have trivial holonomy as we move them
around the compact direction S'.

Nsee
1

Ct=@c, 9)
i=1

where N5 is the number of sectors produced by the
dimensional reduction.

We note that the different sectors come from the different
holonomy of moving pointlike excitations around the S'
(see Fig. 3). So the dimension reduction always contains a
sector where the holonomy of moving any pointlike
excitations around the S' is trivial. Such a sector is called
the untwisted sector.

In the untwisted sector, there are three kinds of anyons.
The first kind of anyons correspond to the 3 + 1D pointlike
excitations. The second kind of anyons correspond to the
3+ 1D pure stringlike excitations wrapping around the
compactified S'. The third kind of anyons are bound states
of the first two kinds [see Figs. 3 and 4(a)].

We point out that the untwisted sector in the dimension
reduction can even be realized directly in 3D space without
compactification. Consider a 2D submanifold in the 3D
space (see Fig. 5), and put the 3D pointlike excitations on
the 2D submanifold. We can have a loop of string across the
2D submanifold which can be viewed as an effective
pointlike excitation on the 2D submanifold. We can also
have a bound state of the above two types of effective

y

r

Vol

(@) 7/ \1 (b)
e e

FIG. 4. Two ways to reduce a 2D space M? to 1D space. (a) The
dimension reduction via compactifying the y direction. (b) The
dimension reduction via compactifying the @ direction. If we add
the z direction, the above become two ways to reduce a 3D space
to 2D space.

FIG. 5. The untwisted sector in the dimension reduction can be
realized directly on a 2D submanifold in 3D space without
compactification.

pointlike excitations on the 2D submanifold. Those effec-
tive pointlike excitations on the 2D submanifold can fuse
and braid just like the anyons in 2 4+ 1D. The principle of
remote detectability requires those effective pointlike
excitations to form a unitary modular tensor category.
When we perform dimension reduction, the above unitary
modular tensor category becomes the untwisted sector of
the dimension-reduced 2 4 1D topological order.

Since the dimension-reduced 2 + 1D topological orders
must be anomaly-free, they must be described by unitary
modular tensor categories. Since the untwisted sector
always contains sRep(G ), we conclude that the untwisted
sector of a dimension-reduced 3 + 1D EF topological order
is a modular extension of sRep(Gy).

D. Sectors of dimension reduction
are 2+ 1D Drinfeld centers

In Ref. [37], we show the following stronger result:
Let the symmetric fusion category formed by the pointlike
excitations be &, £ = Rep(G) or £ = sRep(Gy) for the
AB or EF cases, respectively: The untwisted sector CJ ., of
dimension reduction of a generic 3 + 1D topological orders
must be the 2 4 1D topological order described by the
Drinfeld center of &: Ci, = Z(£). Note that Drinfeld
center Z(€) is the minimal modular extension of £. In the
following, we generalize the above to any sector of
dimension reduction.

First, let us recall the definition of a Drinfeld center. The
Drinfeld center Z(.A) of a fusion category A is a braided
fusion category, whose objects are pairs (A, by _), where
A is an object in A and b, _ is a set of isomorphisms
baxA®X=X®A, YV X e A The isomorphism b, x
is just the collection of unitary operators that connects the
fusion spaces --- Q@ AQR@XQ®---and - - - QX RPAQ ---
for different backgrounds. They satisfy some self-
consistency conditions such as the hexagon equation:

bA,YbA,X = bA,X®Yv (10)

where we omit the associativity constraints (or F matrices)
of A for simplicity (otherwise, there are in addition three F
matrices involved, in total six terms, hence the name
hexagon). b, x is called a half-braiding.
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£y

A X Y

FIG. 6. If a (composite) boundary excitation can be lifted into
the bulk, its half-braiding with other boundary excitations must
satisfy some self-consistency conditions. The above illustrates the
hexagon equation by ybs y = b xgy-

Physically, we may view the objects in A as the pointlike
topological excitations living on the boundary of a 2 + 1D
topological order. In general, a boundary excitation trapped
by a potential on the boundary cannot be lifted into the
bulk. Physically, this means that as the trapping potential
moves into the bulk, the ground-state subspace will be
joined by some high-energy eigenstates to form a new
ground-state subspace. But we may choose the boundary
trapping potential very carefully, so that the ground-state
subspace is formed by accidentally degenerate boundary
excitations. In this case, we say that the excitation trapped
by the boundary potential is a direct sum of those boundary
excitations. Such an excitation corresponds to a composite
object in the fusion category .A. Now the question is which
composite object (or direct sum of boundary excitations)
can be lifted into the bulk (i.e., the ground-state subspace
rotates only by unitary transformation as we move the
trapping potential into the bulk).

We try to answer this question by exchanging a com-
posite object A in A with an arbitrary boundary excitation
X and study the unitary transformation b, y induced by
such an exchange. If A can be lifted into the bulk, this b, x
can be interpreted as coming from the half-braiding (see
Fig. 6). There are self-consistency conditions from those
half-braidings. If we find a composite object A whose half-
braidings satisfy those consistent conditions, we believe
that the object A can be lifted into the bulk.

However, there is an additional subtlety: Even when we
require that the ground-state subspace rotates only by
unitary transformation as we move the trapping potential
into the bulk, there are still different ways to move a
composite boundary excitation A into the bulk, which
correspond to different pointlike excitations in the bulk.
Those different bulk excitations can be distinguished by
their different half-braiding properties with all the boundary
excitations X. All the bulk excitations can be obtained this
way. Therefore, the bulk excitations are given by pairs
(A, by _), which correspond to the objects in the Drinfeld
center Z(A).

Mathematically, the morphisms of Z(A) between the
pairs (A,bs_),(B,bp_) are a subset of morphisms
between A, B, such that they commute with the half-
braidings b, _,bg_. Two pairs (A,by_).(B,bp_) are
equivalent if there is an isomorphism in Z(.A) between
them; namely, there is an isomorphism, a collection of
unitary operators between the fusion spaces --- QA ® -,

FIG. 7. The dimension reduction of 3D space M? x S' to 2D
space M? for a twisted sector. The top and the bottom surfaces are
identified, and the vertical direction is the compactified S’
direction. The picture describes a twisted sector where the 3D
pointlike excitations have nontrivial holonomy as we move them
around the compact direction S'. Such a nontrivial holonomy is
represented by the red horizontal line (the base string) that
characterizes this nontrivial holonomy, and hence the twisted
sector. A 3D pointlike excitation not on the base string (the blue
dot) becomes an anyon particle in 2D. A 3D stringlike excitation
wrapping around the base string (the red line) also becomes an
anyon particle in 2D.

- @B®:---, that commutes with the half-braidings b, _,
bp._. The fusion and braiding of (A, b, _)’s is given by

(A,by_)® (B,bp_)=(A®B,(bs_ ®idp)(idy @ bp_)).
C(Aby ) (Bby_) =bap- (11)

In other words, to half-braid A ® B with X, one just
half-braids B and A successively with X, and the braiding
between (A,b,_) and (B,bp_) is nothing but the half-
braiding.

In a sector C? of dimension reduction [see Fig. 4(a)], as
we move the 3 4 1D pointlike excitation around the
compactified S', we may obtain nontrivial holonomy.
This nontrivial holonomy corresponds to those induced
by moving the pointlike excitation around a 3 + 1D string
of type i. Therefore, we may view a twisted sector C3 as
having a base string i going through the compactified S’
(see Fig. 7). The particles in C; come from the strings
(including the trivial strings) wrapping around the com-
pactified S'. Thus, the particles in C; come from the strings
(including the trivial strings) wrapping around the base
string i.

Naturally, the content of anyons in the twisted sector C;
depends on the twist (i.e., the base string i). To understand
how C} depends on the base string i, we note that, as we
move a 3 + 1D particle to the base string i, the degeneracy
of the fusion space may split. Thus, a 3 + 1D particle may
behave like a direct sum of several particles on the base
string i. Those particles on the base string are regarded as
confined on the base string (see the particle p in Fig. 8).
Also, shrinking a string loop s around the base string i to a
point on the base string may also correspond to a direct sum
of several particles on the base string. We also regard those
particles as confined on the base string (see the particle p$'"
in Fig. 8).
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FIG. 8. From (a) to (b), the particle p on the base string i is
moved through the loop s. (c),(d) are obtained from (a),(b) by
shrinking loops. Shrinking thus induces a “half-braiding” iso-
morphism ¢ from (c) to (d).

The pointlike excitations confined on the base string
naturally form a fusion category, denoted by .4; [69]. In fact,
in the second dimension-reduction scheme in Fig. 4(b), the
base string at (x,y) = (0, 0) exactly behaves like a gapped
boundary of the dimension-reduced theory, as shown in
Fig. 4(b). The above discussions then immediately imply
that G} = Z(A;).

On the other hand, similar to the untwisted sector, C? can
also be effectively represented, in 3 + 1D without dimen-
sion reduction, by the three-loop braiding [40,41], as shown
in Fig. 8, which is equivalent to Fig. 4(b) around the base
string. As dimension reduction does not apply to general
spacetime topology, next we use the three-loop braiding
picture to prove the result in a more rigorous way, which is
almost parallel to that in Ref. [37].

The important thing to note is that loops encircling the
base string can shrink to the base string. When we shrink a
loop s (including bound states of particles with strings, in
particular, pointlike excitations viewed as bound states with
the trivial string) to the base string, it becomes a confined
pointlike excitation p¥* in A;:

s=opM=p ®@p @,  pLpy...€A. (12)

So if we consider only fusion, the particles s in the
dimension-reduced sector C; can all be viewed as the
particles in A;, regardless if they come from the 3D
particles or 3D strings. In general, simple bulk particles
p € £ may become composite in A;, unless in the
untwisted sector.

Now imagine we move a confined particle p on the base
string, through the loop s encircling the base string. This
movement induces an isomorphism between the initial and
end states where the loop s is shrunk (see Fig. 8):

cSpip ® p=p @ pi. (13)

which is automatically a half-braiding on the particle p$™.

Thus, (pshr, Ciltfi), by definition, is an object in the Drinfeld
center Z(A;). In 24 1D topological orders, when a
boundary particle can be lifted into the bulk, it has half-
braidings with other boundary particles; here, the story is
very similar—when a particle confined on the base string
can either be lifted from the base string or expand to
another loop excitation encircling the base string, it has
half-braidings with other particles confined on the base
string.
Shrinking thus induces a functor

C? - Z(A),
s+ (p, i), (14)

which is obviously monoidal and braided, i.e., preserves
fusion and braiding. As C? is a unitary modular tensor
category, this functor must be fully faithful [70], namely, an
embedding functor; in other words, Cf can be viewed as a
full subcategory of Z(.4;). However, if there is some X €
Z(A;) but X & C3 (namely, X is not physically present),
certain particles in 4; will be indistinguishable by three-
loop braidings. Therefore, by the principle of remote
detectability, we must have

C = Z(A). (15)

In general, it is not easy to determine the confined
particles A; on the base string i. But, for the untwisted
sector, the base string is trivial, and thus A,,,, = £ and
Clow = Z(E). As Z(&) is known well, many properties can
be easily extracted. For example, objects in Z[sRep(G/)]
have the form (y, p), where y is a conjugacy class of G,
and p is a representation of the subgroup of G, that
centralizes y. One then concludes

(1) a looplike excitation in a 3 4+ 1D topological order

always has an integer quantum dimension, which
is || dimp;

(2) pure strings (p trivial) always correspond to con-

jugacy classes of the group.
For 3 4+ 1D EF topological orders, as the fermion number
parity z is in the center of G, its conjugacy class has only
one element. We have the following corollary, which is
used in later discussions:

Corollary.—In all 3 + 1D EF topological orders, there is

an invertible pure ZJ; flux loop excitation, corresponding to
the conjugacy class of fermion number parity z.

E. Condensing all the bosonic pointlike excitations

Starting from a 3 + 1D EF topological order Cp, we can
condense all the bosonic pointlike excitations described by
Rep(G,), to obtain a new 3 + 1D EF topological order C*.
After Rep(G,) is condensed, all bosonic pointlike
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excitations become the trivial pointlike excitation in ct,
while all fermionic pointlike excitations become the same
fermionic pointlike excitations with quantum dimension 1.
In other words, the pointlike excitations in the new
topological order C* are described by sRep(Z’; ).

Let us describe the boson condensation in more detail.
The pointlike excitations described by sRep(G ) satisfy a
fusion rule described by the fusion of the representations of
G. The corresponding conservation is a conservation of G ¢
quantum numbers (i.e., representations). Therefore, there is
an emergent G, symmetry in the topological order Chr. We
note that a G,-valued bosonic field forms a reducible
representation of G, that includes all the irreducible repre-
sentations. Thus, the condensation of such a bosonic field
corresponds to the condensation of all the bosonic pointlike
excitations. This condensation breaks the emergent Gy
symmetry in Cgp to the emergent ZJ; symmetry in ct.

This picture of C* seems to suggests a |G,,|-fold ground-
state degeneracy due to the spontaneous symmetry break-
ing. However, since the G, symmetry is emergent, at a
finite length scale [, the G, symmetry is broken by an
amount of the order of e=/¢, where £ is the correlation
length of local orders in Cgp. So |G,|-fold ground-state
degeneracy is split by an amount of the order of e~/¢A,
where [ is the interparticle separation for the condensed
bosons and A is the gap of C.. Therefore, C* does not have
ground-state degeneracy coming from spontaneous sym-
metry breaking, since the splitting e~/¢A is finite in the
thermodynamic limit.

What are the stringlike excitations in c*? Although the
pointlike excitations in C* are very simple and can detect
only simple strings, the stringlike excitations can braid
among themselves and detect each other. Thus, C* might
contain complicated stringlike excitations.

However, as pointed out in Ref. [37], to remotely detect
an unlinked string loop s in the space S°, we need to use
another string loop s” and the two-loop braiding between s
and s’ to remotely detect s. However, on % such a two-loop
braiding corresponds to braiding a particle p’ around the
string loop s, where the particle p’ is the shrinking of the
string loop s’. Since, for c*, p’ can be only the trivial
particle or the fermion f, the strings that they can dis-
tinguish are also very simple. In other words, there should
be only one type of simple pure string s;, which has
nontrivial braiding with f (i.e., behaves like a 7z flux for the
fermion f).

This result can also be obtained using the dimension
reduction discussed above, plus the following conjecture:

Conjecture.—There is a one-to-one correspondence
between the simple types of stringlike excitations in
3+ 1D and the simple types of pointlike excitations in
the 2 4+ 1D untwisted sector of the dimension reduction.

To understand the above conjecture, we note that each
simple string in 3 + 1D reduces to a particle in 2 4 1D in
the untwisted sector (see Fig. 3). However, the 2 + 1D
particle might be composite (i.e., a direct sum of several
simple types of particles in 2 4+ 1D). But since the simple
strings in 3 4 1D are stable against any nonlocal perturba-
tions around the strings, the corresponding particles in
2 + 1D are stable against any local perturbations around
the particles. Thus, the corresponding 2 + 1D particles are
actually simple types. This reasoning leads to the above
conjecture.

