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Abstract

With increasingly large amounts of computational resources becoming cheaply
available, Bayesian statistical methods are growing in popularity in many �elds of
science. In theoretical high energy physics they have found applications in “global
�ts” (that is, parameter extraction and model comparison) of new physics models,
particularly supersymmetric models. Unfortunately, in the most interesting cases,
prior probabilities can play a very strong role. In such cases an analyst has two
general options available: either attempt to isolate the analysis from the impacts of
prior considerations as far as possible, or embark on a very careful prior elucidation
process. The �rst path leads back to orthodox ‘frequentist’ analyses if followed to
conclusion, though one can remove some of the impact of prior choice without
completely abandoning the Bayesian framework and the advantages it o�ers. The
second path requires careful consideration of the theoretical motivation behind
the models under consideration.
In this thesis I will explore both options. To begin, I review the theoretical

foundations of supersymmetry, before discussing the deep connections that exist
between the naturalness principle and epistemic (Bayesian) probability, particularly
in the form of ‘naturalness priors’. These naturalness priors and related �ne-tuning
measures are derived for the MSSM and the NMSSM. Following this a large
numerical study of the CMSSM is performed, with a focus on the use of partial
Bayes factors to partially isolate the impact of searches at the LargeHadronCollider
from prior considerations. Next I include the results of a study of naturalness priors
in the constrained NMSSM. I conclude with a discussion on the future prospects
for employing subjectivist techniques in phenomenological studies.
Accompanying the thesis are several large appendices. These provide back-

ground material regarding the philosophy of probability, particularly subjectivist/
epistemic probability, along with reviews of the frequentist and Bayesian statistical
techniques used in the thesis body. Along with these reviews, I explore the impli-
cations of taking seriously an ‘operational’ subjectivist position when performing
Bayesian calculations.
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“The best thing for being sad,” replied Merlin, beginning to pu� and
blow, “is to learn something. That’s the only thing that never fails.
You may grow old and trembling in your anatomies, you may lie
awake at night listening to the disorder of your veins, you may miss
your only love, you may see the world about you devastated by evil
lunatics, or know your honour trampled in the sewers of baser minds.
There is only one thing for it then – to learn. Learn why the world
wags and what wags it. That is the only thing which the mind can
never exhaust, never alienate, never be tortured by, never fear or
distrust, and never dream of regretting. Learning is the only thing for
you. Look what a lot of things there are to learn.”

T.H. WHITE, The Once and Future King



Introduction 1
昔者庄周梦为蝴蝶，栩栩然蝴蝶也。自喻适志与！不知周

也。俄然觉，则蘧蘧然周也。不知周之梦为蝴蝶与？蝴蝶之

梦为周与？

Once Zhuangzi dreamt he was a butter�y, a butter�y �itting and
�uttering around, happy with himself and doing as he pleased. He
didn’t know he was Zhuangzi. Suddenly he woke up and there he
was, solid and unmistakable Zhuangzi. But he didn’t know if he
was Zhuangzi who had dreamt he was a butter�y, or a butter�y
dreaming he was Zhuangzi.

庄周梦蝶(circa 300 BC)
Zhuang Zhou Dreams of Being a Butterfly

tr. BurtonWatson

Physicists, most of the time, are pragmatists. The foundational questions of
philosophy, such as the nature of knowledge, truth, language, induction and so on,
are far from our minds in the course of doing every-day physics. We simply want
to develop models of physical phenomena which accurately match the results of
our past experiments, and which we anticipate will correctly predict the results of
planned experiments. We do not question how we are able to do this successfully,
however mysterious and interesting it may be to the philosopher.
We can usually get away without really thinking much about our philosophical

choices, because the impulse of the pragmatist is just to do that which “works”,
and not worry about such questions as what is “really” happening, or “really” true,
or “really” exists. This is easiest when we �nd ourselves fully within one of Kuhn’s
“paradigms”, in which there are certain fundamental theories and principles which
we are confortable to take as “correct”, and which inform our thinking regarding
any more speci�c, “derived”, phenomena. But when our theories are pushed near
their breaking point by anomalous experimental �ndings it can be di�cult to
maintain this attitude of pragmatism, for as soon as we consider making choices

1



2 Introduction

between theories, we quickly �nd ourselves asking such troubling questions as
“both these theories �t this data, but which is more plausible and likely to correctly
predict other data?”. If both theories predict the same thing for all phenomena we
can conceivably measure, then we can safely work with the simplest one and say
the rest is a matter of philosophy. But this is rarely the case. Most o�en there are
in-principle measurable di�erences between the predictions of theories, it is just
that we have not yet managed to perform su�ciently discriminatory experiments
to tell them apart.
In this situation the hard-nosed experimentalist may argue that really there

is nothing we can do, and that simply we must wait until we have more data to
sort out our theories. But theorists seem to have other ideas. Arguments are
made on many fronts as to why this or that theory is more plausible than another.
What can this mean other than that the theorist thinks there is a better chance
that experiments will eventually vindicate the plausible theory than that they will
vindicate the implausible one? Do they have any valid basis on which to make
such judgements?
In everyday thinking even the hard-nosed experimentalist will �nd themselves

making many judgements of this kind. For an extreme example: did the United
States of America land manned spacecra� on the moon six times between 1969
and 1972? It seem astonishing that anyone could think the answer is “no”, and
yet, if one is determined, an elaborate conspiracy theory attesting this answer can
be invented which is compatible with all observed empirical facts (assuming one
does not have �rst-hand experience of the events in question). Does the dogmatic
empiricist really admit that the conspiracy theory has as much validity as the
simpler explanation that such a feat was in fact achieved? Those who do not have
the disposition of a conspiracy theorist will be happy to discard the conspiracy
theory; but why? For all the ease with which most of us automatically make such a
judgement, this is an exceedingly hard question to answer. It is a question which
cuts deep into the nature of human intelligence and reasoning, but it appears that
the answer has something to do with probability theory.
As the available discriminatory empirical data declines, theorists are prone to

increase their metaphysical reasoning. Metaphysical discussions are of course not
new among physicists; indeed they have been with us since the beginning, and few
episodes in the history of physics are more famous than the great Bohr-Einstein
debates on the metaphysics of quantum mechanics. However more recently we
have seen increasing reliance by theorists on metaphysical reasoning, exempli�ed,
it seems to me, in the naturalness and anthropic principles. By the naturalness prin-
ciple I mean the idea that if certain constants in a theory, particularly a quantum
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�eld theory, are measured to be small, then there should be a symmetry of some
kind which explains this smallness. We will discuss this principle further in chapter
3. In contrast, the anthropic principle attempts to explain mysterious-seeming
values of physicals constants in terms of a selection e�ect; namely, if the constants
were much di�erent, the history of the universe would not have resulted in us, so
that no observers could have witnessed these di�erent values.

The naturalness principle in particular has had enormous in�uence on the
course the �eld has followed. For decades now theorists have explored the idea
of supersymmetry and built models exploiting it to solve the naturalness prob-
lems of the Standard Model, and experimentalists have built great machines in
search of these models. If supersymmetry is found at the Large Hadron Collider
it will represent one of the most shocking theoretical successes in the history of
mankind. Clearly there are sociological reasons for the popularity and interest by
the community in supersymmetry, but the theoretical motivations certainly exist
and appear to be quite profound.

Both the naturalness and the anthropic principles, as well as the matter of the
moon landing conspiracy theory, seem to me to be matters of probability. Not the
kind of probability familiar to most physicists, which can be measured by count-
ing the proportions in which certain outcomes occur in repeatable experiments,
but instead the kind of probability which philosophers call “epistemic”, from the
Greek epistēmē, meaning “knowledge”, and which statisticians call “Bayesian”, a�er
the 18th century statistician, philosopher, and minister, Thomas Bayes, who �rst
described the foundational formula known today as Bayes’ theorem. This kind of
probability is used to quantify the knowledge which an idealised rational agent has
at their disposal with regards to some situation. It can be de�ned in many ways,
but perhaps the most pragmatic of these is the de�nition given by de Finneti and
others (de Finetti, 1992 [1937]; Ramsey, 1931; Jaynes, 2003), in which we say that
the personal probability assigned by an agent to some event is a measure of the
degree to which that agent believes that the event will occur. We can determine
this number empirically by investigating the ways in which the agent is willing to
gamble on the occurrence of the event. The gamble does not have to be a literal
bet; it can be abstracted in terms of the decisions the agent is willing to make based
on the consequences to them of the event occurring or not.

How is this kind of probability related to the metaphysical principles popular
among theorists, or moon landing hoaxes? The connection becomes more obvious
with an example. Consider a proposition A, such as “it will rain in the next hour”,
and some other proposition B which is connected to A in some manner, such as
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“there are currently many large and dark clouds in the sky”. One can then write

Pr(A ∣ B) (1.1)

to represent the probability of A given B, in this case the probability that it will rain
in the next hour, considering that there are many large and dark clouds in the sky.
This is clearly not a statement about any repeatable experiment (though certainly
knowledge of the correlations between dark clouds and rain is relevant); rather it
is a question of the epistemic support which proposition B o�ers to proposition A.
In terms of gambling behaviour, if this number is high, it means that the agent will
consider it wise to take an umbrella when she goes outside.
Returning to the naturalness principle, we see that it is motivated by certain

facts of our physical models which theorists �nd improbable, or surprising. They
ask questions like “Why is the electroweak scale so much below the Planck scale?”
and “Why is the QCD theta angle so close to zero?”. Are these the questions of a
dogmatic empiricist? They do not seem to be. The Standard Model is an extremely
empirically successful theory, aside from its failure to explain darkmatter, neutrino
masses, and a few anomalies such as the anomalousmuonmagneticmoment. What
right do we have to ask these non-empirical questions, or to suspect that answers
to them might be connected to the few empirical failures of the Standard Model?
Again it seems to be a matter of probability.
Epistemic probability is intimately connected to inductive logic. Indeed, in

the way I introduced it above it already is evident that it connects propositions
in some non-deductive fashion. Given the very great degree to which we rely
on deductive logic in physics, perhaps it is obvious that inductive logic plays an
equally great role. It is evident that in everyday life we make countless decisions on
the basis of informal inductive logic: whether to take an umbrella when leaving the
house; whether to look for the car keys �rst on the bedside table or on the kitchen
bench; whether to take the expressway or the back streets on the way to the o�ce;
whether to trust our colleagues when they report experimental results. Certainly
from a sociological perspective such logic is in�uential on the way physics is
practiced: whether we write a paper on model X or model Y; whether we take
time trying to reproduce the results of person Z, and so on. But could there be a
more fundamental role which this logic has to play? Certainly it seems that some
theorists think it does, whether or not they consciously think in terms of epistemic
probabilities. Even Einstein made grand statements which suggest such thinking:

Our experience hitherto justi�es us in trusting that nature is the re-
alization of the simplest that is mathematically conceivable. I am
convinced that purely mathematical construction enables us to �nd
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those concepts and those lawlike connections between them that pro-
vide the key to the understanding of natural phenomena. Useful
mathematical concepts may well be suggested by experience, but in
no way can they be derived from it. Experience naturally remains
the sole criterion of the usefulness of a mathematical construction for
physics. But the actual creative principle lies in mathematics. Thus,
in a certain sense, I take it to be true that pure thought can grasp the
real, as the ancients had dreamed.

These are certainly inspiring words. But we should not get ahead of ourselves. The
rules of deductive logic are not magic, and nor are those of inductive logic. We
require empirical input to learn anything with any degree of certainty. But perhaps
the rules of inductive logic, of probability theory, can help us organise this empirical
input, and help us navigate the space of possible explanations of that input in an
e�cient manner, helping us to obtain models with good predictive properties as
quickly as possible. Perhaps there are good reasons to postulate certain theories
before others, and to build experiments to search for their predictions before
others. If nothing else, the language of probability theory allows us to combine
the empirical data we receive from experiments with judgements based upon
theoretical arguments in a consistent manner, so that at very least we can come to
an understanding of the empirical implications of our theoretical biases.
In this thesis I will be primarily concerned with this most pragmatic task;

exploring the ways in which the rules of probability theory dictate we should
combine experimental data and prior judgements. It relies fundamentally on
the assumption that the hard-nosed experimentalist is wrong, and that there are
indeed valid reasons to expect one model to succeed over another before we test
them. If this assumption is incorrect then much of this thesis will be for nought,
though I expect that a great deal of theoretical reasoning including the naturalness
principle itself must fail along with it.
Froma statistical point of view, the task I describe is that of performingBayesian

parameter estimation and model comparison, though I will emphasise the connec-
tion to inductive logic. Throughout the exploration of this task I will examine the
relationships between probability theory, statistics, and the theoretical motivations
of supersymmetry. I will then put these things together with experimental data and
study their implications for particular supersymmetric models and their discovery
prospects.
The body of this thesis proceeds as follows. In chapter 2 I review the theoretical

foundations of supersymmetry, focusing on popular phenomenological models. In
chapter 3 I explore the connections between subjective probability and naturalness,
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particularly as it relates to ‘naturalness priors’ for phenomenological studies, which
I derive for the MSSM and Z3NMSSM. Chapters 4 and 5 present published works;
the former a large numerical study of the Constrained MSSM (CMSSM) with a
focus on isolating the impact of Large Hadron Collider (LHC) searches on the
epistemic probability that the CMSSM will turn out to be a good description of
TeV scale physics; the latter presenting and exploring the NMSSM naturalness
priors for the �rst time. In chapter 6 I o�er summary remarks and an outlook on
future applications of statistical methods based on epistemic probability to the
analysis and interpretation of experimental results in high energy physics.
Accompanying the thesis body are a series of extensive appendices motivating

the main work. First, in appendix B, I review the foundations of probability theory
and the main interpretations, before arguing that an interpretation motivated by
both the logical and subjectivist positions is the most promising for answering the
kinds of theoretical questions in which we are interested. Next, in appendices C
and D, I review the conventional frequentist and Bayesian statistical tools used in
phenomenological studies and global �ts of Beyond the Standard Model (BSM)
physics, before exploring in detail a number of motivating computations in the sub-
jectivist framework. Following these are supplementary works published during
the course of my thesis studies: Appendix E contains a study of LHC constraints
on natural gauge-mediated models with a neutralino NLSP, while appendix F
presents a simple technique for combining LHC constraints on simpli�ed models
to produce more realistic and model-independent limits on sparticle masses.



The Standard Model and
supersymmetry

2
The ultimate goal of high energy physics is to discover mathematical models
capable of describing (in principle, if not in practice) the complete variety of
phenomena accessible to empirical study. We wish to discover the “Laws of Nature”
as they apply at the deepest layers of reality that we can access experimentally, which
in large part is done by studying the motions and interactions of large numbers
of subatomic particles in collisions of ever-increasing energy. This goal is guided,
roughly speaking, by a deep belief in the principle of the uniformity of nature, that
is, the belief that it is possible to describe Nature in terms of “mechanical” (though
not, it seems, deterministic) rules which apply across all of space and time without
variation or exception.
To date, this quest has been enormously successful. Since Newton �rst demon-

strated what a clock-work universe wound up by God and running according to
�xed rules might look like, a relentless series of improvements to the general idea
have followed, until today we have arrived at a description of space and time based
on Einstein’s general theory of relativity, which provides a dynamic stage on which
numerous fundamental quantum �elds evolve according to the rules set out in
the Standard Model (SM) of particle physics. Both the particles that constitute the
building blocks ofmatter—the six quarks and six leptons— and the particles which
mediate the forces through which the constituents of matter interact —the three
families of gauge bosons—, are described as quantised excitations of these �elds,
in the mathematical language of quantum �eld theory. Precious few phenomena
observed to date escape description by this model, but these few anomalies are vital
clues as to what direction the great quest should take next. To make the best use
of these clues, every tool of statistical inference available will be needed, and the
way in which these tools may be validly applied must be thoroughly understood.
In this chapter I will �rst brie�y review the structure of the Standard Model of

particle physics and examine the problems in it which motivate the introduction
of supersymmetry. I will then review the structure of supersymmetric gauge

7



8 The StandardModel and supersymmetry

theories before describing two of the most popular supersymmetric models, the
Minimal Supersymmetric Standard Model (MSSM) and the Next-to-Minimal
Supersymmetric Standard Model (NMSSM), as well as some of the common ways
these are constrained, both theoretically and experimentally.

2.1 The Standard Model
The Standard Model is a gauge theory, by which it is meant that it is based on
the powerful gauge principle. To apply this principle, one demands that the
observable physics of the theory be invariant under local transformations belonging
to some speci�ed group, that is, that the physics be symmetric under that group of
transformations, which is then called a gauge group. If one starts from a theory of
“free” (that is, non-interacting) quantum�elds and then invokes the gauge principle,
a new set of quantum �elds corresponding to “forces” is generated, which then
mediate interactions between the original �elds. The nature of the introduced
force varies according to the symmetry group applied while invoking the gauge
principle. Below I revise the general structure of the Standard Model, however it
will be very brief; for more detailed introductions see Burgess and Moore (2007);
Buchmuller and Ludeling (2006); Robinson et al. (2008).
In the Standard Model, one introduces the matter content –the quarks and

leptons– as a collection of fermionic �elds, that is, �elds of spin 1/2 and dynamics
built upon the Dirac equation. For each of these �elds, a kinetic term is added to
the Lagrangian of the theory:

LDirac = ψ (iγµ∂µ −m)ψ, (2.1)

(where the Dirac equation is an Euler-Lagrange equation obtained from this
Lagrangian). Here the fermion �eld ψ is a 4-component object, with adjoint
ψ = ψ†γ0; the Lorentz index µ runs over the set {0, 1, 2, 3} (with repeated indices
summed over their range); γµ are the 4 × 4 Dirac (or “gamma”) matrices satisfying(γµγν + γνγµ) = 2ηµν, with ηµν the metric of Minkowski spacetime with signature(+ − −−). m corresponds to the mass of the fermion. Natural units are used, that
is, ħ = c = 1.
Forces are introduced by invoking the gauge principle with the groups U(1)Y ,

SU(2)L, and SU(3), which introduces a collection of spin 1 particles (where the
subscript labels di�erentiate them from similar groups which remain a�er symme-
try breaking). These each have kinetic term

Lgauge−kinetic = − 12 Tr (FµνFµν) , (2.2)
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with
Fµν = ∂νAµ − ∂µAν + ig[Aµ ,Aν] = Fa

µνTa , (2.3)

The gauge �eld Aµ has n independent (matrix-valued) components, where n is
the dimension of the Lie algebra corresponding to the chosen gauge group. Aµ is
an element of this Lie algebra, so it can be expressed as linear combinations of the
n generators Ta of the algebra, i.e Aµ = Aa

µTa. Gauge transformations then rotate
Aµ throughout the vector space formed by the Ta. The trace in eq. 2.2 acts over
this vector space, i.e.

Tr (FµνFµν) = − 14FaµνFa
µν , (2.4)

with Tr(TaTb) = (1/2)δab since the generators are necessarily traceless. The factor
of 1/2 is an arbitrary normalisation and appears by convention. The generators Ta

obey the commutation relation [Ta , Tb] = i f abcT c , where the f abc are the structure
constants which de�ne the Lie algebra.
Along with the gauge kinetic terms, in order to maintain gauge invariance the

derivatives in the fermion kinetic terms must be modi�ed to covariant derivatives
via the replacement

∂µ → Dµ = ∂µ + igAµ , (2.5)

where gauge terms are required for all gauge transformations. As mentioned
above the gauge �eld Aµ is matrix valued, which it inherits from the matrix-
valued generators Ta. However, many choices ofmatrix-representation are possible
while maintaining the correct transformation properties. The mathematics of
representation theory explains fully the available choices (see for example Georgi
(1982)), but the salient point is that when adding fermions to the model, one has
the freedom to choose which matrix representation to use. One speaks of the
fermion transforming ‘under’ a speci�ed representation of the gauge group, which
means only that the fermion ‘lives’ in a vector space acted on by the group elements
in that matrix representation. For example, if a fermion is an “SU(2) doublet”, it
means that the fermion �eld lives in a two dimensional vector space V (i.e. has
two SU(2) components) and is acted on by a 2 × 2 matrix representation of the
SU(2) algebra. The corresponding covariant derivative, in component form, is

(Dµψ)
i
= (δi j∂µ + igTa

i jA
a
µ)ψ j, (2.6)

where the indices i and j run over the two dimensions of the V . Fermions can
also transform under the ‘trivial’ representation of a gauge group, which means
they live in a one dimensional vector space and that all elements of the algebra
send them to the zero vector. In such cases the fermion will have no interactions
with the gauge bosons of that group, and one says that it is a ‘singlet’.
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U(1) has dimension one, so its algebra has only one generator, so the corre-
sponding gauge �eld has only one (matrix-value) component, that is, the group
adds a single gauge boson to themodel. SU(2) and SU(3) have dimensions 3 and 8
respectively, so add 3 and 8 gauge bosons to the theory. In the cases of SU(3), these
8 gauge bosons are precisely the 8 gluons of quantum chromodynamics (QCD). In
the case of U(1) and SU(2), the story is complicated by the need for electroweak
symmetry breaking.
So far, the fermions in the theory are required to bemassless in order to preserve

the gauge invariance. Of course, the fermions are experimentally observed to be
massive, and so some mechanism is required to introduce these masses in a gauge-
invariant way. In the Standard Model, this is achieved via the Higgs mechanism. A
complex scalar SU(2) doublet is added to the model, with a usual Klein-Gordon
kinetic term, but unusual potential term,

LHiggs = (DµΦ)† (DµΦ) − V (∣Φ∣) , (2.7)

where
V (∣Φ∣) = µ2∣Φ∣2 + λ∣Φ∣4. (2.8)

If µ2 < 0 then the minimum of the potential is not invariant under U(1)Y ⊗
SU(2)L transformations, leading to spontaneous symmetry breaking, that is, the
breakdown of the original U(1)Y ⊗ SU(2)L electroweak symmetry of the theory
into theU(1)Q of electromagnetism. In the process, three of the degrees of freedom
of Φ are “eaten” by three linear combinations of theU(1)Y ⊗ SU(2)L gauge bosons,
resulting in three massive bosons; theW+

µ ,W−
µ , and Zµ, whose masses at tree-level

are given by

m2W± = g2 (v2
2
) , and m2Z = (g′2 + g2)(v2

2
) , with v2 ≡ µ2∣λ∣ , (2.9)

where v is the Higgs vacuum expectation value, and g′ and g are the U(1)Y and
SU(2)L gauge couplings respectively.
The remaining degree of freedom of Φ appears as the physical Higgs boson,

with tree-level mass squared m2H = −2µ2 = 2∣λ∣v2. A �nal linear combination of
the U(1)Y ⊗ SU(2)L gauge bosons, the photon, remains massless, re�ecting the
preservation of a single U(1) subgroup of the original U(1)Y ⊗ SU(2)L in the
low-energy vacuum.
As well as generating the required masses for the electroweak gauge bosons,

by coupling the Higgs doublet to the fermion �elds in Yukawa interactions of the
form

LYukawa = −yΦψψ, (2.10)
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Names spin 1/2 SU(3), SU(2)L ,U(1)Y
quarks Q (uL dL) (3, 2, 16)

(×3 families) u u†R (3, 1,− 23)
d d†R (3, 1, 13)

leptons L (ν eL) (1, 2,− 12)
(×3 families) e e†R (1, 1, 1)

spin 0

Higgs Φ (ϕ+ ϕ0) (1, 2,− 12)
Table 2.1: The non-gauge �eld content of the Standard Model. The fermions are
listedwith their le� and right chiral components separately because these transform
di�erently under the gauge groups (not discussed in text, see e.g. Robinson et al.
(2008) for an introduction). The �nal column speci�es the group representations
under which each �eld transforms.

the samemechanism also generatesmasses for those fermions, where the generated
masses are proportional to the Yukawa couplings y at tree level,

m f = y f
v√
2
. (2.11)

Being a relativistic quantum �eld theory, the StandardModel Langrangian is invari-
ant under spacetime translations and rotations, which together form the Poincaré
group of transformations (of which Lorentz transformations are a subgroup), in
addition to the “internal” gauge symmetries. This symmetry enforces adherence
to the rules of special relativity.
In total the Standard Model has 19 free parameters, which must be measured

experimentally. In the standard parameterisation these consist of the 9 Yukawa
couplings y corresponding to the charged fermion masses, 3 gauge couplings g, 3
CKM (quark) mixing angles and 1 CKM CP-violating phase, the QCD ‘theta’ or
vacuum angle, and the Higgs vacuum expectation value and physical Higgs boson
mass (or alternatively the µ and λ parameters of eq. 2.8).

2.2 Problems with the Standard Model
The Standard Model has been enormously successful in describing a vast array of
phenomena, however it is not perfect. On the observational side it fails spectacu-
larly to explain what dark matter is (Bertone et al., 2005), does not assign masses
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Figure 2.1: One loop corrections to the Standard Model Higgs boson mass from
(a) a fermion loop, and (b) a scalar loop.

to neutrinos (Strumia and Vissani, 2006), and in conjunction with cosmological
models, does not seem able to explain the matter-antimatter asymmetry of the
universe (Dine and Kusenko, 2003). In addition, the anomalous magnetic moment
of the muon aµ is measured at more than 3σ discrepancy from standard theoretical
predictions (Bennett et al., 2004), though the sensitivity of these predictions to
hadronic contributions leaves room for some potential alleviation of the problem
on the theory side (for a review see Jegerlehner and Ny�eler (2009)).
On the theoretical side, one is le� with a number of ‘why’ questions, such as

‘why are there three generations of fermions, identical except for their masses’, ‘why
do the fermion masses increase in a roughly exponential trend’ and ‘why is the
QCD theta angle so small’. Perhaps more tantalisingly, ‘why do the gauge couplings
nearly unify at high energies’ and ‘why does the electroweak scale appear to be
extremely sensitive to higher scale physics?’. Finally, gravitational phenomena are
le� untouched by the model, and must be dealt with separately.
These are all famous problems and are covered extensively elsewhere, however

of particular relevance to this thesis is the matter of the (gauge) hierarchy problem,
that is, the sensitivity of the electroweak scale to new physics. I will thus take some
time to review the details of this problem.

2.2.1 The hierarchy problem

The usual story used to introduce the hierarchy problem goes as follows. In section
2.1 we wrote down the tree level Higgs boson mass in terms of the Higgs sector
parameters µ. However, this mass receives higher order quantum corrections, the
lowest orders of which are illustrated in �gure 2.1.
As described in section 2.1, the tree level contribution to the Higgs mass is√−2µ2, so up to a factor of 2 (which can be shu�ed elsewhere by rede�ning
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parameters) µ2 is the square of the tree level Higgs mass, and is sometimes written
as m2H . From examination of this along with the tree level relationships in eq.
2.9, one expects that the weak gauge bosons should have roughly similar masses,
and that the Higgs boson mass should also appear around this scale, assuming
the couplings g′, g and λ to be roughly of order 1. This scale is referred to as the
“electroweak scale”. Experimentally it is known to be of order 100 GeV, with theW ,
Z and Higgs masses being measured as 80, 91, and 126 GeV respectively. So the
intuition gained from the tree-level relationships seems fairly good.
The situation is very di�erent once quantum corrections are considered. The

one-loop contribution to µ, or m2H , due to fermion loops of the kind in �gure 2.1a
can be written as

∆m2H = − ∣y f ∣2
8π2

Λ2UV + . . . (2.12)

where y f is the Yukawa coupling of the fermion in the loop, the ellipsis represent
terms proportional to m f ln (ΛUV/m f ) with m f being the mass of the fermion,
and ΛUV is a cuto� scale introduced to regularise the loop integral. This loop
correction is quadratically sensitive to the scale ΛUV , and so becomes extremely
large as ΛUV increases. A similar correction originates from the diagram of �gure
2.1b. In light of such a correction, it appears that m2H , and through its in�uence on
the Higgs vacuum expectation value, the entire electroweak scale, should also be
very large, of the order of Λ2UV , unless a conspiracy occurs so that all such loop
corrections cancel each other out to a precision of around one part in Λ2UV/GeV.
Formally ΛUV must be taken to in�nity to remove it, and the divergence absorbed
into the bare Lagrangian parameters, however the structure of the divergence is
disturbing, for reasons we shall discuss below. This direct sensitivity to Λ2UV does
not appear in other areas of the Standard Model, where, for instance, the fermion
masses are “protected” by chiral symmetry (the breaking of which generates only
logarithmically divergent radiative corrections) and the photon is kept massless by
the preserved U(1)Q gauge symmetry (Djouadi, 2008). In contrast one says that
the Higgs mass is not “protected” by any such symmetry.
While it is disturbing that such extreme sensitivity to the momentum integral

cuto� appears, it is tempting to write this divergence o� as an artefact of the
regularisation scheme chosen, and indeed if one works only with renormalised,
physically measurable quantities then the problem seems to vanish. That is, one
can take the physical particle masses and couplings measured in experiment as the
parameters of the theory, as in Bohm et al. (1986) for example, in which case the
divergences are absorbed into the renormalised parameters from the beginning.
This is the general approach followed when computing physically interesting
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quantities in the Standard Model.
If the Standard Model was believed to be the full story, we could therefore

convince ourselves that there was no problem. However, as claimed in section 2.2,
there are many reasons to think that new physics must lie beyond the Standard
Model, at the very least at the scale where quantum gravity e�ects become impor-
tant, i.e. the Planck scaleMP . In this case the structure of the corrections in �gure
2.1 causes problems, because it means thatm2H is quadratically sensitive to the scale
of this new physics, even if a di�erent regularisation procedure is chosen so that
Λ2UV does not appear. For example if a new heavy scalar �eld S with mass mS is
added to the Standard Model, and couples to the Higgs according to −λS ∣Φ∣2∣S∣2,
then it will contribute to m2H via a loop as in �gure 2.1b giving the correction

∆m2H = λS

16π2
(Λ2UV − 2m2S ln (ΛUV/mS) + . . .) , (2.13)

so that, the term proportional to the unphysical cuto� Λ2UV aside, the correction is
still proportional to m2S , and so is still very large if the new scalar is heavy. This
example is discussed in detail in Martin (2010).
The term proportional to m2S in eq. 2.13 is still dependent on the unphysical

cuto� scale, so one may still remain unsatis�ed that a “real” problem exists. In this
case, one can turn to an e�ective �eld theory approach for an alternate perspective.
Integrating out the heavy scalar to recover the Standard Model as an e�ective
theory, and working directly with renormalised parameters in the MS scheme,
one then needs to obtain the matching conditions relating the parameters in the
full theory to those in the e�ective theory. Marking the parameters of the e�ective
theory with a bar, the matching condition for the Higgs m2H parameter is given at
one loop order by Bilenky and Santamaria (1994) as

m2H(E) = m2H(E) −m2S(E)λS(E)
16π2

(1 + 2 ln (E/mS)) , (2.14)

where E is the scale at which the renormalisation is performed. From this equation
it is apparent that in order to obtain an m2H(E) parameter of the order of the
electroweak scale, the m2H(E) parameter in the full theory must be of the same
order as m2S(E), and that these must be carefully balanced in order for the terms
in eq. 2.14 to cancel out with su�cient precision. This tuning can be arranged at
any particular scale E, but even then it will remain very di�cult to keep m2H(E)
small at any other scale; for example, ifm2H(E) is given as input at the scale E, then
at another scale Q (such as the electroweak scale) the Higgs boson mass receives
corrections quadratically sensitive to m2S (Beringer et al., 2012)

m2H(Q) = m2H(E) +m2S(E)λS(E)
8π2

ln (E/Q) , (2.15)
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so that a small input value for m2H(E) rapidly becomes very large when moving to
the electroweak scale Q. Similar contributions arise from every particle to which
the Higgs couples (with sign depending on their spin), so to keep m2H(Q) small
requires extremely careful tuning of all these contributions.
The hierarchy problem thus does not vanish by changing computational per-

spective. Looking at any of eq. 2.13, 2.14 or 2.15 one sees that in order to avoid large
“unnatural” cancellations, then either the scale at which the new physics enters
(m2S) must not be “too large”, or else the new physics must come equipped with
a mechanism which arranges for the necessary cancellations to occur “automati-
cally”, as occurs in other parts of the Standard Model. This brings us to the topic
of supersymmetry; in this approach to Beyond the Standard Model (BSM) physics
one �nds the latter solution to the hierarchy problem, that is, a new symmetry
which ensures that the necessary cancellations occur.

2.3 Supersymmetric models
Supersymmetry (SUSY) has the potential to solve the hierarchy problem, dark
matter problem, explain the matter anti-matter asymmetry, and explain several
more minor observational anomalies (Haber and Kane, 1985), but it was initially
explored for more esoteric reasons. Fundamentally, it is an extension of the space-
time symmetries described by the Poincaré group, which enforce the rules of special
relativity in the Standard Model, and is one of the only known consistent ways in
which this can be done in a quantum �eld theory. In this section, I brie�y review
the basic structure of supersymmetric gauge theories. For a detailed treatment, see
Martin (2010); Baer and Tata (2006); Weinberg (2000).
To describe what supersymmetry is, one �rst considers the behaviour of

Poincaré transformations. When these transformations, such as spacetime ro-
tations, translations, or Lorentz transformations, are applied to a quantum state,
they leave the spin of that state unchanged. Considering their action on some �eld
operator ψ(x), one obtains

translations: ψ(x)→ ψ′(x) = e ia
ρPρ ψ(x),

Lorentz transformations: ψ(x)→ ψ′(x) = e
i
2ωρσMρσ ψ(x), (2.16)

where Pρ are the generators of translations (e.g. Pρ = i∂ρ for spin 1/2 �elds and
scalar �elds), Mρσ are the generators of Lorentz transformations (e.g. Mρσ =
i (xρ∂σ − xσ∂ρ) +i/4 [γρ , γσ] for spin 1/2 �elds, and the same minus the last term
for scalar �elds), aρ and ωρσ are coe�cients describing the particular transfor-
mation being performed, and ψ(x) and ψ′(x) are either both fermionic or both
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bosonic states. The Lie algebra of the Poincaré group mixes these generators
together, in the sense that they do not all commute with each other:

[Pρ , Pσ] = 0,
[Pρ ,Mνσ] = i(gρνPσ − gρσPν),

[Mµν ,Mρσ] = −i(gµνMνσ + gνσMµρ − gµσMνρ − gνρMµσ),
(2.17)

where these relationships hold independently of the spin of the �elds on which the
generators act. Importantly, they link the translations and Lorentz transformations
together. This is signi�cant because although the Standard Model respects a set of
symmetries that is comprised of the Poincaré group and the internal symmetries,
the generators of these groups do not mix in this way, i.e. they all commute (due to
the direct product structure of the combined group). The internal symmetries can
be described as ‘trivial’ extensions of the Poincaré group due to this lack of mixing.
All supersymmetric theories have at their core a non-trivial extension of the

Poincaré group, which due to the Coleman-Mandula no-go theorem (Coleman
and Mandula, 1967) requires the introduction of generators which change the spin
of the states on which they act. These generators Qα require a spinor label α if
they are to change the spin of a state, and so are termed “fermionic” (generators of
transformations which do not a�ect spin are termed “bosonic”); their action on
quantum states can then be written schematically as

Qα ∣boson⟩ = ∣fermion⟩α , Qα ∣fermion⟩α = ∣boson⟩ . (2.18)

This has profound consequences for any theory incorporating such a symmetry; it
creates interactions such that fermions can change into bosons and vice versa.
Introducing one set of fermionic generators results in N = 1 supersymmetry1,

and corresponds to extending the Poincaré algebra to the N = 1 super-Poincaré
algebra: [Qα , Pρ] = 0,

{Qα ,Q β̇} = 2(σ ρ)αβ̇Pρ ,

[Mρσ ,Qα] = −i(σ ρσ) β
α Qβ ,{Qα ,Qβ} = {Q α̇ ,Q β̇} = 0,

(2.19)

1It is possible to introduce more fermionic generators, but in four spacetime dimensions
the resulting group does not allow for chiral representations, which are crucial for reproducing
the phenomenology of the Standard Model. This problem can be alleviated by going to higher
spacetime dimensions, but then one must explain why it is that these dimensions are not observed
today, and deal with issues of compacti�cation etc. Such a theory may yet turn out to be correct, but
at the weak scale only N = 1 SUSY seems viable so it is believed that higher dimensional theories
with extra SUSY charges should reduce to a 4D N = 1 theory in the low energy limit.
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where the spinors are written in the Weyl representation, that is α, β̇ ∈ {1, 2} and(Qα)† = Q α̇ . The mixing of the generators ‘blurs’ the distinction between this spin
symmetry and the rest of the space-time symmetries, just as the Lorentz transfor-
mations blur the distinction between space and time. Because of this blurring we
are forced to extend our concept of spacetime to ‘superspace’, just as we were forced
to accept time as a component of spacetime by extending the groups of rotations
and translations to the Poincaré group. To match up with the fermionic generators
Qα and Q α̇, the extra coordinates needed must be fermionic (non-commuting),
and so are described by the Grassmann variables θα and θ

α̇
. The coordinates

of superspace are thus X = (xµ , θα , θ
α̇), and a �eld over superspace is known

as a super�eld. Supersymmetric theories are thus theories of interacting super-
�elds, and are constructed by �nding Lagrangians invariant under supersymmetric
transformations.
The importance of what we have just done cannot be overstated. It is known

that symmetries play a central role in quantum �eld theory, and that the Poincaré
symmetry is realised in nature2. We have also seen that supersymmetry is the only
way to extend the Poincaré group non-trivially without violating the Coleman-
Mandula theorem. This chain of reasoning alone is su�cient to place supersymme-
try in a special category of the potential theories of new physics, and was enough
to stimulate the initial research e�orts that followed its discovery.

2.3.1 Solution to the hierarchy problem
In section 2.2.1 we saw that the StandardModelHiggs bosonmass, and by extension
the whole electroweak sector of the Standard Model, was quadratically sensitive to
radiative corrections coming from high-scale physics. To keep the electroweak
scale small requires a special conspiracy to occur in the parameters of the new
physics. Supersymmetry naturally provides exactly such a conspiracy.
To achieve this goal every fermionic degree of freedom is “paired” with a

bosonic degree of freedom, with all other properties aside from spin kept identical.
The reason for this can be seen by examining the one loop corrections to the Higgs
arising from scalars and fermions as in �gure 2.1, which can be written in terms of
a cuto� scale ΛUV as

∆m2H,S = λS

16π2
(ΛUV + 2m2S ln (ΛUV/mS)) ,

∆m2H, f = − λ2f
8π2

(ΛUV + 2m2f ln (ΛUV/m f )) .
(2.20)

2At least approximately, and locally
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Thus, if we could arrange the physics so that λS = λ2f ,m2S = m2f , and for there to be
two scalar contributions for every fermion contribution, then all the corrections
would perfectly cancel out, and the hierarchy problem would be solved. Supersym-
metry precisely arranges for this cancellation to occur by grouping particles into
supermultiplets, all the members of which must have masses and couplings related
in exactly the required way, with the necessary matching of fermion and bosonic
degrees of freedom. We discuss supermultiplets in the next section.
Since supersymmetry must be broken, the perfect cancellation of radiative

corrections cannot be maintained. However, even if superpartners end up with
di�erent masses, the “bad” quadratic corrections remain cancelled, and only more
well-behaved logarithmic corrections remain; i.e. with only λS = λ2f = λ′ we have

2∆m2H,S + ∆m2H, f = λ′

4π2
(m2S −m2f ) ln (ΛUV/mS) , (2.21)

so that, as long as the mass splitting ∣m2S − m2f ∣ is not too large, the size of the
corrections remains reasonably small, even for very large values of the cuto�. To
maintain this requires that SUSY not be “too badly” broken. The dependence
on the cuto� is logarithmic, so the electroweak scale remains “safe” from physics
beyond SUSY, but the dependence on the superpartner masses themselves is still
quadratic, so in the case where these are very large the original problem returns.
This is the so-called “little” hierarchy problem, which is becoming di�cult to avoid
in the face of increasingly powerful constraints coming from the CERN Large
Hadron Collider (Giudice, 2013). The quanti�cation of this �ne-tuning and its
probabilistic implications are the subject of chapter 3.

2.3.2 Gauge coupling uni�cation
There is a further powerful motivation for supersymmetry which has not yet been
mentioned. In the Standard Model the gauge couplings g1 = √

5/3g′, g2 = g,
and g3 “run” with renormalisation scale according to their renormalisation group
equations (RGEs), which at one loop are (Martin, 2010)

βga ≡ ddt ga = 1
16π2

bag3a , (2.22)

where (b1, b2, b3) = (41/10,−19/6,−7) are factors arising from the group structure
and particle content of the model, and t = ln(Q/Q0) is a scaled parameter control-
ling the renormalisation scale, with Q0 being the input scale used to de�ne the
values of the couplings and Q being the renormalisation scale itself. The normali-
sation chosen here for the gauge couplings is motivated by GUT models. Using
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Figure 2.2: Renormalisation group running of the (inverse) gauge couplings α−1a =(g2a/4π)−1 in the Standard Model (dashed) and MSSM (solid). Adapted from
Martin (2010, �gure 6.8).

the experimentally measured values of these couplings as input and evolving them
upwards in scale, one �nds that they come curiously close to meeting at around
1013 – 1016 GeV (see �gure 2.2).
This close encounter makes one suspicious that some new physics may alter

the running and cause the couplings to meet precisely, and indeed in the MSSM
(which we shall discuss in section 2.3.4) the increased particle content alters the
group factors ba in eq. 2.22 to (b1, b2, b3) = (33/5, 1,−3), altering the running in
just such a way that the couplings unify at a scale of 1016 GeV. The uni�cation is
not quite perfect, but the small errors may be easily �xed by threshold corrections
arising from new particles existing near the uni�cation scale. This uni�cation
may simply be a coincidence, but o�en it is taken as a powerful hint that a grand
uni�ed theory (GUT) or superstring theory might describe the physics at high
scales, and that such physics may be associated with whatever mechanism breaks
supersymmetry. This possibility is discussed further in section 2.3.5.

2.3.3 Supermultiplets

In the Standard Model, the single particle states are represented by vectors in
a Hilbert space, e.g. ∣p⟩, for some single-particle momentum eigenstate with
momentum eigenvalue p. Since the StandardModel is invariant under the Poincaré
group, it follows that we can act on ∣p⟩ with elements of the Poincaré group P
to obtain new possible particle states. However, the group itself cannot act on
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∣p⟩; the state must be acted upon by elements from some representation of P. We
say that the representation with which we can do this is the one in which the
particle “lives” or “sits”, and it turns out that these representations are irreducible
and unitary (or anti-unitary)3. The representations we are most interested in can
be classi�ed by two parameters which we identify as mass and spin, with the spin
parameter distinguishing for us the scalar, spinor and vector representations of
the Poincaré group. Elements of these representations can be used to perform
spacetime transformations on particles of spin 0, 12 and 1, respectively.
The reason we can classify representations of the Poincaré group in terms

of mass and spin is because they are related to the eigenvalues of the Casimir
invariant operators of the Poincaré group, which are the squared mass operator P2

and the square of the Pauli-Lubanski vectorW2. The squared mass operator has
the property

P2 ∣p⟩ = m2 ∣p⟩ , (2.23)

i.e. its eigenvalue operating on a particle state vector is the squared mass of the
particle, while the Pauli-Lubanski vector

Wµ = 12 εµνρσPνMρσ , (2.24)

has the property that
W2 ∣p⟩ = −m2s(s + 1) ∣p⟩ , (2.25)

where s is the spin quantum number. These operators commute with all the
generators of the Poincaré group so their eigenvalues are unchanged under group
operations, which is why they are useful to categorise group representations.
In N = 1 supersymmetry the situation is much the same, except that now we

have a larger group of spacetime symmetries. The symmetries of super-spacetime
are described by the N = 1 super-Poincaré group, which possess a super-Poincaré
algebra such as that described by Eq. 2.19. In addition we have a change of terminol-
ogy: in the Poincaré group we called the set of states which transformed into each
other under spacetime transformations “particles”, whereas in the super-Poincaré
group we call the equivalent set of states a “supermultiplet”. The original de�nition
of “particle” still holds for the elements of the supermultiplet, so that one can
consider a supermultiplet to be a collection of particles that transform into each
other under the extra symmetry we have introduced, in much that same way as one
can treat particles forming multiplets under the gauge symmetries of the Standard
Model.

3for a proof of the latter see Weinberg (1996), appendix A to chapter 2
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We would like to classify the supermultiplets in the same way that we classi�ed
the irreducible representations of the Poincaré group. To do this we again need
to �nd the Casimir operators. It turns out that P2 again commutes with all the
group generators, so that all particles in a supermultiplet will have the same mass,
butW2 is no longer a Casimir invariant (because spin is changed by the generator
of supersymmetry Q). This means that particles in a supermultiplet may have
di�erent spins. It turns out that we can construct a di�erent Casimir invariant that
allows us to still use spin to classify the representations, but this no longer means
that all states in the representation will have the same spin.
The representations that are of interest to us are the so called chiral and gauge

supermultiplets. These correspond tomassless representations with spins j = 1
2 and

j = 1 respectively, where the spins refer to the highest spins in the multiplet. Chiral
supermultiplets contain two fermionic states with helicities ±1/2 as well as two
complex spin zero bosonic states. Gauge supermultiplets contain a massless gauge
boson with helicity ±1, along with a Majorana fermionic superpartner known as a
gaugino with helicity ±1/2. We will see the uses of these shortly when we examine
an explicit supersymmetric model, the MSSM.
We have mentioned that SUSY theories were theories of interacting super�elds;

let us now examine further what this means. We mentioned that the concept
required an extension of spacetime to superspace through the addition of fermionic
coordinates, giving us coordinate systems of the kind X = (xµ , θα , θ

α̇). Fields
de�ned over superspace can be expanded in a power series which will truncate due
to the anticommuting coordinates; this occurs because, for example, θαθβθγ = 0,
since the indices can only take the values 1 or 2. A general super�eld can thus be
expanded as

Φ(x , θ , θ) = S(x) + θ χ(x) + θ χ′(x) + θθM(x) + θθN (x)
+ θσ µθV µ(x) + θθθλ(x) + θθθψ(x) + θθθθD(x), (2.26)

where the spinor indices are all contracted, i.e. θθ = θαθα, θθ = θ̄ α̇θ
α̇
etc. S ,M,

N , V µ andD are bosonic �elds while χ,χ′,λ and ψ are Weyl fermions. This expan-
sion is not unique because one can come up with a di�erent set of independent
products of θ and θ to expand in terms of, however any (scalar) super�eld can be
expanded as eq. 2.26.
All components of the expansion in eq. 2.26 do not need to be present at once.

We would like to recover the components which form the chiral and gauge super-
multiplets described above, which are irreducible, from this general expansion,
which is reducible. This process is described in Baer and Tata (2006), and it is
shown that the chiral multiplets are formed by choosing components such that
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λ = χ = χ′ = D = 0, V µ = i∂µS ,N = iM ≡ iF , which give us the spinor and scalar
components of the multiplet (ψ and S) along with the complex auxiliary �eld F ,
which is not physical and can be thought of as simply a bookkeeping device. The
super�eld thus formed is known as a le�-chiral super�eld, and its components
form a le�-chiral supermultiplet. A corresponding right-chiral super�eld can be
formed by replacing ψ with λ (and modifying the de�nitions of the scalar and
auxiliary �elds to V µ = −i∂µS andN = −iM ≡ F). An analogous process can be
followed to describe a general vector (or gauge) super�eld.

The real power of the super�eld formalism lies its facilitation of the construc-
tion of Lagrangians which are invariant under supersymmetric transformations. If
we just work in the ordinary framework of quantum �eld theory it is very di�cult
to see what combinations of �elds and transformations need to be used to construct
objects invariant under SUSY transformations, but in the super�eld formalism
this process is systemised such that general Lagrangians containing whatever types
of super�elds one requires can be written down by following a set prescription.

Members of a supermultiplet can be transformed into each other by SUSY
transformations, and since they are a generalised kind of spacetime transformation,
they do not a�ect other particle properties, such as masses and gauge transforma-
tion behaviour. Via this structure, the conditions required to enforce a solution
to the hierarchy problem are implemented; that is, equal numbers of fermionic
and bosonic degrees of freedom exist in each supermultiplet, masses within the
multiplet are equal, and the couplings to the Higgs obey λS = λ2f .

Before moving on to discuss the MSSM, the following must be reiterated. We
said that all the particles in a supermultiplet must have the same mass because P2

is a Casimir invariant. It is also the case that the particles of the Standard Model
cannot be placed into supermultiplets with each other, and even if they could
we have not observed pairs of particles of the same mass. This implies that the
particles occurring in supermultiplets with the Standard Model particles must
indeed be new particles, however since they must be the same mass as the SM
particles we should easily have seen signs of them by now. Thus supersymmetry,
if it exists, must be a broken symmetry, valid only above some high energy scale
known as the “SUSY breaking scale”. Supersymmetric theories must therefore
incorporate a mechanism of supersymmetry breaking if they are to be plausible
candidates for new physics.
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2.3.4 The MSSM

Just as one can construct many gauge theories aside from the Standard Model, one
can also construct many models which are invariant under SUSY transformations.
Most of these, of course, have very little connection to reality and are at best useful
tools which may be used to understand the general structure of supersymmet-
ric gauge theories. In terms of theories which could plausibly describe the real
world, the most well-known and studied is certainly the Minimal Supersymmetric
Standard Model (MSSM), particularly in terms of its phenomenology.

One of the reasons for this popularity is that the general MSSM can be consid-
ered to be a low-energy e�ective theory, valid below the scale at which SUSY is
broken. The mechanism of SUSY breaking is thus le� unspeci�ed, although the
price to be paid is that all possible Langrangian terms which could plausibly be
generated by the SUSY breaking must be added in “by hand” and parameterised
independently; this generates of the order of 100 new parameters, on top of those
of the Standard Model. Of course one is free to constrain the new MSSM param-
eters by specifying aspects of the SUSY breaking mechanism, but this sacri�ces
generality. Unfortunately, for large numerical studies of the kind we are interested
in, we can only work with constrained models due to the immense computational
resources needed to investigate the full MSSM.

We will discuss one of the more popular SUSY breakingmechanisms in section
2.3.5, but �rst let us discuss the general MSSM. As the name suggests the MSSM
is the minimal supersymmetric extension of the Standard Model, which is to say
that it is the Standard Model with N = 1 supersymmetry imposed, along with
several alterations which are required to make the model phenomenologically
viable. One of the primary predictions of this model is that the number of degrees
of freedom is doubled compared with the Standard Model, such that every stan-
dard model particle has one or more “superpartners” associated with it by SUSY
transformations.

In N = 1 SUSY the Lagrangian for a model can be fully speci�ed by three
functions of the super�elds Φi : the superpotential W , the Kähler potential K,
and the gauge kinetic function f . For the MSSM the Kähler potential is simply
K = ∑i ΦiΦ∗

i , where Φi are the u, d, e, Hu, Hd and Q chiral super�elds corre-
sponding to the chiral supermultiplets of �gure 2.2, since this leads to the standard
canonically normalised kinetic terms for these �elds. Alternative Kähler potentials
can be used which give rise to non-canonical kinetic terms, but these are typically
considered in the context of supergravity and are not of concern to us here. The
gauge kinetic function f for the MSSM is simply a constant because the MSSM is
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y
squarks, quarks Q (ũL d̃L) (uL dL) (3, 2, 16)
(×3 families) u ũ∗R ũ†R (3, 1,− 23)

d d̃∗R d̃†R (3, 1, 13)
sleptons, leptons L (ν̃ ẽL) (ν eL) (1, 2,− 12)
(×3 families) e ẽ∗R e†R (1, 1, 1)
Higgs, higgsinos Hu (H+

u H0u) (H̃+
u H̃0u) (1, 2,+ 12)

Hd (H0d H−
d ) (H̃0d H̃−

d ) (1, 2,− 12)
Table 2.2: The chiral supermultiplets of the MSSM. The spin-0 �elds are complex
scalars and the spin 1/2 �elds are le� handed Weyl spinors. The Higgs sector is
supplemented with an additional supermultiplet, such that the fermionic super-
partners have opposite hypercharge (Martin, 2010).

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y
gluino, gluon g̃ g (8, 1, 0)
winos, W bosons W̃± W̃0 W± W0 (1, 3, 0)
bino, B boson B̃0 B0 (1, 1, 0)

Table 2.3: The Gauge supermultiplets of the MSSM. The spin 1/2 �elds are le�
handed Weyl spinors and the spin 1 �elds are complex vectors (Martin, 2010). The
gauginos are o�en given the symbol λ.

renormalisable. Finally, the superpotential is

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd ,

where the Yukawa coupling matrices yu, yd and ye are 3 × 3 matrices in “fam-
ily” space, i.e. they encode the couplings for the 3 generations of quark and lep-
ton supermultiplets. All of the gauge (SU(3)C colour and SU(2)L weak isospin)
and family indices are suppressed. With indices restored the µ-term becomes
µ (Hu)α (Hd)β εαβ, where α, β = 1, 2 are SU(2)L weak isospin indices; uyuQHu

becomes u ia (yu) ji Q jαa (Hu)β εαβ, where i = 1, 2, 3 is a family index and a = 1, 2, 3
is a colour index which is lowered and raised in the 3 and 3 representations of
SU(3)C respectively and the other Yukawa terms expand similarly. The super-
potential does not feature directly in the Lagrangian density, rather its �rst and
second derivatives with respect to the �elds appear, de�ning the interactions terms
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in the theory.

The µ term in the superpotential gives rise to a supersymmetric version of the
Higgs boson mass squared parameter µ (m2H) in the Standard Model. Likewise
the Yukawa terms will result in mass terms for the quarks and leptons if the
neutral scalar components of Hu and Hd acquire non-zero vacuum expectation
value (VEV)’s vu and vd , analogously to the Higgs mechanism of the Standard
Model. The requirements that the superpotential be supersymmetric and gauge
invariant are strong enough conditions on the structure of these terms such that the
ones we have written down are essentially unique (Martin, 2010). There are several
other possible terms, but these violate baryon and lepton number conservation,
potentially leading to fast proton decay, and so we set these to zero. Alternatively,
a new symmetry known as R-parity can be invoked, which assigns even parity to
quark and lepton super�elds and odd parity to gauge and Higgs super�elds, the
conservation of which also kills these terms. The R parity of a component �eld is
given by

R = (−1)3(B−L)−2s , (2.27)

where B, L and s are the baryon number, lepton number and spin of the �eld re-
spectively. This implies that the SM particles have R = +1 while superpartners have
R = −1. Perhaps the most important phenomenological consequence of R-parity
conservation is that it demands that the lightest supersymmetric particle (LSP)
must be absolutely stable, since it is forbidden from decaying into any SM particles.
The LSP is thus a natural candidate for cosmological dark matter, although the
nature of the LSP depends on the parameters we choose for the MSSM.

Although they are equivalent statements in theMSSM, R-parity conservation is
not really a fundamental justi�cation of baryon and lepton number conservation. It
is a principle we have introduced because baryon and lepton number violations are
very strongly constrained by experiment, but it has no real theoretical motivation.
We include it for its nice phenomenological properties, particularly its reduction
of the extra interactions allowed in the MSSM (which we desire in the interests of
minimality) and its provision of a natural dark matter candidate, which on its own
provides strong motivation to study theMSSM. In addition, although it is true that
in theMSSM R-parity conservation is equivalent to the conservation of baryon and
lepton number, for higher dimensional operators (which are not renormalisable
and thus not “allowed” in the MSSM) this is not the case and baryon and lepton
number may still be violated even if R-parity is conserved (Baer and Tata, 2006).
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2.3.5 So� SUSY breaking
We have seen that if SUSY is realised in nature, it must be a broken symmetry. The
general MSSM possesses terms which parameterise the e�ects of SUSY breaking
but do not specify the mechanism by which it occurs. These are known as so�
SUSY breaking terms, because excluded from the list are any operators which
would reintroduce a quadratic dependence on the UV cuto� ΛUV . Given that a
fundamental motivation for SUSY is to remove these quadratic divergences it is
important not to re-introduce them.
The possible so� breaking terms have been classi�ed for general N = 1 global

SUSY by Girardello and Grisaru (1982) and for the MSSM can be written as (Baer
and Tata, 2006):

Lso f t = − [Q̃†im2Qi jQ̃ j + d̃†Rim2Di jd̃Rj + ũ†Rim2Ui jũRj

+L̃†im2Li jL̃ j + ẽ†Rim2Ei j ẽRj +m2Hu
∣Hu∣2 +m2Hd

∣Hu∣2]
− 1
2
[M1λ0λ0 +M2λAλA +M3 g̃B g̃B]

− i
2
[M′

1λ0γ5λ0 +M′
2λAγ5λA +M′

3 g̃Bγ5 g̃B]
+ [(au)i j εabQ̃a

i Hb
uũ
†
R j
+ (ad)i j Q̃a

i Hdad̃†Rj + (ae)i j L̃a
i Hda ẽ†Rj + h.c.]

+ [(cu)i j εabQ̃a
i H∗b

d ũ†R j
+ (cd)i j Q̃a

i H∗
uad̃

†
Rj + (ce)i j L̃a

i H∗
ua ẽ

†
Rj + h.c.]

+ [bHa
uHda + h.c.] .

(2.28)

There are several types of terms in this Lagrangian. They can be categorised
(schematically) as follows:
• Terms giving masses to the gauginos, 12Maλaλa .
• Mass terms for the squarks, sleptons and Higgses, m2i jϕ∗i ϕ j.
• Trilinear couplings for the scalar particles a i jkϕiϕ jϕk and c i jkϕiϕ jϕk .

These give all the renormalisable operators possible in the MSSM which break
supersymmetry. Since we are not specifying the mechanism of SUSY breaking
there is a great deal of freedom in the parameters ofLso f t . Counting the parameters
we have:
• 6 gaugino masses, M1, M2, M3 and M′

1, M′
2, and M′

3, resulting from the
superpartners of the gauge sector (which has the 4 parameters g1, g2, g3
and θQCD), however one of these can be removed by performing a chirality
transformation of the gaugino �eld (conventionallyM′

3 is removed), leaving
5.

• 1 complex parameter b resulting from the Higgs SUSY breaking term, as-
sociated with the Higgs sector which also includes the mass parameters
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m2Hu
, m2Hd

and the complex parameter µ from the superpotential. One of
the phases of the complex parameters can be absorbed by rede�ning the
overall phase of one of the Higgs �elds, usually taken to be the phase of b,
leaving 5 real parameters, at least 3 of which reside in the SUSY breaking
sector.

• 5 so� SUSY breaking Hermitian mass matricesm2Qi j,m2Di j,m2Ui j,m2Li j and
m2Ei j for the scalar partners of the quarks and leptons, which have 6 real
parameters plus 3 phases each, giving 45 parameters. Also in the matter
sector are the 3 complex Yukawa coupling matrices yu, yd and ye , for 54
parameters. The a and cmatrices describing the trilinear scalar interactions
are also 3 × 3 complex matrices and so give another 108 parameters. Not all
of these parameters are physical —we can remove 43 of them through �eld
rede�nitions— so we have a total of 164 parameters in the matter sector, at
least 110 of which reside in the SUSY breaking sector.

Assigning the fewest possible parameters to Lso f t (i.e. moving as many as possible
to the superpotential instead) gives us a total of 118 so� SUSY breaking parameters,
which along with the 56 parameters of the superpotential, the 3 gauge couplings
and 1 theta angle give us a total of 178 free parameters for the MSSM.
This number is clearly a lot higher than the 19 parameters of the Standard

Model, but our breakdown suggests that a large part of this is because of our failure
to specify a mechanism of SUSY breaking. Indeed depending on the mechanism
one chooses the number of free parameters can be drastically reduced, but at the
cost of generality of the model.
O�en a simpli�ed set of parameters is used for the MSSM, where the o�-

diagonal terms in the squark and slepton matrices as well as the trilinear coupling
matrices a are set to zero. As well, the �rst and second generation terms in the a
are set to zero, leaving only the third generation trilinear couplings at , ab , aτ. In
explicit models of SUSY breaking it o�en occurs that these trilinear couplings are
proportional to the corresponding Yukawa couplings, so the parameterisation ai =
yiAi is o�en used; this is also the SUSY Les Houches accord (SLHA) convention
(Skands et al., 2004) so we will follow it here and use the Ai as our parameters.
The c are all set to zero, and the CP-violating gaugino massesM′

1 ,M′
2,M′

3 are set
to zero. These drastic simpli�cations leave one with:
• 9 so� squark massesMQ i ,MU i ,MD i , for i ∈ {1, 2, 3},
• 6 so� slepton massesML i ,ME i , for i ∈ {1, 2, 3},
• 3 so� gaugino massesM1,M2,M3,
• 3 trilinear couplings At ,Ab ,Aτ,
• the Higgs bilinear coupling b (or B ≡ b/µ), and
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• the so� Higgs mass parameters m2Hu
and m2Hd

,
giving a total of 24 parameters in the SUSY breaking sector plus the superpotential
µ parameter. In the literature this simpli�ed MSSM, and models very similar to it
(o�en a fewmore parameters are removed by setting the �rst and second generation
squark and slepton masses equal), are o�en referred to as the phenomenological
MSSM (pMSSM), or the MSSM-X (where X speci�es the number of free parame-
ters).

Models of SUSY breaking

The over 100 extra parameters introduced to fully parameterise our ignorance
of the mechanism by which SUSY breaking occurs makes any global analysis
impossible. There is simply too much complexity in this parameter space. There
are two main approaches to dealing with this: a) Impose a “top-down” theory of
SUSY breaking, or b) make a series of “bottom-up” judgements regarding which
Lso� generally lead to interesting/plausible phenomenology, and decouple the rest
(setting various parameters to either zero or high values, to negate their in�uence
on observable physics). In terms of “top-down” models, we examine only one
in this thesis; the mSUGRA, or minimal supergravity motivated model, which is
described below.
As in most other viable models of SUSY breaking, in mSUGRA it is assumed

that supersymmetry is spontaneously broken in a “hidden sector”, which couples
only indirectly, and very weakly, to the “observable sector” of the SM particles and
their superpartners. The detail of the symmetry breaking can thus be relegated to
the hidden sector. The physics in the observable sector then depends only on the
agent which couples the two sectors, and which thus communicates the e�ects of
the SUSY breaking to the superpartners of the SM particles, generating various
terms from Lso�.
One of the most natural candidates for this agent is gravity, since it couples

universally to all energy-momentum. However in order to describe this cou-
pling one must move to a full supergravity theory. Supersymmetry enforces us
to enlarge space-time with additional Grassmann coordinates into a superspace.
Local transformations involving Grassmann coordinates (local supersymmetry
transformations) demand local transformations involving space-time coordinates
since (as can be seen from eq. 2.19) super- and space-time transformations are
inter-connected. Generally supergravity theories incorporate a scheme of grand
uni�cation, and in those theories for which theMSSM is approximately valid below
the GUT scale there will be corrections to the MSSM so� terms due to diagrams
containing gravitons and gravitinos. There is a general kind of SUSY breaking that
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occurs in these supergravity models, and when we assume a minimal form of the
supergravity Kähler potential the general model is known as minimal supergravity,
or mSUGRA (Alvarez-Gaume et al., 1983; Chung et al., 2005).
The corrections to the MSSM so� terms cancel if supersymmetry is exact, but

if SUSY is broken in the hidden sector then the gravitino will acquire a mass (by a
mechanism conceptually similar to the Higgs mechanism; the breaking of SUSY
results in a “goldstino” particle, which is absorbed by the gravitino and gives it a
mass). The acquisition of a mass by the gravitino means that the corrections to
the MSSM so� terms no longer cancel, and so these terms are generated even if
they were not initially present (Baer and Tata, 2006).
In the mSUGRAmodel a set of universality conditions are adopted at the GUT

scale, inspired by apparent uni�cation of the gauge couplings, such that

g1 = g2 = g3 ≡ gGUT , (2.29)
M1 = M2 = M3 ≡ M1/2,

m2Qi = m2U i
= m2D i

= m2L i
= m2E i

= m2Hu
= m2Hd

≡ M2
0 ,

At = Ab = Aτ ≡ A0,

where the Ai terms are rescaled versions of the trilinear couplings ai we introduced
inLso�. All other so� SUSYbreaking parameters are set to zero, except for theHiggs
bilinear term bHuHd , or alternatively BµHuHd ; using the latter parameterisation
we set B = B0 at the GUT scale, and likewise µ = µ0 at this scale.
Once SUSY is broken in the hidden sector the goldstino degrees of freedom

are absorbed by the gravitino, which then acquires a mass M3/2. During the
arrangement of the universality described by eq. 2.29 it occurs that M3/2 = M0,
and that with appropriate parameter choice this can be electroweak size, allowing
for electroweak stabilisation. A conventional set of “fundamental” parameters for
the model is then

M0, M1/2, A0, B0, µ0, (2.30)

so that the model has only �ve extra parameters on top of those from the Standard
Model.
When performing phenomenological studies it is not very convenient to use the

parameterisation of eq. 2.30 because simply choosing values for these parameters
in a naïve way is unlikely to generate a model in which electroweak symmetry
breaking occurs correctly, let alone one which predicts the correct masses of the
electroweak gauge bosons. One visualisation of the problem is that there is only
a small hypersurface through this space on which the correct Z boson mass is
obtained, and it is di�cult numerically to �nd this hypersurface. This is related to
the �ne-tuning problem, and we discuss it further in section 3.1.
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To ensure that, in the cases where electroweak symmetry is broken, we also pre-
dict the correct weak scale, it is useful to make use of the minimisation conditions
for the scalar potential:

2Bµ = (m2Hu
+m2Hd

+ 2µ2) sin 2β,
m2Z
2

= m2Hd
−m2Hu

tan2 β
tan2 β − 1 − µ2.

(2.31)

Plugging the observed value of mZ into these conditions enforces the correct rela-
tionship between these parameters needed to reproduce this value. One e�ectively
exchanges the GUT scale parameters B0 and µ0 for the weak scale parameters
tan β ≡ vu/vd and mZ , leaving one with the parameter set

M0, M1/2, A0, tan β, mZ , (2.32)

plus signµ, which is not constrained by the parameter swap. One can then constrain
parameter scans to phenomenologically interesting regions by �xing mZ to its
measured value and varying only the remain four parameters, greatly improving
the e�ciency of parameter space searches.
An important feature of the mSUGRA model is that the neutralino (a mixture

of the bino andwino gauginos) emerges as the LSP formuch of the parameter space.
Since this particle has a weak scale mass and participates only in weak interactions
it provides a natural candidate for cosmological cold dark matter. Requiring that
the neutralino account entirely for the observed dark matter density results in a
powerful constraint on the mSUGRA parameter space.
As a matter of terminology, the model described above is o�en given the

alternate name of the “Constrained Minimal Supersymmetric Standard Model”, or
CMSSM, and the name mSUGRA reserved for a slightly more constrained version
of this model where B0 is also �xed using universality arguments. In this thesis I
will conform to this usage and refer henceforth to the model above as the CMSSM.

