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Topological orders describe a new class of gapped quantum phases of matter at zero temperature, that
has various patterns of many-body quantum entanglement. Previously, topological orders in one and two
spatial dimensions have been systematically understood and classified. This paper [together with Phys.
Rev. X 8, 021074 (2018)] develops a systematic and classifying understanding of topological orders in
three-dimensional bosonic systems, where the number of topological types for the pointlike and stringlike
excitations is assumed to be finite. Our systematic understanding comes from the unique canonical
boundary for each 3þ 1D topological order. We find that the pointlike and stringlike excitations on the
canonical boundary are described fully by a mathematical theory—the so-called fusion 2-categories. This
theory allows us to classify 3þ 1D topological orders in bosonic systems in terms of a subset of fusion
2-categories. This systematic understanding further leads to a systematic understanding of 3þ 1D
topological orders in bosonic and fermionic systems with arbitrary finite unitary symmetry.
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I. INTRODUCTION

The study of topological phases of matter has become a
very active field in condensed-matter physics. They can be
divided into two classes. The first class is the topologically
ordered states realized in strongly interacting quantum Hall
systems [1] and some strongly interacting quantum spin-
liquid materials [2–6]. The notion of topological order was
introduced in 1989 [7,8], and now we realize that topo-
logical orders are nothing but the patterns of many-body
entanglement [9]. Topological orders have pointlike and/or
stringlike excitations, which have nontrivial topological
properties (such as braiding statistics), as well as highly
nontrivial boundary properties. Those properties are robust
against any local perturbations. The robustness against
arbitrary local perturbations is the meaning of topological
in the name topological order.
The second class of topological phases of matter, such

as topological insulators [10–16], can be described by the
noninteracting band theory, which is very familiar to
condensed-matter physicists. This class of topological
phases also has highly nontrivial boundary properties,
but no topological excitations. The nontrivial boundary

properties require protection by some symmetries. They are
not robust against symmetry-breaking local perturbations;
on the contrary, the robust properties of the first class
survive even when all the symmetries are broken. The
topological insulators are noninteracting examples of
symmetry-protected topological (SPT) orders [17–20] (also
known as symmetry-protected trivial orders [21]).
This paper is about the first class of topological phases

of matter—topological orders [22]—in three-dimensional
bosonic systems. Previously, it was shown that there is no
topological order in one-dimensional bosonic systems
[23,24]. The topological orders in two-dimensional bosonic
and fermionic systems are also understood systematically in
terms of the tensor category theory [25–29]. The abstract
mathematical tensor category theory is nothing but a detailed
theory to describe topological pointlike excitations.
We remark that many-body entanglement (i.e., topological

order) is a totally new phenomenon. Usually, to understand a
truly new phenomenon, we need to introduce new languages
and new mathematical framework. Historically, we have
introduced group and its representation theory into physics
to describe symmetries in quantum systems. Now, we need
to introduce category and higher category theory into
physics to describe many-body entanglement.
The study and the systematic understanding of

many-body entanglement (i.e., topological order) has a
wide and deep impact in physics. Topological order reveals
a new class of quantum matter that enables a new kind
of quantum computing—topological quantum computing
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[26,30–32]. Topological order also reveals the quantum
information origin of elementary particles and fundamental
forces [33–36].
However, until not long ago, we lacked a systematic

understanding of topological orders in three-dimensional
systems. Reference [37] started an attempt to have a
systematic and classifying understanding of 3þ 1D topo-
logical orders. This paper is a sequel to Ref. [37].
In Ref. [37], we classified the so-called all-boson (AB)

3þ 1D topological orders—the 3þ 1D topological orders
whose emergent pointlike excitations are all bosons. We
found that all 3þ 1DAB topological orders are classified by
pointed unitary fusion 2-categories with trivial 1-morphisms,
which are one-to-one labeled by a pair ðG;ω4Þ up to group
automorphisms, where G is a finite group and ω4 its group
4-cohomology class: ω4 ∈ H4ðG;R=ZÞ.
In this paper, we classify 3þ 1D topological orders

whose emergent pointlike excitations are bosons and
fermions, which are called EF topological orders. The
results in Ref. [37] and in this paper classify all 3þ 1D
topological orders in bosonic systems, since there are only
two kinds of statistics for pointlike excitations in 3þ 1D:
Bose statistics and Fermi statistics. This result, in turn,
leads to a classification of 3þ 1D topological orders
with finite unitary symmetry for bosonic and fermionic
systems, which include 3þ 1D SPT orders with finite
unitary symmetry for bosonic and fermionic systems (see
Sec. IX). In addition, we argue that all 3þ 1D bosonic
topological orders always have a gappable boundary.
The pointlike excitations and the stringlike excitations in

3þ 1D bosonic topological orders [38–50] can fuse and
braid, and their fusion and braiding must form a self-
consistent structure. In particular, the self-consistent struc-
ture must satisfy the principle of remote detectability
[51,52]: A topological order is anomaly-free, if and only
if every nontrivial topological excitation can be detected by
other topological excitations via some remote operation.
This principle is called the anomaly-free condition in
Ref. [52]. Here, “nontrivial topological excitation” means
an excitation with a nontrivial type as defined in Sec. III B.
“Anomaly-free” means realizable by a local bosonic lattice
model in the same dimension [53].
Since the remote detection is done by braiding, the

self-consistency of fusion and braiding plus the remote

detectability can totally fix the structure of pointlike and
stringlike excitations. Those structures, in turn, classify the
3þ 1D EF topological orders.

II. SUMMARY OF RESULTS

A. A list of the results obtained in this paper

In this paper, we classify EF topological orders for
3þ 1D bosonic systems where some emergent pointlike
excitations are fermions. We assume the numbers of
different topological types for the pointlike and stringlike
excitations to be finite. To understand our result, a minimal
understanding of 2-category is required. The 2þ 1D
topological order is mathematically described by (braided)
fusion categories, whose objects correspond to pointlike
excitations (anyons), and morphisms (or 1-morphisms in
the context of higher category theory) correspond to
physical processes, such as braiding. In 3þ 1D topological
order, in addition to pointlike excitations, we have string-
like excitations; the categorical level is increased by
one, and we need (braided) fusion 2-categories. We con-
clude in Table I the physical meanings of the commonly
used 2-category terms in this paper for the reader’s
reference.
Here, we first list the main results. In the following

subsections, we explain those results in more physi-
cal terms.
(1) We argue that all 3þ 1D topological orders for

bosonic systems have a gappable boundary.
(2) All the pointlike excitations in EF topological

orders are described by the representations of Gf ¼
Zf
2 ⋋e2 Gb—a Zf

2 central extension of a finite group
Gb characterized by a group cocycle e2∈H2ðGb;Z2Þ.

(3) We find that every EF topological order one to one
corresponds a2þ 1Danomalous topological orderA3

b
on its unique canonical boundary, where the
3þ 1D EF topological order is given by the bulk
centerZðA3

bÞ, which is the generalization of aDrinfeld
center to higher dimensions [52,54,55]. Here, A3

b is
a unitary fusion 2-category with simple objects
labeled by Ĝb ¼ Zm

2 ⋋m2
Gb, m2 ∈ H2ðGb; Z2Þ. A3

b
also has one invertible fermionic 1-morphism
for each object as well as quantum-dimension-

ffiffiffi
2

p

TABLE I. Physical meanings of categorical terms.

2-category Notation Physical meaning

Object (0-morphism) 1 (trivial), s; g; h;… Stringlike excitation

1-morphism Homð1; 1Þ Pointlike excitations
Homðs; sÞ Pointlike excitations on string s
Homðg; hÞ Pointlike domain wall between string g and h

2-morphism Physical operators
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1-morphisms that connect twoobjects g andgm,where
g ∈ Ĝb and m is the generator of Zm

2 .
(4) When Ĝb ¼ Zm

2 ×Gb, the EF topological orders are
called EF1 topological orders, which is classified by
simple data ðGb; e2; n3; ν4Þ, where n3 ∈ H3ðGb;Z2Þ
and ν4 is a 4-cochain in C4ðGb;Uð1ÞÞ satisfying

dν4 ¼ ð−Þn3⌣1 n3þe2⌣n3 .
(5) When Ĝb is a nontrivial Zm

2 extension [i.e., when m2

is a nontrivial group cocycle in H2ðGb; Z2Þ], the EF
topological orders are called EF2 topological orders,
where some junctions of three stringlike excitations
must carry Majorana zero modes.

(6) Every EF2 topological order with Gf ¼ Zf
2 ⋋ Gb

can be associated with an EF1 topological order with
Gf ¼ Zf

2 ⋋ Ĝb, which may lead to an understanding
of EF2 topological orders in terms of simpler EF1
topological orders.

(7) We find that all EF topological orders correspond
to gauged 3þ 1D fermionic SPT orders with a
finite unitary symmetry group. Our results can also
be viewed as a classification of the corresponding
3þ 1D fermionic SPT orders.

(8) We further propose that the general classification of
3þ 1D topological orders with finite unitary sym-
metries for bosonic and fermionic systems can be
obtained by gauging or partially gauging the finite
symmetry group of 3þ 1D SPT phases of bosonic
and fermionic systems.

B. Emergence of a group Gf

Since there is no braiding statistics in three-dimensional
space, the pointlike excitations are described by a sym-
metric fusion category sRepðGfÞ [56]. In other words, each
type of pointlike excitation corresponds to an irreducible
representation of a finite group Gf. The quantum dimen-
sion of the excitations is given by the dimension of the
representation. Gf is a Zf

2 central extension of Gb:

1 → Zf
2 → Gf→

πf
Gb → 1: ð1Þ

A pointlike excitation may correspond to a representation
where the subgroup Zf

2 is represented trivially. Such a
pointlike excitation is a boson. On the other hand, if Zf

2 is
represented nontrivially, the corresponding pointlike exci-
tation is a fermion.

C. Unique canonical gapped boundary described
by a unitary fusion 2-category

Following a similar approach proposed in Ref. [37], in
this paper, we show that every EF topological order has a
unique canonical gapped boundary, which is described by a
unitary fusion 2-category A3

b. Let us describe such fusion
2-categories in detail. The simple objects of the fusion

2-category, corresponding to the boundary strings, are
labeled by Ĝb. Here, Ĝb is an extension of Gb by Zm

2 :

1 → Zm
2 → Ĝb→

πm
Gb → 1: ð2Þ

The fusion of those boundary strings (the objects) is
described by the group multiplication of Ĝb.
In the fusion 2-category, there is a nontrivial 1-morphism

of unit quantum dimension that connects each simple
object g to itself. Such a 1-morphism corresponds to a
pointlike topological excitation living on the string g.
Since it can live on a trivial string labeled by g ¼ 1, these
pointlike excitations are actually not confined to certain
strings; they can move freely on the boundary and braid
among themselves. The statistics of this pointlike excitation
(the 1-morphism) is fermionic. So the canonical boundary
of an EF topological order also contains a fermion in
addition to the boundary strings.
There is also a 1-morphism of quantum dimension

ffiffiffi
2

p
that connects object g to object gm, where m is the
generator of Zm

2 . Physically, it means that the domain wall
between string g and string gm carries a fractional degree of
freedom (d.o.f.) of dimension

ffiffiffi
2

p
(i.e., like one-half of a

qubit). There are no other simple 1-morphisms.
For simplicity, we refer to the unitary fusion 2-categories

with the above special properties as EF 2-categories. In this
paper, we show that each EF topological order corresponds
to an EF 2-category. Reference [57] shows that, for each of
EF 2-categories, one can construct a bosonic model to
realize an EF topological order that has a boundary descri-
bed by the EF 2-category. Thus, the classification of EF
2-categories corresponds to a classification of 3þ 1D EF
topological orders. We mention that Ref. [58] also gave
explicit constructions of bosonic models to realize 3þ 1D
EF topological orders for the cases of Abelian Gb, in terms
of twisted Crane-Yetter models [59–62].
We note that the boundary fermion can form a topo-

logical p-wave superconducting (pSC) chain [63,64],
which is the nontrivial phase in Kitaev’s Majorana chain
model [63]. In fact, two boundary strings labeled by g and
gm differ by attaching such a pSC chain. The 1-morphism
of quantum dimension

ffiffiffi
2

p
at the domain wall between the

strings g and gm is nothing but the Majorana zero mode at
the end of the pSC chain.

D. Emergence of Majorana zero modes

The above classification of EF topological orders allows
us to divide those EF topological orders into EF1 topo-
logical orders when Ĝb ¼ Zm

2 × Gb and EF2 topological
orders when Ĝb is a nontrivial Zm

2 extension of Gb, des-
cribed by a group 2-cocycle m2ðgb; hbÞ ∈ H2ðGb; Z2Þ. In
the following, we describe how to directly measure the
group 2-cocyclem2 via the Majorana zero modes carried by
the junctions of three strings.
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Consider a fixed set of strings labeled by χgf, where χgf

is a conjugacy class in Gf that containing gf ∈ Gf.
Three strings χgf

1

, χgf
2

, and χgf
3

can annihilate if

gf1g
f
2 ¼ gf3 . If the triple string junction has a Majorana zero

mode, we assign mf
2ðgf1 ; gf2Þ ¼ −1. If the triple string junc-

tion has noMajorana zero mode, we assignmf
2ðgf1 ; gf2Þ ¼ 1.

(When Gf is Abelian, the appearance of Majorana zero
modes can be determined by the twofold topological
degeneracy for the configuration in Fig. 1.) mf

2ðgf1 ; gf2Þ
depends only on the conjugacy classes of gf1 , g

f
2 , and gf3 .

Thus, mf
2 satisfies

mf
2ðgf1 ; gf2Þ ¼ mf

2ðh1gf1h−11 ; h2g
f
2h

−1
2 Þ; h1; h2 ∈ Gf:

ð3Þ

Under proper choices of the fixed set of strings (see
Sec. VIII E), mf

2ðgf1 ; gf2Þ is a function on Gb; i.e., it has
the form

mf
2ðgf1 ; gf2Þ ¼ m̃2½πfðgf1Þ; πfðgf2Þ�: ð4Þ

m̃2 in the above is cohomologically equivalent to m2 that
describes the extension Ĝb; in other words, we measure
m2 up to coboundaries. If the measured m2 is trivial in
H2ðGb; Z2Þ, the corresponding bulk topological order is
an EF1 topological order. If the measured m2 is a
nontrivial cocycle, we get an EF2 topological order.
We emphasize that, for EF1 topological orders, emergent
Majorana zero modes can be removed by changing the
fixed set of strings, while, for EF2 topological orders,
the appearance of emergent Majorana zero modes is
inevitable.
We mention that, besides the junctions of three strings,

emergent Majorana zero modes may also be carried by
linked loops as first proposed in Ref. [65]. Appendix B
discuss the relation between the 2-cocycle m2 and the
Majorana zero modes on the linked loops.

E. Classification of EF1 topological order by a
class of pointed unitary fusion 2-category

For an EF1 topological order, the unitary fusion
2-category that describes its canonical boundary can be

simplified, since we can treat the pSC chain as a trivial
string when Ĝb ¼ Zm

2 ×Gb. The simplified unitary fusion
2-category Ā3

b has simple objects labeled by Gb and a
fermionic 1-morphism of unit quantum dimension that
connects each simple object to itself. There are no simple
noninvertible 1-morphisms. Thus, Ā3

b is a pointed unitary
fusion 2-category. We study this case thoroughly and show
that Ā3

b are classified by data ðGb; e2; n3; ν4Þ, where
Gb ¼ Gf=Z

f
2 , e2 ∈ H2ðGb;Z2Þ is the 2-cocycle determin-

ing the extension Zf
2 → Gf → Gb, n3 ∈ H3ðGb;Z2Þ, and

ν4 is a 4-cochain in C4½Gb;Uð1Þ� satisfying

dν4 ¼ ð−Þn3⌣1 n3þe2⌣n3 : ð5Þ

Here,⌣
k
denotes the higher cup product which is defined in

Ref. [66]. The above data ðGb; e2; n3; ν4Þ classify the EF1
topological orders. This result is closely related to a partial
classification of fermionic SPT phases [67], where a similar
twisted cocycle condition (5) was first obtained (without
the e2⌣n3 term). Equation (5) is also discussed in
Ref. [58], for the cases when Gb is Abelian, and in
Ref. [68] for arbitrary finite Gb (as well as a generalization
to any dimensions).
In Ref. [57], we give explicit constructions and show that

all such pointed unitary fusion 2-categories correspond
to 3þ 1D EF topological orders. In fact, all 3þ 1D
EF1 topological orders can be realized [57] by 2-gauge
theories [62].

F. A map from EF topological orders
to EF1 topological orders

Let us now shift our attention from EF1 topological
orders to general EF topological orders. Although general
EF 2-categories are more complicated, we can nevertheless
obtain some understanding of them by constructing, for any
general EF 2-category A3

b defined in Sec. II C, an asso-
ciated pointed unitary fusion 2-category Ã3

b, which is just
the pointed sub-2-category of A3

b. In Ã3
b, the quantum-

dimension-
ffiffiffi
2

p
1-morphisms are thrown away, but the

simple objects remain as Ĝb. Note that Ã3
b should be

distinguished from Ā3
b, where not only the quantum-

dimension-
ffiffiffi
2

p
1-morphisms, but also the pSC chains,

are thrown away, and simple objects become the smaller
Gb. Throwing away pSC chains is possible only when
Ĝb ¼ Gb × Zm

2 , i.e., the EF1 case. Thus, there is a map
from the EF 2-categories A3

b to the pointed unitary fusion
2-categories Ã3

b. In other words, there is a map from EF
topological orders to EF1 topological orders. This relation
may make it possible to construct a generic EF topological
order from a simpler EF1 topological order by adding some
additional structure.

g f
1

g f
2

g f
3

FIG. 1. A string configuration in the bulk described by a triple
ðχgf

1
; χgf

2
; χgf

3
Þ, where χgf is a conjugacy class in Gf containing

gf ∈ Gf and the triple satisfies gf1g
f
2 ¼ gf3 .
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G. A general classification of 3 + 1D topological
orders with finite unitary symmetry for

bosonic and fermionic systems

With the above classification results, we further propose
that the general classification of 3þ 1D topological orders
with symmetries can be obtained by gauging 3þ 1D SPT
phases. Partially gauging a SPT phase leads to a phase with
both topological order and symmetry, namely, a symmetry-
enriched topological (SET) phase, while fully gauging
the symmetry leads to an intrinsic topological order. In
the same gauging sequence, the starting SPT phase, the
partially gauged intermediate SET phases, and the ending
topological order share the same classification data; the
equivalence relations for SPT, SET, and topological order
can be different, though. See Sec. IX for a more detailed
discussion.

H. The line of arguments

The key result of this paper, the classification of 3þ 1D
EF topological orders, is obtained via the following line of
arguments.
(1) In Sec. III, we show that condensing all the bosonic

pointlike excitations in a 3þ 1D EF topological
order always gives rise to a unique Zf

2 topologi-
cal order.

(2) In Sec. IV, we argue that the domain wall between
the EF and the Zf

2 topological orders, induced by the
condensation of all the bosonic pointlike excitations,
can be gapped. Since there is a canonical gapped
boundary of the Zf

2 topological order, we obtain a
unique canonical gapped boundary of every 3þ 1D
EF topological order.

(3) Then, in Secs. V and VI, we further study the
properties of the domain wall and the boundary.
We show that they have strings whose fusion is
described by group multiplication, also a fermionic
pointlike excitation and a Majorana zero mode at the
junction of certain pairs of strings. Thus, the domain
wall and the boundary are described by unitary
fusion 2-categories with certain special properties,
which are discussed in more detail in Secs. VII
and VIII.

(4) By the principle that boundary uniquely determines
bulk [52,54,55], the above leads to a classification of
3þ 1D EF topological orders in terms of a subclass
of unitary fusion 2-categories.

III. CONDENSING ALL THE BOSONIC
POINTLIKE EXCITATIONS TO OBTAIN
A UNIQUE Zf

2 TOPOLOGICAL ORDER

Some pointlike excitations in a 3þ 1D EF topological
order are bosons, and the others are fermions. In this
section, we show that, by condensing all the bosonic
pointlike excitations, we will always ends up with a simple

Zf
2 topological order—a topological order described by the

3þ 1D Z2-gauge theory, but with a fermionic Z2 charge
[38] (see Fig. 2). In the next few subsections, we introduce
related concepts and pictures that allow us to obtain such a
result.