With such a conjecture, the 3 4 1D stringlike excitations
are determined by the 2 + 1D pointlike excitations des-
cribed by £ = sRep(ZJZC ). In particular, the untwisted sector
of the dimension reduction must be the Drinfeld center
Z(€) = Z[sRep(Z})], which is nothing but the 2 4 1D
Z,-gauge theory. There are only four types of 2+ 1D
anyons: Two of them correspond to the 3 + 1D pointlike
excitations in sRep(Zé), and the other two correspond to
the 3 + 1D stringlike excitations. The fusion rule between
the four anyons in the 2 4+ 1D Z,-gauge theory is described
by the Z, x Z, group, which leads to the fusion rule
between the loops and the fermion f:

f®f:17
S1®S1:S2®S2:1,

f® s = sy, f® s, =15,
S1®S2:f. (16)

The above also implies the shrinking rule for the loops to be

s — 1, 5, = f. (17)
We also find that the braiding phases between the fermion f
and the two loops s; are given by —1, and the braiding phase
between two s; or two s,’s is 1. The braiding phase
between s, and s, is —1. Here, the invertible loop s; is the
just the sz flux loop z.

We see that C* contains only one type of pure simple
string s, which shrinks to a single 1. The other loop s, is the
bound state of s; and the fermion f. The loop s; has a trivial
two-loop braiding with itself.

We further investigate the braiding properties of s; by
studying the twisted sector of dimension reduction with
base string s;. What are the confined pointlike excitations
Ay, on s,? There is at least a Z, excitation in A, coming
from the bulk fermion. On the other hand, there should be at
most four different types of particles in C%l, corresponding
to 1, f, s;, and s, encircling the base string. There is only
one unitary modular tensor category, which is a Drinfeld
center, satisfying the above constraints; it is again C?l =
Z[sRep(Zg )] and A = sRep(Z{ ). Thus sy, s, encircling

51 correspond to Z, bosons in Z[sRep(Z})], which means
that the three-loop braiding of s; strings is also trivial.
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Another tricky point is that the trivial string 1, although
with totally trivial braiding properties, may still secretly be
a pSC chain. Thus, one may wonder if s; has any nontrivial
interplay with pSC chains; for example, s; ® s; = 1 s, in
fact, a pSC chain. But note that, when a pSC chain is linked
with a Zg flux loop (namely, s,), the fermion number parity
will be changed. Thus, if s; ® s; is a pSC chain, when
encircling the base string s; (namely, in Cfl), one should

have s, ® s; = f. The fact that C} = Z[sRep(Z)))]
excludes such a possibility, since, for any particle a in
G = Z[sRep(Z})], a ® a is always a boson. For details,
see Sec. VIIIC.

We thus conjecture that the pure string s, has totally trivial
braiding properties and it can be condensed to obtain another
topological order D*, which turns out to be trivial. To see
this, note that condensing the pure string s; corresponds to
condensing the corresponding topological boson in the
untwisted sector described by 2+ 1D Z,-gauge theory
Z[sRep(Z})], which changes the untwisted sector to a
trivial phase. So the untwisted sector of dimension-reduced
D* is trivial, which implies that D* has no nontrivial
pointlike and stringlike excitations.

We can also obtain such a result by noticing that, in D*,
the fermions and s, are confined, due to the nontrivial
braiding with s;, and s; becomes the ground state (i.e.,
condensed). Thus, D* has no nontrivial bulk excitations and
must be an invertible topological order. But in 3 + 1D, all
invertible topological orders are trivial [52,71,72]. Thus, D4
is a trivial phase, which means that we can create a gapped
boundary of ct by condensing s; strings. Such a boundary
contains only one fermionic particle f with a Z, fusion rule:

f®f=1 (18)

For any c, condensing strings lead to the same above
boundary, on which there is no nontrivial string excita-
tion, and the only nontrivial pointlike excitation is the
fermion. Using the principle that the boundary uniquely

determines the bulk [52,54,55], we conclude that all the C*s
that satisfy the above properties are actually the same

topological order, which is called the Z’; topological order,
denoted by C‘é £: In any 3 + 1D EF topological order Cgp,

condensing all the bosonic pointlike excitations in Rep(G,)
produces the same unique 3 + 1D topological order C;_,».
2

The topological order C‘é , 1s constructed on a cubic
2

lattice [73]. It is also called twisted Z,-gauge theory where
the Z, charge is fermionic and is realized by the 3 + 1D
Levin-Wen string-net model [38]. C4Zf can also be realized

by the Walker-Wang model [74] or by a 2-cocycle lattice
theory [75]. In this paper, we refer to C4Zf as the Z}

topological order.

IV. ALL 3 +1D BOSONIC TOPOLOGICAL ORDERS
HAVE A GAPPABLE BOUNDARY

It is well known that 2 + 1D topological orders with a
nonzero chiral central charge ¢ cannot have a gapped
boundary, which can be understood from the induced
gravitational Chern-Simons term in the effective action
for such a kind of topological orders. Since there is no
gravitational Chern-Simons term in 3 4 1D, this might
suggest that all 3 4+ 1D bosonic topological orders have a
gappable boundary. However, such a reasoning is not
correct. In fact, there are 2 4+ 1D topological orders with
a zero chiral central charge (i.e., with no gravitational
Chern-Simons term) that cannot have a gapped boun-
dary [51].

For a 2 4 1D topological order described by a unitary
modular tensor category C°, if C* has a condensable
algebra [76], then we can condense the bosons in the
condensable algebra to obtain another 2 4 1D topological
order described by a different unitary modular tensor
category D3. Now we ask, is there a gapped domain wall
between the two topological orders C* and D*? In fact, we
can show that there exists a 1 + 1D anomalous topological
order, described by unitary fusion category .A2, which is
mathematically the category of modules over the condens-
able algebra, such that the Drinfeld center of A2 is
C® ® D, Here, C* ® D is the 2 + 1D topological order
formed by stacking two topological orders, C* and D,
where D? is the time-reversal conjugate of D3. This means
that it is consistent to view A2 as the domain wall between
C3 and D3. Then, we conjecture that there exists a gapped
domain wall between C* and D? that is described by A2

In the last section, we have seen that condensing all the
bosonic excitations described by Rep(G,) in a 3 + 1D EF
topological order C. give us an unique 3 + 1D topological

order C4Zf. This result can also be obtained by noticing that
2

the condensation of Rep(G,,) is described by a condensable
algebra, and there is only one condensable algebra if we
want to condense all Rep(G,,). So there is only one way to
condense all Rep(G,) which produces a unique state C‘éf.

We expect that, similar to the 2 + 1D case, such an
unique condensation also produces an unique unitary
fusion 2-category A}, such that the generalized Drinfeld

center, or bulk center, of A3, is Ci X C4Zf, and we can view
2
A;, as the canonical domain wall between Cgy and C,. This
2

result motivates us to conjecture that there exists a gapped
domain wall between two 3 4+ 1D EF topological orders
Cip and C;_;.

There is a heuristic physical argument to support the
above conjecture. The particles in the condensable algebra
are all bosons which form a symmetric fusion category
Rep(G,). Those bosons have an emergent symmetry
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described by G,,. As discussed in Sec. IIIE, C4Zf can be

viewed as the boson condensed state with a small

symmetry-breaking perturbation. Such a kind of state is

well studied in physics which always allows a gapped

domain wall between itself and its uncondensed parent

state. Therefore, the domain wall between two 3 + 1D EF

topological orders Cg and C;f can always be gapped. In
2

Sec. I E, we show that C;, topological order can have a
2

gapped boundary, which allows us to argue that all 3 + 1D
EF topological orders have a gappable boundary.

Using a similar argument, we can argue that all 3 4+ 1D
AB topological orders have a gappable boundary. In fact,
the argument is simpler for the AB case, since boson
condensation directly results in a trivial phase, with no
intermediate C‘é_,» topological order. Hence, all 3+ 1D

2

bosonic topological orders have a gappable boundary.

V. UNIQUE CANONICAL DOMAIN WALLS
BETWEEN 3+1D EF TOPOLOGICAL ORDERS

AND ZJ; TOPOLOGICAL ORDER C;f
2

In this section, we derive the properties of the fusion
2-category A3, which describes the domain wall between
4 4
Crr and ng.

A. All simple boundary strings and boundary
particles have quantum dimension 1

After condensing all bosonic particles Rep(G},), the only
nontrivial particle on the canonical domain wall is the
fermion f with quantum dimension 1. Such a fermion can
be lifted into one side of the domain wall with the Z";

topological order C‘;f. On the other side of the domain wall
2

with 3 + 1D EF topological order Cgp, if we bring the

fermions in sRep(G) to the boundary, it will become

a direct sum (i.e., accidental degenerate copies) of
several f’s.

What are the stringlike excitations on the domain wall?

On the C4zf side of the domain wall, there is only one type of
2

pure simple stringlike excitation—the ZJ; flux loop with
quantum dimension 1. Bringing such a string to the domain
wall gives us a Z’; flux loop on the wall. We can also bring
strings in Cgy to the domain wall. In general, a string in Cp
becomes a direct sum of simple boundary strings.

Let us focus on the simple loop excitations on the
canonical domain wall. A loop excitation shrunk to a
point may become a direct sum of pointlike excitations
[see Eq. (7)]:

s = nl @ mf, (19)

where 1 and f are the trivial and fermionic pointlike
excitations, respectively. When n = 0, the string is not

pure. Another possibility is that n > 1. In this case, the
string is not simple. When m > 1, the string is also not
simple, since, when s fuses with an invertible fermion, its
shrinking rule becomes

sQ f— ml@® nf, (20)

which is not simple. Supposing s @ f =5, D s, & - -+,
then s=sQ@ fQf=(5,Qf) D (5, Qf) D --- is not
simple. Therefore, simple loop excitations on the domain
wall have three possible shrinking rules:
s, = 1, sp= f, s> 1@ f. (21)
In the following, we show, by contradiction, that a simple
string like sx with quantum dimension 2 cannot exist on the
domain wall.

First, the invertible Z’; flux loop z exists in both sides,
Cir and CJ,, of the domain wall. We are able to braid z
2

around the domain-wall excitations. As z is invertible, such
braiding leads to only a U(1) phase factor, denoted by
0(z,—). In particular, 6(z, f) = —1, which is the defining
property of ijc flux.

Second, fusing a fermion f to a string sgx which shrinks
to 1 @ f will not change the string, namely, sy ® f = sg.
Thus,

0(z,5x) = 0(z, 5k ® f) = 0(z,5¢)0(z, ) = =0(z, 5x),
(22)

which is contradictory. Physically, we can use the braiding
of z to detect the fermion number parity on the domain
wall, which implies that excitations without a fixed fermion
number parity, such as s, — 1 @ f, cannot be stable on the
domain wall. Therefore, there is no simple domain-wall
string with quantum dimension 2.

Thus, a simple loop on the boundary shrinks to a unique
particle, 1 or f, with quantum dimension 1. A simple pure
loop on the boundary always shrinks to a single 1. This is
an essential property in the following discussions: All
simple pure loops on the domain wall have a quantum
dimension d = 1, and their fusion is grouplike. As the
nonpure simple loops are all bound states of f with pure
simple loops, we consider only the simple pure loops. For
the moment, we denote the group formed by the simple
pure loops on the domain wall under fusion (see Fig. 11)
by H.

B. Fusion of domain-wall strings recovers the group

The argument in this subsection is almost parallel to
those in the AB case described in Ref. [37]. There are only
a few modifications to address the fermionic nature. But to
be self-contained we include a full argument here. It is

021005-12



CLASSIFICATION OF 3 + 1D BOSONIC TOPOLOGICAL ...

PHYS. REV. X 9, 021005 (2019)

e e
topo. phase
T p. ~~~~~~ 7', —topo. phase @
- y
0 BgTTTeR
(a) (b)

FIG. 9. (a) The fusion space F(p) for a 3-disk D* containing
only one particle p. (b) F preserves fusion of particles,

F(p1) ®c F(p2) = F(p1 ® pa).

recommended that readers not familiar with Tannaka
duality go through Appendix A first.

To apply the Tannaka duality, we need a physical
realization of the super-fiber-functor. Consider a simple
topology for the domain wall: Put the 3 4 1D topological
order C: in a 3-disk D* and the domain wall on 9D = 2,

and outside is the condensed phase C;f. When there is only

a particle p in the 3-disk, a background particle Q =1 & f
in the condensed phase C‘éf [77], with no string and no other
2

particles, we associate the corresponding fusion space to
the particle p and denote this fusion space by F(p) (see
Fig. 9). Viewed from very far away, a 3-disk containing a
particle p is like a particle in the condensed phase C‘;,
2
which has pointlike excitations sVec = sRep(Z}). In other
words, F(p) is like a local super-vector-space in sVec
describing a 3-disk containing p. Alternatively, as dis-
cussed in Appendix A 5, if p is moved out of the 3-disk
through the domain wall and becomes a particle p’ in the
condensed phase, such p’ is also the super-vector-space
F(p). When there are two 3-disks, each containing only
one particle, p; and p,, respectively, the fusion space is
F(p1) ®c F(p,). It is proved in Appendix A5 that F
preserves fusion, F(p,) ®c F(p,) = F(p; ® p»), and
also preserves the braiding of particles. In other words,
the assignment p — F(p) gives rise to a super-fiber-
functor. By the Tannaka duality, we can reconstruct a
group G, = Aut(F), such that the particles in the bulk Cf
are identified with sRep(G ). Our goal is to show that the
fusion group H of the simple loops on the domain wall is
the same as Gy.

To achieve this goal, we consider the process of
adiabatically moving the trap that hold a particle p along
a loop (Fig. 10). Half of the loop is in the original
topological state, and the other half is in the Zg topological
state. When the trap is in the original topological state, there
is a d,-fold ground-state degeneracy. Here, we design the
trap very carefully such that, along all the loop, the trap
always has a clear gap above the d ,-fold degenerate ground

Zé —topo. phase

topo. phase

FIG. 10. Moving a particle (blue) around a loop excitation (red)
on the domain wall. The solid line is in the Cf phase. The dashed
line is in the C}, phase.

2

states. This design means that the trap has d,-fold acci-

dental degeneracy when the trap is in the Z]; topological
ordered state. We also fine-tune the trap such that the non-
Abelian geometric phase induced by adiabatically moving
along the loop is the identity when no extra excitation is
present.

Now we create a loop of pure simple string &7 € H on
the domain wall, linked with the loop path of p above,
as shown in Fig. 10. As the pure simple string is
invertible, inserting them will not change the ground-state
degeneracy. However, moving the trap along the above
path may change an initial state |vy) € F(p) into a
different end state |v;) € F(p), after the particle moves
around the string & (see Fig. 10). Thus, braiding p
around £ induces a unitary map on the fusion space
F(p), ap.h3|”0> = |vy).

Next, consider that we have two particles p;, p, in the
bulk. If we braid them together (fusing them to one particle
p1 ® p,) around the simple loop &, we obtain the linear
map a, g,, »- If the fusion of the bulk particles is given by
P1 ® py = P, W,, we can split p; ® p, to the irreducible
representations W; and braid W; with k. It is easy to see the
@, , maps are automatically compatible with such splitting;
in other words, @, g,, » = Daw, s

But it is also equivalent if we braid p;, p, one after the
other. But this braiding induces a unitary map on
F(p1 ® py). We would like to spatially separate F(p;)
and F(p,). As discussed in Appendix A 5, moving either
p1 or p, out of the 3-disk leads to fusion space
F(p1) ®c F(p,). Thus, besides braiding p;, p, with &
one after the other, we add several steps to move p,, p;
back and forth.

