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Abstract 

Energy-dependent N-N separable potentials proposed recently by 

Garcilazo are examined in trinucleon systems. For-the special energy- 

dependence of the two-body potentials chosen there the Faddeev equations 

are well defined, unique, and preserve three-body unitarity. It is 

found that Garcilazo potentials overbind the triton by more than 14 MeV. A 

modified Garcilazo potential is proposed, which takes special care of 

the analytic continuation of the corresponding t-matrices to negative 

energies. The modified potentials describe not only the deuteron bound 

state and N-N phase shifts in the range of O-450 MeV correctly, but give 

a correct triton binding energy of 8.59 MeV or 8.33 MeV depending on the 

uncertainty in the experimental data analysis of the energy position at 

which N-N phase shifts change the sign. The importance of correct des- 

cription of phase shifts at higher energies for the low energy properties 

of a three-body systems versus two-body off-shell effects is found and 

discussed. 
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I. Introduction 

Separable potentials are very useful in the numerical solution of 

the three-body problem, where they reduce the integral equations from two 

variables to one variable. Most work on the three-nucleon problem with 

separable potentials has treated the case of two neutrons and a proton, 

calculating neutron-deuteron scattering and the triton binding energy. The 

first calculations with spin effects included were performed by Mitra and 

his group [l] by Sitenko and Karchenko [2], and Aaron, Amado and Yam [3]. 

These authors used a simple rank one separable potential of Yamaguchi 

form [4] who was the first to introduce separable potentials in nuclear 

physics. It was found [1,2,3,5] that this potential form which fit the 

N-Blow energy behavior overbinds the triton by 3-4 MeV (the experimental 

binding energy for triton is 8.49 MeV [6]). On the other hand so called 

- . 

realistic potentials , which include repulsion at short distances 

underbind the triton by more than 1 MeV [5]. There is some hope that 

this gap between experiment and theory may be narrowed or closed by the 

Graz II separable potentials [8]. In the last decade more complex separable - 

potentials were a proposed, for example by Doleshall [7] and the Graz group 

t81, which achieved better description of the N-N data then the Yamaguchi 

potential, leading with the exception of Graz II potentials nevertheless 

to overbinding of the triton [9] similar to the one obtained with Yamaguchi 

forces. Other separable N-N potential by Pieper [lo] were not applied to 

three-nucleon system because of its complexity, making the three-body equa- 

tion difficult to solve. The failure of the extant separable potential - 

with managable rank (complete calculation for Graz II force are under way) 
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is usually attributed to the"improper" off-energy-shell behavior of these 

forces. In this paper we indicate that this conclusion in the use of the 

Yamaguchi separable potential is by no means imperative. It seems that 

such effects as overbinding can be attributed to the proper description 

of phase shifts at high energies and to some properties of the potential 

which determine the analytical continuation of the corresponding t-matrix 

to negative energies, while leaving the off-shell properties unchanged. 

In this paper we consider an energy-dependent rank one separable poten- 

tial for N-N interaction which was proposed recently by Garcilazo [ll]. 

The Garcilazo potential is of Yamaguchi type with energy-dependent potential 

strength. It acts as an attractive potential at low energies and as repul- 

sive one at high energies. This leads to a proper description of N-N phase 

shifts, in the range of O-450 MeV including the change of sign. The phase 

- shifts derived from the Yamaguchi separable potentials are positive at 

all energies and therefore fail to reproduce the N-N phase shifts at high 

energies, where the phase shifts become negative. As is well known, this 

change of sign is due to a strong repulsion in the N-N interaction at short 

distances. In order to simulate this change of sign one needs at least a 

two-term separable potential with one term representing the attraction and 

the other the repulsion. It was found that in some cases the additional 

repulsive separable potential has almost-no influence on the trinucleon 

binding energy [9]. 

It is therefore tempting to investigate whether an energy-dependent 

separable potential can cure the problem. As one knows a microscopic deriva- 

tion of a force between particles with internal degrees of freedom will 
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lead in general to an energy-dependent potential. This suggests that we 

can simulate the compositeness of the nucleon by a convenient phenomenologi 

cal energy-parametrization of the N-N force. 