A. Pointlike excitations and group structure
in 3 + 1D EF topological orders

The pointlike excitations in 3þ 1D EF topological
orders are described by the symmetric fusion category.
According to Tannaka duality (see Appendix A), the
symmetric fusion category gives rise to a group Gf such
that the pointlike excitations are labeled by the irreducible
representations of Gf. In addition, Gf contains a Z2 central

subgroup, denoted by Zf
2 ¼ f1; zg. In each irreducible

representation of Gf, z is represented by either I or −I
(where I is an identity matrix). If z ¼ I, the corresponding
pointlike excitation is a boson. We note that all the bosonic
pointlike excitations are described by representations of
Gb, RepðGbÞ, where Gb ¼ Gf=Z

f
2 . If z ¼ −I, the corre-

sponding pointlike excitation is a fermion. We denote such
a symmetric fusion category by sRepðGfÞ. In addition,
irreducible representations correspond to simple pointlike
excitations, while reducible representations correspond to
nonsimple, or composite, pointlike excitations. Composite
excitations always split as the direct sum of simple ones.

B. Stringlike excitations in 3 + 1D
EF topological orders

The pointlike excitations have trivial mutual statistics
among them. One cannot use the pointlike excitations to
detect other pointlike excitations by remote operations.
Thus, based on the principle of remote detectability, there
must be stringlike excitations in 3þ 1D EF topological
orders, so that every pointlike excitation can be detected

Z  flux2
f

2
f

f f

topo. phase
Z   gauge phase

g

condense all bosonic particles

FIG. 2. Condensing all bosonic pointlike excitations in a
3þ 1D EF topological order C4EF gives rise to 3þ 1D Zf

2

topological order C4
Zf
2

. C4EF contain a fermionic pointlike excitation

f and a stringlike excitation, Zf
2 flux, which behave like the

π-flux line for the fermion f. The domain wall A3
w between C4EF

and C4
Zf
2

contain strings labeled by elements g ∈ Gf and only one

fermionic particle f. The strings and the fermion have quantum
dimension 1.
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by some stringlike excitations via remote braiding.
Similarly, every stringlike excitation can be detected by
some pointlike and/or stringlike excitations via remote
braiding. We see that the properties of stringlike excitations
are determined by the pointlike topological excitations [i.e.,
sRepðGfÞ] to a certain degree.
Let us discuss some basic properties of stringlike

excitations. First, similar to the particle case (see
Appendix A), a stringlike excitation si can be defined
via a trap Hamiltonian ΔHstrðsiÞ which is nonzero along a
loop. Such a trap Hamiltonian ΔHstrðsiÞ can be understood
as modifying the original Hamiltonian H0, by adding a
potential energy configuration that makes it energetically
favorable to trap a topologically nontrivial excitation in a
certain location, so that it becomes the ground state of the
modified Hamiltonian. The ground-state subspace of total
HamiltonianH0 þ

P
iΔHstrðsiÞ defines the fusion space of

strings si [and particles pi if we also have particle traps
ΔHðpiÞ]: VðM;p1; p2;…; s1; s2;…Þ. We note that such a
definition relies on an assumption that all the on-string
excitations are gapped. We argue that such is always the
case in Ref. [37] provided that the number of topological
types for strings is finite.
It is important to first clarify what are the “fundamental,”

or simple, strings: A stringlike excitation si is called simple
if its fusion space cannot be split by any nonlocal
perturbations along the string; i.e., the ground-state degen-
eracy cannot be split by any nonlocal perturbations of
ΔHstrðsiÞ. We stress that here we allow nonlocal perturba-
tions which are nonzero only along the string. In addition,
we say that two simple strings are of the same type if they
can be deformed into each other without closing the energy
gap by nonlocal perturbations along the string. The
motivation to use nonlocal perturbations is that we want
to separate out the degeneracy that is “distributed” between
strings and particles.
For example, in a 3þ 1D Z2-gauge theory, the Z2-gauge

charge has a mod 2 conservation. Those Z2 charges can
form a many-body state along a large loop, that sponta-
neously breaks the mod 2 conservation which leads to a
twofold degeneracy. We do not want to regard such a string
as a nontrivial simple string. One way to remove such kinds
of string as a nontrivial simple string is to require stability
against nonlocal perturbations along a simple string.
Mathematically, if we allow nonlocal perturbations as
morphisms, the above string from Z2-charge condensation
becomes a direct sum of two trivial strings.
The fusion of simple strings may give us nonsimple

strings which can be written as a direct sum of simple
strings:

si ⊗ sj ¼ ⨁
k
Mij

k sk: ð6Þ

Strings, when they are contractable loops, can also shrink to
a point and become pointlike excitations:

si → ⨁
j
Li
jpj: ð7Þ

We say that a string is pure if and only if its shrinking
contains trivial pointlike excitation 1. A nonpure string can
be viewed as a bound state of a pure string with some
topological pointlike excitations.
Using Mij

k together with shrinking, we can calculate the
dimension of fusion space of unlinked loops, as well as the
quantum dimension di of the si string. Here, di is defined
similarly as that for pointlike excitations [see Eq. (A16)]; it
is the effective dimension of “internal d.o.f.” of the
excitation at a large excitation number limit. More pre-
cisely, let VðS3; s⊗n

i Þ be the fusion space of n unlinked
loops si, and we have di ¼ limn→∞½dimVðS3; s⊗n

i Þ�1=n. A
string swith quantum dimension 1 is always simple. Such a
string is called invertible or pointed; i.e., there exists
another string s0 such that

s ⊗ s0 ¼ s0 ⊗ s ¼ 1: ð8Þ
Since, in general, it is not easy to determine whether a

string is simple by directly checking whether its fusion
space can be split or not, in the following we try to make
use of the shrinking operation to do the job. In fact, not only
strings have a shrinking operation; particles also have a
shrinking operation. We note that a zero-dimension sphere
S0 is two points, which may correspond to a pair of particles
ðp1; p2Þ. In higher dimensions, we may have excitations
described by Sd. For d ¼ 0; 1; 2;…, they correspond to a
pair of particles ðp1; p2Þ, a loop excitation s, a spherical
membrane excitation m, etc. Those excitations are pure if
their shrinking contains 1. For example, an S0 excitation
ðp1; p2Þ is pure if and only if p2 is the antiparticle of p1.
There is a well-known result that p is simple if and only

if the shrinking of p and p̄ (i.e., the fusion of p and p̄)
contains only a single trivial particle 1. In this case, we also
say that the corresponding pure S0 excitation ðp; p̄Þ is
simple. By analog, we conjecture a similar condition for
higher-dimensional excitations: A pure Sd excitation is
simple if and only if its shrinking contains only one trivial
particle 1. Thus, the shrinking of a pure simple string smust
have the form s → 1 ⊕ � � �where no other 1’s appear in � � �.
For a more detailed discussion about stringlike excita-

tions and their related membrane operators, see Ref. [37].

C. Dimension reduction of generic topological orders

We can reduce a 3þ 1D topological order C4 on
spacetimeM3 × S1 to 2þ 1D topological orders on space-
timeM3 by making the circle S1 small [see Figs. 3 and 4(a)]
[42,43]. In this limit, the 3þ 1D topological order C4 can
be viewed as several 2þ 1D topological orders C3i ,
i ¼ 1; 2;…; Nsec

1 , which happen to have degenerate
ground-state energy. We denote such a dimensional reduc-
tion process by
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C4 ¼ ⨁
Nsec

1

i¼1

C3i ; ð9Þ

where Nsec
1 is the number of sectors produced by the

dimensional reduction.
We note that the different sectors come from the different

holonomy of moving pointlike excitations around the S1

(see Fig. 3). So the dimension reduction always contains a
sector where the holonomy of moving any pointlike
excitations around the S1 is trivial. Such a sector is called
the untwisted sector.
In the untwisted sector, there are three kinds of anyons.

The first kind of anyons correspond to the 3þ 1D pointlike
excitations. The second kind of anyons correspond to the
3þ 1D pure stringlike excitations wrapping around the
compactified S1. The third kind of anyons are bound states
of the first two kinds [see Figs. 3 and 4(a)].
We point out that the untwisted sector in the dimension

reduction can even be realized directly in 3D space without
compactification. Consider a 2D submanifold in the 3D
space (see Fig. 5), and put the 3D pointlike excitations on
the 2D submanifold. We can have a loop of string across the
2D submanifold which can be viewed as an effective
pointlike excitation on the 2D submanifold. We can also
have a bound state of the above two types of effective

pointlike excitations on the 2D submanifold. Those effec-
tive pointlike excitations on the 2D submanifold can fuse
and braid just like the anyons in 2þ 1D. The principle of
remote detectability requires those effective pointlike
excitations to form a unitary modular tensor category.
When we perform dimension reduction, the above unitary
modular tensor category becomes the untwisted sector of
the dimension-reduced 2þ 1D topological order.
Since the dimension-reduced 2þ 1D topological orders

must be anomaly-free, they must be described by unitary
modular tensor categories. Since the untwisted sector
always contains sRepðGfÞ, we conclude that the untwisted
sector of a dimension-reduced 3þ 1D EF topological order
is a modular extension of sRepðGfÞ.

D. Sectors of dimension reduction
are 2 + 1D Drinfeld centers

In Ref. [37], we show the following stronger result:
Let the symmetric fusion category formed by the pointlike
excitations be E, E ¼ RepðGÞ or E ¼ sRepðGfÞ for the
AB or EF cases, respectively: The untwisted sector C3untw of
dimension reduction of a generic 3þ 1D topological orders
must be the 2þ 1D topological order described by the
Drinfeld center of E: C3untw ¼ ZðEÞ. Note that Drinfeld
center ZðEÞ is the minimal modular extension of E. In the
following, we generalize the above to any sector of
dimension reduction.
First, let us recall the definition of a Drinfeld center. The

Drinfeld center ZðAÞ of a fusion category A is a braided
fusion category, whose objects are pairs ðA; bA;−Þ, where
A is an object in A and bA;− is a set of isomorphisms
bA;X∶A ⊗ X ≅ X ⊗ A; ∀ X ∈ A. The isomorphism bA;X
is just the collection of unitary operators that connects the
fusion spaces � � � ⊗ A ⊗ X ⊗ � � � and � � � ⊗ X ⊗ A ⊗ � � �
for different backgrounds. They satisfy some self-
consistency conditions such as the hexagon equation:

bA;YbA;X ¼ bA;X⊗Y; ð10Þ

where we omit the associativity constraints (or F matrices)
of A for simplicity (otherwise, there are in addition three F
matrices involved, in total six terms, hence the name
hexagon). bA;X is called a half-braiding.

y

x

r
θ

x

y
θ

r

(b))a(

FIG. 4. Two ways to reduce a 2D spaceM2 to 1D space. (a) The
dimension reduction via compactifying the y direction. (b) The
dimension reduction via compactifying the θ direction. If we add
the z direction, the above become two ways to reduce a 3D space
to 2D space.

FIG. 5. The untwisted sector in the dimension reduction can be
realized directly on a 2D submanifold in 3D space without
compactification.

S1

FIG. 3. The dimension reduction of 3D space M2 × S1 to 2D
spaceM2. The top and the bottom surfaces are identified, and the
vertical direction is the compactified S1 direction. A 3D pointlike
excitation (the blue dot) becomes an anyon in 2D. A 3D stringlike
excitation wrapping around S1 (the red line) also becomes an
anyon in 2D. The picture describes the untwisted sector where the
3D pointlike excitations have trivial holonomy as we move them
around the compact direction S1.
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Physically, we may view the objects inA as the pointlike
topological excitations living on the boundary of a 2þ 1D
topological order. In general, a boundary excitation trapped
by a potential on the boundary cannot be lifted into the
bulk. Physically, this means that as the trapping potential
moves into the bulk, the ground-state subspace will be
joined by some high-energy eigenstates to form a new
ground-state subspace. But we may choose the boundary
trapping potential very carefully, so that the ground-state
subspace is formed by accidentally degenerate boundary
excitations. In this case, we say that the excitation trapped
by the boundary potential is a direct sum of those boundary
excitations. Such an excitation corresponds to a composite
object in the fusion category A. Now the question is which
composite object (or direct sum of boundary excitations)
can be lifted into the bulk (i.e., the ground-state subspace
rotates only by unitary transformation as we move the
trapping potential into the bulk).
We try to answer this question by exchanging a com-

posite object A in A with an arbitrary boundary excitation
X and study the unitary transformation bA;X induced by
such an exchange. If A can be lifted into the bulk, this bA;X
can be interpreted as coming from the half-braiding (see
Fig. 6). There are self-consistency conditions from those
half-braidings. If we find a composite object A whose half-
braidings satisfy those consistent conditions, we believe
that the object A can be lifted into the bulk.
However, there is an additional subtlety: Even when we

require that the ground-state subspace rotates only by
unitary transformation as we move the trapping potential
into the bulk, there are still different ways to move a
composite boundary excitation A into the bulk, which
correspond to different pointlike excitations in the bulk.
Those different bulk excitations can be distinguished by
their different half-braiding properties with all the boundary
excitations X. All the bulk excitations can be obtained this
way. Therefore, the bulk excitations are given by pairs
ðA; bA;−Þ, which correspond to the objects in the Drinfeld
center ZðAÞ.
Mathematically, the morphisms of ZðAÞ between the

pairs ðA; bA;−Þ; ðB; bB;−Þ are a subset of morphisms
between A, B, such that they commute with the half-
braidings bA;−; bB;−. Two pairs ðA; bA;−Þ; ðB; bB;−Þ are
equivalent if there is an isomorphism in ZðAÞ between
them; namely, there is an isomorphism, a collection of
unitary operators between the fusion spaces � ��⊗A⊗ � � �;

� � �⊗B⊗ � � �, that commutes with the half-braidings bA;−;
bB;−. The fusion and braiding of ðA; bA;−Þ’s is given by

ðA;bA;−Þ⊗ ðB;bB;−Þ ¼ ðA⊗B; ðbA;− ⊗ idBÞðidA ⊗ bB;−ÞÞ;
cðA;bA;−Þ;ðB;bB;−Þ ¼ bA;B: ð11Þ

In other words, to half-braid A ⊗ B with X, one just
half-braids B and A successively with X, and the braiding
between ðA; bA;−Þ and ðB; bB;−Þ is nothing but the half-
braiding.
In a sector C3i of dimension reduction [see Fig. 4(a)], as

we move the 3þ 1D pointlike excitation around the
compactified S1, we may obtain nontrivial holonomy.
This nontrivial holonomy corresponds to those induced
by moving the pointlike excitation around a 3þ 1D string
of type i. Therefore, we may view a twisted sector C3i as
having a base string i going through the compactified S1

(see Fig. 7). The particles in C3i come from the strings
(including the trivial strings) wrapping around the com-
pactified S1. Thus, the particles in C3i come from the strings
(including the trivial strings) wrapping around the base
string i.
Naturally, the content of anyons in the twisted sector C3i

depends on the twist (i.e., the base string i). To understand
how C3i depends on the base string i, we note that, as we
move a 3þ 1D particle to the base string i, the degeneracy
of the fusion space may split. Thus, a 3þ 1D particle may
behave like a direct sum of several particles on the base
string i. Those particles on the base string are regarded as
confined on the base string (see the particle p in Fig. 8).
Also, shrinking a string loop s around the base string i to a
point on the base string may also correspond to a direct sum
of several particles on the base string. We also regard those
particles as confined on the base string (see the particle pshr

s
in Fig. 8).

A X Y

FIG. 6. If a (composite) boundary excitation can be lifted into
the bulk, its half-braiding with other boundary excitations must
satisfy some self-consistency conditions. The above illustrates the
hexagon equation bA;YbA;X ¼ bA;X⊗Y .

S1

i

FIG. 7. The dimension reduction of 3D space M2 × S1 to 2D
spaceM2 for a twisted sector. The top and the bottom surfaces are
identified, and the vertical direction is the compactified S1

direction. The picture describes a twisted sector where the 3D
pointlike excitations have nontrivial holonomy as we move them
around the compact direction S1. Such a nontrivial holonomy is
represented by the red horizontal line (the base string) that
characterizes this nontrivial holonomy, and hence the twisted
sector. A 3D pointlike excitation not on the base string (the blue
dot) becomes an anyon particle in 2D. A 3D stringlike excitation
wrapping around the base string (the red line) also becomes an
anyon particle in 2D.

TIAN LAN and XIAO-GANG WEN PHYS. REV. X 9, 021005 (2019)

021005-8



The pointlike excitations confined on the base string
naturally form a fusion category, denoted byAi [69]. In fact,
in the second dimension-reduction scheme in Fig. 4(b), the
base string at ðx; yÞ ¼ ð0; 0Þ exactly behaves like a gapped
boundary of the dimension-reduced theory, as shown in
Fig. 4(b). The above discussions then immediately imply
that C3i ¼ ZðAiÞ.
On the other hand, similar to the untwisted sector, C3i can

also be effectively represented, in 3þ 1D without dimen-
sion reduction, by the three-loop braiding [40,41], as shown
in Fig. 8, which is equivalent to Fig. 4(b) around the base
string. As dimension reduction does not apply to general
spacetime topology, next we use the three-loop braiding
picture to prove the result in a more rigorous way, which is
almost parallel to that in Ref. [37].
The important thing to note is that loops encircling the

base string can shrink to the base string. When we shrink a
loop s (including bound states of particles with strings, in
particular, pointlike excitations viewed as bound states with
the trivial string) to the base string, it becomes a confined
pointlike excitation pshr

s in Ai:

s → pshr
s ¼ p1 ⊕ p2 ⊕ � � � ; p1; p2;… ∈ Ai: ð12Þ

So if we consider only fusion, the particles s in the
dimension-reduced sector C3i can all be viewed as the
particles in Ai, regardless if they come from the 3D
particles or 3D strings. In general, simple bulk particles
p ∈ E may become composite in Ai, unless in the
untwisted sector.
Now imagine we move a confined particle p on the base

string, through the loop s encircling the base string. This
movement induces an isomorphism between the initial and
end states where the loop s is shrunk (see Fig. 8):

cshrs;p∶pshr
s ⊗ p ≅ p ⊗ pshr

s ; ð13Þ

which is automatically a half-braiding on the particle pshr
s .

Thus, ðpshr
s ; cshrs;−Þ, by definition, is an object in the Drinfeld

center ZðAiÞ. In 2þ 1D topological orders, when a
boundary particle can be lifted into the bulk, it has half-
braidings with other boundary particles; here, the story is
very similar—when a particle confined on the base string
can either be lifted from the base string or expand to
another loop excitation encircling the base string, it has
half-braidings with other particles confined on the base
string.
Shrinking thus induces a functor

C3i → ZðAiÞ;
s ↦ ðpshr

s ; cshrs;−Þ; ð14Þ

which is obviously monoidal and braided, i.e., preserves
fusion and braiding. As C3i is a unitary modular tensor
category, this functor must be fully faithful [70], namely, an
embedding functor; in other words, C3i can be viewed as a
full subcategory of ZðAiÞ. However, if there is some X ∈
ZðAiÞ but X ∉ C3i (namely, X is not physically present),
certain particles in Ai will be indistinguishable by three-
loop braidings. Therefore, by the principle of remote
detectability, we must have

C3i ¼ ZðAiÞ: ð15Þ

In general, it is not easy to determine the confined
particles Ai on the base string i. But, for the untwisted
sector, the base string is trivial, and thus Auntw ¼ E and
C3untw ¼ ZðEÞ. As ZðEÞ is known well, many properties can
be easily extracted. For example, objects in Z½sRepðGfÞ�
have the form ðχ; ρÞ, where χ is a conjugacy class of Gf

and ρ is a representation of the subgroup of Gf that
centralizes χ. One then concludes
(1) a looplike excitation in a 3þ 1D topological order

always has an integer quantum dimension, which
is jχj dim ρ;

(2) pure strings (ρ trivial) always correspond to con-
jugacy classes of the group.

For 3þ 1D EF topological orders, as the fermion number
parity z is in the center of Gf, its conjugacy class has only
one element. We have the following corollary, which is
used in later discussions:
Corollary.—In all 3þ 1D EF topological orders, there is

an invertible pure Zf
2 flux loop excitation, corresponding to

the conjugacy class of fermion number parity z.

E. Condensing all the bosonic pointlike excitations

Starting from a 3þ 1D EF topological order C4EF, we can
condense all the bosonic pointlike excitations described by
RepðGbÞ, to obtain a new 3þ 1D EF topological order C̃4.
After RepðGbÞ is condensed, all bosonic pointlike

i i

i i
p shr

s
p shr

s

(c) (d)

(a)

ss

(b)

pp

p p

FIG. 8. From (a) to (b), the particle p on the base string i is
moved through the loop s. (c),(d) are obtained from (a),(b) by
shrinking loops. Shrinking thus induces a “half-braiding” iso-
morphism cshrs;p from (c) to (d).
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excitations become the trivial pointlike excitation in C̃4,
while all fermionic pointlike excitations become the same
fermionic pointlike excitations with quantum dimension 1.
In other words, the pointlike excitations in the new
topological order C̃4 are described by sRepðZf

2Þ.
Let us describe the boson condensation in more detail.