First, we move p, out of the 3-disk. Then, braiding p,
alone with the loop excitation 4 corresponds to the linear
map a, , ®c idg(,,). Next, we bring p, back into the
3-disk, following the same path when it was moved out so
that p, does not braid with % in this step.

Second, we move p; out of the 3-disk. Then, braiding p,
alone with £ corresponds to idg(,,) ®c a,, - Next, again,
we bring p; back, following the same path when it was
moved out.
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FIG. 11.

bdry
Sg1 ® Sg,

The fusion of domain-wall stringlike excitations

bdry — sgfg, which can be abbreviated as g; ® g, = 91 9>.

The steps of moving p,;, p, back and forth cancel, and
only the braidings are left over. Therefore, in total we have
the linear map a,, , ®c @,, »,» Which is equivalent to that
induced by braiding p;, p, together, a, , ®c @, =
@y @p,.n- Using only irreducible representations,

apl,h ®C apz,h = @C{W;.h' (23)

We show that these linear maps are compatible with the
fusion of bulk particles.

Moreover, the pure simple loop /4 provides such a unitary
map a,,, for each particle p € sRep(G/) in Cig; thus, the
set of linear maps ¢(h) = {a,,,} is an automorphism of the
super-fiber-functor, ¢(h) € G, = Aut(F). In other words,
we obtain a map ¢ from the pure simple loops H to Gy,
@:H — Gy. Itis also compatible with the fusion of simple
loops on the domain wall. To see this compatibility, note
that the path of braiding around two concentric simple
loops g, g, (as in Fig. 11) separately can be continu-
ously deformed to the braiding path around the two loops
together or around their fusion ¢; ® ¢, = g;9,, which
implies that ¢(g,)¢(92) = ¢(919,); namely, ¢ is a group
homomorphism.

Next, we show that ¢ is, in fact, an isomorphism and
H = Gy, whichis aconsequence of the following principles:

(1) If an excitation has trivial braiding with the con-

densed excitations, it must survive as a deconfined
excitation in the condensed phase.

(2) There is no nontrivial bulk particle that has trivial

half-braiding with all the domain-wall strings.
(1) is a general principle for condensations, while (2) is a
remote detectability condition. By the folding trick, we can
regard the domain wall as a boundary of the phase
Cip ® CJ,. So we have similar remote detectability con-
2

dition (2) near the domain wall as that near a boundary [37].
A typical half-braiding path is shown in Fig. 10, in the
sense that half is in iy and half in C},. If ,, , is the identity

map, it implies trivial half-braiding between the particle p
in C}r and simple loop & on the domain wall.
Now, we are ready to show that ¢:H — G, is an
isomorphism: .
(1) @ is injective.—First, the Z‘é flux loop, denoted by z,
which is simple, pure, and invertible and survives in

the condensed phase C;f, must also be a pure simple
2

loop on the domain wall. Namely, Zé CH.
Consider ker ¢, namely, the pure simple loops that
induce just identity linear maps on all particles in
Ctg. On one hand, simple loops in ker ¢ have trivial
half-braiding with all particles in Cgg. So they also
have trivial braiding with the condensed excitations,
namely, all the bosons in Cgg. By (1), they should all
survive the condensation; in other words, ker ¢ is at
most a subset of pure string excitations in C‘é,,

kergp C Zg . On the other hand, the linear map a,, ,

induced by the ZJZC flux loop z is not the identity map
on fermions, so z & ker ¢.

Therefore, we see that ker ¢ must be trivial, which
means ¢ is injective.

(2) @ is surjective.—We already showed that ¢:H —

Gy is injective, so we can view H as a subgroup

Now consider a special particle in Cfg, which
carries the representation Fun(G/H), linear func-
tions on the right cosets G;/H. More precisely,
Fun(G;/H) consists of all linear functions on Gy,
f:Gy = C, such that f(hx) = f(x), Vhe H,x €
Gy (takes the same value on a coset). The group
action is the usual one on functions, pru (G, m)(9):
£ = Flg1).

The linear maps a,, , induced by the pure simple
loops are all actions of group elements in H, and
they are all identity maps on the special particle
Fun(G;/H). In other words, the bulk particle
Fun(G,/H) has trivial half-braiding with all the
pure domain-wall strings. As a nonpure domain-wall
string is just the bound state of f with a pure domain-
wall string, its half-braiding with Fun(G,/H) is also
trivial. Thus, Fun(G;/H) has trivial half-braiding
with all the domain-wall strings. By the remote
detectability condition (2), it must be the trivial
particle carrying the trivial representation. In other
words, we have Gf =H.

In conclusion, the pure simple loop excitations on the
domain wall forms a group under fusion. It is exactly
the same group Gy whose representations are carried by the
pointlike excitations in the bulk.

C. Unitary fusion 2-category with a single
invertible fermionic 1-morphism

In addition to the strings on the domain wall discussed
above, the domain wall also contains a single fermion with
quantum dimension 1. There are no other particles, as the
domain wall is obtained via a maximal boson condensation.
Summarizing the above results, we find that a 3 4+ 1D EF
topological order Ci has a domain wall between itself and
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the 2+ 1D ZJZC topological order C;. The domain wall is
1

described by a unitary fusion 2-category AJ. A2 has the
following properties: Strings (objects) form a group under
fusion, and the only nontrivial particle (1-morphism on the
trivial string) is the fermion.

Besides the above necessary properties, A3 must also
have the following property:

Z(A) = €y B ()70 -

Here, Z(A3) is the bulk center of A}, and (C;_g)cze(‘ha)

denotes the centralizer of C}, in Z(A7). The notion of the
2

bulk center is introduced in Refs. [52,54], which is a
generalization of the Drinfeld center to higher categories.
Physically, Z(.A}) is the unique 3 + 1D topological order
whose boundary can be AJ. Since A3, is a domain wall
between C}, and Ciy, after folding, A, can viewed as the

boundary of the stacked topological order C4z§ X Chp =

Z(A}) (strictly speaking, we should take the time reversal

of the second component in the folding trick; but here C;- is
2

the same as its time reversal C},.). Thus, Z(A3) contains C},,
2 2
as a subcategory. The centralizer of C4Z / in Z(A3) is given
by Cip = (C4Z£)°Z°(‘j4a), and Z(A}) must be the stacking of
C4z§' and its centralizer: Z(A3) = C;; X (C, / S
In conclusion, in this section, we give the properties
of the domain wall obtained via maximal boson conden-
sation in an EF topological order. Since the way to perform
maximal boson condensation is unique, for each EF
topological order, there is only one such domain wall,
referred to as the unique canonical domain wall. Given such
one-to-one correspondence between EF topological orders
and their unique canonical domain walls, one can solve for
all possible domain walls satisfying the above properties
and thus classify the EF topological orders. However, it
is better to work with boundaries, as we discuss in the
next section.

VI. THE UNIQUE CANONICAL BOUNDARY
OF 3+1D EF TOPOLOGICAL ORDERS

Because the fusion 2-category on the domain wall of an
EF topological order Cg. and Zg topological order C;- must
2

satisfy the additional condition (24), it is hard to classify
such a subset of fusion 2-categories. In this section, we
construct the unique canonical boundary, also described by
a unitary fusion 2-category, for every 3 4+ 1D EF topologi-
cal order. The bulk center of the unitary fusion 2-category
of the canonical boundary directly gives the bulk 3 + 1D
topological order. This way, we can focus on the fusion

4 4
CEr szf

FIG. 12. A; is the unique canonical boundary for Cf. A3 is

formed by stacking the unique canonical domain wall A,

between Cf and C}, and the boundary A3, of C},. Note that
2 2 2

A}, and A;zf are separated by C;Zf.

2-category itself, without worrying about additional con-
ditions like Eq. (24).

To construct the unique canonical boundary fora 3 + 1D
EF topological order Cgp, we start with the unique
canonical domain wall Aj, between Cpy and C}, obtained

2

by condensing all the bosonic pointlike excitations. We
then create a boundary A;f of C4Zf by condensing the
2 2

strings in C4Zf. Then, we make the intermediate 642{ very thin

2
such that A3, C‘éf, and A;f together can be viewed as a
2 2
composite boundary.

That is to say, we consider the following boundary of Cgy
(see Fig. 12):

A=A &:42,. A (25)

Equivalently, such a boundary Ai can be obtained by a one-
step condensation, where all the bosons together with the
ZJZC flux string z are condensed.

Note that the domain wall A3}, has stringlike excitations
labeled by G;. But the strings labeled by Z’; C Gy can
mOoVve across C4z§ and then condense on the boundary .A%z.

So the stringlike excitations in the whole boundary A3 are

labeled by G,/ sz = G,,. All those strings have quantum

dimension 1. Their fusion forms the group G,. The

boundary A3 also contains an invertible fermion f with

quantum dimension 1. Such a pointlike excitation f is

inherited from A3 , C‘;,», and A3, The fermion f can move
2

freely between A32, C‘é;, and A3,

We mention that a “pSC chain” (the 1D invertible
fermionic topological order [63]) formed by the boundary
fermions may attach to the strings discussed above. The
pSC chain is invisible to the braiding between the stings
and particles. But it doubles the types of strings. The end
points of such pSC chains are the quantum-dimension-1/2
Majorana zero modes. A more detailed discussion about
this case is given later.
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Those considerations, after including the pSC chain and
doubling the string types, allow us to obtain the following
result: A 3+ 1D EF topological order Cgy has a unique
canonical boundary A7, induced by a maximal boson
condensation followed by a string condensation. A3 is
described by a unitary fusion 2-category whose simple
objects are labeled by G,,, which is a ZJ' extension of G,
where Z5' labels the extra pSC chain string. The fusion
of the objects is described by the group multiplication of
Gb. For each simple object (string), there is one nontrivial
invertible 1-morphism corresponding to the fermion.
There are also quantum-dimension-/2 1-morphisms (the
Majorana zero modes) connecting two objects g and gm,
with g € Gb and m being the generator of Z7'.

On one hand, we show (together with more details given
in the following sections) that Ai resulting from conden-
sation must have the above properties. On the other hand, in
Ref. [57], we give explicit constructions and show that all
unitary fusion 2-categories with the above properties, or EF
2-categories for short, do give rise to 3 + 1D EF topologi-
cal orders, which can be viewed as constructions of the bulk
center Cp = Z(A3). Therefore, classifying EF 2-categories
gives us a classification of 3 + 1D EF topological orders.

For clarity, we divide the EF topological orders into two
types. If G, = G, x Z%, the corresponding bulk topologi-
cal orders are called EF1 topological orders. If G, is a
nontrivial extension of G, by Z4, the corresponding bulk
topological orders are called EF2 topological orders.
Physically, the pSC chains in EF1 topological orders can
be safely neglected, while in EF2 topological orders pSC
chains have a nontrivial interplay with stringlike excitations
and, thus, require more serious treatment.

We study EF1 topological order first. The canonical
boundary AZ of EF1 topological order has a sub-2-
category A3, where the pSC chains are dropped. We
believe that A3 encodes all the key information of A3. It is
a pointed fusion 2-category as if the pSC chain is a trivial
string: The information of the canonical boundary Af, ofa
3+ 1D EF1 topological order Cyy is encoded in a sub-2-
category A3, which is a pointed unitary fusion 2-category
whose simple objects are labeled by G,. All simple objects
and simple 1-morphisms are invertible. The fusion of the
objects is described by the group multiplication of G,.
There is one nontrivial invertible fermionic 1-morphism
for each object. Next, we give more details on the above
statement.

VII. CLASSIFICATION OF EF1 TOPOLOGICAL
ORDERS BY POINTED UNITARY
FUSION 2-CATEGORIES

A. The canonical domain wall

In this section, we consider the simpler case of EFI
topological orders. We start by describing the pointed

unitary fusion 2-category A3, on the domain wall. Such
fusion 2-categories are special in the sense that their simple
objects (corresponding to simple pure string types) and
simple 1-morphisms are all invertible. The cases with
noninvertible 1-morphisms are discussed later.

The content presented in this subsection is based on the
results of Ref. [78], which gives a detailed definition of
the tricategory (note that a fusion 2-category is a tricategory
with a single object), simplified under the following
assumptions.

(1) The identity (trivial string or trivial particle) -related
data do not matter. The coherence relations involv-
ing both the associator or pentagonator and the
identity-related data can be viewed as normalization
conditions. We can set, by equivalent functors
between fusion 2-categories or physically changing
the basis or “gauge,” all the identity-related data to
be trivial; thus, the associator and the pentagonator
are properly normalized.

(2) There are fermions on the strings, but fermions are
not confined to the strings. Instead, fermions can
move freely on the domain wall and even to the bulk.
As aresult, some of the particle-related data are fixed
by fermionic statistics. We use ¢(—, —) to denote the
exchange statistics of the fermion:

(ff) ==l e(L1)=c(lf)=c(f1) =1

(26)

In short, we assume that there is a convenient gauge choice
such that some data of A3, are either normalized or fixed by
the fermionic statistics.

A3 consists of the following data:

(1) Objects (pure string types).—G , a group that has a
Z, central subgroup. The elements of G, label the
simple pure strings.

(2) I-morphisms (particles on strings)—For any
simple pure string labeled by g € Gy, we have
Hom(g, g) = sVec. In other words, we have par-
ticles live on a string g which is viewed as a defect
between the same type-g string. Hom(g, g) = sVec
corresponds to the degenerate subspace or internal
d.o.f. of the particle. Here, the particle is, in general,
composite, which is formed by the accidental
degeneracy of bosons and the fermion, which, in
turn, gives rise to the super (i.e., Z, graded)-vector-
space sVec. We also have Hom(g,h) =0 for
g # h € Gy, which means that there is no 1D defect
between different simple pure strings. Simple
1-morphisms are denoted by p, € Hom(g, g), with
a subscript to indicate its string type. p values in
{1, f} = Z, and follows a Z, fusion rule.

For convenience, we use the additive Z, = {0, 1}
convention instead of the multiplicative Z, ={1, f}.

021005-16



CLASSIFICATION OF 3 + 1D BOSONIC TOPOLOGICAL ...

PHYS. REV. X 9, 021005 (2019)

h
@ © qn
\ gh
gh (P'd'pa)gn
Py ®

N . 7

Pg & qn

FIG. 13. The interchange law, corresponding to fusing four
particles on two strings in different orders. The upper path and the
lower path differ by a U(1) phase b(p,’.q,'. py. q1)-

p =0 corresponds to the trivial boson 1, and
p =1 corresponds to the nontrivial fermion f.
This way, the fermion exchange statistics is simply
c(p.q) = (=1)".

(3) 2-morphisms: Linear maps.—They correspond to
deformations between various particle and string
configurations.

(4) Fusion along strings, denoted by p, o py (composi-
tion of I-morphisms but, in fact, is the tensor
product in sVec ).—They follow the Z, fusion rule
for simple 1-morphisms, p o p = (p + p'),.

(5) Fusion between strings, denoted by @, for
both objects (given by group multiplication) and
1-morphisms.—

g® h=gh,
Pg® qp = (P +q) g (27)

g, h e Gf’

As we assume that particles (1-morphisms) can
freely move on the domain wall, the fusion of
I-morphisms along different directions (along or
between strings) should be essentially the same and
independent of the string labels.