In Sect. II we review the basic formulae for energy-dependent separable 
- . 

potentials. The study of the analytic continuation of the t-matrix generated 

by the Garcilazo potential suggests a modification of the Garcilazo potential 

which has almost no impact on the phase shift behavior, but which cures the 

unreasonable behavior of the t-matrix at negative energies. We discuss this 

modification in more detail in Sec. IV. In Sect. III several trinucleon cal- 

culations are presented using the original Garcilazo, the modified, and 

Yamaguchi potentials. It is shown that Garcilazo potential overbinds the 

trinucleon systems stronger than the Yamaguchin force, while the modified 

-- potential gives less binding and in case of a triton reproduces the experi- 

- mental triton binding energy. 

The results are discussed in Sect. IV with special emphasis to the 

relation between N-Nphase shifts and the behavior of the N-N t-matrix at 

negative energies, and the influence of N-N phase-shifts in different energy 

intervals on the triton binding energy. 



II. Energy-dependent two-body separable potentials 

As mentioned already in the introduction the mathematical description 

of a force between particles with internal degrees of freedom leads in 

-. general to a nonlocal energy-dependent potential. As an example one might 

think of opticai model [12] and the potentials of the resonanting group theory [13 

The use of energy-dependent (i.e. non-hermitian) potentials in Schrodinger 

equation h&s been discussed by many authors (see, for example, Ref. [12,13] 

and specifically in Faddeev-like calculations of few-body systems was con- 

sidered recently by Schmid [14] and Kim et al. [15]. 

Here we are considering a phenomenological energy-dependent two-body 

potential which might be regarded as‘an approximation of an energy-dependent 

theoretical potential derived from a microscopic theory in which the con- 

stituents of the particles under investigation are considered explicitly. 

In the context of a few-body system calculation the most convenient form of 

a two-body interaction for a numerical evaluation is the separable form 

used extensively in the literature [5] in the case of three-body calculation. 

Recently, an energy-dependent separable potential of Yamaguchi form for the - 

N-N interaction was proposed by Garcilazo [ll]: 

vG(P, “; El = g(P) g(p') 9 (1) 

in which 
g(p) = (P2 + B2F1 (2) 

and 
~~ z XG(E) = xo tanh(l - E/EC) (3) 

EC denotes here the energy at which the N-N phase shift changes sign. The 

modification of the original Yamaguchi potential is the energy dependence 

. 

I. 
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of its potential strength X expressedineq, (3) by tanh(1 7 E/EC), For 

the scattering amplitude f(k) = e iSsinG/k we obtain from potential (1) 

the expression: 
2 2 

f(k) = l/[-ik + (L2F + (6 
2 

+ k2)2)] 
2T2XG 

(4) 

which in its structure is independent of the fact whether A0 is energy 

dependent or not. From eq. (4) it can be easily shown that f(k) fulfills 

two-body unitary relation. This is important in regard to the Faddeev 

equations for the potential (1) In general as discussed by Kim et al. 

[15] an energy-dependent two-body potential due to its non-hermicity leads 

to nonunique Faddeev equations. Closely related to this shortcoming 

is the difficulty of a unique and proper continuation of the corresponding 
-- 

two-body t-matrix to negative energies. Here we can avoid these problems 

due to the special construction of the energy-dependence. Note that the 

energy-dependence of the potential (1) does not affect the off-shell pro- 

perties because it is restricted to on shell energies. Therefore the cut 

structure of the corresponding t-matrix for positive and negative energies 

is uniquely defined. With this property and the fact that our two-particle 

t-matrix fulfills the off-shell-unitarity, it is straightforward to prove - 

following the procedure by Freedman, Lovelace, and Namyslowski [16] and 

discovered independently by Kowalski [17] - that the corresponding Faddeev- 
-. 

like equations are unique and the three-body unitarity is preserved. A 

similar discussion of these aspects based on Lippman-Schwinger equations 

is given by Garcilazo and Wilde in Ref. [18]). 