The pointlike excitations described by sRepðGfÞ satisfy a
fusion rule described by the fusion of the representations of
Gf. The corresponding conservation is a conservation of Gf

quantum numbers (i.e., representations). Therefore, there is
an emergent Gf symmetry in the topological order C4EF. We
note that a Gb-valued bosonic field forms a reducible
representation of Gb that includes all the irreducible repre-
sentations. Thus, the condensation of such a bosonic field
corresponds to the condensation of all the bosonic pointlike
excitations. This condensation breaks the emergent Gf

symmetry in C4EF to the emergent Zf
2 symmetry in C̃4.

This picture of C̃4 seems to suggests a jGbj-fold ground-
state degeneracy due to the spontaneous symmetry break-
ing. However, since the Gf symmetry is emergent, at a
finite length scale l, the Gf symmetry is broken by an
amount of the order of e−l=ξ, where ξ is the correlation
length of local orders in C4EF. So jGbj-fold ground-state
degeneracy is split by an amount of the order of e−l=ξΔ,
where l is the interparticle separation for the condensed
bosons and Δ is the gap of C4EF. Therefore, C̃

4 does not have
ground-state degeneracy coming from spontaneous sym-
metry breaking, since the splitting e−l=ξΔ is finite in the
thermodynamic limit.
What are the stringlike excitations in C̃4? Although the

pointlike excitations in C̃4 are very simple and can detect
only simple strings, the stringlike excitations can braid
among themselves and detect each other. Thus, C̃4 might
contain complicated stringlike excitations.
However, as pointed out in Ref. [37], to remotely detect

an unlinked string loop s in the space S3, we need to use
another string loop s0 and the two-loop braiding between s
and s0 to remotely detect s. However, on S3 such a two-loop
braiding corresponds to braiding a particle p0 around the
string loop s, where the particle p0 is the shrinking of the
string loop s0. Since, for C̃4, p0 can be only the trivial
particle or the fermion f, the strings that they can dis-
tinguish are also very simple. In other words, there should
be only one type of simple pure string s1, which has
nontrivial braiding with f (i.e., behaves like a π flux for the
fermion f).
This result can also be obtained using the dimension

reduction discussed above, plus the following conjecture:
Conjecture.—There is a one-to-one correspondence

between the simple types of stringlike excitations in
3þ 1D and the simple types of pointlike excitations in
the 2þ 1D untwisted sector of the dimension reduction.

To understand the above conjecture, we note that each
simple string in 3þ 1D reduces to a particle in 2þ 1D in
the untwisted sector (see Fig. 3). However, the 2þ 1D
particle might be composite (i.e., a direct sum of several
simple types of particles in 2þ 1D). But since the simple
strings in 3þ 1D are stable against any nonlocal perturba-
tions around the strings, the corresponding particles in
2þ 1D are stable against any local perturbations around
the particles. Thus, the corresponding 2þ 1D particles are
actually simple types. This reasoning leads to the above
conjecture.
With such a conjecture, the 3þ 1D stringlike excitations

are determined by the 2þ 1D pointlike excitations des-
cribed by E ¼ sRepðZf

2Þ. In particular, the untwisted sector
of the dimension reduction must be the Drinfeld center
ZðEÞ ¼ Z½sRepðZf

2Þ�, which is nothing but the 2þ 1D
Z2-gauge theory. There are only four types of 2þ 1D
anyons: Two of them correspond to the 3þ 1D pointlike
excitations in sRepðZf

2Þ, and the other two correspond to
the 3þ 1D stringlike excitations. The fusion rule between
the four anyons in the 2þ 1D Z2-gauge theory is described
by the Z2 × Z2 group, which leads to the fusion rule
between the loops and the fermion f:

f ⊗ f ¼ 1; f ⊗ s1 ¼ s2; f ⊗ s2 ¼ s1;

s1 ⊗ s1 ¼ s2 ⊗ s2 ¼ 1; s1 ⊗ s2 ¼ f: ð16Þ

The above also implies the shrinking rule for the loops to be

s1 → 1; s2 → f: ð17Þ

We also find that the braiding phases between the fermion f
and the two loops si are given by −1, and the braiding phase
between two s1 or two s2’s is 1. The braiding phase
between s1 and s2 is −1. Here, the invertible loop s1 is the
just the Zf

2 flux loop z.
We see that C̃4 contains only one type of pure simple

string s1 which shrinks to a single 1. The other loop s2 is the
bound state of s1 and the fermion f. The loop s1 has a trivial
two-loop braiding with itself.
We further investigate the braiding properties of s1 by

studying the twisted sector of dimension reduction with
base string s1. What are the confined pointlike excitations
As1 on s1? There is at least a Z2 excitation in As1 coming
from the bulk fermion. On the other hand, there should be at
most four different types of particles in C3s1 , corresponding
to 1, f, s1, and s2 encircling the base string. There is only
one unitary modular tensor category, which is a Drinfeld
center, satisfying the above constraints; it is again C3s1 ¼
Z½sRepðZf

2Þ� and As1 ¼ sRepðZf
2Þ. Thus s1, s2 encircling

s1 correspond to Z2 bosons in Z½sRepðZf
2Þ�, which means

that the three-loop braiding of s1 strings is also trivial.
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Another tricky point is that the trivial string 1, although
with totally trivial braiding properties, may still secretly be
a pSC chain. Thus, one may wonder if s1 has any nontrivial
interplay with pSC chains; for example, s1 ⊗ s1 ¼ 1 is, in
fact, a pSC chain. But note that, when a pSC chain is linked
with a Zf

2 flux loop (namely, s1), the fermion number parity
will be changed. Thus, if s1 ⊗ s1 is a pSC chain, when
encircling the base string s1 (namely, in C3s1), one should

have s1 ⊗ s1 ¼ f. The fact that C3s1 ¼ Z½sRepðZf
2Þ�

excludes such a possibility, since, for any particle a in
C3s1 ¼ Z½sRepðZf

2Þ�, a ⊗ a is always a boson. For details,
see Sec. VIII C.
We thus conjecture that the pure string s1 has totally trivial

braiding properties and it can be condensed to obtain another
topological order D4, which turns out to be trivial. To see
this, note that condensing the pure string s1 corresponds to
condensing the corresponding topological boson in the
untwisted sector described by 2þ 1D Z2-gauge theory
Z½sRepðZf

2Þ�, which changes the untwisted sector to a
trivial phase. So the untwisted sector of dimension-reduced
D4 is trivial, which implies that D4 has no nontrivial
pointlike and stringlike excitations.
We can also obtain such a result by noticing that, in D4,

the fermions and s2 are confined, due to the nontrivial
braiding with s1, and s1 becomes the ground state (i.e.,
condensed). Thus, D4 has no nontrivial bulk excitations and
must be an invertible topological order. But in 3þ 1D, all
invertible topological orders are trivial [52,71,72]. Thus, D4

is a trivial phase, which means that we can create a gapped
boundary of C̃4 by condensing s1 strings. Such a boundary
contains only one fermionic particle f with a Z2 fusion rule:

f ⊗ f ¼ 1: ð18Þ

For any C̃4, condensing strings lead to the same above
boundary, on which there is no nontrivial string excita-
tion, and the only nontrivial pointlike excitation is the
fermion. Using the principle that the boundary uniquely
determines the bulk [52,54,55], we conclude that all the C̃4’s
that satisfy the above properties are actually the same
topological order, which is called the Zf

2 topological order,
denoted by C4

Zf
2

: In any 3þ 1D EF topological order C4EF,

condensing all the bosonic pointlike excitations inRepðGbÞ
produces the same unique 3þ 1D topological order C4

Zf
2

.

The topological order C4
Zf
2

is constructed on a cubic

lattice [73]. It is also called twisted Z2-gauge theory where
the Z2 charge is fermionic and is realized by the 3þ 1D
Levin-Wen string-net model [38]. C4

Zf
2

can also be realized

by the Walker-Wang model [74] or by a 2-cocycle lattice
theory [75]. In this paper, we refer to C4

Zf
2

as the Zf
2

topological order.

IV. ALL 3+ 1D BOSONIC TOPOLOGICAL ORDERS
HAVE A GAPPABLE BOUNDARY

It is well known that 2þ 1D topological orders with a
nonzero chiral central charge c cannot have a gapped
boundary, which can be understood from the induced
gravitational Chern-Simons term in the effective action
for such a kind of topological orders. Since there is no
gravitational Chern-Simons term in 3þ 1D, this might
suggest that all 3þ 1D bosonic topological orders have a
gappable boundary. However, such a reasoning is not
correct. In fact, there are 2þ 1D topological orders with
a zero chiral central charge (i.e., with no gravitational
Chern-Simons term) that cannot have a gapped boun-
dary [51].
For a 2þ 1D topological order described by a unitary

modular tensor category C3, if C3 has a condensable
algebra [76], then we can condense the bosons in the
condensable algebra to obtain another 2þ 1D topological
order described by a different unitary modular tensor
category D3. Now we ask, is there a gapped domain wall
between the two topological orders C3 and D3? In fact, we
can show that there exists a 1þ 1D anomalous topological
order, described by unitary fusion category A2

w, which is
mathematically the category of modules over the condens-
able algebra, such that the Drinfeld center of A2

w is
C3 ⊠ D3. Here, C3 ⊠ D3 is the 2þ 1D topological order
formed by stacking two topological orders, C3 and D3,
where D3 is the time-reversal conjugate of D3. This means
that it is consistent to view A2

w as the domain wall between
C3 and D3. Then, we conjecture that there exists a gapped
domain wall between C3 and D3 that is described by A2

w.
In the last section, we have seen that condensing all the

bosonic excitations described by RepðGbÞ in a 3þ 1D EF
topological order C4EF give us an unique 3þ 1D topological
order C4

Zf
2

. This result can also be obtained by noticing that

the condensation ofRepðGbÞ is described by a condensable
algebra, and there is only one condensable algebra if we
want to condense allRepðGbÞ. So there is only one way to
condense all RepðGbÞ which produces a unique state C4

Zf
2

.

We expect that, similar to the 2þ 1D case, such an
unique condensation also produces an unique unitary
fusion 2-category A3

w, such that the generalized Drinfeld
center, or bulk center, ofA3

w is C4EF ⊠ C4
Zf
2

, and we can view

A3
w as the canonical domain wall between C4EF and C

4

Zf
2

. This

result motivates us to conjecture that there exists a gapped
domain wall between two 3þ 1D EF topological orders
C4EF and C4

Zf
2

.

There is a heuristic physical argument to support the
above conjecture. The particles in the condensable algebra
are all bosons which form a symmetric fusion category
RepðGbÞ. Those bosons have an emergent symmetry
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described by Gb. As discussed in Sec. III E, C4
Zf
2

can be

viewed as the boson condensed state with a small
symmetry-breaking perturbation. Such a kind of state is
well studied in physics which always allows a gapped
domain wall between itself and its uncondensed parent
state. Therefore, the domain wall between two 3þ 1D EF
topological orders C4EF and C4

Zf
2

can always be gapped. In

Sec. III E, we show that C4
Zf
2

topological order can have a

gapped boundary, which allows us to argue that all 3þ 1D
EF topological orders have a gappable boundary.
Using a similar argument, we can argue that all 3þ 1D

AB topological orders have a gappable boundary. In fact,
the argument is simpler for the AB case, since boson
condensation directly results in a trivial phase, with no
intermediate C4

Zf
2

topological order. Hence, all 3þ 1D

bosonic topological orders have a gappable boundary.

V. UNIQUE CANONICAL DOMAIN WALLS
BETWEEN 3+ 1D EF TOPOLOGICAL ORDERS

AND Zf
2 TOPOLOGICAL ORDER C4

Zf
2

In this section, we derive the properties of the fusion
2-category A3

w which describes the domain wall between
C4EF and C4

Zf
2

.

A. All simple boundary strings and boundary
particles have quantum dimension 1

After condensing all bosonic particlesRepðGbÞ, the only
nontrivial particle on the canonical domain wall is the
fermion f with quantum dimension 1. Such a fermion can
be lifted into one side of the domain wall with the Zf

2

topological order C4
Zf
2

. On the other side of the domain wall

with 3þ 1D EF topological order C4EF, if we bring the
fermions in sRepðGfÞ to the boundary, it will become
a direct sum (i.e., accidental degenerate copies) of
several f’s.
What are the stringlike excitations on the domain wall?

On the C4
Zf
2

side of the domain wall, there is only one type of

pure simple stringlike excitation—the Zf
2 flux loop with

quantum dimension 1. Bringing such a string to the domain
wall gives us a Zf

2 flux loop on the wall. We can also bring
strings in C4EF to the domain wall. In general, a string in C4EF
becomes a direct sum of simple boundary strings.
Let us focus on the simple loop excitations on the

canonical domain wall. A loop excitation shrunk to a
point may become a direct sum of pointlike excitations
[see Eq. (7)]:

s → n1 ⊕ mf; ð19Þ
where 1 and f are the trivial and fermionic pointlike
excitations, respectively. When n ¼ 0, the string is not

pure. Another possibility is that n > 1. In this case, the
string is not simple. When m > 1, the string is also not
simple, since, when s fuses with an invertible fermion, its
shrinking rule becomes

s ⊗ f → m1 ⊕ nf; ð20Þ

which is not simple. Supposing s ⊗ f ¼ s1 ⊕ s2 ⊕ � � �,
then s ¼ s ⊗ f ⊗ f ¼ ðs1 ⊗ fÞ ⊕ ðs2 ⊗ fÞ ⊕ � � � is not
simple. Therefore, simple loop excitations on the domain
wall have three possible shrinking rules:

sb → 1; sf → f; sK → 1 ⊕ f: ð21Þ

In the following, we show, by contradiction, that a simple
string like sK with quantum dimension 2 cannot exist on the
domain wall.
First, the invertible Zf

2 flux loop z exists in both sides,
C4EF and C4

Zf
2

, of the domain wall. We are able to braid z

around the domain-wall excitations. As z is invertible, such
braiding leads to only a Uð1Þ phase factor, denoted by
θðz;−Þ. In particular, θðz; fÞ ¼ −1, which is the defining
property of Zf

2 flux.
Second, fusing a fermion f to a string sK which shrinks

to 1 ⊕ f will not change the string, namely, sK ⊗ f ¼ sK .
Thus,

θðz; sKÞ ¼ θðz; sK ⊗ fÞ ¼ θðz; sKÞθðz; fÞ ¼ −θðz; sKÞ;
ð22Þ

which is contradictory. Physically, we can use the braiding
of z to detect the fermion number parity on the domain
wall, which implies that excitations without a fixed fermion
number parity, such as sk → 1 ⊕ f, cannot be stable on the
domain wall. Therefore, there is no simple domain-wall
string with quantum dimension 2.
Thus, a simple loop on the boundary shrinks to a unique

particle, 1 or f, with quantum dimension 1. A simple pure
loop on the boundary always shrinks to a single 1. This is
an essential property in the following discussions: All
simple pure loops on the domain wall have a quantum
dimension d ¼ 1, and their fusion is grouplike. As the
nonpure simple loops are all bound states of f with pure
simple loops, we consider only the simple pure loops. For
the moment, we denote the group formed by the simple
pure loops on the domain wall under fusion (see Fig. 11)
by H.

B. Fusion of domain-wall strings recovers the group

The argument in this subsection is almost parallel to
those in the AB case described in Ref. [37]. There are only
a few modifications to address the fermionic nature. But to
be self-contained we include a full argument here. It is
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recommended that readers not familiar with Tannaka
duality go through Appendix A first.
To apply the Tannaka duality, we need a physical

realization of the super-fiber-functor. Consider a simple
topology for the domain wall: Put the 3þ 1D topological
order C4EF in a 3-diskD

3 and the domain wall on ∂D3 ¼ S2,
and outside is the condensed phase C4

Zf
2

. When there is only

a particle p in the 3-disk, a background particleQ ¼ 1 ⊕ f
in the condensed phase C4

Zf
2

[77], with no string and no other

particles, we associate the corresponding fusion space to
the particle p and denote this fusion space by FðpÞ (see
Fig. 9). Viewed from very far away, a 3-disk containing a
particle p is like a particle in the condensed phase C4

Zf
2

,

which has pointlike excitations sVec ¼ sRepðZf
2Þ. In other

words, FðpÞ is like a local super-vector-space in sVec
describing a 3-disk containing p. Alternatively, as dis-
cussed in Appendix A 5, if p is moved out of the 3-disk
through the domain wall and becomes a particle p0 in the
condensed phase, such p0 is also the super-vector-space
FðpÞ. When there are two 3-disks, each containing only
one particle, p1 and p2, respectively, the fusion space is
Fðp1Þ ⊗C Fðp2Þ. It is proved in Appendix A 5 that F
preserves fusion, Fðp1Þ ⊗C Fðp2Þ ≅ Fðp1 ⊗ p2Þ, and
also preserves the braiding of particles. In other words,
the assignment p → FðpÞ gives rise to a super-fiber-
functor. By the Tannaka duality, we can reconstruct a
group Gf ≡ AutðFÞ, such that the particles in the bulk C4EF
are identified with sRepðGfÞ. Our goal is to show that the
fusion group H of the simple loops on the domain wall is
the same as Gf.
To achieve this goal, we consider the process of

adiabatically moving the trap that hold a particle p along
a loop (Fig. 10). Half of the loop is in the original
topological state, and the other half is in the Zf

2 topological
state. When the trap is in the original topological state, there
is a dp-fold ground-state degeneracy. Here, we design the
trap very carefully such that, along all the loop, the trap
always has a clear gap above the dp-fold degenerate ground

states. This design means that the trap has dp-fold acci-

dental degeneracy when the trap is in the Zf
2 topological

ordered state. We also fine-tune the trap such that the non-
Abelian geometric phase induced by adiabatically moving
along the loop is the identity when no extra excitation is
present.
Now we create a loop of pure simple string h ∈ H on

the domain wall, linked with the loop path of p above,
as shown in Fig. 10. As the pure simple string is
invertible, inserting them will not change the ground-state
degeneracy. However, moving the trap along the above
path may change an initial state jv0i ∈ FðpÞ into a
different end state jv1i ∈ FðpÞ, after the particle moves
around the string h (see Fig. 10). Thus, braiding p
around h induces a unitary map on the fusion space
FðpÞ, αp;h∶jv0i ↦ jv1i.
Next, consider that we have two particles p1, p2 in the

bulk. If we braid them together (fusing them to one particle
p1 ⊗ p2) around the simple loop h, we obtain the linear
map αp1⊗p2;h. If the fusion of the bulk particles is given by
p1 ⊗ p2 ¼ ⨁iWi, we can split p1 ⊗ p2 to the irreducible
representationsWi and braidWi with h. It is easy to see the
αp;h maps are automatically compatible with such splitting;
in other words, αp1⊗p2;h ¼ ⨁iαWi;h.
But it is also equivalent if we braid p1, p2 one after the

other. But this braiding induces a unitary map on
Fðp1 ⊗ p2Þ. We would like to spatially separate Fðp1Þ
and Fðp2Þ. As discussed in Appendix A 5, moving either
p1 or p2 out of the 3-disk leads to fusion space
Fðp1Þ ⊗C Fðp2Þ. Thus, besides braiding p1, p2 with h
one after the other, we add several steps to move p2, p1

back and forth.
First, we move p2 out of the 3-disk. Then, braiding p1

alone with the loop excitation h corresponds to the linear
map αp1;h ⊗C idFðp2Þ. Next, we bring p2 back into the
3-disk, following the same path when it was moved out so
that p2 does not braid with h in this step.
Second, we move p1 out of the 3-disk. Then, braiding p2

alone with h corresponds to idFðp1Þ ⊗C αp2;h. Next, again,
we bring p1 back, following the same path when it was
moved out.

Z 2
f

(a) (b)

1 2

21

Q

−topo. phase

topo. phase

p

p p

p p

FIG. 9. (a) The fusion space FðpÞ for a 3-disk D3 containing
only one particle p. (b) F preserves fusion of particles,
Fðp1Þ ⊗C Fðp2Þ ≅ Fðp1 ⊗ p2Þ.