2.3.6 The NMSSM
The MSSM µ problem

Although theMSSMpotentially solvesmany of the problems of the standardmodel,
it contains some puzzling features of its own. We have already seen in section 2.3.1
that the hierarchy problem returns in amilder form if superpartner masses become
too large. A related naturalness problem is present in the MSSM superpotential.
The term µHuHd (of eq. 2.3.4) contains the dimensionful parameter µ, which
a-priori could adopt any value, and could even be expected to originate from
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some high scale physics and thus have a very large value. However, in order for
electroweak symmetry breaking to occur µ needs to be about the same size as
the SUSY breaking scale MSUSY , despite apparently being independent of SUSY
breaking. The µ problem is the question of why this coincidence occurs.
A relationship to the hierarchy problem can be seen by examining the min-

imisation conditions for the MSSM scalar potential in eq. 2.31, particularly the
second of these. If µ is large, then in order to obtain the correct Z bosonmass there
must be a careful cancellation between the various terms in eq. 2.31. The Z mass
feeds into the masses of the other electroweak gauge bosons and Higgs bosons so
a large µ would reintroduce the hierarchy problem. µ also cannot vanish or else
down-type fermions remain massless (see Ellwanger et al. (2010) for a discussion
of these issues).
There thus seem to be hints that µ should be generated by some mechanism

related to SUSY breaking. This is what is proposed in the Next-to-Minimal Super-
symmetric Standard Model (NMSSM). The MSSM µHuHd superpotential term
is replaced by λSHuHd , that is, by a Yukawa-type coupling λ between the Higgs
super�elds and a new gauge-singlet super�eld S. S is proposed to adopt a VEV⟨S⟩ = s in a manner related to SUSY breaking, so that only the one mass scale
MSUSY is needed in the theory. This dynamically generates an e�ective µ parameter,
µe� = λs, of the correct scale, solving the µ problem.
There are several variations of the NMSSM in the literature, however in this

thesis wewill consider only theZ3-invariantNMSSMde�ned by the superpotential

WZ3NMSSM = uyuQHu − dydQHd − eyeLHd + λSHuHd + κ
3
S3. (2.33)

Extra so�-breaking terms are also possible on top of those in the MSSM:

∆Lso� = m2S ∣S∣2 + λAλHuHdS + 13κAκS3. (2.34)

In addition, the b parameter from the MSSM so� Higgs bilinear term bHuHd

(sometimes relabeled as m23, as in the SLHA2 conventions (Allanach et al., 2009))
is among the parameters set to zero to preserve the Z3 symmetry (Ellwanger et al.,
2010). The new parameters are thus {λ, κ,m2S ,Aλ ,Aκ}, and we have removed µ
and b (or equivalently B).
In theNMSSM it is possible to de�ne constrainedmodels in analogy to those in

theMSSM, based on assumptions about SUSY breakingmechanisms. In this thesis
we will examine only the Constrained NMSSM (CNMSSM), which is de�ned by
the same GUT scale uni�cation of the so� parameters as occurs in the in CMSSM
(see eq. 2.29). In the simplest case the new trilinear couplings can be added to the
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GUT scale universality conditions as

Aλ = Aκ = A0, (2.35)

so that theCNMSSMhas the “fundamental” parameters {M0,M1/2,A0, λ0, κ0,m2S ,0},
which since we removed B0 and µ0 is only one extra parameter than the CMSSM.
However, for phenomenological reasons it is o�en desirable to vary at least Aκ

separately from A0 (see e.g. Ellwanger and Hugonie (2007)), so as in the CMSSM
case some loosening of these boundary constraints can be found in the literature.

2.3.7 Experimental constraints on the MSSM and NMSSM
In chapter 4 I shall present the results of large scale numerical studies of the
CMSSM, constrained by data from a variety of experiments and interpreted in
the subjectivist statistical framework presented in appendix D. Anticipating this,
let us now consider brie�y the most powerful of these experimental constraints.
There are issues to address regarding how to interpret this data —for instance it is
possible that only a tiny fraction of the cosmological dark matter relic density is
contributed by neutralinos, invalidating any analysis which assumes the neutralino
contribution to be 100%— so during the discussion I shall point out some common
assumptions that are made to deal with these.

mt , mb , αS , αEM (SM nuisance parameters) There are a number of parameters
from the Standard Model which are o�en varied in addition to the MSSM
parameters in an analysis. These so-called “nuisance” parameters are not
yet measured to su�cient accuracy to ensure that our inferences will be
robust within the allowed range of values they may take. The top quark mass
is a good example case – the current Particle Data Group average for this
quantity is 173.07 ± 0.52 ± 0.72 GeV (Beringer et al., 2012). In the CMSSM,
there is a region at relatively highM0 in which there is rapid change in µ2,
the position of which is sensitive to mt. When µ2 becomes negative no
electroweak symmetry breaking (EWSB) occurs, but near this boundary the
neutralino relic density drops o� quickly creating a narrow region in which
the dark matter relic density constraint can be satis�ed. In addition, for
certain families of GUT scale parameter choices, the renormalisation group
trajectories of the parameters converge in this same region, which is thus
known as a “focus point”. This has bene�cial implications for the naturalness
of the model, which we discuss in chapter 3 and chapter 5. However, the
sensitivity of the EWSB boundary to the top quark mass means that this
interesting region can be shi�ed quite far even if the top quark mass changes
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only by a small amount. Varying the allowed values for the top quark mass
properly accounts for these variations.
Similarly the bottom quark mass mb, and the strong αS and electromag-

netic αEM gauge couplings are sometimes varied, though their impact is
generally much less than the top quark mass. The Z boson massMZ could
in principle be varied in a similar fashion, which would naturally penalise
regions of parameter space with high �ne-tuning, though numerically this is
infeasible; we discuss this issue and its connection to naturalness in chapter
3.

Ωχh2 (dark matter relic density) Strong constraints on the neutralino relic den-
sity come from the data collected by the WMAP and Planck cosmic mi-
crowave background (CMB) surveys, with the most recent value of Ωχh2

from Planck being 0.1187 ± 0.0017 (Ade et al., 2013). Here Ωχ is de�ned
as to be ρχ/ρcrit, where ρcrit = 3H2/8πG is the critical density (the average
energy density of a spatially �at FLRW Universe), with H being the Hubble
parameter and h the dimensionless Hubble parameter (which is simply H
divided by the conventional value of 100 km s−1 Mpc−1).
To constrain a particle physics model with astrophysical data such as this

requires numerous assumptions. In the CMB case, there are two important
choices to make. The �rst is the cosmological model used. The standard
ΛCDMmodel well explains the evolution of the universe from the CMB era
to the present day so for this late epoch it is uncontroversial. On top of this
one typically assumes the present dark matter density to be a thermal relic,
that is, one assumes that it was produced in the hot early universe in thermal
(and chemical) equilibrium with a bath of primordial particles (Scherrer
and Turner, 1986). As the universe cools eventually it occurs that the dark
matter density becomes too low for annihilations to occur rapidly and so the
abundance of dark matter particles becomes almost constant with time, in a
process known as “freeze-out”. However, if not all dark matter is produced
during in such a process then it is invalid to constrain the (say) neutralino
thermal relic to match the CMB constraints, which instead provide only an
upper bound on this quantity. This assumption varies between analyses.

BR(Bs → µ+µ−) (Bs meson (rare) branching ratio to muons) The decay of Bs

mesons to muon anti-muon pairs is forbidden at tree level in the Standard
Model, but can be greatly enhanced in the MSSM due to the presence of
�avour-violating neutral Higgs boson couplings, i.e. by extra channels medi-
ated by the Higgses h, H and A. Recently this decay has been observed by
LHCb, who measure the branching ratio to be 3.2+1.5−1.2 × 10−9 (Aaij et al., 2013),
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Figure 2.3: The dominant uncertainties in the Standard Model contributions to the
muon anomalous magnetic moment arise from (a) hadronic vacuum polarisation
and (b) hadronic light-by-light diagrams. The circles marked ‘QCD’ contain only
quarks and gluons.

in good agreement with the Standard Model prediction of 3.23± 0.27× 10−9,
strongly limiting any possible contribution fromMSSM diagrams.

aµ = (g − 2)µ/2 (anomalous magnetic moment of the muon) Themagneticmo-
ments of the muon and electron are two of the most precisely measured
quantities in physics, and the theoretical predictions for them based on the
Standard Model are likewise precise. In the case of the muon magnetic
moment the agreement between theory and experiment is good to one
part in 108; in the case of the electron, one part in 1010. The precision of
both theory and experiment on these quantities means that even extremely
small deviations from Standard Model predictions due to new physics can
be detected. In the case of the MSSM, contributions are proportional to
the squared mass of the fermion, so it is expected that deviations should
show up more easily in the muon case. Predictions for the muon magnetic
momentum are extracted from the coupling of muons to photons; typical
MSSM contributions to this coupling are illustrated in �gure 2.4.
There is currently a disagreement between the experimentally measured

value for the anomalous magnetic moment of the muon and theoretical cal-
culations in the StandardModel. Depending on the details of the calculation
the level of disagreement varies, however a conservative value is given by
Bennett et al. (2006) as δaµ = aexpµ −aSMµ = 22.4±10×10−10, which represents
a deviation of 2.2 sigma. More recent estimates of the discrepancy reach
as high as 4 sigma (Benayoun et al., 2014). The dominant uncertainties in
the SM calculation of aµ originate from the hadronic vacuum polarisation
and hadronic light-by-light diagrams (�gure 2.3), and the di�erent meth-
ods of dealing with these result in the variation in δaµ. Unfortunately this
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Figure 2.4: Potential MSSM in�uences on the muon magnetic moment. (a)
Neutralino-smuon loop. (b) Chargino-sneutrino loop. (Martin and Wells, 2001)

variation makes aµ di�cult to use as a constraint on new physics, and it is
o�en omitted from analyses. Work is ongoing to reduce these theoretical
uncertainties (Benayoun et al., 2014).
SUSY contributions to aµ mostly occur through neutrino-smuon and

chargino-sneutrino loops (�gure 2.4), which give contributions of the form

δaSUSY
µ ∝ m2µµ tan β

M2
SUSY

, (2.36)

whereMSUSY is a characteristic sparticle mass circulating in the loop. More
details can be found inMartin andWells (2001). Notably, these contributions
grow with tan β and can have either sign, depending on the sign of the su-
perpotential Higgs mass term µ, and in some cases the sign of gaugino mass
parameters. These contributions can be as large as the weak contributions,
depending on the model parameters. aµ is thus a very powerful constraint
on the MSSM, and it strongly prefers lowerMSUSY , that is, lower sparticle
masses. LHCdirect sparticle search constraints strongly rule outmuch of the
lowMSUSY parameter space, so if the aµ anomaly truly cannot be explained
within the SM then much of the MSSM is already strongly experimentally
disfavoured (Endo et al., 2014). Reducing theoretical uncertainties on aµ is
thus one of the most powerful ways in which many supersymmeric mod-
els could be ruled out, or equivalently by which we may narrow in on any
remaining viable models.

σ χ̃0−N (neutralino-nucleon scattering cross section) In general one speaks of the
weakly-interacting massive particle (WIMP) nucleon scattering cross sec-
tion, however in the MSSM the WIMP is usually taken to be the lightest
neutralino. Gravitino dark matter is also possible (Bolz et al., 2001), however
gravitinos are not weakly interacting and so must be treated separately.
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Figure 2.5: Diagrams for WIMP-nucleon elastic scattering. These diagrams can
also be rotated to obtain processes relevant to WIMP self-annihilation and direct
production in colliders. (a) Generic WIMP-nucleon scattering via an e�ective
4-point interaction. (b) Neutralino-quark scattering can occur via t-channel ex-
change of neutral Higgs scalars (or a Z boson), or via s-channel squark exchange
(c). Interactions with gluons are possible at the one-loop level (Martin, 2010).

σ χ̃0−N is primarily relevant for direct searches for dark matter. In these
experiments detectors are placed deep underground and carefully shielded
from almost all natural radioactive and cosmic particle sources, and carefully
monitored for any remaining nuclear interactions occurring in the detector
material. Astrophysical observations allow reasonable estimates of the local
dark matter density to be made, from which, together with a particle model,
the event rate due to WIMPS recoiling o� detector nuclei can be predicted
(�gure 2.5). This allows constraints to be placed on the particle model.

Direct collider searches The most desirable way to study SUSY is by directly
producing sparticles in a collider experiment, since this situation allows the
sparticle properties to be probed in the most detail. However, to date there
has been no indication in any collider search that sparticles exist. Yet, the
absence of sparticles can itself be used to place constraints on SUSY models,
since any models predicting that collider events should have been observed
by now can be ruled out.
There are many ways that the MSSM can be probed at colliders, and the

optimal method is strongly model dependent. A wide variety of searches
are thus currently underway at the LHC in an attempt to cover the most
promising detection avenues (Lungu, 2008; Khoo, 2013). Typically, however,
one expects the �rst SUSY particles created to be the lightest squarks and
gluinos, via strong interactions, since the LHC is colliding coloured objects.
These will then decay into some lighter sparticle along with SM particles.
This process repeats with each daughter sparticle decaying, until the chain
terminates in the stable LSP. The Standard Model particles produced are
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Figure 2.6: A possible MSSM cascade decay. A pair of squarks are produced from
the interaction of parton-quarks via a gluino, which then decay into sequentially
lighter sparticles until the LSP is reached, shedding SM particles along the way.
In the diagram shown the cascade-produced quarks will typically result in the
observation of a number of energetic jets in the detector, and the LSP will result in
the observation of missing energy. The decay of the second squark is not shown.

o�en coloured and energetic enough to produce jets, while the LSP is neu-
tral and weakly interacting and so escapes the detector. A typical detector
signature for such a cascade decay is thus some amount of missing energy
plus several jets, possibly accompanied by some number of energetic leptons
(�gure 2.6).

Higgs searches The recent observation of a Standard-Model-like Higgs boson at∼ 125 GeV (Aad et al., 2012; Chatrchyan et al., 2012) is a very useful piece
of information for constraining any BSM physics, particularly when paired
with naturalness considerations. In the MSSM the lightest neutral Higgs
boson mass is bounded at tree level by (Baer and Tata, 2006)

m2h0 ≤ m2Z cos2 2β, (2.37)

so moderately large radiative corrections are needed to push from mZ ∼ 91
GeV up to 125 GeV, even given an optimal value of β. Typically the largest
such corrections come from top and stop loops since these involve the largest
(Yukawa) couplings to the Higgs sector; the dominant contribution is given
by Hall et al. (2012) as

∆m2h0 = 3(4π)2 m
4
t

v2
[ln m2t̃

m2t
+ X2t
m2t̃

(1 − X2t
12m2t̃

)] , (2.38)

where m t̃ is the geometric mean of the stop so� masses, mt is the top mass,
v = √

v2u + v2d , and Xt = At − µ cot β is the stop mixing parameter. If there
is not much stop mixing, i.e. Xt is small, then in order for this correction
to be large we require extremely heavy, i.e. multi-TeV, stop masses. Yet we
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know from section 2.3.1 that such heavy stops are a problem for naturalness
(and stops are particularly bad in this regard due to their large Yukawa
coupling). Even with an optimal value of Xt = √

6m t̃ (the “maximal mixing”
scenario) quite heavy stops are needed, at least 600 GeV or so, and although
the stops themselves are lighter in this case the large At required poses
its own problems for naturalness, since loop corrections to m2Hu

are also
quadratically sensitive to At. Demanding both low tuning and the correct
Higgs mass thus powerfully constrains the general MSSM.
In the NMSSM there is potential to partially loosen these constraints,

due to an extra tree level contribution to m2h0 , so that we have

m2h0 ≤ m2Z cos2 2β + λ2v2

2
sin2 2β + ∆m2h0 , (2.39)

alleviating to some degree the need for such large radiative corrections (King
et al., 2013).

A variety of other experimentally accessible quantities exist which are relevant
to constraining SUSY models. There are a variety of rare processes aside from
BR(Bs → µ+µ−)which can probe various corners of theMSSM, of which b → sγ is
particularly important (Gabbiani et al., 1996; Carena et al., 2001; Buras et al., 2003).
Constraints coming from indirect darkmatter detection experiments are becoming
competitive in some scenarios (Bergstrom, 2000; Feng et al., 2001; Abdo et al.,
2010; Scott et al., 2012). Onemay also look further into cosmological constraints, in
particular those coming from baryogenesis (Barbier et al., 2005; Cline and Moore,
1998).
An analysis of the CMSSM under these constraints, and their implications in

terms of partial Bayes factors, is the subject of paper I.
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Of course, it’s an excellent question [Why do magnets repel each
other?]. But the problem, you see, when you ask why something
happens, how does a person answer why something happens? For
example, Aunt Minnie is in the hospital. Why? Because she went
out, slipped on the ice, and broke her hip. That satis�es people. It
satis�es, but it wouldn’t satisfy someone who came from another
planet and who knew nothing about why when you break your hip
do you go to the hospital. How do you get to the hospital when the
hip is broken? Well, because her husband, seeing that her hip was
broken, called the hospital up and sent somebody to get her. All
that is understood by people. And when you explain a why, you
have to be in some framework that you allow something to be true.
Otherwise, you’re perpetually asking why...

— Richard Feynman,
in an interview on the BBC TV series ’Fun to Imagine’ (1983)

This thesis has been structured tomaintain a focus on applications, however the
appendices contain extensivematerial relating to probability theory. For the present
chapter I assume that the reader is familiar with Bayesian statistical methods and
their interpretation in terms of subjectivist probability theory. For a review of
these methods, particularly from a subjectivist perspective, see appendix D. For a
review of the philosophy of probability which motivates the use of these methods,
see appendix B.

The concept of “naturalness” in high energy physics is somewhat nebulous,
yet it has emerged as one of the most powerful theoretical constraints on any new
physics models since the late 20th century, though arguably it has been a part of

39
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physics, and science in general, for much longer. Giudice (2008) gives us a good
general feel for the kinds of uses this word has found:

Almost every branch of science has its own version of the “naturalness
criterion”. In environmental sciences, it refers to the degree to which
an area is pristine, free from human in�uence, and characterized by
native species. In mathematics, its meaning is associated with the
intuitiveness of certain fundamental concepts, viewed as an intrinsic
part of our thinking. One can �nd the use of naturalness criterions in
computer science (as a measure of adaptability), in agriculture (as an
acceptable level of productmanipulation), in linguistics (as translation
quality assessment of sentences that do not re�ect the natural and
idiomatic forms of the receptor language). But certainly nowhere else
but in particle physics has the mutable concept of naturalness taken a
form which has become so in�uential in the development of the �eld.

As Guidice says, naturalness has gained a high status as a theoretical principle
in particle physics. In this �eld are number of theoretical problems which can be
categorised as “naturalness” problems, for example:
• Why is the electroweak scale so far below the Planck scale? (hierarchy
problem)

• Why is the strong theta angle so small? (strong CP problem)
• Why is the cosmological constant so small? (cosmological constant problem)
• Why is the energy density of the universe so close to the critical value
required for a �at universe? (�atness problem)

In this chapter, I will argue that all such problems are grounded in Bayesian logic,
i.e that they are questions of epistemic probability. We deem a naturalness problem
to exist any time we observe data which, while compatible with a broadly accepted
or plausible model, nevertheless seems highly improbable given that model and
our other background knowledge. This is in contrast to problems such as “why
are there three generations of matter?”; in this problem we have no strong reason
to think that three generations of matter is less probable than one or �ve, instead it
is simply a curious fact which we suspect might have some deeper origin. With
this de�nition in mind, I claim that, at its heart, the naturalness principle is simply
the assertion that nothing in Nature should seem greatly surprising to us, once it
is looked at in the right way. That is, no observation should be seem much more
improbable than any other outcome we might have expected, once we understand
its origins su�ciently well.
One could even go so far as to say that ‘naturalness’ requirements are simply

a specialisation of an old principle from classical philosophy, the Principle of
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Su�cient Reason, o�en attributed to Leibniz, which, in the current context may
be best expressed as

For every proposition P, if P is true, there exists some su�cient expla-
nation of why P is true.

This is a controversial principle, and indeed it seems that it leads to an in�nite
regress in which every explanation must itself then be explained, which aside from
the regress also seems troublesome in light of Gödel’s incompleteness theorems.
However if we suppose that we have many “layers” to go before we must give up
looking for deeper explanations, then this principle has a certain intuitive appeal.
When looking for a “su�cient explanation”, I argue that it is best, or at least

useful, to think in terms of epistemic probabilities. Let P be the proposition in
need of an explanation. Suppose that we believe P is true due to some empirical
observations, given background knowledge I. We may even identify P closely with
those empirical observations themselves, saying those observations de�ne what it
means for P to be true, so that P essentially substitutes for the data itself. Let E
be another set of propositions, purported to “explain” why P is true, or why we
observed the data that we did, rather than something else. It seems to me that a
“su�cient” explanation should be, roughly speaking, one which renders P to be
reasonably probable. That is, if we believed the explanation then the data (or P)
would have been unsurprising. Conversely, an explanation is “believable” if P is
probable under that hypothesis.
All this is of course just a paraphrasing of Bayes’ theorem. Say we have some

“background” explanations EB under which P is not very probable, and let E+
be some additional candidate propositions which help to explain P. To decide
whether we should believe the explanation E+ we look at the posterior probability

Pr(E+ ∣ P ∧ EB ∧ I) = Pr(P ∣ E+ ∧ EB ∧ I)
Pr(P ∣ EB ∧ I) Pr(E+ ∣ EB ∧ I) . (3.1)

This formula tells us that yes, the plausibility of E+ is increased in proportion to
the factor by which its truth would increases the probability of P, but that this
must be balanced against the prior plausibility of E+. If P is extremely unlikely
under EB ∧ I alone, then we will be prepared to consider increasingly contrived
explanations. The ∧ here is simply the logical ‘and’ operator; this notation is
described in appendix A.
In other words, a good explanation is one which, if we knew it was true, would

make P unsurprising, and must itself be considered reasonable on the basis of our
background knowledge. Conversely, we might say that an explanation E is not
su�cient if P is “too” improbable given E. This appears to be precisely the kind
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of reasoning followed by theorists when they become worried about naturalness
problems and try to solve them: for example, if P is the proposition “the electroweak
scale is around 100 GeV”, known because it is measured empirically, then attempts
to answer the question “why is P true?” involving seeking additional theoretical
propositions, such as “supersymmetry exists and protects the electroweak scale
from ultraviolet physics”, which if true, renders P probable, epistemically speaking.
It seems obvious that not everything can be explained in this way, even aside

from problems with in�nite regress. For example, were I to win the lottery tomor-
row, we have strong reasons to believe it futile to search for a deeper explanation
for why I won. It could have been the case that the lottery was rigged in my favour
somehow, but generally such explanations are themselves more implausible than
the proposition that I was simply very lucky, and the dice of fate just happened by
chance alone to roll in my favour that day. Eq. 3.1 describes this situation as well;
though it is much more probable that I should win if the lottery were rigged in
my favour, apriori it is extremely unlikely that such a conspiracy should exist, so
even the likelihood improvement by a factor of several million is insu�cient to
make me believe in such a conspiracy. Used in reverse, this fact can be used as a
self-re�ection tool; if winning does not make me believe in a favourable conspiracy,
my prior belief that such a conspiracy would occur must be much less than one in
several millions. Further deconstruction of the conspiracy hypothesis would help
us understand why we do not consider it apriori plausible, but I will not go into
this here.
Almost always we consider multiple explanations in competition with each

other, in which case it is useful to examine their posterior probability ratios:

Pr(E1 ∣ P ∧ EB ∧ I)
Pr(E2 ∣ P ∧ EB ∧ I) = Pr(P ∣ E1 ∧ EB ∧ I)

Pr(P ∣ E2 ∧ EB ∧ I) Pr(E1 ∣ EB ∧ I)
Pr(E2 ∣ EB ∧ I) , (3.2)

Together these consideration inform us as to kind of thinking behind the nat-
uralness principle. It is the argument that if we observe something su�ciently
surprising in Nature based on our best understanding of the laws of physics, there
is likely to be some conspiracy behind it, rather than it being “random” as in the
lottery case. Anything which seems highly surprising or improbable in light of
our current knowledge should be rendered unsurprising once we learn the details
of this conspiracy. Yet, to be a plausible hypothesis, we will want the proposed
conspiracy to require the least possible number of new propositions, or assump-
tions, or else the prior probability penalty will outweigh the improvement in the
probability of the observation.
A competing line of thought is the anthropic principle. In this case, it is

proposed that certain highly surprising observations about Nature do in fact
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originate from some essentially random process, but that our observations can be
rendered probable due to an anthropic selection e�ect; that is, we would not exist
as observers if the quantities in question had been di�erent. In the lottery example,
it would be as if we were interviewing lottery winners on a TV show; it is unlikely
any individual should win the lottery, but trivially true that we as interviewers
should �nd ourselves talking to some lottery winner.
The logic of probability theory of course deals seamlessly with both cases,

however in this thesis I do not examine anthropic arguments at all. We shall focus
only on naturalness arguments.
The rest of this chapter is structured as follows. First I review the proba-

bilistic structure inherent in the hierarchy problem, and describe the general
concept of “naturalness priors”, before computing naturalness priors relevant to
the MSSM. I then discuss the implications of naturalness priors for the Bayesian
‘evidence’, or marginal likelihood, and their relationship to the µ problem. Finally
I compute naturalness priors for the Next-to-Minimal Supersymmetric Standard
Model (NMSSM), as are studied in paper II.

3.0.1 The hierarchy problem revisited
Perhaps the most famous naturalness problem, and the one I will focus on in this
thesis, is the hierarchy problem, as was described in sections 2.2.1 and 2.3.1. Let us
see how this can be reformulated in explicitly Bayesian terms, using the general
structure indicated by 3.1.
The general proposition we wish to explain is “The electroweak scale is around

100 GeV”. Let us call this SEW . The empirical support we have for this proposition
are the measurements of the electroweak gauge boson masses, the Higgs boson
mass, and related electroweak precision measurements. We could go a step further
and say that together these observations de�ne what it means for SEW to be true.
Our preliminary hypothesis is that the Standard Model tells roughly the correct
story up to say a few TeV; let this proposition be HSM . On top of this, we also
believe there to be some unknown physics which enters at a scale somewhere
between the TeV scale and the Planck scale; call this HNP

If we accept HSM ∧HNP, then the arguments of section 2.3.1 suggest that

Pr(SEW ∣ HSM ∧HNP) ∼ small, (3.3)

that is, it is surprising that the electroweak scale should be around 100 GeV, given
only the knowledge that the Standard Model is correct up to some scale at which
some generic new physics comes into play. We could go further and says that if the
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scale of the new physics is very high, SEW is extremely improbable, while if HNP

refers to physics only a little above the TeV scale then the SEW is not so improbable.
We can reconstruct the general arguments leading to these conclusions explic-

itly in terms of probabilities, which seems to be the intuitive intention anyway. If
we suppose, for concreteness, the scenario where some generic heavy scalar �eld
is added to the Standard Model, then if we consider again eq. 2.15, that is

m2H(Q) = m2H(E) +m2S(E)λS(E)
8π2

ln (E/Q) , (3.4)

and suppose that m2H(E) and m2S(E) are most sensibly thought of as being gen-
erated by the physics at some scale E, then we may assign independent prior
probabilities to propositions about the values of m2H and m2S at the scale E. Let us
suppose that m2H(E) is negative so cancellation to a small number is possible in
principle. To simplify notation let us write m2h0 ≡ m2H(Q) and drop the depen-
dence on E from the other variables. Let then the prior densities be written as
πm2H

(m2H ∣ E ∧ I) and πm2S
(m2S ∣ E ∧ I). Furthermore, thinking of E as a physical

mass scale characterising the new physics, we will need a prior for it as well, i.e.
πE(E ∣ I). We have a lot of freedom in elucidating these priors, but we canmotivate
a rough choice for demonstration purposes by the following argument. Let us
claim general ignorance about E, but say it is above the electroweak scale QEW (on
the basis of background knowledge/data I) and below the Planck scale QPl, and
equally likely to be appearing at any scale in between. The prior approximately
characterising this knowledge is then

πln E(lnE ∣ I) = (ln QEW
QPl

)−1 , (3.5)

i.e. �at in the logarithm of E and normalised between the scales QEW and QPl (and
zero outside these bounds).
Priors for m2H and m2S may be motivated on the basis of our supposition that

they relate to physics at the scale E. In the Standard Model there is something of
a smaller hierarchy problem to explain, in that, aside from neutrinos for which
new physics is de�nitely required to explain their masses, there exist 6 orders of
magnitude between the masses of the electron and the top quark. New physics
may help explain this hierarchy as well, but let us put this aside and suppose that
the physics at our new scale E may produce mass terms over a similarly broad
range. A rough characterisation of this knowledge might then be

πlnmS(lnmS(E) ∣ E ∧ I) =N (lnmS ; lnE , (1 ln 10)2) , (3.6)

(where mS = √∣m2S ∣ etc.) i.e. we expect mS to be “near” E in a sense describable
by a normal distribution over lnmS , with mean lnE and variance (1 ln 10)2 (i.e. a
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standard deviation of 1 decimal orders of magnitude, so that values over several
orders of magnitude near E are quite probable). Let us put an analogous prior on
mH(E).
Together these priors impose a ‘derived’ prior on mh0 = m2H(QEW), due to

the constraint of eq. 3.4. Let us set λS equal to one for simplicity, or equivalently,
imagine that the prior πln ∣mS ∣ is over the product m2SλS . Analytically the derived
(marginal) prior is described by

π(lnmh0)
=∬ π(lnmh0 ∧ lnmS ∧ lnE) d lnmS d lnE

=∬ π(lnmH ∧ lnmS ∧ lnE) ∣ ∂ ln{mH ,mS , E}
∂ ln{mh0 ,mS , E}∣ d lnmS d lnE

=∬ π(lnmH ∣ lnE) π(lnmS ∣ lnE) π(lnE) ∣m2h0
m2H

∣ d lnmS d lnE ,
HSM ∧HNP∧I

(3.7)

where the notation ∂ ln{a, b, c} ≡ ∂(ln a, ln b, ln c) is used to simplify the descrip-
tion of the corresponding Jacobian matrix containing derivatives like ∂ ln a/∂(.)
etc. Roughly speaking this convolves the Gaussians for lnmH and lnE against the
�at lnE prior, though the actual analytic expression is not so simple due to the
various logarithms. It is not so interesting to compute analytically anyway, so it
is simply shown numerically in �gure 3.1. With lnE marginalised out this prior
implies that mh0 is equally likely to be found at any scale between QEW and QPl ,
though looking at slices conditional on E shows that actually mh0 is only likely to
be found near E, it is just that we have said E is equally likely over a wide range of
scales.
This recovers the usual intuition behind the hierarchy problem; mh0 is ex-

tremely unlikely to be around QEW unless E, the scale characterising some generic
new physics, is also close to QEW . Of course the above computations assume a
particular generic model, but the argument applies similarly to any new physics so
long as the strong sensitivity to the new physics scale remains.
Once we have satis�ed ourselves that, indeed, Pr(SEW ∣ HSM ∧HNP) ∼ 0 if E is

too high, then Bayes’ theorem in the form of eq. 3.1 tells us that it is reasonable
to begin considering conspiracies which will make SEW less surprising. Such con-
spiracies will need to introduce new physics at a low enough scale E to make SEW
unsurprising, while simultaneously protecting the weak scale from new physics at
yet higher scales which would reintroduce the problem.
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Figure 3.1: Numerical results for the marginal prior π(lnmh0 ∣ HSM ∧HNP ∧ I). (a)
shows the fully marginalised prior, which is constant between QEW and QPl aside
from end e�ects. (b) shows the prior marginalised over lnmS , for two �xed values
of lnE; E = QPl in green, and E = 1 TeV in blue. The vertical lines show E = QEW
(black), E = 1 TeV (blue) and E = QPl (red). From (b) in particular we see that our
chosen priors imply that m0h is extremely unlikely to have a low scale value unless
the new physics scale is low (assuming that the new physics protects m0h from yet
higher scale physics in one way or another).

3.1 Naturalness priors

In the previous section we explored the general correspondence that exists between
naturalness arguments are epistemic probability arguments. I argue that they are
the same thing, though di�erent varieties of naturalness arguments may manifest
as di�erent sorts of probability arguments depending on the physics involved. We
looked at a simple example of how arguing for epistemic probability distributions
for certain physical quantities imposes epistemic distributions for any related quan-
tities via a combination of the physical constraints of the model and the logical
constraints of probability theory. That is, there should always be a smaller number
of degrees of freedom in a model than there are physically interesting observables,
and we cannot be coherent in our beliefs about the physically interesting observ-
ables unless we force those beliefs to conform to the logic of probability theory
and the physical constraints of the model.
There is a degree of arbitrariness in the choice of which model degrees of

freedom to use when elucidating our epistemic probability distributions, and this
arbitrarinessmay result in there being a number of di�erent and equally reasonable-
seeming distributions for describing our beliefs about that model’s predictions.
This is simply the usual problem of prior elucidation. There is no way around it in
the subjectivist framework. The best we can do is carefully explain the arguments
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that lead to a particular prior choice, and make it explicit that the prior represents
our knowledge conditional upon those arguments. In principle it is possible to
construct “mixture” priors which are a weighted combination of several lines of
reasoning, however it is usually more informative to take each case separately.
The goal of this section is to explain what “naturalness” priors are and how they

relate to the above considerations. We have already seen our �rst demonstration
of such a prior in eq. 3.7 and �gure 3.1. Rather than choosing to formulate our
prior in terms of the variables {mH ,mS , E}, we could have easily motivated other
choices. An intuitive one would be {mh0 ,mS , E}, especially given my arguments
in appendix D that we should formulate probabilities in terms of physically mea-
surable quantities rather than “imaginary” parameters. With this choice we could
argue thatmh0 andmS correspond closely to the physical masses of those particles,
and that E is a placeholder for other physical masses or VEVs appearing in the
physics related tomS . mH(E) would then be a derived parameter which would get
automatically �ned-tuned against mS as needed to give any chosen mh0 . Indeed
this kind of approach tends to have strong numerical motivation and is precisely
analogous to the reasoning behind the �rst kinds of priors used in Bayesian SUSY
global �ts.
In the case where we take an entirely phenomenological perspective, this kind

of priormay be reasonable. However, it is entirely incompatible with the theoretical
considerations of potential high-scale physics which motivated the construction
of these models in the �rst place. Arguing in terms of priors for the high-scale
parameter mH rather than the low scale observable mh0 makes much more sense
from the perspective of naturalness, since mH is expected to be connected to the
scale E for physical reasons. The literature discussing this physics is extensive,
however some useful entry points are Polchinski (1992); Barbieri and Giudice
(1988); Ellis et al. (1986); Intriligator and Seiberg (2007); Sakai (1981); Witten
(1981).

3.1.1 MSSM/CMSSM priors

The use of Bayesian ideas to help characterise the properties of supersymmetric
models appears to have entered the literature with the work of Giusti et al. (1999);
Strumia (1999), and indeed already here it was recognised that the bene�t of doing
so was connected to the concept of naturalness. But it was not until Allanach
and Lester (2006) that the full Bayesian machinery began to be used for global
�ts of SUSY models. This work essentially computed marginalised posterior dis-
tributions over the parameters of the CMSSM using �at priors. As was typical
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for analyses of the time (all others of which were frequentist in nature, if they
used statistical techniques at all) the CMSSM was characterised in terms of the
parameters {M0,M1/2,A0, tan β, signµ} (eq. 2.30) for reasons of phenomenologi-
cal convenience as we discussed in section 2.3.5. A similar approach was followed
soon a�er by de Austri et al. (2006).
All MSSM RGE-solving codes which solve for the physical particle spectrum

using the CMSSM boundary conditions, i.e. “spectrum generators” (some of the
currently available codes are ISAJET (Paige et al., 2003), SOFTSUSY (Allanach,
2002), SPheno (Porod, 2003), and recently FlexibleSUSY (Athron et al., 2014)),
use this parameter set by default in order to ensure that the observed Z boson
mass, and by association the observed electroweak scale, is obtained. With this
parameter set one has boundary conditions at both the GUT (M0,M1/2,A0) and
weak (tan β,mZ) scales, so solving for the physical weak-scale particle spectrum
generally requires solving the RGEs iteratively, running parameters up and down
between the two scales with corrections at each end until both sets of conditions
are satis�ed su�ciently precisely. This is good for �nding phenomenologically
viable models, however it hides any �ne-tuning required to satisfy the boundary
conditions.
The most well-known way of quantifying this �ne tuning is to consider the

stability of mZ under perturbations to the chosen boundary conditions. The most
common measure of this kind currently in use was introduced by Ellis et al. (1986)
and Barbieri and Giudice (1988), and can be written as

∆BGi ≡ ∣∂ lnm2Z
∂ ln pi

∣ , (3.8)

where pi ∈ {M0,M1/2,A0, B0, µ0}, o�en augmented with other quantities whose
e�ect on m2Z is considered interesting. Each tuning is therefore the fractional
change that occurs in m2Z when pi is varied by 1%, so that if the tuning is large,
the pi must be speci�ed with very high precision to produce the correct m2Z . The
“total” tuning is considered to be max(∆BGi ) or sometimes√∑i(∆BGi )2.
This measure and others along similar lines have been used extensively in

the literature, however its precise importance is unclear, and it is also unclear
how much tuning is “too much”. The original motivation behind this measure,
based on considerations of the “typical” properties expected of low-energy limits
of supergravity/superstring models, were, seen from a Bayesian perspective, clearly
attempts to characterise the apriori plausibility of various models in the light of
theoretical expectations. Some progress towards answering these questions can
thus be made by explicitly reformulating our concerns about �ne-tuning in terms
of prior probability distributions.
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The �rst prior to explicitly penalise �ne-tuning of the kind quanti�ed by eq.
3.8 was Allanach (2006), appearing in the literature very soon a�er Bayesian work
in this area began, however it was not until Allanach et al. (2007) that it was
demonstrated that a �ne-tuning penalty arises automatically from the Bayesian
framework if oneworks in the ‘natural’ parameters {M0,M1/2,A0, B0, µ0} (eq. 2.32)
rather than {M0,M1/2,A0, tan β,mZ , signµ}. Priors imposing a tuning penalty in
this automatic fashion are what I refer to as “naturalness” priors in this thesis.
To see how this penalty arises, suppose we start from a prior probability den-

sity over the ‘natural’ parameters θN ≡ {M0,M1/2,A0, B0, y0, µ0} (where we have
included here the GUT scale value of the top Yukawa coupling y0) let us call
this πN(θN ∣ IN), based on ‘natural’ background assumptions IN . As we have dis-
cussed it is very inconvenient to perform numerical investigations using these
parameters, so we need to �gure out how to scan in the phenomenological param-
eters while maintaining the information in the prior πN . To do this we consider
the transformation of πN into a density over the phenomenological parameters
θP ≡ {M0,M1/2,A0, tan β,mZ ,mt , signµ} (where mt is the top quark mass), call
this πP(θP ∣ IN). These two density functions then encode the same prior informa-
tion, and are related according to

πP(M0,M1/2,A0, tan β,mZ ,mt , signµ ∣ IN)
= ∣ ∂{B0, µ0, y0}

∂{tan β,mZ ,mt}∣ πN(M0,M1/2,A0, B0, y0, µ0 ∣ IN) . (3.9)

To do our scan, we then sample our random numbers according to the ‘convenient’
prior πP , and reweight the samples using the Jacobian factor to recover the desired
probability density πN . For example if we wanted our prior to be �at over the
‘natural’ parameters then wemust scan with a πP prior proportional to the Jacobian
factor, or else scan using a prior �at over πP and reweight using the Jacobian factor.
If πN is not �at then additional factors will arise in the reweighting.
It turns out that the Jacobian factor is intimately related to the �ne-tuning

problem. This is almost obvious if one works in the logarithms of the parameters.
The (inverse of the) Jacobian factor is then

∆J = ∣∂ ln{tan β,mZ ,mt}
∂ ln{B0, µ0, y0} ∣ , (3.10)

which bears a remarkable similarity to the tuning measure of eq. 3.8. Using this
de�nition of ∆J we can rewrite eq. 3.9 as

πP(M0,M1/2,A0, tan β,mZ ,mt , signµ ∣ IN)
= 1
∆J

∣ B0µ0y0
tan βmZmt

∣ πN(M0,M1/2,A0, B0, y0, µ0 ∣ IN) . (3.11)
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where the extra parameter factors would drop out with logarithmic priors and
scanning. Details of the computation of ∆J are given by Allanach et al. (2007), and
expanded upon by Cabrera et al. (2009, 2010); Cabrera (2010), but for completeness
it is useful to review them here. The discussion will be framed in the language of
the simpli�ed MSSM parameter space, as de�ned in section 2.3.5, to increase its
generality.
Of central importance are the MSSM electroweak symmetry breaking (EWSB)

conditions of eq. 2.31. We shall also need the relation between the running top
mass and top Yukawa coupling

y = √
2mt

v sin β
, (3.12)

since we have involved it in our parameter change. Note that here v = √
v2u + v2d .

Using these conditions the functional dependence of the natural parameters (at
the EWSB scale) on the phenomenological parameters (and on each other) can be
summarised as

µ = f (mZ , y, tan β), B = h(µ, y, tan β), y = g(mZ ,mt , tan β). (3.13)

We also need to know the relationship between the natural parameters at the
EWSB scale and their counterparts at the SUSY breaking scale (the GUT scale in
the CMSSM case). This can be determined from the integrated one-loop RGEs
for µ, B, and y. In the 3rd generation approximation, ignoring bottom and tau
contributions, these can be expressed analytically as

µ = µ0 exp [ 1
16π2 ∫

t

t0
3(y∗t yt − g22 − 15 g21 ) dt′]≡ Rµ(y)µ0,

B = B0 + 1
16π2 ∫

t

t0
6(At y∗t yt − g22M2 + 15 g21M1) dt′

≡ B0 + ∆RGB(y),
y2 = y20E

1 + 6y20F ,

(3.14)

where the subscript t is dropped on y since contributions from the bottomYukawa
should be present but are ignored, and where E and F are functions of the gauge
couplings only (see Cabrera et al. (2009) for further details). The functions Rµ(y),
∆RGB(y), E, and F capture the e�ects of the RGE running.
The transformation we want is {y0, µ0, B0}→ {mt ,mZ , tβ ≡ tan β}, however

it is convenient to break it into two steps: an RGE running step {y0, µ0, B0} →
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{y, µ, B} followed by the EWSB parameter swap {y, µ, B} → {mt ,mZ , tβ}. Con-
sider �rst the low-scale parameter swap; the Jacobian determinant for this can be
written as

∣JEWSB∣ =
RRRRRRRRRRRRRRRR

∂µ
∂mZ

∂B
∂mZ

∂y
∂mZ

∂µ
∂tβ

∂B
∂tβ

∂y
∂tβ

∂µ
∂mt

∂B
∂mt

∂y
∂mt

RRRRRRRRRRRRRRRR
= ∂µ
∂mZ

∂B
∂tβ

∂y
∂mt

, (3.15)

where the simpli�cation occurs due to the dependency structure of eq. 3.13. These
derivatives are

∂µ
∂mZ

= − 1
2
mZ

µ
, ∂B

∂tβ
= 1 − t2β
tβ (1 + t2β)B,

∂y
∂mt

= √
2

v sin β
, (3.16)

so that

∣JEWSB∣ = − 12mZ

µ

1 − t2β
tβ (1 + t2β)B

√
2

v sin β
. (3.17)

Similarly the Jacobian for the RGE transformation can be simpli�ed (in the analytic
approximation given above) to

∣JRGE∣ = ∂y0
∂y

⋅ ∂µ0
∂µ

⋅ ∂B0
∂B

= E ( y0
y
)3 ⋅ 1

Rµ
⋅ 1, (3.18)

though it can be evaluated more accurately in numerical packages which compute
the required derivatives to higher loop order. Putting these together we obtain

∆−1J = ∣JEWSB∣ ∣JRGE∣ ∣ tan βmZmt

B0µ0y0
∣

= RRRRRRRRRRR
m2Z
2µ2

B
B0

t2β − 1
t2β + 1 ⋅ E ( y0

y
)2RRRRRRRRRRR ,

(3.19)

where the factor following the dot is ∂ ln y0/∂ ln y and in the CMSSM case is
constant over the parameter space at the one loop level. We see immediately that
∆J penalises large µ as we expect is needed for low tuning by inspection of eq. 2.31
in order to obtain the correct Z mass, though its other properties are less obvious.
Allanach et al. (2007) and Cabrera et al. (2009) explore these properties in further
detail.
It is interesting to study this quantity as tuning measure in its own right, and in

paper II we compare it to an equivalent measure in the CNMSSM which we shall
see in section 3.1.3. However to proceed with Bayesian computations it is necessary
to consider the prior probability measure itself, and dimensional reduction. mZ is
known very accurately, so it is useful to use it to update the prior of eq. 3.42 to a
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posterior conditional on the knownmZ , and use the sharpness of the likelihood to
marginalise out a parameter; in this case µ0 is a convenient choice. The top mass
is less sharply known, but if observables of interest do not strongly depend on it
then it could be removed similarly.
Writing parameters le� unchanged by the above transformations as θ′, and

the proposition that the observed Z mass is MZ as OMZ , we can compute the
marginalised posterior (which is to become an “e�ective” prior for a scan) as
follows:

πP(θ′, tβ ,mt , signµ ∣ OMZ , IN)
= ∫
VmZ

πP(θ′, tan β,mZ ,mt , signµ ∣ OMZ , IN) dmZ

= ∫
VmZ

L(mZ ∣ OMZ)
EMZ

πP(θ′, tβ ,mZ ,mt , signµ ∣ IN) dmZ

= 1
EMZ

∫
VmZ

δ(lnmZ − lnMZ) 1∆J
∣ B0µ0y0
tβmZmt

∣ πN(θ′, B0, y0, µ0 ∣ IN) ∣mZ ∣d lnmZ

= 1
EMZ

∆−1J ∣
MZ

∣B0µ0y0
tβmt

∣ πN(θ′, B0, y0, µ0 = µZ ∣ IN) ,
(3.20)

where L(mZ ∣ OMZ) is the likelihood function for a very precise measurement
of mZ which resulted in the value MZ , which we take to be a delta function in
lnmZ since this supposes a constant fractional uncertainty in the measurement
over the range of possible outcomes. EMZ is a normalisation constant associated
with theMZ update, and µZ is the value of µ0 required to produce the measured
MZ for �xed values of the other parameters. Assuming orthogonal priors for the
fundamental parameters and choosing log priors for B0, y0 and µ0 we obtain an
e�ective prior for {tβ ,mt , signµ} of

πe�(tβ ,mt , signµ ∣ OMZ , IN) = 1
EMZ

1
Vlog

∆−1J ∣
MZ

∣ 1
tβmt

∣ , (3.21)

where Vlog is the normalisation factor for the log priors (which, incidentally is
related to the µ problem; this e�ect is discussed below in sec. 3.1.2, and studied
by Fowlie (2014)). Normalisation factors aside, one sees that if we were to scan
with priors �at in the logarithms of tβ and mt then the weighting factor required
to recover our chosen natural prior is precisely the tuning factor ∆−1J . If we were
to marginalise out mt in a similar fashion then we could likewise remove the
remaining mt factor, �xing y0 to the value required to reproduce the observation
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in the process, i.e.

πe�2(tβ , signµ ∣ OMZ ,OMt , IN) = 1
EMZ ,Mt

1
V ′
log
∆−1J ∣

MZ ,Mt
∣ 1
tβ

∣ . (3.22)

Of course various other priors may be chosen for the fundamental parameters, but
unless this choice is made to precisely cancel out the tuning factor ∆J it will remain
important in the e�ective prior for the phenomenological parameters. Note that
these priors can used for any MSSM studies in which the same parameter swap
applies; in this case the RGE e�ects will o�en be smaller since the SUSY breaking
scale at which the fundamental parameters are input is o�en set much lower than
the GUT scale, but the EWSB parameter swap will remain just as important.

3.1.2 Evidence factors and the µ problem
In the previous section a number of normalisation factors appeared in the derived
marginal priors. These are not important for studying posterior distributions of
model parameters, however they are highly important for studying the posterior
probabilities of whole model families. This can be seen from the relationships be-
tween eq. D.10-D.11, eq. D.14 and eq. D.15 in section D.1. That is, to compare classes
of models, we need to computed their marginal likelihoods for whatever data is
to be explained, and in the marginal likelihoods, or evidences, the normalisation
factors play a vital role.
Consider the marginal likelihood associated with anMSSM based model using

natural priors. This is computed according to

EMSSM,nat(O) = ∫
Θ

L(O ∣ θN) πN(θN ∣ IN) dkθN . (3.23)

If we break up the constraint observables as O = {O′′,OMZ}, break up the in-
tegration domain as Θ = Θ′′ ∪ ΘmZ and the phenomenological parameters as
θP = {θ′′,mZ} = {θ′, tβ ,mt , signµ,mZ}, and assume the likelihoods for these sets
are independent, we can expand eq. 3.23, change the integral to the phenomeno-
logical variables, and integrate out mZ :

EMSSM,nat(O) = ∫
Θ

L(O′′ ∣ θN)L(OMZ ∣ θN) πN(θ′, B0, y0, µ0 ∣ IN) dkθN

= ∬
Θ′′∪ΘmZ

L(O′′ ∣ θP)L(OMZ ∣ θP) πP(θ′, tβ ,mZ ,mt , signµ ∣ IN) dmZdk−1θ′′

= ∬
Θ′′∪ΘmZ

L(O′′ ∣ θP) δ(lnmZ − lnMZ) (3.24)
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× 1
∆J

∣ B0µ0y0
tβmZmt

∣ πN(θ′, B0, y0, µ0 ∣ IN) ∣mZ ∣d lnmZdk−1θ′′

= ∫
Θ′′

L(O′′ ∣ θP;mZ = MZ) 1
∆J ∣MZ

∣B0µ0y0
tβmt

∣ πN(θ′, B0, y0, µZ ∣ IN) dk−1θ′′.

The remaining integral is now expressed in terms of more convenient parameters,
however a few issues remain before it can be solved by, say, an MCMCmethod or
nested sampling (Skilling, 2006; Feroz et al., 2009). In general, when numerically
solving integrals of this kind, there is some objective function f (θ) to be integrated,
usually a likelihood function, and the measure π(θ)dθ over which it is to be
integrated, i.e. a prior. We must divide up our integral like this in order to use such
methods, giving us

f (θ) ≡ L(O′′ ∣ θP;mZ = MZ) 1
∆J ∣MZ

∣B0µ0y0
tβmt

∣ πN(θ′, B0, y0, µZ ∣ IN)
πS(θ′′)

π(θ)dθ ≡ πS(θ′′)dkθ′′,
(3.25)

where πS(θ′′) is an arti�cial “scan prior” which controls the sampling density in
the solver. For demonstration purposes, suppose we use log priors for all the scan
(phenomenological) parameters θ′′. Then we have

πS(θ′′) = k−1∏
i=1

π(θ′′i ) = k−1∏
i=1

1
VlogS,i

1
θ′′i

= 1
VlogS

k−1∏
i=1

1
θ′′i
, (3.26)

where VlogS,i = ln bi − ln ai is the logarithmic volume of the ith scan dimension,
with bi and ai being the upper and lower ranges set for θ i respectively, and where
VlogS is simply the product of these volume factors. If the integrand f (θ) is known
to go to zero outside some domain (say because the likelihood function goes to
zero) then there is no point scanning outside this domain, since nothing there will
contribute to the integral. The scan range may thus be very di�erent from the full
volume considered apriori plausible by the natural prior πN . When scanning, this
volume factor will usually be automatically folded in to the integral calculation,
so it is usually necessary to divide it out again and instead fold in some factor
associated with the true prior volume. For example, say our fundamental prior is
also logarithmic, but has a di�erent volume factor VlogN (note also that some of the
parameters are di�erent, since this is the volume in the fundamental parameters)).
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The objective function f (θ) is then
f (θ) = L(O′′ ∣ θP;mZ = MZ) 1

∆J ∣MZ

∣B0µ0y0
tβmt

∣ ∣ tβmt

B0µ0y0
∣ VlogS
VlogN

= L(O′′ ∣ θP;mZ = MZ) 1
∆J ∣MZ

VlogS
VlogN

,
(3.27)

Note that the parameters which can be both positive and negative must be split
into a magnitude and a sign in order for this to be sensible, so that the log priors
apply to the magnitudes of the parameters only, with a factor of two appearing if
the positive and negative branches are equally weighted.
The volume factors do not vary with the parameters, so they can be used simply

to reweight the integration result a�er scanning. The objective function that must
be implemented in the scanning algorithm is then simply the usual likelihood
function multiplied by the �ne tuning factor.
It is important not to neglect the �nal reweighting e�ect of the volume factors,

because this can be very large. The µ problem is a key example of this. The scan
volume factorVlogS will be cancelled by an automatic portion coming from the scan
integration measure, as is its purpose, but it would have no factor related to the
range of µ anyway because µ is not being scanned here, and nor is mZ since it was
already integrated out in a previous step. Yet VlogN could have a very large factor
related to µ. The µ parameter is independent of SUSY breaking so there is no
strong reason to expect it to be at any low scale. One might thus be inclined to set
the upper and lower ranges for the µ log prior to be the Planck scale and say theGeV
scale respectively, depending what prior information is taken into account. With
this choice,VlogN has a factorVlogN,µ = ln(EPl/EGeV) = ln(1019/101) = 18 ln(10) ∼ 41,
which since 1/VlogN is the factor appearing in the evidence, is a signi�cant penalty;
about 5 bits (see sec. D.1, particularly �g. D.1 for an explanation of these units)
against the model family, leading to the µ problem. Fowlie (2014) explores this
perspective further. If we had used a �at prior for µ, indicating that we expected µ to
be around the Planck scale, the penalty would instead be around 1019 − 10 ∼ 1019, or
63 bits, which is completely devastating; this immediately rules out the generation
of µ by some Planck-scale mechanism, unless some (perhaps anthropic) �ne-
tuning mechanism exists.

3.1.3 NMSSM/CNMSSM priors
At the end of the previous section we saw that the µ problem could be considered
devastating to the MSSM, depending on prior choice. In section 2.3.6 we saw
how this problem can be solved in the MSSM. In this section, we will see how
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naturalness priors can be derived for the NMSSM, and see the explicit probability
theory explaining how the µ problem is solved. The former question is the subject
of paper II, however few details are given there regarding the derivation so I will
explain these here. The discussion is based on currently unpublished calculations
done by my collaborators Doyoun Kim and Peter Athron; these full details will
be included in a future paper. As in section 2.3.6 we will work only with the Z3
conserving NMSSM.
To begin with, we need to consider what parameters we think are the most

‘natural’ to use to describe our expectations. As in theMSSM case we will take these
to be conventional Lagrangian parameters input at some SUSY breaking scale,
which in theCNMSSMcasewill be taken to be theGUT scale, since the expectation
is that the mechanism of SUSY breaking should produce VEVs and so� masses
around this scale. As before we will label these general naturalness assumptions
as IN . The new parameters introduced in the Z3NMSSM are the singlet-Higgs
Yukawa coupling λ (which together with the singlet VEV s generates the e�ective
µ term µe� = λs) and the single cubic self-coupling κ from the superpotential,
along with the new so� trilinear couplings Aλ and Aκ, and the so� singlet mass
m2S (see section 2.3.6 for more details). Our natural parameter set will thus be
θN ≡ {θ′,Aλ,0,Aκ,0, λ0, κ0,m2S ,0, y0}, where again y0 is the top Yukawa coupling at
the input scale and θ′ contains MSSM and SM parameters.
As in the MSSM case, the Bayesian formalism would automatically implement

all necessary naturalness-based penalties if we were to perform analyses using the
natural parameter set, however this is again extremely ine�cient so one must trade
these fundamental parameters for a more useful phenomenological set. Exactly
which phenomenological parameters are chosen is largely a matter of what conven-
tions are used by the available spectrum generator so�ware. For the NMSSM the
codes NMSSMTools (Ellwanger et al., 2005; Ellwanger and Hugonie, 2006, 2007),
NMSSM-SOFTSUSY (Allanach et al., 2014), and FlexibleSUSY (Athron et al., 2014)
are available for this task. The correct naturalness prior to use must be tailored to
exactly the phenomenological parameters being scanned, but to demonstrate the
technique we will derive the priors for two common choices that are appropriate
for use with the above tools.
The �rst choice of scan parameters we will examine is θP1 ≡ {θ′,Aλ,0,Aκ,0, s,

m2Z , tβ ,mt}, so that the parameter transformation of interest is
{λ0, κ0,m2S ,0, y0}→ {s,m2Z , tβ ,mt}. (3.28)

As in the MSSM case it is useful to break this into an RGE running part and an
EWSB parameter swap part, so that the full Jacobian determination needed to
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transform our natural prior density function is

∣∂{λ0, κ0,m2S ,0, y0}
∂{s,m2Z , tβ ,mt} ∣ = ∣JRGE,1∣ ∣JEWSB,1∣ . (3.29)

The EWSB Jacobian is then

∣JEWSB,1∣ = ∣ ∂{λ, κ,m2S , y}
∂{s,m2Z , tβ ,mt}∣ . (3.30)

To determine these derivatives we need the EWSB conditions for the Z3NMSSM.
These can be found in Ellwanger et al. (2010) in general form, but to better organise
subsequent calculations it is useful to consider these as constraint equations over
the 8-dimensional space {λ,κ,m2S ,y,m2Z ,tβ ,s,mt}, by writing them as

Fu ≡ 1
2
m2Z cos 2β − 2λ2m2Zg2 1

1 + t2β
+ (Aλ + κs) λs

tβ
− λ2s2 −m2Hu

= 0
Fd ≡ − 1

2
m2Z cos 2β − 2λ2m2Zg2

t2β
1 + t2β

+ (Aλ + κs) λstβ − λ2s2 −m2Hd
= 0

FS ≡ −2κ2s2 − 2λ2m2Z
g2

+ 2m2Z
g2s

tβ

1 + t2β
(Aλ + 2κs) λ − κAκs −m2S = 0,

(3.31)

where the so� masses absorb higher order corrections. The �rst two of these can
be rewritten in a similar form to the MSSM EWSB conditions as

Fµ ≡ m2Hd
−m2Hu

t2β
t2β − 1 − 1

2
m2Z − µ2e� = 0

FB ≡ 1
2
sin 2β (m2Hu

+m2Hd
+ 2µ2e� (1 + m2Z

g2s2
)) − Be�µe� = 0,

(3.32)

where µe� ≡ λs, Be� ≡ Aλ + κs and g2 = (g21 + g22)/2. The top mass is related to the
Yukawa coupling y as in eq. 3.12, so the electroweak scale parameter swap portion
of this transformation is independent of the rest. For consistency with the other
constraint equations we can write this as

F t = y2 sin2 β
m2Z
2g2

−m2t = 0. (3.33)

We can then determine ∣JEWSB,1∣ in terms of the partial derivatives of the constraint
equations, considering all 8 variables as independent, using the implicit di�erenti-
ation technique described in appendix 3.B:

∣JEWSB,1∣ =
∣∂{FS , Fµ , FB , F t}
∂{s,m2Z , tβ ,mt} ∣

∣∂{FS , Fµ , FB , F t}
∂{λ, κ,m2S , y} ∣

. (3.34)
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Writing the derivatives as F i
θ j
≡ ∂F i/∂θ j this expression simpli�es as

∣JEWSB,1∣ =
RRRRRRRRRRRRRRRRRRRRRRRR

FS
s FS

m2Z
FS
tβ

0
Fµ
s Fµ

m2Z
Fµ
tβ

0
FB
s FB

m2Z
FB
tβ

0
0 F t

m2Z
F t
tβ

F t
mt

RRRRRRRRRRRRRRRRRRRRRRRR
/

RRRRRRRRRRRRRRRRRRRRRR

FS
λ FS

κ FS
m2S

0
Fµ

λ 0 0 0
FB

λ FB
κ 0 0

0 0 0 F t
y

RRRRRRRRRRRRRRRRRRRRRR
=
RRRRRRRRRRRRRRRRRR
FS
s FS

m2Z
FS
tβ

Fµ
s Fµ

m2Z
Fµ
tβ

FB
s FB

m2Z
FB
tβ

RRRRRRRRRRRRRRRRRR
⋅ ∣F t

mt
∣

∣Fµ
λ FB

κ FS
m2S
F t
y∣ , (3.35)

where derivatives which are zero have been inserted, and where

∣F t
mt
∣

∣Fµ
λ FB

κ FS
m2S
F t
y∣ =

1∣−2λs2 ⋅ −λs2 ⋅ −1∣ ∣ ∂y∂mt
∣ , (3.36)

where ∣∂y/∂mt ∣ is the single parameter Jacobian for the exchange of y for mt,
which can thus be separated from the rest of the EWSB parameter transformation.
It is possible to further simplify ∣JEWSB,1∣, however the derivatives in eq. 3.40 are
quite simple in form so for numerical work it is convenient to simply compute
these individually and then compute the remaining 3 × 3 determinant numerically.
These derivatives can be found in appendix 3.A.
Next we require JRGE,1. It is possible to investigate this analytically at the one-

loop level as we did in the MSSM case, however the results are more complicated
and not so enlightening. In paper II we use NMSSMTools to compute this Jacobian
numerically at the two-loop level, so I will not include analytic expressions for it
here, however it is worthmentioning the following simpli�cation. Due to the SUSY
non-renormalisation theorem the running of the SUSY conserving parameters
λ, κ and y is not a�ected by the so� mass m2S . Furthermore, the top Yukawa
beta function is the same as in the MSSM case at the one loop level, so as an
approximation it can be evolved separately; remaining at the one loop level this
produces a factor of ∂y0/∂y which is the same as given in eq. 3.18. In paper
II we neglect this factor since it is approximately constant across the parameter
spaces investigated and only introduces an order one shi� in the tuning maps.
Considering these e�ects we may thus write

∣JRGE,1∣ = ∣∂{λ0, κ0,m2S0 , y0}
∂{λ, κ,m2S , y} ∣ = ∣∂{λ0, κ0, y0}

∂{λ, κ, y} ∂m2S0
∂m2S

∣
≈ ∣∂{λ0, κ0}

∂{λ, κ} ∂m2S0
∂m2S

∂y0
∂y

∣ . (3.37)
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As in the MSSM case we de�ne a tuning factor based on the full Jacobian:

∆−1J ,1 = ∣∂ ln{λ0, κ0,m2S ,0, y0}
∂ ln{s,m2Z , tβ ,mt} ∣ = ∣JEWSB,1∣ ∣JRGE,1∣ ∣ sm2Z tβmt

λ0κ0m2S ,0y0
∣ , (3.38)

which can be again be used to describe the phenomenological prior πP in terms of
a natural prior πN according to

πP1(θ′′, s,m2Z , tβ ,mt ∣ IN)
= 1
∆J ,1

∣λ0κ0m2S ,0y0
sm2Z tβmt

∣ πN(θ′′, λ0, κ0,m2S ,0, y0 ∣ IN) , (3.39)

where θ′′ contains the remaining un-transformed parameters. As in section
3.1.1 we can perform dimensional reduction by integrating over the m2Z and mt

dimensions, and the multiplicative parameter factors vanish if we choose log
fundamental priors and log scan (sampling density) priors.
Utilising the above procedure we can derive many di�erent tuning priors,

depending on what is needed to transform between the fundamental param-
eters and whatever set is chosen for scanning. In paper II we choose the set{λ,m2Z , tβ ,m2t} for the scan parameters, with the fundamental parameters remain-
ing {λ0, κ0,m2S ,0, y20}. The RGE factor in the transformation is thus the same as
in the case just described, while the EWSB part of the transformation now has
one fewer parameter (since λ is not exchanged for s). We could compute this
Jacobian in the same way as the �rst case, however it is convenient to re-use the
previous result, repeating the transformation {λ, κ,m2S , y}→{s,m2Z , tβ ,m2t} and
then switching s back to λ:

∣JEWSB,2∣ = ∣ ∂{λ, κ,m2S , y}
∂{λ,m2Z , tβ ,mt}∣ = ∣ ∂{λ, κ,m2S , y}

∂{s,m2Z , tβ ,mt}∣ ∣
∂{s,m2Z , tβ ,mt}
∂{λ,m2Z , tβ ,mt}∣

= ∣JEWSB,1∣ ∣( ∂s∂λ
)
m2Z ,tβ ,mt

∣
= ∣JEWSB,1∣ ∣− s

λ
∣ ,

(3.40)

where (∂s/∂λ)m2Z ,tβ ,mt
= −s/λ is straightforward to obtain from the constraint

equation Fµ. The tuning measure related to this coordinate transformation is then

∆−1J ,2 = ∣∂ ln{λ0, κ0,m2S ,0, y0}
∂ ln{λ,m2Z , tβ ,mt} ∣ = ∣JEWSB,2∣ ∣JRGE,1∣ ∣ λm2Z tβmt

λ0κ0m2S ,0y0
∣

= ∣ s
λ
∣ ∣JEWSB,1∣ ∣JRGE,1∣ ∣ λm2Z tβmt

λ0κ0m2S ,0y0
∣

= ∆−1J ,1,
(3.41)
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i.e. it is the same as in the �rst case (though this need not be true in general). The
e�ective prior itself is thus also very similar:

πP2(θ′′, λ,m2Z , tβ ,mt ∣ IN)
= 1
∆J ,1

∣λ0κ0m2S ,0y0
λm2Z tβmt

∣ πN(θ′′, λ0, κ0,m2S ,0, y0 ∣ IN) , (3.42)

di�ering from πP1 by only the factor s/λ. This of course follows from simply
transforming πP1 into the coordinates of πP2 (swapping s for λ), as it must since
these two distribution functions express identical prior information.
In deriving these e�ective priors there is some arbitrariness in whether we

choose mZ or m2Z , or mt or m2t , as our phenomenological parameters, since these
are integrated out rather than scanned (if they are scanned, then the choice must
match the scan prior used). Fortunately, it cannot matter what choice we make,
because the prior information is encoded in the original prior; we are only viewing
the same information from a di�erent coordinate choice when we move to the
e�ective prior. So, as long as we keep track of everything correctly during the
coordinate transformation, the posteriors and evidence we end up with will encode
the same information regardless of the parameter choice for the e�ective prior.
Likewise, when we integrate out some direction using a delta function likelihood,
it doesn’t matter what measure we use for the likelihood so long as we apply it
consistently, since only a normalisation factor which divides away will be a�ected.
We can see each of these facts with some quick computations.
First, let us write down a generic phenomenological prior density function.

Integrating this over saym2Z (a�er updating on the observedmZ value using Bayes’
theorem) gives us the e�ective (i.e. marginal) prior density

π(θ′′ ∣ mZ = MZ , IN) = ∫
ΘmZ

π(θ′′,m2Z ∣ mZ = MZ , IN) dm2Z (3.43)

from which it is clear that changing coordinates from m2Z to mZ , or to lnmZ , can
do nothing to a�ect the integral since the change in the probability density and
the integration measure cancel by construction. An analogous argument applies
to the integral from which the full marginalised likelihood (evidence) is obtained.
Next the likelihood. The choice of likelihood function obviously alwaysmatters,

however when taking the delta function limit it is worth showing that the choice
of measure in which the limit is taken doesn’t matter. Consider �rst if we take
the likelihood to be a delta function over the m2Z measure. Then the marginal
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likelihood is

E(mZ = MZ ∣ IN) = ∫
Θ

L(OMZ ∣ θ′′) π(θ′′,m2Z ∣ IN) dm2Zdθ′′

= ∫
Θ

δ(m2Z −M2
Z)π(θ′′,m2Z ∣ IN) dm2Zdθ′′

= ∫
Θ′′

π(θ′′,M2
Z ∣ IN) dθ′′.