(6) The interchange law, a 2-isomorphism l;(p;, q)s
Pg-qn) € U(1) (see Fig. 13).—

(Py ® q)) o (Py ® qi) = (Pyopy) ® (q),°4qn)
(28)

on (p'+¢ +p+q)y. In our case, the simple
strings and simple particles are all invertible and
have quantum dimension 1. Their degenerate
subspaces are always one dimensional. Thus, the
2-isomorphisms are just U(1) phase factors.

As particles can be freely detached from strings,
we expect the above U(1) phase independent of
the string labels. Moreover, if we treat the fusion
operations o,® as the same one, the difference
between the two sides in Eq. (28) is just exchanging

g h g h J g h J
k k k
(@ (b) ©
FIG. 14. (a) Fusion of strings g, h, j gives rise to a defect
between strings g, i, j and string k. Two different ways of fusion,

(b) and (c), may leads to different defects whose difference in
particles is given by ns3(g, h, j).

q), and p,. Thus, to be consistent with fermionic
statistics, we assume that

b(Py. . Py an) = c(q', p). (29)

(7) Associator.—

(i) For g,h,j€ Gy, we have a l-morphism
n3(g.h, j): (9@ h) ® j = g ® (h ® j), valu-
ing in {1, f} = Z,. See Fig. 14.

(ii) We also have a 2-isomorphism 7i3(p,. g;,. 7;) €
U(1) to describe the U(1) phase difference
between two different orders to fuse strings and
particles on the strings (see Fig. 15):

n3(g:h’j) ° [(pg ® q}z) ® rj]
= [p, ® (g, ® rj)ons(g, h, j).  (30)

To be consistent with fermionic statistics, we
assume that

ﬁ3(pg’qh1 rj) = c[n3(g,h,j),p +q+ r]‘
(31)

(8) Pentagonator.—For g, h, j, k € G5, 2-isomorphism
vy(g,h, j, k) € U(1):

(1, ® n3(h, j, k)] onz(g, hj, k) o [n3(g. b, j) ® 1]

= n3y(g, h, jk) onz(gh, j, k). (32)
J Jo J
h h h h
D D
g g 8 g
(a) (b)

FIG. 15. The two domain-wall states in (a) and (b) may differ
by a U(1) phase 7i5(p,. g5, 1;) (see (31).
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These data satisfy the following.

(1) n3(g.h.j) is a normalized 3-cocycle in H* (G, Z,).

(2) For g, h, j,k,1 € Gy,

i3[n3(g, b j)gnjs Lo Lilii3 [Lg, n3 (R, oK)y Lilva(h, jok, Dva(g. hjok, Dvg(g, b j, k)
= i3[lg, 1, n3(j, &, 1) jqlva(gh, J, k, Dva(g, b, jk, Dua(g, b, j, k). (33)

Note that

Ai3[n3(g, by ) gnjs 1as 1]

and similarly for other 7i3’s. We then have

l/4(h’ j’ k? 1)1/4(9, h]’ k’ 1)1/4(9, h’ j’ kl)

va(gh, j k, Dug(g, b, jk, Dvg(g. b j. k)

In other words, the 4-cochain v4(g, h, j, k) satisfies

duy = (=)%m =

= c[ns(g. h. j), n3(ghj. k. 1)]

(_1)n3(y,h-j)n3(yhj,k~l), (34)

(= 1)) (s kod) s (g. ks ()4 . jkT) s (D) (35)

(=)=, (36)

a relation first introduced in Ref. [67], where Sq? is the Steenrod square and v, is normalized.

Here, “normalized” means that n3(g, h, j) = 0, if any of g,
h, kis 1, and v4(g, h, j, k) = 1, if any of g, h, j, k is 1.
We point out that by now we consider the consistency
conditions only on the domain wall. There are more con-
straints when we take into account the bulk; namely, the bulk
center of the above fusion 2-category should be Cg. & C, as
2

in Eq. (24)—in particular, the fermion f and the Z{ flux z must
be liftable and form the 3 4 1D Zg topological order C4zf'
2

Unfortunately, we do not have efficient algorithms or theo-
rems to calculate bulk centers of fusion 2-categories, which
makes it difficult to check under what extra conditions the bulk
center of the above fusion 2-category has the desired form of
Eq. (24). To avoid this weakness, we consider the canonical
boundary instead as below.

B. The canonical boundary

We know that the C4Zf topological order has a gapped
2

boundary by condensing the Z-; flux string z. On the
gapped boundary, there is no string but only one nontrivial
particle, the fermion. Imagine we have the gapped domain
wall and gapped boundary as above, and between them is

the intermediate C;[ phase. Now, we squeeze the inter-
2

mediate C4zf phase to a very thin layer, such that we can
2 — -

view the composite domain-wall—A?V/C;/boundary—A;f

2 2

together as a gapped boundary A; of Cig. As a self-
consistency check, to see whether such a boundary does
give rise to an EF topological order, we need only to check
that in its bulk (the bulk center), the particles form

|
sRep(G), which is much easier than checking the bulk
center of the domain wall, which is valid only if it has the
form of Eq. (24).

The composite boundary is described by a similar fusion
2-category as that for the domain wall. Most of the data and
conditions discussed in the previous subsection apply. We
list only the differences below.

(1) As the z string condenses, the string types on the

boundary are now labeled by G, = G,/ Z’;. At the
same time, the 2-cocycle e,(g,h) € H*(G,, Z,)
coming from the extension ijc — G; — G, arises
in other data (see Fig. 16).

FIG. 16. (a) On the domain wall A3, the strings are labeled
by (g.u) € G, where g€ G, and u € ZJZC. The fusion of
strings  (g,p) and (h,v) is given by (g.p) ® (h,v) =
(gh,p + v+ ey(g, h)). The group 2-cocycle e, € H*(G,,Z,)
gives rise to a Z’; extension from G, to G;. In the above graph,
the string (g, 0) is represented by a single line (red) and the string
(g,1) a double line (red, green), where the extra (green) line can

be viewed as the Z’; flux line z. (b) Such a Z’; flux line can be

canceled by a Z{ flux loop z as indicated by the thick rectangular
(blue) loop in the above graph.
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(2) When fusing g, h on the composite boundary,

es(g.h) = 1 indicates that there is a Z} flux loop

z along the fused string gh in the intermediate C‘é,
2

phase. As aresult, the associator 7i3(p,. g;,. ;) needs

to be modified. Under a certain framing conven-

tion (put the particles slightly below the string in

Fig. 15 and slightly into the C?, bulk), we find that
2

(see Fig. 17)
|

Ay(pgs qp. 1) = (—1)m@mDprasn (—pyrealoh)

(37)

where (—1)(@n0)(PFatr) js the fermion statistics
(written in the additive Z, convention) and
(=1)"2(eh) is the particle-loop statistics coming
from r going through the ZJZC flux loop z
along gh.

(3) n3(g, h, j) is now a 3-cocycle in H*(G,, Z,). The condition for v, is then modified to

va(h. j. k, Dva(g, hj. k. Dva(g, b, j. kl) = (=1)e(gmns(ikd) (1 yna(gh))ms(ghided)+ns (g.hjk.ms (hjk)-+ns (ghojkl)ns (k1)

l/4(ghvj’ k7 l)l/4<g, h?jk’ l)l/4(g’ hvj? k)

In other words, the 4-cochain v4(g, h, j, k) € C*[G,, U(1)] satisfies

dvy = (—)

With these, one can check that in the bulk center bosonic
particles form representations of G,, and fermionic par-
ticles form projective representations of G, with a class
described by e,. Together, particles form nothing but
sRep(Gy). So the above conditions for the composite
boundary pass the self-consistency check; they do give rise
to a 3 4+ 1D EF topological order. On one hand, the data
(G, €5, n3,v4) together with their consistency conditions
above are the necessary properties we show that the
boundary .,Zli of an EF1 topological order must have. On
the other hand, these properties are also sufficient for the
bulk center of A3 to be an EF1 topological order. Thus, we
have a classification of 3 + 1D EF1 topological orders, by
A} with these properties, namely, by (G, e,, n3, v4), where
() eHz(Gb,Zz),l’l3 €H3(Gb,ZZ),I/4 S C4[Gb, U(l)} satis-
fying Eq. (39). The above has the same form as the group
supercohomology theory for fermionic SPTs. Recently, a

Cc#

EF
A3,

J>A;7

FIG. 17. The two domain-wall states in (a) and (b) may differ
by a U(1) phase 7i3(p,. g, 7;) [see Eq. (37)]. The string label

(9,0) on A, is abbreviated to g. This figure shows the case that
ex(g.h) = ex(g, hj) =1, es(gh, j) = es(h, j) = 0.

ny—ns3+e,—ns
37 :

new class of 3+ 1D fermionic SPTs was found, by
“decorating Kitaev’s Majorana chains” [79,80], which is
beyond group supercohomology. In the next section, we
show that such a “Kitaev’s Majorana chain decoration” also
enters the classification of topological orders.

For completeness, let us briefly discuss the equivalence
relation for the above data. First, G, together with e, is the
same data as the group Gy. Since the particles form
sRep(Gy), by the Tannaka duality (G, e,) is fully deter-
mined up to group isomorphisms. However, (n3, v,) admits
more gauge transformations than coboundaries. The key is
to note that dv,4 depends on ns; thus, if n5 is changed by a
coboundary du,, to keep Eq. (39), v, must be modified by
an extra cochain w, which satisfies

) (n3+du2)T (n3+duy )+ey—(nz+duy)—n; Tramer—n;

dW4 = (— (40)
Such w, needs to be determined only up to coboundaries.
To fix the cocycle ambiguity, note that w, must be 0 when
u, = 0. Then, by a straightforward calculation we find that

l’l3\;du2+levu2+M2TdM2+€2vuz

wy = (=1) (41)

Therefore, in general, for any 2-cochain u, € C*(G,, Z,)
and 3-cochain 773 € C3[G,, U(1)],

n3 — nj + duz,

)ngvdueruzvueruzvduerezvuz
22 1 (

Uy = Uy X d}’]3 X (—1 42)

is a gauge transformation and gives an equivalent solution.
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ny—duy+uy—uy+uy—diuy+ey—u,
2 1

Note that (—1) is, in general,
a 4-cochain, and dv, is shifted under such a gauge
transformation. If we fix n3, namely, let du, =0,
u, € Z*(Gy, Z,), v, transforms as

vy = vy X dipz X (=1)te—iate—u, (43)

where (—1)*~*Te=" js now a 4-cocycle but may not
be the trivial one. We see that v, is, in fact, classified
by (forms a torsor over) the group H*[G,, U(1)]/T’, where
[ is the subgroup generated by (—1)“ "% e for all
2-cocycles u,.

Besides the gauge transformations, different ns, v, are
also equivalent if they can be related by (outer) group
isomorphisms of G, or (G, e;) (which can be followed by
gauge transformations). We note that this part is different
from the equivalence relation of fermionic SPT phase,
where the symmetry group G, should always be fixed.

To “add up” two solutions (n3,v4) and (nj, /), one also
needs to follow a twisted rule:

(m3,00) + (5, 4) = (ma 4wy (=1)" 7). (44)

The above is the best we can do for equivalence relations
of EF1 topological orders. But, we point out that they are
only sufficient conditions for different sets of data to be
equivalent. Two sets of data which are seemingly non-
equivalent according to the above may be related by some
extra gauge transformations and are, in fact, equivalent. To
see what is missing, we may consider EF1 topological
orders as special EF topological orders with some extra
data, such as m,, being trivial. These extra data, although
trivial, still allow extra gauge transformations on them and
may generate nontrivial equivalence relations.

In more rigorous categorical language, the equivalence
relation of a bulk topological order is given by the Morita
equivalence of the unitary fusion 2-category describing the
gapped boundary, namely, Z(A}) ~ Z(1;). For the canoni-
cal boundaries A3, Bi, obtained by condensing particular
excitations, Z(A3) ~ Z(B3) implies A3 ~ 7. Group auto-
morphisms plus the gauge transformations listed above
generate only a subset of all possible equivalence functors
between A} and B3. We leave the complete equivalence
relation for future work.

VIII. CLASSIFICATION OF EF TOPOLOGICAL
ORDERS BY EF 2-CATEGORIES ON THE
CANONICAL BOUNDARY

In this section, we shift to more general EF topological
order. Mathematically, we drop the assumption that all
simple excitations are invertible and study what else is
possible. We then find that the only remaining possibility is
an extra Z, string together with its end points with quantum
dimension \/§ Physically, we identify such an extra string
as the pSC chain and its end point as a Majorana zero mode.

We then seriously consider the nontrivial interplay between
pSC chains and stringlike excitations.

A. Define string type using local or nonlocal
unitary transformations?

In the above discussions, we omit the possibility
that between different strings there can be defects or
I-morphisms. This omission is a consequence of defining
the type of stringlike excitations up to nonlocal perturba-
tions along the string (see Sec. III B). To see this point, let
us consider that a loop consists of two string segments
labeled by ¢, h connected by two pointlike defects (i.e.,
1-morphisms) 6 € Hom(g,h),6’ € Hom(h,g) (see Fig. 18).
Under nonlocal perturbations, the loop can become a g
loop carrying 600’ € Hom(g, g) or an h loop carrying
o’ oo € Hom(h, h). Thus, g and h are equivalent under
nonlocal perturbations along the string.

In the fusion 2-category, the objects or strings and
I-morphisms or pointlike defects are actually defined up to
local unitary transformations. Moreover, if there exists an
invertible 1-morphism (namely, a pointlike defect with
quantum dimension 1) between two objects (namely, two
string segments), such two objects are equivalent in the fusion
2-category. Therefore, if some 6 € Hom(g, &) is an invertible
I-morphism, then g and & are indeed equivalent as objects in
the fusion 2-category, which is consistent with the nonlocal
perturbation point of view. However, it is possible that no
I-morphism in Hom(g, #) is invertible, and g, h are not
equivalent in the fusion 2-category. To include this possibility,
we introduce a different equivalent relation of strings, using
local unitary transformations plus invertible 1-morphisms,
which is consistent with that in the fusion 2-category: Two
strings defined under local unitary transformations are called
of the same local type if there is an invertible 1-morphism
between them. (Section III B defines types of strings as
equivalence classes of nonlocal unitary transformations,
which is different from local types of string defined as
equivalence classes of local unitary transformations.) The
set of local types is denoted by Gb. We have already shown
that the string types defined via nonlocal unitary trans-
formations form a group G,. Clearly, |G,| > |G,|, and
two different local types may correspond to the same type.

With the expanded string local types defined by local
unitary transformation, our arguments in Sec. V are still
valid, which shows that, on the boundary, closed strings

ekl )

FIG. 18. If two strings g and & can be connected by a domain
wall (i.e., an 1-morphism), then, under nonlocal unitary trans-
formations, strings g and & will be equivalent.
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have quantum dimension 1 and form a group under fusion.
Gb is actually a group that describes the fusion of the
local types. Also, using the half-braiding with the pointlike
excitation in the bulk (see Sec. V), we can assign each
boundary string local type a group element in G,,. Thus, there

is a group homomorphism Gb 5 G,,. If there are noninvertible
I-morphisms between different local types, they can together
form a closed loop and must be assigned the same element in
G,,. In fact, the string types up to nonlocal perturbations are
just local types further up to noninvertible 1-morphisms.
Indeed, G, is a quotient group of G » by imposing equivalent
relations via noninvertible 1-morphisms.