Z 2
f

|v >1
|v >0

topo. phase

h

p

−topo. phase

FIG. 10. Moving a particle (blue) around a loop excitation (red)
on the domain wall. The solid line is in the C4EF phase. The dashed
line is in the C4

Zf
2

phase.
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The steps of moving p1, p2 back and forth cancel, and
only the braidings are left over. Therefore, in total we have
the linear map αp1;h ⊗C αp2;h, which is equivalent to that
induced by braiding p1, p2 together, αp1;h ⊗C αp2;h ¼
αp1⊗p2;h. Using only irreducible representations,

αp1;h ⊗C αp2;h ¼ ⨁
i
αWi;h: ð23Þ

We show that these linear maps are compatible with the
fusion of bulk particles.
Moreover, the pure simple loop h provides such a unitary

map αp;h for each particle p ∈ sRepðGfÞ in C4EF; thus, the
set of linear maps φðhÞ≡ fαp;hg is an automorphism of the
super-fiber-functor, φðhÞ ∈ Gf ≡ AutðFÞ. In other words,
we obtain a map φ from the pure simple loops H to Gf,
φ∶H → Gf. It is also compatible with the fusion of simple
loops on the domain wall. To see this compatibility, note
that the path of braiding around two concentric simple
loops g1, g2 (as in Fig. 11) separately can be continu-
ously deformed to the braiding path around the two loops
together or around their fusion g1 ⊗ g2 ¼ g1g2, which
implies that φðg1Þφðg2Þ ¼ φðg1g2Þ; namely, φ is a group
homomorphism.
Next, we show that φ is, in fact, an isomorphism and

H ¼ Gf, which is a consequence of the followingprinciples:
(1) If an excitation has trivial braiding with the con-

densed excitations, it must survive as a deconfined
excitation in the condensed phase.

(2) There is no nontrivial bulk particle that has trivial
half-braiding with all the domain-wall strings.

(1) is a general principle for condensations, while (2) is a
remote detectability condition. By the folding trick, we can
regard the domain wall as a boundary of the phase
C4EF ⊠ C4

Zf
2

. So we have similar remote detectability con-

dition (2) near the domain wall as that near a boundary [37].
A typical half-braiding path is shown in Fig. 10, in the

sense that half is in C4EF and half in C
4

Zf
2

. If αp;h is the identity

map, it implies trivial half-braiding between the particle p
in C4EF and simple loop h on the domain wall.
Now, we are ready to show that φ∶H → Gf is an

isomorphism:
(1) φ is injective.—First, the Zf

2 flux loop, denoted by z,
which is simple, pure, and invertible and survives in

the condensed phase C4
Zf
2

, must also be a pure simple

loop on the domain wall. Namely, Zf
2 ⊂ H.

Consider kerφ, namely, the pure simple loops that
induce just identity linear maps on all particles in
C4EF. On one hand, simple loops in kerφ have trivial
half-braiding with all particles in C4EF. So they also
have trivial braiding with the condensed excitations,
namely, all the bosons in C4EF. By (1), they should all
survive the condensation; in other words, ker φ is at
most a subset of pure string excitations in C4

Zf
2

,

kerφ ⊂ Zf
2 . On the other hand, the linear map αp;z

induced by the Zf
2 flux loop z is not the identity map

on fermions, so z ∉ ker φ.
Therefore, we see that kerφmust be trivial, which

means φ is injective.
(2) φ is surjective.—We already showed that φ∶H →

Gf is injective, so we can view H as a subgroup
of Gf.
Now consider a special particle in C4EF, which

carries the representation FunðGf=HÞ, linear func-
tions on the right cosets Gf=H. More precisely,
FunðGf=HÞ consists of all linear functions on Gf,
f∶Gf → C, such that fðhxÞ ¼ fðxÞ, ∀ h ∈ H; x ∈
Gf (takes the same value on a coset). The group
action is the usual one on functions, ρFunðGf=HÞðgÞ∶
fðxÞ ↦ fðg−1xÞ.
The linear maps αp;h induced by the pure simple

loops are all actions of group elements in H, and
they are all identity maps on the special particle
FunðGf=HÞ. In other words, the bulk particle
FunðGf=HÞ has trivial half-braiding with all the
pure domain-wall strings. As a nonpure domain-wall
string is just the bound state of f with a pure domain-
wall string, its half-braiding with FunðGf=HÞ is also
trivial. Thus, FunðGf=HÞ has trivial half-braiding
with all the domain-wall strings. By the remote
detectability condition (2), it must be the trivial
particle carrying the trivial representation. In other
words, we have Gf ¼ H.

In conclusion, the pure simple loop excitations on the
domain wall forms a group under fusion. It is exactly
the same groupGf whose representations are carried by the
pointlike excitations in the bulk.

C. Unitary fusion 2-category with a single
invertible fermionic 1-morphism

In addition to the strings on the domain wall discussed
above, the domain wall also contains a single fermion with
quantum dimension 1. There are no other particles, as the
domain wall is obtained via a maximal boson condensation.
Summarizing the above results, we find that a 3þ 1D EF
topological order C4EF has a domain wall between itself and

g
1

g
2

g
2

g
1

FIG. 11. The fusion of domain-wall stringlike excitations
sbdryg1 ⊗ sbdryg2 ¼ sbdryg1g2 , which can be abbreviated as g1⊗g2¼ g1g2.
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the 2þ 1D Zf
2 topological order C4

Zf
1

. The domain wall is

described by a unitary fusion 2-category A3
w. A3

w has the
following properties: Strings (objects) form a group under
fusion, and the only nontrivial particle (1-morphism on the
trivial string) is the fermion.
Besides the above necessary properties, A3

w must also
have the following property:

ZðA3
wÞ ¼ C4

Zf
2

⊠ ðC4
Zf
2

ÞcenZðA3
wÞ: ð24Þ

Here, ZðA3
wÞ is the bulk center of A3

w, and ðC4
Zf
2

ÞcenZðA3
wÞ

denotes the centralizer of C4
Zf
2

in ZðA3
wÞ. The notion of the

bulk center is introduced in Refs. [52,54], which is a
generalization of the Drinfeld center to higher categories.
Physically, ZðA3

wÞ is the unique 3þ 1D topological order
whose boundary can be A3

w. Since A3
w is a domain wall

between C4
Zf
2

and C4EF, after folding, A
3
w can viewed as the

boundary of the stacked topological order C4
Zf
2

⊠ C4EF ¼
ZðA3

wÞ (strictly speaking, we should take the time reversal
of the second component in the folding trick; but here C4

Zf
2

is

the same as its time reversal C4
Zf
2

). Thus, ZðA3
wÞ contains C4Zf

2

as a subcategory. The centralizer of C4
Zf
2

in ZðA3
wÞ is given

by C4EF ¼ ðC4
Zf
2

ÞcenZðA3
wÞ, and ZðA3

wÞ must be the stacking of

C4
Zf
2

and its centralizer: ZðA3
wÞ ¼ C4

Zf
2

⊠ ðC4
Zf
2

ÞcenZðA3
wÞ.

In conclusion, in this section, we give the properties
of the domain wall obtained via maximal boson conden-
sation in an EF topological order. Since the way to perform
maximal boson condensation is unique, for each EF
topological order, there is only one such domain wall,
referred to as the unique canonical domain wall. Given such
one-to-one correspondence between EF topological orders
and their unique canonical domain walls, one can solve for
all possible domain walls satisfying the above properties
and thus classify the EF topological orders. However, it
is better to work with boundaries, as we discuss in the
next section.

VI. THE UNIQUE CANONICAL BOUNDARY
OF 3+ 1D EF TOPOLOGICAL ORDERS

Because the fusion 2-category on the domain wall of an
EF topological order C4EF and Z

f
2 topological order C

4

Zf
2

must

satisfy the additional condition (24), it is hard to classify
such a subset of fusion 2-categories. In this section, we
construct the unique canonical boundary, also described by
a unitary fusion 2-category, for every 3þ 1D EF topologi-
cal order. The bulk center of the unitary fusion 2-category
of the canonical boundary directly gives the bulk 3þ 1D
topological order. This way, we can focus on the fusion

2-category itself, without worrying about additional con-
ditions like Eq. (24).
To construct the unique canonical boundary for a 3þ 1D

EF topological order C4EF, we start with the unique
canonical domain wall A3

w between C4EF and C4
Zf
2

obtained

by condensing all the bosonic pointlike excitations. We
then create a boundary A3

Zf
2

of C4
Zf
2

by condensing the

strings in C4
Zf
2

. Then, we make the intermediate C4
Zf
2

very thin

such that A3
w, C4Zf

2

, and A3

Zf
2

together can be viewed as a

composite boundary.
That is to say, we consider the following boundary of C4EF

(see Fig. 12):

A3
b ¼ A3

w ⊠C4
Zf
2

A3
Z2
: ð25Þ

Equivalently, such a boundaryA3
b can be obtained by a one-

step condensation, where all the bosons together with the
Zf
2 flux string z are condensed.
Note that the domain wall A3

w has stringlike excitations
labeled by Gf. But the strings labeled by Zf

2 ⊂ Gf can
move across C4

Zf
2

and then condense on the boundary A3
Z2
.

So the stringlike excitations in the whole boundary A3
b are

labeled by Gf=Z
f
2 ≡Gb. All those strings have quantum

dimension 1. Their fusion forms the group Gb. The
boundary A3

b also contains an invertible fermion f with
quantum dimension 1. Such a pointlike excitation f is
inherited from A3

Z2
, C4

Zf
2

, and A3
w. The fermion f can move

freely between A3
Z2
, C4

Zf
2

, and A3
w.

We mention that a “pSC chain” (the 1D invertible
fermionic topological order [63]) formed by the boundary
fermions may attach to the strings discussed above. The
pSC chain is invisible to the braiding between the stings
and particles. But it doubles the types of strings. The end
points of such pSC chains are the quantum-dimension-

ffiffiffi
2

p
Majorana zero modes. A more detailed discussion about
this case is given later.

2
f

2
f

EF
4C CZ

4

A3
w

A3
b

ZA3

FIG. 12. A3
b is the unique canonical boundary for C4EF. A

3
b is

formed by stacking the unique canonical domain wall A3
w

between C4EF and C4
Zf
2

and the boundary A3

Zf
2

of C4
Zf
2

. Note that

A3
w and A3

Zf
2

are separated by C4
Zf
2

.
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Those considerations, after including the pSC chain and
doubling the string types, allow us to obtain the following
result: A 3þ 1D EF topological order C4EF has a unique
canonical boundary A3

b, induced by a maximal boson
condensation followed by a string condensation. A3

b is
described by a unitary fusion 2-category whose simple
objects are labeled by Ĝb, which is a Zm

2 extension of Gb,
where Zm

2 labels the extra pSC chain string. The fusion
of the objects is described by the group multiplication of
Ĝb. For each simple object (string), there is one nontrivial
invertible 1-morphism corresponding to the fermion.
There are also quantum-dimension-

ffiffiffi
2

p
1-morphisms (the

Majorana zero modes) connecting two objects g and gm,
with g ∈ Ĝb and m being the generator of Zm

2 .
On one hand, we show (together with more details given

in the following sections) that A3
b resulting from conden-

sation must have the above properties. On the other hand, in
Ref. [57], we give explicit constructions and show that all
unitary fusion 2-categories with the above properties, or EF
2-categories for short, do give rise to 3þ 1D EF topologi-
cal orders, which can be viewed as constructions of the bulk
center C4EF ¼ ZðA3

bÞ. Therefore, classifying EF 2-categories
gives us a classification of 3þ 1D EF topological orders.
For clarity, we divide the EF topological orders into two

types. If Ĝb ¼ Gb × Zm
2 , the corresponding bulk topologi-

cal orders are called EF1 topological orders. If Ĝb is a
nontrivial extension of Gb by Zm

2 , the corresponding bulk
topological orders are called EF2 topological orders.
Physically, the pSC chains in EF1 topological orders can
be safely neglected, while in EF2 topological orders pSC
chains have a nontrivial interplay with stringlike excitations
and, thus, require more serious treatment.
We study EF1 topological order first. The canonical

boundary A3
b of EF1 topological order has a sub-2-

category Ā3
b, where the pSC chains are dropped. We

believe that Ā3
b encodes all the key information ofA3

b. It is
a pointed fusion 2-category as if the pSC chain is a trivial
string: The information of the canonical boundary A3

b of a
3þ 1D EF1 topological order C4EF is encoded in a sub-2-
category Ā3

b, which is a pointed unitary fusion 2-category
whose simple objects are labeled byGb. All simple objects
and simple 1-morphisms are invertible. The fusion of the
objects is described by the group multiplication of Gb.
There is one nontrivial invertible fermionic 1-morphism
for each object. Next, we give more details on the above
statement.

VII. CLASSIFICATION OF EF1 TOPOLOGICAL
ORDERS BY POINTED UNITARY

FUSION 2-CATEGORIES

A. The canonical domain wall

In this section, we consider the simpler case of EF1
topological orders. We start by describing the pointed

unitary fusion 2-category Ā3
w on the domain wall. Such

fusion 2-categories are special in the sense that their simple
objects (corresponding to simple pure string types) and
simple 1-morphisms are all invertible. The cases with
noninvertible 1-morphisms are discussed later.
The content presented in this subsection is based on the

results of Ref. [78], which gives a detailed definition of
the tricategory (note that a fusion 2-category is a tricategory
with a single object), simplified under the following
assumptions.
(1) The identity (trivial string or trivial particle) -related

data do not matter. The coherence relations involv-
ing both the associator or pentagonator and the
identity-related data can be viewed as normalization
conditions. We can set, by equivalent functors
between fusion 2-categories or physically changing
the basis or “gauge,” all the identity-related data to
be trivial; thus, the associator and the pentagonator
are properly normalized.

(2) There are fermions on the strings, but fermions are
not confined to the strings. Instead, fermions can
move freely on the domain wall and even to the bulk.
As a result, some of the particle-related data are fixed
by fermionic statistics. We use cð−;−Þ to denote the
exchange statistics of the fermion:

cðf; fÞ ¼ −1; cð1; 1Þ ¼ cð1; fÞ ¼ cðf; 1Þ ¼ 1:

ð26Þ

In short, we assume that there is a convenient gauge choice
such that some data of Ā3

w are either normalized or fixed by
the fermionic statistics.
Ā3

w consists of the following data:
(1) Objects (pure string types).—Gf, a group that has a

Z2 central subgroup. The elements of Gf label the
simple pure strings.

(2) 1-morphisms (particles on strings).—For any
simple pure string labeled by g ∈ Gf, we have
Homðg; gÞ ¼ sVec. In other words, we have par-
ticles live on a string g which is viewed as a defect
between the same type-g string. Homðg; gÞ ¼ sVec
corresponds to the degenerate subspace or internal
d.o.f. of the particle. Here, the particle is, in general,
composite, which is formed by the accidental
degeneracy of bosons and the fermion, which, in
turn, gives rise to the super (i.e., Z2 graded)-vector-
space sVec. We also have Homðg; hÞ ¼ 0 for
g ≠ h ∈ Gf, which means that there is no 1D defect
between different simple pure strings. Simple
1-morphisms are denoted by pg ∈ Homðg; gÞ, with
a subscript to indicate its string type. p values in
f1; fg ≅ Z2 and follows a Z2 fusion rule.
For convenience, we use the additive Z2 ¼ f0; 1g

convention instead of the multiplicative Z2¼f1;fg.
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p ¼ 0 corresponds to the trivial boson 1, and
p ¼ 1 corresponds to the nontrivial fermion f.
This way, the fermion exchange statistics is simply
cðp; qÞ ¼ ð−1Þpq.

(3) 2-morphisms: Linear maps.—They correspond to
deformations between various particle and string
configurations.

(4) Fusion along strings, denoted by pg ∘p0
g (composi-

tion of 1-morphisms but, in fact, is the tensor
product in sVec ).—They follow the Z2 fusion rule
for simple 1-morphisms, pg ∘p0

g ¼ ðpþ p0Þg.
(5) Fusion between strings, denoted by ⊗, for

both objects (given by group multiplication) and
1-morphisms.—

g ⊗ h ¼ gh; g; h ∈ Gf;

pg ⊗ qh ¼ ðpþ qÞgh: ð27Þ

As we assume that particles (1-morphisms) can
freely move on the domain wall, the fusion of
1-morphisms along different directions (along or
between strings) should be essentially the same and
independent of the string labels.

(6) The interchange law, a 2-isomorphism b̃ðp0
g; q0h;

pg; qhÞ ∈ Uð1Þ (see Fig. 13).—

ðp0
g ⊗ q0hÞ ∘ ðpg ⊗ qhÞ ≅ ðp0

g ∘pgÞ ⊗ ðq0h ∘ qhÞ
ð28Þ

on ðp0 þ q0 þ pþ qÞgh. In our case, the simple
strings and simple particles are all invertible and
have quantum dimension 1. Their degenerate
subspaces are always one dimensional. Thus, the
2-isomorphisms are just Uð1Þ phase factors.
As particles can be freely detached from strings,

we expect the above Uð1Þ phase independent of
the string labels. Moreover, if we treat the fusion
operations ∘ ;⊗ as the same one, the difference
between the two sides in Eq. (28) is just exchanging

q0h and pg. Thus, to be consistent with fermionic
statistics, we assume that

b̃ðp0
g; q0h; pg; qhÞ ¼ cðq0; pÞ: ð29Þ

(7) Associator.—
(i) For g; h; j ∈ Gf, we have a 1-morphism

n3ðg; h; jÞ∶ðg ⊗ hÞ ⊗ j → g ⊗ ðh ⊗ jÞ, valu-
ing in f1; fg ≅ Z2. See Fig. 14.

(ii) We also have a 2-isomorphism ñ3ðpg; qh; rjÞ ∈
Uð1Þ to describe the Uð1Þ phase difference
between two different orders to fuse strings and
particles on the strings (see Fig. 15):

n3ðg; h; jÞ ∘ ½ðpg ⊗ qhÞ ⊗ rj�
≅ ½pg ⊗ ðqh ⊗ rjÞ� ∘ n3ðg; h; jÞ: ð30Þ

To be consistent with fermionic statistics, we
assume that

ñ3ðpg; qh; rjÞ ¼ c½n3ðg; h; jÞ; pþ qþ r�:
ð31Þ

(8) Pentagonator.—For g; h; j; k ∈ Gf, 2-isomorphism
ν4ðg; h; j; kÞ ∈ Uð1Þ:

½1g ⊗ n3ðh; j; kÞ� ∘ n3ðg; hj; kÞ ∘ ½n3ðg; h; jÞ ⊗ 1k�
≅ n3ðg; h; jkÞ ∘ n3ðgh; j; kÞ: ð32Þ

FIG. 13. The interchange law, corresponding to fusing four
particles on two strings in different orders. The upper path and the
lower path differ by a Uð1Þ phase b̃ðpg

0; qh 0; pg; qhÞ.

g h j g h j g h j

kkk

l m

(a) (b) (c)

FIG. 14. (a) Fusion of strings g, h, j gives rise to a defect
between strings g, h, j and string k. Two different ways of fusion,
(b) and (c), may leads to different defects whose difference in
particles is given by n3ðg; h; jÞ.

(b)(a)
g

h

jj

h

g g

h

j

g

h

j

p

q

r r

q

p

FIG. 15. The two domain-wall states in (a) and (b) may differ
by a Uð1Þ phase ñ3ðpg; qh; rjÞ (see (31).
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These data satisfy the following.
(1) n3ðg; h; jÞ is a normalized 3-cocycle in H3ðGf;Z2Þ.
(2) For g; h; j; k; l ∈ Gf,

ñ3½n3ðg; h; jÞghj; 1k; 1l�ñ3½1g; n3ðh; j; kÞhjk; 1l�ν4ðh; j; k; lÞν4ðg; hj; k; lÞν4ðg; h; j; klÞ
¼ ñ3½1g; 1h; n3ðj; k; lÞjkl�ν4ðgh; j; k; lÞν4ðg; h; jk; lÞν4ðg; h; j; kÞ: ð33Þ

Note that

ñ3½n3ðg; h; jÞghj; 1k; 1l� ¼ c½n3ðg; h; jÞ; n3ðghj; k; lÞ�
¼ ð−1Þn3ðg;h;jÞn3ðghj;k;lÞ; ð34Þ

and similarly for other ñ3’s. We then have

ν4ðh; j; k; lÞν4ðg; hj; k; lÞν4ðg; h; j; klÞ
ν4ðgh; j; k; lÞν4ðg; h; jk; lÞν4ðg; h; j; kÞ

¼ ð−1Þn3ðg;h;jÞn3ðghj;k;lÞþn3ðg;hjk;lÞn3ðh;j;kÞþn3ðg;h;jklÞn3ðj;k;lÞ: ð35Þ

In other words, the 4-cochain ν4ðg; h; j; kÞ satisfies

dν4 ¼ ð−ÞSq2n3 ¼ ð−Þn3⌣1 n3 ; ð36Þ

a relation first introduced in Ref. [67], where Sq2 is the Steenrod square and ν4 is normalized.

Here, “normalized” means that n3ðg; h; jÞ ¼ 0, if any of g,
h, k is 1, and ν4ðg; h; j; kÞ ¼ 1, if any of g, h, j, k is 1.
We point out that by now we consider the consistency

conditions only on the domain wall. There are more con-
straints when we take into account the bulk; namely, the bulk
center of the above fusion 2-category should be C4EF ⊠ C4

Zf
2

as

inEq. (24)—in particular, the fermionf and theZf
2 flux zmust

be liftable and form the 3þ 1D Zf
2 topological order C4

Zf
2

.