(3.44)

Now consider if the δ function was over the mZ measure (which we will take
to mean ∣mZ ∣ to ensure a one-to-one mapping). The delta function then needs
to be transformed back into the m2Z measure to integrate it out, according to
δ(mZ −MZ) = 2MZδ(m2Z −M2

Z), giving us
E(mZ = MZ ∣ IN) = ∫

Θ

L(OMZ ∣ θ′′) π(θ′′,m2Z ∣ IN) dm2Zdθ′′

= ∫
Θ

δ(mZ −MZ)π(θ′′,m2Z ∣ IN) dm2Zdθ′′

= 2MZ ∫
Θ′′

π(θ′′,M2
Z ∣ IN) dθ′′,

(3.45)

so we have an extra factor of 2MZ this time. However, this just corresponds to the
normalisation for the likelihood, so as long as we use the same likelihood in the
numerator and denominator of evidence ratios this factor will cancel out, even if
we do the evidence integral using di�erent coordinates in each case.

3.2 Model selection measures

In order to perform a rigorous model comparison which accounts for �ne-tuning,
there is no escaping a full Bayesian analysis. However, it may be useful to write
down simpli�ed criteria for the purposes of rough preliminary assessment of
models. In the case of assessing points within a model, a relatively straightforward
measure can be argued for. Consider an e�ective prior similar to eq. 3.22, i.e. a
distribution with some sharp observable such as mZ already marginalised out,
multiplied by a likelihood for some new measurements y and normalised to give
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the posterior in the reduced parameter space:

π(ϕ ∣ y,OMZ , I) = ∫
VMZ

L(ϕ,mZ ∣ y) δ(mZ −MZ)
E(y,OMZ ∣ I) π(θ ∣ I) ∣ ∂(θ)

∂(ϕ,mZ)∣ dmZ

= L(ϕ,MZ ∣ y)
E(y,OMZ ∣ I) (π(θ ∣ I) ∣ ∂(θ)

∂(ϕ,mZ)∣)mZ=MZ

,

(3.46)
where we transform from {θ} to {ϕ,mZ} to do the marginalisation. If we want
a measure something like χ2, or BIC, AIC, etc. (Burnham and Anderson, 2004;
Liddle, 2007) then we could simply take negative two times the log posterior:

−2 ln π(ϕ ∣ y,OMZ , I) = −2 lnL(ϕ,MZ ∣ y) + 2 lnE(y,OMZ ∣ I)
− 2 ln π(θ ∣ I)∣MZ

− 2 ln ∣ ∂(θ)
∂(ϕ,mZ)∣MZ

.
(3.47)

The evidenceE does not varywith the parameters so itmay be neglected. Choosing
the appropriate log priors, and working with the logs of the ϕ parameters we could
rearrange this to

−2 ln π(lnϕ ∣ y,OMZ , I) = −2 lnL(ϕ,MZ ∣ y) + 2 ln ∆∣MZ
+ C , (3.48)

where we neglect the constant C and where ∆ ≡ ∣∂ ln(ϕk ,mZ)/∂ ln(θ)∣ is a tuning
measure of the kind derived above. When using this kind of criteria one will
tend not to be careful to ensure that the tuning measure corresponds properly
with the parameters being used, so it will tend to be a rough guideline only. The
variation of the tuning measure with parameterisation also re�ects the well-known
problem that the model point with the highest posterior density will vary with
parameterisation, making the simple procedure of choosing the model with the
highest posterior density a problematic one. An alternate method of judgingmodel
suitability is explored in appendix D.3.
For selection of models over a variety of disjoint parameter spaces, an obvious

possibility is to attempt to generalise the Bayesian, or Schwarz, information crite-
rion (BIC), though as it turns out this is not too fruitful. One possible derivation
is given in appendix 3.C, providing a loose justi�cation for the “tuning-improved”
BIC measure

BIC∆ ≡ −2 lnL(ϕ̂,MZ ∣ y) + d ln n + 2 ln ∆∣ϕ̂,MZ
, (3.49)

where d is the number of parameters ϕ remaining a�er the mZ direction is inte-
grated out, n is the number of samples taken from some independent and iden-
tically distributed (iid) process to constrain the ϕ parameters, and ∆ is again a
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Jacobian-based tuning measure as de�ned above. However the approximations
required to derive such a measure are not very convincing, so that the measure
seems unlikely to be very useful. The tuning factor is deeply entwined with prior
considerations, and measures such as the BIC are only valid in the limit when
the data is very powerful and prior considerations play little role, limiting the
usefulness of a tuning-improved BIC. Taking the usual asymptotic limit used to
derive the BIC removes the tuning penalty completely.
Measures such as those derived above would be convenient to have, however

ultimately it is di�cult to put them on a rigorous footing given the current prior-
dominated inference regime which exists in Beyond the Standard Model (BSM)
physics. Attempts have been made by others to derive similar measures on non-
Bayesian grounds, notably Ghilencea and Ross (2013); Ghilencea (2013a,b), how-
ever ultimately I think that their arguments cannot be justi�ed except from a
Bayesian perspective, and that they su�er from the same drawbacks as the simple
measures I have outlined here.

3.3 Conclusions
The work of this chapter seems to provide convincing reasons why �ne tuning
is something to be taken seriously when comparing models. It is not simply
an aesthetic concern of theorists; in the context of supersymmetric models it
arises automatically from Bayesian arguments as soon as it is agreed that prior
probabilities should be speci�ed in terms of parameters naturally connected to the
physics of supersymmetry breaking. We have seen this penalty arise in priors for
both the MSSM and the NMSSM, seen related penalties appear in the context of
the hierarchy µ problems, and explored possibilities for simple model comparison
measures, though the latter should be used only tentatively, if at all.
The next two chapters of this thesis present published work. First, in chapter 4,

we explore the impact of diminishing posterior volume on the plausibility of the
CMSSM. In chapter 5 we present a numerical study of the NMSSM naturalness
prior derived in this chapter, along with some preliminary �ts to observables in
promising parameter hypersurfaces.
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3.A Appendix: Derivatives of NMSSM EWSB
conditions

This appendix simply lists those partial derivatives of the constraint equations 3.31
and 3.32 which are required to compute the naturalness Jacobians in section 3.1.3.
Conventions which di�er slightly from those used in paper II were used, so the
relationship between these derivatives and the coe�cients in the appendix of that
paper are also shown.

FS
λ = a0 = −4m2Zg2s

⎛⎝λs − tβ

1 + t2β
(Aλ + κs)⎞⎠ , FS

m2S
= −1,

FS
s = a1 = −κAκ − 4κ2s − 2m2Zg2s2

tβ

1 + t2β
, FS

tβ
= a2 = 2m2Zg2s2

1 − t2β

(1 + t2β)2 λs (Aλ + 2κs) ,
FS
m2Z

= a3 = −2λ2g2 + 2
g2s

tβ

1 + t2β
λ (Aλ + 2κs) ,

Fµ
λ = −2λs2, Fµ

s = 2λs2 ⋅ b1 = −2λ2s,
Fµ
tβ
= 2λs2 ⋅ b2 = 2tβ

(t2β − 1)2 (m
2
Hu
−m2Hd

) , Fµ
m2Z

= 2λs2 ⋅ b3 = − 12 ,

FB
λ = −λs2 ⋅ e0 = − (Aλ + κs) s + 2 sin 2β (1 + m2Z

g2s2
) , FB

κ = −λs2 ⋅ e4 = −λs2,

FB
s = −λs2 ⋅ e1 = 2λ2s sin 2β − λ (Aλ + 2κs) ,

FB
tβ
= −λs2 ⋅ e2 = λs (Aλ + κs) 1 − t2β

tβ (1 + t2β) ,
FB
m2Z

= −λs2 ⋅ e3 = λ2s2 sin 2β
g2s2

,

F t
y = 2y sin2 β

m2Z
2g2
, F t

mt = −2mt .
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3.B Appendix: Implicit computation of Jacobians
from systems of constraint equations

This appendix brie�y demonstrates a general technique for computing the Jaco-
bians of coordinate transformations using implicit di�erentiation of a system of
constraint equations. The technique follows in a straightforward way from the
usual implicit di�erentiation methods found in most advanced calculus books
(e.g. Widder (1989)), however it does not o�en seem to actually appear in these
books. It is a handy trick though so I include it here for future reference. We will
�rst examine the two variable case to get a feel for what is happening, and then
compute the general formula for many variables and constraints.
Suppose we wish to compute the Jacobian for the transformation of {u, v}→{x , y}, where we consider u and v as functions of x and y. Suppose however that

we only know the implicit equations

F (u, v , x , y) = 0
G (u, v , x , y) = 0. (3.50)

In such a situation we can compute the Jacobian

∂(u, v)
∂(x , y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(∂u
∂x

)
y

(∂u
∂y

)
x( ∂v

∂x
)
y

( ∂v
∂y

)
x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡ [ux uy

vx vy
] , (3.51)

using the following indirect method. First we compute all the total derivatives of
F and G with respect to the target coordinates x and y:

dF
dx

= (∂F
∂u

)
v ,x ,y

(∂u
∂x

)
y
+ (∂F

∂v
)
u,x ,y

( ∂v
∂x

)
y
+ (∂F

∂x
)
u,v ,y

= 0,
= Fuux + Fvvx + Fx = 0,

dF
dy

= Fuuy + Fvvy + Fy = 0,
dG
dx

= Guux +Gvvx +Gx = 0, dG
dy

= Guuy +Gvvy +Gy = 0.
(3.52)

A�er staring at this system of equations for some time it becomes clear that we
can rewrite it in matrix form as

[Fu Fv
Gu Gv

] [ux uy

vx vy
] = [−Fx −Fy−Gx −Gy

] . (3.53)
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We can then simply le�-multiply through by the inverse of the �rst matrix to
solve for the desired Jacobian matrix. If we only want the Jacobian determinant
then we simply use the determinant properties det(AB) = det(A)det(B) and
det(aB) = andet(B) (for scalar a and rank nmatrices A and B), and divide through
by the �rst determinant to obtain

∣ux uy

vx vy
∣ = (−1)2 ∣Fx Fy

Gx Gy
∣

∣Fu Fv
Gu Gv

∣ . (3.54)

By the implicit function theorem the denominator determinant must be non-zero
in order for it to be locally possible to express u and v as functions of x and y.
The generalisation is straightforward. Let us compute the Jacobian for the

transformation { f 1, . . . , f n}→ {x1, . . . , xn}, where we consider the f i as functions
of all the x j, e.g. f i = f i(x1, . . . , xn). Let our constraint equations be

F1 ( f 1, . . . , f n , x1, . . . , xn) = 0⋮
Fn ( f 1, . . . , f n , x1, . . . , xn) = 0.

(3.55)

The total derivatives of these with respect to the x j are

dF1
dx1

= F1f 1 f
1
x1 + . . . + F1f n f

n
x1 + F1x1 = 0, . . . , dF1dxn = F1f 1 f

1
xn + . . . + F1f n f

n
xn + F1xn = 0,

⋮
dFn

dx1
= Fn

f 1 f
1
x1 + . . . + Fn

f n f
n
x1 + F1x1 = 0, . . . , dFn

dxn
= Fn

f 1 f
1
xn + . . . + Fn

f n f
n
xn + F1xn = 0,

(3.56)
which can be rearranged into the matrix equation

⎡⎢⎢⎢⎢⎢⎢⎣
F1f 1 . . . F1f n⋮ ⋱ ⋮
Fn
f 1 . . . Fn

f n

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
f 1x1 . . . f 1xn⋮ ⋱ ⋮
f nx1 . . . f nxn

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
−F1x1 . . . −F1xn⋮ ⋱ ⋮−Fn

x1 . . . −Fn
xn

⎤⎥⎥⎥⎥⎥⎥⎦
, (3.57)

and then into the Jacobian determinant

∣∂( f 1, . . . , f n)
∂(x1, . . . , xn) ∣ =

RRRRRRRRRRRRRRR
f 1x1 . . . f 1xn⋮ ⋱ ⋮
f nx1 . . . f nxn

RRRRRRRRRRRRRRR
= (−1)n

RRRRRRRRRRRRRRR
F1x1 . . . F1xn⋮ ⋱ ⋮
Fn
x1 . . . Fn

xn

RRRRRRRRRRRRRRR
/

RRRRRRRRRRRRRRRR
F1f 1 . . . F1f n⋮ ⋱ ⋮
Fn
f 1 . . . Fn

f n

RRRRRRRRRRRRRRRR
,

(3.58)
which is our general formula.
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3.C Appendix: Fine-tuning in the BIC
In this appendix I follow a simple derivation of the Schwarz, or Bayesian, in-
formation criterion (BIC), for the purpose of monitoring how the �ne tuning
measures explored in chapter 3 appear, although they subsequently vanish due to
the asymptotic limit that is taken. I follow the simple derivation given by Neath
and Cavanaugh (2012), and adopt some of their notation to keep the matching
straightforward.
The BIC is simply an asymptotic approximation of a scaled version of the

Bayesian posterior probability for a model. We therefore start by writing down the
usual model posterior:

P(k ∣ y) = π(k)
m(y) ∫Θ(k)L(θk ∣ y) g(θk ∣ k) dθk , (3.59)

where π(k) is the discrete prior over the modelsMk1 ,Mk2 etc, g(θk ∣ k) is the prior
for the parameters θk within model k (non-zero over the domain Θ(k)), L(θk ∣ y)
is the likelihood for the model point θk with respect to the set of observations y,
m(y) is the full model-space marginal likelihood for y (which will soon vanish)
and P(k ∣ y) is the posterior for modelMk.
We look for the maximum of eq. 3.59 under asymptotic conditions. We do this

by minimising −2 lnP(k ∣ y):
−2 lnP(k ∣ y) = −2 ln π(k) + 2 lnm(y)

− 2 ln{∫
Θ(k)

L(θk ∣ y) g(θk ∣ k) dθk} . (3.60)

The evidence factor m(y) is constant wrt the model space k so we may neglect it
and de�ne the remainder as S(k ∣ y). Let us also at this point add in a very precise
measurement MZ which constrains a parameter mZ . We will switch from the
parameters {θk} to the parameters {ϕk ,mZ} in order to impose this constraint.
S(k ∣ y,MZ) is then
S(k ∣ y,MZ) = −2 ln π(k)

− 2 ln{∬
Θ(k)

L(θk ∣ y)L(mZ ∣ MZ) g(θk ∣ k) ∣ ∂(θk)
∂(ϕk ,mZ)∣ dmZ dϕk} ,

(3.61)
which imposing L(mZ ∣ MZ) as the delta function δ(mZ −MZ) gives
S(k ∣ y,MZ) = −2 ln π(k)

− 2 ln⎧⎪⎪⎨⎪⎪⎩∫Φ(k)L(ϕk ,MZ ∣ y) g(θk ∣ k)∣MZ
∣ ∂(θk)
∂(ϕk ,mZ)∣MZ

dϕk

⎫⎪⎪⎬⎪⎪⎭ ,
(3.62)
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where Φ(k) is the subset of Θ(k) orthogonal to the mZ direction. We now need
to deal with the integral. By the integral mean value theorem there will exist some
values of the parameters ϕk, call them ϕk, for which we can write

∫
Φ(k)

L(ϕk ,MZ ∣ y) g(θk ∣ k)∣MZ
∣ ∂(θk)
∂(ϕk ,mZ)∣MZ

dϕk

= g(θk(ϕk ,MZ) ∣ k) ∣∂(θk(ϕk ,MZ))
∂(ϕk ,mZ) ∣ ∫

Φ(k)

L(ϕk ,MZ ∣ y) dϕk .
(3.63)

We now begin to make approximations that will only be valid in the asymp-
totic limit where y highly constrains the parameters ϕk. Following Neath and
Cavanaugh (2012) the integral over the likelihood can be written in this limit, a�er
a Taylor expansion around the maximum likelihood estimator ϕ̂k and assuming y
are iid observations from a likelihood from the exponential family, as

∫
Φ(k)

L(ϕk ,MZ ∣ y) dϕk ≈ L(ϕ̂k ,MZ ∣ y)(2π
n

)d/2 ∣I(ϕ̂k , y)∣−1/2 , (3.64)

where d is the number of parameters in ϕ, n is the number of samples in y, and
I(ϕ̂k , y) is the average observed Fisher information matrix

I(ϕ̂k , y) ≡ − 1n ∂2 lnL(ϕk ,MZ ∣ Yn)
∂ϕk∂ϕ′k

. (3.65)

Putting all this together we can write down the following approximation for
S(k ∣ y,MZ):

S(k ∣ y,MZ) ≈ −2 lnL(ϕ̂k ,MZ ∣ y) + d ln n
2π

+ ln ∣I(ϕ̂k , y)∣
− 2 ln π(k) − 2 ln g(θk(ϕk ,MZ) ∣ k) − 2 ln ∣∂(θk(ϕk ,MZ))

∂(ϕk ,mZ) ∣
(3.66)

If the prior g and the Jacobian factor vary slowly enough in the neighbourhood
of ϕ̂k then swapping ϕk for ϕ̂k will not harm the approximation much. We thus
see that when a �ne-tuning inducing measurement exists before we gather the
constraining data y, the tuning Jacobian factor indeed appears. Unfortunately, if
one follows the derivation of the BIC through the �nal step of removing all terms
which are bounded as n tends to in�nity, the tuning factors vanish along with the
other bounded terms. This is not surprising, since in the asymptotic limit the data
overpowers any non-pathological prior, and fundamentally the �ne-tuning factors
arise from prior considerations.
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Still, there is some justi�cation here for a “tuning-modi�ed” BIC something
like

BIC∆ ≡ −2 lnL(ϕ̂k ,MZ ∣ y) + d ln n + 2 ln ∆∣ϕ̂,MZ
(3.67)

where ∆ ≡ ∣∂ ln(ϕk ,mZ)/∂ ln(θk)∣, though this requires choosing log priors for
g and working in lnϕ rather than ϕ, and it is di�cult to argue that the Fisher
information term can be neglected when we do not take the full asymptotic limit.
Furthermore, the normalisation of the log priors is ignored, so that penalisation
due to the total prior volume allowed does not appear.
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4.1 Introductory remarks

The material in this chapter is published work and is self-contained, however a
few words to put it in context are in order. Up to this point we have discussed
Bayesian methods and popular supersymmetry (SUSY) models, along with the
deep connection they share through naturalness arguments. This is su�cient to
understand the general motivation of the work in this chapter, however there
have been several works along similar lines (references may be found in the paper
introduction) and there is an important di�erence between these and the present
work that is worth highlighting, though it is discussed in the paper; this is the
use of partial Bayes factors as a model comparison tool, to quantify the weight of
evidence against the Constrained MSSM (CMSSM) obtained from increasingly
powerful Large Hadron Collider (LHC) searches, along with other constraints.
One could simply use “full” Bayes factors for this task (as in e.g. AbdusSalam

et al. (2009)), however as we saw in chapter 3 (particularly section 3.1.2) these
can be very sensitive to the prior chosen, i.e. to background assumptions. These
prior e�ects are important to study for their own sake, since they are strongly
related to theoretical arguments for and against various models (e.g. the hierarchy
and µ problems), but for quantifying the impact of a particular experiment or
set of experiments this sensitivity is problematic. Of particular concern are the
ranges chosen for parameters. Sometimes there exist physical reasons to place
certain constraints on the prior volume, however this is o�en not the case and the
boundaries chosen are somewhat arbitrary.
This dependence on the absolute size of the prior volume can be removed if a

su�ciently powerful Bayesian update is performed. That is, if we start from some
prior and perform anupdate, the resulting posterior can be completely independent
of the prior boundary, and Bayes factors computed using this posterior as a prior
will likewise be una�ected by the initially chosen boundary. Indeed, depending
on the strength of the “training” data used, the sensitivity of subsequent analysis
to even the functional form of the chosen prior may be greatly reduced (so long as
the form does not vary “too much”; extremely sharp priors will always completely
dominate over all data).
In essence, by updating using some “training” data before considering the

impact of an experiment of interest, one is able to partially isolate the discrimina-
tion information associated with learning the training data, from the subsequent
information gained from the experiment of interest, essentially merging the former
information into the prior odds. More robust statements about the information
learned from the experiment of interest can then be made.
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Necessarily, this procedure will “erase” the e�ect of theoretical problems related
to prior choice, such as the hierarchy and µ problems. These considerations instead
contribute to the prior odds for the models in question. They should of course be
considered in a full analysis, however it is useful to isolate these e�ects from the
immediate impact of experimental data. The procedure presented in this paper
partially achieves such an isolation.
The technical details of the procedure are le� to the paper itself. Following the

full paper, a conference summary of the work is included in section 4.3.

4.2 Published material: Paper I
Begins overleaf.
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trust in the CMSSM (with M0 and M1/2 below 2 TeV), reducing its posterior odds by approximately two
orders of magnitude. This reduction is largely due to substantial Occam factors induced by the LEP and
LHC Higgs searches.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 1
2 Bayesian updating and partial Bayes factors . . . . . 3
3 Computing CMSSM vs SM+DM partial Bayes factors 4
4 Evidences for the Standard Model . . . . . . . . . . 7
5 Evidences for the CMSSM . . . . . . . . . . . . . . . 9
6 Likelihood function . . . . . . . . . . . . . . . . . . . 12
7 Results . . . . . . . . . . . . . . . . . . . . . . . . . 22
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 26
A Fast approximation to combined CLs limits for cor-

related likelihoods . . . . . . . . . . . . . . . . . . . 32
B Plots of CMSSM profile likelihoods and marginalised

posteriors . . . . . . . . . . . . . . . . . . . . . . . . 34

1 Introduction

Supersymmetry is an attractive and robust extension of
the Standard Model of particle physics [1]. Weak scale su-
persymmetry resolves various shortcomings of the Stan-
dard Model, and explains several of its puzzling fea-
tures [2–7]. Coupled with high-scale unification, supersym-
metry breaking radiatively induces the breakdown of the
electroweak symmetry. It also tames the quantum correc-
tions to the Higgs mass, provides viable dark matter can-
didates, and is able to accommodate massive neutrinos

and explain the cosmological matter-antimatter asymme-
try [8–12]. It is also an ideal framework to address cosmo-
logical inflation [13,14].

However, to date there is no experimental data pro-
viding direct evidence for supersymmetry in Nature. The
exclusion of supersymmetric models based on observa-
tion proves to be just as difficult as discovery, because
the large number of parameters in the supersymmetry
breaking sector makes supersymmetry (SUSY) sufficiently
flexible to accommodate most experimental constraints.
The most predictive supersymmetric models are the con-
strained ones where theoretical assumptions about super-
symmetry breaking are invoked, reducing the number of
free parameters typically to a few.

The most studied SUSY theory is the constrained min-
imal supersymmetric standard model (CMSSM) [15, 16].
Motivated by supergravity, in the CMSSM the spin-0
and spin-1/2 super-partners acquire common masses, M0

and M1/2, and trilinear couplings, A0, at the unification
scale. The Higgs sector is parameterised by the ratio of
the Higgs doublet vacuum expectation values (VEVs),
tanβ = vu/vd, and the sign of the higgsino mass parame-
ter, signµ.

Based on experimental data, an extensive literature
delineates the regions of the CMSSM where its parame-
ters can most probably fall. After the early introduction of
χ2 as a simple measure of parameter viability [17, 18] in-
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creasingly more sophisticated concepts were utilised, such
as the profile likelihood and marginalised posterior proba-
bility and the corresponding confidence [19–22] or credible
[23,24] regions. The effect of the LHC data on the CMSSM
has typically been presented in this general manner both
in the frequentist [25–27] and the Bayesian [28–31] frame-
work. To go beyond parameter estimation and obtain a
measure of the viability of a model itself one has several
options. The most common frequentist measure is the p-
value, the probability of obtaining more extreme data than
the observed from the assumed theory1 [32, 33]. In the
Bayesian approach model selection is based on the Bayes
factor, and requires comparison to alternative hypothe-
ses [34–39].

In the Bayesian framework the plausibility of the
CMSSM can only be assessed when we consider it as one
of a mutually exclusive and exhaustive set of hypotheses:
CMSSM ∈ {Hi}. The posterior probabilities of each of
these hypotheses, in light of certain data, are given by
Bayes’ theorem

P (Hi|data) =
P (data|Hi)P (Hi)∑
j P (data|Hj)P (Hj)

. (1)

Since the denominator in the right hand side is impossible
to calculate, it is advantageous to compare the plausibility
of the CMSSM to that of a reference model by forming the
ratio

Odds(
CMSSM

SM+DM
|data) =

P (CMSSM|data)

P (SM+DM|data)
. (2)

Here SM+DM denotes the Standard Model augmented
with a simple dark matter candidate (which need not be
specified explicitly so long as certain assumptions about
its parameter space are satisfied; see section 4), which we
choose as our reference model. Using eq. (1) we can rewrite
the odds in terms of ratios of marginalised likelihoods as

Odds(
CMSSM

SM+DM
|data) (3)

=
P (data|CMSSM)

P (data|SM+DM)

P (CMSSM)

P (SM+DM)

= B(data| CMSSM

SM+DM
) Odds(

CMSSM

SM+DM
).

The second ratio on the right hand side is called the prior
odds, and is incalculable within the Bayesian approach.
The first ratio, however, is calculable, and is commonly
called the Bayes factor. It gives the change of odds due to
the newly acquired information.

The Standard Model is the simplest choice for a ref-
erence model, given that it fits the bulk of the data and
has been confirmed by experiments up to the electroweak
scale. However, since it lacks a dark matter candidate and
does not address the hierarchy problem, a straightforward
comparison is not possible. Nevertheless, the SM can still

1 Here ‘more extreme’ can be defined in numerous ways.

be used as a reference if we factorise the Bayes factor into
two pieces,

B(data) = B(d2, d1) = BI(d2|d1)BT (d1) (4)

where BT considers a “baseline” or “training” set of data
d1 including dark matter and electroweak constraints, and
BI considers the subsequent impact of data of immediate
interest d2, which in this work we take to be a set of LEP
and LHC searches (here, for simplicity, we have dropped
the conditional on “CMSSM/SM+DM”, which is shared
by all terms). Neither BT nor BI individually consider the
full impact of all the available data, but each considers
part of it in turn; as such they have been coined “partial”
Bayes factors, or PBFs, in the statistics literature [40–
42]. BI may be further split, allowing one to focus on the
contributions of various new data in turn. We discuss the
computation of PBFs more fully in section 2.

The SM provides a good reference model for BI , even
though it cannot fully explain the “baseline” data, because
any penalty for failing to explain part of the “baseline”
data is shifted into BT , which we do not compute. Our
“inference” PBFs BI are thus constructed to extract only
a comparison of how well the CMSSM explains the null
LEP and LHC sparticle searches, 126 GeV Higgs hints,
and direct dark matter searches, relative to the SM. It is
for this reason that the details of the implicit dark matter
sector are unimportant; the main requirement is that its
parameters are constrained only by the “baseline” data,
i.e. the “inference” data is assumed to have negligible im-
pact (see section 4).

An alternative perspective on BI is also possible.
Since the difficulties in computing BT are of a similar
nature to those involved in estimating the prior odds
Odds(CMSSM/SM+DM) in the first place, it is useful to
apply Bayes theorem using the training data d1 to deter-
mine a new set of odds

Odds(
CMSSM

SM+DM
|d1) (5)

= BT (d1|
CMSSM

SM+DM
) Odds(

CMSSM

SM+DM
).

which are nevertheless still logically ‘prior’ to the odds
that are obtained after d2 is considered. BI is then just the
ordinary Bayes factor associated with updating from the
‘pre-d2’ to the ‘post-d2’ odds. The effect of the hierarchy
and dark matter problems may thus be thought of in terms
of their effect on the ‘pre-d2’ odds, as may a portion of
the effect of changing parameter space priors. As far as
our analysis is concerned the estimate of what these odds
are is left to the readers subjective judgement, but since
the same would be true if we started from ‘pre-d1’ odds
we do not see this as a problem.

Given that the hierarchy and dark matter problems are
important motivation for studying SUSY models it may
not be clear what we hope to achieve by shifting them
partially out of our considerations. This is discussed fur-
ther in sections 2 and 3, but let us introduce the idea here.
In studies of constraints on BSM physics, SUSY models
in particular, statements along the lines of “large parts

4.2 Published material: Paper I 77
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of the parameter space are ruled out [by such-and-such
a constraint]” can often be found. It appears that such
statements are made because there is an intuition that
ruling out “large” parts of parameter space decreases the
overall plausibility of a model. From a strict frequentist
perspective such statements are nonsense, because the no-
tion of parameter space volume makes no contribution to
classical hypothesis tests, that is, there is no measure on
the parameter space relevant to classical inference. On the
other hand, to a Bayesian there is an extremely relevant
measure on the parameter space: the probability measure
defined by the prior. A primary motivation of this paper
is thus to clarify how such statements can be defended,
and quantified, from a Bayesian perspective and to high-
light the caveats that must accompany them. The objects
central to quantifying such statements are exactly the “in-
ference” PBFs we compute, and by using the SM+DM as
a reference we can say something about each candidate
model in relative isolation and achieve inferences that we
feel are closest to the spirit of these statements.

To evaluate partial Bayes factors we will need to
calculate marginalised likelihoods (or evidences) such as
P (data|Hi). These are calculated as integrals over the
model parameters θ,

P (data|Hi) =

∫
P (data|Hi, θ)P (θ|Hi) dθ, (6)

where the integral is over the set of θ values for which the
prior P (θ|Hi) is non-zero. Here the notation P (data|Hi, θ)
is understood as distinct from P (data|Hi): the latter is the
probability of observing data averaged over the model pa-
rameters θ (computed by the marginalisation integral of
eq. (6)), while P (data|Hi, θ) admits a standard frequen-
tist interpretation as the probability of the data assuming
the specific parameter space point θ to be generating it,
i.e. as a likelihood function. While the likelihood func-
tion depends on the data in a straightforward manner,
the choice of P (θ|Hi) describing the a priori distribution
of the parameters is somewhat subjective. We fix this ini-
tial prior (which, as we discuss further in sections 3.2 and
5.1, depends on certain “training” data, in this case the
observed weak scale) based on naturalness arguments, fol-
lowing previous studies [24,43–46]. The underlying idea is
that some mechanism is required to protect the Higgs mass
from quantum corrections [47]; any new physics without
such a mechanism must be fine tuned to a high degree
in order for these (large) corrections to cancel each other.
If supersymmetry performs this task this then gaugino
masses have to be light [46,48–57]. To investigate the de-
pendence of our results on this natural prior we also cal-
culate evidences using logarithmic priors.

The remainder of this paper is structured as follows. In
section 2 we briefly review the tools needed for perform-
ing sequential Bayesian updates and the computation of
partial Bayes factors, and in section 3 we discuss in detail
the computation of PBFs for the CMSSM vs SM+DM
case along with some comments on their properties. In
section 3.1 we outline the information changes occurring
in each of our Bayesian updates and explain the terminol-

ogy used to refer to these, while section 3.2 contains im-
portant notes on the terminology needed to describe pri-
ors and posteriors in sequential analyses. Section 4 details
the computation of the evidences needed for the ‘Standard
Model plus dark matter’ half of our PBFs, including the
details of the corresponding priors, followed by section 5
which details the same for the CMSSM. In section 6 we
present the details of our likelihood function and its com-
ponents and in section 7 we present and discuss our central
results, the PBFs due to each of our updates. Conclusions
follow in section 8.

Note added: Due to the lengthy publishing process,
this paper uses LHC Higgs and super-particle search con-
straints that are considerably earlier than its date of ap-
pearance. Most significantly, when calculating PBFs we
have used February 2012 ATLAS 4.9 fb−1 Higgs search
data (in which the since discovered resonance at 126 GeV
had a local significance of 3.5σ), ATLAS 1 fb−1 direct
sparticle search limits, as well as XENON100 direct dark
matter search limits from 100 live days, all of which have
since become stronger constraints.

2 Bayesian updating and partial Bayes factors

The Bayesian framework describes how to update proba-
bilities of competing propositions based on newly acquired
information, where probability is interpreted as measur-
ing a ‘degree of belief’ in competing propositions [58]. This
probability is subjective insofar as it depends upon a sub-
jective ‘starting point’, i.e. an initial set of prior odds and
parameter prior distributions, but the updating procedure
is completely objective. As eq. (3) shows, the prior odds
are updated to better reflect reality by multiplying them
by Bayes factors to form posterior odds. These Bayes fac-
tors therefore quantify the effect of the new information
on the odds.

It is easy to prove that once further information is
available we can consider the earlier posterior odds as
prior and fold in the new information by just multiply-
ing these odds with a new Bayes factor. To show this, we
assume that there exist two sets of data, d1 and d2, and we
examine their effect on the prior odds. Using eq. (1) the
posterior odds considering both d1 and d2 can be written
as

Odds(
Hi

Hj
|d1, d2) =

P (d2|d1, Hi)

P (d2|d1, Hj)

P (Hi|d1)

P (Hj |d1)
. (7)

Comparing the first term on the right hand side to eq. (3)
we identify the Bayes factor induced by d2. Making this
explicit we obtain

Odds(
Hi

Hj
|d1, d2) = B(d2|d1,

Hi

Hj
)
P (Hi|d1)

P (Hj |d1)
. (8)

Applying eq. (1) again on the last term above, this trans-
forms into

Odds(
Hi

Hj
|d1, d2) = B(d2|d1,

Hi

Hj
)B(d1|

Hi

Hj
)
P (Hi)

P (Hj)
. (9)
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By induction the above holds for any set of data
{d1, d2, ..., dn}. That is Bayes factors factorise and update
the odds multiplicatively,

Odds(
Hi

Hj
|d1, d2, ..., dn) (10)

=

(
n∏

k=1

B(dk|dk−1, ...,
Hi

Hj
)

)
P (Hi)

P (Hj)
.

In the language introduced in section 1, we call each of the
terms in the product of eq. (10) a “partial” Bayes factor
(PBF), though they are still just ordinary Bayes factors.
The distinction lies only with the way data is grouped in
the analysis; that is, whether certain information is incor-
porated into the prior odds or the likelihood function, and
whether subsequent Bayesian updates occur or not. As a
result, a useful perspective is that every Bayes factor is
really a partial Bayes factor. This is essentially our view,
and given our explicit separation of data into ‘training’
and ‘inference’ sets it is particularly useful to use the term
PBF, as a constant reminder that our method shifts some
of the impact of the training data into the prior odds.

Crucially, the size of a PBF induced by a certain set
of data depends on what other data is already known
and folded into the odds. This can be understood by
considering the following example. Assume that data
set d1 excludes a certain portion of (say) the CMSSM
parameter space, and d2 excludes another portion that is
fully contained within the portion already excluded by d1

(for simplicity assume that d1 and d2 have no effect on the
alternate model, i.e. the SM+DM). If we learn d1 first, its
PBF updates the prior odds by B(d1|CMSSM/SM+DM).
Learning d2 after this changes nothing so its induced
PBF must be unity, i.e. B(d2|d1,CMSSM/SM+DM) = 1.
In contrast, when learning d1 first and then d2

their partial Bayes factors, B(d2|CMSSM/SM+DM)
and B(d1|d2,CMSSM/SM+DM), both have to
be less than one, while their product must equal
B(d1, d2|CMSSM/SM+DM). This final product is inde-
pendent of the data ordering, but as we see the individual
PBFs are not.

Since partial Bayes factors do not “commute” it is
important that we define the order in which the data is
learned. To assess the role of LEP and the LHC in con-
straining the CMSSM we deviate slightly from the historic
order in which data appeared. We assume that the initial
odds contains information from various LEP direct spar-
ticle search limits, the neutralino relic abundance, muon
anomalous magnetic moment, precision electroweak mea-
surements and various flavour physics observables. This
set of data forms our baseline. We then compute the par-
tial Bayes factors induced by folding in the LEP Higgs
search and XENON100 dark matter search limits, LHC
1 fb−1 direct sparticle search limits and February 2012
LHC Higgs search results. These PBFs are then an ef-
ficient summary of how much damage has been done to
the plausibility of the CMSSM by this new data.

3 Computing CMSSM vs SM+DM partial
Bayes factors

The marginalised likelihoods, or evidences, which appear
in the Bayes factor of eq. (7) contain a subtle difference
from the general form described in eq. (6), this being that
they are conditional on data d1:

P (d2|d1, Hi) =

∫
P (d2|d1, Hi, θ)P (θ|d1, Hi) dθ. (11)

If d1 and d2 are statistically independent then the condi-
tioning on d1 drops out of the likelihood function, but it
remains in the prior function P (θ|d1, Hi). This prior may
thus be called ‘informative’ because it incorporates infor-
mation from the likelihood P (d1|Hi, θ), which has been
folded in to an initial “pre-d1” prior P (θ|Hi), in general
resulting in an extremely complicated distribution which
makes the integral difficult to evaluate.

Fortunately, there exists an alternative to directly eval-
uating the integral. From the definition of conditional
probability we may write

P (d2|d1, Hi) =
P (d2, d1|Hi)

P (d1|Hi)
, (12)

where the numerator and denominator may be referred to
as “global” evidences, since they are computed by inte-
grating the global likelihood function over the parameter
space, with the parameter space measure defined by the
“pre-d1” distribution for the model parameters, as is done
in more conventional model comparisons [59–63]. We dis-
cuss the numerical details of the global evidence evalua-
tion and priors in section 5, and the details of the global
likelihood function in section 6.

Bayes factors are only defined for a pair of hypotheses
which are being compared, however it is useful to break
them up into pieces which tell us something about what is
happening in each hypothesis individually, so that we may
more easily speculate about what effect variations in one
hypothesis or the other might have. While the evidences
themselves suit this purpose it can be more illuminating
to break them up further, into a contribution from the
maximum of the likelihood function of the new data, and
an Occam factor. The latter is defined only through its
relationship to the evidence; it is what remains when the
maximum value of the likelihood function is divided out:

O(d2|d1;Hi) ≡
P (d2|d1, Hi)

P (d2|Hi, θ̂)
. (13)

Here P (d2|d1, Hi) is the evidence associated with learn-
ing d2 when d1 is already known, as computed in eq. (11)

and eq. (12), and P (d2|Hi, θ̂) is the maximum value of the
likelihood function for d2 that is achieved in the model Hi

(and θ̂ is the parameter space point in Hi which achieves

this maximum). P (d2|Hi, θ̂), coming as it does from the
likelihood, does not depend on the prior2: this dependence

2 Strictly, some prior dependence remains due to the choice
of parameter values considered possible by the prior, most often
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is entirely captured by the Occam factor. P (d2|Hi, θ̂) also
has no dependence on d1, with this dependence again con-
tained in the Occam factor.

These two components of the evidence give us different
information about the model. A Bayes factor (or PBF) is
a ratio of evidences, so by decomposing evidences in this
manner we will obtain in the PBF a product of ratios,
one of which is a standard frequentist maximum likeli-
hood ratio (considering just the new data d2), and the
other of which is a ratio of Occam factors. The maximum
likelihood ratio tells us which model has the better fit-
ting point with respect to d2, but ignores all other aspects
of the model and all other data. Complementing this the
Occam factor tells us something about the relative volume
of previously viable parameter space which is compatible
with the new data d2 in each model, where the measure
of volume is defined by the informative prior P (θ|d1, Hi),
which has resulted from a previous Bayesian update and
so “knows” about previous data d1. The Occam factor can
be roughly interpreted as the amount by which the new
data d2 collapses the parameter space when it arrives3,
and its logarithm as a measure of the information gained
about the model parameters [64]

The impact of Occam factors on the model comparison
can be seen by explicitly writing out the PBFs in terms
of them:

B(d2|d1) =
P (d2|d1, Hi)

P (d2|d1, Hj)
(14)

=
P (d2|Hi, θ̂)

P (d2|Hj , φ̂)

O(d2|d1, Hi)

O(d2|d1, Hj)
,

where θ and φ parameterise Hi and Hj respectively (and

φ̂ the analogue of θ̂). Schematically

B = LR× OHi

OHj

, (15)

where LR denotes the maximum likelihood ratio for the
new data d2, and the rest of the abbreviated terms cor-
respond directly to their partners in the more formal ex-
pression. We thus see two competing factors: a model is
favoured if it achieves a high likelihood value for the new
data somewhere in its parameter space, but disfavoured
if the good-fitting region is not very compatible with the
informed prior (i.e. if a good fit is achieved in only a small
region, with ‘small’ defined according to the probability
measure of the informed prior). These effects are also rela-
tive; i.e. no objectively “good” likelihood value is needed,

arising from the choice of scan range, however this is the same
kind of dependence that exists in a frequentist analysis. As
well as this there exists the possibility that d1 strictly forbids
certain values of θ, and these too should be excluded from the
computation of P (d2|Hi, θ̂).

3 The full volume of parameter space viable at this inference
step, Vtotal, is defined by the informative prior. If the likeli-
hood function for the new data was constant in a region V and
zero outside of it, then the fraction f = V/Vtotal would be the
Occam factor.

just one which is better than that achieved in alternate
models, and likewise for the volume effects.

Because the best fit point is only with respect to the
new data it could be very different to the best fit point of
the global likelihood function, and so may not appear to
be a useful object to frequentist thinkers. However, in the
Bayesian framework it is acknowledged that not all data
relevant to inference can be expressed in the likelihood
function, that is, the prior may contain real information.
In our case the prior for each iteration (except the first)
contains very concrete information; that coming from the
rest of the likelihood. The best fit point with respect to the
new data is thus indeed not so useful on its own (although
it tells us something about the maximum goodness of fit
possible in the model for that data), but extracting it from
the evidence allows one to capture tension between the
new and old data in a different way, i.e. in the Occam
factor.

Eq. (14) is completely general, except that the data
must be independent. To gain some intuition about how
PBFs select models we may now make some assumptions
about how the global evidence for each model behaves un-
der certain kinds of data changes. To begin with, in the
case of adding new exclusion limits, the best-fit likelihood
value of the new data is often very similar in large classes
of models; specifically, it will be close in value to that for
the SM, assuming no significant deviations from the SM
predictions are observed. An interesting situation to con-
sider is thus that in which we set the maximum likelihood
value for new data to be equal in both models4. Applying
this assumption to the PBF gives us (for example):

B(d2|d1) =
O(d2|d1,CMSSM)

O(d2|d1,SM+DM)
. (16)

If the CMSSM and SM+DM best fit values for the new
data are similar then the Occam factors dominate our rea-
soning process. Models suffering large cuts to the parame-
ter space become less believable, while those less damaged
by the new limits become relatively more believable, as one
intuitively expects.

Since this work is devoted to quantifying changes in
odds, not odds themselves, we evaluate only the partial
Bayes factor B(d2|d1) for various data sets d2; the cal-
culation of the prior odds in eq. (10) is not attempted
and is impossible unless one is prepared to explore princi-
ples for defining measures on the global space of hypothe-
ses –perhaps based on algorithmic probability (as advo-
cated by Solomonoff [65] and others)– or otherwise justify
an ‘objective’ origin for priors. From a purely subjective
Bayesian perspective the prior odds can instead be allo-
cated to the reader to estimate from their own knowledge
base and philosophical preferences, to be modified by the
PBFs we compute.

To close this section we wish to make an additional
observation about our choice of the SM+DM as our ref-
erence model. It was recently shown in ref. [66] that a

4 I.e. in a generic event counting experiment we assume the
expected number of signal events at the best fit point to be
close to zero.
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model in which observable quantities enter directly as in-
put parameters can be considered a “puzzle” from the
perspective of naturalness considerations. Such a model
lies at a natural boundary between a fully predictive (or
“natural”) model (which in effect has no free parameters,
and for which the evidence collapses to a simple likeli-
hood), and a fine-tuned model (in which ‘small’ changes
to parameters - where again ‘small’ is defined relative to
the measure set by the prior - produce large changes in
predicted observations and for which the evidence due to
learning the fine-tuning inducing data will be incredibly
small, since only a tiny portion of parameter space predicts
it correctly5). It is argued that such a “puzzle” model rep-
resents the only sensible reference point against which to
measure naturalness. The changes in evidence in such a
model can be easily computed, if one has enough data to
define a prior for the observables, and it is argued that
these be compared to the evidence changes that occur in
a model of interest using a Bayes factor exactly as we com-
pute; if the Bayes factor favours the “puzzle” model this
is an indication that the model of interest is not a very
natural explanation for the data and drives us to believe
that a better model should exist.

There is no reason to restrict this reasoning to only
that data usually associated with fine-tuning, and as we
have defined it our comparison SM+DM is just such a
“puzzle” model6. Thus, if the reader prefers, they may
interpret our computed PBFs not as tests of the CMSSM
against any specific model, but as measures of how much
better or worse than the “puzzle” model it predicts the
new data (when constrained by the baseline data).

3.1 Bayesian updates

Here we outline the changes of information that we
consider in this paper, and for which we compute the
corresponding partial Bayes factors for the CMSSM vs

5 Note that a very small value for the evidence from learn-
ing some data implies a very large amount of information was
gained about the model. This may sound like a good thing,
however it means that little was known about the model be-
fore this data arrived and so the model was not very useful for
predicting what that data would be. PBFs penalise this failure,
however if the information gain was sufficiently large then the
model may in fact become highly predictive about future data,
and may thus fare much better in future PBF tests.

6 The reader may protest that the SM+DM is not just a
fine-tuning “puzzle”, it is a very extreme example of fine-
tuning! However, this is only true if one considers it from a
pre-‘electroweak data’ perspective. The SM+DM presumably
suffers a very large PBF penalty for failing to predict the elec-
troweak scale (and for this scale being observed very far from,
say, the Planck scale, where a priori arguments based on the
hierarchy problem may place it), however these considerations
enter before the ‘baseline’ data we choose for our inference se-
quence and so do not directly enter our PBFs. The complete
assessment of which model best reflects reality should of course
take these matters into account.

SM+DM hypothesis test. We take as our initial informa-
tion a conventional set of experimental data, including
dark matter relic density constraints, muon anomalous
magnetic moment measurements, LEP2 direct sparticle
mass lower bounds, and various flavour observables. The
full list and details of the likelihood function can be found
in table 2 of section 6. Notably, we do not include the
LEP2 Higgs mass and cross section limits, nor any re-
sults from dark matter direct detection experiments or
the LHC7, because these are precisely the pieces of data
whose impact on the CMSSM we wish to assess. To im-
prove the brevity of later references, we name this initial
data set the “pre-LEP” state of knowledge, to emphasise
that the LEP Higgs bounds have been removed.

The shrewd reader will notice that we include many
pieces of data in this initial set that were not yet mea-
sured when the LEP2 Higgs constraints began to exclude
much of the low-mass CMSSM regions (most notably the
WMAP measurements constraining the dark matter relic
density), and that we neglect previous Higgs constraints,
so our ‘initial’ knowledge state is not truly representative
of the experimental situation that existed around say 1998
(when the LEP bound was mh < 77.5 GeV [67] and would
not have noticeably constrained our “pre-LEP” CMSSM
parameter space had we included it). However there is no
requirement that the analysis be chronologically accurate
for meaningful results to be obtained. We maintain the
rough correspondence simply to ease the interpretation of
the results. In addition, most extra constraints in the ini-
tial set (aside from the WMAP data) tend to exclude parts
of the CMSSM that the new data would also exclude, thus
reducing the apparent strength of the latter.

From this initial data set we add in sequence the
LEP2 Higgs constraints and XENON100 limits on the
neutralino-nucleon elastic scattering cross section to form
the “LEP+XENON” data set. Next we add the 2011 1
fb−1 LHC SUSY search results to form the “ATLAS-
sparticle” data set. Finally, we add the February 2012
LHC Higgs search results to form the “ATLAS-Higgs”
data set. The details of the likelihood functions for these
new pieces of data are described in section 6. This gives
us four data sets and three sequential Bayesian updates,
each of which is characterised by a partial Bayes factor.
In addition, we compute results using two different “pre-
LEP” distributions (i.e. priors) for the CMSSM parame-
ter space (the description of which we leave to section 5.1,
with some preliminary comments in section 3.2), giving
two perspectives on each update and thus doubling the
number of data sets and PBFs we obtain.

3.2 A note on priors, posteriors, and terminology

Since we consider a sequence of Bayesian updates in this
work, the conventional terminology used in more straight-
forward analyses becomes somewhat awkward; in particu-
lar, the usage of the words “prior” and “posterior” become
more context-sensitive than usual. For any given Bayesian

7 Except for an early LHCb lower bound on BR(Bs → µµ).
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update, there are always probabilities that represent states
of knowledge “prior” to the update, and corresponding
probabilities that are logically “posterior” to the update;
however, in a sequential analysis the posterior from one
update acts as prior to the next, meaning that a single
set of probabilities may be described as both “prior” and
“posterior” depending on the particular update being ref-
erenced, implicitly or explicitly, at the time.

Confusing the issue further is the technique we use to
compute our PBFs, best illustrated by the structure of eq.
(12). Here we compute the evidence we are interested in,
P (d2|d1, Hi) (due to updating from data d1 to {d1, d2}) by
taking the ratio of the two “global” evidences P (d2, d1|Hi)
and P (d1|Hi) (due to updating from an implicit “pre-d1”
state of knowledge to {d1, d2} and d1 respectively), which
are more straightforward to implement computationally.
However this structure means we now have to be careful
to be clear about the difference between the prior for the
d1 to {d1, d2} update, P (θ|d1, Hi), and the prior for the
“pre-d1” to {d1, d2} or d1 updates, P (θ|Hi). To aid in this
distinction we refer to P (θ|Hi) as the “pre-LEP” prior,
since the “pre-LEP” data set is the first we consider, and
P (θ|D,Hi) as an “informative” prior, or where possible
by a more explicit reference to the update to which it is
prior, e.g. the “LEP+XENON” prior for the update from
the “pre-LEP” to the “LEP+XENON” datasets (with the
updates in our sequence occurring as described in sec-
tion 3.1)

In the case of Hi = CMSSM, we do not ever explicitly
compute the “informative” priors P (θ|D,Hi)

8, since we
compute the required evidences using eq. (12). On the
other hand, in section 4, where Hi = SM, we do explicitly
compute and make use of these priors, so the terminology
is particularly important there.

There is a final important note to be made on this
topic, which is deeply connected to naturalness and the
hierarchy problem. When we construct the “pre-LEP” pri-
ors P (θ|Hi) for both the CMSSM and the SM+DM, it
must be noted that large amounts of experimental data
are taken into consideration when constructing them, so
in no sense should they be though of as “fundamental” or
“data-free” priors. This is true for all Bayesian global fits
of such models of which we are aware.

The so-called “natural” (“pre-LEP”) prior we use for
the CMSSM demonstrates this most explicitly. When
scanning the CMSSM in the conventional parameter set
{M0,M1/2, A0, tanβ, signµ} one must remember that the
codes generating the CMSSM spectrum make explicit use
of the observed Z mass in order to reduce the dimen-
sionality of the scan9, which means that the “pre-LEP”

8 This is a small lie; we do compute marginalised posteriors
for each update, which indeed correspond to the “informative”
priors for the subsequent update. Nevertheless we do not ex-
plicitly use them in this fashion.

9 The rest of the Standard Model parameters of course also
enter explicitly, but we may reasonably consider priors over
those to be statistically independent of the CMSSM parame-
ters, such that measuring the values of these parameters results
in PBFs of 1.

prior P (θ|CMSSM) should more correctly be written as
P (θ|mZ ,CMSSM), as should all priors set directly on
these “phenomenological” CMSSM parameters. The “nat-
ural” prior explicitly acknowledges this fact and so be-
gins from a “pre-mZ” prior P (θ|CMSSM) (which since
no weak scale information is available must be formu-
lated in terms of the more “fundamental” parameters
{M ′0,M ′1/2, A′0, B′, µ′}, where the dashes acknowledge that

the conventional set {M0,M1/2, A0, tanβ, signµ} parame-
terises a (multi-branch) 4D hypersurface of the “funda-
mental” parameter space) which then effectively under-
goes a Bayesian update, as features so prominently in
our analysis, to the “pre-LEP” prior P (θ|mZ ,CMSSM)
by folding in the known Z boson mass. This update of
course is accompanied by a PBF, and it is this PBF which
penalises any tuning required to obtain the correct weak
scale from a model, and which may be expected to ex-
tremely heavily prefer the CMSSM over the SM+DM no
matter how large tuning becomes in the CMSSM.

As mentioned in section 1 we do not compute the PBFs
for this particular update, since it is difficult to do so rig-
orously and the focus of our paper is the CMSSM, rather
than the SM+DM. Nevertheless we feel that this series of
arguments is excellent motivation for so-called “natural-
ness” priors, and casts serious doubt on the logical validity
of more conventional CMSSM priors, such as the log prior
we use for comparison, which can in this light be under-
stood to express some extremely odd beliefs about the
“fundamental” parameters {M0,M1/2, A0, B, µ}. More to
the point of this section, it is an excellent example of the
type of “background” information on which many priors
in the literature are implicitly conditional.

4 Evidences for the Standard Model

For our purposes, we can consider all the parameters of the
SM to be fixed by our initial experimental data or other-
wise unaffected by the new data, with only the Higgs mass
mh undetermined. The new data is also assumed to min-
imally affect any additional dark matter sector. The evi-
dences for the combined SM plus dark matter (SM+DM)
for each data transition can thus be computed entirely
by considering the one-dimensional Higgs mass parameter
space. This can be shown as follows.

The above assumptions allow us to separate the pa-
rameters and available data into three groups: (1) ini-
tial data d0 which highly constrains the Standard Model
parameters φ but less strongly constrains mh; (2) data
dΩ which constrains only the dark sector parameters ω,
and whose effect on φ is negligible relative to d0; and
(3) ‘new’ data dnew constraining only the Higgs mass,
with negligible effect on φ relative to d0, and no im-
pact on the dark sector parameters ω. If we assume
that the initial prior (or ‘“pre-{d0, dΩ}” prior’ in the
terminology introduced in section 3.2) for ω is indepen-
dent of that for mh and φ, i.e. P (mh, φ, ω|SM+DM) =
P (mh, φ|SM+DM)P (ω|SM+DM), and that the three sets
of data are statistically independent, then the evidence
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associated with the new data dnew can be written as

P (dnew|d0, dΩ) =
P (dnew, d0, dΩ)

P (d0, dΩ)

∣∣SM+DM, (17)

with

P (dnew, d0, dΩ) =

∫
dmhdφ dω P (dnew|mh, φ)

× P (d0|mh, φ)P (dΩ |φ, ω)P (mh, φ, ω)
∣∣SM+DM, (18)

and

P (d0, dΩ) =

∫
dmhdφdω

× P (d0|mh, φ)P (dΩ |φ, ω)P (mh, φ, ω)
∣∣SM+DM, (19)

where the “
∣∣SM+DM” notation indicates that all

probabilities in the expression are conditional on
“SM+DM”, i.e. the combined model. If d0 suf-
ficiently strongly constrains the SM parameters
(except mh) to φ′ then to a good approximation
P (d0|SM+DM,mh, φ) ∝ δ(φ′ − φ)f(mh), where
f(mh) describes the variation of the d0 likelihood in
the mh direction, and the proportionality constant
divides out in the ratio. The φ integral is thus re-
moved and the remaining integrals are separable. The
integral over the dark sector parameters ω is iden-
tical in the numerator and denominator and thus
vanishes, as does the prior density P (φ′|SM+DM)
(resulting from expanding P (mh, φ

′|SM+DM) as
P (mh|SM+DM, φ′)P (φ′|SM+DM), evaluated at φ′ due
to the delta function), leaving us with

P (dnew|d0, dΩ) =∫
dmh P (dnew|mh, φ

′)f(mh)P (mh|φ′)∫
dmh f(mh)P (mh|φ′)

∣∣SM+DM. (20)

We are free to choose the normalisation of
f(mh), and it is convenient to choose it such
that

∫
dmhf(mh)P (mh|SM+DM, φ′) = 1, so that

f(mh)P (mh|SM+DM, φ′) corresponds to the posterior
probability density for mh once d0 is considered, i.e.
P (mh|d0,SM+DM, φ′). This density becomes the prior
for the consideration of dnew. The evidence associated
with learning dnew, starting from d0 and dΩ , is thus
shown to be the relatively straightforward integral

P (dnew|d0, dΩ) =∫
dmh P (dnew|mh, φ

′)P (mh|d0, φ
′)

∣∣SM+DM. (21)

as we intuitively expect. Importantly, this evidence is in-
dependent of the details of both the dark sector theory and
the constraints dΩ , so long as the theory meets our criteria
of not significantly affecting the predictions for dnew, nor
is affected by the value of mh

10. Any sufficiently decoupled
dark sector satisfies this requirement.

10 Within the range of mh values compatible with dnew, i.e
the dark sector theory is permitted to exclude values of mh

which are also well excluded by dnew.

We now evaluate eq. (21). The d0 relevant for
constraining mh are electroweak precision mea-
surements, so we may build our “pre-LEP” prior
P (mh|d0,SM+DM, φ′) = f(mh)P (mh|SM+DM, φ′)
based on these. Taking the most conservative ∆χ2 curves
from figure 5 of ref. [68] as our electroweak constraints we
reconstruct the corresponding likelihood function f(mh),
and multiply this by an initial (i.e. “pre-{d0, dΩ}”) prior
P (mh|SM+DM, φ′) flat in logmh

11. Although this is
done numerically it yields a prior close12 to a broad
Gaussian (in logmh space) centred on mh = 90 GeV with
a log10 width of about 0.15, i.e. mh = 90+35

−26 GeV.
If the new data dnew is the LEP2 mh likelihood func-

tion described in table 2 (let us call this dLEP ), then eq.
(21) is now straightforward to evaluate numerically. Its
value alone is not meaningful because the likelihood func-
tion is only defined up to a constant (which divides out
in the PBF), however if we divide out the maximum like-
lihood value we recover the corresponding Occam factor,
which we find to be 0.284, or about 1/3.5. We have checked
that choosing a flat initial prior for mh makes little dif-
ference to this result13. We consider the corresponding
effects on the CMSSM in section 7, however it is useful
to mention here that the maximum likelihood values for
both the SM+DM and CMSSM for this data are equal
(since our simple model of the limit assumes the likelihood
to be maximised for the background-only hypothesis), so
the Occam factors themselves contain all the information
about which model the PBF prefers. A more careful anal-
ysis of the LEP data would allow the CMSSM to receive a
slight likelihood preference since it is has more parameters
than the SM+DM and can in principle achieve a better fit
to any observed deviation from the expected background,
however since no significant excess was seen at LEP this
effect will be small.

In addition to the evidence P (dLEP |d0,SM+DM), the
computation of eq. (21) also produces for us (via Bayes’
theorem) a new posterior distribution over mh, which in-
corporates both d0 and dLEP (with dΩ having had no
impact):

P (mh|dLEP , d0) =
P (dLEP |mh)P (mh|d0)

P (dLEP |d0)

∣∣SM+DM,

(22)
(for brevity we drop the conditionals on φ′, as it is fixed
from here on, and on dΩ , because our results were shown

11 For a scale parameter this is the Jeffreys prior.
12 These ∆χ2 curves are almost quadratic in logmh, implying
a close to Gaussian likelihood function, however we have digi-
tised the most loose boundaries of the displayed curves to be
conservative. As a result the likelihood function we reconstruct
has a flat maximum from ∼80 GeV to ∼100 GeV.
13 If, due to tuning arguments, we except mh to adopt a value
on the largest allowed scale, rather than all scales being equally
likely, then a flat prior cut off at this scale may indeed better
represent this belief. The lack of sensitivity of the informative
“pre-LEP” prior to this choice reflects the fact that before the
“pre-LEP” update the Standard Model prediction for the Higgs
mass is already quite well constrained.
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to be independent of it). This is the prior for the second
iteration of our learning sequence, in which we consider
the addition of the ATLAS sparticle search results, so we
may call it the “ATLAS-sparticle” prior. These searches
of course do not affect the Standard Model parameters,
and our assumptions about the nature of the dark sector
demand that it be similarly unaffected. So the SM+DM
evidence due to this update can be safely set to 1.

Finally, we consider the addition of the recent LHC
Higgs search results. Since the sparticle searches had no
impact the prior for this update is unchanged in form from
eq. (22), that is eq. (22) also describes the “ATLAS-Higgs”
prior. As we shall discuss further in section 6.3, we con-
strain the CMSSM using only the results from the AT-
LAS h→ γγ, h→ ZZ → 4l and h→WW → 2l2ν search
channels [69–71], as these channels both dominate the con-
straints on the lightest CMSSM Higgs and are the only
ones for which ATLAS provide signal best fit plots, which
we require to perform our likelihood extraction. CMS do
not provide such plots for all channels so we are unable to
incorporate the CMS results at this stage. We constrain
the cross sections for each of these channels separately in
the CMSSM likelihood function since the factor by which
they differ from the Standard Model prediction is not uni-
form across all channels, as is assumed in the ATLAS and
CMS combinations. For the SM+DM evidence computa-
tion it would be optimal to include extra channels which
can more powerfully exclude higher Higgs masses, how-
ever the strength of the 125 GeV excess in our chosen
three channels is already sufficient to very strongly dis-
favour such Higgs masses, such that including these extra
channels would negligibly improve our analysis.

In figure 1 we show the “pre-LEP” prior for the SM
Higgs parameter, derived from electroweak precision mea-
surements, with the LEP and ATLAS Higgs search likeli-
hood functions overlaid. The LEP likelihood function is
simply taken as a hard lower limit at 114.4 GeV, con-
volved with a 1 GeV Gaussian experimental uncertainty
(as described in table 2). The ATLAS Higgs search like-
lihood function is reconstructed from the February 2012
combined Higgs search results [72] using the method de-
scribed in section 6.3. Performing Bayesian updates with
each of these likelihood functions in sequence we compute
Occam factors of 0.284 and 0.02 respectively.

We note again that we have not folded in earlier LEP
Higgs limits into the “pre-LEP” prior for the SM Higgs
mass; for example the upper limits of around 80 GeV that
existed in 1998. We have done this to avoid an arbitrary
decision about exactly which limits to include, and be-
cause neglecting them only weakens the apparent dam-
age that LEP did to the CMSSM. This occurs because
CMSSM model points predicting Higgs masses of below 80
GeV are not common nor have particularly high likelihood
in our “pre-LEP” CMSSM data set and so do not occur in
most of the effective prior which arises from that data set,
while a very sizable portion of the SM Higgs mass prior
we have just constructed is below 80 GeV. Therefore, were
we to include such a limit, it would increase the apparent
damage done by the 114.4 GeV LEP limit to the CMSSM
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Fig. 1: The prior over the SM Higgs mass parameter de-
rived from electroweak precision measurements (green),
with LEP (blue) and ATLAS (red) Higgs search likelihood
functions overlaid. The prior and likelihood functions are
scaled against their maximum values.

(relative to the SM), so leaving it out is a conservative
choice. The impact on the corresponding Bayes factor can
be fairly easily estimated anyway by considering eq. (15),
as follows. The amount of “pre-LEP” CMSSM posterior
that would be affected is fairly negligible so we can ignore
it in a rough estimate, while the amount of SM Higgs prior
that would be cut off can be seen from figure 1 to be about
1/3. The 114.4 GeV limit would thus have its SM Occam
factor increased from about 0.3 to about 0.5 (weakening
it), and since the other components of the Bayes factor re-
main unchanged the effect would be about a 5/3 boost in
odds towards the SM, which, as we shall see in section 7,
is of negligible importance.

5 Evidences for the CMSSM

To determine the CMSSM half of our partial Bayes fac-
tors we compute the CMSSM global evidence under each
of the data sets described in section 3.1, using two con-
trasting “pre-LEP” prior distributions for the parame-
ters (see section 5.1 for details). This requires the nu-
merical mapping of the CMSSM global likelihood func-
tion for each data set (the details of which we dis-
cuss in section 6). To perform this mapping we use
the public code MultiNest v2.12 [73, 74], which imple-
ments Skilling’s nested sampling algorithm [75]14. To com-
pute the CMSSM predictions at each parameter space
point we first generate the particle mass spectrum us-
ing ISAJET v7.81 [78]. We then pass the spectrum to
micrOmegas v2.4.Q [79–81] to compute the neutralino
relic abundance, muon anomalous magnetic moment, spin-
independent proton-neutralino elastic scattering cross sec-
tion, and precision electroweak variable ∆ρ. We use
SuperISO v3.1 [82, 83] to compute a number of flavour
observables (the full set of likelihood constraints imposed

14 Aside from nested sampling and several variants of Markov
Chain Monte Carlo methods, the list of techniques used to
scan the CMSSM has expanded in recent years to also include
genetic algorithms and neural networks [76,77].
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is listed in table 2). We also estimate on a yes/no basis
whether a given point can be considered excluded by AT-
LAS direct sparticle searches, using a machine learning
technique which we describe in section 6.2. Finally, the
spectrum is passed to HDECAY v4.43 [84], which we use
to compute the cross section ratio σCMSSM/σSM for the
following processes:

gg → h→ γγ,

gg → h→ ZZ → 4l, and

gg → h→WW → 2l + 2ν. (23)

We constrain these cross sections separately using the De-
cember 2011 - February 2012 ATLAS Higgs search re-
sults [69–71]. MultiNest then guides the scan through a
large number of sample points, returning a chain of pos-
terior samples and the global evidence.

To ensure that the likelihood function is sampled
densely enough to guarantee highly accurate evidence val-
ues, we run MultiNest with parameters guided by the
recommendations of ref. [85], in which MultiNest is con-
figured to sample the likelihood function to the accuracy
required for frequentist analyses. Since our analysis is
Bayesian we do not require as detailed information as fre-
quentist scans in the vicinity of the maximum likelihood
points, so we drop the recommended number of live points
from 20k to 15k and relax the convergence criterion from
tol = 10−4 to tol = 0.01 to reduce the computational de-
mand. Additionally, we cluster in three dimensions (M0,
M1/2 and tanβ) and set the efficiency parameter efr to
0.3. Finally, we treat the top quark mass mt as a nuisance
parameter (with the rest of the Standard Model param-
eters set to their central experimental values), so the di-
mensionality of the scanned parameter space is five. The
above MultiNest settings result in about 107 evaluations
of our likelihood function per run and posterior chains
of about 2.5 × 105 good model points. The total number
of likelihood evaluations over the whole project exceeded
108.

5.1 Priors and ranges

The shape of the “pre-LEP” prior P (θ|CMSSM) reflects
our relative belief in different parts of the parameter space
before learning the any of the experiment information
in our “pre-LEP”, “ATLAS-sparticle” or “ATLAS-Higgs”
likelihood functions (though as discussed in section 3.2
they are conditional on other ‘background’ experimental
knowledge, such as Standard Model parameter values, par-
ticularly mZ). By considering multiple of these priors we
can analyse how a representative set of subjective beliefs
about the CMSSM should be modified by new data. We
now describe the priors we use and explain our choices.