B. New string type from pSC chain

Next, we carefully examine what possible noninvertible
I-morphisms can there be and their physical meaning.
Since all the local types of strings labeled by g € Gb have
quantum dimension 1 and form a group under fusion, the
1-morphisms automatically obtain a grading by this group;
namely, p € Hom(g, h) is graded by hg™'. As a result of
such grading, the total quantum dimension of nonempty
Hom(g, h) must be the same. In our previous work dis-
cussing AB topological orders [37], dimHom(g,h) =
dimHom(g, g) = 1, and, thus, Hom(g, #) can allow only
one simple invertible 1-morphism or be empty; in this case,
nonempty Hom(g, /) just implies g = h. In other words, in
AB topological orders, there is no room for simple non-
invertible 1-morphisms on the canonical boundary. It also
means that, on the canonical boundary of the AB topo-
logical, the string local types defined using local unitary
transformations plus invertible 1-morphisms and the string
types defined using nonlocal unitary transformations are
the same; i.e., Gb = Gy,

However, for EF topological orders, it is not the case.
Since Hom(g, g) = sVec, if Hom(g, &) is not empty for
certain g, h, we have dimHom(g, h) = dimHom(g, g) =
dim(sVec) = 2, which means that there can be one simple
noninvertible 1-morphism with quantum dimension v/2. In
this case, |G| > |G|

We can fuse a g~' string to this simple noninvertible
1-morphism between g, & and obtain a simple noninvertible
I-morphism in Hom(gg™!, hg~!) = Hom(1, hg~!). Let
such hg~' = m and denote the noninvertible 1-morphism
by 6,, € Hom(1, m). It is easy to see that, for any string k,
6, ® 1, is a noninvertible 1-morphism in Hom(k, mk).
In fact, such an m string generates the kernel of the
projection 7™ : Gb - Gy

We find the following properties of such strings.

(1) mis a Z, string, m*> = 1.—Consider fusing two o,,.
We obtain 6,, ® c,, € Hom(1, m?), whose quantum
dimension is 2. It can only split as the direct sum of
two invertible 1-morphisms, which implies that the
m? string and 1 are equivalent.

(2) m is unique.—Suppose that there is another simple
noninvertible ¢,, € Hom(1,m’). Using the same
trick, we see that 6,, ® o,, € Hom(1, mm’) is the
direct sum of two invertible 1-morphisms. Thus,
mm' = 1. Together with m?> = 1, we conclude that
m=m.

(3) m is central, ¥ g,mg = gm.—To see this property,
consider 1, ® 6,, ® 1,1, which is a simple non-
invertible 1-morphism in Hom(gg™', gmg™") =
Hom(1, gmg™"). Since m is unique, we must have
m= gmg~'.

Therefore, it is possible to have a Z, string m which can
be open on the canonical boundary of EF topological
orders. Its end points [simple noninvertible 1-morphisms in
Hom(1, m)] have quantum dimension V2.

Physically, the m string is distinguished from the trivial
string under the equivalences generated by local unitary
transformations. In other words, the m string and trivial
string have different local types. But they have the same
type; namely, the m string becomes the same as the trivial
string under the equivalences generated by nonlocal unitary
transformations. This result implies that m is a descendant
string formed by lower-dimensional topological excitations
(since it can have a boundary). On the boundary of an EF
topological order, the only lower-dimensional topological
excitations are the trivial particles and the fermions. Since
there is no topological order in 1D, the trivial particles
cannot form any nontrivial strings. On the other hand, the
fermions can form a topological pSC chain. Thus, the m
string must be a pSC chain. The simple 1-morphism
between the m string and trivial string in Hom(1, m)
(i.e., the end point of the m string) is the Majorana zero
mode at the end of the pSC chain.

We emphasize here that such an extra string m and
noninvertible 1-morphism o, are the only remaining
possibilities beyond the pointed case discussed in
Sec. VII. The boundary strings are labeled by a larger

group Gb, which is a central Z, extension of G,:
(1.m} =27 - 6,5G,.

The unitary fusion 2-category Ai on such a boundary is
thus an EF 2-category as defined in Sec. I C.

We note that the elements in G, can be labeled by (¢”, x),
¢" € Gy and x € Z, = {1, —1}. The multiplication in G, is
given by

(g7, x)(h".y) = (g"h", my(g". h")xy), (45)

where m,(g”, h?) is a group 2-cocycle in H*(G,,Z,).
Without losing generality, we choose (1,1) to label the
trivial string and (1, —1) to label the m string, which is equi-
valent to choosing a normalized 2-cocycle, m, (1, g") =
my(gP,1) =1, V ¢g* € G,. With the enlarged boundary
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string local types and noninvertible 1-morphisms, EF
topological orders are classified by EF 2-categories A,3,.

C. ZJ; topological order cannot be an
EF2 topological order

After rigorously introducing the local type of strings and
pSC chains, we now fix a weak point in the arguments in
Sec. IIIE. In Sec. IIIE, we described a 3 + 1D EFI1

topological order C4Zf, whose pointlike excitations are
2

described by sRep(Z’zc) [38]. Such a topological order
has nontrivial particle type f, which is a fermion, and two
nontrivial string types s; and s,. The fusion rule between
the loops s, and s, and the fermion f is given by

fe®f=1,
S1®S1:.S‘2®S2:1,

f® s =s,, f® s, =15y,
S1®S2:f. (46)

In s; ® 51 = 1, 1 means the trivial type of string defined by
a nonlocal unitary transformation. However, here we want
this 1 to be also the trivial local type of string defined by a
local unitary transformation. In the following, we show this
by contradiction.

Let us assume that s; ® s; = 1 is a nontrivial local type
of string that corresponds to a loop of the pSC chain with an
even number of fermions. We denote such a loop by m,.
Thus, we have s; @ s; = m,. This result implies that there
are four pure string loops labeled by 1, s, m,, and §;. Their
fusion is described by the Z, group:
S1®S1®51:§1, S1®S_‘1:1. (47)

51 Qs =m,,

Thus, the pure strings are described by Gf =
Zy Nl Zg = Z,. Since m{ is nontrivial, the correspond-
ing topological order is an EF2 topological order, denoted
by @424 hereafter.

Fus_ing with the fermion f gives us another set of string
loops f, s,, m,, and §,:

f®si=5 [f@m,=m, [f®5 =5. (48)

Now let us consider the dimension reduction of the 3 +
1D topological order 642{ to a 2 + 1D topological order. In
the untwisted sector, we obtain a 2 + 1D topological order
C3 . Which is the Z, gauge theory (or the Drinfeld center
Z[sRep(Z{)}) described by particles 1,e,m,y = em. In
the dimension reduction, the excitations in @2{ reduce to the

particles in Z[sRep(Z’zc)] (see Fig. 3):

1-1, s — e, m, — 1,

f_)ll/’ s2_)m’ mo_)ll/,

One can check that the fusion of 1, sy, m,, §1, f, S5, m,,
reproduces the fusion of 1, e, m,y, which is described by
group Z, X Z,.

In the twisted sector characterized by the base string sy,
assume the dimension reduction of s; is a: s; — a (see
Fig. 7), where a is a particle in the dimension-reduced
2 + 1D topological order C%l. A pSC chain loop m,, when

wrapping around a s; string (the Z’; flux), carries an odd
number of fermions. Thus, the dimension reduction of m,
gives us a fermion y: m, — y. Therefore, we have

a®a=1, a®a®a=a.

(50)

a®a=y, vy =1,

We see that the fusion of 1,a,y,a is described by a Z,
group. The fermion f in @44 reduces to the fermion y in C3 -

This reduction allows us to obtain the dimension reduction

1-1, s — a, m, =y, 5 — d,

f—-w, §y = d, m, — 1, 5 = a. (51)
We see that the dimension-reduced 2 + 1D topological
order C;‘] has four particle types with Z, fusion. There are
only four possibilities for such Abelian 2 4 1D topological

order, described K matrices [81,82] K = +4 and

2 1 1
Kz:i:(l 2 1).
1 1 2

They have chiral central charges ¢ = 41, -3 mod 8§ and are
not Drinfeld centers, which contradicts with the result
obtained in Sec. III D that the dimension-reduced topo-
logical order is always a Drinfeld center. Therefore, the

assumed 3 + 1D EF2 topological order é4zf does not exist.
2

This result supports our conclusion that condensing all the

bosonic pointlike excitations produces a unique Z’; topo-
logical order obtained in Sec. III.

D. Partial characterization of EF 2-categories

Next, we discuss in more detail how the extra string m
and noninvertible 1-morphism o,, affect the characteriza-
tion of the fusion 2-categories.

Now, strings are labeled by a larger group Gb on the
canonical boundary. But note the fact that the data and
conditions not involving o,, are not affected at all. That is to
say, the enlarged EF 2-category always contain a pointed
sub-2-category with data (Gb, &,, 13, 0,4) which describes
an EF1 topological order as in Sec. VII.

In other words, there is a map from EF 2-categories .Ai
that classify EF topological orders to the pointed unitary
fusion 2-categories le?, that classify EF1 topological orders.
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Such a map sends an EF 2-category A3 with simple objects
G, to a pomted unitary fusion 2-category Ab also with
simple objects Gb, by taking the pointed sub-2-category
(ignoring the noninvertible 1-morphisms). Therefore, there
is a map from EF topological orders to EF1 topological
orders, which sends an EF topological order with point-
like excitations described by sRep(Z‘é X G,) to an EFI1
topological order with pointlike excitations described
by sRep(ZJ; X Gp).

Such a map is clearly not invertible. One cannot expect
that, for every pointed unitary fusion 2-category, non-
invertible 1-morphisms o¢,, can be added consistently to
obtain an EF 2-category. There must be some additional
constraints for this to be done.

First, the ¢,, 1-morphism must itself satisfy some addi-
tional braiding and fusion constraints, which means that
l;(-, e, ) and ;73(°, *,*) involving o,, take different forms.
We expect that the results are closely related to the braiding
statistics of Ising anyons.

Second, the strings of local types g and gm can be
“connected” by noninvertible 1-morphisms; moreover,
when m, is nontrivial, ¢ and gm are, in principle, not
distinguishable, which implies, for example, that 715 (g, &, j)
and i3(gm, h, j), or D4(g, h, j, k) and D4(g, hm, jm, k), etc.,
are related by m and o,,. Thus, we conjecture that 715, , can
be factorized. If we split the G, variables g¢; into G, parts
and Z%' parts as in Eq. (45), g; = (¢¢,x;), and view x as a
I-cochain with values x;, we can formally express the
multiplication as

dx = my(g;)- (52)
We conjecture that 713 has the form
Az (g7, x:) = n3(g7) + my—x + ey —x, (53)

where 73 is a cochain in C3(G,, Z,). Then, the fact that 71
is a cocycle in Gy, diy = 0, implies

dny = my—my + ey—my = Sq’m, + e;—m,,  (54)

which agrees with the formulas in Refs. [79,80] when
€H = 0.

Similarly, we expect that 24(g?, x;) = v4(g? )V (92, i),
where v, is a 4-cochain in G, and v,, is a factor depending
both on g? and on how the m string is attached (namely, x;).
Then, from

db, — (_)h37ﬁ3+52vﬁ3’ (55)

one can derive the condition that v, satisfies. However,
there seems no simple formula for v, (see those in
Refs. [79,80,83,84]), and we have no good conjecture
on the form of v, and the resulting condition for .

Nevertheless, the first few terms obtained by expanding
f1i3 in Eq. (55) already agree with those in Ref. [79]. We
believe that by thoroughly studying the structures of
EF 2-categories a complete formula can eventually be
obtained. On the other hand, the formulas derived using
other independent approaches [79,80,83,84] may help
understanding EF 2-categories.

We leave the details of the additional constraints involv-
ing the noninvertible 1-morphism o,, for future work (see
e.g., Ref. [57]). We believe that they also have the same
form as those for fermionic SPTs with the decoration of
Kitaev’s Majorana chain [79,80].

E. Majorana zero modes at
triple-string junctions

In the following, we describe a bulk property that allows
us to distinguish between EF1 and EF2 topological orders.
In particular, we design a setup which allows us to use the
appearance of the Majorana zero mode to directly measure
the cohomology class of m,. For simplicity, let us assume
Gy to be Abelian for the time being. In this case, the
different types of bulk strings are labeled by ¢/ € G + In our
setup, we first choose a fixed set of trapping potentials that
trap a fixed set of strings labeled by ¢/ € G + Note that the
different strings in the set can all be distinguished by their
different braiding properties with the pointlike excitations.
Then, choosing three strings from such a fixed set, we can
form the configuration in Fig. 19(a). For Abelian G, one
may expect that the degeneracy for the configuration in
Fig. 19(a) to be 1. In the following, we show that sometimes
the configuration in Fig. 19(a) has a twofold topological

degeneracy. By measuring which triples g{ , gf , g§ in the
fixed set of strings give rise to twofold topological
degeneracy, we can determine the cohomology class of
m, directly.

One may point out that the appearance of a twofold
topological degeneracy is not surprising at all, since the EF
topological order may contain emergent fermions in the
bulk with unit quantum dimension, whose condensation on
a string only breaks the Z{ symmetry [85]. Such a fermion
condensed chain is nothing but the pSC chain [63].

Some strings in the fixed set may accidentally carry such
a pSC chain. If one or three strings in the configuration in
Fig. 19(a) carry a pSC chain, then the configuration will

8/ 8,
gE} L) {gz E>
8] g,

(a) (b)

FIG. 19. (a) A string configuration in the bulk, described by the
conjugacy class of a triple ( gf , gf , gf ) in G;. (b) Moving to the
boundary, the string configuration turns into one labeled by three
group elements (g, g.g3) in G,
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have a twofold topological degeneracy, coming from the
two Majorana zero modes at the two junction points. So it
seems that the appearance of a twofold topological degen-
eracy in the configurations in Fig. 19(a) is not a universal
property. We can remove the two-fold topological degen-
eracy by choosing our fixed set of strings properly such that
none of the strings in the fixed set carry a pSC chain. This
choice indeed can be achieved when m, is a coboundary.
However, when m, is a nontrivial cocycle, there is an
obstruction in determining if a string carries a pSC chain or
not. As a result, no matter how we choose the fixed set of
strings, there are always some triples gf( , g/ , gg in the fixed
set of strings, such that their configurations in Fig. 19(a)
have twofold topological degeneracies.

How do we determine m, from the topological degen-
eracy of the configurations in Fig. 19(a)? We first measure
the topological degeneracy in Fig. 19(a), where the three
strings are chosen from the fixed set. If there is a twofold
topological degeneracy, we assign

m}(g]. gb) = —1. (56)

If there is no degeneracy, we assign
mi (g1 gh) = 1. (57)

From the function mJ(g].g}), we can determine the
cohomology class of m, € H*(G,, Z,).

To see this, we first move the string configuration to the
boundary. In this case, the bulk string labeled by G/
becomes boundary local types labeled by G, In other
words, the bulk string types gf , gz, and gf in G/ change to

the boundary string types ¢;, ¢», and gz in Gb [see
Fig. 19(b)], which satisfy

' (g]) = 7"(9;) € Gy, (58)

where 7/ and z are the projections Gfﬂ—/>Gb and G, ﬂ—>me,
respectively.