Unfortunately, we do not have efficient algorithms or theo-
rems to calculate bulk centers of fusion 2-categories, which
makes it difficult to checkunderwhat extraconditions thebulk
center of the above fusion 2-category has the desired form of
Eq. (24). To avoid this weakness, we consider the canonical
boundary instead as below.

B. The canonical boundary

We know that the C4
Zf
2

topological order has a gapped

boundary by condensing the Zf
2 flux string z. On the

gapped boundary, there is no string but only one nontrivial
particle, the fermion. Imagine we have the gapped domain
wall and gapped boundary as above, and between them is
the intermediate C4

Zf
2

phase. Now, we squeeze the inter-

mediate C4
Zf
2

phase to a very thin layer, such that we can

view the composite domain-wall-Ā3
w=C4Zf

2

/boundary-Ā3

Zf
2

together as a gapped boundary Ā3
b of C4EF. As a self-

consistency check, to see whether such a boundary does
give rise to an EF topological order, we need only to check
that in its bulk (the bulk center), the particles form

sRepðGfÞ, which is much easier than checking the bulk
center of the domain wall, which is valid only if it has the
form of Eq. (24).
The composite boundary is described by a similar fusion

2-category as that for the domain wall. Most of the data and
conditions discussed in the previous subsection apply. We
list only the differences below.
(1) As the z string condenses, the string types on the

boundary are now labeled by Gb ¼ Gf=Z
f
2. At the

same time, the 2-cocycle e2ðg; hÞ ∈ H2ðGb;Z2Þ
coming from the extension Zf

2 → Gf → Gb arises
in other data (see Fig. 16).

2
f

2
f

2
f

2
f

(b)(a)

gh,1

h,0

g,0 g,0

h,0

gh,1

h,0

g,0 g,0

h,0

A3
b

A3
w

EF
4C

ZA4

CZ
4

A3
b

A3
w

EF
4C

ZA4

CZ
4

FIG. 16. (a) On the domain wall Ā3
w, the strings are labeled

by ðg; μÞ ∈ Gf, where g ∈ Gb and μ ∈ Zf
2 . The fusion of

strings ðg; μÞ and ðh; νÞ is given by ðg; μÞ ⊗ ðh; νÞ ¼
ðgh; μþ νþ e2ðg; hÞÞ. The group 2-cocycle e2 ∈ H2ðGb;Z2Þ
gives rise to a Zf

2 extension from Gb to Gf . In the above graph,
the string ðg; 0Þ is represented by a single line (red) and the string
ðg; 1Þ a double line (red, green), where the extra (green) line can
be viewed as the Zf

2 flux line z. (b) Such a Zf
2 flux line can be

canceled by a Zf
2 flux loop z as indicated by the thick rectangular

(blue) loop in the above graph.
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(2) When fusing g, h on the composite boundary,
e2ðg; hÞ ¼ 1 indicates that there is a Zf

2 flux loop
z along the fused string gh in the intermediate C4

Zf
2

phase. As a result, the associator ñ3ðpg; qh; rjÞ needs
to be modified. Under a certain framing conven-
tion (put the particles slightly below the string in
Fig. 15 and slightly into the C4

Zf
2

bulk), we find that

(see Fig. 17)

ñ3ðpg; qh; rjÞ ¼ ð−1Þn3ðg;h;jÞðpþqþrÞð−1Þre2ðg;hÞ;
ð37Þ

where ð−1Þn3ðg;h;jÞðpþqþrÞ is the fermion statistics
(written in the additive Z2 convention) and
ð−1Þre2ðg;hÞ is the particle-loop statistics coming
from r going through the Zf

2 flux loop z
along gh.

(3) n3ðg; h; jÞ is now a 3-cocycle in H3ðGb;Z2Þ. The condition for ν4 is then modified to

ν4ðh; j; k; lÞν4ðg; hj; k; lÞν4ðg; h; j; klÞ
ν4ðgh; j; k; lÞν4ðg; h; jk; lÞν4ðg; h; j; kÞ

¼ ð−1Þe2ðg;hÞn3ðj;k;lÞð−1Þn3ðg;h;jÞn3ðghj;k;lÞþn3ðg;hjk;lÞn3ðh;j;kÞþn3ðg;h;jklÞn3ðj;k;lÞ:

ð38Þ

In other words, the 4-cochain ν4ðg; h; j; kÞ ∈ C4½Gb;Uð1Þ� satisfies

dν4 ¼ ð−Þn3⌣1 n3þe2⌣n3 : ð39Þ

With these, one can check that in the bulk center bosonic
particles form representations of Gb, and fermionic par-
ticles form projective representations of Gb with a class
described by e2. Together, particles form nothing but
sRepðGfÞ. So the above conditions for the composite
boundary pass the self-consistency check; they do give rise
to a 3þ 1D EF topological order. On one hand, the data
ðGb; e2; n3; ν4Þ together with their consistency conditions
above are the necessary properties we show that the
boundary Ā3

b of an EF1 topological order must have. On
the other hand, these properties are also sufficient for the
bulk center of Ā3

b to be an EF1 topological order. Thus, we
have a classification of 3þ 1D EF1 topological orders, by
Ā3

b with these properties, namely, by ðGb; e2; n3; ν4Þ, where
e2∈H2ðGb;Z2Þ;n3∈H3ðGb;Z2Þ;ν4∈C4½Gb;Uð1Þ� satis-
fying Eq. (39). The above has the same form as the group
supercohomology theory for fermionic SPTs. Recently, a

new class of 3þ 1D fermionic SPTs was found, by
“decorating Kitaev’s Majorana chains” [79,80], which is
beyond group supercohomology. In the next section, we
show that such a “Kitaev’s Majorana chain decoration” also
enters the classification of topological orders.
For completeness, let us briefly discuss the equivalence

relation for the above data. First, Gb together with e2 is the
same data as the group Gf. Since the particles form
sRepðGfÞ, by the Tannaka duality ðGb; e2Þ is fully deter-
mined up to group isomorphisms. However, ðn3; ν4Þ admits
more gauge transformations than coboundaries. The key is
to note that dν4 depends on n3; thus, if n3 is changed by a
coboundary du2, to keep Eq. (39), ν4 must be modified by
an extra cochain w4 which satisfies

dw4 ¼ ð−Þðn3þdu2Þ⌣
1
ðn3þdu2Þþe2⌣ðn3þdu2Þ−n3⌣

1
n3−e2⌣n3 : ð40Þ

Such w4 needs to be determined only up to coboundaries.
To fix the cocycle ambiguity, note that w4 must be 0 when
u2 ¼ 0. Then, by a straightforward calculation we find that

w4 ¼ ð−1Þn3⌣2 du2þu2⌣u2þu2⌣
1
du2þe2⌣u2 : ð41Þ

Therefore, in general, for any 2-cochain u2 ∈ C2ðGb;Z2Þ
and 3-cochain η3 ∈ C3½Gb;Uð1Þ�,

n3 → n3 þ du2;

ν4 → ν4 × dη3 × ð−1Þn3⌣2 du2þu2⌣u2þu2⌣
1
du2þe2⌣u2 ð42Þ

is a gauge transformation and gives an equivalent solution.
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FIG. 17. The two domain-wall states in (a) and (b) may differ
by a Uð1Þ phase ñ3ðpg; qh; rjÞ [see Eq. (37)]. The string label
ðg; 0Þ on Āw is abbreviated to g. This figure shows the case that
e2ðg; hÞ ¼ e2ðg; hjÞ ¼ 1, e2ðgh; jÞ ¼ e2ðh; jÞ ¼ 0.
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Note that ð−1Þn3⌣2 du2þu2⌣u2þu2⌣
1
du2þe2⌣u2 is, in general,

a 4-cochain, and dν4 is shifted under such a gauge
transformation. If we fix n3, namely, let du2 ¼ 0,
u2 ∈ Z2ðGb;Z2Þ, ν4 transforms as

ν4 → ν4 × dη3 × ð−1Þu2⌣u2þe2⌣u2 ; ð43Þ
where ð−1Þu2⌣u2þe2⌣u2 is now a 4-cocycle but may not
be the trivial one. We see that ν4 is, in fact, classified
by (forms a torsor over) the group H4½Gb;Uð1Þ�=Γ, where
Γ is the subgroup generated by ð−1Þu2⌣u2þe2⌣u2 for all
2-cocycles u2.
Besides the gauge transformations, different n3, ν4 are

also equivalent if they can be related by (outer) group
isomorphisms of Gf or ðGb; e2Þ (which can be followed by
gauge transformations). We note that this part is different
from the equivalence relation of fermionic SPT phase,
where the symmetry group Gf should always be fixed.
To “add up” two solutions ðn3; ν4Þ and ðn03; ν04Þ, one also

needs to follow a twisted rule:

ðn3; ν4Þ þ ðn03; ν04Þ ¼
�
n3 þ n03; ν4ν

0
4ð−1Þ

n3⌣
2
n0
3

�
: ð44Þ

The above is the best we can do for equivalence relations
of EF1 topological orders. But, we point out that they are
only sufficient conditions for different sets of data to be
equivalent. Two sets of data which are seemingly non-
equivalent according to the above may be related by some
extra gauge transformations and are, in fact, equivalent. To
see what is missing, we may consider EF1 topological
orders as special EF topological orders with some extra
data, such as m2, being trivial. These extra data, although
trivial, still allow extra gauge transformations on them and
may generate nontrivial equivalence relations.
In more rigorous categorical language, the equivalence

relation of a bulk topological order is given by the Morita
equivalence of the unitary fusion 2-category describing the
gapped boundary, namely, ZðA3

bÞ ≃ ZðB3
bÞ. For the canoni-

cal boundaries A3
b;B

3
b, obtained by condensing particular

excitations, ZðA3
bÞ ≃ ZðB3

bÞ implies A3
b ≃ B3

b. Group auto-
morphisms plus the gauge transformations listed above
generate only a subset of all possible equivalence functors
between A3

b and B3
b. We leave the complete equivalence

relation for future work.

VIII. CLASSIFICATION OF EF TOPOLOGICAL
ORDERS BY EF 2-CATEGORIES ON THE

CANONICAL BOUNDARY

In this section, we shift to more general EF topological
order. Mathematically, we drop the assumption that all
simple excitations are invertible and study what else is
possible. We then find that the only remaining possibility is
an extra Z2 string together with its end points with quantum
dimension

ffiffiffi
2

p
. Physically, we identify such an extra string

as the pSC chain and its end point as a Majorana zero mode.

We then seriously consider the nontrivial interplay between
pSC chains and stringlike excitations.

A. Define string type using local or nonlocal
unitary transformations?

In the above discussions, we omit the possibility
that between different strings there can be defects or
1-morphisms. This omission is a consequence of defining
the type of stringlike excitations up to nonlocal perturba-
tions along the string (see Sec. III B). To see this point, let
us consider that a loop consists of two string segments
labeled by g, h connected by two pointlike defects (i.e.,
1-morphisms) σ∈Homðg;hÞ;σ0∈Homðh;gÞ (see Fig. 18).
Under nonlocal perturbations, the loop can become a g
loop carrying σ ∘ σ0 ∈ Homðg; gÞ or an h loop carrying
σ0 ∘ σ ∈ Homðh; hÞ. Thus, g and h are equivalent under
nonlocal perturbations along the string.
In the fusion 2-category, the objects or strings and

1-morphisms or pointlike defects are actually defined up to
local unitary transformations. Moreover, if there exists an
invertible 1-morphism (namely, a pointlike defect with
quantum dimension 1) between two objects (namely, two
string segments), such two objects are equivalent in the fusion
2-category. Therefore, if some σ ∈ Homðg; hÞ is an invertible
1-morphism, then g and h are indeed equivalent as objects in
the fusion 2-category, which is consistent with the nonlocal
perturbation point of view. However, it is possible that no
1-morphism in Homðg; hÞ is invertible, and g, h are not
equivalent in the fusion 2-category. To include this possibility,
we introduce a different equivalent relation of strings, using
local unitary transformations plus invertible 1-morphisms,
which is consistent with that in the fusion 2-category: Two
strings defined under local unitary transformations are called
of the same local type if there is an invertible 1-morphism
between them. (Section III B defines types of strings as
equivalence classes of nonlocal unitary transformations,
which is different from local types of string defined as
equivalence classes of local unitary transformations.) The
set of local types is denoted by Ĝb. We have already shown
that the string types defined via nonlocal unitary trans-
formations form a group Gb. Clearly, jĜbj ≥ jGbj, and
two different local types may correspond to the same type.
With the expanded string local types defined by local

unitary transformation, our arguments in Sec. V are still
valid, which shows that, on the boundary, closed strings

σ’

σ’

h

σ

σ’

g

σ

g

h

σ

FIG. 18. If two strings g and h can be connected by a domain
wall (i.e., an 1-morphism), then, under nonlocal unitary trans-
formations, strings g and h will be equivalent.
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have quantum dimension 1 and form a group under fusion.
Ĝb is actually a group that describes the fusion of the
local types. Also, using the half-braiding with the pointlike
excitation in the bulk (see Sec. V), we can assign each
boundary string local type a group element inGb. Thus, there

is a group homomorphism Ĝb→
πm
Gb. If there are noninvertible

1-morphismsbetweendifferent local types, they can together
form a closed loop andmust be assigned the same element in
Gb. In fact, the string types up to nonlocal perturbations are
just local types further up to noninvertible 1-morphisms.
Indeed,Gb is a quotient group of Ĝb by imposing equivalent
relations via noninvertible 1-morphisms.

B. New string type from pSC chain

Next, we carefully examine what possible noninvertible
1-morphisms can there be and their physical meaning.
Since all the local types of strings labeled by g ∈ Ĝb have
quantum dimension 1 and form a group under fusion, the
1-morphisms automatically obtain a grading by this group;
namely, p ∈ Homðg; hÞ is graded by hg−1. As a result of
such grading, the total quantum dimension of nonempty
Homðg; hÞ must be the same. In our previous work dis-
cussing AB topological orders [37], dimHomðg; hÞ ¼
dimHomðg; gÞ ¼ 1, and, thus, Homðg; hÞ can allow only
one simple invertible 1-morphism or be empty; in this case,
nonempty Homðg; hÞ just implies g ¼ h. In other words, in
AB topological orders, there is no room for simple non-
invertible 1-morphisms on the canonical boundary. It also
means that, on the canonical boundary of the AB topo-
logical, the string local types defined using local unitary
transformations plus invertible 1-morphisms and the string
types defined using nonlocal unitary transformations are
the same; i.e., Ĝb ¼ Gb.
However, for EF topological orders, it is not the case.

Since Homðg; gÞ ¼ sVec, if Homðg; hÞ is not empty for
certain g, h, we have dimHomðg; hÞ ¼ dimHomðg; gÞ ¼
dimðsVecÞ ¼ 2, which means that there can be one simple
noninvertible 1-morphism with quantum dimension

ffiffiffi
2

p
. In

this case, jĜbj > jGbj.
We can fuse a g−1 string to this simple noninvertible

1-morphism between g, h and obtain a simple noninvertible
1-morphism in Homðgg−1; hg−1Þ ¼ Homð1; hg−1Þ. Let
such hg−1 ≡m and denote the noninvertible 1-morphism
by σm ∈ Homð1; mÞ. It is easy to see that, for any string k,
σm ⊗ 1k is a noninvertible 1-morphism in Homðk;mkÞ.
In fact, such an m string generates the kernel of the
projection πm∶Ĝb → Gb.
We find the following properties of such strings.
(1) m is a Z2 string, m2 ¼ 1.—Consider fusing two σm.

We obtain σm ⊗ σm ∈ Homð1; m2Þ, whose quantum
dimension is 2. It can only split as the direct sum of
two invertible 1-morphisms, which implies that the
m2 string and 1 are equivalent.

(2) m is unique.—Suppose that there is another simple
noninvertible σm0 ∈ Homð1; m0Þ. Using the same
trick, we see that σm ⊗ σm0 ∈ Homð1; mm0Þ is the
direct sum of two invertible 1-morphisms. Thus,
mm0 ¼ 1. Together with m2 ¼ 1, we conclude that
m ¼ m0.

(3) m is central, ∀ g;mg ¼ gm.—To see this property,
consider 1g ⊗ σm ⊗ 1g−1, which is a simple non-
invertible 1-morphism in Homðgg−1; gmg−1Þ ¼
Homð1; gmg−1Þ. Since m is unique, we must have
m ¼ gmg−1.

Therefore, it is possible to have a Z2 string m which can
be open on the canonical boundary of EF topological
orders. Its end points [simple noninvertible 1-morphisms in
Homð1; mÞ] have quantum dimension

ffiffiffi
2

p
.

Physically, the m string is distinguished from the trivial
string under the equivalences generated by local unitary
transformations. In other words, the m string and trivial
string have different local types. But they have the same
type; namely, the m string becomes the same as the trivial
string under the equivalences generated by nonlocal unitary
transformations. This result implies that m is a descendant
string formed by lower-dimensional topological excitations
(since it can have a boundary). On the boundary of an EF
topological order, the only lower-dimensional topological
excitations are the trivial particles and the fermions. Since
there is no topological order in 1D, the trivial particles
cannot form any nontrivial strings. On the other hand, the
fermions can form a topological pSC chain. Thus, the m
string must be a pSC chain. The simple 1-morphism
between the m string and trivial string in Homð1; mÞ
(i.e., the end point of the m string) is the Majorana zero
mode at the end of the pSC chain.
We emphasize here that such an extra string m and

noninvertible 1-morphism σm are the only remaining
possibilities beyond the pointed case discussed in
Sec. VII. The boundary strings are labeled by a larger
group Ĝb, which is a central Z2 extension of Gb:

f1; mg≡ Zm
2 → Ĝb→

πm
Gb:

The unitary fusion 2-category A3
b on such a boundary is

thus an EF 2-category as defined in Sec. II C.
We note that the elements in Ĝb can be labeled by ðgb; xÞ,

gb ∈ Gb and x ∈ Z2 ¼ f1;−1g. The multiplication in Ĝb is
given by

ðgb; xÞðhb; yÞ ¼ ðgbhb;m2ðgb; hbÞxyÞ; ð45Þ

where m2ðgb; hbÞ is a group 2-cocycle in H2ðGb; Z2Þ.
Without losing generality, we choose (1,1) to label the
trivial string and ð1;−1Þ to label them string, which is equi-
valent to choosing a normalized 2-cocycle, m2ð1; gbÞ ¼
m2ðgb; 1Þ ¼ 1; ∀ gb ∈ Gb. With the enlarged boundary

CLASSIFICATION OF 3þ 1D BOSONIC TOPOLOGICAL … PHYS. REV. X 9, 021005 (2019)

021005-21



string local types and noninvertible 1-morphisms, EF
topological orders are classified by EF 2-categories A3

b.

C. Zf
2 topological order cannot be an

EF2 topological order

After rigorously introducing the local type of strings and
pSC chains, we now fix a weak point in the arguments in
Sec. III E. In Sec. III E, we described a 3þ 1D EF1
topological order C4

Zf
2

, whose pointlike excitations are

described by sRepðZf
2Þ [38]. Such a topological order

has nontrivial particle type f, which is a fermion, and two
nontrivial string types s1 and s2. The fusion rule between
the loops s1 and s2 and the fermion f is given by

f ⊗ f ¼ 1; f ⊗ s1 ¼ s2; f ⊗ s2 ¼ s1;

s1 ⊗ s1 ¼ s2 ⊗ s2 ¼ 1; s1 ⊗ s2 ¼ f: ð46Þ

In s1 ⊗ s1 ¼ 1, 1means the trivial type of string defined by
a nonlocal unitary transformation. However, here we want
this 1 to be also the trivial local type of string defined by a
local unitary transformation. In the following, we show this
by contradiction.
Let us assume that s1 ⊗ s1 ¼ 1 is a nontrivial local type

of string that corresponds to a loop of the pSC chain with an
even number of fermions. We denote such a loop by me.
Thus, we have s1 ⊗ s1 ¼ me. This result implies that there
are four pure string loops labeled by 1, s1,me, and s̄1. Their
fusion is described by the Z4 group:

s1 ⊗ s1 ¼me; s1 ⊗ s1 ⊗ s1 ¼ s̄1; s1 ⊗ s̄1 ¼ 1: ð47Þ

Thus, the pure strings are described by Ĝf ¼
Zm
2 ⋋mf

2
Zf
2 ¼ Z4. Since mf

2 is nontrivial, the correspond-

ing topological order is an EF2 topological order, denoted
by Ĉ4

Zf
2

hereafter.