We allow the top quark mass to vary since, of the
Standard Model parameters, its experimental uncertainty
allows the largest variation in the CMSSM predictions.
Since its value is to a large degree fixed by experiment
we are able to set its “pre-LEP” prior to be a Gaus-
sian with the experimental central value and width of
172.9± 1.1 GeV [86].

To reduce the computational complexity of the prob-
lem we have only scanned the µ > 0 branch of the
CMSSM. This is not optimal, however it almost certainly
does not greatly affect our inferences, because the µ < 0
branch is already strongly disfavoured by the data in our
“LEP+Xenon” set by a PBF of around 20-60 [59]15. The
µ < 0 branch of the “pre-LEP” dataset is therefore less
disfavoured than this, and so the fraction of parameter
space disfavoured by this first update must be larger than
we compute, making our estimated PBFs for it conser-
vative. In subsequent updates the volume of parameter
space left viable in the µ < 0 branch would be this factor
of 20-60 smaller, and so changes to it would contribute by
the same factor less to the corresponding PBFs, rendering
it quite unimportant for those updates.

5.1.1 Logarithmic prior

Based on naturalness arguments there is a strong be-
lief that all CMSSM parameters with mass dimensions,
{M0,M1/2, A0}, should be low. A flat “pre-LEP” prior
distribution for these parameters would strongly conflict
with this belief; with a flat prior a mass parameter would
be considered 10 times more likely to be between 1 TeV
and 10 TeV than between 100 GeV and 1 TeV, increasing
10 fold again each order of magnitude, which we consider
undesirable. In contrast logarithmic priors favour neither
low nor high scales, and so may be argued to represent
a ‘neutral’ position on the issue of naturalness. Such a
prior is flat in log(θ), resulting in P (θ|CMSSM) ∝ 1/θ.
The log prior has the additional mathematical attraction
of being the Jeffreys prior [87] for a scale parameter, i.e.
it is minimally informative in the sense that it maximises
the difference between the prior and the posterior for such
parameters. In our case M0 and M1/2 are assigned inde-
pendent log priors, while A0, and tanβ are left with flat
priors. We make the latter choices because A0 ranges over
positive and negative values and so resists a log prior (due
to the divergence that would occur at |A0| = 0) and be-
cause tanβ varies over only one order of magnitude. Each
of these beliefs about the parameters are considered to
be statistically independent, so the full prior is obtained
simply by multiplying them all together:

P (M0,M1/2, A0, tanβ|CMSSM) ∝ 1

M0M1/2
. (24)

Numerous studies of the CMSSM have already been per-
formed using this prior [28, 30, 60, 85], making it a good
standard prior to consider. Such studies often also employ
a flat prior in the mass parameters however we do not, for
the reasons explained above, preferring to save our CPU
time for the natural priors discussed below.

15 The authors estimate these Bayes factors using both flat
and log priors; here we refer to the log prior results only since
we do not use flat priors. In addition, the δaµ constraint is
shown to strongly drive the preference of µ > 0 so if the valid-
ity of this constraint is questioned (we consider the effects of
removing it in section 7) then the impact of ignoring the µ < 0
branch may also merit revisitation.
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5.1.2 Natural prior

Naturalness is a theoretical consideration which can be
used to set the shape of the “pre-LEP” prior distribu-
tions within the CMSSM, and which can be quantified
in terms of fine-tuning. Several measures of the degree of
fine-tuning in a model exist [48], but probably the most
well known is the Barbieri-Guidice measure [88]

∆ =

∣∣∣∣
∂ lnm2

Z

∂ ln θ

∣∣∣∣ , (25)

which quantifies the sensitivity of the Z boson mass to
the variation of the parameter θ. In ref. [44], and later
[24, 45, 46], it was shown that a prior incorporating this
measure to penalise high fine-tuning can be constructed
from purely Bayesian arguments. This prior has the addi-
tional benefit of explicitly acknowledging the experimen-
tal data available prior to the “pre-LEP” update, specifi-
cally the Z mass, on which all priors for this update (and
subsequent updates) are conditional (a discussion of the
importance of this notion can be found in section 3.2).

The key idea is relaxing the usual requirement of the
CMSSM that the µ parameter is fixed by the experimen-
tal value of mZ through the Higgs potential minimisation
conditions and instead incorporating mZ into a likelihood
function. One then starts from flat priors over the “nat-
ural” parameter set M0, M1/2, A0, B and µ. Next the
observed mZ is used to perform a Bayesian update, µ
is marginalised out, and a transformation to the usual
CMSSM parameter set is performed, introducing a Jaco-
bian term penalising high tanβ and a fine-tuning coeffi-
cient penalising high µ values, giving us the natural (or
“CCR”) prior [89]

Peff(M0,M1/2, A0, tanβ|CMSSM)

∝ tan2 β − 1

tan2 β(1 + tan2 β)

Blow

µZ
. (26)

Here Blow is the low energy value of the B parameter and
µZ is the µ value required to produce the correct Z mass.
Operationally, we implement this prior by scanning the
conventional parameter set with a flat prior and multiply-
ing the above expression into the likelihood function.16

The above prior does not fully implement the Barbieri-
Guidice measure because it only considers the fine-tuning
of the µ parameter. In ref. [45] an extended version of this
prior is constructed which also considers the tuning of the
Yukawa couplings, and in refs. [90, 91] a generalisation to
the full parameter set is considered, but we choose to focus
only on the simpler version in this work, since it captures
a large amount of the fine-tuning effect and can be com-
puted analytically once the spectrum generator (ISAJET)
has run.

16 We do this because Peff requires renormalisation group run-
ning to be evaluated, i.e. our spectrum generator needs to be
run before we can evaluate Peff.

5.2 Effect of the parameter ranges on partial Bayes
factors

In many recent studies of the CMSSM, only relatively low
mass regions of the parameter space have been considered,
generally regions not much larger than 0 < M0,M1/2 < 1
TeV. This is in part motivated by naturalness arguments,
in part by the generally lower likelihood outside this region
(largely driven by a poorer fit to δaµ), and perhaps largely
because the LHC SUSY search limits will not reach deeper
into the parameter space than this for several years yet.
Ideally, since we would like to consider changes in the to-
tal evidence for the CMSSM, it is desirable to consider the
entire viable parameter space, since the more viable space
that exists outside the LHC reach, the less the CMSSM
will appear to be harmed by it. However, it is extremely
difficult to thoroughly scan the CMSSM out to very large
values of M0 and M1/2 due to the computational expense
of obtaining reliable sampling statistics. In addition, our
study is primarily concerned with obtaining Bayesian ev-
idence values, which involve integrals over the parameter
space and so require us to perform particularly thorough
scans in order to acquire them to sufficient accuracy for
our study. If one is only concerned with identifying the
major features of the posterior then less thorough scans
often suffice.

Due to this, we focus only on the low mass region of the
CMSSM. The apparent impact of the LHC on the CMSSM
will thus be increased, though it will be a faithful estimate
of the damage done to the low mass region. Importantly,
the change this restriction makes to the final partial Bayes
factors will be determined by the volume of the “pre-LEP”
posterior (i.e. “LEP+Xenon” prior) that we neglect, not
the full change of volume of the “pre-LEP” scan priors, as
occurs for the global evidence. This is because our incre-
mental evidences are ratios of global evidences, so factors
due to the “pre-LEP” scan prior volume divide out. In-
deed, were our scans to contain 100% of the “pre-LEP”
posterior, then further increases in the scan prior volume
would have no effect at all17.

Finally, we should consider the bias that exists in our
assessment of the damage done to the CMSSM due to our
choice of the SM+DM as the alternate model. There of
course exist numerous models which may be of more direct
interest as alternatives to the CMSSM, which suffer more
damage than our SM-like alternate does due to their larger
parameter spaces, and comparing the CMSSM to these we
would conclude that the posterior odds for it were better
than when compared to our SM-like model. This consid-
eration forms part of our motivation to present our results
in terms of both partial Bayes factors and the constituent
likelihood ratios and Occam factors, as we hope this allows
the reader to more easily understand how changes in al-
ternate model would affect our inferences. We will return
to this discussion when we present our results in section 7.

17 In practice a larger scan volume will decrease the scan reso-
lution and reduce the accuracy of results, so scan prior volume
dependence would still exist in this indirect form.
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Priors
Name PDF
Log 1/(M0M1/2)

Natural
tan2 β − 1

tan2 β(1 + tan2 β)

Blow

µZ

Ranges
Parameter Range
M0 10 GeV – 2 TeV
M1/2 10 GeV – 2 TeV
A0 −3 TeV – 4 TeV
tanβ 0 – 62
sign(µ) +1
mt 172.9± 1.1 GeV

Table 1: Summary of the priors and ranges used in this
study. The displayed PDFs for both priors are multiplied
by a Gaussian for mt with mean and width specified by
the values adjacent to mt in the table.

A summary of the priors and ranges used for this study
are presented in table 1.

6 Likelihood function

We now detail the experimental data which goes into our
likelihood function. Primarily this is summarised in ta-
ble 2. Each of these components is considered to be statis-
tically independent, so that the global likelihood function
is simply the product of them:

LGlobal =
∏

i

Li =
∏

i

P (di|θ,CMSSM). (27)

The 2011 constraints from the XENON100 experiment
and the LHC Higgs and sparticle searches cannot be im-
plemented via likelihood functions simple enough to list in
a table, so we explain our treatment of them in sections 6.1
through 6.3.

6.1 XENON100 limits

The likelihood contribution from XENON does not yet
have a significant impact on the CMSSM evidence so we
have opted to simply model the likelihood as an error func-
tion of the WIMP-nucleon spin-independent elastic scat-
tering cross section, which varies with the WIMP mass.
Our likelihood function for the cross section (σSIχ̃0−p) is

derived from the 90% confidence limits published by the
XENON100 experiment in figure 5 of ref. [100]. This limit
is presented as a function of WIMP mass. We fit the like-
lihood function with an error function such that it re-
produces the correct 90% C.L. and the correct apparent
significance of the upper edge of the 1σ sensitivity band,
based on the maximum likelihood ratio method, using a
similar procedure to that used in ref. [103] to estimate
their likelihood function for a CMS multi-jet+�ET search,
which we summarise below.

XENON use the profile likelihood ratio test statistic

Q = −2 log(λ) = −2 log

(
Ls+b(σ

SI
pX ;mX)

Ls+b(σ̂SI
pX ;mX)

)

= −2 log

(
P (data|mX , σ

SI
pX)

P (data|mX , σ̂SI
pX)

)
(28)

to derive their exclusion limits, where mX , σSI
pX and

σ̂SI
pX are the hypothesised WIMP mass, spin-independent

WIMP-proton scattering cross section, and best fit value
of the latter for each mass slice, respectively. All nui-
sance variables are profiled over and limits are derived
on the cross section for each fixed mX , so the resulting
profile likelihood ratio has one degree of freedom and Q
is asymptotically distributed as f(Q|σ;mX) = χ2

k=1(Q)
(which XENON100 have confirmed is true to a good ap-
proximation via Monte Carlo [104]). The cross section is
proportional to the mean signal event rate µ for each mX

slice, so we may use the asymptotic expressions of [105] to
express Q in terms of µ as

Q =
(µ− µ̂)2

a2
, (29)

where µ̂ is the best fit signal event rate for some observed
data, which is normally distributed with standard devia-
tion a18.

XENON report the observation of 3 events in their
signal region, with an expected background of 1.8 ± 0.6
events, so a = 0.6 and µ̂ = 1.2. The upper 90% confidence
limit is drawn on the contour on the (mX , σ

SI
pX) plane on

which the predicted mean event rate drops to the level
producing Q such that ps =

∫
dQf(Q|σ;mX) = 0.119,

or Q = 2.71. To fit our erf model likelihood we require
a second contour of Q, and the expected+1σ limit is a
convenient choice. On this contour, a hypothetical obser-
vation of 1.8+0.6 = 2.4 events is assumed, which produces
a best fit signal mean of µ̂ = 0.6. Again the 90% confi-
dence limit is drawn where Q drops to 2.71, which occurs
at µ = µ̂ +

√
2.71a ≈ 1.59. Knowing the predicted signal

rate on this contour now allows us to infer the value of Q
on this contour given the actual observed data, i.e. from
eq. (6.1) Q ≈ (1.59 − 1.2)2/0.62 ≈ 0.417. Our erf likeli-
hood is fitted to reproduce these contours for each mX

slice, thus producing an approximation of the full likeli-
hood function.20

18 We ignore the variation of a with the predicted signal rate
as it is small for small signal.
19 Actually the CLs method is used so the limit is drawn
where p = ps/(1− pb) = 0.1 [106], but this correction weakens
the limit so it is conservative to ignore it and in this case makes
little difference anyway, given our other approximations.
20 In section 6.3 we construct the ATLAS Higgs search likeli-
hood function using almost identical techniques, but argue that
each fitted slice needs to be normalised relative to the others us-
ing the likelihood of the best fit point on each slice. This occurs
because the best fit point of each slice lies a varying number
of standard deviations from the zero signal point (zero cross
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Observable Measured value Computed by Sources

Gaussian likelihoods

∆ρ 0.0008± 0.0017 micrOmegas 2.4.Q [86]1

Ωχh
2 0.1123± 0.0035± 10% micrOmegas 2.4.Q [92]2

δaµ 3.353± 8.24 [×10−9] micrOmegas 2.4.Q [93]3

BR(b→ sγ) 3.55± 0.26± 5% [×10−4] SuperISO 3.1 [94]4

BR(B → τν) 1.67± 0.39 [×10−4] SuperISO 3.1 [94]5

∆0−(B → K∗γ) 0.416± 0.128 SuperISO 3.1 [95]6

BR
(
B+→D0τν
B+→D0eν

)
0.029± 0.039 SuperISO 3.1 [96]7

Rl23 1.004± 0.007 SuperISO 3.1 [97]8

BR(Ds → τν) 0.0538± 0.0038 SuperISO 3.1 [94]9

BR(Ds → µν) 5.81± 0.47 [×10−3] SuperISO 3.1 [94]10

Limits (erf)
mg̃ > 289± 15 GeV (LEP2) ISAJET 7.81 [98]
mh > x± 3 GeVa (LEP2) ISAJET 7.81 [99]11

Limits (hard cut)
Other LEP2 direct sparticle mass 95% C.L.’s ISAJET 7.81 [98]

Special cases

σSIχ̃0−p See text (XENON100) micrOmegas 2.4.Q [100]
BR(Bs → µ+µ−) < 1.5× 10−8 (LHCb) SuperISO 3.1 [101]12

mh See text (LHC) ISAJET 7.81, HDECAY 4.43 [69–72]
SUSY searches See text (LHC) ISAJET 7.81, Herwig++ 2.5.2, [102]

Delphes 1.9, PROSPINO 2.1

a x determined from figure 3a of ref. [99] for each point. For nearly all CMSSM points
x = 114.4 GeV.

Table 2: Summary of the likelihood functions and experimental data used in this analysis. Gaussian likelihoods:
Likelihoods are modelled as Gaussians; where two uncertainties are stated the first arises from experimental/Standard
Model sources, while the second is an estimate of the theoretical/computational uncertainty in the new physics
contributions (and these are added in quadrature), otherwise the latter uncertainty is assumed to be small and treated
as zero. Limits (erf): The listed central values are estimated 95% C.L.’s, and are used to define a step function cut,
which is convolved with the stated Gaussian estimate of the total (experimental and computation-based) uncertainty.
Limits (hard cut): Step function likelihoods centred on the cited 95% C.L.’s are used. Special cases: For details see
sections 6.1 though 6.3 (and footnote 12 for Bs → µ+µ−).

1 Section ‘Electroweak model and constraints on new physics’, p. 33 eq. (10.47). We take the larger of the 1 sigma confidence
interval values. The full likelihood function is actually highly asymmetric and slightly disfavours values close to the Standard
Model prediction, which we are effectively ignoring.

2 Table 1 (WMAP + BAO + H0 mean). Theoretical uncertainties are not well know so we follow the estimates of ref. [30].
3 Table 10 (Solution B).
4 Table 129 (Average).
5 Table 127.
6 Page 17, uncertainties combined in quadrature.
7 Table 1 (R value)
8 Eq. (4.19).
9 Figure 68, p. 225 (World average).

10 Figure 67, p. 224 (World average).
11 Figure 3a, p. 24.
12 Figure 8. We use the full CLs curve rather than simply the 95% confidence limit. Working backward from the CLs values
given by the curve, assuming them to be instead CLs+b values, we determine the corresponding likelihood function which
would generate these values (assuming a chi-square distributed test statistic). CLs intervals over-cover so this procedure is
conservative.
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6.1.1 Hadronic uncertainties

The above procedure is simplistic, but it gives us a good
enough estimate of the experimental uncertainty associ-
ated with σSIχ̃0−p for our purposes. In addition to this,
we fold in an estimate of the associated theoretical un-
certainties, assumed to be dominated by the uncertain-
ties in the strange quark scalar density in the nucleon, in
turn due mainly to the experimental uncertainty in the
π-nucleon σ term, ΣπN ≡ 1/2(mu + md)〈N |ūu + d̄d|N〉.
Numerous estimates of this quantity exist (59 ± 7 [107],
79 ± 7 [108], ∼45 [109], 64 ± 8 [110] [MeV]) and it is not
clear which are the most reliable so we opt to use a recent
value on the low end of the spectrum based on lattice cal-
culations, with a wide uncertainty (39 ± 14 [111]21, with
σ0 ≡ 1/2(mu+md)〈N |ūu+d̄d−2s̄s|N〉 = 36±7 [113–116])
as this produces low σSIχ̃0−p predictions and so a conserva-
tively weak XENON100 constraint.

The computation of σSIχ̃0−p is performed by
micrOmegas v2.4.Q, and it accepts ΣπN as an input
parameter, along with σ0. To estimate the uncertainty in
the computed cross section due to these quantities, they
were first used to estimate the corresponding parame-

ters f
(N)
Tq

≡ 〈N |mq q̄q|N〉/mN and their uncertainties

(following [117]), which micrOmegas computes internally
and uses in its computation of σSIχ̃0−p. We find these

to be f
(p)
Tu

= 0.016 ± 0.007, f
(p)
Td

= 0.023 ± 0.010 and

f
(p)
Ts

= 0.039 ± 0.026, in close agreement with the values
micrOmegas computes internally from our chosen ΣπN
and σ0. We have modified micrOmegas so that our

computed uncertainties on the f
(N)
Tq

are then propagated

alongside the f
(N)
Tq

themselves in the computation of

σSIχ̃0−p and used to estimate the uncertainty on σSIχ̃0−p
for each model point. This uncertainty is then added
in quadrature to the width of the σSIχ̃0−p erf likelihood

function (i.e. convoluted into it).

section), which we know to have the same likelihood for every
slice. A similar normalisation is in principle required to recover
the true likelihood function computed by Xenon, however the
variance of the limit appears to be approximately Gaussian in
the logarithm of the cross section, making extrapolation of the
likelihood to the zero cross section point extremely unreliable.
In addition, the reconstruction method we use for the ATLAS
Higgs search likelihood relies on plots of the signal best fit
against mX , whereas here we use a plot of the 90% confidence
limit. Performing the extraction using the limit curve requires
more assumptions than a best fit curve, so combined with the
logarithmic difficulty we judge that this technique would pro-
duce poor results, and so we prefer to stick with the simpler
technique described. The Xenon limit turns out to be of very
minor importance to our final inferences anyway so we are not
concerned with small errors in our reconstructed likelihood. In
hindsight we expect that even simply applying a hard cut at
the observed Xenon limit would negligibly affect our inferences.
21 From eq. (5), using the suggested σs = 50 ± 8 MeV and
σl = 47 ± 9 MeV [112], with ms/ml = ms/(2(mu + md)) =
26± 4 [86].

6.1.2 Astrophysical uncertainties

In our model of the σSIχ̃0−p likelihood function, we do
not rigorously consider the effects of varying the astro-
physical assumptions that XENON have made in their
construction of their confidence limits. In their analysis
XENON assume WIMPs to be distributed in an isother-
mal halo with v0 = 220 km/s, galactic escape velocity
vesc = 544+64

−46 km/s, and a density of ρχ = 0.3 GeV/cm3,
and we cannot change these without developing a model
of the likelihood function based directly on the event rate
observed by XENON100, as is done in ref. [25] and [30],
for example. We have opted not to do this as [30] shows
that marginalising over a range of plausible values near
the nominal choice makes negligible difference to the im-
pact the XENON100 experiment has on the CMSSM, and
we prefer to avoid the additional increase in the dimen-
sionality of the problem.

6.2 1 fb−1 LHC sparticle searches

In late 2011 the ATLAS and CMS experiments [118, 119]
updated their searches for supersymmetric particles us-
ing the 2011 1 fb−1 data set [102,120–126]. Data collected
from proton collisions at the Large Hadron Collider at√
s = 7 TeV are analysed in a variety of final states, none

of which show a significant excess over the expected Stan-
dard Model background. As the LHC is a proton-proton
collider, one expects to dominantly produce coloured ob-
jects such as squarks and gluinos, whose inclusive lep-
tonic branching ratios are relatively small, and hence
the strongest CMSSM exclusions result from the ATLAS
searches for events with no leptons and the CMS searches
for sparticle production in hadronic final states. The AT-
LAS and CMS limits have a similar reach in the squark
and gluino masses, and here we consider only the ATLAS
zero lepton limits for simplicity. Recent interpretations of
LHC limit results can be found in [25,32,103,127–129].

The ATLAS signal regions were each tuned to enhance
sensitivity in a particular region of the M0–M1/2 plane.
Events with an electron or muon with pT > 20 GeV were
rejected. Table 3 summarises the remaining selection cuts
for each region, whilst table 4 gives the observed and ex-
pected numbers of events. These numbers were used by
the ATLAS collaboration to derive limits on σ × A × ε,
where σ is the cross section for new physics processes for
which the ATLAS detector has an acceptance A and a
detector efficiency of ε. These results are also quoted in
table 4.

The ATLAS collaboration have used the absence of
evidence of sparticle production in 1 fb−1 of data to place
an exclusion limit at the 95% confidence level in the M0–
M1/2 plane of the CMSSM for fixed A0 and tanβ, and
for µ > 0, and all previous phenomenological interpreta-
tions of this limit in the literature have also ignored the
A0 and tanβ dependence. Ref. [28], for example, finds a
negligible dependence of the limits on A0 and tanβ. It is
not guaranteed that this conclusion extends to the present
limits, which are considerably stronger, so we reassess the
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Region R1 R2 R3 R4 RHM
Number of jets ≥ 2 ≥ 3 ≥ 4 ≥ 4 ≥ 4
Emiss
T (GeV) > 130 > 130 > 130 > 130 > 130

Leading jet pT (GeV) > 130 > 130 > 130 > 130 > 130
Second jet pT (GeV) > 40 > 40 > 40 > 40 > 80
Third jet pT (GeV) - > 40 > 40 > 40 > 80
Fourth jet pT (GeV) - - > 40 > 40 > 80
∆φ(jet, pmiss

T )min > 0.3 > 0.25 > 0.25 0.25 > 0.2
meff(GeV ) > 1000 > 1000 > 500 > 1000 > 1100

Table 3: Selection cuts for the five ATLAS zero lepton signal regions. ∆φ(jet, pmiss
T )min is the smallest of the azimuthal

separations between the missing momentum pmiss
T and the momenta of jets with pT > 40 GeV (up to a maximum of

three in descending pT order). The effective mass meff is the scalar sum of Emiss
T and the magnitudes of the transverse

momenta of the two, three and four highest pT jets depending on the signal region. In the region RHM, all jets with
pT > 40 GeV are used to define meff.

Region R1 R2 R3 R4 RHM
Observed 58 59 1118 40 18

Background 62.4± 4.4± 9.3 54.9± 3.9± 7.1 1015± 41± 144 33.9± 2.9± 6.2 13.1± 1.9± 2.5
σ ×A× ε (fb) 22 25 429 27 17

Table 4: Expected background yields and observed signal yields from the ATLAS zero lepton search using 1 fb−1 of
data [102]. The final row shows the ATLAS limits on the product of the cross section, acceptance and efficiency for
new physics processes.

A0 tanβ dependence of the new limits. To do this we sim-
ulate our own signal events for points in the full CMSSM
using standard Monte Carlo tools coupled with machine
learning techniques to reduce the total simulation time.

This section is structured as follows. Firstly, we ex-
plain and validate the tools we use to go from a set of
CMSSM parameters to a signal expectation. We then ex-
amine why it can potentially be important not to neglect
A0 and tanβ in LHC limits, by showing a class of model
that fits the ATLAS data well but would be missed if one
were to assert the limit as at A0 = 0. Finally we address
the fact that, when updating the posterior distributions
obtained pre-LHC with the ATLAS results, it is not feasi-
ble to simulate every point in the posterior. We therefore
spend the remainder of this section developing a fast sim-
ulation technique derived by interpolating the output of a
much smaller number of simulated points using a Bayesian
Neural Network.

6.2.1 Simulating the ATLAS results

Given a signal expectation for a particular model, one
can easily evaluate the likelihood of that model using the
published ATLAS background expectation and observed
event yield in each search channel. By simulating points
in the full CMSSM parameter space, we can therefore in-
vestigate the LHC exclusion reach, provided that we can
demonstrate that our simulation provides an adequate de-
scription of the ATLAS detector.

In this paper, we use ISAJET 7.81 [78] to
produce SUSY mass and decay spectra then use
Herwig++ 2.5.2 [130] to generate 15,000 Monte Carlo

events. Delphes 1.9 [131] is subsequently used to
provide a fast simulation of the ATLAS detector. The
total SUSY production cross section is calculated at
next-to-leading order using PROSPINO 2.1 [132], where
we include all processes except direct production of
neutralinos, charginos and sleptons since the latter are
sub-dominant. The ATLAS set-up differs from this only
in the final step of detector simulation, where a full,
Geant 4-based simulation [133] is used to provide a very
detailed description of particle interactions in the ATLAS
detector at vast computational expense.

It is clear that the Delphes simulation will not re-
produce every result of the advanced simulation. Never-
theless, one can assess the adequacy of our approximate
results by trying to reproduce the ATLAS CMSSM ex-
clusion limits. We have generated a grid of points in the
M0–M1/2 plane using the same fixed values of tanβ = 10
and A0 = 0 as the published ATLAS result. We must
now choose a procedure to approximate the ATLAS limit
setting procedure. ATLAS use both CLs and profile like-
lihood methods to obtain a 95% confidence limit, using
a full knowledge of the systematic errors on signal and
background. Although the systematic error on the back-
ground is provided in the ATLAS paper, we do not have
full knowledge of the systematics on the signal expecta-
tion, which may in general vary from point to point in
the M0–M1/2 plane. Rather than implement these statis-
tical techniques, we take a similar approach to that used
in [129], and use the published σ × A× ε limits to deter-
mine whether a given model point is excluded in a search
channel. We use our simulation to obtain the σ × A × ε
value for a given model point, and consider the model
to be excluded if the value lies above the limit given in
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table 4. This allows us to draw an exclusion contour in
each search channel, and we estimate the combined limit
by taking the union of the individual exclusion contours
for each channel (i.e. the most stringent search channel
for a given model is used to determine whether it is ex-
cluded). This method is not statistically rigorous, but it is
conservative in the asymptotic limit for observations close
to the expected background, for small signal hypotheses,
assuming only positive linear correlations between chan-
nels22, and our scenario does not significantly depart from
these conditions. Furthermore, the channel combination
performed by ATLAS is very similar to our method: AT-
LAS estimate the combined limit by taking the limit from
the channel with the most powerful expected limit at each
model point, whereas we take the most powerful observed
limit. Some further discussion of this difference can be
found in appendix A, though we conclude that the impact
on our analysis is negligible.

The procedure defined above neglects systematic er-
rors on the signal and background yields and, as noted
in [129], this leads to a discrepancy between the Delphes
results and the ATLAS limits in each channel. We fol-
low [129] in using a channel dependent scaling to tune the
Delphes output so that the limits in each channel match
as closely as possible “by eye”. We obtain factors of 0.82,
0.85, 1.25, 1.0 and 0.70 for the R1, R2, R3, R4 and RHM
regions respectively. Comparisons between the resulting
Delphes exclusion limit and the ATLAS limit are shown
in figure 2, where we observe generally good agreement
in all channels. The largest discrepancy is observed in the
RHM channel, where we find that one cannot get the tail
of the limit at large M0 to agree with the ATLAS limit
whilst simultaneously guaranteeing good agreement at low
M0. This is likely to be due to the fact that we have effec-
tively assumed a flat systematic error over the M0–M1/2

plane. whereas the ATLAS results use a full calculation
of the systematic errors for each signal point. It is im-
portant to notice however that the combined limit will be
dominated by regions R1 and R2 at low M0, and thus by
choosing to tune the RHM results in order to reproduce
the large M0 tail, one can ensure reasonable agreement of
the combined limit over the entire range. Where disagree-
ment remains, the Delphes limit is less stringent than the
ATLAS limit, and hence using it gives us a conservative
estimate of the ATLAS exclusion reach.

6.2.2 The importance of A0 and tanβ

The ATLAS results in table 4 demonstrate a small excess
in the central value of the observed yield in the high mul-
tiplicity channel, RHM. Although one should assert that
this has an innocent explanation (mostly likely an under-
estimate of the number of high multiplicity events in the
SM due to a deficient Monte Carlo generator), it provides
motivation to consider SUSY models in which there is a
smaller amount of coloured sparticle production than in
the bulk of the low mass CMSSM parameter space.

22 We demonstrate this in appendix A
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Fig. 3: The sparticle mass spectrum for a point with large
|A0| capable of generating a small excess of high multi-
plicity events at the LHC. For details, see main text.

Such model points exist in the CMSSM at high-M0

and high-|A0|, in which most of the squarks are heavy ex-
cept one stop quark whose mass gets pushed to lower val-
ues due to a large splitting between the t̃1 and t̃2 masses.
These models furthermore exhibit low fine tuning, and
would be capable of generating slightly higher masses for
the lightest SUSY Higgs particle. The mass spectrum of
one such point is shown in figure 3, with M0 = 1440 GeV,
M1/2 = 177 GeV, tanβ = 27, A0 = −2950 GeV and

µ > 0 23. As ATLAS and CMS tighten the exclusion of
SUSY models with several light squarks, models such as
these are becoming much more important in the search
for weak scale supersymmetry, and we therefore consider
it important to add the effects of A0 and tanβ to our
handling of LHC SUSY constraints.

The dependence on tanβ is much weaker than that
on A0, as the ratio of Higgs doublet VEVs has a much
greater impact on the Higgs sector of the CMSSM than
on squark masses. However, large tanβ values can reduce
the stop and sbottom splitting induced by large values of
A0 as mentioned in the previous paragraph, and poten-
tially swap the mass ordering of the t̃1 and g̃ with corre-
sponding effects on the phenomenology. As inclusion of all
four continuous CMSSM parameters is technically possi-
ble, and tanβ may influence the phenomenology of zero-
lepton channels in certain regions of the {M0,M1/2, A0}
parameter space, we hence include it in this study. We as-
sess the value of having gone to this effort in section 6.2.4,
once the method itself has been described.

6.2.3 Fast simulation using machine learning techniques

Running the entire chain of ISAJET, Herwig++, Delphes
and PROSPINO for a given model point takes ∼ 1 hour in

23 The point was found during a wide ranging scan of the
CMSSM parameter space, hence the esoteric choice of param-
eters.
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Fig. 2: Comparison between Delphes and ATLAS 95% exclusion limits in the M0–M1/2 plane, for the signal regions
R1, R2, R3, R4 and RHM defined in table 3. In the combined limit plot, the ATLAS limit is obtained using the
ATLAS statistical combination, whilst the Delphes limit is obtained by taking the union of the Delphes limits for
each signal region.
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total on a typical CPU. Although one can trivially par-
allelise the simulation of different model points, it is still
infeasible to simulate all of the 2× 106 posterior samples
required to reweight an existing data set, let alone the 107

or more required if this was to be incorporated into the
primary MultiNest run sequence for a full scan. If one were
reweighting points after a scan had been completed, one
could restrict the simulation to points that are reasonably
probable, but even this still requires a very large num-
ber of CPU hours. It is this restriction that has prevented
previous studies from considering the effects of tanβ and
A0.

An obvious solution is to try and interpolate between
a smaller grid of simulated values, such that one obtains
a function that can give the signal expectation for any
CMSSM point within fractions of a second. This is a stan-
dard regression problem, and there is an extensive collec-
tion of efficient techniques in the literature for performing
the interpolation. White, Buckley and Shilton have previ-
ously demonstrated good results in the CMSSM using ma-
chine learning algorithms [134] including both a Bayesian
Neural Network (BNN) and a Support Vector Machine
(SVM), with a zero lepton signal region from the ATLAS
2010 analysis as the test case. Here we go much further by
interpolating all of the ATLAS zero lepton search chan-
nel results (from the 2011 analysis) and by combining the
search channels to reproduce the ATLAS combined exclu-
sion result.

Combining the search channels is non-trivial since AT-
LAS have not published enough information to determine
the correlations between channels. We therefore continue
to perform the approximate procedure outlined above.
For any given model point, we can determine if it is ex-
cluded or still viable by choosing the most stringent limit
on σ × A × ε for that point. Whilst this unfortunately
only allows us to attach a discrete LHC-based likelihood
to the points in the above posterior distributions, it is the
most rigorous procedure that can be applied in the circum-
stances. We expect that this will slightly lower the appar-
ent damaged done to the CMSSM by the ATLAS limits,
as measured by the associated PBF, from what one would
obtain with the full 4D likelihood. This is because we are
effectively adding a significant amount of extra likelihood
to all points which are “not excluded” (particularly those
which are close to the limit), while removing likelihood
from all “excluded” points. We expect the procedure to
be adding more likelihood overall than is lost since points
near the 95% confidence limit have quite low likelihood to
begin with. Since it is an integral over the likelihood func-
tion which leads to the evidence values used in the Bayes
factors, an overall increase in likelihood will increase the
CMSSM evidence and thus lower the apparent damage to
the CMSSM. This argument is valid unless the low like-
lihood points encompass a large prior volume, in which
case their contribution to the evidence can be significant.
Furthermore, we expect the ‘true’ likelihood map to quite
sharply transition from strong to very weak exclusion of
model points in the vicinity of the limit; for example the
approximate 2D likelihood map computed in [27] shows

this transition occurring over a range of around 50 GeV in
M1/2. We thus expect any errors introduced into our anal-
ysis due to the step-function approximation to the limits
and approximate combination procedure to be small.

Our study in [134] demonstrated successful interpola-
tion of the signal expectation itself. Given that we here
want to apply only a discrete likelihood based on whether
a point is excluded or not excluded, one can use a Bayesian
neural net (BNN) as a classifier rather than a regressor
(the former being the discrete case of the latter). For each
channel in table 4 we have used the BNN implementation
in the TMVA package [135,136] to classify SUSY parameter
points into two classes:

1. Excluded: (σ ×A× ε× f) > l

2. Not excluded: (σ ×A× ε× f) < l

where l is the limit for that channel given in table 4 and
f is the scaling factor applied to the channel to obtain
a close match with the ATLAS results. The success of
the classification depends critically on the quality of the
training data, and it is particularly essential to ensure
that the training data adequately cover the limit (σ×A×
ε × f) = l. In the M0–M1/2 plane, this limit is traced by
the exclusion limits in figure 2. To maximise the accuracy
of the BNN training in the region of maximum analysis
sensitivity, while still achieving sufficiently comprehensive
coverage of the M0–M1/2 plane, we hence sample training
data using a hybrid distribution composed of distinct two
functions in M0–M1/2:

– uniform sampling in M0 ∈ [10, 4000] GeV, and a
falling exponential distribution with width 500 GeV for
M1/2 ∈ [10, 1000] GeV;

– sampling from a ellipse with Gaussian profile, con-
structed such that it intersects the M0 axis at 1 TeV
with width 300 GeV, and intersects the M1/2 axis at
350 GeV with width 105 GeV.

Sampling weight was distributed equally between these
two distribution components, the resulting sampling den-
sity being shown in figure 4. A0 and tanβ were sam-
pled uniformly from A0 ∈ [−3000, 4000] GeV and tanβ ∈
[0, 62] regardless of the distribution type being used in
M0–M1/2.

We generated two sets of training data of 25,000 points
for the µ > 0 branch, and a further 5,000 points on which
to validate the classification performance.

The output of the BNN classification is a mapping be-
tween the CMSSM input parameters M0, M1/2, A0, tanβ,
sign(µ) and a continuous variable that offers good dis-
crimination between the “excluded” and “not excluded”
points. Sample distributions of this variable (the “MLP
Response”) for “excluded” and “not excluded” points are
shown in figure 5 for the ATLAS R1 search channel. By
choosing a suitable cut on this value, one can determine
whether a given point is excluded given the input param-
eters. The cut value must be chosen to provide a familiar
compromise between efficiency and purity. A cut that is
too low will lead to large numbers of points that are “not
excluded” being classified as “excluded”. On the contrary,
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Fig. 5: Distributions of the BNN response for “not ex-
cluded” points and “excluded” points, for the ATLAS
R1 search channel. The MLPBNN response variable of-
fers good discrimination between the two classes of SUSY
model.

a cut that is too high will lead to large numbers of points
that are “excluded” being classified as “not excluded”.
We select our cut to minimise the former outcome- it is
much worse to claim points are excluded when they are
not excluded than to miss excluded points that should be
excluded, since in the latter case one can present conser-
vative results that, nevertheless, are not false.

Figure 6 shows an example of this optimisation for
the ATLAS R1 search channel. The black line shows the
fraction of SUSY points in our test sample of 5,000 points
that are labelled “excluded” when they should be “not
excluded” vs the cut value on the MLP response. The red
line shows the fraction of SUSY points that are labelled

“not excluded” when the should be labelled “excluded”24.
By choosing an MLP cut of 0.5, one can keep the fake
exclusion rate below 5% whilst only missing 10% of points
which should be excluded. This is a very good performance
considering that we now have the ability to apply results
to the full parameter space of the CMSSM. A summary of
the performance for each channel after choosing suitable
MLP response cut values is provided in table 5. There is
an element of subjectivity in choosing suitable cut values.
We do not allow the efficiency for excluding points to drop
below 90%, but for channels where one can obtain a higher
efficiency whilst keep the false exclusion rate below ∼ 4%
we choose the cut appropriately.

Table 5 demonstrates that the false exclusion rate re-
mains at the few per cent level in each search channel
whilst we can exclude 90% of the points that should be
excluded. We have succeeded in obtaining an efficient and
robust classifier for SUSY model points. For the “ATLAS-
sparticle” and “ATLAS-Higgs” data sets this classifier was
incorporated into the full MultiNest run sequence, and
thus used to concentrate the scans on regions considered
“not excluded” by the classifier.

6.2.4 Variation of exclusion limits with A0 and tanβ

With the classifier trained we now reassess how worth-
while it was to estimate the full 4D limit. To do this we
examine the position of the limit, as estimated by the clas-
sifier, in the (M0, M1/2) plane for a range of A0 and tanβ
values and compare these to the official ATLAS limit. A
representative set of these limits is shown in figure 7.

The classifier limit is observed to be largely unchanged
from the ATLAS limit for A0 values between −2 and 3
TeV, for all tanβ, except for the stau-neutralino coannihi-
lation region at very low M0, which ATLAS miss due to
the coarseness of their grid (and which we suspect escapes
detection due to the combination of increased slepton pair
production and a compressed mass spectrum rendering
coloured production with several hard jets less visible),
however for A0 outside this range the classifier limit is seen
to weaken in M1/2 above M0 ∼ 500 GeV, quickly dropping
to around 200 GeV. Comparing these limits to the train-
ing data, it appears that this occurs because the bound-
ary of the excluded/not-excluded regions becomes less well
defined. The increased ‘contamination’ of the generically
excluded region with not-excluded points causes the clas-
sifier, with the response cuts we have chosen, to “play it
safe” and avoid the false exclusions by weakening the limit.
From this we conclude that A0 variation in particular is
of importance to interpretations of LHC limits if regions
with very large |A0| are of interest, but otherwise may be
fairly safely neglected.

We pre-empt our results to say that we find that
there is not much posterior probability located outside
−2 TeV < A0 < 3 TeV in any of our scans when us-
ing a log prior, and so our 4D treatment of the limit will

24 All other points in the test sample are “not excluded” and
labelled as such, or “excluded” and labelled as such.
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Region R1 R2 R3 R4 RHM
MLPBNN response cut value 0.53 0.51 0.2 0.45 0.46

Fraction labelled “Excluded” when “Not Excluded” 3.2% 3.5% 3.2% 4.2% 3.5%
Fraction labelled “Not Excluded” when “Excluded” 10.0% 10.0% 6.8% 10.0% 8.1%

Table 5: MLPBNN response cut values for each ATLAS search channel, with performance statistics for the chosen
cut value. We choose to accept a lower rate of labelling excluded points as “not excluded” (and thus missing excluded
points) to keep the rate of false exclusion low.

Fig. 7: ATLAS 1 fb−1 sparticle search 95% confidence limits as estimated by the BNN classifier, displayed in the
(M0,M1/2) plane for various values of A0 (specified in the legends), with tanβ = 10 (though little variation occurs
with tanβ). The A0 range displayed above each plot indicates the cut made on the training data in each plot, where
the red points are excluded and the green not excluded as determined from simulated events. The official ATLAS limit
(dashed), determined for A0 = 0 and tanβ = 10, is also displayed for comparison. The cuts made on the neural net
response are tuned on the conservative side, so the increased contamination of the generically excluded region with
not-excluded models, which occurs for large values of A0, causes the classifier to weaken the limit in these regions to
avoid false exclusions. The empty regions at high A0 and low (M0,M1/2) are excluded on physical grounds. Note: in
the center plot no effort is made to distinguish the different neural net limits since they are extremely similar.

have had little impact on our log prior results. However,
when using the ‘natural’ prior we indeed find a significant
amount of probability below A0 = −2 TeV in all scans
except the baseline scan, part of which would have been
excluded had we not allowed the limit to vary with A0.
These posteriors are a by-product of our central results
but we include them in Appendix B in part to illustrate
this point.

We next compare our findings on the A0-tanβ de-
pendence of the sparticle search limits to those of other
groups. In ref. [27] more recent 4.7 fb−1 ATLAS and CMS
limits [137,138] were studied and no A0-tanβ dependence
was observed within systematic uncertainties. To support
this assertion the signal yield for a handful of points is
presented, and shown to remain within systematics, how-
ever these all have A0 equal to either 0 or 1 TeV, and
our study agrees that little A0-tanβ variation should be
seen in this range. The total A0 range scanned exceeded
|5| TeV, so according to our findings some dependence
may be expected, however since these are different limits
to those we have used (as they were not yet available at
the time our computations were performed), it is plausi-
ble that their dependence on A0 is indeed weaker. This

may occur because the 1 fb−1 ATLAS search we study
contains a modest excess, which increases the likelihood
for high A0 points, and thus increases the A0 dependence
of the limit. In the 4.7 fb−1 search no excess as large as
this was observed, so this extra source of A0 dependence
may be absent.

Older studies exist which also contribute to this pic-
ture. In ref. [28] a 35 pb−1 limit was studied and it was
concluded that assuming it to be A0 and tanβ independent
was a reasonable approximation, however it was also ob-
served that points with high |A0| exhibited the largest dis-
agreements with the A0 = 0 limit, as we observe. Further-
more, only one point outside −1.5 TeV < A0 < 2.5 TeV
was studied (and this excluded for other reasons), well
within the range our results indicate to be ‘safe’.

To conclude, the overall impact on our study of using
the 4D limit appears to be minimal, however as limits
increase to higher M0 and M1/2 and larger |A0| values
become more plausible (driven by a need to fit the 125
GeV Higgs candidate discussed in the next section) then
it will become more important to use the full limits, with
this importance potentially increasing with the size of any
excesses. The value of including A0 and tanβ dependence
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Fig. 6: Fake exclusion rate and missed exclusion rate for
the ATLAS R1 search channel vs the cut on the MLPBNN
response. The lower figure shows the equivalent Receiver
Operating Characteristics (ROC) curve, demonstrating
that for an exclusion efficiency of 90%, models that are
not excluded are rejected 95% of the time (giving a fake
exclusion rate of 5%). Note: a “rejected” response from
the classifier signals that it is assigning the point to the
“not-excluded” category.

in approximations to LHC search likelihood functions will
thus need to be reassessed for each new limit which is
produced.

6.3 February 2012 ATLAS Higgs search results

In December 2011 ATLAS and CMS released preliminary
results for their combined Higgs searches [139, 140] show-
ing strong hints for the presence of a SM-like Higgs boson
in the vicinity of 125 GeV. The official combinations were
released in February 2012 [72,141] with little change. Oth-
ers have considered the impact that the existence of such
a Higgs, if confirmed, would have on the CMSSM param-
eter space [26, 27, 33, 39, 142–144]. We are interested in

the state of knowledge as of February 2012, so we do not
make such assumptions. Instead, we reconstruct the full
likelihood based on the public results. We use the Febru-
ary 2012 ATLAS 4.9 fb−1 Higgs search data in which the
since discovered resonance at 126 GeV had a local signif-
icance of 3.5σ. Our method bears some similarity to that
used by [145], however we work from signal best fit plots,
not CLS limit plots. Since CMS do not produce signal
best fit plots for all the channels we require we use only
the ATLAS results. We will now detail our method.

To construct signal best fit plots ATLAS and CMS use
the log-likelihood ratio test statistic

Q = −2 log(λ) = −2 log

(
Ls+b(µ)

Ls+b(µ̂)

)
(30)

= −2 log

(
P (data|mh, µ)

P (data|mh, µ̂)

)
.

Here mh is the Higgs mass parameter, µ the cross sec-
tion scaling parameter (the factor which multiplies the SM
prediction for the Higgs cross section for a given channel
to achieve the hypothesised value, i.e. µ = σ/σSM) and µ̂
the value of µ which maximises the likelihood for a fixed
mh value. Nuisance variables are profiled over. A ±1σ er-
ror band is also presented, the extents of which give the
values of µ for which Q rises to 1 for each value of mh.
Examples of such plots are shown in figure 8 of ref. [139].

Following ref. [105], if one assumes Wald’s asymptotic
approximation to be valid (which ATLAS confirms to be
true to good accuracy for the three individual channels we
use [69–71] as well as for the combination in ref. [72]) then
Q can be written as

Q =
(µ− µ̂)2

a2
, (31)

where it is assumed that µ̂ is normally distributed with
mean µ and standard deviation a (when the data is gener-
ated by the signal plus background model with the param-
eters mh and µ), and where both µ̂ and a depend on the
model parameters mh and µ we are testing. All the infor-
mation regarding systematic and statistical uncertainties
is carried by a. If a did not vary with µ then we could im-
mediately determine Q from the best fit and ±1σ curves
(taking the largest deviation from µ as a to be conserva-
tive) of the published best-fit plots, and thus extract the
likelihood ratio for all µ in each mh slice. In fact this is
exactly what we do, and this is safe because signals are
at this stage small, which implies that the distributions
of Q cannot be very different between µ = µ̂ and µ = 0
(or else the establishment or exclusion of a signal at much
higher significance would be possible). So assuming a to
remain constant for each mh is sufficient for our purposes.
The reconstructed likelihood will be accurate near µ = µ̂
and lose accuracy far from the best fit point, however the
likelihood is low for such parameters so this mistake will
have little impact on our results.

We now can obtain the likelihood ratio for every value
of µ in each mh slice, however the slices are not scaled
correctly relative to each other. We can fix this by noting

96 Application of subjectivist statistical methods to the CMSSM



22 C. Balázs, A. Buckley, D. Carter, B. Farmer, M. White: Should we still believe in constrained supersymmetry?

that the points µ = 0 for each mh are degenerate (because
mh makes no difference to predictions if µ = 0). We can
thus scale the likelihood of each mh slice relative to the
likelihood at µ = 0, i.e. instead of Q we can work with
the test statistic QCLs

(so called because of its use in
constructing CLs limits):

QCLs
= −2 log

(
Ls+b
Lb

)
(32)

= −2 log

(
P (data|mh, µ)

P (data|mh, µ = 0)

)
.

Applying Wald’s approximation again we obtain [105]

QCLs
= −2 log

(
P (data|mh, µ)

P (data|mh, µ̂)

)

+ 2 log

(
P (data|mh, µ = 0)

P (data|mh, µ̂)

) (33)

=
(µ− µ̂)2

a2
− µ̂2

a2
. (34)

As above, µ̂ and a can be extracted for every mh slice
from the publicly available plots, but now the new term
correctly normalises the slices relative to each other. The
likelihood we extract contains an extra constant factor due
to the µ = 0 contribution however this is of no importance
for our analysis.

In figure 8 we show the likelihood function recon-
structed from the ATLAS diphoton channel results, as an
example. We checked the consistency of our reconstruc-
tion by combining the three search channels we use and
comparing the result to a reconstruction of the official
ATLAS channel combination, finding good agreement. In
our scans this likelihood is further convolved with a 1 GeV
width Gaussian uncertainty in the mh direction to account
for theoretical uncertainty in the mh value computed at
each model point.

7 Results

7.1 Profile likelihoods and marginalised posteriors

Before presenting our main results (the partial Bayes fac-
tors) we show ancillary results from the datasets that
we used to calculate them. These are the profile likeli-
hood functions and marginalised posterior PDFs over the
CMSSM parameter space for each dataset, and may be
found in figures 11-14 in appendix B. These figures show
the evolution of the profile likelihoods and posteriors from
the “pre-LEP” situation (first row of each figure), to in-
cluding the LEP and the XENON100 data (second row),
to adding the LHC sparticle searches (third row), to fold-
ing in the 2012 February Higgs search results. The figures
reflect the well known effect: LEP has pushed the viable
sparticle masses upwards substantially. Specifically, LEP
eliminated some of the lowest M1/2 region, the region with
the lowest fine-tuning, and created the small hierarchy
problem. The LHC sparticle searches directly lower the

likelihood only in the lowest M0-M1/2 corner. This leaves
the bulk of the highest likelihood region toward slightly
higher M0 and M1/2

25. The 2012 February Higgs data se-
riously damages the high likelihood region at the lowest
M0-M1/2, resulting in the relative enhancement of high
negative A0 regions with high Higgs masses, and the like-
lihood is pushed toward even higher M1/2. Interestingly
the highest likelihood region hardly moves, despite pre-
dicting a Higgs mass much below 125 GeV (it is instead
around 115 GeV). This is because the ATLAS Higgs sig-
nal is not yet strong enough to conclusively outweigh the
observables which strongly favour the low mass region,
particularly δaµ, however extremely strong tension is cre-
ated which causes the evidence to drop significantly and
PBF to strongly disfavour the CMSSM. As can be seen in
the profile likelihoods of figure 12 and the PBFs of figure 9,
removing the δaµ constraint indeed goes a significant way
towards relieving this tension and reducing the total dam-
age to the CMSSM. At the same time the mid-tanβ region
emerges with the highest likelihood.

The evolution of the marginalised posteriors follows a
similar pattern. The 68 and 95 percent credible regions
follow the general trend of the highest likelihood, moving
toward higherM0 andM1/2. Despite the inclusion of an in-
creasing amount of data these credible regions are seen to
“spread out” rather than “shrink” (as do the correspond-
ing confidence regions) which is a signal that the global
goodness of fit is worsening. The new data is excluding the
part of the parameter space that was favoured by earlier
data, causing tension among the likelihood components.
The new best fit regions are not favoured with the same
relative strength as the old ones, so globally poorer fitting
points become less poor relative to the new best fit, and
so become included in both the confidence and credible
regions, which are thus enlarged. The poorer (on average)
likelihood values also feed into the evidence, causing it to
lower accordingly. We remind the reader that lower evi-
dence does not always signal a decrease in fit quality —it
can occur simply due to the reduction of viable parame-
ter space— however in this case fit quality is a significant
factor.

A notable difference between the log and natural prior
cases is that in the natural prior case the posterior ex-
hibits a strong preference for tanβ < 10, where the µ fine
tuning is generally low, which is decreased only a small
amount by the new data, while in the log prior case there
is clear movement of the preferred regions to higher tanβ.
In conjunction, in order to maintain low tanβ, the natural
prior scan is forced towards large negative A0 values, while
the log prior viable regions end up centred on A0 = 0, al-
though with sizable variance.

7.2 Partial Bayes factors and their interpretation

Based on the likelihood functions and posterior probabili-
ties shown in the previous section, we have computed par-
tial Bayes factors which update the odds of the CMSSM

25 The apparent ’thinning’ of the likelihood toward higher M0

and M1/2 is a mere sampling artefact.
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Fig. 8: Reconstructed likelihood function for the diphoton channel, using asymptotic approximations for the test
statistic distributions. In the left frame a reproduction of the ATLAS signal best fit plot from ref. [69] (with ±1σ
band) is shown, while on the right is the reconstructed ∆χ2 map, with the ∆χ2 = 1, 4, 9 contours shown. We ignore
the negative σ/σSM region as it is not relevant for the models we consider. In our scans this likelihood (and those for
the other channels) is convolved with a further 1 GeV Gaussian on mh to account for theoretical/numerical uncertainty
in the value of mh computed at each model point, and so the best fit region is extended in mh by an extra GeV or so.

‘existing’ relative to our SM-like reference model for sev-
eral data changes. As described in section 3.1 the following
data sets were utilised in our study:

Pre-LEP: All constraints listed in table 2 are imposed
except for the LEP Higgs lower bound, the XENON100
limit, the ATLAS direct sparticle search limits, and the
ATLAS Higgs search results.

LEP+XENON100: As Pre-LEP, but including the
LEP Higgs and XENON100 limits.

ATLAS-sparticle: As LEP+XENON100, but including
the ATLAS direct sparticle search limits.

ATLAS-Higgs: As ATLAS-sparticle, but including the
ATLAS Higgs search results.

The global evidence for each dataset is computed in
the µ > 0 branch of the CMSSM, for both the log and
natural prior as described in section 5.1, giving us a to-
tal of 8 data sets which have resulted from around 100
million likelihood evaluations in total. From these global
evidences we compute PBFs for the Bayesian updates

Pre-LEP→ LEP+XENON100

LEP+XENON100→ ATLAS-sparticle

ATLAS-sparticle→ ATLAS-Higgs

according to the prescription of eq. (12) and (14), for each
choice of “pre-LEP” prior. We also compute a ‘cumulative’
PBF by multiplying together the PBFs in the sequence of
updates. We present the results in table 6 and figure 9.

The first column of table 6 lists the datasets we have
computed. The second shows the global log evidence
value lnZ and its statistical uncertainty as computed by
MultiNest, using the method described in section 5, ex-
cept in the case of the SM+DM evidences, where ∆ lnZ
values are computed as described in section 4. In the fifth

column the PBF B is shown for the Bayesian update to
the dataset of each row from that of the previous row,
followed by the cumulative PBF Bcumulative, which is the
product of B with all of the previous PBFs, in column six.
Columns three and four show the breakdown of each PBF
into the maximum likelihood ratio for the new data and
the respective Occam factors for each model, as defined
in eq. (13). The final column offers an interpretation of
the strength of each PBF according to the Jeffreys scale
as listed in table 8. A graphical representation of these
results (and those of table 7) is presented in figure 9.

Table 6 and figure 9 show that the LEP Higgs limit
very strongly reduced our trust in the low mass CMSSM.
The LHC sparticle limits induced a much smaller and not
very significant additional reduction, and finally the LHC
Higgs signal hints cause a ‘substantial’ additional swing
against the CMSSM. The combined effect of all experi-
ments (aside from the LHC Higgs data) on a pre-LEP odds
ratio is seen to be a shift against the low mass CMSSM of
a strength above the level considered ‘Decisive’ on the Jef-
freys scale. These findings are robust against the shapes
of the prior probabilities of the CMSSM parameters that
we have considered, although they would be weakened by
priors which strongly favoured high M0 and M1/2 values.
Presently the impact of XENON100 is negligible, but we
remind the reader that the apparent strength of each piece
of data is dependent on the order in which it is added.
The XENON100 results appear largely irrelevant because
they exclude regions of the CMSSM parameter space al-
ready excluded by the LEP Higgs searches and have only
a small impact on the surviving parameter space. In case
of the Standard Model XENON100 is completely irrele-
vant and the 1:3.52 Occam factor comes from the LEP
Higgs searches alone. One may expect that the reinforce-
ment of previous exclusions by independent experiments
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Scenario lnZ LR O B Bcumulative Strength of B

SM+DM
Pre-LEP 0∗ - - - - -
LEP+XENON100 −1.26 - 1 : 3.52 - - -
ATLAS-sparticle −1.26 - 1 : 1 - - -
ATLAS-Higgs −5.16 - 1 : 33.3 - - -

CMSSM (log priors)
Pre-LEP 54.30(2) - - - - -
LEP+XENON100 50.34(2) 1 : 1 1 : 51.9(1) 1 : 14.7(4) 1 : 14.7(4) Strong
ATLAS-sparticle 49.62(2) 1 : 1 1 : 2.04(5) 1 : 2.04(5) 1 : 30.1(8) Barely worth mentioning
ATLAS-Higgs 43.91(2) 1 : 1.8 1 : 113(3) 1 : 6.1(2) 1 : 185(5) Substantial

CMSSM (natural priors)
Pre-LEP 44.73(2) - - - - -
LEP+XENON100 40.54(2) 1 : 1 1 : 65.6(2) 1 : 18.6(6) 1 : 18.6(6) Strong
ATLAS-sparticle 39.87(2) 1 : 1 1 : 1.97(6) 1 : 1.97(6) 1 : 37(1) Barely worth mentioning
ATLAS-Higgs 34.29(2) 1 : 1.8 1 : 102(3) 1 : 5.4(2) 1 : 197(6) Substantial
* We have computed ∆ lnZ directly for the SM+DM so this zero is an arbitrary initial value, for illustrative

purposes only.

Table 6: Summary and interpretation of our results. The global log evidence values lnZ and statistical uncertainties
are presented as computed by MultiNest for each scan, except in the case of the SM+DM for which we have computed
∆ lnZ values directly. The partial Bayes factor (PBF) B is shown for the Bayesian update to the data set of each row
from that of the previous row. The cumulative PBF Bcumulative is the product of B with all of the previous PBFs. The
components of the PBFs are also shown: the LR column shows the maximum likelihood ratio between the SM+DM
and CMSSM for the newly added data (which is only different from one for the ATLAS Higgs search data, where we
see that the maximum likelihood is a factor of 1.8 higher in the SM+DM than the CMSSM), and the O column shows
the Occam factors. The final column offers an interpretation of the strength of each PBF according to the Jeffreys
scale as listed in table 8. The combined effect of all experiments on a ‘pre-LEP’ odds ratio is seen to be a ‘Decisive’
shift away from the low energy CMSSM when judged by the Jeffreys scale, using either prior.

should count for something in the Bayesian framework (i.e.
as reassurance that no mistakes were made by either ex-
periment), however in the current analysis all data in the
likelihood function is assumed to be 100% reliable and so
we are not considered to learn anything new by “doubling
up”. In order to see such effects in an analysis a measure
of doubt about the reliability of experimental data would
need to be introduced.

It has been noted previously that the δaµ constraint
is in considerable tension with several other observ-
ables [61, 62] and indeed this tension plays a strong role
in the damage to the CMSSM that we observe since
δaµ strongly favours the now excluded lowest mass re-
gions. However, there remains some controversy over its
value [93, 146–150], so we consider the impact on our in-
ferences if we remove it from our likelihood function. It is
too computationally expensive to do this by completing a
full set of new scans, so we subtract it from the likelihood
function of our original data sets in a similar ‘afterburner’
manner as is done in ref. [32]. The accuracy of the results
obtained this way is lower than those obtained from full
scans, particularly because the higher M0, M1/2 regions
are substantially under-sampled with the δaµ removed.
The resulting PBFs, which we present in table 7, are thus
offered as rough estimate only, and can be expected to
overestimate the damage done to the CMSSM.

Since the δaµ constraint pushes the posteriors strongly
down inM0 andM1/2, removing it makes us much less sur-
prised that no direct evidence for the low-mass CMSSM
was seen at LEP or in the LHC sparticle searches. This is
reflected in weaker partial Bayes factors than in table 6.
The LEP results in particular are seen to cause much
less damage. The combined effect of both colliders on a
pre-LEP odds ratio is seen to be greatly reduced; for log
and natural priors the final cumulative Bayes factors are
weakened to ‘Substantial’ and ‘Strong’ shifts away from
the CMSSM respectively, also demonstrating through the
increased prior dependence that δaµ plays an important
role in constraining the initially viable parameter space,
i.e. in building the informative priors from the “pre-LEP”
dataset.

As mentioned in section 5.1 we were driven to ignore
the µ < 0 branch of the CMSSM parameter space by com-
putational restrictions and due to its poorer fit to data,
particularly δaµ. However, given the significant (relative)
boost to confidence in the CMSSM that is gained by re-
moving δaµ, and the potential for the boost to be even
larger had the µ < 0 branch not been ignored, it would be
interesting to take this branch into account in future work.
Confidence in the δaµ constraint is thus seen to remain an
important issue.

We understand that some readers may remain con-
fused as to how the removal of the δaµ constraint can
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improve the performance of the CMSSM in our analysis.
To understand this, it is important to remember that the
δaµ constraint entered into our analysis as part of our
‘baseline’ dataset, which was used to effectively create an
informative prior for the CMSSM (i.e. the posterior re-
sulting from the inclusion of this baseline data). The only
effect of δaµ is thus to help determine the initially viable
regions of parameter space in each model. Since the SM
is highly constrained it cannot ‘tune’ its prediction of δaµ
to match experiments, so there is no change to its param-
eter space whether δaµ is included or not (and since the
DM sector is assumed to be unaffected by all data after
the baseline the parts of the PBFs originating from it re-
main 1 even if it is constrained by δaµ). On the other
hand, the initially viable parameter space of the CMSSM
is severely restricted –to low M0 and M1/2 values– by the
demand that it reproduce the observed δaµ value. This
leaves the CMSSM highly vulnerable to damage from the
LEP2 Higgs limits, which is reflected in the large PBF
against it when the LEP2 data is introduced. Removing
δaµ alleviates this extremely strong tension, greatly reduc-
ing the corresponding PBF. The relative maximum likeli-
hood penalty against the SM+DM that one may expect to
be present due to δaµ is not present in our PBFs, because
we have separated it into the prior, that is “pre-LEP”,
odds. Our analysis is not designed to assess these odds,
however when interpreting our PBFs the reader must keep
in mind which data we have dealt with in the PBFs and
which they are left to consider in their personal “pre-LEP”
prior odds.

To reiterate: the reader may feel that we are not con-
sidering the direct effects of the various observables that
form our initial “pre-LEP” data set on the model com-
parison. This is completely true; all this data has con-
tributed to previous ‘iterations’ of the Bayesian update
process, and must be considered in the prior (“pre-LEP”)
odds for the current analysis. We have done this to dis-
tance our analysis as much as possible from the impact
of the somewhat subjective “pre-LEP” parameter space
priors, in order to more robustly isolate the impact of the
experiments under study. Based on the results presented
in tables 6 it appears that only a mild “pre-LEP” prior
dependence remains if the δaµ constraint is removed, as
the results of table 7 show. The cost of this robustness is
that some of the burden of interpretation remains on the
reader. For example, say after the “pre-LEP” update one
believes the odds for the CMSSM vs the SM-like model
to be 1:1, after considering all the data in our ‘baseline’
(“pre-LEP”) dataset along with personal theoretical bi-
ases. Our PBFs then dictate how one is required to modify
these beliefs in light of the data featured in the subsequent
updates. As a more explicit demonstration of how this
should be done we offer the following toy thought process,
considering the PBFs of table 6; “According to Balázs et
al. the total CMSSM:SM+DM Bayes factor for learning
the LEP2 Higgs limits, Xenon100 limits, 1 fb−1 sparti-
cle search limits, and early 2012 Higgs search results, is
about 1:200 (CMSSM:SM+DM). The “pre-LEP” param-
eter space priors they have used roughly correspond to my

B Strength of evidence
< 1 : 1 Negative

1:1 to 3:1 Barely worth mentioning
3:1 to 10:1 Substantial

10:1 to 30:1 Strong
30:1 to 100:1 Very strong

> 100 : 1 Decisive

Table 8: The Jeffreys scale for interpreting Bayes fac-
tors. We use this scale to interpret our results for B and
Bcumulative.

expectations about the CMSSM, so I accept this number.
Multiplying this by my personal “pre-LEP” odds, which
I estimate to be roughly 50:1 (favouring the CMSSM), I
obtain posterior odds of about 1:4, now in favour of the
Standard Model by a moderate amount.

Although crude, and not rigorous as to the details of
what it means to believe that the CMSSM will be dis-
covered (which is a serious question in of itself, requiring
that we be far more thorough with the definition of the
propositions which we so simply represent by the sym-
bols “CMSSM” and “SM+DM” in this work, remember-
ing that the interpretation of Bayesian inference which
we follow is primarily as a theory of reasoning about the
truth or falsity of propositions in the face of uncertainty),
we hope that this example helps to clarify the meaning of
our results.

While this paper was under review the ATLAS and
CMS Higgs searches made significant progress, with the
local p-values for the signal “hints” utilised in this work
increasing in significance to over “5 sigma”, leading to
the announcement of the discovery of a new integer-spin
resonance [151, 152]. We expect this to increase the de-
gree to which the CMSSM is disfavoured in our results,
since the decrease in parameter space compatible with the
stronger measurement will be larger in the CMSSM than
the SM+DM, and potential discrepancies in the branch-
ing ratios from SM predictions are not significant enough
to make much of an impact. In addition, ATLAS and
CMS have released the results of numerous supersym-
metry searches using up to 5 fb−1 of data (for exam-
ple [137, 138], utilising the full 2011 data set; results of
similar strength utilising 2012 data also exist, but no com-
bination of 2011 and 2012 data is yet available), a signifi-
cant increase over the 1 fb−1 results we have used. No hints
of new physics have been seen, and though the improved
limits do cut a small way into the posterior remaining
in our final “ATLAS-Higgs” datasets the improvement is
not sufficient to significantly alter the PBFs we have com-
puted; we expect considerably less than an extra factor of
two shift against the CMSSM 26 .

26 We note that the new limits cut off much less than half of
the posterior remaining in the “ATLAS-Higgs” dataset (shown
in the last frame of figure 14), so the corresponding “addi-
tional” PBF is likewise much less than two

100 Application of subjectivist statistical methods to the CMSSM



26 C. Balázs, A. Buckley, D. Carter, B. Farmer, M. White: Should we still believe in constrained supersymmetry?

Scenario lnZ LR O B Bcumulative Strength of B

CMSSM (log priors)
Pre-LEP 36.69(2) - - - - -
LEP+XENON100 34.43(2) 1 : 1 1 : 9.6(2) 1 : 2.72(6) 1 : 2.72(6) Barely worth mentioning
ATLAS-sparticle 34.77(2) 1 : 1 1 : 0.72(2) 1 : 0.72(2) 1 : 1.95(5) Barely worth mentioning∗

ATLAS-Higgs 29.42(2) 1 : 1.8 1 : 78(2) 1 : 4.2(2) 1 : 8.3(1) Substantial

CMSSM (natural priors)
Pre-LEP 29.29(2) - - - - -
LEP+XENON100 27.27(2) 1 : 1 1 : 7.6(2) 1 : 2.15(6) 1 : 2.15(6) Barely worth mentioning
ATLAS-sparticle 26.67(2) 1 : 1 1 : 1.81(6) 1 : 1.81(6) 1 : 3.9(1) Barely worth mentioning
ATLAS-Higgs 20.87(2) 1 : 1.8 1 : 126(4) 1 : 6.7(2) 1 : 26.1(8) Substantial
* This Bayes factor appears to indicate a slight increase in the viable CMSSM parameter space, which is

impossible. It is therefore certain to be an artefact of reweighting process.