Recall that the elements in Gb can be represented by
(¢, x), g” € G, and x € Z,. Thus, g; has a form (g7, x;)
where ¢? = 7/ (g/). For the strings in our fixed set, x; is
also determined by g{ . Moreover, we can choose the fixed
set properly such that the dependence of x; on g7 = #/(g/)
can be separated out. To see that, we first fix a choice of
trapping potential for the Z’; string z. Then, it is always
possible to make the choice of ¢/, ¢/z compatible with
fusion with z, by first choosing the trapping potential for
one of ¢/, ¢/ z and then choosing the trapping potential for
the other as the fusion of the previous one with that of z,
which we fix at the beginning. What is important for such
choices is that the difference between ¢/ and ¢/ 7 is fixed by

the beginning choice of z. We define x, = —1 if our
beginning choice of z carries a pSC chain and x, =1
otherwise. Then, for the above choices of the fixed set, we
have

xi(glz) = xi(g))x.. (59)

Although the bulk string types satisfy g; gf gg, which
leads to ¢Y¢5 = g5, the boundary string types g;, as a
particular lifting from G, to Gy, may not satisfy g, 9, = gs.

In fact, we have

(97, x(g1)][g5. x(9h)] = [gh 98, ma(gh. 98)x(g7)x(gh)]
b b
192

= (g2 g5, 1y x(g] gb)]

= (1,171)[g4. x(g})]. (60)

where

o gy )
2 2(917 9) x(gfgf

Using Eq. (59), it is not hard to see that [x(g’f)x(ng)]/
[x(¢'g})] depends only on ¢? = z/(g/) (since x,’s always
appear in pairs) and is a coboundary on G,,. Thus, the above
is, in fact, a 2-cocycle 7, (g7, g5) on G, that is cohomo-
logically equivalent to m,. When i, [z (¢)), 7/ (g})] = —1,
we have g¢;g, = mg; and the junction point carries a
Majorana zero mode. In other words, the boundary con-
figuration in Fig. 19(b) has a twofold topological degen-
eracy if i, [nf (g]). 2/ (¢})] = —1.

Since the boundary configuration in Fig. 19(b) can be a
short distance away from the boundary, moving to the
boundary represents a weak perturbation. In this case, the
boundary configuration in Fig. 19(b) having a twofold
degeneracy implies that the corresponding bulk configu-
ration in Fig. 19(a) also has a twofold degeneracy. In other
words,

(61)

iala (g]). 77 (g)] = mi (g}, 4b). (62)

We see that the cocycle 71, can be determined by measuring
the topological degeneracy for bulk string configurations in
Fig. 19(a). We note that 71, and m, differ by a coboundary
[Eq. (61)]. Thus, up to a coboundary, m, can be determined
by measuring the topological degeneracy for bulk string
configurations in Fig. 19(a).

We point out that, even when G, is non-Abelian, a
nontrivial Z7' extension, or m,, still gives rise to the
Majorana zero modes for some triple-string junctions.
But in this case, there are extra topological degeneracies
on junctions of three strings coming from the non-
Abelianness of Gy. The appearance of topological
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degeneracy does not directly imply the appearance of
Majorana zero modes. It is slightly more complicated to
separate which topological degeneracy comes from non-
Abelian G and which comes from Majorana zero modes,
which we describe in the following.

Again, the key step is to choose a fixed set of trapping
potentials that trap strings labeled by y, C G;. Here, y,

is the conjugacy class that contains ¢/ € Gy. We stress
that the different strings in the set can all be distinguished
by their different braiding properties with the pointlike
excitations. We call two strings equivalent if they have
the same braiding properties with all the pointlike
excitations. Thus, the strings in our fixed set are all
inequivalent. We also assume our fixed set is complete, in
the sense that it contains all inequivalent strings. In other
words, the number of strings in the set is equal to the
number of conjugacy classes in Gy.

We note that the condensation of the pointlike exci-
tation can also form a stringlike excitation. For example,
the condensation of Z, charges along a chain in a Z,
gauge theory can form a stringlike excitation that have
trivial braiding with all the pointlike excitations. We call
such a kind of stringlike excitations descendant stringlike
excitations, which are all equivalent to the trivial string.
The above Z, charge condensed chain has a twofold
degeneracy, since it is like a Z, symmetry-breaking state.
As a result, the corresponding descendant stringlike
excitation has quantum dimension 2. Our fixed set of
strings does not contain strings that differ only by
attaching a descendant stringlike excitation, since they
are equivalent under braiding with pointlike excitations.

But each string in the fixed set may carry some
additional descendant stringlike excitations. We reduce
this ambiguity by requiring the strings in the fixed set do
not carry descendant strings. This requirement is achieved
by replacing each string in the set by its equivalent string
with a minimal quantum dimension. However, this
replacement still does not remove all the ambiguity
due to a possible pSC chain attachment. Clearly, the
pSC chain is a descendant string. But amazingly, despite

the Zé symmetry breaking on an open pSC chain which
leads to a twofold degeneracy, a closed pSC chain has no
ground-state degeneracy. Thus, the pSC chain has quan-
tum dimension 1. Attaching a pSC chain to a string will
not change the quantum dimension of the string. So the
strings in our fixed set, even after minimizing the
quantum dimensions, may still carry pSC chains.

To test if the strings in our fixed set carry pSC chains or
not, we choose three strings from our fixed set to form the
configuration in Fig. 1. The topological degeneracy of the
configuration is calculated in the following way. We first
consider a set of pairs that have the form (g, §,), where

Gi € £, and G, € z,5. The two pairs (g, 32) and (3, 7))
are equivalent if they are related by

g = hgh, gb = hgh™, heGy  (63)
The number of equivalence classes of the pairs,
N(y v q/"), is the topological degeneracy of the configu-
1 J2
ration in Fig. 1, provided that the three strings do not carry
pSC chains. If one or three strings carry pSC chains, the
topological degeneracy of the configuration in Fig. 1 will
be given by 2N (y s g/'). In this case, we say that the triple-
1 2
string junction in Fig. 1 carries a Majorana zero mode.
Similar to the Abelian G case, we assign ml(gl.gb)=1
if the topological degeneracy of the configuration in
Fig. 1is N(y,. x,) and mé(g{ gé) = —1 if the topological
1 2

degeneracy is 2N(y o )(ng). Clearly, mJ; satisfies

m}(g]. g) = my(hg{h' haghhs"), hy, hy € Gy.

(64)
mg in the above is a cocycle in Z*(Gy, Z,). Again, we can
make m{ (g, gé) a function on G,, by choosing the fixed
set of strings properly, because, even for non-Abelian G/,
the Z} flux string z is still invertible as Z} centralize G/
Thus, we can still fix the choice of z first and make the rest
choices of the fixed set of strings compatible with the
fusion with z. Now, if g{ or g’; is attached to an additional z
string, the total configuration in Fig. 1 always changes by
fusion with a closed z loop. As our choice of z is fixed at the
beginning, a closed z loop does not carry any open pSC
chain and, thus, introduces no additional degeneracy.
Therefore, similar to the case of Abelian G/, for non-
Abelian G, m} also has the form

m} (g}, g)) = i |n (g), 2/ (), (65)

where 7, € Z?(Gy, Z,). Again, such 7, is equivalent to
m, on the boundary. To understand such a result, consider
moving the string configuration in Fig. 1 towards the
canonical boundary. The string type changes from the bulk
type x, to the boundary local type g € Gy Xy — g that
satisfy

9T (xy). g =17"(9) (66)

(a) (b)

FIG. 20. The splitting of the topological degeneracy as we
move string configuration Fig. 1 to wards the canonical boundary.
(a) the case for topological degeneracy N( Xyl }(qf). (b) the case
for topological degeneracy 2N( X X o) o
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The N(y X gf)—fold or 2N (;(gf, ;(gf)—fold topological

degeneracy splits (see Fig. 20). However, only the degen-
eracy coming from conjugacy classes splits; the twofold
topological degeneracy from Majorana zero modes is not
affected by moving to the boundary. Each state [Fig. 20(a)]
or twofold degeneracy [Fig. 20(b)] corresponds to the
boundary configuration in Fig. 19(b). Hence, we obtain
i (g, g5), which determines the Z%' extension G, of G, on
the canonical boundary. If 71, is a coboundary, we can
choose a fixed set of strings such that all the triple-string
junctions do not carry Majorana zero modes. The corre-
sponding bulk topological order is an EF1 topological
order. If 71, is a nontrivial cocycle, then for any choice of a
fixed set of strings, there are always triple-string junctions
that carry Majorana zero modes. The corresponding bulk
topological order is an EF2 topological order.

F. Two necessary conditions for EF2
topological order
From the bulk consideration in the last section, we see
that the m, characterizing the EF2 topological orders are
highly restricted. We focus on the particular 7, that directly
comes from measuring the Majorana zero modes in the
bulk; it can differ from m, by a coboundary. First, the

e :
pullback of 7, by G;=G, gives us m} = (z)*m, €
Hz(Gf,Zz) [see Eq. (65)]. Such a pullback must satisfy
Eq. (64), which gives a condition on 7,:

hy, hy € Gy.
(67)

iy (g7, g5) = o (highhy' hoghhy '),

In other words, EF2 topological order can exist only when
G, has nontrivial 2-cocycles with the above symmetry
condition. This is the first necessary condition for EF2
topological orders. We note that, when G, is Abelian, the
above condition becomes trivial and imposes no constraint.

We also point out that a pSC chain can be attached to a
bulk string characterized by the conjugacy class y, of G,
only when the centralizer group Z,(G/) is a trivial Zé
extension. Here, Z,(G) is the subgroup that commutes
with an element g in the conjugacy class y,:

Z,(Gy) = {x € Gs|gx = xg}. (68)

Physically, the bulk string y, breaks the “symmetry” of the
particles from G, down to Z,(G). If Z,(G) is not a trivial
ZJ; extension, then a fermion condensation that breaks the

Z'g symmetry must also break some additional symmetries.
In this case, we cannot attach a pSC chain to the bulk string
Xg» since the pSC chain corresponds to a fermion con-

densation that breaks only the Z’; symmetry [85].

Let us introduce an M function on Gy

M(g) = {0, Z,(Gy) is a trivial Z} extension, (69)
1, otherwise.
Since
Z,(Gy) = Z,,(Gy), (70)
where z is the generator of Zg , we have
M(g) = M(zg). (71)

Therefore, we may also view M as a function on Gj,.
Since the bulk string y,, g € G, has no ambiguity of a

pSC chain when M(g) = 1, we see that m’; satisfies

mh(gl.gh) =1, if M(g}) = M(g5) = M(g|g3) = 1.
(72)

This result becomes a condition on the cocycle 71, on G:

if M(g}) = M(g5) = M(g7g5) = 1.
(73)

iy (gh. 5) = 1,

This is the second necessary condition for EF2 topo-
logical orders. We note that the two conditions (67)
and (73) are not invariant under adding coboundaries.
Physically, on the canonical boundary, unlike in the bulk,

since the G, symmetry is broken down to 7!, itis always
possible to attach pSC chains to strings, which can change
m, by arbitrary coboundaries. Thus, generic m, may not
satisfy Egs. (67) and (73); we require Egs. (67) and (73)
only for a particular 7, that is cohomologically equivalent
to generic m,.

As an example, for G, = 7! x G}, we find M(g) = 1 for
all g € Z£ x G),. Thus, there is no EF2 topological order
with G, = Z} x G},

IX. A GENERAL FRAMEWORK
FOR 3+1D TOPOLOGICAL ORDERS
WITH SYMMETRIES

We see that in 3 4 1D the intrinsic topological orders are
closely related to SPT phases. In the above section, we
show that the data and conditions classifying EF topologi-
cal orders have the same form as those classifying fer-
mionic SPT phases. Without the pSC chain, both EF1
topological orders and fermionic SPT phases are classified
by the group supercohomology theory; with the pSC chain,
also very strong evidence indicates that the classifying data
and conditions have the same form. Combined with our
previous results on 3 4 1D AB topological orders, we
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conclude that all 3 4 1D topological orders correspond to
gauged 3 4+ 1D SPT phases: AB topological orders corre-
spond to gauged bosonic SPTs, and EF topological orders
correspond to gauged fermionic SPTs.

Our classification and construction of EF topological
orders also leads to a classification and construction of
3 4+ 1D fermionic SPT orders: A 3 4+ 1D fermionic SPT
order has a unique canonical boundary that breaks the
fermion symmetry G, down to ZJ;. Such a symmetry-
breaking boundary contains strings (i.e., domain walls
between different symmetry-breaking group states). It also
contains a fermionic pointlike excitation. Because of such a
boundary fermion, the strings (the domain walls) on the
boundary are labeled by elements g € G, = Z3 N Gy. The
elements in G, describe the symmetry transformation that
change one symmetry-breaking ground state to the other
symmetry-breaking ground state across the domain wall.
The elements in Zj = {1, m} describe if the boundary
string carries the pSC chain formed by the boundary
fermions. In fact, we know only if two strings differ by
a pSC chain or not. We may not be able to determine which
string carries the pSC chain and which string does not. This
limitation leads to string labels G, = Z% N G, rather than
25 x Gy,. At atriple-string junction, we may have an end of
a pSC chain. Such a triple-string junction will carry an
Majorana zero mode. The above picture leads to a classi-
fication and a construction of 3 + 1D fermionic SPT order
using the data of EF 2-category Ai.

The SPT and the topological order are the end points of
ungauging and gauging procedures, respectively. They are
also the two extreme cases with only symmetry no intrinsic
topological order and only intrinsic topological order no
symmetry. Because of these, it is natural to conjecture that
if we partially gauge a SPT or ungauge a topological order,
in between we should get a state with both symmetry and
topological order, in other words, a SET. Therefore, we
expect the following general classification framework for
3 + 1D topological phases with symmetries:

gauging gauging

gauging gauging

’ Topological order ‘

Different partially gauging procedures, equivalently differ-
ent subgroup sequences H; C H, C --- C G, give rise to
different sequences of intermediate SETs. The starting
point, SPT, and end point, topological order, are fixed.
They share the same classification data, according to our
results. We believe that in the same gauging sequence the
phases also share the same classification data as the starting

SPT and the ending topological order. However, physical
interpretations and equivalence relations of the same
classification data are different at different steps.

In particular, fermionic SETs and topological orders
(note that EF topological order is a bosonic topological
order with emergent fermionic particles) should be special
cases starting from fermionic SPTs but keep the fermion

number parity, namely, Zg , not gauged until the last step:

fermionic SPT

gauging (keep Zg)

’ fermionic SETs ‘

gauging (keep sz)

’fermionic topological order

gauging Zg

’ EF topological order ‘

Recall thatin 2 + 1D we classify topological phases with
symmetry by a triple of categories £ C C € M [86,87],
where £ is the symmetric category of local excitations and
corresponds to the representations of the symmetry group,
& = Rep(G) or £ =sRep(Gy), C is the category of all
bulk excitation, and M is the gauged theory. In particular,
for 2 + 1D SPT phases, we have £ =C C M. Now this
idea naturally generalizes to 3 + 1D, since any 3 + 1D
topological order contains a symmetric subcategory &
corresponding to its pointlike excitations and can be viewed
as a gauged SPT M with original global symmetry £ A
generic 3 + 1D SET with global symmetry £ is then des-
cribed by a certain 2-category C satisfying £ C C C M. In
the gauging procedures, the modular extension M remains
the same (which is why we say that phases in the same
gauging sequence share the same classification data), while
£ and C become smaller and larger, respectively, which can
be understood as part of global symmetry £ “gauged” into
gauge symmetry C. For example, £ =C = Rep(G) or
sRep(G;) for the SPT phase, while £ is trivial and
C = M for the topological order.