Fusing with the fermion f gives us another set of string
loops f, s2, mo, and s̄2:

f ⊗ s1 ¼ s2; f ⊗ me ¼ mo; f ⊗ s̄1 ¼ s̄2: ð48Þ

Now let us consider the dimension reduction of the 3þ
1D topological order Ĉ4

Zf
2

to a 2þ 1D topological order. In

the untwisted sector, we obtain a 2þ 1D topological order
C3untw which is the Z2 gauge theory (or the Drinfeld center
Z½sRepðZf

2Þ�) described by particles 1; e; m;ψ ¼ em. In
the dimension reduction, the excitations in Ĉ4

Zf
2

reduce to the

particles in Z½sRepðZf
2Þ� (see Fig. 3):

1 → 1; s1 → e; me → 1; s̄1 → e;

f → ψ ; s2 → m; mo → ψ ; s̄2 → m: ð49Þ

One can check that the fusion of 1; s1; me; s̄1; f; s2; mo; s̄2
reproduces the fusion of 1; e; m;ψ , which is described by
group Z2 × Z2.
In the twisted sector characterized by the base string s1,

assume the dimension reduction of s1 is a: s1 → a (see
Fig. 7), where a is a particle in the dimension-reduced
2þ 1D topological order C3s1. A pSC chain loop me, when

wrapping around a s1 string (the Zf
2 flux), carries an odd

number of fermions. Thus, the dimension reduction of me
gives us a fermion ψ : me → ψ . Therefore, we have

a⊗ a ¼ ψ ; a ⊗ ā ¼ 1; ψ ⊗ ψ ¼ 1; a⊗ a⊗ a ¼ ā:

ð50Þ

We see that the fusion of 1; a;ψ ; ā is described by a Z4

group. The fermion f in Ĉ4
Zf
2

reduces to the fermion ψ in C3s1 .

This reduction allows us to obtain the dimension reduction

1 → 1; s1 → a; me → ψ ; s̄1 → ā;

f → ψ ; s2 → ā; mo → 1; s̄2 → a: ð51Þ

We see that the dimension-reduced 2þ 1D topological
order C3s1 has four particle types with Z4 fusion. There are
only four possibilities for such Abelian 2þ 1D topological
order, described K matrices [81,82] K ¼ �4 and

K ¼ �
 
2 1 1

1 2 1

1 1 2

!
:

They have chiral central charges c ¼ �1;�3mod 8 and are
not Drinfeld centers, which contradicts with the result
obtained in Sec. III D that the dimension-reduced topo-
logical order is always a Drinfeld center. Therefore, the
assumed 3þ 1D EF2 topological order Ĉ4

Zf
2

does not exist.

This result supports our conclusion that condensing all the
bosonic pointlike excitations produces a unique Zf

2 topo-
logical order obtained in Sec. III.

D. Partial characterization of EF 2-categories

Next, we discuss in more detail how the extra string m
and noninvertible 1-morphism σm affect the characteriza-
tion of the fusion 2-categories.
Now, strings are labeled by a larger group Ĝb on the

canonical boundary. But note the fact that the data and
conditions not involving σm are not affected at all. That is to
say, the enlarged EF 2-category always contain a pointed
sub-2-category with data ðĜb; ê2; n̂3; ν̂4Þ which describes
an EF1 topological order as in Sec. VII.
In other words, there is a map from EF 2-categories A3

b
that classify EF topological orders to the pointed unitary
fusion 2-categories Ã3

b that classify EF1 topological orders.
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Such a map sends an EF 2-categoryA3
b with simple objects

Ĝb to a pointed unitary fusion 2-category Ã3
b also with

simple objects Ĝb, by taking the pointed sub-2-category
(ignoring the noninvertible 1-morphisms). Therefore, there
is a map from EF topological orders to EF1 topological
orders, which sends an EF topological order with point-
like excitations described by sRepðZf

2 ⋋ GbÞ to an EF1
topological order with pointlike excitations described
by sRepðZf

2 ⋋ ĜbÞ.
Such a map is clearly not invertible. One cannot expect

that, for every pointed unitary fusion 2-category, non-
invertible 1-morphisms σm can be added consistently to
obtain an EF 2-category. There must be some additional
constraints for this to be done.
First, the σm 1-morphism must itself satisfy some addi-

tional braiding and fusion constraints, which means that
ˆ̃bð•; •; •; •Þ and ˆ̃n3ð•; •; •Þ involving σm take different forms.
We expect that the results are closely related to the braiding
statistics of Ising anyons.
Second, the strings of local types g and gm can be

“connected” by noninvertible 1-morphisms; moreover,
when m2 is nontrivial, g and gm are, in principle, not
distinguishable, which implies, for example, that n̂3ðg; h; jÞ
and n̂3ðgm; h; jÞ, or ν̂4ðg; h; j; kÞ and ν̂4ðg; hm; jm; kÞ, etc.,
are related bym and σm. Thus, we conjecture that n̂3; ν̂4 can
be factorized. If we split the Ĝb variables gi into Gb parts
and Zm

2 parts as in Eq. (45), gi ¼ ðgbi ; xiÞ, and view x as a
1-cochain with values xi, we can formally express the
multiplication as

dx ¼ m2ðgiÞ: ð52Þ

We conjecture that n̂3 has the form

n̂3ðgbi ; xiÞ ¼ n3ðgbi Þ þm2⌣xþ e2⌣x; ð53Þ

where n3 is a cochain in C3ðGb;Z2Þ. Then, the fact that n̂3
is a cocycle in Ĝb, dn̂3 ¼ 0, implies

dn3 ¼ m2⌣m2 þ e2⌣m2 ¼ Sq2m2 þ e2⌣m2; ð54Þ

which agrees with the formulas in Refs. [79,80] when
e2 ¼ 0.
Similarly, we expect that ν̂4ðgbi ; xiÞ ¼ ν4ðgbi Þνmðgbi ; xiÞ,

where ν4 is a 4-cochain in Gb and νm is a factor depending
both on gbi and on how them string is attached (namely, xi).
Then, from

dν̂4 ¼ ð−Þn̂3⌣1 n̂3þê2⌣n̂3 ; ð55Þ

one can derive the condition that ν4 satisfies. However,
there seems no simple formula for ν4 (see those in
Refs. [79,80,83,84]), and we have no good conjecture
on the form of νm and the resulting condition for ν4.

Nevertheless, the first few terms obtained by expanding
n̂3 in Eq. (55) already agree with those in Ref. [79]. We
believe that by thoroughly studying the structures of
EF 2-categories a complete formula can eventually be
obtained. On the other hand, the formulas derived using
other independent approaches [79,80,83,84] may help
understanding EF 2-categories.
We leave the details of the additional constraints involv-

ing the noninvertible 1-morphism σm for future work (see
e.g., Ref. [57]). We believe that they also have the same
form as those for fermionic SPTs with the decoration of
Kitaev’s Majorana chain [79,80].

E. Majorana zero modes at
triple-string junctions

In the following, we describe a bulk property that allows
us to distinguish between EF1 and EF2 topological orders.
In particular, we design a setup which allows us to use the
appearance of the Majorana zero mode to directly measure
the cohomology class of m2. For simplicity, let us assume
Gf to be Abelian for the time being. In this case, the
different types of bulk strings are labeled by gf ∈ Gf. In our
setup, we first choose a fixed set of trapping potentials that
trap a fixed set of strings labeled by gf ∈ Gf. Note that the
different strings in the set can all be distinguished by their
different braiding properties with the pointlike excitations.
Then, choosing three strings from such a fixed set, we can
form the configuration in Fig. 19(a). For Abelian Gf, one
may expect that the degeneracy for the configuration in
Fig. 19(a) to be 1. In the following, we show that sometimes
the configuration in Fig. 19(a) has a twofold topological
degeneracy. By measuring which triples gf1 ; g

f
2 ; g

f
3 in the

fixed set of strings give rise to twofold topological
degeneracy, we can determine the cohomology class of
m2 directly.
One may point out that the appearance of a twofold

topological degeneracy is not surprising at all, since the EF
topological order may contain emergent fermions in the
bulk with unit quantum dimension, whose condensation on
a string only breaks the Zf

2 symmetry [85]. Such a fermion
condensed chain is nothing but the pSC chain [63].
Some strings in the fixed set may accidentally carry such

a pSC chain. If one or three strings in the configuration in
Fig. 19(a) carry a pSC chain, then the configuration will

g f
1

g f
2

g f
3 3

g

1
g

2
g

(a) (b)

FIG. 19. (a) A string configuration in the bulk, described by the
conjugacy class of a triple ðgf1 ; gf2 ; gf3Þ in Gf . (b) Moving to the
boundary, the string configuration turns into one labeled by three
group elements ðg1; g2; g3Þ in Ĝb.
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have a twofold topological degeneracy, coming from the
two Majorana zero modes at the two junction points. So it
seems that the appearance of a twofold topological degen-
eracy in the configurations in Fig. 19(a) is not a universal
property. We can remove the two-fold topological degen-
eracy by choosing our fixed set of strings properly such that
none of the strings in the fixed set carry a pSC chain. This
choice indeed can be achieved when m2 is a coboundary.
However, when m2 is a nontrivial cocycle, there is an
obstruction in determining if a string carries a pSC chain or
not. As a result, no matter how we choose the fixed set of
strings, there are always some triples gf1 ; g

f
2 ; g

f
3 in the fixed

set of strings, such that their configurations in Fig. 19(a)
have twofold topological degeneracies.
How do we determine m2 from the topological degen-

eracy of the configurations in Fig. 19(a)? We first measure
the topological degeneracy in Fig. 19(a), where the three
strings are chosen from the fixed set. If there is a twofold
topological degeneracy, we assign

mf
2ðgf1 ; gf2Þ ¼ −1: ð56Þ

If there is no degeneracy, we assign

mf
2ðgf1 ; gf2Þ ¼ 1: ð57Þ

From the function mf
2ðgf1 ; gf2Þ, we can determine the

cohomology class of m2 ∈ H2ðGb; Z2Þ.
To see this, we first move the string configuration to the

boundary. In this case, the bulk string labeled by Gf

becomes boundary local types labeled by Ĝb. In other
words, the bulk string types gf1 , g

f
2 , and gf3 in Gf change to

the boundary string types g1, g2, and g3 in Ĝb [see
Fig. 19(b)], which satisfy

πfðgfi Þ ¼ πmðgiÞ ∈ Gb; ð58Þ

where πf and πm are the projections Gf→
πf
Gb and Ĝb→

πm
Gb,

respectively.
Recall that the elements in Ĝb can be represented by

ðgb; xÞ, gb ∈ Gb and x ∈ Z2. Thus, gi has a form ðgbi ; xiÞ
where gbi ¼ πfðgfi Þ. For the strings in our fixed set, xi is
also determined by gfi . Moreover, we can choose the fixed
set properly such that the dependence of xi on gbi ¼ πfðgfi Þ
can be separated out. To see that, we first fix a choice of
trapping potential for the Zf

2 string z. Then, it is always
possible to make the choice of gf, gfz compatible with
fusion with z, by first choosing the trapping potential for
one of gf, gfz and then choosing the trapping potential for
the other as the fusion of the previous one with that of z,
which we fix at the beginning. What is important for such
choices is that the difference between gf and gfz is fixed by

the beginning choice of z. We define xz ¼ −1 if our
beginning choice of z carries a pSC chain and xz ¼ 1
otherwise. Then, for the above choices of the fixed set, we
have

xiðgfi zÞ ¼ xiðgfi Þxz: ð59Þ

Although the bulk string types satisfy gf1g
f
2 ¼ gf3, which

leads to gb1g
b
2 ¼ gb3 , the boundary string types gi, as a

particular lifting from Gb to Ĝb, may not satisfy g1g2 ¼ g3.
In fact, we have

½gb1; xðgf1Þ�½gb2; xðgf2Þ� ¼ ½gb1gb2; m2ðgb1; gb2Þxðgf1Þxðgf2Þ�
¼ ½gb1gb2; m̃2xðgf1gf2Þ�
¼ ð1; m̃2Þ½gb3; xðgf3Þ�; ð60Þ

where

m̃2 ¼ m2ðgb1; gb2Þ
xðgf1Þxðgf2Þ
xðgf1gf2Þ

: ð61Þ

Using Eq. (59), it is not hard to see that ½xðgf1Þxðgf2Þ�=
½xðgf1gf2Þ� depends only on gbi ¼ πfðgfi Þ (since xz’s always
appear in pairs) and is a coboundary onGb. Thus, the above
is, in fact, a 2-cocycle m̃2ðgb1; gb2Þ on Gb that is cohomo-
logically equivalent tom2. When m̃2½πfðgf1Þ; πfðgf2Þ� ¼ −1,
we have g1g2 ¼ mg3 and the junction point carries a
Majorana zero mode. In other words, the boundary con-
figuration in Fig. 19(b) has a twofold topological degen-
eracy if m̃2½πfðgf1Þ; πfðgf2Þ� ¼ −1.
Since the boundary configuration in Fig. 19(b) can be a

short distance away from the boundary, moving to the
boundary represents a weak perturbation. In this case, the
boundary configuration in Fig. 19(b) having a twofold
degeneracy implies that the corresponding bulk configu-
ration in Fig. 19(a) also has a twofold degeneracy. In other
words,

m̃2½πfðgf1Þ; πfðgf2Þ� ¼ mf
2ðgf1 ; gf2Þ: ð62Þ

We see that the cocycle m̃2 can be determined by measuring
the topological degeneracy for bulk string configurations in
Fig. 19(a). We note that m̃2 and m2 differ by a coboundary
[Eq. (61)]. Thus, up to a coboundary,m2 can be determined
by measuring the topological degeneracy for bulk string
configurations in Fig. 19(a).
We point out that, even when Gf is non-Abelian, a

nontrivial Zm
2 extension, or m2, still gives rise to the

Majorana zero modes for some triple-string junctions.
But in this case, there are extra topological degeneracies
on junctions of three strings coming from the non-
Abelianness of Gf. The appearance of topological
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degeneracy does not directly imply the appearance of
Majorana zero modes. It is slightly more complicated to
separate which topological degeneracy comes from non-
Abelian Gf and which comes from Majorana zero modes,
which we describe in the following.
Again, the key step is to choose a fixed set of trapping

potentials that trap strings labeled by χgf ⊂ Gf. Here, χgf
is the conjugacy class that contains gf ∈ Gf. We stress
that the different strings in the set can all be distinguished
by their different braiding properties with the pointlike
excitations. We call two strings equivalent if they have
the same braiding properties with all the pointlike
excitations. Thus, the strings in our fixed set are all
inequivalent. We also assume our fixed set is complete, in
the sense that it contains all inequivalent strings. In other
words, the number of strings in the set is equal to the
number of conjugacy classes in Gf.
We note that the condensation of the pointlike exci-

tation can also form a stringlike excitation. For example,
the condensation of Z2 charges along a chain in a Z2

gauge theory can form a stringlike excitation that have
trivial braiding with all the pointlike excitations. We call
such a kind of stringlike excitations descendant stringlike
excitations, which are all equivalent to the trivial string.
The above Z2 charge condensed chain has a twofold
degeneracy, since it is like a Z2 symmetry-breaking state.
As a result, the corresponding descendant stringlike
excitation has quantum dimension 2. Our fixed set of
strings does not contain strings that differ only by
attaching a descendant stringlike excitation, since they
are equivalent under braiding with pointlike excitations.
But each string in the fixed set may carry some

additional descendant stringlike excitations. We reduce
this ambiguity by requiring the strings in the fixed set do
not carry descendant strings. This requirement is achieved
by replacing each string in the set by its equivalent string
with a minimal quantum dimension. However, this
replacement still does not remove all the ambiguity
due to a possible pSC chain attachment. Clearly, the
pSC chain is a descendant string. But amazingly, despite
the Zf

2 symmetry breaking on an open pSC chain which
leads to a twofold degeneracy, a closed pSC chain has no
ground-state degeneracy. Thus, the pSC chain has quan-
tum dimension 1. Attaching a pSC chain to a string will
not change the quantum dimension of the string. So the
strings in our fixed set, even after minimizing the
quantum dimensions, may still carry pSC chains.
To test if the strings in our fixed set carry pSC chains or

not, we choose three strings from our fixed set to form the
configuration in Fig. 1. The topological degeneracy of the
configuration is calculated in the following way. We first
consider a set of pairs that have the form ðg̃1; g̃2Þ, where
g̃1 ∈ χgf

1
and g̃2 ∈ χgf

2
. The two pairs ðg̃1; g̃2Þ and ðg̃01; g̃02Þ

are equivalent if they are related by

g̃ 0
1 ¼ hg̃1h−1; g̃ 0

2 ¼ hg̃2h−1; h ∈ Gf: ð63Þ

The number of equivalence classes of the pairs,
Nðχgf

1
; χgf

2
Þ, is the topological degeneracy of the configu-

ration in Fig. 1, provided that the three strings do not carry
pSC chains. If one or three strings carry pSC chains, the
topological degeneracy of the configuration in Fig. 1 will
be given by 2Nðχgf

1

; χgf
2

Þ. In this case, we say that the triple-
string junction in Fig. 1 carries a Majorana zero mode.
Similar to the Abelian Gf case, we assign m

f
2ðgf1 ;gf2Þ¼1

if the topological degeneracy of the configuration in
Fig. 1 isNðχgf

1
; χgf

2
Þ andmf

2ðgf1 ; gf2Þ ¼ −1 if the topological

degeneracy is 2Nðχgf
1
; χgf

2
Þ. Clearly, mf

2 satisfies

mf
2ðgf1 ; gf2Þ ¼ mf

2ðh1gf1h−11 ; h2g
f
2h

−1
2 Þ; h1; h2 ∈ Gf:

ð64Þ

mf
2 in the above is a cocycle in Z2ðGf; Z2Þ. Again, we can

make mf
2ðgf1 ; gf2Þ a function on Gb, by choosing the fixed

set of strings properly, because, even for non-Abelian Gf,
the Zf

2 flux string z is still invertible as Zf
2 centralize Gf.

Thus, we can still fix the choice of z first and make the rest
choices of the fixed set of strings compatible with the
fusion with z. Now, if gf1 or g

f
2 is attached to an additional z

string, the total configuration in Fig. 1 always changes by
fusion with a closed z loop. As our choice of z is fixed at the
beginning, a closed z loop does not carry any open pSC
chain and, thus, introduces no additional degeneracy.
Therefore, similar to the case of Abelian Gf, for non-
Abelian Gf, mf

2 also has the form

mf
2ðgf1 ; gf2Þ ¼ m̃2½πfðgf1Þ; πfðgf2Þ�; ð65Þ

where m̃2 ∈ Z2ðGb; Z2Þ. Again, such m̃2 is equivalent to
m2 on the boundary. To understand such a result, consider
moving the string configuration in Fig. 1 towards the
canonical boundary. The string type changes from the bulk
type χgf to the boundary local type g ∈ Ĝb: χgf → g that
satisfy

gb ∈ πfðχgfÞ; gb ¼ πmðgÞ: ð66Þ

(a) (b)

FIG. 20. The splitting of the topological degeneracy as we
move string configuration Fig. 1 to wards the canonical boundary.
(a) the case for topological degeneracy Nðχgf

1
; χgf

2
Þ. (b) the case

for topological degeneracy 2Nðχgf
1
; χgf

2
Þ.
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The Nðχgf
1
; χgf

2
Þ-fold or 2Nðχgf

1
; χgf

2
Þ-fold topological

degeneracy splits (see Fig. 20). However, only the degen-
eracy coming from conjugacy classes splits; the twofold
topological degeneracy from Majorana zero modes is not
affected by moving to the boundary. Each state [Fig. 20(a)]
or twofold degeneracy [Fig. 20(b)] corresponds to the
boundary configuration in Fig. 19(b). Hence, we obtain
m̃2ðgb1; gb2Þ, which determines the Zm

2 extension Ĝb ofGb on
the canonical boundary. If m̃2 is a coboundary, we can
choose a fixed set of strings such that all the triple-string
junctions do not carry Majorana zero modes. The corre-
sponding bulk topological order is an EF1 topological
order. If m̃2 is a nontrivial cocycle, then for any choice of a
fixed set of strings, there are always triple-string junctions
that carry Majorana zero modes. The corresponding bulk
topological order is an EF2 topological order.