From eq. (4) we can determine the scattering length a, and the effective 

range r . 
0 

. 



and 

B3 

r2AG(E = 0) 
) 

r 
0 I 

1 
E=O 

8 

(5) 

. (6) 
- . 

One observes that eq. (5) and eq. (6) are identicalwith Yamaguchi formulae 

with the exception that in the expression for effective range the first 

derivative of the inverse potential strength enters the formula (6). In 

case of the parametrization (3) the corresponding term in eq. (6) does 

not vanish. 

In order to discuss some properties of potential (1) in the context of 

Faddeev equations it is convenient to introduce the operator T. In case of 

separable potential (1) the t-matrix is of separable form 

t(P,p’; El = g(p) -rG(E)- g(p’> - 

where the quantity .rG(E), we are interested in, is given by 

(7) 

1 
TV ~ = l'(x,(E) + 2= 

2 k2 - 62 
[2B(k2 + $)2 - i 

k 

(k2 + f12)2 
I), 

(8) 

with k 2 /M = E, and M is the mass of the nucleon. In the case of Yamaguchi 

XG(E) in formula (8) has to be replaced by a constant. Thus the t-matrices 

have the same form factors and differ only in the T(E) - matrices. This 

means, as we will see from the corresponding equations in Sect. III, that 

the Faddeev integral kernels are identical for all potentials we are using 

in this paper, and the only difference will come from the analytic continua- 

tion of r(E) to negative energies: r(E) + T(-K2 - (3/4)p2), where K2/M 

. 
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denotes the binding energy of the trinucleon system, and p is the momentum 

of the spectator particle. 

As already pointed out the energy-parametriiation of the potential 

strength (3) assures that the potential (1) is attractive at low energies -' 

with decreasing strength (as energy decreases but is still beyond EC) and 

is repulsive at high energies for E > E 
C’ 

where EC is the energy where the 

phase shift changes the sign. Note also that the potential strength remains 

finite in the whole energy-range -m < E < += and is bounded by 

(9) 

The separable potential (1) reproduces the S-wave N-N phase shifts for 3 Sl 

and iSo satisfactorily through the energy range O-450 MeV (Elab) including 

the-change of sign. Note that Yamaguchi phase shifts are positive at all 

energies and the discrepancies with empirical-phase shifts are as big as 

21O. The phase shifts for 3Sl and 1So for potentials used in this paper 

are given in Table II. In Table I parameters of all potentials used in the 

trinucleon calculations are given. 

To conclude this sectionwe discuss the behavior of the analytic continua- - 

tion of the T(E) matrix to negative energies. This behavior will be respon- 

sible for differences in the properties of trinucleon system (see Sect. III). 

It is easy to observe that for the continuation of r(E) to negative energies 

the potential strength AG will remain positive and will increase with increas- 

ing momentum of the spectator particle p: 
-3 ? 

X,(-K2 - $p2) = Xotanh (1 + 
K2 + f p')) 

ME . 
C 

(10) 
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Table I. List of separable forces used for trinucleon bound state calculations 
corresponding parameters. 

Potential Type 

Yamaguchi 1) 

Garcilazo 
-. - parametrization 

(3) 

Parametrization 
(12) 

Partial Wave 

3 
S1 h-p> 

3s1 (n-p) 

lsO 
(n-p > 

lso (n-n) 
7) 

ls; (n-p) 

3 S1 (n-p> 

IS o (n-p> 

3s1 (n-p) 

lsO 
(n-p> 

3s1 (n-p) 

lsO 
(n-p) 

IS o (n-n) 

% o (n-n> 

Notation used 
in the text 

YTNP* 

YTNP* 

B(fm-1). Xo(fmw3) Ec(fm-') 

1.450 .54491 

1.450 1.180 

YSNP 1.304 .2771 

YSNN 

YSNP* 

1.1295 

1.304 

.17371 

.3149 

GTNP 1.745 0.8984178 0.816 

GSNP 1.244 0.2398431 0.767 

MTNPl .54491 0.816 

MSNPl .2771 0.767 

MTNP2 .54491 0.897 

MSNP2 

1.450 

1.304 

1.450 

1.304 

1.1295 

1,. 1295 

.2771 0.608 

MSNNl .17371 

.17371 

0.767 

MSNN2 0.608 

-. 