Table 7: Summary and interpretation of our results, with the δaµ constraint removed. Columns as in table 6. We
have dropped the SM+DM rows because they are unchanged from table 6. The δaµ constraint pushes the posteriors
strongly down in the mass parameters, so removing it makes us much less surprised that no direct evidence for the
low-mass CMSSM was seen at LEP or in the LHC sparticle searches. This is reflected in the weaker PBFs than in
table 6. The LEP results in particular are seen to be much less surprising. The combined effect of both colliders on a
‘pre-LEP’ odds ratio is seen to be downgraded from a ‘Decisive’ to ‘Substantial’ (by the Jeffreys scale) shift away from
the low energy CMSSM when using the log prior, and to be downgraded from ‘Decisive’ to ‘Strong’ when using the
natural prior. Since these results were obtained by reweighting scan data whose sampling was optimised for likelihoods
containing the δaµ constraint, the reweighted posteriors are expected to be substantially under-sampled in the higher
{M0,M1/2} regions, causing the PBFs listed in this table to overestimate the penalty to the CMSSM, the correction
of which would further weaken these PBFs relative to those in table 6. Confidence in the δaµ constraint is thus seen
to have a very large impact, and is likely to remain an important issue in models beyond the CMSSM.

8 Conclusions

We examined the viability of the low energy CMSSM,
the corner of the parameter space with M0 and M1/2 re-
stricted below 2 TeV, in the light of data from before LEP
to the recent measurements of the LHC. To quantify this
viability we computed the partial Bayes factors associ-
ated with learning the LEP Higgs limits, XENON100 dark
matter limits, LHC sparticle searches, and the 2012 LHC
Higgs hint, in sequence, in a straightforward Bayesian hy-
pothesis test of the CMSSM against a SM-like model.

Interpreting the relative change of belief in the
CMSSM induced by these PBFs in terms of the Jeffreys
scale we concluded the following. The LEP Higgs limit
strongly reduced our trust in the low energy CMSSM, as is
well known. The LHC sparticle limits deal a much smaller
and not yet very significant additional blow. Lastly, the
LHC Higgs hints are already strong enough that they have
a substantial impact (on the “pre-LEP” scenario) even if
the previous damage is ignored. When considering the cu-
mulative effect of all three data changes we found that
support for the CMSSM, as measured by the posterior
odds, is reduced relative to the SM-like alternative by a
decisive 200 fold. These findings are robust against the
shape of prior probabilities of the CMSSM parameters we
considered (and are expected to remain so under other
reasonable choices for priors), however they are severely
weakened if the sometimes contentious muon anomalous
magnetic moment constraint is removed from consider-
ation. Presently the impact of XENON100 is negligible,
although in the near future dark matter direct detection

is expected to further reduce our belief in the low energy
corner of the CMSSM, unless they discover a positive sig-
nal soon.

The strength of these results is largely due to the very
small amount of CMSSM parameter space in the posterior
of the initial (“pre-LEP”) data set, which forms the infor-
mative prior for the next update, which is capable of pro-
ducing a lightest Higgs of around 125 GeV as is required to
explain the LHC Higgs hints, and so is quite expected from
that perspective. The ease with which this can be accom-
modated in the SM-like model causes the more ‘wasteful’
CMSSM to be strongly disfavoured. The CMSSM would
not fare as poorly in a test against a perhaps more realistic
model of similar parameter space complexity, unless that
model naturally produces a compatible Higgs in a much
more substantial portion of its otherwise viable parame-
ter space. Likewise if there exists a good reason to restrict
the parameter space prior for the CMSSM to those re-
gions that produce a relatively viable Higgs, such as some
motivation from a higher energy theory, then our large
penalising Occam factors may be largely negated. This
is essentially the Bayesian manifestation of a naturalness
problem; the CMSSM is now a highly unnatural model
(completely separately from the little hierarchy problem,
which is associated with data in our baseline set) due to
the small amount of parameter space capable of fitting
both the Higgs observations and previous data, and this
is strong motivation to search for a more complete theory
(if not for a completely different theory) to explain why
this small portion of parameter space should be chosen by
Nature.
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Fig. 9: (right) Partial Bayes factors for the three Bayesian updates we consider, for a hypothesis test of the CMSSM
against the Standard Model (SM) augmented with a simple dark matter candidate, as computed using both ‘log’
and ‘natural’ (CCR) “pre-LEP” priors for the CMSSM and both with and without the δaµ constraint imposed. We
begin by updating from the “pre-LEP” situation to including the LEP Higgs search and the XENON100 data (red),
to adding the ATLAS 1 fb−1 sparticle searches (blue), to folding in the 2012 February ATLAS Higgs search results
(green). (left) We also show the breakdown of each PBF into the maximum likelihood ratio of the data added in
each transition (yellow highlight), and the “Occam” factors for each transition for both the SM (blue highlight) and
the CMSSM (remainder). If one was willing to bet even odds on the CMSSM and SM at the “pre-LEP” stage, the
product of these PBFs (as stacked) give the posterior odds with which one should now gamble on these models, given
our “pre-LEP” parameter space priors and data assumptions. The cumulative effect of these PBFs is an almost 200
fold swing in the odds away from the CMSSM, reduced to a 10-30 fold swing if the δaµ constraint is dropped. PBFs
of the former strength represent significant experimental disfavouring of the low energy CMSSM and could only be
outweighed by very strong prior odds (determined by considerations outside the scope of our analysis), while the
latter values (with δaµ removed) are of only moderate strength and are unlikely to dominate over prior considerations.
Despite differences in the details of posteriors obtained under the two priors used, the Bayes factors themselves remain
remarkably robust, although this robustness is partially compromised if δaµ is ignored since it is a powerful constraint
which helps the baseline (“pre-LEP”) data to dominate over differences between “pre-LEP” priors.
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A Fast approximation to combined CLs limits
for correlated likelihoods

In this appendix we offer a brief justification of the sim-
plified method used to combine the ATLAS CLs limits
on sparticle production in our analysis. In this method an
approximate combined confidence limit is obtained for a
specified model point by simply taking the most powerful
observed (lowest CLs value) limit from one of several sig-
nal regions, or search channels. Our aim is to demonstrate
a set of minimal conditions under which this procedure is

conservative. This will be done by demonstrating condi-
tions under which the following inequality holds:

min (CLs1 , CLs2) ≥ CLs1,2 (35)

where CLs1 is the value of the CLs statistic for some
signal model, derived from a dataset which we may call
‘channel 1’; CLs2 is the value of CLs under the same sig-
nal model but derived from a correlated dataset ‘channel
2’; and CLs1,2 is the value of CLs for this signal model
derived from the full combination of the two datasets, ac-
counting rigorously for correlations between datasets. This
inequality does not hold in general, but if the experimental
situation is such that it does hold, it means that the com-
bined dataset results in a more powerful limit than either
of the individual datasets alone, or conversely that con-
sidering only the most constraining of the two individual
dataset limits is conservative. In the course of this exer-
cise we will make use of the asymptotic results obtained
in ref. [105].

We remind the reader that the CLs statistic is defined
as

CLs =
ps+b

1− pb
(36)

where ps+b and pb are p-values derived using the null hy-
potheses ‘s+ b’ and ‘b’ respectively. s+ b is the hypothesis
that the data is generated from the nominal signal plus
background model, while b supposes that the data con-
tains background events only. In the CLs method these
p-values are computed using the likelihood ratio statistic

q = −2 ln
Ls+b
Lb

= −2 ln
L(µ = 1, θ̂(1))

L(µ = 0, θ̂(0))
, (37)

where Ls+b and Lb are the likelihoods of the ‘s+b’ and ‘b’
models respectively. The second equality defines the back-
ground model as one which can be obtained by scaling the
signal model by an appropriate ‘signal strength’ parameter

µ, which is set to zero. θ̂(1) and θ̂(0) are the profiled val-
ues of any nuisance parameters. In the asymptotic limit
(which requires sufficiently many candidate events) this
statistic is given by the Wald approximation, with µ as
the parameter of interest, as

q =
(µ̂− 1)2

σ2
− µ̂2

σ2
=

1− 2µ̂

σ2
, (38)

where µ̂ is the best fit value of µ given some dataset, and
σ2 is the variance of µ̂ (which is normally distributed)
under either the ‘s + b’ or the ‘b’ models, that is σ takes
the values σs+b and σb when the µ = 1 and µ = 0 models
are assumed to be generating the data respectively. Using
so-called ‘Asimov’ data sets, which when observed cause
µ̂ to adopt its true value (either 1 or 0; see ref. [105]) we
can obtain σ2 as

σ2 =
1− 2µ′

qA
, so that σ2

s+b =
1∣∣qAs+b

∣∣ (39)

and σ2
b =

1

|qAb
| (40)
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where µ′ is the assumed true value of µ and qA is the value
of q obtained using the relevant Asimov dataset.

The asymptotic distribution f of the statistic q is nor-
mal with mean (1 − 2µ′)/σ2 and variance 4/σ2 so the
p-values in eq. (36) can be computed by

ps+b =

∫ ∞

qobs

f(q|s+ b)dq = 1− Φ
(
qobs + 1/σ2

s+b

2/σs+b

)

= 1− Φ
(
qobs − qAs+b

2
√
|qAs+b

|

)
(41)

and

pb =

∫ qobs

−∞
f(q|b)dq = Φ

(
qobs − 1/σ2

b

2/σb

)

= Φ

(
qobs − qAb

2
√
|qAb
|

)
(42)

Let us now go to the case where the observed events in
all channels are in accordance with the background hy-
pothesis, such that µ̂ ∼ 0. Then qobs ∼ qAb

. Further-
more, in this case the 95% CLs limit lies near model
points which predict low signals, so we may further take
σ ∼ σs+b ∼ σb (since the distribution f under both s+ b
and b hypotheses will be very similar). Also note that in
this limit qAs+b

= −qAb
. Our p-values can thus be simpli-

fied to

ps+b = 1− Φ
(√
|qA|

)
and pb = Φ (0) =

1

2
(43)

(where we have also used the knowledge that
sign(qAs+b

) = −1). We can thus write the inequal-
ity of eq. (35) as:

ps+b;1
1− pb;1

≥ ps+b;1,2
1− pb;1,2

→ 1− Φ
(√
|q1A
|
)
≥ 1− Φ

(√
|q1,2A

|
)

(44)

where we have assumed WLOG that CLs1 ≤ CLs2 . The
function Φ(x) is monotonically increasing with x, so our
inequality will hold if

|q1A
| ≤ |q1,2A

| (45)

To determine when this is the case, we need to express
q1,2A

in terms of the parameters describing q1A
and q2A

.
We can do this by obtaining the two parameter Wald ex-
pansion for the combined test statistic q1,2 (i.e. taking a
Taylor expansion of q about the best fit values of µ1 and
µ2, up to second order):

q1,2 =
1

1− ρ

(
1− 2µ̂1

σ2
1

+
1− 2µ̂2

σ2
2

− 2ρ
1− µ̂1 − µ̂2

σ1σ2

)
, (46)

where ρ characterises linear correlations between the two
channels, taking values in the domain (−1, 1), and µ̂1, µ̂2

and σ2
1 , σ

2
2 are the best fit µ values and their variances, as

obtained above for each individual channel. Again we use
the Asimov dataset for the background hypothesis, which
sets µ̂1 = µ̂2 = 0, to find q1,2A,b

:

q1,2A,b
=

1

1− ρ

(
1

σ2
1

+
1

σ2
2

− 2ρ
1

σ1σ2

)
, (47)

which, like q1A,b
, is strictly positive. Using this expression

together with eq. (39) we can rewrite the inequality of eq.
(45) as

1

σ2
1

≤ 1

1− ρ

(
1

σ2
1

+
1

σ2
2

− 2ρ
1

σ1σ2

)
(48)

One can readily see that eq. (48) holds in the case ρ = 0,
i.e. when no correlations exist between channels. Knowing
this, we may vary ρ from this point and see where the
equality is achieved in order to check if the inequality may
be violated. Setting the equality we solve for σ1, finding
the two general solutions

σ1 = σ2

(
ρ±

√
(ρ− 1)ρ

)
, (49)

from which it is apparent that no real solutions exist for
0 < ρ < 1, while such solutions do exist for −1 < ρ < 0.
We could convert this to a bound on the allowed values
of σ1/σ2, since only the positive root solution can give
a positive σ1, but negative correlations are not relevant
for our signal regions, which are correlated due to shared
events, so we are done.

We can thus conclude that if channel correlations are
linear and positive, the observed event counts are not far
from the expected background, the nominal signal hypoth-
esis at the limit is small, and enough events are observed
for asymptotic formulae to hold, then we can safely take
the most powerful limit from among several channels as
an estimate of the full combination, without overestimat-
ing the combined limit. Violations of these conditions may
result in the target inequality of eq. (35) being violated,
with a particular concern being that this can occur as the
observed events differ from the background expectation;
however, it is difficult to determine the general conditions
under which this happens. Certainly if one channel sees an
excess above the background while another does not then
in general the combined limit will be weaker than one ob-
tained using only the more constraining (background-like)
channel.

Nevertheless, in our special case we may be confident
that our method remains approximately valid thanks to
the procedure used by ATLAS to produce their official
limits (in ref. [102]), to which our approximate limits are
fitted. ATLAS also do not attempt to rigorously account
for the correlations between channels; they follow a sim-
ilar procedure to us and, for each point in the CMSSM
parameter space, take the limit from the channel with the
best expected limit. We, on the other hand, take the chan-
nel with the best observed limit, which, following the dis-
cussion of this appendix, can be expected to less reliably
approximate the rigorous combination.
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We follow our more approximate procedure because
ATLAS do not provide the expected limits on the mean
signal for each channel; however, it is possible to estimate
these using the asympotic formulae discussed in this ap-
pendix, and so we use these estimates to gauge the seri-
ousness of the difference between our method and the one
used by ATLAS.

To do this a model of the likelihood in each signal
region is needed. Taking the random variable to be the
best fit signal strength µ̂, the simplest option is the nor-
mal limit of a Poisson likelihood, with standard deviation
σ modified by convolution with normal signal and back-
ground systematics σs and σb. The mean and variance are
then simply

µ =
n− b
s

(50)

σ2 = (µ′(s+ σ2
s) + σ2

b )/s2 (51)

where n = µ′s+ b is the expected total number of events
(and µ′ = 1 or 0 as before). ATLAS provide estimates
of σb so we use these, however σs is not provided since
it varies point to point. This variation would require a
large effort to model so we simply fit a single value for
σs for each channel, ensuring that the observed 95% CLs
limits obtained from our simplified likelihood agree with
ATLAS (we have also checked that varying this value has
little effect on our results).

We then use this model likelihood to estimate the ex-
pected limits on the signal yield in each channel for each
point in our training data set, and obtain an estimate of
the ATLAS combined observed limit by taking the ob-
served CLs value of each training data point to be the
one obtained from the channel with the lowest expected
CLs value for that point (i.e. following ATLAS’s method).
We find the difference between this estimate of the AT-
LAS limit and the one used in our analysis to be very
small: of the 26491 training points there are 100 which
are classified (into excluded/not excluded) differently by
the two limits. We show these points in figure 10; they
predominantly occur in a group clustered at low m0, and
for most of them the observed strongest limit comes from
R1, while we estimate that the expected strongest limit
comes from R2.

B Plots of CMSSM profile likelihoods and
marginalised posteriors

This appendix contains the figures referred to in section 7.
We refer the reader to that section for further information.

Fig. 10: Classification of training data for the ATLAS 1
fb−1 jets+MET search used in the main analysis. Two
methods for combining the ATLAS limits for each search
channel are used: the method used in this analysis uses
the most constraining observed CLs value from the set
of channels at each training data point to determine its
classification, while ATLAS use the observed CLs value
from the signal region with the most powerful expected
exclusion. We have estimated the limit that would be ob-
tained from the ATLAS method using asymptotic approx-
imations for the signal likelihood. Training data model
points which are excluded at 95% CLs by both limits
are coloured red, while model points not excluded by ei-
ther are coloured green. Points where conflict exists are
coloured black. The official ATLAS limit is overlaid for
comparison. Points are sampled from the full CMSSM pa-
rameter space as described in the text, but are projected
onto the (m0,m1/2) plane for visualisation.
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Fig. 11: The evolution of the profile of the (log-)likelihood function from the “pre-LEP” situation (first row), to
including the LEP Higgs search and XENON100 data (second row), to adding the 1 fb−1 LHC sparticle searches
(third row), to folding in the 2012 February Higgs search results. Contours containing 68% and 95% confidence regions
are shown. The above results were obtained using the log prior. Results obtained using the CCR prior (not shown)
show variations consistent with the different sampling density but are qualitatively similar.
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Fig. 12: The evolution of the profile of the (log-)likelihood function from the “pre-LEP” situation (first row), to
including the LEP Higgs search and XENON100 data (second row), to adding the LHC sparticle searches (third row),
to folding in the 2012 February Higgs search results. Contours containing 68% and 95% confidence regions are shown.
The above results were obtained using the log prior and have been reweighted to estimate the effect of removing the
δaµ constraint. Significant deterioration of the sampling is seen due to the shift in the preferred regions away from the
originally sampled regions, however the general impact of removing the δaµ constraint can be seen in the motion of
the preferred regions upwards in the mass parameters. Of particular note is the very strong shift to high A0 when the
ATLAS Higgs search results are imposed, which is much less pronounced in figure 11, indicating very strong tension
between the ATLAS Higgs search results and the δaµ constraint. Results obtained using the CCR prior (not shown)
show variations consistent with the different sampling density but are qualitatively similar.

4.2 Published material: Paper I 111



C. Balázs, A. Buckley, D. Carter, B. Farmer, M. White: Should we still believe in constrained supersymmetry? 37

500 1000 1500
M0  (GeV)

500

1000

1500

M
1
/
2
 (G

eV
)

0.0

0.2

0.4

0.6

0.8

Re
l. 

po
st

. d
en

si
ty

2000 1000 0 1000 2000 3000
A0  (GeV)

10

20

30

40

50

60

ta
n
β

0.0

0.2

0.4

0.6

0.8

1.0

Re
l. 

po
st

. d
en

si
ty

500 1000 1500
M0  (GeV)

500

1000

1500

M
1
/
2
 (G

eV
)

0.0

0.2

0.4

0.6

0.8

1.0

Re
l. 

po
st

. d
en

si
ty

2000 1000 0 1000 2000 3000
A0  (GeV)

10

20

30

40

50

60

ta
n
β

0.0

0.2

0.4

0.6

0.8

1.0

Re
l. 

po
st

. d
en

si
ty

500 1000 1500
M0  (GeV)

500

1000

1500

M
1/

2 (
G

eV
)

0.0

0.2

0.4

0.6

0.8

1.0

Re
l. 

po
st

. d
en

si
ty

2000 1000 0 1000 2000 3000
A0  (GeV)

10

20

30

40

50

60

ta
n
β

0.0

0.2

0.4

0.6

0.8

1.0

Re
l. 

po
st

. d
en

si
ty

500 1000 1500
M0  (GeV)

500

1000

1500

M
1/

2 (
G

eV
)

0.0

0.2

0.4

0.6

0.8

1.0

Re
l. 

po
st

. d
en

si
ty

2000 1000 0 1000 2000 3000
A0  (GeV)

10

20

30

40

50

60

ta
n
β

0.0

0.2

0.4

0.6

0.8

1.0

Re
l. 

po
st

. d
en

si
ty

Fig. 13: The evolution of the CMSSM marginalised posterior probability distributions from the “pre-LEP” situation
(first row), to including the LEP Higgs search and XENON100 data (second row), to adding the LHC sparticle searches
(third row), to folding in the 2012 February Higgs search results. Log priors are used and 68% and 95% credible regions
are shown.
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Fig. 14: The evolution of the CMSSM marginalised posterior probability distributions from the “pre-LEP” situation
(first row), to including the LEP Higgs search and XENON100 data (second row), to adding the LHC sparticle searches
(third row), to folding in the 2012 February Higgs search results. Natural (“CCR”) priors are used and 68% and 95%
credible regions are shown. The natural prior can be seen to favour lower M0 and tanβ than the log prior.
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1. Foreword

This proceedings paper is a summary of the results obtained in ref [1]. To achieve the necessary
brevity we will refer the reader to the full paper for many technical details. We also note that the
statistical terminology used presently has been significantly altered from the original work, with the
intention of improving its alignment with the relevant statistics literature. We hope these changes
render the present description of our statistical methods superior to the original in clarity.

2. Introduction

Supersymmetry is an attractive and robust extension of the Standard Model (SM) of particle
physics. Weak scale supersymmetry resolves various shortcomings of the SM, and explains several
of its puzzling features. Coupled with high-scale unification, supersymmetry breaking radiatively
induces the breakdown of the electroweak symmetry. It also tames the quantum corrections to the
Higgs mass, provides viable dark matter candidates, and is able to accommodate massive neutrinos
and explain the cosmological matter-antimatter asymmetry. It is also an ideal framework to address
cosmological inflation.

Based on experimental data, an extensive literature delineates the regions of the CMSSM
where its parameters can most probably fall. After the early introduction of χ2 as a simple measure
of parameter viability [2] increasingly more sophisticated concepts were utilised, such as the profile
likelihood and marginalised posterior probability and the corresponding confidence [3] or credible
[4] regions. The effect of the LHC data on the CMSSM has typically been presented in this general
manner both in the frequentist [5] and the Bayesian [6, 7] framework. To go beyond parameter
estimation and obtain a measure of the viability of a model itself one has several options. The most
common frequentist measure is the p-value, the probability of obtaining more extreme data than
the observed from the assumed theory1 [8]. In the Bayesian approach model selection is based on
the Bayes factor, and requires comparison to alternative hypotheses. [9].

In the Bayesian framework the plausibility of the CMSSM can only be assessed when we
consider it as one of a mutually exclusive and exhaustive set of hypotheses: CMSSM ∈ {Hi}. The
posterior probabilities of each of these hypotheses, in light of certain data, are given by Bayes’
theorem

P(Hi|data) =
P(data|Hi)P(Hi)

∑i P(data|Hi)P(Hi)
, (2.1)

where all probabilities are understood to be conditional on the available background information,
although we neglect it in our notation for brevity. Since the denominator on the right hand side is
impossible to calculate, it is advantageous to compare the plausibility of the CMSSM to that of a
reference model by forming the ratio

Odds(CMSSM:SM|data) =
P(CMSSM|data)

P(SM|data)
. (2.2)

1Here ‘more extreme’ can be defined in numerous ways.

2
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Here we have selected the SM as our reference hypothesis. Using eq.(2.1) we can rewrite the odds
in terms of likelihood ratios as

Odds(CMSSM:SM|data) =
P(data|CMSSM)

P(data|SM)

P(CMSSM)

P(SM)
=

B(data|CMSSM:SM) Odds(CMSSM:SM). (2.3)

The second ratio on the right hand side is called the prior odds, and is incalculable within the
Bayesian approach. The first ratio, however, is calculable, and is commonly called the ‘Bayes
factor’. It gives the change of odds due to the newly acquired information.

In this work we compute a series of partial Bayes factors (PBFs) associated with learning
the results of several LHC and other experiments, which quantify the changes these experiments
induce in the CMSSM:SM odds. We offer an interpretation of these PBFs as the ‘damage’ that
these experiments have done to the plausibility of the CMSSM (compared to that of the SM).

3. Partial Bayes factors

To compute Bayes factors we need to first compute the marginalised likelihood P(data|Hi),
also called the “evidence”, for each model hypothesis Hi, e.g.

P(data|Hi) =
∫

dθ P(data|θ ,Hi)P(θ |Hi). (3.1)

This requires the specification of a prior probability density P(θ |Hi) over the parameters θ of
each model, which must reflect our knowledge (or lack thereof) of the parameters before knowing
data. In the case where our prior knowledge is weak it is generally very difficult to specify a
prior which both accurately expresses this knowledge and is “proper”, in the sense that its integral
can be normalised to 1 (indeed the first criterion alone is difficult to achieve). Common choices of
simple prior, such as uniform or logarithmically flat distributions, as well as most formal minimally-
informative priors (such as maximum entropy [10] or “reference” [11] priors), are improper.

For inference of the model parameters themselves the use of such improper priors is generally
unproblematic, as they may still result in proper posterior distributions once combined with suf-
ficiently powerful data, however they cause major problems for model comparisons because they
cannot be used to compute marginalised likelihoods. A naïve fix may be to specify cutoffs to ren-
der the original priors proper, however unless the cutoff approximates some actual prior knowledge
it merely introduces an arbitrary constant into the marginalised likelihood, which thus remains
useless for model comparison.

This problem is well known and a number of solutions have been proposed [12], however they
generally depart from pure Bayesian methods. In this work we adopt the simplest of these solutions,
which is to use so-called “partial” Bayes factors, which, although more limited in the inferences
that can be derived from them compared to more advanced methods, retain a pure Bayesian inter-
pretation.

To compute partial Bayes factors, one takes note of the aforementioned fact that it is generally
possible to obtain a proper posterior from an improper prior by incorporating sufficiently strong
data via a Bayesian “update” (i.e. an iteration through Bayes’ theorem). The idea is then to use

3
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some portion of the available data to update the improper priors in this fashion, and then use the
resulting posterior together with the remaining data to compute a Bayes factor as normal. The
resultant Bayes factor is only “part” of the full Bayes factor that would have resulted from using
all the data (if it could have been computed), and so it is termed “partial”.

To illustrate the procedure explicitly, consider the division of the available data into two sets; a
“training” set d1, and an “inference” set d2. In principle many such divisions are possible, and each
will result in a different partial Bayes factor (a “flaw” which alternate methods attempt to remedy,
generally by combining the various possible partial Bayes factors in some way, in conjunction with
specifying rules for choosing the divisions to use), however in our situation a roughly chronological
separation is quite natural and has a useful interpretation. We describe our chosen separation in
section 4. Next consider the ordinary Bayes factor, for a test of some model H against an alternate
Halt, for such a set of data:

B(d2,d1) =
P(d2,d1|H)

P(d2,d1|Halt)
=

P(d2|d1,H)

P(d2|d1,Halt)

P(d1|H)

P(d1|Halt)
= B(d2|d1)B(d1) (3.2)

(we have suppressed the explicit reference to H and Halt in the Bayes factors for brevity). Here
B(d2|d1) is the partial Bayes factor obtained by “training” the model priors with d1 and then per-
forming the comparison using d2, while B(d1) is uncomputable or unreliable since to compute it
we need to integrate over an improper prior. The product B(d2|d1)B(d1) is the standard (uncom-
putable) Bayes factor B(d2,d1), but by discarding the uncomputable piece B(d1) we are left with at
least some inferential power, and as a bonus our sensitivity to the original improper prior is reduced
(in proportion to the informativeness of d1).

Since we have stuck to the Bayesian rules there exists a Bayesian interpretation of B(d2|d1).
Consider its place in computing the posterior odds for H vs Halt:

Odds(H : Halt|d2,d1) = B(d2|d1)Odds(H : Halt|d1) = B(d2|d1)B(d1)Odds(H : Halt) (3.3)

The prior odds, Odds(H : Halt), cannot be computed by any standard Bayesian means and must
be supplied based on prior knowledge. Often they are taken to be 1:1, but this is unrealistic in
many circumstances (for the case at hand we suspect many readers judge the a-priori Odds(SM :
CMSSM) to strongly favour one model or the other, for various reasons we will not explore).
The combination Odds(H : Halt|d1) = B(d1)Odds(H : Halt) is no more computable for its extra
dependence on the uncomputable B(d1), and so, instead of considering their personal Odds(SM :
CMSSM), we invite the reader to instead directly consider their personal Odds(H : Halt|d1). The
partial Bayes factor B(d2|d1) can then be interpreted as the factor required to correctly update these
personal odds to take into account the newly learned data d2 (assuming of course that the reader
roughly accepts our adopted model priors and our assumptions regarding the nature of d1 and d2).

4. Training and inference data

We describe in this section the “training” data used to convert our initially improper parameter
space priors into informative proper priors via a Bayesian update, and the “inference” data which
is used in conjunction with the trained priors to construct partial Bayes factors.

4
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First, our “training” data includes the WMAP measurement of the WIMP relic density Ωh2
χ

(used as a central constraint on the neutralino relic density), electroweak precision measurements,
limits on rare B and D decays, the LEP2 lower bounds on sparticle masses, and the muon g− 2
anomaly. We also repeat our analysis with (g− 2)µ removed from the training set due to contro-
versy regarding the SM contribution to it, although this impacts the interpretation of the partial
Bayes factors we obtain (we discuss this further in section 5).

For inference data we use in turn: the LEP2 Higgs search limits; the 2011 XENON100 limits
on the WIMP-nucleon scattering rate [13] together with the 2011 LHC 1 fb−1 zero-lepton sparticle
search limits [14]; and the February 2012 LHC Higgs search results [15]. Partial Bayes factors are
computed for the addition of each of these pieces of data in turn, giving us three such factors plus a
‘total’ partial Bayes factor which is the cumulative effect of the total inference data set. For further
details of the training and inference data we refer the reader to the full description of the analysis
given in ref. [1].

5. Scan region and (((ggg−−−222)))µµµ effects

The power of the partial Bayes factor technique is limited by the training data available, and in
the case of the CMSSM the data we have specified is unfortunately insufficiently strong to constrain
an updated improper prior to a finite region of parameter space, leaving the corresponding posterior
still improper. The only data in the training set which potentially limits the CMSSM parameters
M0 and M1/2 from above is (g−2)µ , however the value we use [16] puts the discrepancy from the
SM predictions at 4.1σ , which is thus the maximum level at which it can exclude CMSSM points.
Fortunately regions of parameter space with this poor (g− 2)µ fit are still highly suppressed and
so contribute very little to the trained priors. We thus scan only the M0,M1/2 region of CMSSM
parameter space, which well contains all model points which could explain (g−2)µ , and note that
even though the original priors are not rendered strictly proper a very large fraction of their volume
left after updating with the rest of the training data would have to be located outside our scan region
to cause significant errors in the partial Bayes factors we obtain. We assume a truncation of the
parameter space at some very high M0,M1/2 values is sufficiently plausible to avoid this problem.

We also compute PBFs with (g−2)µ removed from the training set, to investigate its influence
and to consider the consequences of it being explained within the SM. This action destroys any hope
of achieving even a weakly proper trained prior for the CMSSM, so this set of PBFs can only be
interpreted as describing the damage to the M0,M1/2 < 2 TeV region of the CMSSM, not as damage
to the CMSSM as a whole.

6. Results

Two previously studied priors were used to compute partial Bayes factors (to allow an inves-
tigation of prior sensitivity and to remain consistent with previous literature): the ‘log’ prior [7],
which is flat in A0 and tanβ , and flat in the logarithm of M0 and M1/2, and the ‘naturalness’ prior
[17] (specifically the ‘CCR’ version of this prior [18]), which assigns low prior weight to fine-tuned
regions of CMSSM parameter space. The µ < 0 branch is strongly disfavoured [19] so we scan
only the µ > 0 branch to reduce computational demand. As discussed in section 5 we scan M0 and

5
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M1/2 below 2 TeV since (g− 2)µ sufficiently excludes model points outside this range, with −3
TeV < A0 < 4 TeV and 0 < tanβ < 62 (tanβ = 0 is of course unphysical so receives zero weight
after training). The top quark mass is also scanned using a Gaussian prior with mean 172.9 GeV
and standard deviation 1.1 GeV.

Scans were performed using MultiNest v2.12 , with the CMSSM spectrum generated
by ISAJET v7.81 and further training observables computed by micrOmegas v2.4.Q and
SuperISO v3.1. The LEP Higgs search likelihood is implemented with a simple error func-
tion approximation, while the LHC Higgs search likelihood is reconstructed from ATLAS re-
sults [15] using asymptotic approximations and utilising Higgs branching ratios computed by
HDECAY v4.43. The LHC sparticle search likelihood is implemented using a Bayesian neu-
ral network trained using 50,000 model points sampled from the full 4D parameter space, using
Herwig++ 2.5.2 to generate 15,000 Monte Carlo events per model point, with Delphes 1.9

providing a fast simulation of the ATLAS detector, and with the total SUSY production cross sec-
tion computed at next-to-leading order by PROSPINO 2.1, in a simulation chain tuned to match
the ATLAS 1 fb−1 zero-lepton jets+MET search described in ref. [14]. For further details and
references related to these codes we refer readers to the full study [1].

The marginal likelihood values for the SM-like comparison model are computed assuming
all parameters except the physical Higgs mass to be fixed, excluding parameters involved in the
dark sector, which are assumed to be unaffected by any data in our inference set. The relevant 1D
parameter space mh is given an initially log prior, which becomes roughly Gaussian (peaked near
90 GeV) after training with electroweak precision data [20]. SM marginal likelihoods are com-
puted by directly applying the inference data likelihoods to this function (using standard numerical
integration tools), and are then combined with the CMSSM marginal likelihoods to obtain partial
Bayes factors, which are presented in table 1.

7. Discussion and conclusions

Our results provide a full probabilistic justification for the current intuition in the community
that if the CMSSM is a good approximation to TeV scale physics, then it is extremely surprising
that no direct evidence for it has yet been observed. In addition, our computed partial Bayes factors
demonstrate that the parameter space priors that enable the above conclusion have the further, and
unavoidable, implication that it is now much less probable that the CMSSM will be discovered to
well approximate Nature than it was before the LEP2 Higgs search results were obtained – in the
sense that the odds of this occurring vs the SM remaining valid (with dark matter and (g− 2)µ

unexplained) are a factor of approximately 200 less with our ‘inference’ data considered than when
only the ‘training’ data is considered. This conclusion cannot be avoided simply by altering the
priors used because strong tensions exist even at the likelihood level, particularly between (g−2)µ

and the ATLAS Higgs search likelihood.
The only escape available is to abandon (g−2)µ as a constraint; even dropping the assumption

that neutralinos fully account for the observed dark matter relic density does not sufficiently open
up the parameter space to avoid strong conflict between (g−2)µ and mh. However, our results show
that the M0,M1/2 < 2 TeV region of the CMSSM is still disfavoured even if (g−2)µ is abandoned.

6
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Knowledge change
log prior natural prior

Weight of evidence
(against CMSSM)PBF

Discr. inf.
PBF

Discr. Inf.
(bits) (bits)

All training data
Training → LEP+XENON100 14.7(4) 3.88(4) 18.6(6) 4.22(4) Strong

" " → ATLAS-sparticle 2.04(5) 1.03(4) 1.97(6) 0.98(5) Barely worth mentioning
" " → ATLAS-Higgs 6.1(2) 2.61(4) 5.4(2) 2.43(5) Substantial

Training → All 185(5) 7.53(4) 197(6) 7.62(5) Decisive
(((ggg−−−222)))µµµ excluded from training data (applicable only for M0,M1/2 < 2 TeV)
Training → LEP+XENON100 2.72(6) 1.45(3) 2.15(6) 1.11(4) Barely worth mentioning

" " → ATLAS-sparticle 0.72(2) ∗ -0.48(4) ∗ 1.81(6) 0.86(5) Barely worth mentioning
" " → ATLAS-Higgs 4.2(2) 2.09(4) 6.7(2) 2.74(5) Barely worth mentioning

Training → All 8.3(1) 3.05(4) 26.1(8) 4.71(5) Substantial - Strong†

* This apparent slight preference back towards the CMSSM is an artefact of reweighting process used to obtain
these results from the primary scans. See ref. [1] for details.

† Robustness to change in prior is compromised by the removal of (g−2)µ from the training set; the results we
obtain span the two listed categories of the Jeffreys scale.

Table 1: Summary and interpretation of our results. Column 1 indicates the “training” and “inference”
data used to compute the partial Bayes factors (PBFs) in the adjacent columns (where a PBF> 1 indicates
that the inference data provides evidence in favour of the SM-like hypothesis); ‘Training’ indicates that the
priors were trained using only the “baseline” training data described in section 4, while " " indicates that
training was performed using all the data from the row above. ‘LEP+XENON100’, ’ ‘ATLAS-sparticle’
and ‘ATLAS-Higgs’ indicate that the update data was the LEP2 Higgs and 2011 XENON100 dark matter
search data [13], the ATLAS 1 fb−1 SUSY search data [14], and ATLAS 1 fb−1 Higgs search data [15]
respectively. The ‘Discr. inf.’ columns contain the discrimination information provided by the update
data (simply the base 2 logarithm of the PBF) in favour of the SM-like hypothesis (the KL divergence
KL(P(d2|d1,SM)||P(d2|d1,CMSSM)) being the expected value of this quantity under P(d2|d1,SM)). The
two pairs of PBF and Discr. inf. columns indicate the results obtained using ‘log’ and ‘natural’ priors. The
final column gives an interpretation of the strength of the evidence provided by the inference data, according
to the Jeffreys scale.

Finally, we also highlight that our study was performed using February 2012 data for the Higgs
mass constraints and that since this time these constraints have become much stronger, such that
updating them would significantly strengthen our results.
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5.1 Introductory remarks
The published work presented in this chapter corresponds directly to the material
of chapter 3, particularly section 3.1.3; that is, to the matter of naturalness priors
for the NMSSM. The paper itself is quite short and focuses on numerical results,
so for the theoretical background the reader is referred to chapter 3. The emphasis
of the work is on the naturalness priors themselves and their properties, so only
simple �ts of important observables are presented rather than a full analysis, which
is le� to future work.
Recent interest in the NMSSM has been motivated by the LHC observation

of a 126 GeV Higgs-like boson. It is generally believed that this should be able
to be accommodated in the NMSSM with less �ne tuning than in the Minimal
Supersymmetric Standard Model (MSSM). This has been studied using standard
tuning measures (Ellwanger et al., 2010; King et al., 2013; Gherghetta et al., 2013),
however it remains to be seen whether the better-motivated Bayesian tuning
measures derived in chapter 3 lead to similar conclusions.
The potential for the NMSSM to get the correct Higgs mass with less tuning

than theMSSMoriginates from an extra contribution to the tree level Higgsmasses
in the NMSSM case. In the MSSM the Higgs mass is bounded at tree-level by

m2h0 ≤ m2Z cos2 2β (5.1)

so that moderately large loop corrections are required to push it up to the required
value of 126 GeV. The dominant one-loop correction is given in eq. 2.38, and can
be made large by having either large stop masses, or large stop mixing (requiring a
large trilinear At). Either of these cases can potentially lead to an unacceptable
level of �ne-tuning. In the NMSSM this could be avoided due to the extra tree-level
contribution coming from the singlet coupling λ, which modi�es the tree-level
upper bound to

m2h0 ≤ m2Z cos2 2β + λ2v2

2
sin2 2β (5.2)

which is maximised for tan β ∼ 1, provided λ is O(1). A large enough λ at low
tan β may therefore remove the need for large stop masses or At-term.
Even if large loop corrections are needed to help push the Higgs mass up, it

is possible for them not to introduce a tuning, if a natural mechanism exists for
the cancellation of tuning contributions. In models based on supergravity with
grand uni�cation (such as both the CMSSM and CNMSSM), the cancellation of
at least some tuning contributions can be achieved even for large values of the
uni�ed masses M0 and M1/2 via the well-known focus point/hyperbolic branch
(FP/HB) mechanism (Chan et al., 1998; Feng et al., 2000b; Akula et al., 2012). In
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the focus point µ remains low and the Higgs mass contributions conspire to keep
the electroweak scale (represented by mZ) low, yet the Higgs mass contributions
can be large enough to achieve the observed Higgs mass, particularly for large
M0. This arrangement makes the high M0 FP/HB region very interesting. In
addition, FP/HB regions have the potential to match neutralino thermal relic
density constraints, match various �avour observables, and evade LHC searches
(due to allowing heavy superpartners) (Feng et al., 2012; Feng and Sanford, 2012).
In the CMSSM the M0,M1/2 ≲ 4 TeV areas of the FB/HB are disfavoured by
Xenon100 data (Buchmueller et al., 2012; Roszkowski et al., 2012; Fowlie et al.,
2012), however the FB/HB extends to much higher so� masses than this and so
these areas remain safe (for now; parts of this region will be detectable by future
dark matter searches (Balazs and Carter, 2010; Scott et al., 2012)). Many of these
studies are done in the context of the CMSSM rather than the CNMSSM, which is
much less well studied, however many similarities are expected.
In paper II we introduce the NMSSM Jacobian-based tuning measure ∆J dis-

cussed in section 3.1.3, explore its variation of slices of the CNMSSM (as de�ned
in section 2.3.6) parameter space, and compare its properties to other common
tuning measures. Our results indicate that the hyperbolic branch regions where µ
is kept small do seem to be preferred by ∆J . A full investigation of the properties
of ∆J is ongoing, however I include here several �gures to illustrate properties not
discussed in paper II.
First, in �gure 5.1, we explore the correspondence between the Barbieri-Guidice

(see paper II for de�nition) tuning measure ∆BG , the Jacobian tuning measure ∆J ,
and the simple ideas regarding tuning outlined above. We see that in general light
stops are preferred by both tuning measures, but that, according to ∆J (but not
∆BG), Higgs masses in the vicinity of 126 GeV can be achieved with low tuning
despite the heavy stops. In �gure 5.2 we explore possible explanations for this.
To this end, ∆J is broken into two pieces: ∆RG

J , characterising e�ects coming
from renormalisation group running; and ∆EW

J , characterising the e�ect of the
weak-scale parameter swap. For comparison, µe� = λs is also shown.
For the most part, the low tuning regions are characterised by low µe� as

we would expect in the FP/HB region. Particularly, we see that this preference
is correlated with the ∆EW

J component of the tuning measure. However, there
appears to be an additional focusing e�ect coming from ∆RG

J , occurring at low
Higgs mass and producing very low overall tuning in this region, despite large
µe� . This region is clearly not compatible with a 126 GeV Higgs, however it would
be worthwhile to investigate further what mechanism is at work here given how
strongly this region is preferred.
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Figure 5.1: Barbieri-Guidice (BG; top row) and Jacobian-
based (J; bottom row) �ne tuning as a function of Higgs
mass (see paper II for de�nitions). Points are coloured
according to the lightest stop mass m t̃1 and (weak scale)
trilinear At, using the scheme shown in (e). Both mea-
sures generally prefer points with low-mass stops and low
At , however the Jacobian-based tuning deviates from this

requirement in the highest Higgs mass regions, assigning less tuning to heavy
Higgses, particularly in the tan β = 10 case. A0,κ,λ = −1 TeV for all slices, and λ
varies over [0, 0.8].
5.2 Published material: Paper II
Begins a�er �gures.
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Figure 5.2: Contributions to the Jacobian-based tuning measure ∆J . The full
Jacobian (see paper II for de�nition) can be broken into two pieces: one mea-
suring the volume element distortion due to the renormalisation group run-
ning of λ, κ and m2S ; the other measuring the distortion arising from the swap
of (κ,m2S) for (m2Z , tan β). Each Jacobian can be transformed into a piece
of the full tuning measure ∆J by converting the derivatives to log-derivatives,
such that ∆RGJ ≡ ∣∂ ln(λ0, κ0,m2S0)/∂ ln(λ, κ,m2S)∣−1 (middle row) and ∆EWJ ≡∣∂ ln(κ,m2S)/∂ ln(m2Z , tan β)∣−1 (top row), so that ∆J = ∆RG

J ⋅ ∆EW
J . Also shown

is µ ≡ λ⟨S⟩, from which it can be seen that ∆EW
J mostly prefers low µ, while the

full ∆J also accounts for focusing e�ects seen in ∆RG
J . A0,κ,λ = −1 TeV for all slices,

and λ varies over [0, 0.8].
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The recent discovery of the 125.5 GeV Higgs boson at the LHC has fuelled interest in the Next-
to-Minimal Supersymmetric Standard Model (NMSSM) as it may require less fine-tuning than the
minimal model to accommodate such a heavy Higgs. To this end we present Bayesian naturalness
priors to quantify fine-tuning in the (N)MSSM. These priors arise automatically as Occam razors
in Bayesian model comparison and generalize the conventional Barbieri-Giudice measure. In this
paper we show that the naturalness priors capture features of both the Barbieri-Giudice fine-tuning
measure and a simple ratio measure that has been used in the literature. We also show that according
to the naturalness prior the constrained version of the NMSSM is less tuned than the CMSSM.

INTRODUCTION

Naturalness is a guiding principle in search of new
physics beyond the Standard Model (SM) [1]. A nat-
uralness problem arises in the SM since the Higgs mass
is sensitive to new physics above the electroweak scale
and only delicate fine-tuning amongst the fundamental
parameters can stabilize it. Supersymmetry cancels the
quadratic divergence in the Higgs mass improving natu-
ralness. In the Minimal Supersymmetric Standard Model
(MSSM), however, the large radiative corrections that lift
the Higgs mass reintroduce some fine-tuning [1].

The recent Higgs discovery makes the little hierarchy
problem more acute [2, 3]. This triggered interest in su-
persymmetric models that can naturally accommodate a
125.5 GeV Higgs, such as the Next-to-Minimal Super-
symmetric Standard Model (NMSSM). A new F -term in
the NMSSM, proportional to the Higgs-singlet coupling
λ, boosts the tree level Higgs mass. Natural NMSSM
scenarios have been presented where λ remains pertur-
bative up to the GUT scale [4], and in λ-SUSY scenarios
where λ is only required to remain perturbative up to a
scale just above TeV [5].

To show that the NMSSM is less fine-tuned than the
MSSM one has to quantify naturalness. Conventional
fine-tuning measures rely on the sensitivity of the weak
scale to changes in the fundamental parameters of the
model. In Bayesian model comparison such measure
arises automatically as a Jacobian of the variable trans-
formation from the Higgs vacuum expectation values
(VEVs) to the fundamental parameters [17–21, 23].

In this paper we present the NMSSM fine-tuning prior.
We examine how the prior varies with the parameter of
the constrained NMSSM and compare it to the Barbieri-
Giudice measure [10, 11] and the simple ratio measure
[6–9]. In a longer companion paper we will provide the
full details of the derivation of the presented Jacobian
and carry out a detailed numerical analysis for the un-
constrained NMSSM.

MEASURING FINE-TUNING

Naturalness of supersymmetric models is quantified in
various different ways in the literature today. One of the
simplest fine-tuning measures is [6–9]

∆EW = max{|Ci|/(m2
Z/2)}, (1)

which is based on the electroweak symmetry breaking
(EWSB) condition of the MSSM

m2
Z

2
=

(m2
Hd

+ δm2
Hd

)− (m2
Hu

+ δm2
Hu

) tan2 β

tan2 β − 1
− µ2,

(2)
where δm2

Hu
and δm2

Hd
are the one loop tadpole correc-

tions to the tree level minimisation conditions. The Ci
(i = m2

Hu
, m2

Hd
, δm2

Hu
, δm2

Hd
, µ2) in Eq. (1) are the ad-

ditive terms appearing in Eq. (2), specified by the index.
An alternative and widely used measure of natural-

ness, the Barbieri-Giudice measure [10, 11], accounts for
correlations between the terms in Eq. (2),

∆BG(pi) =

∣∣∣∣
∂ lnm2

Z

∂ ln p2
i

∣∣∣∣ , ∆BG = max{∆BG(pi)}. (3)

where pi are the input parameters of the model, for
some chosen parametrisation. Alternatively some au-
thors combine the ∆BG(pi) by summation in quadra-
ture: ∆̃2

BG =
∑
i ∆2

BG(pi). The Barbieri-Giudice mea-
sure quantifies the sensitivity of the observable m2

Z to the
parameters {pi}, e.g. ∆BG(pi) = 10, means a 1 percent
change in pi leads to 10 percent change in m2

Z .
Alternative measures have also been proposed [12–14]

but these are not considered here.
In Bayesian model comparison the Barbieri-Giudice

measure arises automatically as the special case of a more
general fine-tuning measure [17–21, 23]. In this frame-
work the odds ratio between competing models is defined
in terms of the ratio of marginal likelihoods, or evidences

E(D,M) =

∫

Ω

LD(pi;M)π(pi|M) dNpi. (4)
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Here LD is the likelihood function for the data D, quan-
tifying the goodness of fit of the modelM to the data at
each point in the model’s N dimensional parameter space
{pi}. The distribution π assigns a probability density to
each parameter space point as assessed prior to the data
D being learned, and Ω is the domain over which this pdf
is non-zero.

However, for computing likelihoods, and for scanning,
the parameter set {pi} on which π is most sensibly de-
fined is often less convenient to work with than a set of
derived parameters or “observables” Oi, some of which,
such as mZ , may be precisely measured. Switching to
these new variables distorts the prior density, as quanti-
fied by the Jacobian of the transformation,

dNpi =

∣∣∣∣
∂pi
∂Oj

∣∣∣∣ dNOj . (5)

In the new coordinates the sharply known observables
can be easily marginalised out, reducing the dimension of
the parameter space. Choosing logarithmic priors on {pi}
and neglecting constants which divide out of evidence
ratios gives

E(D,M) =
1

Vlog

∫

Ω′
LD′

1

∆J

∣∣∣∣
Ô=D̂

dN−rO′j
O′j

(6)

where Ô and D̂ are the r observables and data used in
the dimensional reduction, D′ and O′ are the data and
observables remaining, Vlog =

∫
Ω
dNpi/pi is the “loga-

rithmic” volume of the parameter space in the original
coordinates, Ω′ is the part of Ω orthogonal to the removed
dimensions and

∆J =

∣∣∣∣
∂ lnOj
∂ ln pi

∣∣∣∣ . (7)

If log priors are not used extra terms will also appear.
∆−1
J appears in the evidence through the transforma-

tion of the prior density to new coordinates, π(Oj) =
∆−1
J (pi/Oj)π(pi) = ∆−1

J (1/Oj). The last equality fol-
lows from initially choosing log priors (neglecting nor-
malisation constants)1. One can then scan the derived
parameters using log priors with ∆−1

J as an “effective”
prior weighting of the likelihood, and obtain a posterior
weighting of points compatible with the original prior.

Clearly all parameters do not have to be exchanged for
observables. When a single parameter p2 is exchanged
for Oi = m2

Z , ∆J is the Barbieri-Giudice sensitivity,
∆BG(pi), in Eq. (3). In general more than one low energy
observable is involved in the transformation, so the rele-
vant Jacobian contains more structure than the Barbieri-
Giudice measure.

1 For brevity the single parameter form is written here, but the
generalisation is straightforward.

For example most MSSM spectrum generators take
(mZ , tanβ,mt) as input instead of (µ,B, yt); the trans-
formation (µ,B, yt) → (mZ , tanβ,mt) thus emerges as
sensible choice which can quantify unnatural cancella-
tions required to keep mZ � MSUSY . The resulting
Jacobian

∆CMSSM
J =

∣∣∣∣
∂ ln(m2

Z , tanβ,m2
t )

∂ ln(µ2
0, B0, y2

0)

∣∣∣∣

=

(
M2
Z

2µ2

B

B0

tan2 β − 1

tan2 β + 1

∂ ln y2
t

∂ ln y2
0

)−1

,

(8)

automatically includes ∆BG(µ0, B0, y0) as a single col-
umn (where the subscript 0 denotes the GUT scale pa-
rameter value). The extra columns of ∆J account cor-
rectly for correlations between the mZ related tunings
and those coming from the Higgs VEVs and top mass.

The Yukawa RGE factor
∂ ln y2t
∂ ln y20

is constant over the

CMSSM parameter space at the 1-loop level and so we
neglect it. It is close to one anyway so the constant shift
this induces in the logarithms of tunings reported in our
numerical analysis is very small.

Importantly, we see that Eq. (6) captures much of the
intuition behind the fine-tuning problem. We see that to
be preferred in a Bayesian test, a model needs to have
overlapping regions of both high likelihood and low fine-
tuning (and that this region should not be too small rela-
tive to the prior volume Vlog, which is itself a naturalness-
style requirement).

The extension of ∆J to the NMSSM goes as fol-
lows. As indicated above, ∆J in practice depends on
the particular spectrum generator of choice as well as
the definition of the model. For concreteness we con-
sider a constrained version of the NMSSM (CNMSSM)2,
defined at the GUT scale to have a universal gaug-
ino mass, M1/2; a universal soft trilinear mass, A0 and
all MSSM-like soft scalar masses equal to m0, but the
new soft singlet mass, mS is left unconstrained at the
GUT scale. Thus the model has the parameter set
(M0,M1/2, A0, λ0, κ0,mS) which can be compared to the
CMSSM set of (M0,M1/2, A0, µ0, B0).

The effective prior weighting we present is chosen to
be suitable for Bayesian studies with numerical imple-
mentation in both the spectrum generator NMSPEC in
the NMSSMTools 4.1.2 package and the newly devel-
oped spectrum generator Next-to-Minimal SOFTSUSY

[30] distributed with SOFTSUSY 3.4.0. For a constrained
model as defined above the spectrum generators trade
(λ0, κ0,m

2
S) for (λ,mZ , tanβ) giving the user the input

parameters of (M0,M1/2,mZ , tanβ,A0, λ), i.e. just λ in

2 In the literature the definition of the CNMSSM varies. Some-
times CNMSSM refers to the model with full scalar universality
and when this constraint is relaxed like in our case it is called
the semi-constrained NMSSM.
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addition to the usual CMSSM inputs used in spectrum
generators.

This transformation gives rise to a Jacobian,

dλ0dκ0dm
2
S0

= JT0dλdM
2
z d tanβ (9)

which may be written as,

JT0 = JT λκmS
JRG

=

∣∣∣∣∣∣

∂κ
∂m2

Z

∂m2
S

∂m2
Z

∂κ
∂ tan β

∂m2
S

∂ tan β

∣∣∣∣∣∣
λ

∣∣∣∣
∂λ0

∂λ
∂κ0

∂λ
∂λ0

∂κ
∂κ0

∂κ

∣∣∣∣
∣∣∣∣
∂m2

S0

∂m2
S

∣∣∣∣
(10)

The Jacobian JT λκmS
can be rewritten in terms of simpler

coefficients embedded in the determinant of a three by
three matrix,

JT λκmS
=

1

b1

∣∣∣∣∣∣

b1 e1 a1

b2 e2 a2

b3 e3 a3

∣∣∣∣∣∣
. (11)

The coefficients appearing in this expression are given in
the appendix. JRG transforms the input parameters from
the GUT scale to the electroweak scale, and factorises as
shown due to the supersymmetric non-renormalization
theorem. The subscript λ indicates that this parameter
is kept constant in the derivatives.

As happens in going from Eq. 5 to Eq. 6 we can choose
to work with the logarithms of parameters (as is natural
if we choose logarithmic priors) so that we obtain a new
factor in the denominator, which is the inverse of the
Jacobian with logarithms inserted inside the derivatives.
This gives us

∆CNMSSM
J =

∣∣∣∣
∂ ln(m2

Z , tanβ, λ)

∂ ln(κ0,m2
S0
, λ0)

∣∣∣∣

=
κ0m

2
S0
λ0

m2
Z tanβλ

J−1
T0

(12)

It is well known that the top quark Yukawa cou-
pling can play a significant role in fine-tuning so we also
considered this by extending the transformation to in-
clude the top quark mass and (unified) Yukawa coupling,
(κ0,m

2
S0
, λ0, y0) → (m2

Z , tanβ, λ,mt). Nonetheless as
was already observed in the MSSM case [18, 19], we found
that all the derivatives, other than ∂mt

∂yt
, that involve mt

and yt cancel, so this only changes the Jacobian by a sin-
gle multiplicative factor of ∂mt

∂yt
. Finally when logarith-

mic priors are chosen this factor will disappear entirely
because ∂ lnmt

∂ ln yt
= 1, and the Yukawa RGE factor ∂ ln yt

∂ ln y0
is

the same order one constant (at 1-loop) as in the CMSSM
case so we neglect it.

Therefore we write our NMSSM Jacobian based tuning
measure as,

∆CNMSSM
J =

∣∣∣∣
∂ ln(m2

Z , tanβ, λ,m2
t )

∂ ln(κ0,m2
S0
, λ0, y2

0)

∣∣∣∣ , (13)

with the additional transformation between mt and y0 in-
cluded to emphasise that we have also considered these,
since the cancellation will prove to be rather important
(in both the MSSM and NMSSM) when we compare
against the Barbieri-Giudice tuning measure in the fo-
cus point (FP) region. There we will show that due to
this cancellation we do not see a large tuning penalty in
the much discussed FP region[36–39], which appears in
the Barbieri-Giudice measure when one includes yt as a
parameter.

The expression given here is formally the Jacobian
which should be used in the Bayesian analysis of any
NMSSM model when (λ0, κ0,m

2
S0
, y2

0) are traded for

(m2
Z , tanβ, λ,m2

t ). At the same time ∆CNMSSM
J can

be interpreted as a measure of the naturalness of the
NMSSM, which may be applied to the CNMSSM, the
general NMSSM and λ-SUSY scenarios.

Interestingly, as it was argued in the recent literature
[22], the above Jacobians can also be considered to mea-
sure fine-tuning from a purely frequentist perspective. In
this context the same Jacobians appear as part of the like-
lihood function after one includes observables in χ2 which
are related to the scale of electroweak symmetry break-
ing, such as the mass of the Z boson. Just as above, the
variable transformation from these observables to funda-
mental parameters induces the Jacobian, which can be
interpreted as a part of the likelihood that measures the
sensitivity of the predicted electroweak scale to the fun-
damental parameters of the model. Steep derivatives of
the relevant observables with respect to the chosen fun-
damental parameters signal a strongly peaked likelihood
function, indicating that χ2 drops off rapidly from the
best fit value as those parameters are changed, which is
of course indicative of high fine-tuning. The Bayesian
perspective offers additional insight into the reasons we
might dislike such behaviour in our likelihood functions,
since in the frequentist case the actual best-fit χ2 does
not suffer a penalty for any tuning observed in its vicin-
ity, while in the Bayesian case there is a clear and direct
penalty originating from the small prior–likelihood over-
lap that such behaviour implies.

NUMERICAL ANALYSIS

For our numerical analysis we use SOFTSUSY 3.3.5 for
the MSSM [28], and NMSPEC [29] in NMSSMTools 4.1.2

for the NMSSM. Next-to-Minimal SOFTSUSY [30] was
still in development during this analysis but was used to
cross check the spectrum for certain points. MultiNest

3.3 was used for scanning [15, 16]. Both spectrum gener-
ators used here provide ∆BG with renormalization group
flow improvement. For ∆BG in the CMSSM we include
individual sensitivities, ∆BG(pi), for the set of parame-
ters M0,M1/2, A0, µ,B, yt. For the CNMSSM we use the
set M0,M1/2, A0, λ, κ, yt.
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First we examine how the tuning measures vary with
M0 and M1/2, without requiring a 125 GeV Higgs. We
fix tanβ = 10, where the extra NMSSM F-term contri-
bution is small, but there is interesting focus point (FP)
behavior [36–39]. Previous studies [24] show that large
and negative A0 is favoured, so to simplify the analysis
here and throughout we choose3 A0 = −2.5 TeV.

The results for the CMSSM are shown in FIG. 1. The
value of ∆EW is governed by the m2

Hu
and µ2 contribu-

tions since m2
Z/2 ≈ −m2

Hu
−µ2, where m2

Hu
includes the

radiative corrections. In general ∆EW is dominated by
µ2, while the crossover to the m2

Hu
dominance occurs in

the vicinity of the EWSB boundary.
For this measure there is low fine-tuning even at large

M0. This may seem counterintuitive, but for tanβ = 10
at large M0 we are close to a FP region. In this region
the dependence on M0 which appears from RG evolu-
tion of mHu vanishes. For example in the CMSSM semi-
analytical solution to the renormalisation group equa-
tions (RGEs),

m2
Hu = c1M

2
0 + c2M

2
1/2 + c3A

2
0 + c4M1/2A0, (14)

the coefficients ci are functions of Yukawa and gauge cou-
plings, and tanβ and c1 can be close to zero. Such regions
then appear to have low fine-tuning even with large M0

since the small size of c1 means there is no need to cancel
the large M0 in Eq. (2) to obtain the correct m2

Z .
In ∆BG, however, the sensitivity to the top quark

Yukawa coupling is included. Since the RG coefficients
depend on this Yukawa coupling, the large stop correc-
tions from the RGEs that feed into m2

Hu
lead to a large

∆BG(yt) even in the focus point region. ∆EW is not sen-
sitive to this effect since it does not take into account
such RG effects.

Interestingly ∆CMSSM
J exhibits similar behavior to

∆EW despite containing derivatives from ∆BG. This is
because ∆CMSSM

J does not contain the derivative of mZ

with respect yt. When one computes the Jacobian for
Eq. (8) the derivative of yt with respect to mZ cancels
out, leaving only the derivatives ∂µ

∂Mz

∂Bµ
∂t

∂yt
∂mt

in the Ja-
cobian. As a result ∆J in the MSSM can remain small
in the focus point region.

Fine tuning measures for the CNMSSM are shown in
FIG. 2. Here ∆CNMSSM

J is defined by Eq. (13) and ∆BG is
defined by Eq. (3), while ∆EW is defined the same as for
the MSSM. The parameter µ dominates electroweak tun-
ing, ∆EW , throughout the M0 vs. M1/2 plane. Since µ
values and related derivatives are similar in the CMSSM
and CNMSSM the fine-tuning measures are qualitatively
similar for the two models.

3 We checked that with alternative A0 choices the behaviour is
similar. The main difference is with the Higgs masses where a
large and negative A0 was chosen to increase the lightest Higgs
mass.
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FIG. 1. Fine tuning measures ∆BG (top), ∆J (middle), ∆EW

(bottom) in the M0 vs. M1/2 plane for A0 = −2.5 TeV,
tanβ = 10 and sgn(µ)=1 in the CMSSM. The color code
quantifies the value of ∆EW and ∆J . Since ∆BG is domi-
nated by the µ derivative it is low in the small M0 and M1/2

region. Although ∆BG, by definition, is formally part of ∆J

the numerical behaviour of the latter is similar to that of
∆EW . All massive parameters are in GeV unit. No experi-
mental constraints applied except that the lightest supersym-
metric particle is electrically neutral and the EWSB condition
is satisfied.

As in the CMSSM the Jacobian derived tuning ∆J

increases with M1/2, as anticipated since for large M1/2

large cancellation is required to keep mZ light. Again
though at large M0 ∆J can still be low seeming to favour
this FP region, which is a result of the same cancellation
as happened in the MSSM case occurring in our new
NMSSM Jacobian.

Interestingly the region where the tuning can be very
low extends further in the NMSSM. Note this is not a re-
sult of raising the Higgs mass with λ since we impose no
Higgs constraint yet and have large tanβ. However λ is
varied across the plane and affects the EWSB condition
and the renormalization group evolution. However since
the number of parameters are different in the CNMSSM
and CMSSM, to determine whether the CNMSSM is pre-
ferred over the CMSSM, we have to compare Bayesian
evidences.

Since the focus point region allows small ∆EW and ∆J

in the large M0 region it is possible to have a relatively
heavy lightest Higgs and small ∆J . This is illustrated
in FIG. 3. Note also that in the NMSSM case there is
no tuning preference for large λ since the new F-term
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FIG. 2. Same as FIG. 1 except for the constrained NMSSM.
A0,κ,λ = −2.5 TeV and tanβ = 10 are assumed. λ is sampled
from the range [0,0.8].
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FIG. 3. Fine tuning with respect to mh0 for the CMSSM
(upper) and CNMSSM (lower). A0 = −2.5 TeV and tanβ =
10 for both models.

contribution goes like λ2v2 sin2 2β and is therefore sup-
pressed at large tanβ. Nonetheless in the focus region
in both the CMSSM and CNMSSM one can have a 125
GeV without an enormous penalty from effective prior
weighting ∆J .

However the lowest tuning is when M1/2 is smallest

and this region is strongly constrained by squark and
gluino searches. The important message, nonetheless, is
that the Higgs mass measurement has a low impact on
naturalness in the focus point region. Therefore the effect
of the Higgs mass measurement may not be as severe on
our degree of belief as we would expect from ∆BG, even in
the MSSM. A caveat to this optimistic statement is that
from looking at ∆J alone one cannot know if the focus
point scenarios will be suppressed by other factors in the
full Bayesian analysis. This can only be determined by
carrying out that analysis.

Away from this special FP region the Higgs mass mea-
surement has a large impact and the extra F -term of the
NMSSM can play a vital role. In Fig. 4 we compare the
Higgs mass against fine-tuning for tanβ = 3 in both the
CMSSM and the CNMSSM. Here the extra NMSSM F-
term can give a larger contribution to the SM-like Higgs
mass and it is precisely this effect which leads to expec-
tations of increased naturalness in the NMSSM.

In the MSSM the tree level upper bound reduces
rapidly at small tanβ. Therefore we do not find any
CMSSM solutions with a lightest Higgs mass above 120
GeV in FIG. 4. The maximum achievable mass of the
lightest Higgs has ∆J ≈ 105. By comparison the same
mass for the lightest Higgs in the CNMSSM can be
achieved with ∆J between 102 − 103. So according to
the naturalness prior measure ∆J the tuning is reduced
compared to the CMSSM for heavier Higgs masses.

Nonetheless for mh0 > mZ on contours of fixed λ,
∆J increases with the lightest Higgs mass and the mini-
mum ∆J starts increasing significantly when the lightest
Higgs mass is pushed above 115 GeV. As expected the
largest Higgs masses are found for sizable λ. This demon-
strates that for the new Jacobian naturalness measure for
the NMSSM the additional F-term contribution in the
NMSSM really does decreasing fine-tuning of the model
as one increases λ, strongly supporting previous that this
mechanism can reduce fine-tuning in the low tanβ region
of the NMSSM.

However for the tanβ = 3 slice it is still hard to
achieve a 125 GeV lightest Higgs mass in such strongly
constrained scenarios. λ does not reach the perturba-
tive limit, with λ ≤ 0.6. Unlike the MSSM, A terms
play an important role in the EWSB condition. Since
B = Aλ + κs, Aλ restricts the parameter space by the
tachyonic CP-odd mass constraint. Further, Aκ also af-
fects the EWSB condition through the validity of the
global minimum4. While a 125 GeV Higgs in constrained
versions is difficult to achieve, it is easier in the uncon-
strained NMSSM[4, 41] . Therefore a detailed analysis of
the multidimensional unconstrained NMSSM is required,

4 For example in the large s limit this requires A2
κ > 8m2

S . This
must be satisfied simultaneously with, Aκ = A0 and the minimi-
sation condition involving m2

S
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FIG. 4. Fine tuning with respect to mh0 for the CMSSM
(upper) and CNMSSM (lower). A0 = −2.5 TeV and tanβ = 3
for both models.

and this will be presented in our companion paper [35]
where we consider both the perturbative NMSSM and
λ-SUSY scenarios.