As we already have a good understanding about the
3+ 1D SPT phases, it is thus quite hopeful for a com-
plete understanding of 3 + 1D topological orders and
symmetries by thoroughly studying the (partially) gauging
procedures.
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APPENDIX A: TANNAKA DUALITY

Our approach in this paper relies heavily on the Tannaka
duality [88], or Tannaka reconstruction theorem for group
representations. In this Appendix, we give a physical
introduction of the Tannaka duality. In the meantime, we
also introduce and explain some important concepts used in
this paper in detail.

1. Two physical models

A physical motivation of the Tannaka duality is the
following: Let us consider a bosonic or a fermionic system
with a symmetry G. We assume the ground state to be a
product state that does not break the symmetry. If we only
measure the system via probes that do not break the
symmetry, can we detect the symmetry group of the
system? We note that a symmetry transformation acting
on the system is not observable, unless the system actually
changes in certain ways to reflect that some action
happened. Thus, we need to break the symmetry in order
to measure the symmetry transformation directly. In con-
trast, the symmetric probes produce only objects that do not
break the symmetry, such as particles trapped by the
symmetric potential that are described by representations
p of the symmetry group: p € Rep(G). On the other hand,
the symmetric probes do allow us to fuse and braid those
symmetric particles in arbitrary ways.

To describe those fusion and braiding processes, the
concept of fusion space is important: If the particles are
obtained by symmetric trap potentials, then the fusion
space V is simply the ground-state subspace of the total
Hamiltonian with traps: H, = Ho + > ; AH s, (x;) which
trap particles p; at x;. We denote the fusion space by
V(M, pi, pa,...), where M is the space manifold that
supports our system. So the fusion and the braiding
processes, as well as the symmetric deformation of the
Hamiltonians H, and AH,,, correspond to unitary linear
maps on the fusion space. The Tannaka duality tells us how
to use those symmetric operations, i.e., the linear maps on
the fusion space V(M, py, p,, ...), to obtain the symmetry
group G.

Mathematically, the fusion and braiding, as well as the
symmetric deformation of the Hamiltonians H, and AH ,,
on all the possible trapped particles form a structure which
is denoted by Rep(G) if all the particles are bosons or
by sRep(G) if some particles are fermions. Such a structure
is called a symmetric fusion category. The particles are

labeled by the representations of G, which form a set
Rep(G). So a symmetric fusion category Rep(G) or
sRep(G) contains the set Rep(G) whose elements are
called objects (which correspond to trapped particles).
Rep(G) or sRep(G) also contains addition data that
describe fusion and braiding of particles in Rep(G). In
particular, the fusion of the particles is nontrivial, since the
particles are described by the representations of G, and the
fusion of the representations is nontrivial.

If we know just the set of representations Rep(G), we
cannot recover the group G. But if we also know all
symmetric operations, such as fusion and braiding, as well
as the symmetric deformation of the Hamiltonians H, and
AH . in other words, if we know Rep(G) or sRep(G),
then according to the Tannaka duality, we can recover the
group G.

Another physical motivation of the Tannaka duality is
more relevant to this paper. We consider a 3 + 1D topo-
logical order C*. The pointlike excitations in the topological
order are bosons or fermions with trivial mutual statistics.
Those particles have a nontrivial fusion rule. The fusion
and braiding of those particles are also described by a
symmetric fusion category £. The Tannaka duality tells us
that, from &, we can recover a group G. Thus, each 3 + 1D
topological order contains a hidden group G. In this second
example, we do not even have a symmetry. All the
operations, such as fusion, braiding, and deformation of
H, and AH\,,, are allowed, as long as they are generated
by local interaction. But how can one recover a group from
a problem that has no symmetry?

In the first example, we do have symmetry, but we want
to recover the symmetry group via the symmetric oper-
ations. In the second example, we want to recover the
hidden group in 3 + 1D topological order which has no
symmetry. These two problems happen to be the same
problem, which is solved by the Tannaka duality.

2. Tannaka duality I: All boson
a. Statement of Tannaka duality

For the moment, we restrict to an all-boson symmetric
fusion category £. Mathematically, the Tannaka duality
states that we can reconstruct a group G from symmetric
fusion category £ by the automorphisms of a fiber functor,
namely, a braided monoidal functor F, from & to the
category of vector spaces, Vec:

G = Aut(F:€ - Vec), (Al)
and the Tannaka duality tells us that
E = Rep(G). (A2)

This process is how we find the hidden group in a
symmetric fusion category &.
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To understand the Tannaka duality, let us choose the
symmetric fusion category to be the category formed by
the representations of a finite group Rep(G). We want to
find out, what are the automorphisms of a fiber func-
tor Aut[F:Rep(G) — Vecl|?

Let us first describe the representation category Rep(G).

(1) An object in Rep(G) is a group representation p,
which corresponds to a pair p = [V(p).p,], where
V(p) is a vector space equipped with a group action
p,:G = GL[V(p)]. The set of objects in Rep(G)
consists of all such pairs.

(2) The morphisms in the symmetric fusion category
Rep(G), p' — p, correspond to the linear map
u:V(p') = V(p) which commutes with the group
action, p,(g)u = up,(g). The morphisms allow us
to define the notion of simple objects which corre-
spond to irreducible representations.

(3) Representations can be “fused” p; ® p,, which
corresponds to taking the tensor product of the
vector spaces V(p;) ®c V(p,) and the new group

action is Pp.®p, (9) = Pp, (9) Qc p[’z(g):

1 ® pr = [V(p1) ®c V(p2).pp,(9) ®c pp,(9)]-
(A3)

In this case, we have the forgetful functor that maps a
representation category Rep(G) to the category of vector
spaces Vec, F:p=I[V(p).p,] = V(p) (forgetting the
group action part), which is called a fiber functor. An
automorphism of such a fiber functor F is a set of unitary
maps, @ = {a,:V(p) = V(p)}, one map for each p. Such
a set of maps must be compatible with the fusion rule
described above, as well as the morphisms p’ — p:

V(p')SV(p), ie., satisfying a,u = ua,. The set of all
those automorphisms forms a group

a-o ={a,}-{d,} ={a,a,}. (A4)

Such a group is the automorphism group, which happens to
be G:

G = Aut[F:Rep(G) — Vec]. (AS)

This is because, to be compatible with the morphisms and
the fusion rule, a, has to be p,(h) for a certain & € G. In
fact, this is how we recover the symmetry group G in the
first model.

In the following, we describe Tannaka’s construction and
the above statements, in terms of the two physical models
described above, where the particles are described by a

symmetric fusion category £ This way, one may gain a
more physical understanding of the Tannaka duality.

b. Irreducible representations
from symmetry operations

Before trying to obtain the group, let us try to obtain the
irreducible representations of the group first. In general, a
particle p € £ (trapped by a symmetric potential in the first
model) corresponds to a representation. But which particles
correspond to irreducible representations? To address this
question, we start with the fusion space of p with other
particles V(M, p, g, ...). Note that V(M, p,q,...) is the
ground-state subspace of Hy + AH (X)) + AH () +
-+ that traps the particle p at x,, particle g at x,, etc. By
deforming (or deforming while preserving the symmetry
for the first model) just AH (X)) to AH{,,(x,), we may
split the ground-state degeneracy

The new ground-state subspace V; can be viewed as the
fusion space of another particle p’ at x,, with other particles
q,..., Vi =V(M,p',q,...). Thus, the above splitting of
V(M, p,q,...) can be rewritten as

VM, p,q,...) =VM,p',q,...) &V, ®---. (A7)
Then, we say that there is a morphism from p’ to p: p’ — p
[89]. Here, a morphism p’ — p can be understood as that
the fusion space of p’, after a proper unitary transformation,
is contained in the fusion space of p. If we have morphisms
in both directions p’ - p and p — p’, then the fusion
space of p is the same as the fusion space of p’, up to an
unitary transformation. If p’ — p implies p — p’, for all
p"’s, then the fusion space of p is minimal. For the case of
the first model, it means that p corresponds to an
irreducible representation of the symmetry group. For
the second model, we can formally regard p as an
irreducible representation of some group G. In the category
theory, we call such a minimal p a simple object. In this
paper, we also call p a simple particle.

There is always a trivial simple particle denoted by 1. It
corresponds to local excitations that can be created by local
symmetric operators in the first model or local operators in
the second model. Its fusion space has a property

VM, 1,p,q,...)=2V(M,p,q,...). (A8)

It is not hard to see that the full splitting of the fusion

space is given by [see Eq. (A7)]

VM, p,q,...) =V(M,p1,q,...) ® VM, py,q,...) .

(A9)

In this case, we say the particle p is a direct sum of particle
P1» D2, €lC..
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P=p1D®p,®--. (A10)
Physically, it means that the particle p is an accidental
degeneracy of particle p, particle p,, etc. For example, in
the first model, we may have a particle which is an
accidental degeneracy of spin-up and spin-down particles.
Such a degeneracy becomes required in the presence of
SU(2) spin rotation symmetry. In this case, a spin-1/2
particle is a simple particle (i.e., the fusion space cannot be
split further). If we break the SU(2) symmetry, then the
spin-1/2 particle becomes a composite particle which is a
direct sum of two simple particles, a spin-up and a spin-
down particle. For the case of the first model, we see that
the symmetric operations of deforming AH,,(x,), which
correspond to the morphisms in the category theory, allow
us to define the notion of irreducible representation without
using group transformation and other symmetry-breaking
operations.

c. Fusion rules of particles

We may view two nearby simple particles p; and p, (i.e.,
two irreducible representations) as one particle p; (i.e., one
representation):

1 ® pr = ps. (A11)

In general, p; is no longer a simple particle (i.e., no longer
an irreducible representation):
PI®P=p;=pOpyd . (A12)

Sometimes, the particle types on the right may repeat:

P®P=p®P, &P, & =2p\®p,® .
(A13)
We may rewrite the above as
Pi®p;= ?Nﬁzpk’ (Al14)

which is called the fusion rule of the (simple) particles.
From Eq. (A8), we see that the trivial particle 1 is the unit of
the fusion operation:

1p=p®1=p. (A15)

Using N;g, we can calculate dimension of the fusion space
with n particles p; on S3, which has the form
dimV(S3, p;, piv-oes pi) = dimV(S?, p®") ~d?  (A16)

in the n — oo limit. The number d; is called the quantum
dimension of the p; particle. One can show that d; is the

largest positive eigenvalue of matrix N;, where the matrix
elements of N; is given by (N;);; = N;{J

For the case of the first model, Eq. (A14) corresponds to
the decomposition of the tensor product of irreducible
representations. We see that additional information about
the symmetry group G, the decomposition of the tensor
product of irreducible representations, can also be obtained
from symmetric operations: the fusion of particles (which
is realized by bringing two symmetric traps together).
From N 2’ , we can even obtain the dimensions of irreducible
representations p;, which are given by the quantum dimen-
sions d;, which, in turn, determines the number of elements
in the symmetry group G:

Y &=|al

i is simple

(A17)

We get more information about the group without using any
symmetry-breaking operations.

d. Braiding and topological spin of particles

Consider a fusion space V(M, p, g, ...). If we adiabati-
cally exchange the two particles p and ¢, the resulting
fusion space V(M, q, p, ...) is always isomorphic to the
original one, no matter what the manifold M and back-
ground particles or strings are. Therefore, we say that there
is a braiding morphism ¢, , for the fusion p ® ¢:

Cpg'P®qEqQ p. (A18)

In general, we need to specify the exchange path (for
example, clockwise or counterclockwise in 2 4+ 1D). But
for the above two physical models, braiding is, in fact, path
independent, which is the defining property of the sym-
metric fusion category, that for all particles p, g,

CapCpqg = 1d,g,- (A19)

This result means that braiding p a whole loop around ¢ is
the same as doing nothing, which is equivalent to path
independence.

We can also extract the topological spin of simple
particle p. Given a fusion space V(M, p, ...), we twist p
by 27, and the fusion space then acquires a phase factor 6,
called the topological spin of p. It is, in fact, determined by
the braiding ¢, ,. In the case of the symmetric fusion
category, 6, helps to distinguish bosons and fermions:

11
0,= .

is a boson,
P . . (A20)
p is a fermion.
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e. Physical realization of fiber functor

The Tannaka duality requires a fiber functor, which
associates a vector space F(p) to a particle p, such that it
realizes the fusion and braidings of particles, in terms of the
tensor product and the (trivial) braiding of vector spaces:

F(p ® q) 2 F(p) ®c F(q),

Flcpq) = Crip).rig)- (A21)
as if F(p) are local Hilbert spaces. Here, the braiding for
vector spaces is the usual one:

CywvQ@cwhHw®cv, YveVweW. (A22)
We note that if a functor preserves the fusion (it is a
monoidal functor), whether preserving braiding or not is
just a property of the monoidal functor, not an additional
structure (like being an Abelian group or not is a property
of a group).

We see a necessary condition for the fiber functor to exist
is that particles are all bosons with trivial braiding. It turns
out that it is also sufficient.

Physically, only the operations on the fusion spaces are
measurable (or physical). So the question is, which fusion
space should be associated to the particle p in order to have
a fiber functor? One might naturally choose the fusion
space to be V(S3, p) (i.e., the fusion space of a particle p on
the space of a 3-sphere S°). But V(S?, p) =@ for a
nontrivial particle. So we need to add (nonsimple) back-
ground particles to make the fusion space nonzero for any
added particles. The question is, what background particles
should we insert besides p, to get a fusion space satisfying
the conditions (A21)?

It turns out that we do have a special background
(nonsimple) particle to achieve this goal. Let us denote
it by O, which has a direct sum decomposition in terms of
the simple particles and their quantum dimensions d;:

0 =Ddp:. (A23)
The fusion space V(S?, p, Q) satisfies
V(. p®4q.0) = V(S.p.0) ® V($.4.0). (A24)

[In the first example, Q is nothing but the reducible
representation Fun(G), all the functions on G. It is the
regular representation of G.] Therefore, we can take
F(p) =V($*.p. Q). (A25)
It preserves fusion by Eq. (A24) and also braiding (its

property but we do not show it explicitly here), thus a
desired fiber functor.

f. Automorphism of the fiber functor

Now we have a fiber functor that maps every particle p to
a vector space F(p) = V(S°, p, Q). Physically, the vector
space F(p) = V(S°, p, Q) is the ground-state subspace of a
Hamiltonian on $? with two traps: Hy + AH, + AH,,
where AH, traps a particular composite particle
0 = P,d;p; (a particle with accidental degeneracy).

Next, we describe the automorphism of the fiber functor.
An automorphism is a choice of an unitary map on F(p) =
V(S3, p, Q) for each particle p. We denote those unitary
maps by a,. So an automorphism corresponds to a set of
unitary maps a = {a, }. But not every set of unitary maps,
{a,}, is an automorphism. An automorphism also needs to
preserve all the structures of the fiber functor and, as a
result, needs to satisfy many conditions. But what are those
conditions?