1) The Yamaguchi energy-independent potential strength is given by: 'Yamaguchi = 
. X0 tanh(1) = X * .761594. 

0 
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Table 11. Triplet and Singlet Phase Shifts for Different Forces. 

'cm) 
in 

sin6 triplet 

fm-l pii-- 
.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

1.0 

1.1 

1.2 - 
1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.‘0 

2.1 

2.2 

2.3 

.492 

.798 

.941 

.994 

,997 

.974 

.936 

.888 

.836 

.783 
-- 

.729 

.677 

,627 

.580 

.536 

.495 

.456 

.421 

.389 

.360 

.332 

.307 

.284 

Force 

GTNP 

.491 

.796 

.940 

.993 

.997 

,974 

.933 

.880 

.810 

.752 

.681 

.606 

.530 

,451 

.371 

.291 

.211 

.131 

.0531 

-.021648 

-.0916 

-.155 

-.211 

MTNPl 

,492 

.798 

.941 

.994 

.997 

.973 

.932 

.882 

.825 

.765 

.703 

.639 

.574 

.507 

.438 

.363 

,281 

.188 

.082 

-.036 

-.157 

-.267 

-.347 

. 

F ce 

YSNP GSNP 

.879-.. .873 

.910 .899 

.892 .872 

.857 .827 

.814 .772 

.765 .710 

,713 ,645 

.661 .579 

.609 .513 

.559 .449 

,512 ,388 

.468 -- .329 

.427 .274 

.389 .221 

.354 .172 

.323 .125 

.295 ,081 

.269 .041 

.246 .004 

.224 -.030 

.206 -.059 

.188 -.084 

.173 -.104 

sin6 singlet 

MSNPl 

.878 

.910 

.890 

.855 

.8lb 

.761 

.707 

.651 

.595 

.538 

.483 

.429 

.376 

.322 

.268 

.211 

.149 

.0816 

.007 

-.069 

-.140 

-.1935 

-.229 
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This means that the t-matrix at negative energies does not know that 

the potential becomes repulsive at higher energies. On the contrary eq. 

(10) lets the potential become even more attractive than the attractive 

Yamaguchi potential with energy-independent strength which is already 

more attractive than the potential (1). Since the Yamaguchi potentials - . 

already overbind the trinucleon system,potential (1) with the analytic 

continuation given in eq. (lO),will overbind the trinucleon system even more 

strongly, The upper bound for this overbinding is given by the binding 

energy of the trinucleon system calculated with Yamaguchi potential with 

the maximum strength X0 (see eq. (9)). These expectations will be con- 

firmed and discussed in Sect. III. 

In order to prevent the shortcomings of the parametrization (3) we 

propose a modification of the energy-parametrization of X without changing 

the phase shifts significantly: 

AM(E) = X tanh(1 - (E/Ec)2) (11) 
0 

for which 

A&K2 - 3/4 p2) = X0 tanh(1 - ( K2 + 3/4 p2 2 ME > 1 (12) 
C 

Now with increasing spectator momentum the potential strength decreases and 

changes the sign as soon as K2 + 314 p2 = MEc reflecting the fact that the 

potential becomes repulsive at higher energies. For the parametrization 

(11) we obtain exactly the Yamaguchi formulae for the scattering length and 

effective range, for in this case 

d (-ii- dE AM(E)) E=O = ’ - I 
This means that we can use exactly the same parameters as in Yamaguchi case.- 
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Due to the parametrization (ll), however, our phase shift decreases more 

strongly than the Yamaguchi phase shift and changes the sign at EC. 

Since the coupling strength now also decreases for negative energies, 

as it should, we expect the binding of the trinucleon system with the 

parametrization. (12) will not only be smaller than that obtained with 

Garcilazo potentials but also smaller then that obtained with Yamaguchi 

potentials. Indeed the results obtained in Sect. III confirm this 

prediction and even give (almost) the correct triton'binding energy. 