FIG. 5 shows fits to various observables in the frame-
work of the slightly relaxed CNMSSM for fixed values of
A0 = −2.5 TeV and tanβ = 10. For these scans Aλ and
Aκ are allowed to vary independently from A0. We de-
couple Aλ and Aκ from A0 to easily obtain a neutralino
relic density and a lightest Higgs mass which simulta-
neously satisfy the experimental constraints. TABLE I
shows the experimental values of the observables that
were used in the fit shown in FIG. 5. The neutralino relic
density is required to match the dark matter relic density
as measured by Planck [42]. For the lightest Higgs mass
we use the PDG combined value [43]. PDG combined
limits are used to constain the sparticle masses, except
for the squark and gluino masses; in this case we take
the strongest currently listed PDG limits, even though
these do not directly apply to the model under consid-
eration, in order to be conservative. The constraints on
rare B decays are taken from LHCb[44] and HFAG[45].
All constraints are implemented as Gaussian likelihoods
except where a limit is indicated, in which case a hard
cut is applied.

The top frame of FIG. 5 is the fit to the relic density
alone while the bottom is the two observable combined
fit. The statistical significance with which each model
point can be rejected is given in units of σs. These signif-
icances correspond to local p-values, computed assuming
the observables’ best fit values are normally distributed
with the specified standard deviation. To be conserva-

TABLE I. Experimental values of the observables that were
used in the fit shown in FIG. 5.

Observable Experimental value

ΩDMh
2 0.1187± 0.0017 [42]

mh 125.9± 0.4 GeV [43]

BR
(
Bs → µ+µ−) (2.9± 1.1)× 10−9 [44]

BR (b→ sγ) (343± 21± 7)× 10−6 [45]

BR (B → τν) (114± 22)× 10−6 [45]

mχ̃0
1

> 46 GeV [43]

m
χ̃±1

> 94 GeV if m
χ̃±1
−mχ̃0

1
> 3 GeV[43]

mq̃ > 1.43 TeV [43]

mg̃ > 1.36 TeV [43]
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FIG. 5. Fits to various observables in the framework of the
slightly relaxed CNMSSM for fixed values of A0 = −2.5 TeV
and tanβ = 10. Aλ and Aκ are allowed to vary independently
from A0. TABLE I shows the experimental values of the ob-
servables that were used in this fit. The top frame is the fit
to the relic density alone while the bottom is the two observ-
able combined fit. The statistical significance with which each
model point can be rejected is given in units of σs. As the
figure shows on the A0 = −2.5 TeV and tanβ = 10 hyper-
surface a good fit to both observables can be obtained for the
low Jacobian tuning of ∆J ∼ 1.

tive, no additional theoretical uncertainty is included in
the fit. As the figure shows on the A0 = −2.5 TeV and
tanβ = 10 hypersurface a good fit to both observables
can be obtained for the low Jacobian tuning of ∆J ∼ 1.
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CONCLUSIONS

In this work we presented Bayesian naturalness priors
to quantify fine-tuning in the (N)MSSM. These priors
emerge automatically during model comparison within
the Bayesian evidence.

We compared the Bayesian measure of fine-tuning
(∆J) to the Barbieri-Giudice (∆BG) and ratio (∆EW )
measures. Even though the Bayesian prior is closely
related to the Barbieri-Giudice measure, the numerical
value of the Bayesian measure reproduces important fea-
tures of ∆EW . Both ∆EW and ∆J are low in FP scenar-
ios.

Our numerical analysis is limited to fixed (A0, tanβ)
slices of the constrained parameter space. For these slices
we show that, according to the naturalness prior, the
constrained version of the NMSSM is less tuned than
the CMSSM. This statement, however, has to be con-
firmed by comparing Bayesian evidences of the models.
The complete parameter space scan and the full Bayesian
analysis for the NMSSM is deferred to a later work [35].
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Appendix: Jacobian entries

The entries appearing in the Jacobian JTκmS in Eq. 10
are given in this appendix.

a1 = −κAκ − 4κ2s− λAλv
2s2β

2s2
(15)

a2 = λκv2 ∂s2β

∂tβ
+
λAλv

2

2s

∂s2β

∂tβ
(16)

a3 = −λ
2v2

M2
Z

+ λκs2β
v2

M2
Z

+
λAλv

2s2β

2sM2
Z

(17)

b1 = −λ
s

b2 =
1

2λs2

2tβ
(t2β − 1)2

(m2
Hu −m2

Hd
) (18)

b3 = − 1

4λs2
(19)

e1 = −2λs sin 2β − (Aλ + 2κs)

s2
(20)

e2 = −
1− t2β

tβ(1 + t2β)

Aλ + κs

s
(21)

e3 = −λ sin 2β

ḡ2s2
(22)
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Conclusions and outlook 6
What certainty can there be in a Philosophy which consists in as
many Hypotheses as there are Phenomena to be explained. To
explain all nature is too di�cult a task for any one man or even for
any one age. ’Tis much better to do a little with certainty, and leave
the rest for others that come a�er you, than to explain all things by
conjecture without making sure of any thing.
—Sir Isaac Newton, as quoted in Richard S. Westfall, The Life of

Isaac Newton (1994)

6.1 Summary
The work of this thesis has been performed in the context of supersymmetry,
considered as a plausible candidate for physics beyond the Standard Model. The
analysis framework is that of Bayesian statistics, interpreted primarily from the
perspective of subjectivist, epistemic, probability theory. In this framework all
matters of data interpretation and inference are taken as conditional upon the
prior information available to a given subject, or conditional on assumptions about
such knowledge. This allows a variety of theoretical arguments to be consistently
incorporated into statistical analyses.
In chapter 2 the theoretical background of the Standard Model and common

supersymmetric models was reviewed, and the main arguments for the incomplete-
ness of the Standard Model, the necessity of a solution to the hierarchy problem,
and the provision of such a solution via supersymmetry were discussed. In chapter
3 these arguments were placed into the context of Bayesian probability theory,
where it was seen that they arise as necessary considerations. In particular, the
implications of naturalness arguments for the prior probability distributions over
the parameters of supersymmetric models were discussed, and naturalness priors
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for the MSSM and NMSSM were computed, the latter of which have not been
studied prior to our work, which is presented in paper II.

These priors incorporate an automatic penalisation for �ne-tuning similar to
more ad-hoc measures, such as the measure of Ellis et al. (1986); Barbieri and
Giudice (1988), and we suggest that the Bayesian-based tuning measures more
fully quantify the relative �ne-tuning of parameter points within a class of models,
since the Jacobian structure of the Bayesian measures allows them to properly
account for correlations between the tunings of di�erent parameters. In paper
II we compare the ‘classical’ and Bayesian tuning measures (along with another
ad-hoc tuning measure based directly on cancellations in the MSSM and NMSSM
electroweak symmetry breaking conditions) in the context of constrained MSSM
and NMSSMmodels, and �nd that accounting for these correlations reveals that
certain parameter regions which are considered �ne-tuned under the classical
measure in fact have very low tuning under the Bayesian measure, particularly
the focus point/hyperbolic branch (FP/HB) regions at highM0. The theoretical
interest of this region has been known for many years (Chan et al., 1998; Feng et al.,
2000a,b; Akula et al., 2012) however our results add weight to this interest, and
alleviate concerns that including certain Standard Model parameters, primarily
the top Yukawa coupling, amongst the tuning parameters results in the FP/HB
regions becoming tuned, as the classical tuning measure tend to claim, depending
on how they are computed. Our results suggest that this is not the case, i.e that
the Yukawa-related tunings do not destroy the naturalness of the CMSSM and
CNMSSM FP/HB regions.

In chapter 4 we present paper I, which is a large numerical study of the CMSSM,
again from a Bayesian perspective. However in this instance the goal was to isolate
the impact of recent experiments, such as LHC null SUSY searches, from the
kinds of prior considerations that were the topic of chapter 3, namely the hierarchy
problem and issues of prior choice. This was achieved using the technique of partial
Bayes factors to merge the impact of these prior-related issues into the prior odds,
and to isolate the discrimination information provided by the chosen experiments.
This paper represents the �rst use of the technique in particle physics. The results
were found to disfavour the CMSSM (in favour of the Standard Model) by a
Bayes factor of around 200, that is, by about 7 bits of discrimination information,
which can be compared to the discrimination power provided by a 3σ result (see
�gure D.1). This result was found to be robust between change of prior between
naturalness and log priors, however it was found to be strongly dependent on
the inclusion of the muon anomalous magnetic moment as a training constraint.
Removal of this observable from the training set reduces the discrimination power
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of the subsequent experiments, reducing the Bayes factor penalty to 8, or the
discrimination information to 3 bits (∼ 2σ). This e�ect occur because the (g − 2)µ
observable “trains” the informative CMSSM priors to prefer regions accessible
to the LHC, which then fails to discover the CMSSM in those parameter regions,
leading to the Bayes factor penalty.
Motivating the approach taken in this thesis are several extensive appendices.

First, a review of the philosophy of probability and an examination of subjectivist
probability theory is contained in appendix B. Following this are reviews of fre-
quentist and Bayesian statistical methods in appendices C and D, with the latter
containing a number of calculations intended to clarify notions of epistemic prob-
abilities as they relate to models and alleviate common concerns related to these
questions. As a side e�ect of these motivational computations, a novel approach to
assessing model goodness-of-�t, based on predicted goodness of �t performance
in characteristic experiments, is proposed, and a demonstration of the technique
in a toy scenario is given in appendix D.A.

6.2 Outlook
In particle physics we currently �nd ourselves in a situation rather worse than
Newton describes in the epigraph of this chapter. Though the Standard Models
of particle physics and cosmology have of course been enormously successful in
explaining a huge array of phenomena in a uni�ed fashion, when we attempt the
task of understanding what physics may lie beyond these models we face an array
of possibilities which is, numerically, far in excess of the number of anomalous
phenomena we have yet to fully explain. Certainly there is little certainty to be
found in our attempts to understand what Nature has yet in store for us.
On the other hand, there may exist strong theoretical reasons to think that

certain models are more likely to describe Nature than others. Theorists are guided
by strong intuitions about such matters, o�en based on appealing principles such
as naturalness, and it is worthwhile to understand the logical structures which
underlie these intuitions because they appear to be strongly related to the principles
of inductive inference described by Bayesian probability theory. More speci�cally,
there seems to be a strong sense in which some models are more apriori “sensible”
than others, and a systematicway of characterisingmodels in terms of their sensible-
ness, or plausibility, to then be updated by confronting those models with the
available experimental data, may help in the e�cient exploration of theory-space.
The techniques described in this thesis do not o�er such a system, but perhaps
they help pave the way towards one.
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In terms of further work towards such a system, I have several remarks. Firstly,
it would already be interesting to perform a large scale systematic review of a
wide selection of popular models, compute Bayes factors (along with of course
frequentist goodness-of-�t measures) for all of them, including partial Bayes
factors to quantify the discrimination power provided by di�erent experiments,
taking into account various reasonable priors in a consistent manner to facilitate
a comparison of all these models on a consistent footing. This is of course a
monstrous computational challenge, however with improvements in scanning
algorithms and fast likelihood calculators (particularly for LHC likelihoods which
currently require prohibitive amounts of simulation to estimate accurately) such a
task may not be impossible. The global �tting community has already produced
several so�ware packages intended to streamline this kind of task (for example
MasterCode (Buchmueller et al., 2012, 2013), SuperBayeS (Strege et al., 2014),
Fittino (Bechtle et al., 2012)) however so far these have been limited in scope to
only a small number of SUSYmodels, making statistical inference tasks di�cult to
“industrialise” to the degree needed for larger studies. A “next generation” �tting
framework which facilitates the consistent application of experimental likelihoods
across a wide variety of models is therefore required. The GAMBIT collaboration,
of which I am a member, has recently been formed with the goal of developing
such a framework. We hope to have the �rst version of the (C++) code along with
�rst physics studies released in early 2015.

Secondly, in section 3.2 I brie�y explored the possibility of obtaining sim-
pli�ed model selection criteria. Performing full Bayesian analyses is very time
consuming and CPU intensive, and any possibility of simplifying the process
while maintaing some of the information-theoretic advantages would certainly
be worth exploring. The explorations of 3.2 were very preliminary, and it may
be fruitful to more thoroughly examine this area; in particular, the behaviour
of any “naturalness-improved” selection measures would need to be studied in
detail, and their asymptotic relationship to a full Bayesian or frequentist proce-
dure understood. Given the low degree to which most new physics models are
constrained, it seems also that any model selection measures should focus not just
on the relative probabilities of model families, but also on the relative probabilities
of each posterior mode within a model family.

Finally, the task of exploring theory-space is as much a question of philosophy
as it is of physics and mathematics. Of course in the end we want to collect data
that is powerful enough to discriminate between all theories of interest, however in
the meantime we have no choice but to assess the plausibilities of models and their
predictions on more subjective grounds. Arguments regarding how best to do this
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and whether it can be at all meaningful have divided opinions in the philosophy
of probability and of science for at least the last century, however the repeated
successes of the Standard Model, in its predictions of the existence of the W and
Z bosons, gluons, charm and top quarks, and the Higgs boson, all before they
were observed experimentally, stand as a clear testament to the potential power of
theoretical reasoning and the demands of mathematical and logical consistency. It
seems, therefore, that we would do well to understand how to codify this power
and incorporate it into our formal statistical analyses. This thesis has been my
attempt to contribute what little insight I may be able to o�er towards such a goal.
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Notation and basic identities A

Logic
∧ Logical conjunction (“and”)
⋀b

i=a Repeated logical conjunction over the indexed propositions∨ Logical disjunction (“or”)
⋁b

i=a Repeated logical disjunction over the indexed propositions¬ Logical negation (“not”)
→ Material implication (“if ”, e.g. x → y ≡“y if x”, or “x implies y”)
↔ Material equivalence (“if and only if ”, e.g. x ↔ y ≡“y i� x”)
Logical operations have many of the same algebraic properties as set operations,
as the latter are de�ned in terms of the former. Here I have de�ned 1 ≡ “true” and
0 ≡ “false”.

Commutativity
A∨ B↔ B ∨ A

A∧ B↔ B ∧ A

Associativity
(A∨ B) ∨ C ↔ A∨ (B ∨ C)
(A∧ B) ∧ C ↔ A∧ (B ∧ C)

Distributivity
A∨ (B ∧ C)↔ (A∨ B) ∧ (A∨ C)
A∧ (B ∨ C)↔ (A∧ B) ∨ (A∧ C)

DeMorgan’s laws
¬(A∨ B)↔ (¬A∧ ¬B)
¬(A∧ B)↔ (¬A∨ ¬B)

Idempotence
A∨ A↔ A

A∧ A↔ A
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Absorption
A∨ (A∧ B)↔ A

A∧ (A∨ B)↔ A

Identity
A∨ 0↔ A

A∧ 1↔ A

Annihilator
A∨ 1↔ 1
A∧ 0↔ 0

Identities
Theorem 1.

A∧ { n⋁
i=0

Bi}↔ n⋁
i=0

{A∧ Bi}

Proof.

A∧ { n⋁
i=0

Bi}↔ A∧ {B0 ∨ { n⋁
i=1

Bi}}
↔ {A∧ B0} ∨ {A∧ { n⋁

i=1
Bi}} (By distributivity)

↔ {A∧ B0} ∨ . . . ∨ {A∧ Bn} (By induction)

↔ n⋁
i=0

{A∧ Bi}
Theorem 2.

A∨ { n⋀
i=0

Bi}↔ n⋀
i=0

{A∨ Bi}
Proof.

A∨ { n⋀
i=0

Bi}↔ A∨ {B0 ∧ { n⋀
i=1

Bi}}
↔ {A∨ B0} ∧ {A∨ { n⋀

i=1
Bi}} (By distributivity)

↔ {A∨ B0} ∧ . . . ∧ {A∨ Bn} (By induction)

↔ n⋀
i=0

{A∨ Bi}
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Theorem 3.

n⋀
j=0

{ m⋁
i=0

Ai j}↔ m⋁
i0=0
. . .

m⋁
in=0

{ n⋀
j=0

Ai j j}
Proof. Let us de�ne the following for convenience:

x j ≡ m⋁
i=0

Ai , j

ya ≡ n⋀
j=a

x j = xa ∧ { n⋀
j=a+1

x j} = xa ∧ ya+1

then
n⋀
j=0

{ m⋁
i=0

Ai j}↔ y0

↔ x0 ∧ y1

↔ { m⋁
i0=0

Ai00} ∧ y1

↔ m⋁
i0=0

{Ai0 ∧ y1} (By theorem 1)

↔ m⋁
i0=0

{Ai0 ∧ x1 ∧ y2}
↔ m⋁

i0=0
{Ai0 ∧ { m⋁

i1=0
Ai1} ∧ y2}

↔ m⋁
i0=0

m⋁
i1=0

{Ai00 ∧ Ai11 ∧ y2} (By theorem 1)

↔ m⋁
i0=0

m⋁
i1=0
. . .

m⋁
in=0

{Ai00 ∧ Ai11 . . . ∧ Ainn} (By induction)

↔ m⋁
i0=0
. . .

m⋁
in=0

{ n⋀
j=0

Ai j j}
Probability
The notation here is de�ned with a subjectivist/logical philosophy of probability
in mind.

Pr(A ∣ I) “degree of belief ” in, or “credence” of, proposition A given proposition
I.

πθ(A(θ) ∣ I) Probability density function over the family of propositions A in-
dexed by the parameter θ, given proposition I, i.e. the subscript θ spec-
i�es the measure with respect to which the density is de�ned. The
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symbol π is also used to label speci�c density functions, o�en with other
subscripts, in which case its meaning will be de�ned in the text.

Negation Pr(¬A) = 1 − Pr(A)
Sum rule Pr(A∧ B) = Pr(A) + Pr(B) − Pr(A∨ B)
Conditional probability Pr(A ∣ B) = Pr(A∧ B)

Pr(B)
Product rule Pr(A∨ B) = Pr(A ∣ B)Pr(B)
Law of total probability Pr(A) =∑

i
Pr(A∧ Bi) i� ∑

i
Pr(Bi) = 1

Common functions
N (x; µ,σ2) Probability density function of the normal distribution with mean µ

and variance σ 2. If describing the normal distribution itself the x argument
will be omitted, and if a standard normal distribution is intended the µ and
σ2 arguments may be omitted.

Φ(x) Cumulative distribution function of the standard normal distribution, i.e.
Φ(x) = (1/2) [1 + erf (x/√2)]

Identities
Theorem 4.

Pr(A ∣ B) = Pr(A∧ B ∣ B)

Proof.

Pr(A∧ B ∣ B) = Pr(A∧ B ∧ B)
Pr(B) (By defn. of cond. prob.)

= Pr(A∧ B)
Pr(B) (By idempotence)

= Pr(A ∣ B) (By defn. of cond. prob.)

Theorem 5.

Pr( n⋁
i=0

Ai) = 1 − Pr( n⋀
i=0
¬Ai)
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Proof.

Pr( n⋁
i=0

Ai) = 1 − Pr(¬{ n⋁
i=0

Ai}) (By negation rule)

= 1 − Pr( n⋀
i=0
¬Ai) (By De Morgan’s laws)





Philosophy of probability B

Predicted facts . . . can only be probable. However solidly founded a prediction may appear
to be, we are never absolutely certain that experiment will not prove it false; but the
probability is o�en so great that practically it may be accepted . . . See what a part the belief
in simplicity plays in our generalisations. We have veri�ed a simple law in a large number
of particular cases, and we refuse to admit that this so-o�en-repeated coincidence is a
mere e�ect of chance. . . .Thus, in a multitude of circumstances the physicist is o�en in the
same position as the gambler who reckons up his chances. Every time that he reasons by
induction, he more or less consciously requires the calculus of probabilities. We cannot do
without that obscure instinct [which we call common-sense; the unconscious assessment
of probability]. Without it, science would be impossible, and without it we could neither
discover nor apply a law. Have we any right, for instance, to enunciate Newton’s law? No
doubt numerous observations are in agreement with it, but is not that a simple fact of
chance? and how do we know, besides, that this law which has been true for so many
generations will not be untrue in the next? To this objection the only answer you can give
is: It is very improbable. But grant the law. By means of it I can calculate the position of
Jupiter in a year from now. Yet have I any right to say this? Who can tell if a gigantic mass
of enormous velocity is not going to pass near the solar system and produce unforeseen
perturbations? Here again the only answer is: It is very improbable. From this point of
view all the sciences would only be unconscious applications of the calculus of
probabilities. And if this calculus be condemned, then the whole of the sciences must also
be condemned.
. . .
Probability as opposed to certainty is what one does not know, and how can we calculate
the unknown? Yet many eminent scientists have devoted themselves to this calculus, and
it cannot be denied that science has drawn therefrom no small advantage. How can we
explain this apparent contradiction? Has probability been de�ned? Can it even be
de�ned? And if it cannot, how can we venture to reason upon it?

— Henri Poincaré, Science and Hypothesis (1905)
Chapter 11: The Calculus of Probabilities
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Notions of probability are so thoroughly integrated intomost natural languages
that when discussing anymatter of evenmoderate complexity, it is almost inevitable
that they should appear. A dedicated e�ort tends to be required to avoid them.
As a result, the layperson tends to go through life feeling that probability is a per-
fectly intuitive subject, although they may �nd formal statistics to be intimidating.
This comfort o�en extends to scientists, who unless they take advanced statistics
courses, are generally unlikely to encounter the serious philosophical questions
associated with probability. However, the problems of probability are among the
most foundational in both philosophy and the sciences. Almost every �eld of
science employs to some degree or other a variety of statistical tests, parameter
estimation techniques, regression techniques, and so on in order to support its
theories empirically, and more subtlely, scientists themselves rely intuitively on
probabilistic logic in virtually every argument that they make. And of course prob-
ability is central to a number of speci�c theoretical frameworks such as quantum
mechanics, statistical mechanics, and genetics. In philosophy, as I alluded to in
chapter 1, it of central importance to epistemology, to decision theory, and to game
theory, and from there extends its in�uence into ethics and political philosophy. It
appears in the philosophy of mind; in the philosophy of causation and the laws
of nature; the philosophy of science; the philosophy of logic and language; even
the philosophy of religion. This immense reach surely justi�es the claim that the
problems of probability are among the most important of foundational problems.
Most scientists who have learned some statistics will likely be familiar with at

least two de�nitions of probability, which are o�en called simply the “frequentist”
and “Bayesian” de�nitions. These are o�en stated as follows:

Frequentist de�nition of probability
The probability of an event is the long-run frequency with which it occurs
in a series of su�ciently similar trials

Bayesian de�nition of probability
The probability of an event is a quanti�cation of the degree to which a given
subject believes that the event will occur, given some prior information.

Though Iwill leave the formal details aside for now, it is nevertheless clear that these
two de�nitions are in severe disagreement about what probability is. This, however,
is only the beginning of the story. There are in fact a wide variety of so-called
“interpretations” of probability, and unlike the relatively benign pragmatic impact
of the various interpretations of quantum mechanics, these di�erent perspectives
can have a very great impact on how real-world statistical analyses are performed.
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Traditionally, philosophers have recognised �ve main categories of interpre-
tation; classical, logical, subjectivist, frequentist, and propensity. To this list I add
the algorithmic account, though it can perhaps be absorbed into the traditional
categories.
These categories are by no means completely distinct; indeed most interpreta-

tions tend to acknowledge the main attractions of the others, and o�en attempt to
assimilate or re-explain them in terms of their own fundamental concepts. Savage
(2012 [1954], p. 2) wrote the following on the subject over half a century ago, but it
remains as true today as it was then:

It is unanimously agreed that statistics depends somehow on prob-
ability. But, as to what probability is and how it is connected with
statistics, there has seldom been such complete disagreement and
breakdown of communication since the Tower of Babel. There must
be dozens of di�erent interpretations of probability defended by living
authorities, and some authorities hold that several di�erent interpre-
tations may be useful, that is, that the concept of probability may have
di�erent meaningful senses in di�erent contexts. Doubtless, much of
the disagreement is merely terminological and would disappear under
su�ciently sharp analysis. Some believe that it would all disappear, or
even that they have themselves already made the necessary analysis.

The scope of the problem is thus rather larger than is typically known or acknowl-
edged among particle physicists, and even statisticians more broadly. A very great
deal can and has been said about each of the many interpretations that exist, far
more than I can a�ord to cover here, and indeed my own knowledge on the subject
is not a great deal more comprehensive than most physicists, so I cannot do them
all justice. Nevertheless, due to the central position whichmatters of probability oc-
cupy in this thesis, I will attempt here to give a brief account of the main categories,
so that we may see at least the range of opinion that exists on the subject.
Before this, however, it is bene�cial to revise the canonical mathematical formu-

lation of the theory of probability, so that we may ‘hang’ the various interpretations
onto this framework. In many cases, though, the change in perspective caused by
shi�ing interpretation is severe enough that the canonical formulation becomes
cumbersome, so in these cases I will brie�y o�er alternative perspectives. For-
tunately, the various methods of deriving the probability rules all result in the
same basic system, so we do not su�er too much by focusing on the canonical
formulation to begin with.
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B.1 Kolmogrov’s system of probability
When students are �rst introduced to the mathematics of probability, it is almost
universally via the mathematics of set and measure theory, in the framework
de�ned by Kolmogrov. As it turns out there are many way to arrive at the same
rules as Kolmogrov, starting from conceptually very di�erent foundations. Many
of these ideas predate Kolmogrov’s system, which only appeared in the 1930’s.
Philosophically, Kolmogrov’s system is not especially signi�cant, but it marks
the beginning of an explosion of work in the formal mathematics of probability,
the results of which form the foundation of contemporary statistics. However,
Kolmogrov’s system is not an interpretation of probability in of itself; rather it is an
axiomatic mathematical abstraction, and so here I avoid interpretational language.
I present the axioms essentially as Kolmogorov did (1950), supplemented by the
more modern accounts given by Jaynes (2003) and Hájek (2012).
Kolmogrov’s system is built upon what he calls elementary events. What these

events “are” is a matter of interpretation (they may be outcomes of controlled exper-
iments of some kind, ‘things that happen’ in spacetime, elementary propositions,
etc.), and we will not be concerned about this just yet. These events form a set
Ω (the ‘universal’ set). There exists another setF , which is a set of subsets of Ω,
whose elements Kolmogrov calls random events. Kolmogrov’s axioms are then

(1) F is a σ-algebra on Ω.
(2) To each set A in F is assigned a non-negative real number Pr(A). This
number is called the probabil it y of the event A.

(3) Pr(Ω) = 1.
(4) If A and B have no element in common, then

Pr(A∪ B) = Pr(A) + Pr(B) (B.1)

In the modern language, Pr(.) is called a probability function, and (Ω,F , Pr) is
called a probability space. ThatF is a σ-algebra on Ω implies the following:

(5) F contains the set Ω.
(6) If fi is inF , then its complement wrt Ω is also inF .
(7) If countably many f j are inF , their union is also inF .

One more de�nition completes the theory. If Pr(A) > 0, then
Pr(B ∣ A) = Pr(A∩ B)

Pr(A) (B.2)
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is called the conditional probability of the event B, given the condition A. This
immediately gets us the product rule

Pr(A∩ B) = Pr(B ∣ A)Pr(A) (B.3)

and with only a bit more work, the generalised sum rule

Pr(A∪ B) = Pr(A) + Pr(B) − Pr(A∩ B) . (B.4)

This completes the ‘probability calculus’. Familiar results can now be derived. If we
consider fair die rolls, then Ω = {1, 2, 3, 4, 5, 6}, with Pr({1}) = Pr({2}) = ... = 1/6,
and we have that

Pr({1, 2, 3, 4, 5, 6}) = 1,
Pr(even) = Pr({2} ∪ {4} ∪ {6}) = 3/6,

Pr(odd ∣ less than 3) = Pr(odd and less than 3) /Pr(less than 3) ,
= P({1})/P({1, 2}) = 1/2,

and so on.
It should be mentioned that becauseF is a σ-algebra, it is closed under count-

ably in�nite operations (complements, unions, and intersections). This allows
us to deal with in�nite sets of events. Not all axiomatisations of the probability
calculus allow this, but it is necessary in order to absorb the theory under the
umbrella of measure theory.
Other approaches to probability can generally be cast into Kolmogrov’s frame-

work with little problem, although the scope of phenomena to which the theory is
applicable will vary.
There is one last important formula to mention. From the de�nition of con-

ditional probability, and the symmetry of the set intersection operator, it follows
immediately that

Pr(B ∣ A) = Pr(A ∣ B)
Pr(A) Pr(B) (B.5)

For historical reasons this relation goes under the name of Bayes’ theorem, and
it is one of the most important formulae in the philosophy of probability. When
later we re-interpret Kolmogrov’s ‘events’ in terms of propositions, Bayes’ theorem
will tell us how our degree of belief that proposition B is true should be updated
when we learn that proposition A is true, forming the foundation of several related
approaches to epistemology.
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B.2 The ‘classical’ interpretation
The ‘classical’ interpretation of probability is the name given to the system o�en
associated with Laplace (1812), although writers as early as Bernoulli advocated
similar ideas. From a modern perspective it is similar in spirit to the “Objective
Bayesian” position, that is, probabilities are degrees of belief, or expectations that
an idealised rational agent has about the outcome of events, and that there is a
“right” answer to what these expectations should be in any given circumstance.
Laplace’s words1 well describe the basic notion:

The probability for an event is the ratio of the number of cases favourable
to it, to the number of all cases possible when nothing leads us to ex-
pect that any one of these cases should occur more than any other,
which renders them, for us, equally possible.

This notion is essentially designed with classic games of chance in mind. For
the case of die rolls, if we want to consider the probability that a roll results in a six,
we consider the number of cases favourable to this outcome (the face of the die
labelled 6 facing up when the die stops rolling being the only ‘case’ favourable, in
this example) and we further suppose there to be only six possible outcomes of the
action of rolling the die; �nally, we see nothing to cause us to expect one outcome
over another, so we de�ne the probability of rolling a six to be 1/6. This simple
notion of probability remains prevalent even today among the lay population. It
does, however, introduce us immediately to one of themost controversial principles
in the philosophy of probability, coined by Keynes (2007 [1920]) the principle of
indi�erence. What is the meaning of ‘when nothing leads us to expect that any
one of these cases should occur more than any other’? To cite a somewhat tongue-
in-cheek example of its serious misuse, consider the words spoken by Walter T.
Wagner to John Oliver on the episode of The Daily Show that aired on April 30,
2009, in reference to the probability that the Large Hadron Collider at CERN
would destroy the Earth by creating stable micro black-holes:

John: So, roughly speaking, what are the chances that the world is
going to be destroyed? Is it one-in-a-million, one-in-a-billion?
Walter: Well, the best we can say right now is about a one-in-two
chance.
John: Hold on a sec, is. . . 50-50?
Walter: Yeah, 50-50.

1I take Jaynes’s 2003 word on this translation, since I have not myself been able to obtain a
translation of Laplace (1812)
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[break]
Walter: It’s a chance, it’s a 50-50 chance.
John: You come back to this 50-50 thing, it’s weirdWalter.
Walter: Well, if you have something that can happen, and something
that won’t necessarily happen, it’s going to either happen or it’s gonna
not happen. And, so, it’s. . . it’s best guess is one in two.
John: I’m not sure that’s how probability works, Walter.

The majority of people will intuitively feel that Wagner’s logic su�ers some serious
�aw, but what is it? He has broken down the possible cases to two; the world will be
destroyed, or it won’t be. He appears to feel that there is no information available
to him which distinguishes the two cases. Is he not therefore satisfying Laplace’s
dictum? I am not aware of a standard name for this problem (though it is related
to the problem of reference class ambiguity which we will discuss later), so I will
refer henceforth to it as a ‘Wagner’ problem. A more traditional example of the
problem is to consider a coin. Usually we say there are two possible outcomes
of a �ip; the coin lands heads, or it lands tails. However, it is logically possible
that a real coin may land on its edge, in which case we have three possibilities; the
coin lands heads, tails, or on the edge. Surely it is not sensible to assign each of
these possibilities equal a-priori probability, and Laplace is not suggesting that we
should, but this is what an uncritical application of the principle of indi�erence
would have us do.
Wagner’s most obvious logical error, and the one which intuition generally

highlights immediately, is that there is of course a great deal of information available
that distinguishes the two cases in question; I will not defend these obvious details
here. But is there anything else wrong with Wagner’s argument? Would a complete
lay person, who did not know any of the distinguishing information, be justi�ed in
assigning probabilities as Wagner did? But I digress slightly, for Laplace does not
intend to o�er a subjectivist de�nition of probability. Which leaves the question
of how to determine objectively when the available cases can be assigned equal
probability. If it is to be based on the expectations of an idealised rational agent
of some kind, it is unclear what it means for the agent to expect each outcome
equally, other than for them to assign equal probabilities to each outcome, which
is circular. If it is to mean that the available evidence weighs equally in favour of
each outcome, it is similarly di�cult to say what this means without reference
to the conditional probability of the outcome given the evidence. Attempts have
been made to resolve the situation based upon the logical structure of the possible
outcomes, however here we infringe upon the ‘logical’ interpretation and so I defer
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the discussion to that section (B.3).
The modern ‘Objective Bayesian’ programs can be viewed as an attempt to save

the classical notion of probability, by re�ning or replacing the principle of indif-
ference, or by formalising the notion of ‘ignorance’. The correspondence appears
because the Bayesian formula (Eq. B.5) fully determines how degrees of belief, or
expectations, should change in the light of evidence. The only ambiguity lies in the
assignment of prior probabilities; so, if only they could be assigned unambiguously
by a universally accepted principle, then the entire Bayesian program would be
rendered objective. For many this is the ‘holy grail’ of statistics. Unfortunately,
obtaining such a principle is notoriously di�cult and perhaps impossible, though a
variety of suggestions have been made. Ideas along these lines will appear through-
out this review, but since I do not explicitly examine any of the suggestions of the
“Objective Bayesian” camp, I will list here some key items for further reading.
Je�reys’ (1998 [1939]) proposal to use priors which are invariant under repa-

rameterisation could be said to have initiated the “objective Bayesian” quest. Jaynes’
(2003) ideas on ignorance priors based on transformation groups, as well as his
entropymaximisation ideas, continue Je�reys’ thinking and have been very in�uen-
tial. Berger and Bernardo’s (1992) formal “reference priors” also generalise Je�reys’
priors and are in widespread use. From a slightly di�erent angle are ideas about
using “default” Bayes factors (Berger and Pericchi, 1996; Berger and Mortera, 1999)
for model selection. Our own work making use of partial Bayes factors for model
comparison (paper I) is inspired by these latter ideas, though partial Bayes factors
do not deviate from the standard probability calculus as default Bayes factors do
(at some cost to the “objectivity” Berger et al. seek). Along similar lines are the
assorted “information criteria” o�en used to judge the tradeo� between goodness
of �t and model complexity (AIC (Akaike), BIC/SIC (Bayesian/Schwarz), DIC
(deviance), etc.; for reviews see Burnham and Anderson (2004); Liddle (2007)).

B.3 The ‘logical’ interpretation
The logical interpretation of probability is an evolution of the classical notion,
extending the idea the probability is a ‘degree of belief ’ that some event or other
occurs, to themore general concept of whether or not any given logical proposition
is true. There is a quite a strong intuitive basis for this, since in everyday speech we
wonder about the truth of such propositions as “it will rain tomorrow”, and seem
to feel comfortable talking about the probability of this. Traditionally, however,
advocates of the logical interpretation have taken quite an extreme view of this
notion. Like the classicists and the objective Bayesians, they hoped to again obtain
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an objective notion of probability from this program.
The basic idea has been to extend the traditional rules of deductive logic to

probabilistic logic by various formal means, which I shall brie�y discuss. This
appears to have been strongly in�uenced by the growth of logical positivism in
the early 20th century; indeed the two programs had several key proponents in
common, most prominently Rudolph Carnap. Since Carnap provides the most
thorough exposition of the position, I will summarise it mostly in terms of his
ideas, based on Carnap (1950). I make some use of the earlier work by Keynes
(2007 [1920]), and the later work by Jaynes (2003), though Jaynes’ perspective is
pragmatic, whilst Keynes and Carnap present very formal arguments. Je�reys’
(1998 [1939]) account lies somewhere in the middle. The preface to Carnap (1950)
gives us the quickest window into the general program, via six ‘basic conceptions’,
as Carnap calls them:

(1) All inductive reasoning, in the wide sense of nondeductive or nondemon-
strative reasoning, is reasoning in terms of probability;

(2) Hence inductive logic, the theory of the principles of inductive reasoning, is
the same as probability logic;

(3) The concept of probability on which inductive logic is to be based is a
logical relation between two statements or propositions; it is the degree of
con�rmation of a hypothesis (or conclusion) on the basis of some given
evidence (or premises);

(4) The so-called frequency concept of probability, as used in statistical inves-
tigation, is an important scienti�c concept in its own right, but it is not
suitable as the basic concept of inductive logic;

(5) All principles and theorems of inductive logic are analytic2;
(6) Hence the validity of inductive reasoning is not dependent upon any syn-
thetic presuppositions like the much debated principle of the uniformity of
the world.

The �rst thing to note here is that this notion of probability is much stronger than
‘the degree of belief that a subject assigns to a proposition’. Rather (3) is meant as a
declaration that objectivity is possible, that is, it declares that there is an objective
relationship that exists between hypotheses (conclusions) and evidence (premises),

2Carnap refers here to the synthetic/analytic distinction, one of the principles of logical posi-
tivism. The idea is that some statements are true in-of themselves, or are true a-priori (tautologies
being the trivial example); these are called analytic. Statements that can be logically deduced
from analytic statements are also analytic. All other logically meaningful statements are synthetic,
meaning that we need to make observations of some kind to determine whether they are true.
Synthetic statements are supposed to be veri�able empirically, else they are consideredmeaningless.
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which is independent of any particular subject, though it is expressed in terms of
probabilities.
What could this mean? Carnap identi�es this evidential probability as all three

of the following:

(a) a measure of the evidential support given to h by e;
(b) a fair betting quotient;
(c) an estimate of relative frequency.

We may take (a) as the primitive notion that we wish to de�ne; Carnap represents
it symbolically as ‘c(h, e)’ (the degree to which e con�rms h), and eventually
associates it with the usual de�nition of conditional probability

c(h, e) = m(h& e)
m(e) (B.6)

where m(.) is a probability measure over propositions, which we will discuss
shortly. (b) introduces the idea that probability has something to do with ‘fair’ bets;
a topic we shall return to when discussing the subjectivist interpretation in section
B.4. Item (c) is at �rst sight confusing, since the present probability interpretation
is not based upon frequencies; however, it preempts the idea of calibration, that
is, the notion that probabilities should be connected to the notion of ‘getting the
right answer’ with a certain frequency if we follow the method correctly.
The general picture being painted here by Carnap is in line with a number of

other earlier thinkers. One of the most well known but less rigorously formulated
is that of Keynes (2007 [1920]). I will not detail this here since the general idea is
much the same, but a summary of Keynes position due to Ramsey (1931)3 helps
solidify the more formal conceptions of Carnap’s we have been following. There is
more talk of degrees of belief here, but it is intended in the same objective sense
that Carnap uses:

Mr Keynes starts from the supposition that we make probable infer-
ences for which we claim objective validity; we proceed from full
belief in one proposition to partial belief in another, and we claim that
this procedure is objectively right, so that if another man in similar
circumstances entertained a di�erent degree of belief, he would be
wrong in doing so. Mr Keynes accounts for this by supposing that
between any two propositions, taken as premiss and conclusion, there
holds one and only one relation of a certain sort called probability

3Ramsey is introducing the position so he can criticise it; we will return to these criticisms in
section B.4.



B.3 The ‘logical’ interpretation 173

relations; and that if, in any given case, the relation is that of degree α,
from full belief in the premise, we should, if we were rational, proceed
to a belief of degree α in the conclusion.

Logical probability is to be based on relations between propositions, so to
formulate the notion precisely a formal symbolic logic language is required. Carnap
de�nes such languages �rst for application to deductive logic, and extends them
as necessary to deal with inductive logic. To go into the details of this is beyond
my current expertise and goes far beyond the scope of this thesis, but there is an
elegance to the construction which makes it worth our time to examine brie�y.
Later on, when I o�er much more informal propositions for consideration, it is
valuable to keep in mind that a formal approach may be possible.
Carnap’s language systems L are constructed as systems of semantical rules.

There is one system L∞ with an in�nite number of individuals, and other systems
LN with a �nite numberN of individuals. Formal rules de�ne how these individuals
may be combined to form sentences. ‘Rules of truth’ allow the determination of
the truth of any sentence. Special sentences exist, which completely describe all
individuals with respect to all properties and relations expressible in the language,
called state-descriptions. State-descriptions represent all possible states of a�airs
for all individuals. ‘Rules of range’ allow the determination, for every sentence i, in
which of the state-descriptions i is true. Putting it together, the system de�nes the
meaning of a sentence, the idea being that the meaning of the sentence is known if
all the possible cases under which it is true are known.
To extend such a system to inductive logic is essentially to de�ne a probability

measure m(.) over state descriptions, which then automatically de�nes a measure
over all sentences (since we know in which states-descriptions every sentence is
true) and to utilise the usual probability rules to manipulate them. At this point
we begin to run back into problems with prior probabilities, for the measure m(.)
is in essence a de�nition of the prior probability of all sentences. It is therefore not
surprising that in�nitely many candidates for m(.) exist even in simple languages.
We have gained something, however. Carnap argues for a particular m∗(.), saying
that changes in label should not produce changes inm∗(.), that is,m∗(.) should be
invariant under certain structural considerations. He de�nes a structure description
to be a maximal set of state descriptions, which can be obtained from each other
simply by a permutation of the names in the host language L. m∗(.) assigns each
structure description equal weight, which is then distributed equally among the
component state descriptions. This rewards more homogeneous state descriptions,
which has a certain intuitive appeal since such descriptions are ‘simpler’ in a sense.
An example due to Hájek (2012) provide a concrete demonstration of all this.
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Let the language L have three names, a, b, and c, for individuals, and one
predicate F. There are then eight state descriptions:

(1) Fa ∧ Fb ∧ Fc
(2) ¬Fa ∧ Fb ∧ Fc
(3) Fa ∧ ¬Fb ∧ Fc
(4) Fa ∧ Fb ∧ ¬Fc
(5) ¬Fa ∧ ¬Fb ∧ Fc
(6) ¬Fa ∧ Fb ∧ ¬Fc
(7) Fa ∧ ¬Fb ∧ ¬Fc
(8) ¬Fa ∧ ¬Fb ∧ ¬Fc
(writing∧ tomean “and” and¬ tomean ”not”; see sectionA)where (2), for example,
could be read “‘a is not F’ and ‘b is F’ and ‘c is F”’; and there are four structure
descriptions:

(I) Everything is F (1)
(II) Two Fs, one ¬F (2),(3),(4)
(III) One F, two ¬Fs (5),(6),(7)
(IV) Everything is ¬F (8)
According to the measure m∗(.), each of the four structure descriptions gets 1/4
of the probability. Structure descriptions (I) and (IV) each correspond to only one
state description, so those two state descriptions get 1/4 probability each, while
structure descriptions (II) and (III) each correspond to three state descriptions, so
those remaining state description get only 1/12 probability each. It is in this sense
that the more ‘homogeneous’ hypotheses are favoured by m∗(.)4.
We see here how Carnap intends to deal with the Wagner problem (B.2).

Though we currently cannot hope to construct one of Carnap’s formal languages
to cover the scenario of the world being destroyed by the LHC, it is at least in-
tuitive that there is an immense di�erence between the two possibilities (LHC
destroys the world/LHC does not destroy the world) in terms of how they would
be expressed in such a language. It is impossible to guess which outcome might
be considered more probable, but there would be no reason to expect them to
be equiprobable. Of course all available empirical knowledge about the universe

4Interestingly there may be some connection to physics here. A system of three particles which
can each be in one of two states has an identical logical description to this case (not considering
the physics of course). If the particles are indistinguishable, we would not consider e.g. state
descriptions (2)–(4) to be di�erent states, so in the absence of other considerations it would seem
logical that they receive as much probability collectively as (1). In other words m∗(.) re�ects that
the labels are arbitrary.
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must then be used to update the measure m∗(.), further destroying any symmetry
between the possibilities.
Unfortunately it is the pragmatic di�culties which ultimately prevents us

making use of this formal framework. Carnap’s languages do not seem powerful
enough to analyse questions of real scienti�c or pragmatic interest, and, perhaps
worse, the motivation to use one probability measure m(.) or another seems thin.
Furthermore, the value of c(h, e) is dependent on the formal language L used,
introducing a further arbitrariness problem on top of the choice of the measure
m(.) (though interestingly we will see this dependence on language appear again
in a di�erent form in section B.7 when we discuss algorithmic probability, where it
seems that the problem may not be so severe a�er all).
Aside from practical di�culties, the logical positivist position from which

logical probability emerged su�ered harsh and prominent criticism during the
latter half of the 20th century fromQuine, Popper, Kuhn, and others, and has since
fallen into relative disfavour. This is all fascinating history but a further discussion
of it will take us too far a�eld, so I will bring this section to a close by giving
the �nal words to Ramsey (1931), who o�ers perhaps the most straightforward
criticism of the program of logical probability:

...But let us now return to a more fundamental criticism of Mr Keynes’
views, which is the obvious one that there really do not seem to be
any such things as the probability relations he describes. He supposes
that, at any rate in certain cases, they can be perceived; but speaking
for myself I feel con�dent that this is not true. I do not perceive them,
and if I am to be persuaded that they exist it must be by argument;
moreover I shrewdly suspect that others do not perceive them either,
because they are able to come to so very little agreement as to which
of them relates any two given propositions.

Ramsey’s criticism of the hope of objectivity via the Platonian-like abstractions
that are Keynes’ “probability relations”, which, he fairly claims, there is little reason
to suppose actually exist, re�ect his own ideas that such objectivity is impossible;
we shall discuss the alternative in the next section.

B.4 The ‘subjectivist’ interpretation
The subjectivist interpretation (identi�able with subjective Bayesianism) is, in my
opinion, the easiest to defend. However, it is also one of least powerful, although
this accusation may also be levelled at the frequency interpretation, which will
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shall get to next. The subjective terminology also tends to conjure up images of
unconstrained relativism in the minds of critics, although I think such criticism is
largely unfounded. If, in the end, the subjectivist position is ‘more right’ than its
competitors, then any lack of statistical power is merely a re�ection of fact rather
than a �aw in the approach. I base my description of this view on probability
mainly on the account given by de Finetti (1992 [1937]).
To the subjectivist, probability is ‘degree of belief ’, but now it is truly meant

as being relative to a given subject, not just relative to particular evidence, or
supporting statements. But what is the value in such a view on probability? Isn’t
such subjectivity unscienti�c? Don’t we sacri�ce the entire scienti�c program by
acquiescing to such relativism? The answer is certainly no, but the reasons why not
require some background before we can discuss them. At least part of the reason
why we are not totally lost to relativism is because it can be shown, under quite
general assumptions, that subjective degrees of belief should obey the probability
calculus, which indeed is powerfully constraining. There are numerous ways to
demonstrate this correspondence, but here I will focus only on two.
De Finetti motivates a quanti�cation of our degrees of belief as follows. Con-

sider a ‘well-de�ned’ event E1, that is, one for which we can all agree about whether
it occurs or not. Suppose we do not know in advance whether it will in fact occur,
or not. Let us rely completely on our intuitive notions of probability, and consider
whether it is possible to compare the probability that E1 will occur, to some second
uncertain event E2. If we admit that such comparison is possible, then we can
believe only one of three things: E1 and E2 are equally probable; E1 is more probable
than E2; or E2 is more probable than E1. It may be argued that there is a fourth
option, namely that we do not know which of E1 or E2 is more probable, but let us
leave this case aside for now. Assume we also admit that an uncertain event seems
to us more probable than an impossible event, and less probable than a necessary
event. By adding a third event E3 we may also convince ourselves that if E1 is less
probable than E2, and E2 is less probable than E3, then E1 is less probable than E3,
i.e. that probabilities are transitive.
To these simple axioms, de Finetti argues, we need add only one more to

reconstruct the whole probability calculus. This axiom says that inequalities are
preserved in logical sums; that is, if E is incompatible with both E1 and E2 (that
is, both E and E1 cannot both occur, nor E and E2), then E1∣E (E1 given E) is
more(less) probable than E2∣E if E1 is more(less) probable than E2.
De Finetti then claims that this is enough to show that

...when we have events for which we know a subdivision into possible
cases that we judge to be equally probable, the comparison between
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their probabilities can be reduced to the purely arithmetic comparison
of the ratio between the number of favourable cases and the number
of possible cases (not because the judgement then has an objective
value, but because everything substantial and thus subjective is already
included in the judgement that the cases constituting the division are
equally probable).

Thus the classical de�nition of probability is subsumed into the subjective paradigm.
In addition, a numerical value has been attained to ‘index’ the probability in ques-
tion. This can be used as the de�nition of probability. Not all events can be
decomposed into components we judge to be equiprobable, but de Finetti says that
because we have accepted that one event can be judged as more, less, or equally
probable as another event, we can now assign numerical probabilities to all events
by comparison (utilising our best, but nevertheless subjective, judgement) to the
‘indexed’ events. De Finetti then claims that the whole calculus of probabilities can
be constructed on this basis and proceeds to do so, though I will not demonstrate
this here.
A more direct method of quantifying subjective probabilities, and rebuilding

the probability calculus, is also possible. This is the method of analysing ideal
betting behaviour, and is based on the intuitive notion that the degree to which a
subject believes that an event will happen has something to do with how willing
they are to put money on it. It may seem odd that money should appear in the
de�nition of probability, but the same idea can be abstracted into the notion of a
‘stake’; that is, the main idea is to determine the conditions under which a subject
will risk something that they value5. The previous quanti�cation method based on
initially qualitative judgements is free of these concepts of betting and stakes, so it
is perhaps more ‘pure’ and is preferable for that reason, but this new procedure
allows more direct access to the quanti�ed probabilities.
De Finetti gives the betting-based procedure as follows:

Let us suppose that an individual is obliged to evaluate the rate p at
which he would be ready to exchange the possession of an arbitrary
sum S (positive or negative) depending on the occurrence of a given

5Ramsey (1931) expands upon the need for this abstraction: “...Supposing, the bet to be in
goods and bads instead of in money, he will take a bet at any better odds than those corresponding
to his state of belief; in fact his state of belief is measured by the odds he will just take; but this
is vitiated, as already explained, by love or hatred of excitement, and by the fact that the bet is in
money and not in goods and bads. Since it is universally agreed that money has a diminishing
marginal utility, if money bets are to be used, it is evident that they should be for as small stakes as
possible. But then again the measurement is spoiled by introducing the new factor of reluctance to
bother about tri�es.”
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event E, for the possession of the sum pS; we will say by de�nition that
this number p is the measure of the degree of probability attributed
by the individual considered to the event E, or, more simply, that p is
the probability of E (according to the individual considered).

Hájek (2012) puts it like this:

Your degree of belief in E is p i� p units of utility is the price at which
you would buy or sell a bet that pays 1 unit of utility if E, 0 if not E.

This approach immediately quanti�es subjective probabilities. As a quick example,
consider a deck of cards, which for simplicity we may say you have veri�ed to be
standard. Let our event be “a spade is drawn next”. Let the prize be $10, awarded if
indeed “a spade is drawn next”. How much will you pay for a chance at this prize?
Equivalently, if you already have a ticket in the draw, how much will you sell it for?
The price you consider perfectly fair should be the same in both cases, in the ideal
scenario free of other external in�uences. If your answer is $2.50, this indicates
that for you the probability of “a spade is drawn next” is 1/4. In this case you have
probably based the assessment on a judgement of equiprobability of all the possible
cards, as in our �rst method of quanti�cation, but the betting method can be useful
for elucidating probabilities in cases where equiprobability judgements are much
less forthcoming, and in any case it helps clarify our de�nition of probability, that is,
it can be used to de�ne what youmean by your initial judgement of equiprobability
of all cards.
Obviously there are many factors not mentioned in this scenario that may

in�uence what you are willing to pay for a ticket. If you suspect the draw is rigged,
you will not make the equiprobability judgement alluded to above; though if you
have no idea how it is rigged and no suspicions that it is rigged against you then
this may restore the subjective equiprobability assessment. If you saw me shu�ing
the deck, and think you saw a red card end up on top, you will judge a spade less
probable than 1/4 and so value the ticket less. All such information is relevant
to the probability judgement, and we may expect that our brains subconsciously
incorporate all this and a great deal more about which we may have only a dim
conscious awareness.
So accepting this betting perspective on probability, where does Kolmogrov’s

calculus come in? Why should probabilities obey these rules? The typical ar-
gument is based upon the notion of a “Dutch book”, which places consistency
demands upon degrees of belief. The idea is that if your beliefs violate Kolmogrov’s
rules, then you can be exploited in various betting situations. This is most easily
demonstrated by example.
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Consider betting on a horse race, with four entrants. Let our degrees of belief
about which horse will win violate the total probability axiom, so that we have
P(H1)+P(H2)+P(H3)+P(H4) > 1 (whereHi is the event “horse i wins �rst place”).
Let the payout for winning be $10. According to our probability assessments,
we would buy into a bet on each horse i for P(Hi) × $10. This would cost us(P(H1) + P(H2) + P(H3) + P(H4)) × $10, which is greater than $10, which is the
payo� we will receive no matter what since we bet on all possible outcomes. So
we would lose money no matter what happened. The beliefs which led us to this
silly decision are thus said to be incoherent. Similar negative consequences can
be demonstrated upon violating any of the Kolmogrov rules, so only if degrees of
belief obey all of these can they be coherent.
On this basis, we can accept that degrees of belief can be quanti�ed by appeal

to betting arguments, and must obey the standard probability calculus in order
to be coherent. Equivalently, we can quantify degrees of belief by comparison of
their probability to events for which it is easier to assess our degree of belief, such
as standardised games of chance, for which assignments of equiprobability to all
alternatives is not controversial.

B.4.1 Exchangeable events
The notion of exchangeability allows the subjectivist to link back to and explain
the common frequency interpretation of probabilities. It is thus of very central
signi�cance, so I will spend the time to explain it in detail. Let us again hear from
de Finetti:

Why are we obliged in the majority of problems to evaluate a proba-
bility according to the observation of a frequency? This is a question
of the relations between the observation of past frequencies and the
prediction of future frequencies which we have le� hanging, but which
presents itself anew under a somewhat modi�ed form when we ask
ourselves if a prediction of frequency can be in a certain sense con-
�rmed or refuted by experience. The question we pose ourselves now
includes in reality the problem of reasoning by induction. Can this es-
sential problem, which has never received a satisfactory solution up to
now, receive one if we employ the conception of subjective probability
and the theory which we have sketched?

Exchangeability is de Finetti’s attack on the question of frequencies, and is a cor-
nerstone of his system of probability. The notion begins with the idea that “an
event is always a singular fact”. For example, when considering coin �ips, it is
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common to consider one coin �ip the same as any other. However, in ‘the real
world’, every �ip of a coin is a unique event. We should thus not speak of “trials
of the same event”, but instead “trials of the same phenomenon”. Events have
probabilities, but phenomena do not. The classi�cation of (say) a set of coin �ip
events into a “phenomenon” arises from the judgement that they all share some
essential properties, despite being a-priori distinct. The notion of exchangeability
is a formalisation of this notion of ‘similar’ events.
Let us give de Finetti’s de�nition: we shall say that X1, X2, . . . , Xn are exchange-

able events if “they play a symmetrical role in relation to all problems of probability,
or, in other words, if the probability that Xi1 , Xi2 , . . . , Xin satisfy a given condition
is always the same however the distinct indices i1, . . . , in are chosen”. In more
orthodox language, the Xi are exchangeable if their joint probability distribution
is invariant under permutations of the indices i.
It is important to note that in the subjective system, it is a matter of judgement

whether exchangeability holds. If, by our judgement, a set of events is exchangeable,
then a number of properties follow. Perhaps the most important result is de
Finetti’s representation theorem, which goes as follows. Let Xk be a sequence of k
events X1, X2, . . . , Xk . LetX = limk→∞Xk . The empirical (cumulative) distribution
function of Xk is de�ned as

Fk(t) ≡ 1k
k∑
i=1

I(xi ≤ t) ∀t ∈ R, (B.7)

where I(xi ≤ t) is 1 when the condition is satis�ed and 0 otherwise; that is, it is an
indicator function. We then de�ne FX(t) ≡ limk→∞ Fk(t) as the limiting empirical
distribution function. We can now state the representation theorem:

Theorem 6. If the sequence X is exchangeable, then the elements of X∣FX are inde-
pendent with distribution function FX, so that the joint distribution for any sequence
Xn taken from X is

F(Xn) = ∫ n∏
i=1

FX(xi)dµ(FX) (B.8)

The theorem states that the joint probability of the sequence Xn admits an
integral representation of the form given. That is, neither the possible functions
FX nor the measure over them µ(FX) are speci�ed; many choices are permitted. If
the possible functions FX can be indexed by a parameter θ then we can restate the
result as

p(Xn) = ∫ n∏
i=1

p(xi ∣θ)dµ(θ) (B.9)
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which can be written as a more straightforward Riemann integral as

p(Xn) = ∫ n∏
i=1

p(xi ∣θ)p(θ)dθ (B.10)

where the pdfs are de�ned in correspondance to the cdfs in eq.B.8. Here we can
identify p(xi ∣θ) as the likelihood functions for the elements of Xn, and p(θ) as
the prior probability that p(xi ∣θ) is the limiting empirical distribution function of
X.
This is an extremely important result, because it does two things. Firstly, it

de�nes the correspondance between the subjective judgement that a set of events
is exchangeable, and the limiting frequency with which events in that set occur (I
will clarify this connection momentarily). Secondly, it demonstrates that it is the
judgement of exchangeability which underlies the standard statistical practice of
modelling a set of observables as iid, following a distribution with some unknown
parameters.
To clarify the �rst of these, it helps to return to the coin example. In this case,

the events X can only represent one of two outcomes; heads is observed, or tails is
observed. The indicator function for the Xi is 1 if heads occurs and 0 otherwise,
and the limiting empirical distribution function FX reduces to the limiting fraction
of heads in the sequence fH . Thm. 6 can thus be interpreted as telling us that the
judgement that the �ips are exchangeable allows us to treat the �ips as being a
Bernoulli process with success rate fH , where fH is unknown, i.e.

Pr(Xn) = ∫ f rH(1 − fH)n−r dµ( fH), (B.11)

where the sequence Xn contains r heads and n − r tails. The integral over the prior
for fH is the standard Bayesian method for dealing with ‘nuisance’ parameters, as
I shall describe in chapter D, but we see here that the notion of exchangeability
provides a basic justi�cation for this treatment.
To simplify the analysis it is useful to notice that, due (only) to the exchange-

ability of Xn, the probability of Xn is the same as any other sequence containing
the same numbers of heads and tails events. That is, if we let Rn be the event of
observing rn heads in the sequence Xn, then

Pr(Rn) = ∑
permu.

Pr(Xn) = (n
r
)Pr(Xn) , (B.12)

where the sum is over the permutations of the sequence Xn. To make the connec-
tion with frequencies, it will su�ce to show that if we observe heads outcomes
occurring with a certain frequency in a large number of trials, then we will predict
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that the same heads fraction will be observed in a future large number of trials.
We thus need to consider predictions of future events in the sequence, given some
observations of past events. The fact that the events, though modelled by an iid
process, are correlated through the parameter fH , is what allows this learning to
occur. This can be done by considering the conditional probability of observing rm
heads in a sequence of m events, given that we have seen rn heads in the previous
n events:

Pr(Rm ∣ Rn) = Pr(Rm ∩ Rn)
Pr(Rn) = (m

rm)( n
rn)( n

rn)
Pr(Xm ∩Xn)
Pr(Xn)

= (m
rm)( n

rn)( n
rn
) ∫ f rm+rnH (1 − fH)m+n−rm−rn dµ( fH)∫ f rnH (1 − fH)n−rn dµ( fH)

(B.13)
If we take the �rst (“training”) sequence to be very long then the binomial function
is well approximated by a normal distribution

fRn(rn; n) = (n
rn
) f rnH (1 − fH)n−rn ≈ 1√

2πσ2
exp (x − n fH)2

2σ2
(B.14)

with σ 2 = n fH(1 − fH). In this form we can more easily change variables from rn
to ω = rn/n, i.e. the fraction of heads in the sequence, allowing us to deal with the
function

fΩn(ωn; n) = 1√
2πσ2ω

exp (ω − fH)2
2σ2ω

(B.15)

(with σ2ω = p(1−p)/n) which goes to the delta function δ(ω− fH) as n →∞. Putting
this back into eq.B.13, and now writing the measure as dµ( fH) = p( fH)d fH we get

Pr(Rm ∣ Rn) = (m
rm) ∫ f rmH (1 − fH)m−rmn−1δ(ω − fH)p( fH)d fH

∫ n−1δ(ω − fH)p( fH)d fH
= (m

rm)ωrm(1 − ω)m−rmn−1p(ω)
n−1p(ω)

= (m
rm

)ωrm(1 − ω)m−rm
(B.16)

that is, our beliefs about the number of heads we will see in Xm based on seeing a
sequence Xn of very many similar coin tosses, with an observed heads fraction of
ω, is exactly as if we considered the tosses to be drawn from a binomial distribution
with heads frequency ω6.

6Our beliefs are immutable from here on as evidence from the vast number of past trials
overwhelms any which could be obtained in a �nite number of future trials. Note also that the data
overwhelms any non-pathological prior p( fH).
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The above result is very satisfying, and shows us how long-run frequencies
appear in the subjectivist paradigm. Similar results can be demonstrated in the
general case, but I will not go into such detail here (see de Finetti (1992 [1937])
for many such demonstrations). There are, however, a few de�ciencies that are
apparent.
Firstly, the judgement of exchangeability severely restricts the kinds of models

that are permitted for the data. If, for instance, we were to observe a sequence such
as H, T ,H, T ,H, T ,H, T . . ., we may expect such a pattern to continue, however,
if we judged the events to be exchangeable we would destroy any possibility of in-
ferring them to be described by models which could incorporate such correlations.
The notion of exchangeability thus has to be extended. One such extension is the
idea of partial exchangeability; in this case we split the events into two or more
classes, and only events within a class are judged to be exchangeable. The classes
themselves may also be judged exchangeable. This allows a great deal of generality,
and covers such cases as Markov processes. Representation theorems similar to
thm. 6 exist for many such cases, however they are not of interest to the present
work so I will not describe them further; see e.g. de Finetti (1980); Diaconis (1988),
though a great deal of literature exists in this area.
Secondly, the judgement of exchangeability, or its extensions, is very permanent.

If we observed a series of coin �ips behaving “randomly” for a long time, and
then suddenly the coin started landing H, T ,H, T ,H, T . . ., we would become
suspicious that something had changed. We would likely revise our judgement of
exchangeability, and consider the new coin �ip events separately from the old ones.
How could such activity be formalised? At this point, we broach the subject of
hypothesis testing, which takes us beyond the scope of the present section. We will
revisit general questions of this kind in chapter refchap:BayesStats. For now, I will
suggest only that it is best captured by considering the exchangeability assumption
as conditional, such that the probability of the conditions on which the judgement
rests must now be taken into account.
There is much more to say about the subjectivist position, but I have lingered

too long on the subject already. However, since this position is my preferred
starting point for the consideration of probabilities, we will return to aspects of it
throughout this thesis. To close this section, and reinforce the basic concept to
advocates of other positions who may at this point remain skeptical, I again o�er
the words of Ramsey (1931):

[this system] ...is based fundamentally on betting, but this will not
seem unreasonable when it is seen that all our lives we are in a sense
betting. Whenever we go to the station we are betting that a train will
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really run, and if we had not a su�cient degree of belief in this we
should decline the bet and stay at home. The options God gives us are
always conditional on our guessing whether a certain proposition is
true.

B.5 The ‘frequency’ interpretation
The school of thought, or at least of practice, which has come to dominate the
scienti�c treatment of probabilities, has come to be known as the frequency, or
frequentist, school. This position is summarised well by the words of Venn (1888
[1866]), who indeed is o�en credited with developing the position:

What, for instance, is the meaning of the statement that two new-born
children in three fail to attain the age of sixty-three? It certainly does
not declare that in any given batch of, say, thirty, we shall �nd just
twenty that fail: whatever might be the strict meaning of the words,
this is not the import of the statement. It rather contemplates our
examination of a large number, of a long succession of instance, and
states that in such a succession we shall �nd a numerical proportion,
not indeed �xed and accurate at �rst, but which tends in the long run
to become so.

That is, contrasting strongly with the way frequencies appeared in the subjectivist
interpretation, probability is conceived of as being de�ned by the proportions in
which di�erent event outcomes occur in either a real or imagined series of similar
events. Events which cannot be placed into such a series are considered to be
outside the domain of probability theory, or else have ill-de�ned probabilities.
Venn, for example, explicitly argues that judgement of witness testimonies and
other assessments of credence or believability are not in fact questions related to
probability.
Most commonly the series of events are taken to be in�nite, though �nite forms

of frequentism do exist. Finite frequentism, however, is vulnerable to quite a lot
of criticism. The ‘problem of the single-case’ is perhaps the most striking. There
are many kinds of events for which it seems natural to talk about probabilities,
but which appear to be completely unrepeatable; the chance it will rain today, the
chance that so-and-so will win an election, the chance that team X will win tonights
baseball game, etc. If probability is to be de�ned in terms of the proportions with
which such events occur or not, then it seems like single events can only have
probability either zero or one, since they either occur or not. The problem is
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alleviated somewhat by embedding events in a reference class, in a similar way as
judgements about exchangeability are made by subjectivists, except that so long
as the reference class is �nite, then probabilities can only adopt values in the set
of rational numbers. Physical theories such as statistical mechanics and quantum
mechanics predict probabilities which are real numbers, and so are in con�ict with
such a de�nition of probability.
Tomake the problemhere evenmore evident, consider the common frequentist

claim that single events do not have probabilities. Consider the statement ‘I will
die before age 80’. Many frequentists claim that such statement does not have a
probability, because it is simply true or false. But it is trivial to extend the statement
to ‘One of myself or my friend John will die before age 80’, and it similarly must be
denied a probability attribution. But if we continue this extension to ‘half of the
current population of Australia will die before reaching age 80’ then it too must
be denied a probability assessment, in rather strong con�ict with intuition and
the practice of actuarial science. On �nite frequentism it is di�cult to argue for
probabilities with respect to large �nite reference classes of events if we deny them
for small reference classes.
Venn and others thus turn to in�nite reference classes to solve this problem.