We explain that deforming the trap potential AH , (while
preserving the symmetry in the first model) may split that
fusion space V(S3, p, Q) = V(S3,p'. Q) @ - - -. This split-
ting leads to a morphism p’ — p. Under the fiber functor F
which takes a special fusion space, the morphism p’ — p
gives rise to an embedding map u:F(p’) - F(p). An
automorphism a = {a, } must be compatible with all those
embedding maps:

U, = a,u, (A26)
or
F(p)——=F(@').
" " (A27)

Qp

F(p) —— F(p)

In the first model, F(p) is, in general, a reducible
representation of the symmetry group G. When p’ is a
simple particle, all embedding maps u tell us all different
ways to embed irreducible representation F(p’) into the
reducible one F(p). The condition (A27) tells us that a,, is
block diagonal and fully determined by its components on
different simple particles (irreducible representations) a,, .

The automorphism a = {a,} also needs to be com-
patible with the fusion of particles. We may view two
well-separated particles p; and p, as a single particle
pP3 = p1 @ p». The unitary maps «,, , a,,, and a,,, should
be related. Since the fusion space from the fiber functor
satisfies Eq. (A21), we require that @), equals the tensor
product of @, and a,, [up to the isomorphism fixed by the
fiber functor (A21)]:
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Ap1 ®@p2

F(p1 ®p2) F(p1 @ p2)

l: i:

Flp1) @ F(p) 2520 (py) @ F(p2)

(A28)

Since p3=p;®@p,=;p; and F(p; ® p,) = D, F(p)),
the above can be rewritten as

@L' O‘pfi

D, F (i) D, F (@)

lu im

F(p1) ®c F(pzslpl@i;p (p1) ®c F(p2)

(A29)

The above is the condition for the automorphism a = {a,, }
to be compatible with the fusion which is a data point
in Rep(G).

The set of unitary maps a = {@,} that satisfies
Egs. (A27) and (A29) is called an automorphism of the
fiber functor. If « = {a,} and o' = {a,} are two auto-
morphisms, we can show that a - @' = {a,a/,} is also an
automorphism. So the automorphisms form a group
G = Aut(F). Such a group corresponds to the symmetry
group in the first physical model. We measure the sym-
metry group using only symmetric probes. In the second
physical model, G is a group associated with the 3 + 1D
topological order. We show that every 3 + 1D topological
order is associated with an unique group G.

To emphasize the group nature of the automorphisms
a={a,}, we may instead write g = {g,} € G = Aut(F).
They give rise to the group action on F(p), by p,(g) = g,

3. Example of Tannaka reconstruction for Rep(Z,)

In this section, we illustrate the Tannaka duality with
the simplest example, Rep(Z,). We follow the general
reconstruction procedure, trying to show the flavor of the
abstract theorem.

First, let us describe Rep(Z,) in terms of fusion.
There are two irreducible representations of Z,: the trivial
denoted by 1, the nontrivial one denoted by e. The fusion
rule is
11=1, 1Qe=e®1=¢, e®e=1. (A30)
The background charge is 0 = 1 @ e. We find that F(e) =
V(§2,e®0)=V(S?,e®1)=V(51)=V(5?) =C. The
ground state on S° is nondegenerate; thus, F(e) is one
dimensional. Similarly, F(1) is one dimensional as well.

When p is composite, p = €, p;, Eq. (A27) tells us that

a,, is block diagonal:

p

(A31)

where p; are simple. Since F(p;) for a simple particle is
always one dimensional for Rep(Z,), a; and «, are just
phase factors. Equation (A29) requires that

X1@e — M ®c @, = a,. (A32)
Thus, @; = 1. Equation (A29) also requires that
Ae@e = Xe Rca, = = 1. (A33)

Thus, a, = +1. The solution {a; = 1,a, =1} corre-
sponds to an automorphism, and the solution {a; =1,
a, = —1} corresponds to the other automorphism.
The composition {ay,a,}{a},a,} = {ma},a.a,} is the
group multiplication, which tells us that {a; = 1,a, = 1}
and {a; = 1,a, = —1} do form a Z, group.

4. Tannaka duality II: With fermions

We proceed to introduce the Tannaka duality for sym-
metric fusion category £ which contains fermions. Strictly
speaking, the fermion or “super” case is due to Deligne’s
theorem [56], which generalized Tannaka’s original idea.

The super case is almost the same: Find a fiber functor,
calculate the automorphisms of the fiber functor, and
recover the group. But the fiber functor needs to preserve
braiding, while in Vec there are only bosons. So we have to
change the target of the fiber functor to accommodate
fermions. The new target category is just the simplest
symmetric fusion category that contains fermions, namely,
the category of super-vector-spaces sVec. The fusion part
of sVec is the same as Rep(Z,). But now the nontrivial
particle, denoted by f to distinguish from the Rep(Z,)
example above, is a fermion; its braiding is modified:

cff = —idl, (A34)
while other braidings remain trivial. It can be understood as
vector spaces with a Z, grading. The nontrivial grading
corresponds to fermionic d.o.f., while the trivial grading
corresponds to bosonic d.o.f.

So when there are fermions in £, we instead need a

super-fiber-functor

F:&€ — sVec. (A35)
It can be physically realized the same way using the fusion
space V(S3, q,0). And we can follow exactly the same
procedure introduced in the last subsection to construct a
group from automorphisms of the super-fiber-functor F,

G, = Aut(F). (A36)
Such a group is slightly different from the bosonic case.
Note that there is a special automorphism z = {z, }:
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p is a boson,

idp(,).
Z, = { Fi) (A37)

—idp(,), p is a fermion.

z corresponds to the fermion number parity and commutes
with all other automorphisms. Let Z, = {1,z}. We see that
the group G, must contain Z]; as a central subgroup. We
then have

& = sRep(Gy), (A38)
where sRep(Gy) is constructed similarly like Rep(G).
They have the same fusion; only the braiding between
two fermions has an extra —1. In this sense, we have
sVec = sRep(Z}).

5. (Super)-fiber-functor from condensation

In the above, we realize the (super)-fiber-functor using
the fusion space on S* with a special background particle
Q. But we give no proof why such fusion space preserves
the fusion and braiding. In this subsection, we explain why
such Q is so special. Meanwhile, this subsection also
explains why the configuration in Sec. V B gives a super-
fiber-functor.

In the all-boson case, imagine that we let Q condense to
form a new phase, a Q-sea, such that Q becomes the trivial
particle in the Q-sea. As long as the Q-sea is a trivial phase,
it is guaranteed that we obtain a fiber functor by setting

F(p)=V($°.p. Q). (A39)
In short, the requirements for the background particle Q is
that it can be condensed to form a trivial phase.

Let us focus on a space S°. If we put no excitation on S?,
there will be no degeneracy both before and after con-
densation. To relate the O condensed phase with the
fusion space in the uncondensed phase, we split S* into
two 3-disks D3, and D3, and condense Q only in DJ . As
we discuss in the main text, the domain wall S2, separating
two 3-disks can be gapped, such that when no excitation is
present there is no degeneracy:

dim V(S3, D},.. S, D3,,) = 1. (A40)
Moreover, since all particles have trivial mutual statistics,
such a domain wall S is transparent to particles in D ..
In other words, a particle can move through the domain
wall from D} . to D2, without changing degeneracy and
introduce only some unitary transformations on the fusion
space. In D, ., the particle carries a group representation; in
D3, as it is the trivial phase whose particles are described
by Vec, the particle becomes an accidental degeneracy of
trivial particles and is described by a vector space.

Now, consider the fusion space

V[S3,D3nc(p)’S$ngon]7 (A41)

where we put a particle p in D3 .. There are three different
ways to simplify it.

(1) Shrink D}, to a point.—As D3, is the Q condensed
phase, whose ground state is a Q-sea, this point
behaves just like a single particle Q in the uncon-
densed phase. Thus,

VIS, Dane(p). $2. Dion] 2 V(S p. Q). (A42)
In other words, this fusion space is exactly the vector
space F(p) we want to assign to p in the fiber
functor.
(2) Shrink D}..(p) to a point—This point should
behave like a particle in the condensed phase, which
is denoted by p’. Thus,

V[S3’Dl3mc(p>7 S%ngon] = VCOH(SB’ p/)

= V(S 1. p').  (A43)
Since in the trivial phase, p’ itself is described by a
vector space, we have

P = Veon (S, 1. p'), (A44)

which implies

P = F(p). (A45)

In particular, if p is the trivial particle 1, so is p’:

V[S3’ Danc(l)’ SEV’ Dgon] = V(S3’ Dl311’1C7 S%\/’ Dgon) = 1'
(A46)

(3) When there is more than one particle, we also want
to deal with them in a more local manner, in order to
study fusion and braiding. Thus, we consider the
adiabatic process of moving p through the domain
wall from the uncondensed phase to the condensed
phase. Despite the global topology and background
configuration, we obtain a particle in the condensed
phase described by the same vector space p’ ~ F(p),
which can be seen in the special global space S° in
the above:

F(p) = V[S*. Djyc(p), S%. Dion)
=~ p/ =~ VCOI](S3’ 1’ p/)

= V[S*, Dine. S5 Dion(P")]. (A47)

where we have used the fact that, if we shrink D}, . to
a point, it behaves like a trivial particle in the
condensed phase. In other words, we can first move
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p through the domain wall into D2, and second
shrink D}, to a point. The resulting particle in D7,
and the resulting fusion space are both p’ ~ F(p),
the same as shrinking D}, (p).
What is important is that moving particles through the
domain wall is compatible with fusion:

V[S3’D13mc(pl ® p2) S%\HDgon]
= V{S3v uncs S%/v Dgon[(pl ® p2) ]}
zV[‘SG’Dﬁnc(pl)ngwDgon(pz)}

ﬁV[SB’DgncvsaﬂDgon<pll ®C p/z)]’ (A48)

and braiding:

V(537Dgxlc(pl ®])2) S Dcon) — V(S Dgncvs2 Déon(pl Xc p’Z))

lcmmz icri‘pé

V(S37D§mc(p2 ®p1) SZ lcon) HV(S% Dzncvsz Dgon(p2 ®Cpl1))
(A49)

Now, we are ready to prove that F(p) preserves fusion of
particles:

=V(8. p1 ® p2.0)

~V[S*, Dic(p1 ® p2). 2. Do)
= V[S3, Dire, S5 Dion (P} ®c P))]
~ Veon($?. 1. P} ®c ph)

~ p| ®c Py = F(p1) ®c F(pa).

F(p1 ® p2)

(A50)

The property that F(p) also preserves braidings directly
follows from Eq. (A49).

If there are emergent fermions, we need to make several
modifications to the above discussions.

First, we want similarly a condensate whose particles
form sVec. But Q should become, instead of the trivial
particle, a direct sum 1 @ f, from whose fusion space we
can extract both bosonic and fermionic d.o.f. It turns out Q
should be of the following form:

0=0,®0, dim(Q,) =dim(Q,).  (ASI)
where Q, and Q; are bosonic and fermionic parts,
respectively. We condense the bosonic part Q,. Particles
above the Q,-sea will be sVec, Q) becomes 1, and Qf
becomes f.

Second, in the condensed phase DJ,, we need to put
1 & f instead of nothing. For super-vector-spaces s)ec,
we have the property similar to Eq. (A44):

P 2 Veun(S P 1@ f). (A52)

Then, we can repeat the above discussions and prove that

V[S*, Dine(P). St Dion(1 © f)]
(A53)

F(p)=V(S$’. p.Q) =

realizes a super-fiber-functor, which is exactly the one we
used in Sec. V B. It also has the property that

F(p) = VIS Dine(p). S5 Dion (1 © f)]
= V[S*, Dine. S5 Dion (', 1 @ f)]
= Ven($* P 1@ f) = p/
Namely, F(p) is also the super-vector-space describing the

particle p’ resulting from moving p into the condensed
phase through the domain wall.

(A54)

APPENDIX B: RELATION BETWEEN
EMERGENT MAJORANA ZERO MODES FOR
LINKED LOOPS AND THE 2-COCYCLE M,

In Ref. [65], it is pointed out that, for some fermionic
SPT states, certain linked loops of symmetry twists can
carry a pair of Majorana zero modes (see Fig. 21). In this
Appendix, we discuss a relation between such emergent
Majorana zero modes and the nontrivial two cocycle m,
that characterize the EF2 topological orders. For simplicity,
we assume G to be Abelian. We show that certain linked
looplike excitations in an EF2 topological order carry a
pair of Majorana zero modes, one for each linked loop. In
other words, certain pairs of looplike excitations carry
twofold topological degeneracy when they are linked and
no degeneracy when they are not linked. Such a topological
degeneracy is highly nonlocal in the sense that the
degeneracy is shared between the two well-separated linked
loops. The new result here is that the appearance of
Majorana zero modes for linked loops is directly related
to the nontrivial Z%' extension of G, on the canonical
boundary.

To see the above result, we consider a pair of linked
loops in the bulk in Fig. 21. We compute the degeneracy for
the linked loops. For Abelian Gy, all the pointlike excita-
tions and stringlike excitations have an unit quantum
dimension. Thus, one may expect that degeneracy for
the linked loops to be 1. In the following, we show that
sometimes the degeneracy can be 2. To obtain such a

Loeon

FIG. 21. Fuse & loop to the linked g loop on the canonical
domain wall. When hgh~' = gm, two Majorana zero modes are
supported. Further fusing the two segments, we obtain an open
pSC chain.
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result, we bring the linked loops to the boundary, which
reduces the group elements i/, ¢/ in Gy to the group
elements h* = 7/ ('), ¢* = 7/ (¢/) in G, via the projection

o
G—G, =Gy/ Z; . In addition to the projection G; — G,
there is also a lift G, — Gb. The linked loops on the
boundary are actually described by 4, g in Gh, where h? =

7" (h), g = 7™ (g) under the projection GbﬂGb. To sum-
marize, the bulk string types 4/, ¢ turn to boundary string
local types h, g that satisfy the following relation:

g =a(g)=a"(g).  h"=2/(W)=x"(h). (Bl
This situation is described in Fig. 21. As we go around a
loop, the boundary string labeled by ¢ turns into a boundary
string hgh~'. Even though h”, ¢* commute in G, their lifts
h, g may not commute in Gh, when Gb is a nontrivial Z%'
extension of G,. If h, g do not commute, we have
hgh™' = gm, where m generates Z'. As a result, there
are two pointlike defects between g and gm boundary
strings, corresponding to two Majorana zero modes which
lead to a twofold degeneracy.

To see which linked loops described by i/, ¢/ have
Majorana zero modes, we first note that the elements in Gh
can be labeled by (¢°,x), ¢’ € G, and x € Z,. The
multiplication in Gb is given by

(¢".x)(R".y) = (¢"h" my(g". B")xy).  (B2)
where m,(g”, h?) is the group 2-cocycle in H*(G,, Z,). For
W, ¢, we have h = (z/ (h').y).g = (2/(¢). x) € G. As
shown in Fig. 21, their commutator [h, g] = hgh™'g~! =
hg(gh)~' determines the appearance of Majorana
zero modes. Using the fact that hg = [h,glgh and
o (W)al (¢/) = 2/ (¢/)a/ (h'), it is easy to compute
[h, 9] = (1. ma (a7 (). 2! (") )ma (27 (¢ ). 27 (W))).  We
see that the linked loops A/, ¢/ have Majorana zero modes
when my (/' (h'), 7/ (¢/))my (7' (¢/), n" (h')) = —1. The
appearance of Majorana zero modes for certain linked
loops can detect a certain type of nontrivial Z)' extensions,
i.e., those with nontrivial m,(h®, g*)m,(g”, h") for certain
pairs of elements 4°, ¢” in G,.
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