-- 
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III. Trinucleon Bound State Calculation 

We are solving a Faddeev bound state equation of the following type [2] 

Ai = r&K2 - J/L, p2) c xijTij(K; P,P') A~-(P')P'~ dP' 9 (13) 
j 

where the kernel T,; is given by 

Tij 'Kjp ,,) = ': 
, -1 

+ PP'Y) 
dy 

K2 + p2 + p' 2 
+ P'PY 

and ri(-K2 3/4 p2) is easily obtained from eq. (8). The summation in eq. 

(13) runs over the spin coefficients 

1 -- 
2 

1 -- 
2 

L 
2 

-1 

1 

0 

in the case of triton for charge-dependent N-N forces, 

1 3 

x(s 7 -2 = + = ( 3 1 -- 
2 T ) 

in the case of charge-independence, and x = 2 for three indentical zero-spin 

particles, there S denotes total spin, and I total isospin of the trinucleon 

system. As already discussed in Sect. III eq. (13) are unique and preserve 

three-body unitarity. The binding energy is found as theenergy for which 

the corresponding Fredholm determinantvanishes. In Table III results for 

the binding energy for a system of three-identical zero-spin particles [21] - 

for forces as listed in Table II are given. 

. 



Table III. Trinucleon binding energy for three identical zero-spin 
particles calculated by different forces. 

Force Partial Wave Binding Energy (MeV) 

YTPN 25.40 

GTPN 61.50 

YTPN" .Triplet 75.40 

MTPNl n-p 17.35 

YSPN 

GSPN 

YSPN" 

MSPNl 

singlet 

n-p 

2.49 

3.87 

13.00 

1.94 

The results displayed in Table III confirm the expectations discussed in 

SeEt. II. The energy-parametrization (3) of the potential strength leads 

for the force GTPN to very strong overbinding: 61.50.heV compared with 

25.40 MeV for the Yamaguchi triplet force (YTPN). The force YTPN* cor- 

responds to the upper bound for the Garcilazo potential strength XG (i.e. 

hy amaguchi = X0). The latter force leads to a binding energy of 75.40 

MeV which is not too far from 61.50 MeV. This is due to the rapid conver- 

gence of tanh to one already for relatively small arguments. We can define 
eEf 

an effective energy-independent potential strength XG by noting that 

with this strength Yamaguchi potential reproduces the binding energy of 

61.50 MeV. It holds then 

xi amaguchi = Aotanh(l) < X0 tanh(1 + y) < ,Eff < A0 . 
C 

The lowest binding is obtained, as expected, for the parametrization (11) - 

giving 17.35 MeV. 

. 
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Corresponding results for the singlet force show the same qualitative 

features. Here the difference between the binding energy for Garcilazo 

potential and the binding energy for Yamaguchi -potential is smaller 

than in the case of the triplet force. On the other hand the energy of - . 

13 MeV due to the force YSPN*, which corresponds to the upper bound for 

Garcilazo potential strength, is large compared with the binding energy 

of 3.87 MeV, obtained for GSPN. This peculiarity can be easily understood 

eff 
in terms of quantities of the inequality (15). For the triplet case AG 

is closer to X0 than to AYamaguchi = X0 tanh(1) due to the already large 

binding energy, whereas in the singlet case AEff is closer to Xotanh(l) 

than to X0. The latter results from,small binding energy in the case of a 

singlet force. Another way to express this behavior is to say that for 

eff large enough X0 (X0 ; 2.0) hG z ho. This means that we obtain the same 
._ 

binding for the energy-dependent and energy-independent potential, which 

is the upper bound for the energy-dependent potential regarding their 

potential strengths. 

In Table IV we present binding energies for triton in a charge-indepen- _ 

dent treatment. 

Table IV. Triton binding energy for different 
sets of charge-independent forces. 