Probabilities are envisaged as the limiting frequencies with which events occur in
references classes which are, conceptually at least, extended in�nitely. No such
reference class can exist in the real world, so this position requires a kind of
hypothetical reference class of events, in which the events of the real world are
embedded. The limiting frequency is thus also a hypothetical concept. One may
criticise this approach as departing too far from empiricism, since it requires us
to imagine series of events that do not and could not ever exist in the real world,
though defenders will characterise it simply as an idealisation.
Aside from problems related to the meaning of the in�nite reference class,

there are issues related to the in�niteness itself. Consider an in�nite set of coin �ip
events, {H, T ,H,H,H, T , T ,H, . . .}. In order to take the probability of a coin �ip
resulting in H to be the frequency with which H appears in such a set, we require
a well-de�ned method of obtaining this limiting frequency. This depends on the
ordering of the events in the set, or rather the way we de�ne the sequence of which
the limit is taken. For example, if we take the limiting heads frequency to be nH/n as
n →∞, it is not guaranteed that the same limit will be obtained whatever the order
of events in the set. In fact in the coin case the results can be rearranged such that the
limiting frequency of H is any value in the interval [0, 1] that we like; for example,
if we arrange the results so that our sequence goes {H, T , T ,H, T , T ,H, T , T , . . .},
then the limiting frequency, by our de�nition, is 1/3, although we have removed
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nothing from the set. Some notion of the ‘natural’ ordering of events is thus
required, and though the temporal ordering seems obvious it is has the problem
that almost all of the events in the series are hypothetical and unobserved, so some
notion of what ‘would’ happen in a ‘typical’ causal sequence becomes necessary.
Furthermore there are many events for which a causal ordering is not obvious or
meaningful, such as the set of measured heights in some population. This set is
�nite, but we must imagine that it is extendable to in�nity in some way to avoid
the aforementioned problems of �nite frequentism.
The �nal issue I will mention is one raised by Popper (1959). Onemight call this

the problem of the arbitrariness of the reference classes. Popper gives the following
example. Consider a sequence of tosses of a die loaded such that, a�er a long series
of tosses, we satisfy ourselves that relative frequency with which sixes are rolled is
1/4. Consider now introducing rolls with a standard die into this sequence. Despite
the fact that these throws are members of a sequence of tosses where sixes come
up with frequency 1/4, we are inclined to think that the tosses with the normal
die in fact have probability 1/6 of resulting in a six. Why? Intuitively we want
to separate these two types of tosses into di�erent reference classes, but on what
basis may we do this, if probability is only a property of sequences of events? The
subjectivist answer is that we have special information allowing us to distinguish
the two die, so that we come to di�erent beliefs about each of them. Popper dislikes
the subjectivist answer, arguing that if we did not know which rolls were made
with which die, then we may still be prepared to bet on the outcome of each roll as
if the probability of a six is 1/4, while, he argues, it is clear that there still exist two
di�erent ‘physical’ probabilities of rolling a six, one for each die. He argues that it
is the physical properties of the die and the method of rolling which determine
these ‘true’, physical, probabilities. This leads us into his ‘propensity’ theory of
probability, which we shall examine next.
There are a number of other issues with the ‘pure’ frequency view, that one can

raise, but since I do not think that the majority of physicists really hold to such a
view I will not go into further details. It seems to me that when physicists express
support of the frequency position, they really have in mind something rather more
like the propensity position, so I will turn now to a discussion of this.

B.6 The ‘propensity’ interpretation
The propensity theory of probability is usually credited to Popper (1959), though
one can see some of the basic intuitions behind it in quite a lot of earlier writing. I
will let Popper himself give the opening de�nition:
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...it [the interpretation of the two-slit experiment] convinced me that
probabilities must be ‘physically real’—that they must be physical
propensities, abstract relational properties of the physical situation,
like Newtonian forces, and ‘real’, not only in the sense that they could
in�uence the experimental results, but also in the sense that they could,
under certain circumstances (coherence), interfere, i.e. interact, with
one another.

Popper was greatly motivated to develop this theory by both the problem of
singular events, and the role which probabilities had been found to play in quantum
mechanics—indeed, as the above quote suggests, he thought his propensity theory
to be deeply related to the matter of quantum amplitudes. This latter direction I
do not intend to pursue, though it is certainly fascinating, for I do not think it has
a particular bearing on the main role that probabilities are to play in this thesis,
namely for assessing hypotheses.
Popper considered the subjectivist interpretation to fail completely in explain-

ing the probabilities observed in typical games of chance. He argues that there is
a clear objective element to such situations, namely the objective conditions of
the ‘experiment’. If we return to the example of the fair die throws mixed into the
sequence of loaded die rolls, we can see the kind of thing Popper means. To �x
the problem with the arbitrariness of the reference class, he argues, the frequency
theorist will be obliged to extend his de�nition of probability such that admissible
sequences of events, i.e. those whose outcome frequencies determine outcome
probabilities of the constituent events, consist only of events characterised by a
consistent set of generating conditions, that is “by a set of conditions whose repeated
realisation produces the elements of the sequence”. This immediately solves the
reference class problem, forcing the division of the die rolls into separate classes,
one for each die. However, Popper argues, with this seemingly obvious and minor
modi�cation, we in fact depart from the frequency theory, and have moved to a
propensity theory. This is because no longer is probability de�ned as a property of
a given sequence; now, it is a property of the generating conditions. This makes a
big di�erence, because now it is perfectly reasonable to discuss the probabilities of
single events, since this probability arises from the conditions which produce the
event, i.e. the physical ‘propensity’ for one thing or another to happen given those
conditions, even if those conditions and event arise but once.
Popper is careful to de�ne the propensities in fairly vague and broad terms, as

properties of some full set of experimental conditions. He does not mean that die
themselves possess a propensity to land on certain faces, since we can clearly, if we
are su�ciently careful and precise, throw the die in such a way so as to make it land
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however we like. So the propensity exists as a combination of the die properties
and the method by which it is thrown. He again draws an analogy to Newtonian
forces; these are not properties of a single physical object, but are de�ned in terms
of the arrangement of two or more objects. So propensities are a relational concept.

There are a number of interesting objections that can be raised against the
propensity theory. I will discuss only two of these; see Hájek (2012) for others.
Firstly, it is argued by Gillies (2000, p 119) that the propensity theory does not in
fact solve the reference class problem. Consider, he says, the probability that a
particular man aged 40 will live to be 41. Does it make sense to claim that there
is an objective answer? If we assess the probability on only the basis that he is
a currently living 40 year old male member of the human race, we will come
to one answer. But if we also know that he is an Englishman we will assess the
probability of him making it to 41 to be somewhat higher, since the life expectancy
of that group is higher than average for the whole of mankind. Likewise if we
learn he is a heavy smoker our estimate will revise downwards. So, it seems that
in this case probabilities are relative to what we know about the man. Is there a
‘true’ probability he will survive the year, some physical propensity? If we knew
everything there was to know about this man we might discover that he has a
very fragile brain aneurysm and is likely to be dead within the month, giving us a
completely di�erent answer than we would obtain on the basis of more generic
information. This objection is quite hard to evade. One solution discussed by
Gillers is to admit that single case probabilities are subjective, though reference
classes still de�ne objective probabilities. There are then various di�erent objective
probabilities for ‘man aged 40 will live to 41’, ‘Englishman aged 40 will live to 41’,
‘Heavy male smoker aged 40 will live to 41’ and so on, and depending on how we
categorise some individual in question we must assign him di�erent probabilities
of survival. I do not personally see that this is a very good solution, and I see it as
little di�erent to full capitulation to the subjectivist paradigm.

A second objection, discussed by Hájek (2012), is that it is le� rather mysterious
what propensities really are. Assigning the label of ‘propensity’ to the tendency of
a coin/�ipping arrangement to produces heads and tails with a certain frequency
does little to illuminate what is actually occurring to cause this, and especially in
the case of single events, propensities seem completely metaphysical. That is, if an
event and its conditions occur but once then it is impossible to measure what its
propensity is, so what meaning is there in saying that such a thing exists? Is there
any more cause to believe that Poppers’ propensities exist than that Keynes and
Carnap’s ‘probability relations’ exist?
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I do think that the notion of propensities has a lot of merit, particularly in
the case of quantum mechanics where it does appear, so far as least, that proba-
bilities really do exist as some objective relational property of a quantum system
and a measuring apparatus7. However, it seems unlikely to me that propensities
can account for all uses of probability, particularly those far above the quantum
regime, and those which do not exhibit chaotic behaviour. It may be that indeed
probability is an overloaded word, and there are several related concepts, all which
obey the Kolmogrov calculus, but which are nevertheless distinct, such that, say, a
subjectivist/propensitist fusion is required. In that case, it seems to me that subjec-
tive probabilities must assume the dominant role so far as statistical inference is
concerned, with these probabilities tending to the physical propensities as more
information is gained, in those situations where such a thing exists, in a similar
way as we saw subjective probabilities connect to long-term frequencies in section
B.4. Throughout this thesis I will adopt a stance that is compatible with such a
view. I discuss this stance further in section B.8.

B.7 Algorithmic probability
There are many similarities in spirit between the “algorithmic” approach to proba-
bility theory and the “logical” approach, however the di�erence in perspective is
large enough that I think it worth covering them separately. In the logical inter-
pretation we encountered attempts, such as Carnap’s, to understand probability in
terms of the logical structures through which we can express relations between
sentences. This required a formal language capable of describing everything of
interest about the world; a formidable task, and one hampered by the apparent
lack of a unique solution. The algorithmic probability approach is very similar,
except that rather than approaching the problem from a logico-linguistic angle,
it is approached from a computational angle. The general approach began with
the work of Solomono� (1964), so I too will begin here. However Solomono� ’s
original work goes into a number of issues I do not wish to talk about here, and
the notation is a little arcane, so I will more closely follow the exposition of the
idea given by Sunehag and Hutter (2013).
Solomono� ’s inductive system focuses on prediction, rather than attempting

to determine the probability that this or that sentence is true, as is the aim in
logical probability. To do this in a general way, one needs to formalise the notions
of data and of hypotheses, with data being the target of our predictions. The

7Though there exist some interesting programs to re-think quantum probabilities from the
subjectivist point of view, e.g. Caves et al. (2002).
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choice made here is to translate all data into binary strings, and all hypotheses
into algorithms which attempt to generate those binary strings. Since algorithms
too can be represented by binary strings, a correspondence can be drawn between
the raw binary data, and the “compressed” form of the data, i.e. the generating
algorithm. Ultimately, shorter algorithms will be considered ‘better’ explanations
of the observed data, and therefore more likely to correctly predict future data. To
formalise these notions we need to introduce the concept of a Turing machine.

B.7.1 Turing machines

A Turing machine is a hypothetical machine designed to provide a formal de�ni-
tion of the notion of computability. It is essentially an abstraction of the modern
digital devices we call computers. They are a fundamental notion in theoretical
computer science and a vast literature describing their properties and abilities
exists, but here we shall only be concerned with a few of their basic properties.
At its most basic level, a Turing machine is simply a function mapping binary

strings (to be de�ned) to binary sequences (whichmay be in�nite). ‘Internally’, this
machine has several components it uses to perform the mapping; unidirectional
input and output tapes, read/write heads, a bidirectional work tape, and a �nite
state machine which determines the next action of the machine based on the
symbols under the read heads on the input and work tapes. The tapes are simply
sequences of symbols which can be read or written by the read/write heads, with
the input tape containing the input binary string to the machine, and the output
tape contained the output binary sequence, i.e. the result of the computation. The
input binary string may in general contain symbols other than zero and one, which
instruct the machine to perform special actions, however it is possible to encode
all such special actions in binary if the set of valid sequences is restricted to what
is called a ‘pre�x-free’ set. We will not be concerned with the details of this here.
Turing machines are not unique; the result of performing a computation on

some input string will depend on the details of the setup (which may di�er a little
from the description above between various kinds of Turing machines), and on the
way the �nite-state machine performs operations. If, however, a Turing machine
possesses a su�ciently powerful �nite state machine then it will be possible for
it to ‘emulate’ any other Turing machine. Such a su�ciently powerful Turing
machine is known as a universal Turing machine (UTM). That is, if for some
input string (program) pa there is a Turing machine T1 for which the output
T1(pa) = x, then if T2 is a UTM then there exists some second string pb such that
T2(papb) = T1(pa) = x.
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The next concept we require takes us back to Kolmogrov, with whomwe began
the journey of this chapter.

B.7.2 Kolmogrov complexity

Also known as the Kolmogrov-Chaitin complexity, or algorithmic complexity, the
Kolmogrov complexity formally de�nes the “randomness” of a string. Intuitively,
there is something more ‘random’ about the string “0011000101010011” than the
string “0101010101010101”, though these strings are both equally probably under the
hypothesis of being generated by say coin �ips. Kolmogrov complexity identi�es
this intuition as arising from our recognition that the latter string can also be
represented as “01 8 times”; that is, it admits a short English-language description.
Since we do not want to deal with natural languages, we can go further and recog-
nise that this short description suggests that a simple program could generate the
second sequence, while it is not as clear that this is possible for the �rst string. We
thus want to search for the shortest program than can generate each string, and
associate that with the complexity of the string.
This association requires a reference “programming” language, but this can be

identi�ed with a particular choice of UTM (assuming the reference language is a
‘Turing complete’ language). Relative to every UTM T , then, there exists a shortest
input string p which will produce some output string x from that machine. We
call p the minimal description d of x, i.e. let d(x) = p. The length of d(x) (i.e. the
number of bits in the description) is the Kolmogrov complexity, i.e. K(x) ≡ ∣d(x)∣.
As we have just seen, the Kolmogrov complexity depends on some reference

language, or UTM, however there is a powerful sense in which it is ‘universal’,
which derives from the fact that the reference machine is a universal computing
machine. That is, since every UTM can be “programmed” to behave like any other
UTM by a �nite program string, the maximum di�erence between the Kolmogrov
complexity relative to any two machines can be no greater than the length of the
shortest program that ‘translates’ between the two. An invariance theorem can
thus be de�ned, whose proof we have just sketched:

Theorem 7. If K1 and K2 are the Kolmogrov complexity functions relative to UTMs
T1 and T2, then there exists a constant c, depending only on T1 and T2, such that

∣K1(x) − K2(x)∣ ≤ c (B.17)

The constant c may be very large, so for short strings the dependence on reference
machine may be large, however since c is independent of the input string it will
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be negligible if the input string is su�ciently long. In such a case the Kolmogrov
complexity will become independent of the reference machine.
Unfortunately, the Kolmogrov complexity itself is not a computable function,

due to the halting problem (it is not possible to know in general if any given
program p will ever halt when run on some machine T). This means there is no
program s that takes a string x as input and produces K(x) as output, which places
strong restrictions on its usability in practice.

B.7.3 Solomono� induction
We can now outline Solomono� ’s system. Imagine you are trapped in a featureless
room, and the only thing present is a box with a red light, a green light, and a
button. When you press the button, one of the lights �ashes onces. Upon pressing
the button many times a sequence of red and green �ashes is obtained. Based
only on this information, what prediction should we make for the next �ash in
the sequence? If we let the so-far observed sequence be x, and the sequence upon
observing the next �ash be ax, then the probability of the next �ash being a given
x is

Pr(a ∣ x) = Pr(ax)
Pr(x) . (B.18)

We can de�ne loss functions and so on to describe the costs to us for being wrong in
various ways, but essentially the prediction task reduces to the matter of de�ning
a probability measure over all possible sequences of �ashes, i.e. their ‘a-priori’
probability. Solomono� de�nes a ‘universal prior’ m(x) for this purpose:

m(x) ≡ ∑
p∶T(p)=x

2−l(p), (B.19)

where the sum is over all (“halting”) programs p for which some reference UTM T
produces the output x. The sum is bounded if the allowed T are restricted to pre�x
UTMs (where pre�x means the allowed input strings form a pre�x-set). l(p) is
simply the length of the program p. This prior is strongly related to the Kolmogrov
complexity, because the largest term in the sum corresponds to the length of the
shortest program that produces x, that is, it is 2−K(x). By the Coding Theorem of
Levin (1974) we can write the relationship as

− logm(x) = K(x) + O(1). (B.20)

Since every string can be computed by at least one programon T ,m(x) assigns non-
zero probability to all programs, that is, all computable hypotheses. Furthermore,
the simplest strings receive the highest probability, while the most complex receive
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the lowest probability, codifying Occam’s razor. Due to the universality properties
of the Kolmogrov complexity, the Solomono� prior also gains an independence
from the reference machine T for su�ciently long strings, justifying the ‘universal
prior’ label. As we saw in section B.3, logical approaches to probability su�ered a
similar dependence on reference language, but here we see that the dependence is
not severe. Perhaps ultimately a similar property holds in the logical case, though
I do not know of any current proof of such.
In the end, the Solomono� prior is just as uncomputable as the Kolmogrov

complexity to which it is related. It is therefore not possible to use in practice.
However, various formal results about it have been proved, of particular interest
being the prediction error theorem (Solomono�, 1978), which shows that the
total summed expected squared prediction error is bounded by a constant, and
so as the learned data becomes large, then, if the events are distributed according
to any computable measure, the predictions will converge to that measure with
probability one. Solomono� ’s system will thus learn to correctly predict any
computable sequence, with a minimum of data. Due to its uncomputability this
cannot be achieved in practice, but it is a su�ciently attractive property that
attempts to approximate Solomono� ’s system with something computable are
an active area of research. Two programs in this direction are the minimum
description length (Rissanen, 1983) and minimum message length (Wallace, 2005)
frameworks. While these are each fascinating in themselves, I have so far been
unable to �nd convincing ways that their results may be used in the context of the
work of this thesis, and so I will end the discussion here.

B.8 Approach taken in this thesis
The philosophy of probability is central to our understanding of the world around
us and to the practice of science itself, and the review we have just undertaken is
but a brief foray into this �eld. It is, however, enough that I may now explain the
general use of these ideas which I make in this thesis.
Ultimately, I will be concerned with questions of model selection, or model

comparison; with understanding what sorts of propositions about models, or
indeed the world, might permit a probabilistic assessment. I see the goal of science
as being not simply to organise our knowledge of the world, but to predict things.
If we are to place any con�dence in a prediction of any kind, it seems to me that it
must be based upon our degree of belief that some theory or another is going to
be correct in its prediction.
This view, it seems, might be criticised by observing that such a degree of belief
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must rely on an inductive inference of some kind, which Hume famously argued
cannot be based on ‘reason’ (since any belief in induction can only be based on
an inductive argument; an argument powerful enough that many have felt that
empiricism must be limited and can only be justi�ed by appeal to metaphysical
principles8), and which Popper likewise denied was rational. However, Hume
went on to permit inductive reasoning on the basis of it being a ‘matter of habit’,
and Popper too permitted it via the metaphysical principle of ‘the uniformity of
nature’, which he says we have little choice but to accept without justi�cation. I
hope to achieve a pragmatic perspective, so it seems reasonable to me to simply
take this for granted, since few philosophers, and no scientists, seriously question
the validity of learning from past experiences, di�cult though it may be to justify.
Given this goal, and considering the practical di�culties of dealing with the

‘logical’ approaches to probability (even were to believe them to be ‘on the right
track’), I see little choice but to adopt as our primary tool the ‘subjective’ approach
to probability. I will therefore consider all statements of probability to be quanti�-
cations of the degrees to which some rational agent believes in some given logical
proposition, in the light of speci�ed empirical observations, and based ultimately
upon various other subjective considerations. Various subjective judgments about
a given matter will in general be possible, leading to di�erent probability assess-
ments, however it will turn out that this is simply a matter of considering di�erent
conditional probabilities, which are of course only as valid as the conditions, or
premises, on which they are based. Robustness of conclusions under variation of
these premises will be seen to be an important method of assessing the reliability
of predictions, though not one that lies outside the usual probabilistic.
Though I am adopting this subjectivist position, I think that the arguments put

forth by advocates of the ‘logical’, ‘algorithmic’, and ‘propensity’ theorists all have
seriousmerit, and they greatly in�uencemy subjective attitude. Popper seems to be
at least approximately correct in claiming that certain kinds of events, particularly
quantum events, have some real physical ‘propensity’ to occur or not. The logicians
seem correct in claiming that the logical structure of a sentence has some important
bearing on the probability that it is true. The information theorists seem to be
correct in claiming that the simplest algorithms, or hypotheses, or propositions
–which are not ruled out by the data– are the ones which should carry the most
weight in our predictions (and this seems related strongly to Popper’s claims
that the most falsi�able theories are the most scienti�cally useful). The frequency
theorists are of course correct that long run frequencies are importantwhenmaking
inferences (though this seems to be the property most easily subsumed into other

8According to Popper (1962, sec. X)
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paradigms). Many of these considerations can ultimately be absorbed into the
subjectivist theory, in those parts of theory where all of the subjectivity enters;
namely, in the choices of hypotheses to consider and their prior probabilities. It
is too formidable a task for me to attempt any such formal integration, so I ask
that we satisfy ourselves for now that such considerations may be among the most
reasonable foundations for our otherwise subjective opinions about priors.
Another way to view the question may be this. In most scienti�c inference,

frequentism remains the dominant statistical paradigm. One reason for this is that
the fundamental questions of probability are very hard, and little consensus has
been reached on them. Yet all approaches recognise that frequency considerations
enter somewhere. The scientist can thus adopt a frequentist methodology and feel
secure that it can be, at least roughly, justi�ed by various paradigms in various
ways, even if some paradigms propose other techniques as being more optimal.
In the area of particle physics, however, it seems to me that certain fundamental
questions demand that we look beyond simple frequentism, the most obvious
being questions of “naturalness” and �ne-tuning, which I shall return to in chapter
3. The most conservative ‘next step’, it seems to me, is to adopt the subjectivist
theory of probability. Even if we believe that there are ultimately objective facts
in which we may root assessments of prior probabilities and so on, I �nd the
subjectivist arguments that such things as numerical degrees of belief are indeed
fully well de�ned and meaningful to be quite convincing. I see this theory, then,
as a tool which we may use to explore what is and is not reasonable to believe
about our models, and in turn to understand how various assumptions about those
models in�uence our beliefs.

B.8.1 What is the probability of a model?
In textbook Bayesian model comparison, which I will interpret in a subjectivist
light, the analyst is generally encouraged to consider probability ratios of the
following form:

Pr(H1∣D)
Pr(H2∣D) = Pr(D∣H1)Pr(H1)

Pr(D∣H2)Pr(H2) (B.21)

which, if H1 and D are events or propositions of some kind, follows trivially from
Bayes’ theorem, or the conditional probability rule. Pr(Hi ∣D), it is said, is the
posterior probability of hypothesisHi in the light of D, Pr(D∣Hi) is the probability
of the data D assuming it is generated according to Hi , and Pr(Hi) is the prior
probability of Hi , that is, the probability assigned to it prior to learning D. Almost
every textbook says something along these lines, and for the simplest applications,
it is generally adequate. If our hypothesis is a proposition such as “this is a fair coin”
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or “this is a standard, well-shu�ed deck of cards” then the operational de�nition
of the proposition is quite clear, and we well understand what it means for it to
be true or false (although even here we could begin to quibble about the precise
meanings of ‘fair’ or ‘well-shu�ed’). If we move to something like “drug A reduces
the symptoms of condition B more e�ectively than a placebo” then the di�culties
begin to get more severe, for we start to have more problems knowing the meaning
of terms such as ‘reduces the symptoms’ and so on, but with careful work then
it is still possible to de�ne what we mean su�ciently well. Finally, if we move to
full scienti�c models, such as, say, Newton’s model of gravity, then we now start to
have a big problem describing what our ‘hypothesis’ really is, and whether it is a
thing to which we might ever actually expect to attach the label “true”.
If we have some data D which we suppose might be predicted by our model

M (supposing for now that there are no free parameters), then it is easy enough
to compute Pr(D∣M), since we can perfectly well imagine an idealised world in
whichM is a fundamental law, and in which D occurs according to that law. But,
although the model may be described as being a kind of universal law, I think it
is also clear that we do not realistically expect the model to apply universally, for
all time, for all imaginable future tests. In fact we probably are inclined to say the
the probability of the model passing all future tests is precisely zero, as implied by
George Box with his maxim “all models are wrong, but some are useful” 9
So if we are perfectly aware that our models are wrong, what could we possibly

mean by Pr(M∣D)? Is this not simply zero? According to frequentist statistics
Pr(M∣D) is indeedmeaningless, but that is not the same as saying it has probability
zero. Most pragmatic Bayesians, I think, generally just use Pr(M∣D) as an empirical
tool for ranking models, rather than try to explain what it means. As a model
comparison tool it does indeed seem to have useful properties, but I do not think
this absolves us of the need to explain what we are doing more carefully.
If we take a model completely seriously, particularly models of fundamental

physics, which generally propose universal generalisations of phenomena and
o�en carry a number of metaphysical claims, then I think we would indeed have
little choice but to assign them, at best, “close to” zero prior probability. If this
is not subjectively obvious, consider an argument due to Keynes (2007 [1920],
chap. XIX), which enforces some basic logical consistency constraints upon prior
probabilities. I relate the details of this argument in appendix B.A, however the

9I could not obtain a copy of his book with Norman Draper “Empirical Model-Building and
Response Surfaces” from which this most common form of the maxim allegedly arises, but he
advocates much the same thing in Box (1976): “Since all models are wrong the scientist must be
alert to what is importantly wrong. It is inappropriate to be concerned about mice when there are
tigers abroad.”
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main conclusion is that increasing the scope of a generalisation can only decrease
its probability, or leave it unchanged. The example used is that “All swans are white”
can only be equally or less probable than “All European swans are white”, which
in turn can only be equally or less probable than “All swans in the local park are
white”. Popper also makes this observation (Popper, 2005 [1935], sec. 83, pg 271),
though his position is in fact opposed to ours. He makes the case that the most
probable propositions are, reinterpreting Keynes’ conclusions, the most trivial and
useless because they are ‘hedged’ so much, going as little as possible beyond what
is empirically established; in the end pure tautologies are the most probable of
all propositions. He advocates instead that science should pursue the most bold
theories, because they are simultaneously the most powerful and most falsi�able. I
am not against this spirit, since from a Bayesian perspective it seems that Popper’s
strategy, taken as a regime for choosing what theories to test, is a good one in terms
of enhancing information gain, but it seems to con�ate two purposes of science.
Rapid experimental progress and gain of knowledge is certainly very desirable, but
making believable predictions must surely be just as desirable. For the every-day
application of science in the world, we certainly want to use those models whose
predictions we trust the most, those we think to be the most probable. We do not
want to use the most boldly speculative model in such a case.
Despite this, it seems to me that Popper’s falsi�ability criterion has more to do

with probability than he thought. Many of the most bold and falsi�able theories
must surely be among the simplest, since the simplest theories (by some measure
similar to Solomono� ’s (sec. B.7) or Carnap’s (sec. B.3)) must permit the least
amount of “�exibility” or “hedging”, making them most easily falsi�ed; though
of course we can easily come up with absurdly complex theories which are not
currently falsi�ed, but which we will be able to falsify in short order by the most
casual of observations10. By these measures they must also be given the highest
apriori probability. I don’t think this is inconsistent with Keynes’ conclusions,
though; these most falsi�able theories are the most probable apriori, but that does
not mean that themost apriori probable theory must outweigh in any signi�cant
way the entire mass of more complex hypotheses. On a one-to-one basis a simply
theory may be more believable than any single more complex theory, but despite
this we may believe that a better theory will be found somewhere among the more

10Just to give an example; suppose I claim that there is a pink unicorn standing behind you.
This is an absurd theory, but it is very bold and highly falsi�able. Popper of course is proposing
the selection of theories by a process of attrition, so that the survivors are the most robust, but
among the surviving theories of any set of experiments will be many which are as absurd as this
pink unicorn theory, even though we think such things to be so improbable that we never bother
to consider them in the �rst place.
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complex ones, in the end. Yet when we make predictions about phenomenon we
can do no better than to weight the simplest theories the most, as Solomono�
would have it. This too we will revisit when we consider model averaging, in
chapter D.
With these thoughts in mind, it seems clear that that universal generalisations

implicit in a model like the Standard Model of particle physics are merely for
convenience, that they are useful simplifying conjectures. The Standard Model
is well tested in many experiments below the TeV scale and we are happy to take
it as an excellent description of this category of phenomena11, but we are much
more tentative about its ability to fully explain the collisions at the CERN Large
Hadron Collider. Indeed the hope is that phenomena beyond the predictions of
the Standard Model will be observed, allowing us to discriminate between the
many proposed theories for physics at these and higher energy scales.
To me this seems similar to the more simple relationship that exists between

“All swans in the local park are white” and “All swans are white”. In both cases
our “model” of swans is that they are white. We will be happy to accept the �rst
proposition as true if we go to the local park and observe that all the swans there
are indeed white. If we do this for many days this will even convince us that “All
swans that will be in the local park tomorrow will be white” is highly probable.
Yet if we go somewhere far from this park, then while it may be our tentative �rst
hypothesis that all the swans we see there will also be white, we will not think this
anywhere near as probable as similar propositions about swans in domains where
we have made many observations.
It therefore seems tome that if we really want to seriously consider propositions

about the Standard Model in terms of subjective probabilities, then we are going to
have to be rather more speci�c about what those propositions are. The Standard
Model itself is not really a proposition in itself; it is a collection of relationships
which we propose exist between certain objects in the world. That is, I suggest
that the exact domain of data to which we intend to apply the Standard Model as
an explanation has an impact on the probabilities we are talking about. By this I
mean that simply setting our hypothesis proposition “M” to the value of “Standard
Model of particle physics” is to leaveM completely ill-de�ned. We must go further,
and at very least consider propositions more like “The Standard Model of particle
physics accurately describes all physical phenomena in the observable universe
below the energy scale of X TeV”. This is now a proposition to which we may
more comfortably assign a truth value. We might still wonder about the meaning
of “accurately”, and the phrase “all physical phenomena” may be a poor inclusion

11setting aside subtleties such as neutrino masses for now



B.8 Approach taken in this thesis 199

since the existence of neutrino masses and dark matter immediately falsify the
proposition, but I think it is a move in the right direction.
Sorting out this matter is perhaps a formality, but I think it is important given

the uses we wish to make of the probability calculus, particularly given common
attacks that are made upon Bayesian methods, such as that it makes no sense
to talk of the probabilities of models, or of the “true” model. I agree completely
with such criticism. But this does not mean Bayesian methods fundamentally
make no sense. It means we must re�ne the questions we ask. Models do not
“have” probabilities; models encode information about empirical observations.
However, many statements aboutmodels, or about the predictions of models, do
have probabilities. As a general rule, if we want our probabilities to make any sense,
we should think about how, as least in principle, we would determine whether the
statement in question was true or false. Going further we may demand that an
operational procedure exists which determines the truth value of the proposition.
When we ask what the probability of the proposition is, then, we are really asking
a question about what we think the outcome of its de�ning operational procedure
would be, if we were to carry it out. Keeping such an idea in mind will help us to
avoid asking questions about potentially meaningless propositions. The idea is
strongly related to the “operational subjectivist” position advocated by Lad (1996),
and I shall investigate its implications in chapter D.
This brings our review of the philosophy of probability to a close. It is my

hope that it helps to place the questions asked in this thesis in a broader context,
illuminates the serious di�culties involved in asking such questions, and o�ers
some hope that they are not meaningless.
In the next chapter we shall turn to more down-to-Earth matters, and review

the basic frequentist statistical tools used in the analysis of models in high energy
physics. Though I call them frequentist, since this is their usual motivation, they
can of course be reinterpreted in a variety of ways, including the operational
subjectivist framework which I am suggesting we adopt.
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B.A Appendix: Logical constraints on the
probabilities of generalisations

In this appendix I will relate an argument due to Keynes (2007 [1920], chap. XIX)
which helps to illuminate the problem with universal generalisations, which many
scienti�c models super�cially appear to be (though few may seriously think of
them in this way). As a corollary we will see some logical constraints that exist on
generalisations.
To begin, let us consider two propositions:

(1) All swans are white
(2) All European swans are white

There is an intuition that (2) is a-priori more probable than (1), largely because
there are more potential observations that could falsify (1) than (2). Indeed Popper
(1962) claims falsi�ability is always inversely proportional to a-priori probability
in this way; I am not convinced that this is in fact always true, but I think in this
case it is fair to say that it is. The discovery of a black swan in Australia falsi�es (1)
but not (2).
We can show that for propositions of this form that indeed the broader gen-

eralisation is always less probable. To see this, consider the three propositional
functions

(3) f1(x) ≡“x is white”
(4) ϕ1(x) ≡“x is a swan”
(5) ϕ2(x) ≡“x is European”

Furthermore, let us de�ne a generalisation as a compound proposition of the form

(6) g(ϕ, f ) ≡“for all x where ϕ(x) is true, f (x) is also true”
That is, a generalisation asserts an association between propositional functions.
From our three propositional functions, then, let us form the two generalisations

(7) g(ϕ1, f1) =“for all x where x is a swan, x is white”
(8) g(ϕ1 ⋅ ϕ2, f1) =“for all x where x is a swan and x is European, x is white”
where the dot speci�es the logical conjunction of the two adjacent propositions.
The following relationship between generalisations holds if ϕ1 and ϕ2 are indepen-
dent:

(9) g(ϕ1, f1) = g(ϕ1 ⋅ ϕ2, f1) ⋅ g(ϕ1 ⋅ ϕ2, f1)
(where ϕ2 is the logical negation of ϕ2). If this is not clear, it may be seen fairly
easily by considering it plain English:
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(10) “all swans are white”=“all European swans are white” and “all non-European
swans are white”

The probability that these propositions are true, relative to some primitive evidence
h, is written as

(11) P (g(ϕ1, f1)∣h) = P (g(ϕ1 ⋅ ϕ2, f1)∣h)P (g(ϕ1 ⋅ ϕ2, f1)∣h)
from which it is clear that

(12) P (g(ϕ1, f1)∣h) ≤ P (g(ϕ1 ⋅ ϕ2, f1)∣h)
that is, that it is less probable on h that all swans are white than it is that just the
European swans are white (or at best equally as probable). The general lesson is that
restricting the scope of a generalisation increases its probability. A physics example
may be that it is more probable that the Standard Model accurately describes all
fundamental interactions in collisions of energies up to 8 TeV in the centre of
momentum frame, than it is that it accurately describes such collisions up to 100
TeV, and even less probable that it describes them up to arbitrarily high energy.
As well as altering the comprehensiveness of the conditions ϕ, we may consider

the e�ect of altering the scope of the conclusions f . Consider adding another
conclusion, e.g.

(13) f2(x) ≡“x can �y”.
The relevant relationship between generalisations, for independent f1 and f2, is
then

(14) g(ϕ1, f1 ⋅ f2) = g(ϕ1 ⋅ f1, f2) ⋅ g(ϕ1, f1)
that is,

(15) “all swans are white and can �y”=“all white swans can �y” and “all swans are
white”

so that the corresponding probabilities relative to h are

(16) P (g(ϕ1, f1 ⋅ f2)∣h) = P (g(ϕ1 ⋅ f1, f2)∣h)P (g(ϕ1, f1)∣h)
giving the inequality

(17) P (g(ϕ1, f1 ⋅ f2)∣h) ≤ P (g(ϕ1, f1)∣h)
thus demonstrating that broadening the scope of the conclusions can only decrease
the probability that the generalisation is true.
Returning to the case of scienti�c models, then, it appears to be the case

that we should be less inclined to believe that a model describes a broad range of
circumstances than that is describes somemore restricted set of circumstances. The
relationships above, while they do not prove it, certainly suggest and are compatible
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with the notion that more general and bold hypotheses are less probable. Popper
(1962) too recognised this relationship, though he maintained that the falsi�ability
of a hypothesis was a greater virtue than was its probability of being true, and that
it was those general and bold hypotheses that were the most falsi�able, precisely
because they are the least probable. Indeed that may be the appropriate approach
to take so far as fruitfully exploring the space of hypotheses and refuting them goes,
that is, it may facilitate a more rapid gain of information about those hypotheses,
but when it comes to predicting phenomena I think that the above lessons remains
valid and valuable.
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In chapter B I argued that although there are serious problems with the frequentist
interpretation of probability from a foundational perspective, frequencies emerge
as an important concept in essentially all interpretations of probability. There is
therefore undeniable utility to the tools of frequentist statistical analysis that have
been developed throughout the 20th century, though we should always keep in
mind their limitations. I will therefore use this chapter to describe those tools
which are most commonly used in high energy particle physics, and which will
be needed for the discussions in chapter D and elsewhere. The review is not
comprehensive, and the focus is placed on goodness of �t tests. These are of course
quite central to parameter estimation and limit setting procedures, but I do not
cover these latter topics here.

C.1 Notation
Before getting in to things, I will lay down some notation. There is not a great need
to work in a full measure-theoretic framework, though we will need to manipulate
Dirac delta “functions”, so we will stick to a formulation using probability density
functions:

Probability density function (pdf)
X is a continuous random variable if its probability distribution can bewritten
in terms of a probability density function fX(x), such that

Pr(a ≤ X ≤ b) = ∫ b

a
fX(x)dx . (C.1)

We will deal a lot in this section with likelihood functions, so let us de�ne these
next:

Likelihood function

203
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Let X be a continuous random variable which admits a probability density
function f , which depends on parameter(s) θ. That is, let fθ(x) describe a
family of possible density functions for X, indexed by θ. Then, considered
as a function of θ for some �xed outcome x, fθ(x) can be re-imagined as a
likelihood function L(θ∣x), that is

L(θ∣x) ≡ fθ(x). (C.2)

Importantly, when working in a frequentist framework, fθ(x) is not a condi-
tional probability density, as an alternate notation fX∣Θ(x∣θ) would suggest. This
is because in the frequentist framework θ is not associated with any random
event/variable Θ. In the Bayesian context we can and do interpret likelihood func-
tions as conditional probability densities, and can utilise the probability density
function (pdf) notation to write likelihood functions as Pr(x ∣ θ), but this is not
permissible in the frequentist context, so I will not use such notation in this chapter.
Also important to recall is the way in which density functions transform under

changes of variable. Note that the probability densities only change when the
random variables are transformed, not any indexing parameters, because these
do nothing more than specify which density function we are talking about. Let
Y = g(X) de�ne a continuous random variable Y in terms of some function of
our original random variable X. Let the density function for Y be fY(y) (with the
density function for X being fX(x) as before). fY(y) and fX(x)must then obey
the probability-conserving property

∣ fY(y)dy∣ = ∣ fX(x)dx∣ , (C.3)

from which it can be shown that the density functions are related as

fY(y) = fX(x) ∣dxdy ∣ = fX(g−1(y)) ∣dg−1(y)dy
∣ , (C.4)

where the derivative generalises to a Jacobian in the multivariable case.

C.2 The χ2 distribution
Ubiquitous in statistics, the χ2 distribution can be obtained in many ways, but it is
most o�en de�ned as the (set of) distribution(s) produced by adding together the
squares of k independent standard normal random variables Z1, . . . , Zk. That is,
de�ning a new random variable Q as

Q ≡ k∑
i=1

Z2i , (C.5)
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Figure C.1: Normalised histogram of 10000 samples of Q, where Q is comprised of
the sum of the scaled squared values of 10 normal random variables Xi (where the
means and standard deviations of the Xi were chosen by sampling from uniform(-
10,10) and uniform(0,20) respectively). Overlaid is the density function of the χ2
distribution with k = 10 degrees of freedom
then Q is distributed according to the chi-squared distribution with k degrees of
freedom,

Q ∼ χ2k . (C.6)

If we are interested in random variables that are normally distributed, but not with
µ = 0 and σ = 0 as required for a standard normal, i.e. we have Xi ∼ N (µi , σi)
instead of Zi ∼ N (0, 1), then we can relate these to χ2k simply by rescaling them,
i.e.

Q ≡ k∑
i=1

(Xi − µi

σi
)2 . (C.7)

This Q is again distributed as χ2k.

C.3 χ2 tests
In high-energy physics it has become popular to assess the goodness-of-�t of
a model using so-called “χ2” tests. In statistics such a test is any in which the
sampling distribution of a chosen test statistic is χ2 when the null hypothesis is
true. The statistic Q de�ned above is such a statistic, so it can be used in a “χ2”
test. Formally, one o�en chooses a signi�cance level α at which to “reject” the null
hypothesis, e.g. α = 0.05, such that the probability of rejecting the null hypothesis
when it is actually true (a so-called “Type I” error, or “False positive”) is equal to
this signi�cance level.
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In the case of a χ2 test, one conventionally chooses the rejection criteria such
that if the observed value of the test statistic Q = qobs is too large, then the null
hypothesis is rejected. To do this we can de�ne a p-value p such that

p ≡ Pr(Q ≥ qobs) = ∫ ∞

qobs
χ2k(q)dq. (C.8)

Here p is the probability of observing a test statistic value equal to or larger than
we actually did, if χ2k is the true distribution of the test statistic Q (this being the
null hypothesis). If we choose to reject the null hypothesis when p < α, then α is
the nominal Type I error rate, or nominal signi�cance1. When no formal rejection
criteria is set in advance then p itself may simply be reported as the observed
signi�cance level (i.e. the signi�cance level we would have had to have set as our
threshold in order to reject the null hypothesis on the basis of the observed data).
In high-energy physics it has become conventional to transform p-values into

units of “sigmas”, which correspond to the standard normal two-tailed probability
matching p. That is, if the p-value corresponding to an observed test statistic value
qobs is pobs, then the signi�cance in units of “sigmas” is given by nσ , where nσ is
de�ned by

pobs ≡ 1 − Pr(−nσ < Z < nσ) = 2∫ ∞

nσ
N (0, 1)(z)dz

= 2S(nσ), (C.9)

i.e.

nσ = S−1(pobs/2), (C.10)

where S(x) is the complement of the cumulative distribution function (i.e. the
survival function) of the standard normal distribution, i.e. S(x) = 1 −Φ(x), and
S−1(p) is its inverse. nσ = 1 corresponds to pobs ≈ 0.32, nσ = 2 to pobs ≈ 0.05, etc.
A popular variant of Q is the test statistic Q/k, or “chi squared per degree of

freedom”. This has the density function f (q/k) = kχ2k(q/k), which conveniently
has amean of 1, lending itself to use as a goodness-of-�t criterion. That is, ifQ/k ∼ 1
then the null hypothesis is taken to �t the data “pretty well”. This is only a loose
criterion, however, since the variance of Q/k is 2/k; that is, it depends on k. If k is
large then even very small deviations of Q/k from 1 may allow the null hypothesis
to be ruled out at high signi�cance (�g. C.2). Q/k is the average (scaled) squared
deviation from the mean of the X1, . . . , Xk normal random variables involved in

1I say nominal because the actual error rate or signi�cance may be di�erent in real trials. In
everything we do here, however, we will assume that the real world behaves exactly according to
our models and will not worry about this distinction.
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Figure C.2: The distribution of Q/k (i.e. χ2k/k) has a mean of 1 (though median
less than 1) and variance 2/k. The goodness-of-�t rule of thumb that Q/k be
“about 1” for a good �t is thus loosely justi�ed, but the allowed deviation from 1 is
strongly dependent on the number of degrees of freedom k. The �gure shows the
survival function of Q/k for various values of k; from this we see that for large k
the permissible deviation from 1 is very small. The table shows the corresponding
statistical signi�cance of a test value of Q/k = 1.5 for various k, expressed as both
a p-value and a number of “sigmas” (as described by eq. C.10).
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Figure C.3: Normalised histograms of 10000 samples of Q/k, where Q is a χ2k
distributed random variable, that is, we are plotting χ2 per k degrees of freedom,
with k as indicated in each plot. Overlaid is the density function of the normal
distribution with µ = 1 and σ = √

2/k, which is the limiting distribution of Q/k
for large k. The convergence to this distribution is not particularly fast, as the plots
indicate.

the �t, so it may seem odd that a �t may be bad even if the average deviation is very
close to 1σ , but when there are many random variables in the �t then it becomes
extremely improbable that the average deviation should be di�erent to 1 when the
null hypothesis is true, as indeed is expressed by the variance of Q/k being 2/k.
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C.4 Likelihood ratio tests
Basic χ2 tests as described in the previous section are useful when attempts to �t
or reject models for data “one at a time”, but for doing more general data analysis
tasks, such as �tting parameter values and computing con�dence intervals, a more
�exible test is required. One of the most popular of such systems in particle physics
is the “likelihood ratio” test. In addition, it is o�en impossible to construct a test
statistic which is χ2 distributed on the basis of a single model, severely limiting
the situations in which such a simple goodness of �t test can be applied.
Unlike the χ2 test described above, a likelihood ratio test compares twomodels;

it therefore cannot be used to reject a single isolated hypothesis as can the χ2 test.
Instead, one generally considers a null hypothesis H0 and attempts to reject it in
favour of an alternate hypothesis H1. To perform the test, one generally constructs
a test statistic similar to the following:

Qλ(x) = −2 logΛ(x) (C.11)

with Λ ≡ L(H0∣x)
L(H1∣x) .

If we let x be the realised value of a random variable X, which has the distribution
function fX;H0(x) = L(H0∣x) when H0 is true, and fX;H1(x) = L(H1∣x) when H1
is true, then we can write the statistic Λ more rigorously as

Λ(x) = fX;H0(x)
fX;H1(x) . (C.12)

As in the case of the χ2 test, one sets a signi�cance level α at which H0 is to be
rejected in favour of H1, i.e.

pcrit. ≡ α ≡ Pr(Qλ ≥ qcrit.), (C.13)

where qcrit. is the threshold value of Qλ above which we reject H0. The distribution
of Qλ depends of course on the distributions fX;H0(x) and fX;H1(x), and may be
di�cult to determine in practice. O�en one resorts to numerical techniques to
estimate this distribution, such as Monte Carlo techniques.
One of the most useful uses of the likelihood ratio test is to compare composite

hypotheses (i.e. models with free parameters) when they are nested. To do this,
suppose that we have a family of density functions fX;θ(x) = L(θ∣x). Let H0 be the
hypothesis that θ ∈ Θ0, where Θ is the full set of possible parameter values and Θ0
is some subset of these, and let H1 be the hypothesis that θ ∈ Θc

0 (where Θ0 ⊂ Θ,
Θc
0 ⊂ Θ, and Θc

0 is the complement of Θ0 wrt Θ). The useful ratio to form is then

Λ(x) = sup{L(θ∣x); θ ∈ Θ0}
sup{L(θ∣x); θ ∈ Θ} , (C.14)
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where the supremum is taken over the null hypothesis set Θ0 in the numerator
and the full set Θ in the denominator. This statistic is usually called the pro�le
likelihood ratio, since the supremums “pro�le”, i.e. maximize, the likelihood over
θ within the permitted set. The denominator returns the maximum likelihood
possible by varying θ over the full domain permitted (Θ), and so may also be
called the maximum likelihood, and the ratio a maximum likelihood ratio.
This can be written in a form more familiar to physicists by taking θ to be a

vector of parameters, some of which we are not interested in (so-called “nuisance”
parameters) i.e. θ = {γ,ω}, where we are not interested in ω. For our null hypoth-
esis we then �x γ to some value of interest and pro�le out the ω. Λ can then be
written as

Λ(x) = L(γx , ω̂∣x)
L(̂̂γ, ̂̂ω∣x) , (C.15)

where the hats indicate pro�ling ω for �xed γ = γx in the numerator, and full
pro�ling to the maximum likelihood estimator in the denominator. Our null
hypothesis is then that γ = γx , with the alternate being that γ is some other value.
A very useful theorem due to Wilks tells us that for hypothesis nested this way,
Qλ is asymptotically distributed according to χ2k, where k is the di�erence in
dimensionality between Θ and Θ0. If we had no nuisance parameters, k is just the
number of free parameters in the model. The signi�cance level at which γx can be
rejected is then simply

p ≡ Pr(Qλ ≥ qλ) = ∫ ∞

qλ

χ2k(q)dq, (C.16)

as before. This correspondence invites a certain abuse of notation. Let us de�ne

χ2null ≡ −2 logL(γx , ω̂∣x) (C.17)
χ2min ≡ −2 logL(̂̂γ, ̂̂ω∣x) (C.18)
∆χ2 ≡ χ2null − χ2min = Qλ(x). (C.19)

This notation is convenient, but it is important to note that Wilks’ theorem only
tells us that ∆χ2 is χ2k distributed under the null hypothesis (and even then only
asymptotically, which o�en needs to be checked numerically); neither χ2null or χ2min
are themselves necessarily χ2 distributed.
In the special case where the likelihood L(γ,ω∣x) is a product of normal

distributions, i.e.

L(γ,ω∣x) = k∏
i=1

N(µ i ,σi)(xi), (C.20)

with µi = µi(γ,ω) and σi (i.e. the σi are �xed) then χ2 or χ2min are actually χ2

distributed, up to a constant. Likelihood ratio tests o�en ignore terms that do
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Figure C.4: Normalised histograms of 10000 samples of the maximum likelihood
ratio Qλ = −2 logΛ ≡ ∆χ2, with Λ = L(γ = γx ∣x)/L(̂̂γ∣x) (as in eq. C.19). The
likelihoods are obtained by �tting a linear model to 12 data points, assuming a
known, �xed, variance σ 2 for each, that does not vary with the model parameters.
The likelihoods are then corrected by removing constant terms (as in eq. C.22),
such that each term in the ratio is itself χ2 distributed (with k = 12 for the null
hypothesis point γx , and k = 10 for the �tted likelihood; the linear model has
two free parameters which are �tted, thus reducing the degrees of freedom by
two). ∆χ2 itself is distributed as χ2k=2, because the di�erence in parameter space
dimension is 2 − 0 = 2 between the denominator and numerator likelihoods. If n
nuisance parameters are included and then pro�led out in both numerator and
denominator, the degrees of freedom of χ2null and χ2min will be reduced by n.

not change with the data or parameters, since they divide out of the ratio, but if
one wants to keep the separate terms themselves χ2 distributed then they have
to be removed carefully. This special case allows the individual χ2 terms to be χ2

distributed, because of course in this case we have

−2 logL(γ,ω∣x) = k∑
i=1

(Xi − µi(γ,ω)
σi

)2 + log 2π + log σ2i (C.21)

= Q + k∑
i=1
log 2π + log σ 2i , (C.22)

where Q is de�ned as in eq. C.7. The log 2π terms always cancel in the likelihood
ratio so they can be safely neglected, but the log σ2i terms only cancel if the σi ’s
are constant across the parameter space. Only in this case can they be ignored.
If we then take the modi�ed likelihood −2 logL(γx ,ω∣x) = Q as the basis of the
likelihood ratio, then everything is χ2 distributed (see �g. C.4) If the normality of
the likelihood is violated then neither χ2null or χ2min will be χ2 distributed, but if the
constancy of σi is li�ed then only χ2min will cease to be χ2 distributed.
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A large number of experimental results relevant to Beyond the Standard
Model (BSM) global �ts are reported in terms of likelihood ratio tests, so regardless
of whether one is working in a frequentist or Bayesian framework it is necessary
to understand these tests in order to work backwards from reported results and
reconstruct a realistic estimate of the likelihood function used by the experimental-
ists. These likelihoods are o�en extremely complicated due to their incorporation
of a wide variety of experimental e�ects and systematic uncertainties, though in
many cases their general form can be recovered su�ciently well for use in global
�ts. Some basic recovery techniques are explained in paper I.

C.5 Global Fits
The material in the previous sections contain most of what is needed to perform
the tasks known in particle physics phenomenology as “global �ts”, however this
term is not conventional statistical terminology so I will explain it brie�y.
Primarily, a global �t is simply a statistical parameter estimation task. I have

not covered frequentist parameter estimation because it is not connected to the
Bayesian approach used in the rest of this thesis, however the most popular meth-
ods used in particle follow closely from the likelihood ratio tests described in the
previous section. One seeks to construct “con�dence intervals” or “con�dence
regions” based upon the pro�le likelihood (pro�led to one or two dimensions/-
parameters of interest) in such a way that they possess desired pseudo-frequency
properties. If, hypothetically, one was to repeat the experiment which generated
the data used in the test many times, the constructed intervals should have the
property that they cover the true parameter value in X% of the trials (if the true
model is in fact a member of the model family under consideration). If this hypo-
thetical coverage fraction is, say, 95%, then the constructions are known as a 95%
con�dence internal, or 95% con�dence region. A similar construction is used for
setting upper or lower limits on quantities. A related technique used mostly by
particle physicists is the CLS construction; this is a modi�cation of more standard
limit setting procedures which will not exclude parameter values to which the
experiment in question is not sensitive, though the frequentist coverage properties
are sacri�ced as a result. For details on frequentist parameter estimation and limit
setting in particle physics, as well as useful approximations to the required test
statistics, Cowan et al. (2011) contains much useful material; for the CLs technique
in particular see Read (2000).
To perform the kind of parameters estimation tasks described above, one �rst

requires a likelihood, i.e. a family of joint probability density functions describing
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the expected data. For conventional parameter estimation, this joint density func-
tion will usually be carefully constructed to describe one particular experimental
situation; a Poisson counting experiment (monitoring the decay of radioactive
isotopes), sampling of properties from some normal population (say measuring
the heights of a group of children), and so on. The de�ning feature of a global �t is
that, in contrast to these basic statistical tasks, we seek to combine data originating
frommany disparate sources, or experiments.
To perform the global �tting task, we seek the full joint probability density

function describing all the data (or at least all the su�cient statistics) from all
of the experiments we wish to combine. In principle this must account for any
correlations which exist between these experiments, which may be very di�cult to
estimate. Fortunately, in a majority of cases, the experiments we wish to combine
are clearly independent, so that we may model their joint density function as
simply the product of the density functions for each experiment:

fT ∣θ(t1, . . . , tn) = n∏
i=1

fTi ∣θ(ti) ,
or

L(θ ∣ t1, . . . , tn) = n∏
i=1

Li(θ ∣ ti) ,
(C.23)

where T ≡ {T1, . . . , Tn} is a vector of su�cient statistics summarising the data
from each of n experiments, with observed values {t1, . . . , tn}. If some subset of
experiments cannot be well-approximated as independent, then a joint likelihood
model must be developed describing them together (as is o�en the case when,
for example, combining results from a number of Large Hadron Collider (LHC)
searches or signal regions).
Whenwe do a global �t, then, we simply do parameter estimation utilising such

a joint likelihood. In our case the families of models in which we are interested
will be quantum �eld theories, and their predictions for the summary statistics
(or “observables”) Ti will vary in a highly complicated way with the parameters
θ, and even the evaluation of predictions for each candidate set of parameter
values can be CPU intensive. Mapping the likelihood functions to the level of
detail required so that we may construct con�dence intervals or perform goodness
of �t tests using them (or the Bayesian equivalents which we will examine in
chapter D) thus requires a large amount of computational resources. We therefore
need e�cient algorithms for mapping the function. The most widely used of
these are Markov-chain Monte Carlo (MCMC) methods, utilising for example
the Metropolis-Hastings algorithm, though it is a large �eld and many variations
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exist, including such things as Gibbs samplers, Hamiltonian methods, and genetic
algorithms (see e.g MacKay (2003) for descriptions of a variety of these). The
nested sampling algorithm (Skilling, 2004; Feroz and Hobson, 2008) which we
utilise in papers I and II is also popular.
To perform global �ts using Bayesian methods also requires mapping the joint

likelihood function, so these algorithms are needed in that case as well.

C.6 Summary
In this appendix I have brie�y reviewed common statistical tests used in frequentist
global �ts, which form the basis of a variety of limit setting, parameter estimation,
and goodness-of-�t related tasks.
In appendix D I will cover Bayesian methods of performing similar tasks, and

will introduce a method of interpreting Bayesian results in terms of the expected
results of frequentist tests of the kind covered here.





Bayesian statistical methods D
They say that Understanding ought to work by the rules of right
reason. These rules are, or ought to be, contained in Logic; but the
actual science of logic is conversant at present only with things
either certain, impossible, or entirely doubtful, none of which
(fortunately) we have to reason on. Therefore the true logic for this
world is the calculus of Probabilities, which takes account of the
magnitude of the probability which is, or ought to be, in a
reasonable man’s mind.

— James ClerkMaxwell (1850)

The opening epigraph of this chapter is found at the beginning of the �rst
chapter of both Je�reys (1998 [1939]) and Jaynes (2003). In the introduction to his
Théorie Analytique des Probabilités (1812), Laplace expresses a similar sentiment;
“The theory of probabilities is at bottom nothing but common sense reduced to
calculus; it enables us to appreciate with exactness that which accurate minds feel
with a sort of instinct for which o�times they are unable to account.” Both of these
descriptions are well in line with the “subjectivist” interpretation of probability
that we saw in section B.4, which is the interpretation argued for in section B.8
and adopted in much of this thesis. I will not o�er much further justi�cation
for this position in this chapter, though I will return to some of the issues le�
open in section B.8, particularly the matter of what we mean when we talk about
probabilities related to models.
As in the frequentist case, the Kolmogrov probability calculus (sec. B.1) again

lies at the foundation of our toolbox, however now the “elementary events” which
populate our probability spaces will be interpreted as propositions, or sentences,
which may be true or false. We interpret the “probability” of one of these sentences
as the degree to which we (or an idealised rational agent) believe the sentence to be
true. This can be de�ned rigorously in terms to gambling or risk-taking behaviour,
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as we covered in sec. B.4). There are a considerable number of subtleties that come
up when considering what it is that a sentence “means”, but to keep things as simple
as possible I will assume that the truth or falseness of all the sentences in which we
are interested can be de�ned by some agreed upon operational procedure, or an
abstraction of such. For example, the proposition “my pen is 12.6 cm long” has a
relatively obvious operational de�nition in terms of measurements of a commonly
understood object, using rulers or any other standard device, where perhaps
we must add a condition of rounding to three signi�cant �gures. This kind of
“operational” approach is advocated by Lad (1996). In contrast “Supersymmetry is
a true symmetry of Nature” does not suggest any such clear operational de�nition,
so we will have to be careful to more precisely articulate statements of this kind.
To make the point explicitly, the most useful operational de�nitions of sentences
will be those that make it clear how a bet on its truth would be settled, at least
in principle. Propositions whose truth cannot be grounded in a measurement of
some kind we may call “metaphysical”, and are the least useful kind of sentences
to us. It is very di�cult to avoid such sentences altogether, but I will work to avoid
them.

The layout of this chapter is as follows. In section D.1 I will rapidly review
what I see as the “conventional” or pragmatic kind of Bayesian calculations that
are gaining popularity in cosmology, astrophysics, and particle physics. In section
D.2 I will revisit these from a more explicitly “logico-subjectivist” angle, by which
I mean I will explicitly formulate all problems in terms of subjective probabilities
assigned to operationally de�ned sentences and the logical relationships between
them. Using the framework I will re-explore the standard tools, and extend them
to the less common ones which are used in the physics analyses of part ?? of this
thesis. In �nally in section D.3 I explore ways of removing from the analysis those
propositions which we do not think are true; strictly this section is not vital to the
rest of this thesis, however the thinking which it explores strongly motivates the
overall approach adopted.

I will work in this section from an entirely particle-physics-centric perspective
and so my exposition will di�er in a number of ways from more general texts.
Throughout this section I will make use of logic symbols that may be unfamiliar
to some readers; these are de�ned in the Notation section at the beginning of this
thesis (sec A). As �nal notational note: many groups of equations are followed by a
large vertical line followed by lowered symbols; these symbols represent statements
on which all probabilities in the group of equations are conditional.
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D.1 Conventional formulation
The purpose of this section is primarily to link my preferred way of formulating
Bayesian calculations with the kind of notation and language more frequently used
by particle and astro-physicists, and so it will be relatively brief. I will also use
the typical and somewhat vague language that is common in these �elds; we will
explore a more rigorous language in section .

D.1.1 Simple hypotheses
The best place to start is with Bayes’ theorem, which follows trivially from the
de�nition of conditional probability and the commutativity of the “and” operation.
Conventionally one writes

Pr(H ∣ D, I) = Pr(D ∣ H, I)
Pr(D ∣ I) Pr(H ∣ I) , (D.1)

where

H is a hypothesis or model,
D is some data that is to be explained by the hypothesis or model,
I is (generally unspeci�ed, but critically important) background information
on which all the probability assignments are based,
Pr(H ∣ I) is the probability that the hypothesis is correct given only the back-
ground information I (i.e. the “prior” probability of H),
Pr(D ∣ H, I) is the probability that the data D would be observed, assuming
that the hypothesis H is correct (based also on the background information
I), also called the ‘likelihood’ of H.
Pr(D ∣ I) = ∑i Pr(D ∣ Hi , I)Pr(Hi ∣ I) is the probability that the dataDwould
be observed regardless of which of some complete set of mutually exclusive
hypotheses Hi is correct. This is also called the marginalised likelihood,
or ‘evidence’, and can only be computed if a complete set of hypotheses is
known (i.e. if it is known that one and only one of the hypotheses in the set
is correct). If we look only at ratios of probabilities we can avoid having to
compute this.
Pr(H ∣ D, I) is the probability that the hypothesis is correct given that we
have observed the data D, and based on the background information I. One
says that this is the probability of the hypothesis a�er learning the data D,
so it is called the “posterior” probability of H.

Note that in this notation a comma is shorthand for “and”. The posterior probability
of the hypothesis is the ultimate goal of our inference e�orts, and when it cannot
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be computed we try to get as close to it as possible, e.g. by computing ratios of
posterior probabilities of competing hypotheses, or simply Bayes factors (which we
shall de�ne shortly). One should keep in mind that the description “posterior” as
applied to these probabilities is implicitly a reference to the data D which is learned.
One speaks of a Bayesian “update” as the transition from one state of knowledge
(e.g. knowing only I) to some improved state of knowledge (e.g. knowing both I
and D), with the words “prior” and “posterior” referring to probabilities assigned
to the hypotheses based on each of these respective states of knowledge.
More generally, one can imagine a series of “Bayesian updates”, where several

pieces of data D1,D2, . . . ,DN are learned in some sequence. This series of updates
can be written as (using eq. D.1 iteratively)

Pr(H ∣ DN ,DN−1 . . .D1, I)
= Pr(DN ∣ H,DN−1 . . .D1, I)
Pr(DN ∣ DN−1 . . .D1, I) Pr(H ∣ DN−1 . . .D1, I)

= Pr(DN ∣ H,DN−1 . . .D1, I)
Pr(DN ∣ DN−1 . . .D1, I) Pr(DN−1 ∣ H,DN−2 . . .D1, I)

Pr(DN−1 ∣ DN−2 . . .D1, I) Pr(H ∣ DN−2 . . .D1, I)
= Pr(DN ∣ H,DN−1 . . .D1, I)
Pr(DN ∣ DN−1 . . .D1, I) Pr(DN−1 ∣ H,DN−2 . . .D1, I)

Pr(DN−1 ∣ DN−2 . . .D1, I) . . . Pr(D1 ∣ H, I)
Pr(D1 ∣ I) Pr(H ∣ I)

= Pr(DN ,DN−1 . . .D1 ∣ H, I)
Pr(DN ,DN−1 . . .D1 ∣ I) Pr(H ∣ I) ,

(D.2)
where the last line follows from just a single application of eq. D.1, grouping all the
data together. This shows that, unless we are interested in the intermediate stages,
we can perform analyses as one large update, rather than many small updates, and
that ultimately the prior Pr(H ∣ I) always plays some role (though this role can
become unimportant in certain well-behaved “high-data” scenarios, so long as the
prior is not too extreme). This also means that, ultimately, the order in which the
data D is learned does not a�ect the �nal probability of H.
In practice, it is o�en impossible to compute the marginalised likelihood

Pr(D ∣ I), since it requires that we know some complete set of hypotheses satis-
fying ∑i Pr(Hi ∣ I) = 1, which is generally unavailable. This prevents the direct
computation of the posterior probability Pr(H ∣ D, I). However, we can compute
instead ratios of posterior probabilities for pairs of hypotheses. Such ratios are
called posterior odds, and allow us to perform direct comparison of hypotheses.
Again using eq. D.1, these odds can be written as

Pr(H1 ∣ D, I)
Pr(H2 ∣ D, I) = Pr(D ∣ H1, I)

Pr(D ∣ H2, I) Pr(H1 ∣ I)Pr(H2 ∣ I) . (D.3)
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This equation describes the updating of a set of prior odds according to the
in�uence of the data D. Based on this, one o�en de�nes a Bayes factor as the ratio
of posterior to prior odds,

B12(D∣I) = Pr(H1 ∣ D, I) /Pr(H2 ∣ D, I)
Pr(H1 ∣ I) /Pr(H2 ∣ I) = Pr(D ∣ H1, I)

Pr(D ∣ H2, I) . (D.4)

This is a useful quantity because it measures the ‘strength of the data’, i.e. its
ability to change the prior odds for the competing hypotheses. If the Bayes factor
strongly favours one hypothesis over the other, it indicates the strength of initial
bias which we would have to hold against that hypothesis in order to still prefer
the competing hypothesis, in spite of the data. Since the assignment of prior odds
o�en relies on subjective judgements, in many analyses one may compute only
a relevant Bayes factor, rather than attempting a claim about the posterior odds,
allowing a separation of subjective elements from more well-accepted elements.
One can sub-divide the posterior odds calculation into stages, just as we did

for the single posterior probability in eq. D.2, i.e.