F. Two necessary conditions for EF2
topological order

From the bulk consideration in the last section, we see
that the m2 characterizing the EF2 topological orders are
highly restricted. We focus on the particular m̃2 that directly
comes from measuring the Majorana zero modes in the
bulk; it can differ from m2 by a coboundary. First, the

pullback of m̃2 by Gf→
πf
Gb gives us mf

2 ¼ ðπfÞ�m̃2 ∈
H2ðGf; Z2Þ [see Eq. (65)]. Such a pullback must satisfy
Eq. (64), which gives a condition on m̃2:

m̃2ðgb1; gb2Þ ¼ m̃2ðh1gb1h−11 ; h2gb2h
−1
2 Þ; h1; h2 ∈ Gb:

ð67Þ

In other words, EF2 topological order can exist only when
Gb has nontrivial 2-cocycles with the above symmetry
condition. This is the first necessary condition for EF2
topological orders. We note that, when Gb is Abelian, the
above condition becomes trivial and imposes no constraint.
We also point out that a pSC chain can be attached to a

bulk string characterized by the conjugacy class χg of Gf

only when the centralizer group ZgðGfÞ is a trivial Zf
2

extension. Here, ZgðGfÞ is the subgroup that commutes
with an element g in the conjugacy class χg:

ZgðGfÞ ¼ fx ∈ Gfjgx ¼ xgg: ð68Þ

Physically, the bulk string χg breaks the “symmetry” of the
particles from Gf down to ZgðGfÞ. If ZgðGfÞ is not a trivial
Zf
2 extension, then a fermion condensation that breaks the

Zf
2 symmetry must also break some additional symmetries.

In this case, we cannot attach a pSC chain to the bulk string
χg, since the pSC chain corresponds to a fermion con-

densation that breaks only the Zf
2 symmetry [85].

Let us introduce an M function on Gf:

MðgÞ ¼
�
0; ZgðGfÞ is a trivial Zf

2 extension;

1; otherwise:
ð69Þ

Since

ZgðGfÞ ¼ ZzgðGfÞ; ð70Þ

where z is the generator of Zf
2 , we have

MðgÞ ¼ MðzgÞ: ð71Þ

Therefore, we may also view M as a function on Gb.
Since the bulk string χg, g ∈ Gf, has no ambiguity of a

pSC chain when MðgÞ ¼ 1, we see that mf
2 satisfies

mf
2ðgf1 ; gf2Þ ¼ 1; if Mðgf1Þ ¼ Mðgf2Þ ¼ Mðgf1gf2Þ ¼ 1:

ð72Þ

This result becomes a condition on the cocycle m̃2 on Gb:

m̃2ðgb1; gb2Þ ¼ 1; if Mðgb1Þ ¼ Mðgb2Þ ¼ Mðgb1gb2Þ ¼ 1:

ð73Þ

This is the second necessary condition for EF2 topo-
logical orders. We note that the two conditions (67)
and (73) are not invariant under adding coboundaries.
Physically, on the canonical boundary, unlike in the bulk,
since the Gf symmetry is broken down to Zf

2 , it is always
possible to attach pSC chains to strings, which can change
m2 by arbitrary coboundaries. Thus, generic m2 may not
satisfy Eqs. (67) and (73); we require Eqs. (67) and (73)
only for a particular m̃2 that is cohomologically equivalent
to generic m2.
As an example, forGf ¼ Zf

4 ×G0
b, we findMðgÞ ¼ 1 for

all g ∈ Zf
4 ×G0

b. Thus, there is no EF2 topological order
with Gf ¼ Zf

4 ×G0
b.

IX. A GENERAL FRAMEWORK
FOR 3+ 1D TOPOLOGICAL ORDERS

WITH SYMMETRIES

We see that in 3þ 1D the intrinsic topological orders are
closely related to SPT phases. In the above section, we
show that the data and conditions classifying EF topologi-
cal orders have the same form as those classifying fer-
mionic SPT phases. Without the pSC chain, both EF1
topological orders and fermionic SPT phases are classified
by the group supercohomology theory; with the pSC chain,
also very strong evidence indicates that the classifying data
and conditions have the same form. Combined with our
previous results on 3þ 1D AB topological orders, we
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conclude that all 3þ 1D topological orders correspond to
gauged 3þ 1D SPT phases: AB topological orders corre-
spond to gauged bosonic SPTs, and EF topological orders
correspond to gauged fermionic SPTs.
Our classification and construction of EF topological

orders also leads to a classification and construction of
3þ 1D fermionic SPT orders: A 3þ 1D fermionic SPT
order has a unique canonical boundary that breaks the
fermion symmetry Gf down to Zf

2 . Such a symmetry-
breaking boundary contains strings (i.e., domain walls
between different symmetry-breaking group states). It also
contains a fermionic pointlike excitation. Because of such a
boundary fermion, the strings (the domain walls) on the
boundary are labeled by elements g ∈ Ĝb ¼ Zm

2 ⋋ Gb. The
elements in Gb describe the symmetry transformation that
change one symmetry-breaking ground state to the other
symmetry-breaking ground state across the domain wall.
The elements in Zm

2 ¼ f1; mg describe if the boundary
string carries the pSC chain formed by the boundary
fermions. In fact, we know only if two strings differ by
a pSC chain or not. We may not be able to determine which
string carries the pSC chain and which string does not. This
limitation leads to string labels Ĝb ¼ Zm

2 ⋋ Gb rather than
Zm
2 ×Gb. At a triple-string junction, we may have an end of

a pSC chain. Such a triple-string junction will carry an
Majorana zero mode. The above picture leads to a classi-
fication and a construction of 3þ 1D fermionic SPT order
using the data of EF 2-category A3

b.
The SPT and the topological order are the end points of

ungauging and gauging procedures, respectively. They are
also the two extreme cases with only symmetry no intrinsic
topological order and only intrinsic topological order no
symmetry. Because of these, it is natural to conjecture that
if we partially gauge a SPT or ungauge a topological order,
in between we should get a state with both symmetry and
topological order, in other words, a SET. Therefore, we
expect the following general classification framework for
3þ 1D topological phases with symmetries:

Different partially gauging procedures, equivalently differ-
ent subgroup sequences H1 ⊂ H2 ⊂ � � � ⊂ G, give rise to
different sequences of intermediate SETs. The starting
point, SPT, and end point, topological order, are fixed.
They share the same classification data, according to our
results. We believe that in the same gauging sequence the
phases also share the same classification data as the starting

SPT and the ending topological order. However, physical
interpretations and equivalence relations of the same
classification data are different at different steps.
In particular, fermionic SETs and topological orders

(note that EF topological order is a bosonic topological
order with emergent fermionic particles) should be special
cases starting from fermionic SPTs but keep the fermion
number parity, namely, Zf

2 , not gauged until the last step:

Recall that in 2þ 1Dwe classify topological phases with
symmetry by a triple of categories E ⊂ C ⊂ M [86,87],
where E is the symmetric category of local excitations and
corresponds to the representations of the symmetry group,
E ¼ RepðGÞ or E ¼ sRepðGfÞ, C is the category of all
bulk excitation, and M is the gauged theory. In particular,
for 2þ 1D SPT phases, we have E ¼ C ⊂ M. Now this
idea naturally generalizes to 3þ 1D, since any 3þ 1D
topological order contains a symmetric subcategory E
corresponding to its pointlike excitations and can be viewed
as a gauged SPT M with original global symmetry E. A
generic 3þ 1D SET with global symmetry E is then des-
cribed by a certain 2-category C satisfying E ⊂ C ⊂ M. In
the gauging procedures, the modular extensionM remains
the same (which is why we say that phases in the same
gauging sequence share the same classification data), while
E and C become smaller and larger, respectively, which can
be understood as part of global symmetry E “gauged” into
gauge symmetry C. For example, E ¼ C ¼ RepðGÞ or
sRepðGfÞ for the SPT phase, while E is trivial and
C ¼ M for the topological order.
As we already have a good understanding about the

3þ 1D SPT phases, it is thus quite hopeful for a com-
plete understanding of 3þ 1D topological orders and
symmetries by thoroughly studying the (partially) gauging
procedures.
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APPENDIX A: TANNAKA DUALITY

Our approach in this paper relies heavily on the Tannaka
duality [88], or Tannaka reconstruction theorem for group
representations. In this Appendix, we give a physical
introduction of the Tannaka duality. In the meantime, we
also introduce and explain some important concepts used in
this paper in detail.

1. Two physical models

A physical motivation of the Tannaka duality is the
following: Let us consider a bosonic or a fermionic system
with a symmetry G. We assume the ground state to be a
product state that does not break the symmetry. If we only
measure the system via probes that do not break the
symmetry, can we detect the symmetry group of the
system? We note that a symmetry transformation acting
on the system is not observable, unless the system actually
changes in certain ways to reflect that some action
happened. Thus, we need to break the symmetry in order
to measure the symmetry transformation directly. In con-
trast, the symmetric probes produce only objects that do not
break the symmetry, such as particles trapped by the
symmetric potential that are described by representations
ρ of the symmetry group: ρ ∈ RepðGÞ. On the other hand,
the symmetric probes do allow us to fuse and braid those
symmetric particles in arbitrary ways.
To describe those fusion and braiding processes, the

concept of fusion space is important: If the particles are
obtained by symmetric trap potentials, then the fusion
space V is simply the ground-state subspace of the total
Hamiltonian with traps: Htot ¼ H0 þ

P
i ΔHtrapðxiÞ which

trap particles pi at xi. We denote the fusion space by
VðM;p1; p2;…Þ, where M is the space manifold that
supports our system. So the fusion and the braiding
processes, as well as the symmetric deformation of the
Hamiltonians H0 and ΔHtrap, correspond to unitary linear
maps on the fusion space. The Tannaka duality tells us how
to use those symmetric operations, i.e., the linear maps on
the fusion space VðM;p1; p2;…Þ, to obtain the symmetry
group G.
Mathematically, the fusion and braiding, as well as the

symmetric deformation of the HamiltoniansH0 andΔHtrap,
on all the possible trapped particles form a structure which
is denoted by RepðGÞ if all the particles are bosons or
by sRepðGÞ if some particles are fermions. Such a structure
is called a symmetric fusion category. The particles are

labeled by the representations of G, which form a set
RepðGÞ. So a symmetric fusion category RepðGÞ or
sRepðGÞ contains the set RepðGÞ whose elements are
called objects (which correspond to trapped particles).
RepðGÞ or sRepðGÞ also contains addition data that
describe fusion and braiding of particles in RepðGÞ. In
particular, the fusion of the particles is nontrivial, since the
particles are described by the representations of G, and the
fusion of the representations is nontrivial.
If we know just the set of representations RepðGÞ, we

cannot recover the group G. But if we also know all
symmetric operations, such as fusion and braiding, as well
as the symmetric deformation of the Hamiltonians H0 and
ΔHtrap, in other words, if we know RepðGÞ or sRepðGÞ,
then according to the Tannaka duality, we can recover the
group G.
Another physical motivation of the Tannaka duality is

more relevant to this paper. We consider a 3þ 1D topo-
logical order C4. The pointlike excitations in the topological
order are bosons or fermions with trivial mutual statistics.
Those particles have a nontrivial fusion rule. The fusion
and braiding of those particles are also described by a
symmetric fusion category E. The Tannaka duality tells us
that, from E, we can recover a group G. Thus, each 3þ 1D
topological order contains a hidden group G. In this second
example, we do not even have a symmetry. All the
operations, such as fusion, braiding, and deformation of
H0 and ΔHtrap, are allowed, as long as they are generated
by local interaction. But how can one recover a group from
a problem that has no symmetry?
In the first example, we do have symmetry, but we want

to recover the symmetry group via the symmetric oper-
ations. In the second example, we want to recover the
hidden group in 3þ 1D topological order which has no
symmetry. These two problems happen to be the same
problem, which is solved by the Tannaka duality.

2. Tannaka duality I: All boson

a. Statement of Tannaka duality

For the moment, we restrict to an all-boson symmetric
fusion category E. Mathematically, the Tannaka duality
states that we can reconstruct a group G from symmetric
fusion category E by the automorphisms of a fiber functor,
namely, a braided monoidal functor F, from E to the
category of vector spaces, Vec:

G≡ AutðF∶E → VecÞ; ðA1Þ

and the Tannaka duality tells us that

E ≅ RepðGÞ: ðA2Þ

This process is how we find the hidden group in a
symmetric fusion category E.
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To understand the Tannaka duality, let us choose the
symmetric fusion category to be the category formed by
the representations of a finite group RepðGÞ. We want to
find out, what are the automorphisms of a fiber func-
tor Aut½F∶RepðGÞ → Vec�?
Let us first describe the representation categoryRepðGÞ.
(1) An object in RepðGÞ is a group representation p,

which corresponds to a pair p≡ ½VðpÞ; ρp�, where
VðpÞ is a vector space equipped with a group action
ρp∶G → GL½VðpÞ�. The set of objects in RepðGÞ
consists of all such pairs.

(2) The morphisms in the symmetric fusion category
RepðGÞ, p0 → p, correspond to the linear map
u∶Vðp0Þ → VðpÞ which commutes with the group
action, ρpðgÞu ¼ uρp0 ðgÞ. The morphisms allow us
to define the notion of simple objects which corre-
spond to irreducible representations.

(3) Representations can be “fused” p1 ⊗ p2, which
corresponds to taking the tensor product of the
vector spaces Vðp1Þ ⊗C Vðp2Þ and the new group
action is ρp1⊗p2

ðgÞ ¼ ρp1
ðgÞ ⊗C ρp2

ðgÞ:

p1 ⊗ p2 ¼ ½Vðp1Þ ⊗C Vðp2Þ; ρp1
ðgÞ ⊗C ρp2

ðgÞ�:
ðA3Þ

In this case, we have the forgetful functor that maps a
representation category RepðGÞ to the category of vector
spaces Vec, F∶p≡ ½VðpÞ; ρp� ↦ VðpÞ (forgetting the
group action part), which is called a fiber functor. An
automorphism of such a fiber functor F is a set of unitary
maps, α ¼ fαp∶VðpÞ → VðpÞg, one map for each p. Such
a set of maps must be compatible with the fusion rule
described above, as well as the morphisms p0 → p∶
Vðp0Þ→u VðpÞ, i.e., satisfying αpu ¼ uαp0 . The set of all
those automorphisms forms a group

α · α0 ¼ fαpg · fα0pg ¼ fαpα0pg: ðA4Þ

Such a group is the automorphism group, which happens to
be G:

G ≅ Aut½F∶RepðGÞ → Vec�: ðA5Þ

This is because, to be compatible with the morphisms and
the fusion rule, αp has to be ρpðhÞ for a certain h ∈ G. In
fact, this is how we recover the symmetry group G in the
first model.
In the following, we describe Tannaka’s construction and

the above statements, in terms of the two physical models
described above, where the particles are described by a
symmetric fusion category E. This way, one may gain a
more physical understanding of the Tannaka duality.

b. Irreducible representations
from symmetry operations

Before trying to obtain the group, let us try to obtain the
irreducible representations of the group first. In general, a
particle p ∈ E (trapped by a symmetric potential in the first
model) corresponds to a representation. But which particles
correspond to irreducible representations? To address this
question, we start with the fusion space of p with other
particles VðM;p; q;…Þ. Note that VðM;p; q;…Þ is the
ground-state subspace ofH0 þ ΔHtrapðxpÞ þ ΔHtrapðxqÞ þ
� � � that traps the particle p at xp, particle q at xq, etc. By
deforming (or deforming while preserving the symmetry
for the first model) just ΔHtrapðxpÞ to ΔH0

trapðxpÞ, we may
split the ground-state degeneracy

VðM;p; q;…Þ ¼ V1 ⊕ V2 ⊕ � � � : ðA6Þ

The new ground-state subspace V1 can be viewed as the
fusion space of another particle p0 at xp with other particles
q;…, V1 ¼ VðM;p0; q;…Þ. Thus, the above splitting of
VðM;p; q;…Þ can be rewritten as

VðM;p; q;…Þ ¼ VðM;p0; q;…Þ ⊕ V2 ⊕ � � � : ðA7Þ

Then, we say that there is a morphism from p0 to p: p0 → p
[89]. Here, a morphism p0 → p can be understood as that
the fusion space of p0, after a proper unitary transformation,
is contained in the fusion space of p. If we have morphisms
in both directions p0 → p and p → p0, then the fusion
space of p is the same as the fusion space of p0, up to an
unitary transformation. If p0 → p implies p → p0, for all
p0’s, then the fusion space of p is minimal. For the case of
the first model, it means that p corresponds to an
irreducible representation of the symmetry group. For
the second model, we can formally regard p as an
irreducible representation of some group G. In the category
theory, we call such a minimal p a simple object. In this
paper, we also call p a simple particle.
There is always a trivial simple particle denoted by 1. It

corresponds to local excitations that can be created by local
symmetric operators in the first model or local operators in
the second model. Its fusion space has a property

VðM; 1; p; q;…Þ ≅ VðM;p; q;…Þ: ðA8Þ

It is not hard to see that the full splitting of the fusion
space is given by [see Eq. (A7)]

VðM;p; q;…Þ ¼ VðM;p1; q;…Þ ⊕ VðM;p2; q;…Þ � � � :
ðA9Þ

In this case, we say the particle p is a direct sum of particle
p1, p2, etc.:
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p ¼ p1 ⊕ p2 ⊕ � � � : ðA10Þ

Physically, it means that the particle p is an accidental
degeneracy of particle p1, particle p2, etc. For example, in
the first model, we may have a particle which is an
accidental degeneracy of spin-up and spin-down particles.
Such a degeneracy becomes required in the presence of
SUð2Þ spin rotation symmetry. In this case, a spin-1=2
particle is a simple particle (i.e., the fusion space cannot be
split further). If we break the SUð2Þ symmetry, then the
spin-1=2 particle becomes a composite particle which is a
direct sum of two simple particles, a spin-up and a spin-
down particle. For the case of the first model, we see that
the symmetric operations of deforming ΔHtrapðxpÞ, which
correspond to the morphisms in the category theory, allow
us to define the notion of irreducible representation without
using group transformation and other symmetry-breaking
operations.

c. Fusion rules of particles

Wemay view two nearby simple particles p1 and p2 (i.e.,
two irreducible representations) as one particle p3 (i.e., one
representation):

p1 ⊗ p2 ¼ p3: ðA11Þ

In general, p3 is no longer a simple particle (i.e., no longer
an irreducible representation):

p1 ⊗ p2 ¼ p3 ¼ p0
1 ⊕ p0

2 ⊕ � � � : ðA12Þ

Sometimes, the particle types on the right may repeat:

p1 ⊗ p2 ¼ p0
1 ⊕ p0

1 ⊕ p0
2 ⊕ � � � ¼ 2p0

1 ⊕ p0
2 ⊕ � � � :

ðA13Þ

We may rewrite the above as

pi ⊗ pj ¼ ⨁
k
Nij

k pk; ðA14Þ

which is called the fusion rule of the (simple) particles.
From Eq. (A8), we see that the trivial particle 1 is the unit of
the fusion operation:

1 ⊗ p ¼ p ⊗ 1 ¼ p: ðA15Þ

Using Nij
k , we can calculate dimension of the fusion space

with n particles pi on S3, which has the form

dimVðS3; pi; pi;…; piÞ ¼ dimVðS3; p⊗n
i Þ ∼ dni ðA16Þ

in the n → ∞ limit. The number di is called the quantum
dimension of the pi particle. One can show that di is the

largest positive eigenvalue of matrix Ni, where the matrix
elements of Ni is given by ðNiÞkj ¼ Nij

k .
For the case of the first model, Eq. (A14) corresponds to

the decomposition of the tensor product of irreducible
representations. We see that additional information about
the symmetry group G, the decomposition of the tensor
product of irreducible representations, can also be obtained
from symmetric operations: the fusion of particles (which
is realized by bringing two symmetric traps together).
From Nij

k , we can even obtain the dimensions of irreducible
representations pi, which are given by the quantum dimen-
sions di, which, in turn, determines the number of elements
in the symmetry group G:

X
i is simple

d2i ¼ jGj: ðA17Þ

We get more information about the group without using any
symmetry-breaking operations.

d. Braiding and topological spin of particles

Consider a fusion space VðM;p; q;…Þ. If we adiabati-
cally exchange the two particles p and q, the resulting
fusion space VðM; q; p;…Þ is always isomorphic to the
original one, no matter what the manifold M and back-
ground particles or strings are. Therefore, we say that there
is a braiding morphism cp;q for the fusion p ⊗ q:

cp;q∶p ⊗ q ≅ q ⊗ p: ðA18Þ

In general, we need to specify the exchange path (for
example, clockwise or counterclockwise in 2þ 1D). But
for the above two physical models, braiding is, in fact, path
independent, which is the defining property of the sym-
metric fusion category, that for all particles p, q,

cq;pcp;q ¼ idp⊗q: ðA19Þ

This result means that braiding p a whole loop around q is
the same as doing nothing, which is equivalent to path
independence.
We can also extract the topological spin of simple

particle p. Given a fusion space VðM;p;…Þ, we twist p
by 2π, and the fusion space then acquires a phase factor θp,
called the topological spin of p. It is, in fact, determined by
the braiding cp;p. In the case of the symmetric fusion
category, θp helps to distinguish bosons and fermions:

θp ¼
�
1; p is a boson;

−1; p is a fermion:
ðA20Þ
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e. Physical realization of fiber functor

The Tannaka duality requires a fiber functor, which
associates a vector space FðpÞ to a particle p, such that it
realizes the fusion and braidings of particles, in terms of the
tensor product and the (trivial) braiding of vector spaces:

Fðp ⊗ qÞ ≅ FðpÞ ⊗C FðqÞ;
Fðcp;qÞ ¼ cFðpÞ;FðqÞ; ðA21Þ

as if FðpÞ are local Hilbert spaces. Here, the braiding for
vector spaces is the usual one:

cV;W∶v ⊗C w ↦ w ⊗C v; ∀ v ∈ V;w ∈ W: ðA22Þ

We note that if a functor preserves the fusion (it is a
monoidal functor), whether preserving braiding or not is
just a property of the monoidal functor, not an additional
structure (like being an Abelian group or not is a property
of a group).
We see a necessary condition for the fiber functor to exist

is that particles are all bosons with trivial braiding. It turns
out that it is also sufficient.
Physically, only the operations on the fusion spaces are

measurable (or physical). So the question is, which fusion
space should be associated to the particle p in order to have
a fiber functor? One might naturally choose the fusion
space to be VðS3; pÞ (i.e., the fusion space of a particle p on
the space of a 3-sphere S3). But VðS3; pÞ ¼ ∅ for a
nontrivial particle. So we need to add (nonsimple) back-
ground particles to make the fusion space nonzero for any
added particles. The question is, what background particles
should we insert besides p, to get a fusion space satisfying
the conditions (A21)?
It turns out that we do have a special background

(nonsimple) particle to achieve this goal. Let us denote
it by Q, which has a direct sum decomposition in terms of
the simple particles and their quantum dimensions di:

Q ¼ ⨁
i
dipi: ðA23Þ

The fusion space VðS3; p;QÞ satisfies

VðS3; p ⊗ q;QÞ ≅ VðS3; p;QÞ ⊗C VðS3; q; QÞ: ðA24Þ

[In the first example, Q is nothing but the reducible
representation FunðGÞ, all the functions on G. It is the
regular representation of G.] Therefore, we can take

FðpÞ≡ VðS3; p;QÞ: ðA25Þ

It preserves fusion by Eq. (A24) and also braiding (its
property but we do not show it explicitly here), thus a
desired fiber functor.

f. Automorphism of the fiber functor

Nowwe have a fiber functor that maps every particle p to
a vector space FðpÞ ¼ VðS3; p;QÞ. Physically, the vector
space FðpÞ ¼ VðS3; p;QÞ is the ground-state subspace of a
Hamiltonian on S2 with two traps: H0 þ ΔHp þ ΔHQ,
where ΔHQ traps a particular composite particle
Q ¼ ⨁idipi (a particle with accidental degeneracy).
Next, we describe the automorphism of the fiber functor.