Force Binding Energy 

3Sl 

YTPN 

GTPN 

MTPN 

-I I in MeV 

ISO 
I 

YSPN 11.98 

GSPN 22.80 

MSPN 9.15 

. 
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In Table V triton binding energies are given assuming charge-dependent 

nucleon-nucleon forces. 

Table V. Triton binding energy for different 
sets of charge-dependent forces. 

Force Force 

3Sl (n-p) 'So (n-p) 'So n-n 3Sl (n-p) 'So (n-p) 'So n-n 

Binding Energy Binding Energy 
in MeV in MeV 

YTPN YTPN YSPN YSPN 

MTPNl MTPNl MSPNl MSPNl 

MTPN2 MTPN2 MSPN2 MSPN2 

YSNN YSNN 10.80 10.80 

MSNNl MSNNl 8.59 8.59 

MSNN2 MSNN2 8.33 8.33 

The difference between the two versions cf the separable force with the 
-- 

energy-parametrization given in eq. (11) is due to the uncertainty in the 

- experimental data in the vicinity of the energy position E at which N-N 
C 

phase shifts change the sign. In the first version we have adopted the 

values of ref. [19] following Garcilazo [ll]. In the second version we 

exploit the recent data analysis by Arndt and Verwest 1191. Since there 

are no experimental phase shifts available for the neutron-neutron scatter- 

ing we have assumed Ec(n-n) = Ec(n-p) (see Table I). The results in Table 

V show that the binding energy is sensitive to the slight shift in EC. This 

effect explains also the failure of the Yamaguchi potentials. In order to 

see this more clearly we use the following explanation. .The separable 

potential with the parametrization (11) can reproduce the original Yamaguchi 

phase shifts even at higher energies if we let E c go to infinity. In that case the 
- 

energy dependence E/(Ec + a) is spurious and we end up with the original 

Yamaguchi potential 
. 
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'M(E) -> ‘ya~gu~chi = '0 tanh(l) 
EC -f 00 .d 

W-3) 

More important than this is the possibility that-using the energy-dependent 

separable potential with parametrization (11) we can gradually approach 

the Yamaguchi potential by continuously increasing EC. This means that 

pushing EC to higher and higher energies we overbind the triton more and 

more. the upper bound for thk increment of the binding energy is just given 

by the limit (16), namely the original YamaTuchi potential. Since 

varying EC we are not changing either the off-shell behavior nor the low 

energy on-shell behavior, the change in the binding energy is determined by 

the phase shifts at higher energies. We also discuss this point in Sect. 

IV. If we use the values of EC given in ref. [19] we obtain for the triton 

binding energy 8.59 MeV. If we use the recent data [20] for EC (for 

triplet E[lgl > EL201 and for singlet E[lgl < hL201; see Table I) we obtain 
C C C C 

8.33 MeV. 
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IY. Conclusions 

We have shown that a simple, energy-dependent, separable potential of 

Yamaguchi form, which allows physically reasonable-analytic continuation of 

the corresponding t-matrix to negative energies, describes correctly not 

only nucleon-nucleon observables, including high energy nucleon-nucleon 

phase shifts, but also provides a correct value for the triton binding 

energy. Moreover due to the construction of its energy-dependence this 

potential leads to unique Faddeev equations and preserves three-body 

unitarity. 

Due to the fact that the potential proposed here (parameterization (11)) 

goes continuously in the limit EC + a into the Yamaguchi potential, however 

without changing the off-shell behavior, we can attribute the overbinding 
-- 

obtained with Yamaguchi potential to its incorrect phase shifts at higher 

energies. Owing to the on-shell energy-dependence of our potential we can 

clearly decide in which energy range the phase shifts are important for 

the triton binding energy, One has to recall that the energy-dependent 

potential strength AM(E), which determines the phase shift S(E) at the same 

energy E, appears in the r-matrix and must be continued to negative energies 

2 XM(-K -3/4P 2 ) in the context of Faddeev bound state equations. Since, due 

to formula (ll), XM(-E) = AM(E), and K2 is a constant for given forces, we 

observe that in the context of Faddeev bound state equations AM(E) is effective 
-_ 

only in the range E E [K2/M,m). This means that only the phase shifts in the 

same range are of immediate importance. (The phase shifts in the range [0,17] 

MeV (Elab) are only important in that sense that they are generated by the - 

same potential and should for physical reasons approach the empirical phase 

shifts.) This finding has a general significance which can be expressed in 

. 
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the following way: In constructing a two-body potential for use in a 

triton bound state calculation one should pay more attention to a proper 

reproduction of the phase shifts above 17 MeV than below 17 MeV. 

Usually the Yamaguchi potential (and also other potentials) are chosen 

so that to seproduce first the two-body low energy behavior, It is not 

straightforward to generalize this statement to other potentials. The 

reason is that in our case all potentials we have used have the same off- 

shell behavior and it is therefore easy to ascribe the differences in 

three-body magnitudes to the two-body on-shell variations. In general, 

a change of on-shell properties of a two-body force leads automatically 

to different off-shell behavior, which in turn has different implications 

on the three-body system and makes the above analysis.more difficult. As 

far as the off-shell behavior is concerned, our result of obtaining an -- 

almost correct triton binding energy suggests that the off-shell behavior 

of our potential is not unreasonable. It should be remembered that Yamaguchi 

separable potential is a "smeared out" product of two Yukawa potentials. 

Finally we like to emphasize that there is no reason not to consider 

energy-dependent two-body potentials within a few-body calculation, as 

long as the corresponding and matrices fulfill the two-body unitarity 

condition, It is well known that as a basic input for Faddeev equations a 

two-body t-matrix may be considered instead of a potential. As discussed 

-. in Section II the two-body t-matrix must fulfill the two-body unitarity 

condition in order to make the Faddeev equations unique and guarantee their 

unitarity. A hermitian potential is a suitable generating operator of a 

two-body t-matrix which guarantees these properties automatically. However, - 

as demonstrated here, the hermitian potential is not the exclusive mathematical 
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tool for a proper generation of well behaved two-body t-matrices. Since 

the t-matrix is more closely related to observable data than the potential, 

the problem of its generation should be regarded of secondary importance. 

However, a potential whether energy-dependent or energy-independent can 

help to explain some features of the two-body t-matrix which are not 

accessible in the experiment as for example the analytic continuation of 

the two-body t-matrix to negative energies as required by the Faddeev 

equations. An obvious requirement, which motivated the parameterization 

(11) , is that an energy-independent separable potential which would 

reproduce a t-matrix generated at a particular energy generated by an 

energy-dependent potential should not have a strength exceeding the 

maximum strength (attraction in our case) of the considered energy-dependent 

separable potential. The Garcilazo potential does not fulfill this require- 
-- 

ment and leads to strong overbinding, since the improper choice of analytic 

continuation of the t-matrix corresponds to more attractive energy-independent 

potential than the maximum strength of the original energy-dependent potential. 

If we base our discussion on the t-matrix level without considering its generating 

potentials, we may say in view of the small differences between the phase 

shifts obtained with Garcilaro and our potential that given the empirical 

phase shifts a problem of a proper choice of continuation of the t-matrix to 

negative energies is an open question. (In our case this problem is solved 

-. by a specific construction of a generating potential.) This problem is of 

great importance in the context of the Zero-Range-Theory by Noyes [17?, 

which is based only on the on-shell information of the two-body t-matrix. 

An analytic continuation of t-matrices constructed by means of dispersion 

theoretic equation and empirical phase shifts to negative energies predicts 
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a triton binding energy of 2.5 - 3.0 MeV 1211. A similar results (2.8 MeV) 

was found recently by Kuzmichev and Kharchenko [221 in the approximation 

of two-particle correlations which corresponds to the zero range or pure 

on-shell limit. Thus it may be concluded that the two-nucleon off-shell 

effects account for approximately 5.5 MeV triton binding energy. 

In view of the satisfactory results obtained with parameterization (11) 

- . 

it seems promising to use our potential in calculation of N-d reaction and 

3 H and 3He form factors. We shall report on these calculations in a future 

publication. 
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