An automorphism is a choice of an unitary map on FðpÞ ¼
VðS3; p;QÞ for each particle p. We denote those unitary
maps by αp. So an automorphism corresponds to a set of
unitary maps α≡ fαpg. But not every set of unitary maps,
fαpg, is an automorphism. An automorphism also needs to
preserve all the structures of the fiber functor and, as a
result, needs to satisfy many conditions. But what are those
conditions?
We explain that deforming the trap potential ΔHp (while

preserving the symmetry in the first model) may split that
fusion space VðS3; p;QÞ ¼ VðS3; p0; QÞ ⊕ � � �. This split-
ting leads to a morphism p0 → p. Under the fiber functor F
which takes a special fusion space, the morphism p0 → p
gives rise to an embedding map u∶Fðp0Þ → FðpÞ. An
automorphism α ¼ fαpg must be compatible with all those
embedding maps:

uαp0 ¼ αpu; ðA26Þ

or

ðA27Þ

In the first model, FðpÞ is, in general, a reducible
representation of the symmetry group G. When p0 is a
simple particle, all embedding maps u tell us all different
ways to embed irreducible representation Fðp0Þ into the
reducible one FðpÞ. The condition (A27) tells us that αp is
block diagonal and fully determined by its components on
different simple particles (irreducible representations) αp0 .
The automorphism α ¼ fαpg also needs to be com-

patible with the fusion of particles. We may view two
well-separated particles p1 and p2 as a single particle
p3 ¼ p1 ⊗ p2. The unitary maps αp1

, αp2
, and αp3

should
be related. Since the fusion space from the fiber functor
satisfies Eq. (A21), we require that αp3

equals the tensor
product of αp1

and αp2
[up to the isomorphism fixed by the

fiber functor (A21)]:
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ðA28Þ

Since p3¼p1⊗p2¼⨁ip
0
i and Fðp1 ⊗ p2Þ ≅ ⨁iFðp0

iÞ,
the above can be rewritten as

ðA29Þ

The above is the condition for the automorphism α ¼ fαpg
to be compatible with the fusion which is a data point
in RepðGÞ.
The set of unitary maps α ¼ fαpg that satisfies

Eqs. (A27) and (A29) is called an automorphism of the
fiber functor. If α ¼ fαpg and α0 ¼ fα0pg are two auto-
morphisms, we can show that α · α0 ≡ fαpα0pg is also an
automorphism. So the automorphisms form a group
G≡ AutðFÞ. Such a group corresponds to the symmetry
group in the first physical model. We measure the sym-
metry group using only symmetric probes. In the second
physical model, G is a group associated with the 3þ 1D
topological order. We show that every 3þ 1D topological
order is associated with an unique group G.
To emphasize the group nature of the automorphisms

α≡ fαpg, we may instead write g≡ fgpg ∈ G≡ AutðFÞ.
They give rise to the group action on FðpÞ, by ρpðgÞ ¼ gp.

3. Example of Tannaka reconstruction for Rep(Z2)

In this section, we illustrate the Tannaka duality with
the simplest example, RepðZ2Þ. We follow the general
reconstruction procedure, trying to show the flavor of the
abstract theorem.
First, let us describe RepðZ2Þ in terms of fusion.

There are two irreducible representations of Z2: the trivial
denoted by 1, the nontrivial one denoted by e. The fusion
rule is

1 ⊗ 1 ¼ 1; 1 ⊗ e ¼ e ⊗ 1 ¼ e; e ⊗ e ¼ 1: ðA30Þ

The background charge is Q ¼ 1 ⊕ e. We find that FðeÞ ¼
VðS3;e⊗QÞ ¼ VðS3; e⊕ 1Þ ¼ VðS3;1Þ ¼ VðS3Þ ¼C. The
ground state on S3 is nondegenerate; thus, FðeÞ is one
dimensional. Similarly, Fð1Þ is one dimensional as well.
When p is composite, p ¼ ⨁ipi, Eq. (A27) tells us that

αp is block diagonal:

αp ¼ ⨁
i
αpi

; ðA31Þ

where pi are simple. Since FðpiÞ for a simple particle is
always one dimensional for RepðZ2Þ, α1 and αe are just
phase factors. Equation (A29) requires that

α1⊗e ¼ α1 ⊗C αe ¼ αe: ðA32Þ

Thus, α1 ¼ 1. Equation (A29) also requires that

αe⊗e ¼ αe ⊗C αe ¼ α1 ¼ 1: ðA33Þ

Thus, αe ¼ �1. The solution fα1 ¼ 1; αe ¼ 1g corre-
sponds to an automorphism, and the solution fα1 ¼ 1;
αe ¼ −1g corresponds to the other automorphism.
The composition fα1; αegfα01; α0eg ¼ fα1α01; αeα0eg is the
group multiplication, which tells us that fα1 ¼ 1; αe ¼ 1g
and fα1 ¼ 1; αe ¼ −1g do form a Z2 group.

4. Tannaka duality II: With fermions

We proceed to introduce the Tannaka duality for sym-
metric fusion category E which contains fermions. Strictly
speaking, the fermion or “super” case is due to Deligne’s
theorem [56], which generalized Tannaka’s original idea.
The super case is almost the same: Find a fiber functor,

calculate the automorphisms of the fiber functor, and
recover the group. But the fiber functor needs to preserve
braiding, while in Vec there are only bosons. So we have to
change the target of the fiber functor to accommodate
fermions. The new target category is just the simplest
symmetric fusion category that contains fermions, namely,
the category of super-vector-spaces sVec. The fusion part
of sVec is the same as RepðZ2Þ. But now the nontrivial
particle, denoted by f to distinguish from the RepðZ2Þ
example above, is a fermion; its braiding is modified:

cf;f ¼ −id1; ðA34Þ

while other braidings remain trivial. It can be understood as
vector spaces with a Z2 grading. The nontrivial grading
corresponds to fermionic d.o.f., while the trivial grading
corresponds to bosonic d.o.f.
So when there are fermions in E, we instead need a

super-fiber-functor

F∶E → sVec: ðA35Þ

It can be physically realized the same way using the fusion
space VðS3; q; QÞ. And we can follow exactly the same
procedure introduced in the last subsection to construct a
group from automorphisms of the super-fiber-functor F,

Gf ≡ AutðFÞ: ðA36Þ

Such a group is slightly different from the bosonic case.
Note that there is a special automorphism z ¼ fzpg:
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zp ¼
�
idFðpÞ; p is a boson;

−idFðpÞ; p is a fermion:
ðA37Þ

z corresponds to the fermion number parity and commutes
with all other automorphisms. Let Zf

2 ≡ f1; zg. We see that
the group Gf must contain Zf

2 as a central subgroup. We
then have

E ≅ sRepðGfÞ; ðA38Þ

where sRepðGfÞ is constructed similarly like RepðGÞ.
They have the same fusion; only the braiding between
two fermions has an extra −1. In this sense, we have
sVec ¼ sRepðZf

2Þ.

5. (Super)-fiber-functor from condensation

In the above, we realize the (super)-fiber-functor using
the fusion space on S3 with a special background particle
Q. But we give no proof why such fusion space preserves
the fusion and braiding. In this subsection, we explain why
such Q is so special. Meanwhile, this subsection also
explains why the configuration in Sec. V B gives a super-
fiber-functor.
In the all-boson case, imagine that we let Q condense to

form a new phase, a Q-sea, such that Q becomes the trivial
particle in theQ-sea. As long as theQ-sea is a trivial phase,
it is guaranteed that we obtain a fiber functor by setting

FðpÞ≡ VðS3; p;QÞ: ðA39Þ

In short, the requirements for the background particle Q is
that it can be condensed to form a trivial phase.
Let us focus on a space S3. If we put no excitation on S3,

there will be no degeneracy both before and after con-
densation. To relate the Q condensed phase with the
fusion space in the uncondensed phase, we split S3 into
two 3-disksD3

unc andD3
con and condenseQ only inD3

con. As
we discuss in the main text, the domain wall S2w separating
two 3-disks can be gapped, such that when no excitation is
present there is no degeneracy:

dimVðS3; D3
unc; S2w;D3

conÞ ¼ 1: ðA40Þ

Moreover, since all particles have trivial mutual statistics,
such a domain wall S2w is transparent to particles in D3

unc.
In other words, a particle can move through the domain
wall from D3

unc to D3
con without changing degeneracy and

introduce only some unitary transformations on the fusion
space. InD3

unc, the particle carries a group representation; in
D3

con, as it is the trivial phase whose particles are described
by Vec, the particle becomes an accidental degeneracy of
trivial particles and is described by a vector space.

Now, consider the fusion space

V½S3; D3
uncðpÞ; S2w;D3

con�; ðA41Þ

where we put a particle p in D3
unc. There are three different

ways to simplify it.
(1) ShrinkD3

con to a point.—AsD3
con is theQ condensed

phase, whose ground state is a Q-sea, this point
behaves just like a single particle Q in the uncon-
densed phase. Thus,

V½S3; D3
uncðpÞ; S2w;D3

con� ≃ VðS3; p;QÞ: ðA42Þ

In other words, this fusion space is exactly the vector
space FðpÞ we want to assign to p in the fiber
functor.

(2) Shrink D3
uncðpÞ to a point.—This point should

behave like a particle in the condensed phase, which
is denoted by p0. Thus,

V½S3; D3
uncðpÞ; S2w;D3

con� ≃ VconðS3; p0Þ
≃ VconðS3; 1; p0Þ: ðA43Þ

Since in the trivial phase, p0 itself is described by a
vector space, we have

p0 ≃ VconðS3; 1; p0Þ; ðA44Þ

which implies

p0 ≃ FðpÞ: ðA45Þ

In particular, if p is the trivial particle 1, so is p0:

V½S3; D3
uncð1Þ; S2w;D3

con� ≃ VðS3; D3
unc; S2w;D3

conÞ ≃ 1:

ðA46Þ
(3) When there is more than one particle, we also want

to deal with them in a more local manner, in order to
study fusion and braiding. Thus, we consider the
adiabatic process of moving p through the domain
wall from the uncondensed phase to the condensed
phase. Despite the global topology and background
configuration, we obtain a particle in the condensed
phase described by the same vector space p0 ≃ FðpÞ,
which can be seen in the special global space S3 in
the above:

FðpÞ ≃ V½S3; D3
uncðpÞ; S2w;D3

con�
≃ p0 ≃ VconðS3; 1; p0Þ
≃ V½S3; D3

unc; S2w;D3
conðp0Þ�; ðA47Þ

where we have used the fact that, if we shrinkD3
unc to

a point, it behaves like a trivial particle in the
condensed phase. In other words, we can first move
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p through the domain wall into D3
con and second

shrink D3
unc to a point. The resulting particle in D3

con
and the resulting fusion space are both p0 ≃ FðpÞ,
the same as shrinking D3

uncðpÞ.
What is important is that moving particles through the
domain wall is compatible with fusion:

V½S3; D3
uncðp1 ⊗ p2Þ; S2w;D3

con�
≃ VfS3; D3

unc; S2w;D3
con½ðp1 ⊗ p2Þ0�g

≃ V½S3; D3
uncðp1Þ; S2w;D3

conðp0
2Þ�

≃ V½S3; D3
unc; S2w;D3

conðp0
1 ⊗C p0

2Þ�; ðA48Þ

and braiding:

ðA49Þ

Now, we are ready to prove that FðpÞ preserves fusion of
particles:

Fðp1 ⊗ p2Þ≡ VðS3; p1 ⊗ p2; QÞ
≃ V½S3; D3

uncðp1 ⊗ p2Þ; S2w;D3
con�

≃ V½S3; D3
unc; S2w;D3

conðp0
1 ⊗C p0

2Þ�
≃ VconðS3; 1; p0

1 ⊗C p0
2Þ

≃ p0
1 ⊗C p0

2 ≃ Fðp1Þ ⊗C Fðp2Þ: ðA50Þ
The property that FðpÞ also preserves braidings directly
follows from Eq. (A49).
If there are emergent fermions, we need to make several

modifications to the above discussions.
First, we want similarly a condensate whose particles

form sVec. But Q should become, instead of the trivial
particle, a direct sum 1 ⊕ f, from whose fusion space we
can extract both bosonic and fermionic d.o.f. It turns out Q
should be of the following form:

Q ¼ Qb ⊕ Qf; dimðQbÞ ¼ dimðQfÞ; ðA51Þ

where Qb and Qf are bosonic and fermionic parts,
respectively. We condense the bosonic part Qb. Particles
above the Qb-sea will be sVec, Qb becomes 1, and Qf

becomes f.
Second, in the condensed phase D3

con, we need to put
1 ⊕ f instead of nothing. For super-vector-spaces sVec,
we have the property similar to Eq. (A44):

p0 ≃ VconðS3; p0; 1 ⊕ fÞ: ðA52Þ

Then, we can repeat the above discussions and prove that

FðpÞ≡ VðS3; p;QÞ ≃ V½S3; D3
uncðpÞ; S2w;D3

conð1 ⊕ fÞ�
ðA53Þ

realizes a super-fiber-functor, which is exactly the one we
used in Sec. V B. It also has the property that

FðpÞ ≃ V½S3; D3
uncðpÞ; S2w;D3

conð1 ⊕ fÞ�
≃ V½S3; D3

unc; S2w;D3
conðp0; 1 ⊕ fÞ�

≃ VconðS3; p0; 1 ⊕ fÞ ≃ p0: ðA54Þ
Namely, FðpÞ is also the super-vector-space describing the
particle p0 resulting from moving p into the condensed
phase through the domain wall.

APPENDIX B: RELATION BETWEEN
EMERGENT MAJORANA ZERO MODES FOR
LINKED LOOPS AND THE 2-COCYCLE M2

In Ref. [65], it is pointed out that, for some fermionic
SPT states, certain linked loops of symmetry twists can
carry a pair of Majorana zero modes (see Fig. 21). In this
Appendix, we discuss a relation between such emergent
Majorana zero modes and the nontrivial two cocycle m2

that characterize the EF2 topological orders. For simplicity,
we assume Gf to be Abelian. We show that certain linked
looplike excitations in an EF2 topological order carry a
pair of Majorana zero modes, one for each linked loop. In
other words, certain pairs of looplike excitations carry
twofold topological degeneracy when they are linked and
no degeneracy when they are not linked. Such a topological
degeneracy is highly nonlocal in the sense that the
degeneracy is shared between the twowell-separated linked
loops. The new result here is that the appearance of
Majorana zero modes for linked loops is directly related
to the nontrivial Zm

2 extension of Gb on the canonical
boundary.
To see the above result, we consider a pair of linked

loops in the bulk in Fig. 21. We compute the degeneracy for
the linked loops. For Abelian Gf, all the pointlike excita-
tions and stringlike excitations have an unit quantum
dimension. Thus, one may expect that degeneracy for
the linked loops to be 1. In the following, we show that
sometimes the degeneracy can be 2. To obtain such a

FIG. 21. Fuse h loop to the linked g loop on the canonical
domain wall. When hgh−1 ¼ gm, two Majorana zero modes are
supported. Further fusing the two segments, we obtain an open
pSC chain.
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result, we bring the linked loops to the boundary, which
reduces the group elements hf, gf in Gf to the group
elements hb ¼ πfðhfÞ; gb ¼ πfðgfÞ inGb via the projection

Gf→
πf
Gb ¼ Gf=Z

f
2 . In addition to the projection Gf → Gb,

there is also a lift Gb → Ĝb. The linked loops on the
boundary are actually described by h, g in Ĝb, where hb ¼
πmðhÞ; gb ¼ πmðgÞ under the projection Ĝb→

πm
Gb. To sum-

marize, the bulk string types hf, gf turn to boundary string
local types h, g that satisfy the following relation:

gb ¼ πfðgfÞ ¼ πmðgÞ; hb ¼ πfðhfÞ ¼ πmðhÞ: ðB1Þ

This situation is described in Fig. 21. As we go around a
loop, the boundary string labeled by g turns into a boundary
string hgh−1. Even though hb, gb commute in Gb, their lifts
h, g may not commute in Ĝb, when Ĝb is a nontrivial Zm

2

extension of Gb. If h, g do not commute, we have
hgh−1 ¼ gm, where m generates Zm

2 . As a result, there
are two pointlike defects between g and gm boundary
strings, corresponding to two Majorana zero modes which
lead to a twofold degeneracy.
To see which linked loops described by hf, gf have

Majorana zero modes, we first note that the elements in Ĝb

can be labeled by ðgb; xÞ, gb ∈ Gb and x ∈ Z2. The
multiplication in Ĝb is given by

ðgb; xÞðhb; yÞ ¼ ðgbhb;m2ðgb; hbÞxyÞ; ðB2Þ

wherem2ðgb; hbÞ is the group 2-cocycle inH2ðGb; Z2Þ. For
hf, gf, we have h ¼ ðπfðhfÞ; yÞ; g ¼ ðπfðgfÞ; xÞ ∈ Ĝb. As
shown in Fig. 21, their commutator ½h; g�≡ hgh−1g−1 ¼
hgðghÞ−1 determines the appearance of Majorana
zero modes. Using the fact that hg ¼ ½h; g�gh and
πfðhfÞπfðgfÞ ¼ πfðgfÞπfðhfÞ, it is easy to compute
½h; g� ¼ ð1; m2ðπfðhfÞ; πfðgfÞÞm2ðπfðgfÞ; πfðhfÞÞÞ. We
see that the linked loops hf, gf have Majorana zero modes
when m2ðπfðhfÞ; πfðgfÞÞm2ðπfðgfÞ; πfðhfÞÞ ¼ −1. The
appearance of Majorana zero modes for certain linked
loops can detect a certain type of nontrivial Zm

2 extensions,
i.e., those with nontrivial m2ðhb; gbÞm2ðgb; hbÞ for certain
pairs of elements hb, gb in Gb.
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