Pr(H1 ∣ DN ,DN−1 . . .D1, I)
Pr(H2 ∣ DN ,DN−1 . . .D1, I) = B12(DN ,DN−1 . . .D1∣I)Pr(H1 ∣ I)Pr(H2 ∣ I)

= ( N∏
i=1

B12(DN ,DN−1 . . .Di+1∣Di . . .D1, I))B12(D1∣I)Pr(H1 ∣ I)Pr(H2 ∣ I)
= ( N∏

i=1
Bi) Pr(H1 ∣ I)Pr(H2 ∣ I) ,

(D.5)

where in the �nal line I introduce a simpli�ed (but uninformative) notation for
momentary convenience. The full product of the Bi ’s is the Bayes factor associated
with learning all of the data Di , so we may call each individual Bi a “partial” Bayes
factor, since it tells us howmuch we have learned from only a part of the data. This
can help with the task of separating subjective elements from widely accept ones;
to see how requires that we consider compound hypotheses, which we shall move
to in the next section. We explore an application of partial Bayes factors to model
comparison in paper I; statistical background and related quantities are discussed
in O’Hagan (1995); Berger and Pericchi (1996); Berger and Mortera (1999).
Each Bi can be thought of as quantifying the discriminatory power gained as

each new piece of data is learned; that is, it quanti�es the information gained. The
link with information theory runs very deep and can be made more formal; see
MacKay (2003) and Wallace (2005) for detailed discussions. To brie�y see the
connection let us de�ne the self-information of x as

I(x) = − logPr(x) . (D.6)
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If we consider x as the realised value of a random variable X, where x can take
values in the setXwith∑x∈X Pr(x) = 1, then the entropy of X is equal to its expected
self-information,

H(X) = EX [I(x)] = −∑
x∈X
Pr(x) logPr(x) . (D.7)

Analogously, when comparing two possible probability distributions for x, p(x)
and q(x), it is useful to de�ne the discrimination information

Ip∣q(x) = Ip(x) − Iq(x) = − log p(x)q(x) , (D.8)

where this is simply the di�erence between the self-informations obtained based
on each distribution. Finally, we de�ne the Kullback-Leibler divergence or relative
entropy as the expected discrimination information

DKL(P∥Q) = EP [Ip∣q(x)] = −∑
x∈X

p(x) log p(x)
q(x) , (D.9)

where the expectation is taken with respect to the distribution p(x). In light of
these de�nitions, it is useful to take the log of eq. D.5 to form the log-odds

log Pr(H1 ∣ DN ,DN−1 . . .D1, I)
Pr(H2 ∣ DN ,DN−1 . . .D1, I) = ( N∑

i=1
logBi) + log Pr(H1 ∣ I)Pr(H2 ∣ I) , (D.10)

where we note that

logBi = log Pr(Di ∣ Di−1 . . .H1, I)
Pr(Di ∣ Di−1 . . .H2, I)= I(Pr(Di ∣ Di−1 . . .H1, I) ∣ Pr(Di ∣ Di−1 . . .H2, I)) , (D.11)

where the Bayes factor Bi is identi�ed as the discrimination information provided
by the new piece of dataDi , that is, it measures the new information provided byDi

for helping us distinguish between H1 and H2. From an experimental optimisation
point of view, a common goal may be to maximise the expected discrimination
information provided by the experiment, that is, the Kullback-Leibler divergence,
assuming say H1 is true as a null hypothesis.
In the best-case scenario, the successive data will provide large amounts of

discrimination information, allowing the prior log-odds to be neglected in the
computation of the posterior log-odds. In the most interesting cases, however, this
will not happen, so the role of the prior odds remains important.
In light of the connection between Bayes factors and information, an infor-

mation theoretic unit is appropriate for measuring the weight of evidence. Alan
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Turing �rst came up with the name ‘deciban’ to describe base 10 log-probability
ratios Good (1979), however the ‘bit’, describing base 2 log-probability ratios, is now
more common. A single bit is the amount of information, or evidence, provided by
a coin �ip, i.e. the information gained when one of two equally probably outcomes
is observed. In terms of discriminating between two hypotheses, if Pr(D ∣ H1, I) is
twice Pr(D ∣ H2, I), then one bit of discrimination information has been learned
by observing D, so that the log2 posterior odds ratio is simply the log2 prior odds
ratio plus (or minus) 1.
This may be easier to appreciate in alternate notation. Note that, in the case

of simple hypotheses, the Bayes factor is simply a likelihood ratio. For the case of
obtaining a single piece of experimental data D we may then write the posterior
log-odds as

log Pr(H1 ∣ D)
Pr(H2 ∣ D) = log L(H1 ∣ D)

L(H2 ∣ D) + log Pr(H1)Pr(H2) . (D.12)

The usual frequentist likelihood ratio provides us with some number of bits worth
of discrimination information with respect to H1 and H2, which is then combined
with some number of bits of prior information, to produce a posterior number of
bits of information regarding which hypothesis is correct. To get an idea of how
strong certain prior or posterior odds are, then, it is useful to compare them to an
equivalent strength likelihood ratio, which in the case of normal random variables
can be translated easily into a measure of statistical signi�cance, whether it be a χ2

value, some number of “sigmas”, or a p-value. Figure D.1 illustrates the equivalence
between these quantities and bits.
In paper I we utilise the Je�reys scale for interpreting the strength of posterior

odds (see the paper in chapter 4 for this scale), however �gure D.1 suggest that
this scale may be too generous for particle physics standards. For example, the
scale rates a Bayes factor larger than 100 as “decisive” evidence, however �gure D.1
shows that this is achieved by an observation with a signi�cance of only around
3σ . In many �elds this would indeed be considered very strong evidence, however
particle physicists are o�en highly skeptical of such results due to the large number
of statistical tests which are routinely performed in the �eld (leading to a large
implicit “trials factor”) and are generally only “highly interested” in 3σ results,
rather than considering such results “decisive”.

D.1.2 Compound hypotheses
The formulae in the previous section are completely general, however they mainly
invite one to think in terms of simple hypotheses, which I de�ne here tomean some
hypothesis or model which uniquely speci�es Pr(D ∣ H, I), that is, it speci�es a
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Figure D.1: Correspondence between measures of statistical signi�cance and dis-
crimination information. Values are computed assuming an outcome from a
standard normal random variable as our data, for simplicity. The observed value
of the random variable Z = (X − µ)/σ (for any normal random variable X with
mean µ and standard deviation σ) is shown on the x-axis.
The le�most y-axis shows the value of the test statistic Q = Z2 which corre-

sponds to each possible outcome of Z, and which is distributed as χ2ν=1 if the data
really does come from the random variable X (i.e. if the null hypothesis is true).
The rightmost y-axis shows the p-value corresponding to each possible observed
Q value, computed as p = ∫ ∞Q χ2ν=1(q)dq. The middle y-axis shows the discrimina-
tion information disfavouring the null hypothesis in bits, assuming a competing
hypothesis in the likelihood ratio (as in eq. D.12) for which the value of Q is zero;
that is, which perfectly predicts the data. It is assumed that the distribution of
Z under the competing hypothesis is also a normal distribution with standard
deviation σ , just with a mean shi�ed to maximise the goodness of �t. The bits
in this case are therefore computed simply as Q/(2 ln 2). The Bayes factor axis is
computed under this same assumption for the alternate hypothesis, and is therefore
computed as exp(Q/2).
From this graph we can read o�, for instance, that an observable which is 3σ

from the predicted value under one hypothesis, but spot on under the alternate
hypothesis, provides a little under 7 bits of discrimination information. A 5σ
result similarly counts for around 18 bits of discrimination information. These
numbers are useful for calibrating our intuitions regarding the strength of prior
and posterior odds.
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probability distribution for the data D. However, in parametric terms, this means
that there is zero freedom in the hypothesis to “learn” anything further from the
data, e.g. there are no free parameters to be �tted. We will explore this further in
section D.2, but for now let us simply de�ne a compound hypothesis as a weighted
mixture of simple hypotheses, where the weights can be identi�ed as probabilities
for each sub-hypothesis (although these are not of direct interest). The case most
o�en encountered in particle physics is when a whole family of hypotheses is
speci�ed in terms of some free parameters, where specifying all the parameters
precisely retrieves a single simple hypothesis. Let us notate the whole compound
hypothesis as H and individual members of this family of hypotheses as Hθ , where
θ speci�es some set of parameters. The probability that the correct hypothesis is
a member of this family, i.e. the probability of H, is then computed as in section
D.1.1, i.e. according to eq. D.1, except that now the likelihood Pr(D ∣ H, I) is more
troublesome to compute due to the mixture. In general terms it is computed
according to

Pr(D ∣ H, I) = ∫
θ∈Θ
Pr(D,Hθ ∣ H, I) dkθ

= ∫
θ∈Θ
Pr(D ∣ Hθ ,H, I)Pr(Hθ ∣ H, I) dkθ ,

(D.13)

where k indicates the number of parameters in the set θ, and the �rst line uses
the law of total probability. The notation is usually simpli�ed to something like

Pr(D ∣ H, I) = ∫
θ∈Θ
Pr(D ∣ θ ,H, I)Pr(θ ∣ H, I) dkθ , (D.14)

when it is obvious that θ is indexing some family of hypotheses. In this situation
Pr(D ∣ H, I) is usually referred to as the marginalised likelihood, or evidence.
Pr(D ∣ θ ,H, I) should be computable according to the simple hypothesis Hθ , and
the mixing weights Pr(θ ∣ H, I) must be speci�ed according to some subjective
judgement based on I. These weights are usually referred to as the prior probability
distribution over the parameters θ. The integral may be solvable analytically for
some hypotheses, but more o�en numerical techniques such as Monte Carlo
integration are required. In practice, the computational demands of solving this
integral can be very high, and represent one of the largest hurdles to applying
Bayesian techniques to interesting problems.
Usually one is not completely uninterested in the mixing weights. A Bayesian

update can be applied to these as well as to the whole compound hypothesis,
transforming the prior distribution Pr(θ ∣ H, I) into the posterior distribution
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Pr(θ ∣ D,H, I), again using eq. D.1
Pr(θ ∣ D,H, I) = Pr(D ∣ θ ,H, I)

Pr(D ∣ H, I) Pr(θ ∣ H, I)
= L(θ∣D)

E(D) π(θ)∝ L(θ∣D)π(θ). (D.15)

Here Pr(D ∣ θ ,H, I) is computed as before, however it acts here simply as a nor-
malisation factor, so one can simply reweight the posterior distribution “manually”
instead of solving the (usually di�cult) integral of eq. D.14. In the second line I
simple switch to a popular notation for the likelihood function, prior distribution,
and evidence.

D.2 Logical formulation
In the previous section I quickly introduced the central objects of interest in
Bayesian statistics, in a non-rigorous notation similar to that commonly found in
the applied literature. I will now reintroduce these same objects in a more rigorous
notation based explicitly on the “logico-subjectivist” notion of probability, while
more carefully exploring the motivation for being interested in these objects.

D.2.1 Simple hypotheses
In the frequentist context we were concerned only with how well some statistical
model �t our data. In the Bayesian case, one usually says that we look for the model
with the greatest posterior probability that it was used to generate the data. I say
“usually” because excepting for when we use toy models to generate pseudo-data, I
do not think that any clear operational de�nition matches this kind of proposition.
I will articulate an alternate perspective in section D.3, but for now I will develop
the basic tools entirely within such a toy framework.
Say in my idealised toy scenario I have n models M1, . . . ,Mn, and I use one

of them to generate a set of data D. Your task is to infer from the data D which
model I used to generate that data. You will have to bet on which one I used, with
the odds set according to the probabilities you assign. The Bayesian recipe for this,
as I see it, goes as follows:
1. Write down the relevant propositions clearly.
2. Assign prior probabilities to the “hypothesis” propositions.
3. Compute the predictions of each hypothesis.
4. Solve Bayes’ theorem for the posterior probabilities of each “hypothesis”.
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To make the scenario more concrete, let us say that we are doing simple 1D curve
�tting, and that the data is a series of “Y” measurements performed at some
predetermined “X” positions, say k of them. So, following this recipe, let us (1)
de�ne the relevant propositions

“Yi = yi” ≡ “The result of generating Y data at the ith X position was yi”
“D” ≡ ⋀k

i=1 Yi = yi

“M j” ≡ “Curve modelM j(x) was used to generate all the Y data (using a pseudo-
random number generator)”

“MΩ” ≡ ⋁n
l=1Ml (states that one of the models M j was indeed used to generate

the data)

Next we should decide on the prior/conditional probabilities of these proposi-
tions. Pr(Yi = yi ∣ M j) is determined by the modelM j itself, and since in our case
Yi is analogous to a frequentist continuous random variable we can describe it
via a probability density function, Pr(a ≤ Yi ≤ b ∣ M j) = ∫ b

a fYi ∣M j(y′i)dy′i , so that
Pr(Yi = yi ∣ M j) can be de�ned as Pr(Yi = yi ∣ M j) ≡ limδy→0 ∫ y i+δy

y i fYi ∣M j(y′i)dy′i =
fYi ∣M j(yi)dyi . The priors forM j I leave aside for now, but formally we will write
them as Pr(M j ∣ I), where I is some background information or assumptions on
which we base our choice of priors. To determine the posterior probability of “Mi”
we thus compute, via Bayes’ theorem,

Pr(M j ∣ D ∧ I) = Pr(D ∣ M j ∧ I)
Pr(D ∣ I) Pr(M j ∣ I)

= Pr(D ∣ M j ∧MΩ ∧ I′)
Pr(D ∣ MΩ ∧ I′) Pr(M j ∣ MΩ ∧ I′)

= Pr(D ∣ M j ∧ I′)
Pr(D ∧MΩ ∣ MΩ ∧ I′)Pr(M j ∣ MΩ ∧ I′) ,

(D.16)

where I have written everything out in verbose logic notation so that I can make
it very explicit what we are calculating. Note that I have de�ned I ≡ MΩ ∧ I′,
which simply states that among our background propositions I, which we take for
granted, is the proposition that the data is in fact generated by one of themodelsM j.
From line 2 to 3 I simply use the absorption lawM j ↔ M j ∧ {⋁n

l=1Ml} (assuming
M j ∈ MΩ), and the relatively obviously property that Pr(A ∣ B) = Pr(A∧ B ∣ B) 1.

1This can be seen more formally using the de�nition of conditional probability and idempo-
tence: Pr(A ∣ B) = Pr(A∧ B) /Pr(B) = Pr(A∧ B ∧ B) /Pr(B) = Pr(A∧ B ∣ B).
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Note next that

Pr(D ∣ M j ∧ I′) [≡ fX∣M j(x)dkx ≡ L(M j∣x)dkx ]
= Pr( k⋀

i=1
Yi = yi ∣ M j ∧ I′)

= k∏
i=1
Pr(Yi = yi ∣ M j ∧ I′)

= k∏
i=1

fYi ∣M j(yi)dyi ≡ k∏
i=1

L(M j∣yi)dyi ,
(D.17)

re-using the frequentist de�nition of a likelihood function (eq. C.2), now reimag-
ined as a function over propositions about predicted data, to de�ne the “global”
likelihoodL(M j∣x) (with X being the collection of “random variables” (now propo-
sitions) Yi and x being the vector yi , so that fX∣M j(x) is the subjectivist equivalent
of the joint distribution function for the Yi), and assuming the data points to be
statistically independent. Next,

Pr(D ∧MΩ ∣ MΩ ∧ I′) = Pr(D ∧ { n⋁
l=1

Ml} ∣ MΩ ∧ I′)
= Pr( n⋁

l=1
{D ∧Ml} ∣ MΩ ∧ I′)

= n∑
l=1
Pr(D ∧Ml ∣ MΩ ∧ I′)

= n∑
l=1
Pr(D ∣ Ml ∧MΩ ∧ I′)Pr(Ml ∣ MΩ ∧ I′)

= n∑
l=1
Pr(D ∣ Ml ∧ I′)Pr(Ml ∣ MΩ ∧ I′)

= n∑
l=1

L(Ml ∣x)dkx Pr(Ml ∣ MΩ ∧ I′) ≡ E dkx ,

(D.18)

where we assume that only one of the {D ∧Ml} can be true, i.e that theMl are
mutually exclusive, and where E is called the “evidence” (forMΩ, essentially). Here
it is just a global normalisation factor so for now I will not say much about it;
we will see its importance later, in section D.2.2. Using these de�nitions we can
rewrite eq. D.16 as

Pr(M j ∣ D ∧ I) = L(M j∣x)dkx
E dkx Pr(M j ∣ MΩ ∧ I′)

= L(M j∣x)
E Pr(M j ∣ MΩ ∧ I′) . (D.19)
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The appearance of the in�nitesimal dkx is because our models assign probability
measure zero to the proposition D, however we see also that this “cancels out”2
in the Bayes factor, so this is not a problem. The in�nitesimal is usually silently
omitted in passing from the full probability statement to the likelihood function
(when the latter is a probability density function as in this demonstration case),
with no consequence, but I write it here for completeness.

Before continuing I have one point to make. I took care to show how the
assumptionMΩ carries through the computation because I think that the meaning
of the result is at its most clear when this assumption is made. IfMΩ is really the
case, say if one was to generate toy data from one of the set of possible models,
then the prior Pr(M j ∣ MΩ ∧ I′) is simple to interpret as the probability that M j

was the model chosen from the setMΩ, given some background information I′,
which has an obvious operational de�nition. If we were to set up a guessing game
where I speci�ed such a set of models, and gave you a set of a data I had generated
according to one them, then I think that there are very strong arguments3 that
following the above Bayesian strategy is the best one to adopt for making your
guess. The controversy begins when, as in essentially all real-world applications, we
think that the propositionMΩ is strictly false; the “all models are wrong” attitude.
Most authors seem to be content to treat this assumption as simply a hidden
approximation, and indeed there are pragmatic reasons for doing so (for example,
it can be shown that Bayesian methods asymptotically select the model with the
smallest Kullback-Leibler distance to truemodel (Komaki, 1996; Clarke and Barron,
1990)), but in order to take the subjectivist philosophy seriously I think we need to
go further than this, and consider what proposition we might use to replaceMΩ,
that isn’t false.

I will consider this issue further in section D.3, but a �rst move in this direction
is rather simple. Say we extended the guessing game, so that I told you that I indeed
simulated the data D according to some modelM j, but I did not tell you the set of
models from which I chose it. Conceptually, very little changes, except that now
we cannot write down a prior Pr(M j ∣ MΩ ∧ I′) (becauseMΩ is not well de�ned).

2Of course this cancellation can be de�ned more rigorously if we wait until this stage to take
the limit of obtaining the exact data D.

3such as the Dutch book argument we saw in section B.4, and the related decision theoretic
arguments.
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We can, however, write down prior odds, for pairs of candidate models,

Pr(Mα ∣ MΩ ∧ I′)
Pr(Mβ ∣ MΩ ∧ I′) = Pr(Mα ∧MΩ ∣ I′) /Pr(MΩ ∣ I′)

Pr(Mβ ∧MΩ ∣ I′) /Pr(MΩ ∣ I′)
= Pr(Mα ∣ I′)
Pr(Mβ ∣ I′) ,

(D.20)

because as shown the dependence on MΩ vanishes in this ratio. We can thus
imagine that such a complete set of possible models exists, but we unfortunately
don’t know what it is. But so long as we are prepared to judge, on the basis of
I′, the relative probability that the available data comes from some known set of
models, we can still judge their relative posterior probability in the face of that data.
To make the point more explicitly, consider two sets of propositions: 1. the set
MΩ of all models that could possibly have generated the observed data; and 2. the
setMΩ′ of all models that we know about, or are currently considering may have
generated the observed data. The modelsMα andMβ under consideration in the
odds ratio must be members of both sets, so we can write

Pr(Mα ∣ MΩ′ ∧MΩ ∧ I′)
Pr(Mβ ∣ MΩ′ ∧MΩ ∧ I′) = Pr(Mα ∧MΩ ∣ MΩ′ ∧ I′) /Pr(MΩ ∣ MΩ′ ∧ I′)

Pr(Mβ ∧MΩ ∣ MΩ′ ∧ I′) /Pr(MΩ ∣ MΩ′ ∧ I′)
= Pr(Mα ∣ MΩ′ ∧ I′)
Pr(Mβ ∣ MΩ′ ∧ I′) ,

(D.21)
where the Pr(MΩ ∣ MΩ′ ∧ I′) factors cancel as before4. This is useful, because it
means that when judging the relative probability ofMα andMβ, we do not have to
know anything about what other models are competing with them. We can simply
act as if the data comes from some small set of models that we know. This result
should not be mysterious, and can be illustrated by the simple Venn diagram in
�gure D.2.
There is a second, related, advantage to considering only probability ratios;

namely, the factor E cancels out, so that again, we do not have to worry about any
of the other possible models. Explicitly, the posterior odds ratio is simply

Pr(Mα ∣ D ∧ I)
Pr(Mβ ∣ D ∧ I) = Pr(D ∣ Mα ∧ I)

Pr(D ∣ Mβ ∧ I) Pr(Mα ∣ I)
Pr(Mβ ∣ I)

= L(Mα ∣x)
L(Mβ∣x) Pr(Mα ∣ I)

Pr(Mβ ∣ I) .
(D.22)

A further de�nition brings us to a widely used quantity: we de�ne the ratio of
posterior to prior odds to be the Bayes factor associated with acquiring the data D,

4and are equal to unity anyway, since Pr(MΩ ∣ MΩ′ ∧ I′) = Pr(MΩ ∧MΩ′ ∣ I′) /Pr(MΩ′ ∣ I′) =
Pr(MΩ′ ∣ I′) /Pr(MΩ′ ∣ I′) = 1.
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MΩ

MΩ'

Mα

Mβ

Figure D.2: Venn diagram illustrating the result of eq. D.21. In order to compute
the relative posterior probabilities ofMα andMβ, we do not need to know their
“absolute” prior probabilities relative to the unknown “full” set of candidate models
MΩ. The ratio of their prior probabilities remains unchanged no matter which
“encompassing” set of models we consider them relative to. In this case the set of
modelsMΩ′ ⊂ MΩ represents a convenient choice.

i.e.

Bα
β(D∣I) ≡ Pr(Mα ∣ D ∧ I) /Pr(Mβ ∣ D ∧ I)

Pr(Mα ∣ I) /Pr(Mβ ∣ I) = Pr(D ∣ Mα ∧ I)
Pr(D ∣ Mβ ∧ I)

= L(Mα ∣x)
L(Mβ∣x) .

(D.23)

This is a popular quantity because it can be computed independently of the prior
odds, freeing the analyst frommaking that judgement. It is the factor by which the
data D should alter our relative belief thatMα vsMβ is true. In the case of simple
hypotheses, i.e. if we have a precise proposition about what is causing the data,
with no free parameters, then the Bayes factor may be identi�ed directly with the
frequentist likelihood ratio seen in section C.4.
It is a simple matter to iterate this procedure and obtain the expressions for

partial Bayes factors equivalent to eq. D.5.

D.2.2 Compound hypotheses
Usually when compound hypotheses are discussed the author is referring simply
to models that have some number of free parameters, however fundamentally the
concept is more general. We may de�ne a compound hypothesis to simply be
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the logical disjunction of a set of simple hypotheses. Continuing the notationMi

used in the previous section, we may use these simple propositions to de�ne the
compound proposition

MC ≡⋁
i∈Θ

Mi (D.24)

where Θ is a set of indices which label the set of simple propositions which we
are combining. The compound hypothesis, in the context of our guessing game,
is thus simply the assertion that “One of the modelsMi (with i ∈ Θ) was used to
generate the data D”. For the sake of doing a comparison, letMC′ be a second such
compound hypothesis, with indices from the set Θ′, and let there be no overlap
between the sets of constituent propositions, i.e. MC ∧MC′ = 0. Finally, let the
hypothetical set of all possible models be Ω as before, and we will reuse this symbol
to specify the set of indices labelling these models.
To see what di�erence it makes when our test proposition has this form, let us

again write down the posterior probability that it is true, givenMΩ as before:

Pr(MC ∣ D ∧ I) = Pr(D ∣ MC ∧ I′)
Pr(D ∣ MΩ ∧ I′)Pr(MC ∣ MΩ ∧ I′) , (D.25)

(where the result of eq. D.16 was used). The denominator of the �rst factor is not
di�erent in any interesting way from the simple case, giving us (from eq. D.18)

Pr(D ∣ MΩ ∧ I′) =∑
l∈Ω
Pr(D ∣ Ml ∧MΩ ∧ I′)Pr(Ml ∣ MΩ ∧ I′)

= dkx∑
l∈Ω

L(Ml ∣x)Pr(Ml ∣ MΩ ∧ I′) ≡ EΩ dkx ,
(D.26)

and the prior simply expands as Pr(MC ∣ MΩ ∧ I′) = ∑i∈Θ Pr(Mi ∣ MΩ ∧ I′). The
numerator of the �rst factor, however, is now very similar to the denominator, so
we can compute it following the same logic as in eq. D.18,

Pr(D ∣ MC ∧ I′) =∑
l∈Θ
Pr(D ∣ Ml ∧MC ∧ I′)Pr(Ml ∣ MC ∧ I′)

= dkx∑
l∈Θ

L(Ml ∣x)Pr(Ml ∣ MC ∧ I′) ≡ EC∣Θ dkx ,
(D.27)

I have written the marginal likelihood, or evidence, here as EC∣Θ to emphasise that
the prior weights here are computed conditional onMC , notMΩ. Of course the
transition to the “global” prior occurs simply by folding in the prior forMC itself,
i.e.
Pr(D ∣ MC ∧ I′)Pr(MC ∣ MΩ ∧ I′)

= dkx∑
l∈Θ

L(Ml ∣x)Pr(Ml ∣ MC ∧ I′)Pr(MC ∣ MΩ ∧ I′)
= dkx∑

l∈Θ
L(Ml ∣x)Pr(Ml ∣ MΩ ∧ I′)

≡ EC dkx ,

(D.28)
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So that we have EC = EC∣ΘPr(MC ∣ MΩ ∧ I′). Since Θ ⊂ Ω it is clear that EΩ =
EC + ECc , where ECc represents that part of the summation in D.26 where the
indices live in the complement of Θ with respect to (wrt) Ω. The posterior forMC

is thus simply

Pr(MC ∣ D ∧ I) = EC∣Θ
EΩ
Pr(MC ∣ MΩ ∧ I′) = EC

EΩ
, (D.29)

revealing the importance of the marginal likelihood densities EC and EΩ. There
is again nothing mysterious happening here. If we return the likelihood to a
probability mass function (to remove the in�nitesimal) and then restrict ourselves
to models that either exactly predict or are completed ruled out by the data D
(i.e. give probability zero or one to their predictions of D), then we see that this
formulae simply reduces to the computation of the fraction of the original prior
weight which was assigned to the surviving models in MC , relative to the total
surviving prior weight e.g.

Pr(MC ∣ D ∧ I) = ∑l∈Θ∣D Pr(Ml ∣ MΩ ∧ I′)
∑k∈Ω∣D Pr(Mk ∣ MΩ ∧ I′) , (D.30)

where the sets Θ∣D and Ω∣D label those models in Θ and Ω respectively for which
the likelihood of D is one rather zero, i.e. the “surviving” models.
This simple equation is one of the most illustrative of the logic that occurs

in Bayesian calculations. The posterior probability of any model is simply the
ratio of the surviving prior which that model “keeps”, to the total surviving prior.
If the space of models was discrete, and we assigned equal prior probability to
every model, then the posterior probability would further reduce to the fraction
of models in our chosen composite class which survive confrontation with the
data, relative to the total number of surviving models. The e�ect of the likelihood
merely modulates this simplistic “in/out” method of excluding models to properly
account for the probabilistic nature of the data, and the prior weights allow us to
preference those models we consider most plausible based on our background
propositions I.
Moving again to the posterior odds, whereMC′ is our competing composite

model, we have simply

Pr(MC ∣ D ∧ I)
Pr(MC′ ∣ D ∧ I) = EC

EC′
= EC∣Θ
EC′∣Θ′

Pr(MC ∣ MΩ ∧ I′)
Pr(MC′ ∣ MΩ ∧ I′) , (D.31)

where it is far more convenient to compute EC∣Θ and EC′∣Θ′ rather than their “global”
counterparts because no knowledge of the “global” prior is required. The prior
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odds for the pair of composite models can of course be formulated relative to some
restricted set of modelsM′

Ω instead of the “full” setMΩ as before.
The ratio EC∣Θ/EC′∣Θ′ is a ratio of posterior to prior odds, so it is a Bayes factor,

as in simple hypothesis case (i.e eq. D.23).

D.3 Beyond “games”

It is astonishing to see how many philosophical disputes collapse
into insigni�cance the moment you subject them to this simple test
of tracing a concrete consequence. There can BE no di�erence
any-where that doesn’t MAKE a di�erence elsewhere–no di�erence
in abstract truth that doesn’t express itself in a di�erence in
concrete fact and in conduct consequent upon that fact, imposed
on somebody, somehow, somewhere and somewhen.
—William James, Pragmatism: A New Name for Some Old Ways

of Thinking (1850)

In the previous section, our logic was formulated in terms of a game, in which
we try to guess which of a set of models has been used to generate some observed
data. Yet, we know that in real applications, our data comes from Nature, it is not
a product of a simulation, and we are trying to discover models that describe that
data well, not guess which model may have been used to generate the observed
data. In light of this, how can we justify the methods we are using?
One popular method is to simply note certain desirable properties of the

usual Bayesian methods. The asymptotic selection of models which are Kullback-
Liebler closest to the true model (under suitable conditions) are an example of this.
These can certainly provide good motivations to use Bayesian methods as a purely
empirical device. However, if we want to maintain the underlying philosophy, we
should consider a di�erent approach. As alluded to in the beginning of section
D.2.1, we should always write down the relevant propositions to our problem,
keeping in mind our requirement that there be some operational de�nition of what
makes those propositions true or false. So then, of which propositions of this kind
do we seek truth values? As I mentioned at the end of section B.8.1 I suggested that
in particle physics we want to know whether something like the following is true:

“SM” ≡ “The Standard Model of particle physics accurately describes all
non-gravitational phenomena in the observable universe below the energy
scale X”
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This actually represents a fairly drastic departure from the way Bayesian calcula-
tions are usually done, because it clearly abandons the requirement that our test
propositions, or hypotheses, be mutually exclusive. For example, if the scale X
is low enough, then we could clearly replace “Standard Model” with “Minimal
Supersymmetric Standard Model” and have both models accurately describing all
observed physics below that scale. Fortunately, this does not actually prevent us
from doing any of the usual analyses, though we must alter their interpretation.

To see how, let us return to our game, i.e. let us again consider the simple
propositionsMα and the compound propositionsMC andMC′ which we de�ned
in the last section. We will reinterpret these propositions as something similar to
SM as de�ned above. SM is still quite vague, so to allow �rm computation let us
use the following de�nition:

“Mα” ≡ “ModelMα will accurately describe the results of test experiment X”

“MC” ≡ ⋁i∈ΘMi , as before

The de�nition of MC is now actually quite a weak requirement, and the model
family with the most freedom will have the best chance of meeting it. Something
stronger would be more suitable for situations in which accurate predictions were
desired, e.g. weather forecasting, for instance

“MC” ≡ “The model averaged prediction of the model familyMC , a�er train-
ing on data D, will accurately describe the results of test experiment X”

however in particle physics, where we are searching for new phenomenon, this is
almost certainly too arduous a demand to place on our models, and it is somewhat
more complicated logically. We will return to this “strong” requirement later, but
for now let us proceed based on the “weak” requirement.

As always, the �rst stage is simply to write down Bayes’ theorem. Let us do this
for the simple model case, with α ∈ Θ to begin with;

Pr(Mα ∣ D) = Pr(D ∣ Mα)
Pr(D) Pr(Mα) MC ∧ I′. (D.32)

Already anunusual problempresents itself. The prior distribution, Pr(Mi ∣ MC ∧ I′)
obeys a slightly di�erent condition to usual. By the de�nition of MC we still re-
quire that Pr(⋁i∈ΘMi ∣ MC ∧ I′) = Pr(MC ∣ MC ∧ I′) = 1, however this is no longer
equal to∑i∈Θ Pr(Mi ∣ MC ∧ I′), since theMi are not necessarily mutually exclusive.
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Instead, we must consider the logical disjunctions in full generality, i.e.

Pr(⋁
i∈Θ

Mi) =∑
i∈Θ
Pr(Mi) −∑

i< j
Pr(Mi ∧M j) + ∑

i< j< j
Pr(Mi ∧M j ∧Mk)−

. . . + (−1)∣Θ∣−1Pr(⋀
i∈Θ

Mi) = 1.
MC ∧ I′

(D.33)

In principle it may be possible to work with such a prior, although it requires that
we estimate probabilities such as Pr(Mi ∣ M j ∧ I′) which are highly non-trivial
to judge. This is the probability that model Mi will accurately describe the test
experiment given thatM j does, which depends on how similar the predictions of
the two models are for the test data, and on what discrimination power the test
experiment has. It is tempting to attempt to devise some estimate of this based on
the relative entropy (eq. D.9) of the model predictions or similar, however it is a
rather complicated endeavour, and though it is an interesting direction to consider
it goes beyond the scope of this thesis.
The intractability of the above expression, especially when taken to the contin-

uous limit, defeats a direct attack in this direction, at least for now. However, we
can proceed in a similar spirit if we return to the conventional “game” scenario
for constructive purposes, with the intention of later abandoning it. That is, let us
suppose for now that it is in fact meaningful to consider that some model is the
“true” model. Let us label these propositions as follows:

“MT
α ” ≡ “ModelMα is the True generating model for all the data of interest”

“MT
C” ≡ ⋁i∈ΘMT

i

“MT
Ω” ≡ ⋁i∈ΩMT

i

where Ω indexes some big set of models we are considering, and Θ indexes the
models comprising the model family MC , so that Θ ⊂ Ω. As part of our con-
struction, let us assume that the True model is in Θ, and compute the posterior
probability ofMα (notMT

α !) relative to some learned data D.

Pr(Mα ∣ D) = Pr(D ∣ Mα)
Pr(D) Pr(Mα) MT

C ∧ I′. (D.34)

Again let us consider the prior Pr(Mα ∣ MT
C ∧ I′). The assumptionMT

C is stronger
thanMC , so we have more chance to make progress here. Let us expand the prior
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as follows:

Pr(Mα) = Pr(Mα ∧MT
C) = Pr(Mα ∧ {⋁

i∈Θ
MT

i })
= Pr(⋁

i∈Θ
{Mα ∧MT

i })
=∑

i∈Θ
Pr(Mα ∧MT

i )
=∑

i∈Θ
Pr(Mα ∣ MT

i )Pr(MT
i )

= Ei∈Θ [Pr(Mα ∣ MT
i )] , MT

C ∧ I′

(D.35)

using identity eq. 4, and using themutual exclusivity of theMT
i propositions (which

does not hold forMi). This reveals that we need to know Pr(Mα ∣ MT
i ∧MT

C ∧ I′),
or more simply Pr(Mα ∣ MT

i ∧ I′), using the absorption rule. This is the probability
that the model indexed by α will pass the future test experiment, given MT

i , i.e.
given that model i is the True model. Assuming we establish a concrete test
scenario, this is something we can compute. It is equal to the expectation value of
the test outcome givenMT

C , i.e.

Pr(Mα ∣ MT
i ) = Pr(Mα ∧ {⋁

k
DF

k} ∣ MT
i )

=∑
k
Pr(Mα ∣ DF

k ∧MT
i )Pr(DF

k ∣ MT
i )

= EDF ∣MT
i
[Pr(Mα ∣ DF

k ∧MT
i )] , MT

C ∧ I′

(D.36)

where the disjunctions and sum are over all k which index possible outcomes of the
test data DF givenMT

i . The future test is most likely not probabilistic in nature, so
that Pr(Mα ∣ DF

k ∧MT
i ∧ I′) collapses to either one or zero depending on whether

the given DF
k allows the modelMα to pass the test or not, but the expression holds

whether or not this is the case. Putting the results of eq. D.35 and eq. D.36 together
we have

Pr(Mα) = Ei∈Θ [EDF ∣MT
i
[Pr(Mα ∣ DF

k ∧MT
i )]] MT

C ∧ I′, (D.37)

which, given some “fundamental” prior distribution Pr(MT
i ∣ MT

C ∧ I′), is com-
putable. This “fundamental” prior requires that we consider the somewhat meta-
physical propositions MT

i , which is undesirable given our adopted operational
stance. In section D.3.2 I will show how amore satisfactory de�nition ofMT

i can be
obtained, but for now let us just accept them as ametaphysical layer necessary to for-
mulate representations of our beliefs about more important, operationally-de�ned
propositions.
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This gives us theMT
C model-averaged prior probability ofMα , i.e. of model α

passing the test experiment X. We next want to move to posterior probability of
Mα , a�er learning some real data D. Rather than attempting to directly use Bayes’
theorem to do this, it is easier to obtain it as follows:

Pr(Mα ∣ D) = Pr(Mα ∧MT
C ∣ D)

= Pr(Mα ∧ {⋁
i∈Θ

MT
i } ∣ D)

=∑
i∈Θ
Pr(Mα ∧MT

i ∣ D)
=∑

i∈Θ
Pr(Mα ∣ MT

i ∧ D)Pr(MT
i ∣ D)

=∑
i∈Θ
Pr(Mα ∣ MT

i )Pr(MT
i ∣ D) ,

MT
C ∧ I′

(D.38)

where the condition on D is dropped from the �rst term of the last line because
it is irrelevant for predicting the test outcome whenMT

i is taken as known. The
�nal equality tells us that the posterior for Mα given MT

C is simply the posterior
model average of Pr(Mα ∣ MT

i ∧ I′) over the compound model C, i.e. its poste-
rior expected value. The posterior Pr(MT

i ∣ D ∧MT
C ∧ I′) can be computed by

conventional methods.

D.3.1 Example test experiments
Tomake the concept illustrated by eq. D.35 through D.38 more concrete, it is useful
to de�ne a speci�c test experiment. Some numerical demonstrations are presented
in appendix D.A. The most basic kind of test we might imagine is a hypothetical
measurement of quantity XF , where we say that a model passes the test, i.e. is a
“good �t” or “accurately describes the data”, if the observed value of that quantity
XF = xF lies within n standard deviations of the model prediction, assuming
that the predictive distribution of the model for XF is a normal distribution for
simplicity.
For a model labelled by i, let the mean of its predictive distribution for XF

be µi , with standard deviation σi . Then let our criteria for passing the test be∣µi − xF ∣ < nσi . The probability that this test is passed by model i (proposition
Mi), given model j is the True model, (i.e. givenMT

i ), and given the measurement
outcome is XF = xF (let us re-use the symbol xF to represent this proposition), is
then
Pr(Mi ∣ xF ∧MT

j ∧ I′) = Pr(Mi ∣ xF ∧ I′)
= H (xF − (µi − nσi)) −H (xF − (µi + nσi)) , (D.39)
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where the �rst equality occurs because if we know xF then it is irrelevant for the
test what process generated it. The Heaviside step functions H(x) encode the
conditions for passing the test.
We now follow the computation of D.36 to compute the probability that the

test is passed given only the generating model, not the measurement outcome:

Pr(Mi ∣ MT
j ) =

∞

∫
−∞

Pr(Mi ∣ xF ∧MT
j )Pr(xF ∣ MT

j ) dxF MT
C ∧ I′

= ∞

∫
−∞

[H (xF − (µi − nσi)) −H (xF − (µi + nσi))]
×N (xF ; µ j, σ2j ) dxF

= Φ((µi + nσi) − µ j

σ j
) −Φ((µi − nσi) − µ j

σ j
) ,

(D.40)

where we have made use of the simple identity

∞

∫
−∞

H(x − a) f (x)dx = ∞

∫
a

f (x)dx = 1 − F(a), (D.41)

where f (x) is any pdf and F(x) is the corresponding cdf. We now want to move
from the condition onMT

j to the less restrictive assumptionMT
C . This is done via

eq. D.35, which in general we will need to solve numerically. This produces theMT
C

model-averaged prior probability ofMi . The corresponding posterior probability
is computed similarly via eq. D.38.
Next, let us de�ne a more useful test experiment, involving more than one

observable. We will stay with observables following normal distributions, since
more general cases are much more challenging (indeed I do not tackle them in this
thesis). The common frequentist χ2 test will suit this purpose well, and remains
analytically tractable for normal random variables. That is, let the model indexed
by i pass the test, i.e. be considered a good description of the data, if Qi < Qc for
some critical value Qc, and where

Qi(x) = ν∑
k=1

(µk
i − xk

σ k
i

)2 , (D.42)

where x = {x1, . . . , xν} is a vector of observations occurring in the chosen test
experiment(s) X, predicted by model i to originate from normal random variables
X = {X1, . . . , Xν} with means µ i = {µ1i , . . . , µν

i } and standard deviations σ i ={σ 1i , . . . , σ ν
i }.
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The predictions for x under each model i are

Pr(x ∣ MT
i ) = ν∏

k=1
N (xk; µk

i , (σ k
i )2) . (D.43)

WhenMT
i is True, Qi ∼ χ2ν, i.e. the pdf of Qi is the chi-squared distribution with

ν degrees of freedom. In this case, the probability of getting Qi < Qc in the test
experiment is simply

Pr(Mi ∣ MT
i ∧ I′) = Pr(Qi < Qc ∣ MT

i ∧ I′) = ∫ ∞

−∞
H (Qc − q)) χ2ν(q)dq

= Fχ2ν(Qc), (D.44)

which is just one minus the usual p-value associated with the threshold Qc . Fχ2ν is
the cdf corresponding to χ2ν. If instead of MT

i we have MT
j being true then Qi is

no longer chi-squared distributed; instead, it is distributed according to the non-
central chi-squared distribution, with ν degrees of freedom. To see this, �rst recall
that the non-central chi-squared distribution is de�ned as the distribution obtained
from the sum of shi�ed normal random variables, i.e. if we take the normal random
variables Xk then Q = ∑k (Xk/σ k)2 is non-central chi-squared distributed, with ν
degrees of freedom, and non-centrality parameter λ = ∑k (µk/σ k)2. Let us denote
this distribution as χ2ν,λ. We can transform Qi into the form of Q by de�ning

∆k = xk − µk
i , (D.45)

so that

Qi =∑
k
(∆k

σ k )
2

. (D.46)

The ∆k are simply shi�s of normal random variables, so they are also normal
random variables; their means and variances are simply µk

j − µk
i and (σ k)2 respec-

tively5. Therefore, Qi in this form is indeed distributed according to χ2ν,λ, with
non-centrality parameter

λi j =∑
k

⎛⎝
µk
i − µk

j

σ k

⎞⎠
2

, (D.47)

when we are testing the goodness of �t of model i, and model j is the True model.
When i = j, λ goes to zero, and the original chi-squared distribution is recovered.

5I am tacitly assuming here that the variances predicted by all the models are the same for
each Xk ; it is simple to li� this restriction, but to keep the example as clear as possible I leave this
case aside.
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Using this result, we have

Pr(Mi ∣ MT
j ∧ I′) = Pr(Qi < Qc ∣ MT

j ∧ I′) = ∫ ∞

−∞
H (Qc − q)) χ2ν,λ i j

(q)dq
= Fχ2ν ,λ

(Qc),
(D.48)

where Fχ2ν ,λ
is the cdf corresponding to χ2ν,λ. As before, this result can be used to

compute the posterior probability ofMi givenMT
C via eq. D.38. For a demonstra-

tion of these calculations, see appendix D.A.

D.3.2 Replacing the “true model” concept

We are now in a position to see how we might remove our dependence on the
“metaphysical” propositions MT

i , etc. The idea will be to see how they can be
de�ned in terms of a limiting set of more “scienti�c”, i.e. operationally de�ned,
propositions, similar to Mi . We cannot work directly from the Mi propositions
because many of these may be true simultaneously, and to reproduce the behaviour
of the MT

i we require a mutually exclusive set of propositions. The general idea
will be to replace the concept of “true” model with that of “expected best �t” model,
rather than simply “expected good �t” model as expressed by Mi , in the limit
where the test used to discriminate between models is very powerful. To begin
this construction let us therefore de�ne a new proposition as follows:

“MB
α” ≡ “ModelMα will be the model that best �ts the results of test experi-

ment X”

To de�ne what “best �t” means we may compute an obvious measure such as

Si = (x − µi

σi
)2 , (D.49)

and say that the best �t model is that with the lowest Si when x is the result of
the test experiment. For the purposes of this construction it is not enormously
important what de�nition we use, so long as it has similar symmetry properties to
the above, as we shall see shortly. For now I take the test experiment to produce
only the one observable x; we will move to the multi observable case a�erwards.
We can now more concretely de�neMB

α :

MB
α ↔ Sα < Si∀i ∈ Θ, i ≠ α

↔ ⋀
i∈Θ,i≠α

{Sα < Si} . (D.50)
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The probability that this proposition is true, givenMT
C (which is still a necessary

assumption for now) is then

Pr(MB
α) = Pr( ⋀

i∈Θ,i≠α
{Sα < Si})

= Pr( ⋀
i∈Θ,i≠α

{Sα < Si} ∧MT
C)

= Pr( ⋀
i∈Θ,i≠α

{Sα < Si} ∧ {⋁
j∈Θ

MT
j })

=∑
j∈Θ
Pr( ⋀

i∈Θ,i≠α
{Sα < Si} ∣ MT

j )Pr(MT
j ) .

MT
C ∧ I′

(D.51)

This is the general case, but by using our simple choice of Si we can compute
Pr(Sα < Si ∣ MT

j ∧ I′), using Heaviside functions again:
Pr( ⋀

i∈Θ,i≠α
{Sα < Si} ∣ MT

j )
= ∞

∫
−∞

Pr( ⋀
i∈Θ,i≠α

{Sα < Si} ∣ x ∧MT
j )Pr(x ∣ MT

j ) dx
= ∞

∫
−∞

{ ∏
i∈Θ,i≠α

Pr(Sα < Si ∣ x ∧MT
j )}Pr(x ∣ MT

j ) dx MT
C ∧ I′

= ∞

∫
−∞

{ ∏
i∈Θ,i≠α

H ((µα − x
σα

)2 − (µi − x
σi

)2)}N (x; µ j, σ2j ) dx
= ∞

∫
−∞

{ ∏
i∈Θ,i≠α

H (sgn(µi − µα) [µi + µα

2
− x])}N (x; µ j, σ2j ) dx

= ∞

∫
−∞

⎧⎪⎪⎨⎪⎪⎩ ∏
i∈Θ,µ i>µα

H ((µi + µα)
2

− x)⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩ ∏
i∈Θ,µ i<µα

H (x − (µi + µα)
2

)⎫⎪⎪⎬⎪⎪⎭×N (x; µ j, σ 2j ) dx ,

(D.52)

where we have made use of the property H(ax) = H(x)H(a) + H(−x)H(−a).
The µi = µα case is excluded by the condition i ≠ α so we do not need it. We can
collapse the products over the Heaviside functions dramatically by noting that the
µi > µα set is zero above the lowest µi covered by the product, which is also above
µα . Let us label this value µα+ = µα +∆α+, i.e. this branch of the product is zero for
x > (µα+ + µα)/2, and one otherwise. Similarly, the µi < µα branch of the product
is zero for x < (µα− + µα)/2, where µα− = µα −∆α− is the µi value next below µα in
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the set of models indexed by i ∈ Θ. With this simpli�cation the product becomes
Pr( ⋀

i∈Θ,i≠α
{Sα < Si} ∣ MT

j ∧ I′)
= ∞

∫
−∞

{H ((µα+ + µα)
2

− x)}{H (x − (µα− + µα)
2

)}N (x; µ j, σ2j ) dx
= ∞

∫
−∞

{H (x − (µα − ∆α−

2
)) −H (x − (µα + ∆α+

2
))}N (x; µ j, σ 2j ) dx

= Φ(µα − ∆α−
2 − µ j

σ j
) −Φ(µα + ∆α+

2 − µ j

σ j
) ,

(D.53)
where H(−x) = 1 −H(x) has been used in the second equality (along with some
simpli�cation). Let us also note that as we take (∆α++∆α−)/2 = ∆α → 0, we obtain

lim
∆α→0

Pr( ⋀
i∈Θ,i≠α

{Sα < Si} ∣ MT
j ∧ I′) /∆α =N (µα; µ j, σ2j ) . (D.54)

This result can be seen by considering that the Heaviside functions in eq. D.53
together form a ‘top-hat’ function in x, which when divided by ∆α goes to a delta
function as ∆α → 0. This limit is obtained as we go from a discrete set of models
to a continuum, so long as the mapping from model indices (i.e. parameters) to
predictions (µα) results in all values of µα being represented. In this limit, we can
write therefore write eq. D.51 as

Pr(MB
α)

∆α
=∑

j∈Θ
N (µα; µ j, σ2j ) Pr(M

T
j )

∆ j
∆ j

πB(µα) = ∫
θ∈Θ

N (µα; µθ , σ2θ) πT(µθ)dµθ ,
MT

C ∧ I′

(D.55)

where πB(µα) and πT(µθ) are the pdfs associate with the (now continuous) sets
of propositions MB

α and MT
j respectively (where we are replacing the indices{α, j} with the continuous parameters {α, θ}i), de�ned as densities over the mean

predictions µ. In the limit where the test experiment becomes as powerful as
possible (σ j → 0) this gives us

lim
σθ→0

πB(µα) = ∫
θ∈Θ

δ(µα − µθ)πT(µθ)dµθ

= πT(µα) , MT
C ∧ I′

(D.56)

which shows us that in this simple case, we can identify the MT
α propositions

directly with theMB
α propositions.
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So far this result is straightforward, however some extra assumptions are
implicit in eq. D.55. First, throughout the construction we have assumed a one-
to-one mapping from model propositionsMB,T

α to the mean predictions of those
models for the (single) test experiment, µα. In general this assumption does
not hold; indeed it can only hold if the model space can be characterised by a
single continuous parameter. However, if we began from a continuous set of
models in which this assumption failed, and then discretised it, we could do the
discretisation in such a way as to restore a one-to-onemapping, by judicious choice
of discretisation points, if the original parameter space was not too pathological
(such a case would be, for instance, if every parameter point made the same
predictions for x). We could attempt to remove these restrictions on the result,
however the method we have just used is somewhat awkward to extend in this way,
and indeed a simpler way exists.
To go to the more general case, let us �rst change the test condition to some-

thing less cumbersome. Let us say that instead of the model predicting the smallest
expected scaled least squares di�erence from the test data, we search for the model
with the highest probability of attaining the highest likelihood value in the test.
That is, let the condition be

“L̂α” ≡ “Model α will be observed to have the highest (or equal highest)
likelihood value out of the candidate models when the test experiment X is
conducted”

where α is written in bold to emphasise that it is now a vector of indices (i.e.
parameters) of length N . Symbolically we can write this as

L̂α ↔ L(MT
α ∣xT) ≥ L(MT

θ ∣xT)∀θ ∈ Θ
↔ ⋀

θ∈Θ
L(MT

α ∣xT) ≥ L(MT
θ ∣xT)

↔ L(MT
α ∣xT) = L(MT

θ̂
∣xT),

(D.57)

whereMT
θ̂
is simply some model which achieves the highest likelihood value for

the test outcome xT (which I now write in bold to indicate that it is a vector of k
observations). θ̂ will not be the unique maximum likelihood estimator for θ given
xT , if the mapping from models to predicted test outcomes is not one-to-one. To
help work around this potential problem let us de�ne a further piece of useful
notation: let xT

α be an outcome of the test experiment such that L(MT
α ∣xT

α ) =
L(MT

θ̂
∣xT

α ), that is, it is a test outcome which causes L̂α to be True. If we can
arrange our test experiment so that there is only one such outcome, then the
probability of L̂α is equal to the probability of xT

α . Otherwise we will have to sum
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over all the outcomes which cause L̂α to be true. That is, we can write

L̂α ↔ ⋁
x′T ∶L(MT

α ∣x′T)=L(MT
θ̂
∣x′T)

xT = x′T . (D.58)

For simplicity we will again assume the model predictions for the test experiment
outcomes are normally distributed, i.e. now a multinormal (though let us assume
a constant, diagonal covariance matrix for simplicity), so that we may write

L(MT
θ̂
∣ xT) = k∏

i=1
N (xT

k ; µk,θ , σk) =N (xT ; µθ , σ) . (D.59)

With such a likelihood there is then a one-to-one mapping from test outcomes xT

to maximum likelihood estimators for the µθ , namely, when xT = a then µθ = a
maximises the likelihood. Analogously to the θ̂, let us label this estimator µ̂. Our
target proposition L̂α is then True simply i� µ̂ = µα, i.e. L̂α ↔ µ̂ = µα.
Let us now proceed with the calculation. I am mainly concerned with the

continuum limit here, and various simpli�cations are possible in this limit, so this
time we will work in it from the beginning:

πα(MB
α) = πα(L̂α ∧MT

C)
= ∫

θ∈Θ

πα(µ̂ = µα ∣ MT
θ ) πθ(MT

θ )dNθ .

MT
C ∧ I′

(D.60)

We next compute

πα(µ̂ = µα ∣ MT
θ ) = ∫

xT∈XT

πα(µ̂ = µα ∣ xT ∧MT
θ ) πxT(xT ∣ MT

θ )dkxT

= ∫
xT∈XT

πµα(µ̂ = µα ∣ xT ∧MT
θ ) ∣∂µα

∂α
∣ πxT(xT ∣ MT

θ )dkxT

= ∫
xT∈XT

δk(µα − xT) ∣∂µα

∂α
∣L(MT

θ ∣ xT)dkxT

= ∣∂µα

∂α
∣L(MT

θ ∣ µα) .
MT

C ∧ I′

(D.61)

The delta function is obtained because, given a test result xT , we know for sure
whether the likelihood is maximised for the model being tested. We need to take
care to do this in the correct units, however, thus the Jacobian factor appears.
We see here that problems will arise when the mapping from α to µα is not

one-to-one; singularities will appear in the Jacobian factor. For now, let us simply
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suppose this does not occur; i.e. let us take k = N and let the map from α to µα be
a di�eomorphism. Then, taking this result back to eq. D.60, and taking the power
of the test experiment to its maximum (σk → 0∀k) we obtain.

lim
σ→0

πα(MB
α) = ∣∂µα

∂α
∣∫
θ∈Θ

L(MT
θ ∣ µα) πθ(MT

θ ) dNθ

= ∣∂µα

∂α
∣ ∫
µθ ∶θ∈Θ

δN(µθ − µα) πµθ
(MT

θ ) dNµθ

= ∣∂µα

∂α
∣ πµα

(MT
α )

= πα(MT
α ) , MT

C ∧ I′

(D.62)

recovering for us the same result as was obtained with our original test criteria,
though now for more observations and parameters, with some restrictions.

Next, let us reconsider this calculation, but with k < N , so that the test obser-
vations underconstrain the model space. To impose the k constraints we will have
to choose k parameters to constrain, so let us split the model indexing parameters
into two sets, i.e. let α = (α′, β′) and θ = (θ′, ϕ′), where we are splitting the N
parameters into a group of length k and a group of length N − k. Let us likewise
divide the domain Θ into (Θ′, Φ′). When we exchange parameters for mean pre-
dictions, we will leave the latter group alone, and exchange only the former group,
so that our transformation will be (α′, β′) → (µα , β

′). The computation of eq.
D.61 then goes like

πα(µ̂ = µθ ∣ MT
θ )

= ∫
xT∈XT

πα(µ̂ = µα ∣ xT ∧MT
θ ) πxT(xT ∣ MT

θ )dkxT

= ∫
xT∈XT

δk(µα − xT) ∣∂(µα , β
′)

∂(α′, β′) ∣ πxT(xT ∣ MT
θ )dkxT

= ∣∂µα

∂α′
∣
β′
L(MT

θ ∣ µα) ,
MT

C ∧ I′

(D.63)
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where the subscript β′ indicates that this parameter is held constant in the adjacent
partial derivatives. The new computation of eq. D.60 is then

lim
σ→0

πα(MB
α)

= ∣∂µα

∂α′
∣
β′
∬
θ∈Θ

L(MT
θ ∣ µα) πθ(MT

θ ) dkθ′dN−kϕ′
= ∣∂µα

∂α′
∣
β′
∬

µθ ∶θ∈Θ

δk(µθ − µα) πµθ ,ϕ
′(MT

θ ) dkµθd
k−Nϕ′

= ∣∂µα

∂α′
∣
β′
∫

ϕ′∈Φ′

πµα ,ϕ
′(MT

µα ,ϕ
′) dk−Nϕ′

≡ πα′ ,ϕ′(MT
µα ,ϕ

′) ,
MT

C ∧ I′

(D.64)

or, remaining in the (µα , β
′) coordinates and de�ning a simpler notation:

lim
σ→0

πµα ,β
′(MB

α) = πµα ,ϕ
′(MT

µα ,ϕ
′)

≡ πµα
(MB′

µα
) ,

MT
C ∧ I′

(D.65)

where the notation on the last few lines is intended to emphasise that the density
function varies only in the µ direction. This chain of logic also shows that

⋁
ϕ′∈Φ′

MT
µθ ,ϕ′ → L̂µθ ,ϕ

′′ ↔ MB′
µθ
, (D.66)

i.e. that any model predicting µ will achieve the equal best �t likelihood value
if some model also predicting µ is the “True” model, in the limit where the test
experiment is maximally powerful, as we obviously expect to be the case.
Now we see something more interesting. The probability density forMB

α , i.e.
the probability density that model α will be the equal best �t model in the test
experiment is the average probability density along the unconstrained parameter
directions, i.e. the unconstrained directions are marginalised away, and there is
no variation in probability density in this direction in the result. This of course is
sensible, since all models along slices in this direction make the same predictions
for the test experiment, so they must all have the same probability of achieving
the best �t. This much is true even when the test experiment is not maximally
powerful.
If we have designed our test experiment so that the outcomes tested are really

everything we will ever care about knowing, then this tells us that we also will
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not care what is happening in these unconstrained directions in the model space.
These are le� at the status of “metaphysical” quantities, and perhaps we will think
of them as mere calculational conveniences. One is reminded of the redundant
degrees of freedom which are found throughout quantum �eld theory (and indeed
many other areas of physics) such as gauge freedom, which are not considered
to have any physical importance because varying them makes no di�erence to
predictions. If our test experiment is really able to constrain everything that is
physical, then indeed the le�over degrees of freedom cannot be important to our
beliefs about what will occur in any experiments, and we are seeing here that they
indeed are not. We can see this explicitly by computing the probability of the
outcome of some other test, call this Y with possible outcomes y.

πy(y) =∬
θ∈Θ

πy(y ∣ MT
θ ) πθ(MT

θ ) dkθ′dN−kϕ′
=∬

θ∈Θ

πy(y ∣ MT
θ ) πµθ ,ϕ

′(MT
θ )dkµθd

k−Nϕ′

= ∫
µθ ∶θ∈Θ

πy(y ∣ MT
µθ ,ϕ

′′) ∫
ϕ′∈Φ′

πµθ ,ϕ
′(MT

µθ ,ϕ
′)dk−Nϕ′dkµθ

= ∫
µθ ∶θ∈Θ

πy(y ∣ MB′
µθ
) πµθ

(MB′
µθ
)dkµθ ,

MT
C ∧ I′

(D.67)

where in the third equality we can bring πy outside of the ϕ′ integral because we
have assumed it does not depend on ϕ′ (ϕ′′ is simply an unimportant arbitrarily
chosen value of ϕ′). Similarly in the fourth equality the conditional onMT

µθ ,ϕ
′′ can

be switched toMB′
µθ
because the predictions for y are the same either way6. At this

point, we can note that eq. D.67 is identical to the result that would be obtained
if we re-imagined the problem by �rst elucidating our prior beliefs about MB′

µθ

directly, skipping entirely any consideration of whether any particular model is
the “True” model. We can instead think only about the relative probabilities that
each model will, in the limit of our very powerful test experiment suite, best �t the
data, which is much more scienti�cally satisfying.
This is not to say that “metaphysical” considerations cannot have any impact

on our prior beliefs aboutMB′
µθ
. As we see in the marginalisation that occurs in eq.

D.65, these considerations can make themselves felt in the “prior” probabilities
6 This step is not actually completely trivial, but it can be shown to be valid by repeating the cal-

culations of eq. D.64 starting from πy ,α(y ∧MB
α ∣ MT

C ∧ I
′
) instead of πα(MB

α ∣ MT
C ∧ I

′
), and show-

ing that it factorises into πy(y ∣ MT
µα ,ϕ′′

∧ I′) πα(MB
α ∣ MT

C ∧ I
′
) (in the limit of a maximally pow-

erful test experiment), from which it follows that πy(y ∣ MB′
µα
∧MT

C ∧ I
′
) = πy(y ∣ MT

µα ,ϕ′′
∧ I′).
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we feel to be sensible for theMB′
µθ
, since if, for whatever reason, we would assign a

high prior over some signi�cant volume of the “non-physical” parameter space,
this would result in a high average prior probability for the corresponding MB′

µθ
.

The point is only that, if we have no particular reason to think directly in this more
metaphysical way, we can perfectly well get by without doing so.
There is one �nal piece of “metaphysical” baggage we are le� with, however.

We still are conditional onMT
C , that is, on the proposition that some single model

in the suite under consideration is the “True” model, though we have successfully
shi�ed this consideration into the background. But is it necessary? In a sense yes,
because our inferences must be conditional on some proposition or other that
is su�ciently powerful that it lets us take the predictions of a given model as an
accurate representation of what may or may not occur in our test experiments.
But, in fact, this is all that we require. We don’t need any of our models to “actually”
be the “True” model, in the sense that they are in the toy scenario we began this
chapter with. We just need at least one model in the suite to, in the asymptotic
limit where our test experiments are arbitrarily powerful, match the data, so that
the asymptotic best �t model, for which MB′

µθ
is True, is also a “good” �t. In the

case where the likelihoods for the test experiment are all normal distributions,
this is similar to the assumption we made that the µ parameters predicted by the
models spanned the full set of possible outcomes of the test experiment. If there
is some test experiment outcome that could feasibly occur which is not covered
by the model set, then there could feasibly be some model outside the set under
consideration which could match the asymptotic test data better. In order for this
way of thinking to be sensible, therefore, we should ensure that this is not the case,
i.e. that our set of models is su�ciently broad and nuanced to describe everything
that we consider possible to occur in the test experiments.
The above is the general idea of what we want to achieve; let us now see how

it might be done more formally. Reviewing the calculations performed in this
section, there are several essential uses we made of theMT

C proposition. It lets us
do the following:
• Use the simple sum rule, i.e. since MT

C ↔ {⋁i∈ΘMT
i } and the MT

i are
mutually exclusive, it follows that Pr(MT

C ∣ I′) = ∑i∈Θ Pr(MT
i ∣ I′).

• Take the usual model predictions as literally what we expect to happen in the
test experiment if any givenMT

C is taken as true, i.e. to use Pr(x ∣ MT
i ∧ I′) =

L(MT
i ∣ x).

In order to replaceMT
C , we therefore need some other proposition which permits

the above. A candidate replacement satisfying the �rst requirement is MB′
C ≡{⋁i∈ΘMB′

i }, withMB′
i de�ned analogously toMB′

µθ
, since these are mutually exclu-
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sive. Unfortunately,MB′
C does not satisfy our second requirement, namely, it is not

su�cient in itself to allow us to take the model predictions literally, since it may
be the case that what happens in our powerful test experiment is not perfectly in
accord with the model predictions, whileMB′

C is nevertheless true, since allMB′
C

claims is that some model in the set Θ will be the best �t model. This is going to be
true no matter how bad our models are, since in a given set, some model must be
the best �t regardless of how bad the �t is. However, this suggests what additional
requirement we need: we should demand that whatever model turns out to be the
best �t in the asymptotic experiments, be also a su�ciently exact �t to the data
that we are happy to use the best �t model predictions as our beliefs about what
will happen in any other relevant experiments.
For arbitrary experiments this is di�cult to de�ne thoroughly due to the

absence of any absolute goodness-of-�t measure. However, to demonstrate the
concept, we can simply stay with our experiments predicting normal random
variables, for which ameasure like χ2 can be used as in sectionD.3.1. Indeed, we can
come full circle, and simply predicate our calculations on a proposition likeMC →{⋁i∈ΘMi}, that is, wemust suppose that somemodel in our set will pass a speci�ed
goodness of �t test, when tested in our asymptotically powerful experiments. We
can then set formally the threshold required to pass the goodness of �t test at
whatever strictness we require in order for the best �t models predictions to be
taken as our beliefs for what will happen in other relevant experiments. That is,
the claim is that we can take

Pr(x ∣ MB′
i ∧Mi ∧ I′) = Pr(x ∣ MT

i ∧ I′) = L(MT
i ∣ x) , (D.68)

thus satisfying our second requirement for the True model. I am not currently
sure if this can be demonstrated in a formal manner. For our purposes, acting
within the operational subjectivist paradigm, we can satisfy ourselves that this
requirement is met if we believe that it is met; i.e. if, given a su�ciently diverse set
of initial models, and a su�ciently powerful set of experiments on which to test
those models, we would believe with certainty the predictions for x of a model for
which MB′

i ∧Mi was true. This I am sure is a controversial philosophical point;
however, given su�cient background assumptions I′, such as the uniformity of
Nature and other implicit axioms underlying the pursuits of science, it seems to
me satisfactory enough.
In practice this condition will o�en fail, because we are looking only at some

very limited subset of possible models. None of the formal correspondences
demonstrated above will therefore hold, in the sense that we need them to if we
want to compute the absolute probability thatMB′

µθ
∧Mi is True. We are therefore
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limited in many cases to computing relative probabilities only. In other words,
similarly to the concept illustrated in �gure D.2, we should imagine that there
exists a much wider class of models than we are explicitly examining, and for
which the two requirements needed to replaceMT

C are met. We are then simply
examining portions of this greater model space in a pragmatic fashion.

D.4 Conclusions
In this appendix I have reviewed the common formulations of Bayesian statistical
methods, and o�ered an alternative perspective on them based explicitly upon
an operational-subjectivist philosophy. To this end I have attempted to replace
all reference to any propositions which may be construed as “metaphysical” with
alternatives whose operationalmeaning can be clearly de�ned. I believe this kind of
replacement is necessary in many cases in order for it to be clear what probabilities
we are in fact calculating.
In practice, it is o�en very di�cult to make the formal replacements which

I advocate in this appendix, and even in this thesis this recommendation is not
followed rigorously. However, I think that merely keeping in mind this desire to
connect propositions to (at least in-principle) measurable phenomena helps to
keep Bayesian calculations meaningful.
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D.A Appendix: Demonstration of “future test”
method to polynomial �tting

In this appendix I demonstrate themodel �tting technique implied by eq. D.38, and
elaborated in section D.3.1. Taking also into consideration the results of section
D.3.2, the idea can be explained as follows.
Usually when performing Bayesian model comparison or parameter �tting

(really these are the same thing), one seeks the model with the highest posterior
probability, with this “posterior probability” usually le� vaguely de�ned, or some-
times as the posterior probability of each model being the “True” model. The goal
of section D.3.2 was to clarify what it means for a model to be “the True model”
when we are taking data from reality, not toy models. The idea is that “normal”
Bayesian inference can be considered as a search for the true model de�ned in the
observationally-based sense described in that section.
Here, however, a slightly di�erent view is taken. Instead of seeking the model

with the highest posterior probability of being the “True”model, we seek themodel
which has the highest posterior probability of successfully describing the data to
be taken in some well-de�ned experiment or set of experiments (this time not in
any asymptotically powerful sense as required to de�ne a “True” model). In other
words, we seek goodmodels, not truemodels. More formally, we say that we seek
the probabilities of the propositionsMα , whereMα is de�ned as “model α will pass
a (to be speci�ed) goodness-of-�t test on the data gather from the test experiment”,
and where model α is a fully speci�ed model, i.e. with no free parameters.
To predict what the results of the test experiment will be, a model averaged

prediction is made, and models are tested against these predictions to determine
the probability that they will well-describe that test data. We can thus consider
this model testing method of consisting of three stages:
1. A model elucidation stage. Here we must optimally come up with a rich set
of models which is capable of describing anything we might observe in the
both the training and test experiments. Part of this stage involves choosing
a prior distribution across these models. We cannot (easily) set a prior
directly on theMα propositions because complex logical relationships exist
between them (as illustrated in eq. D.33. To untangle these relationships,
it remains necessary to consider a layer of propositions belowMα, namely
MT

α , which in section D.3.1 is described simply as meaning “model α is the
‘True’ model”, but which in light of section D.3.2 we can consider to have
an approximately operationally-de�ned meaning. Deciding on a prior for
the MT

α then automatically determines the prior probabilities of the Mα,
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according to eq. D.37. Checking that the prior for MT
α does not induce a

prior forMα in severe con�ict with our actual prior beliefs aboutMα is an
important sanity check.

2. A learning, or training, stage. Here data from training experiments is used to
determine the posterior probabilities of theMα , again via the more abstract
MT

α layer.
In many ways the layer MT

α acts like the hidden layer of a neural network, char-
acterising potential relationships between the data. The training stage trains the
belief network, and the network predictions (the model average) are the beliefs of
the network about what will occur in the test experiment. From this perspective,
we may very well stop here and simply use the entire belief network to inform our
own beliefs about what will happen in future experiments. However, from a prag-
matic perspective, this is extremely computationally intensive and inconvenient,
so it is useful to know which individual, hopefully simple, models are in good
agreement with the predictions of the full belief network. From a philosophy of
science perspective, we might say that this is the reason we are con�dent in using,
say, Newton’s laws for a vast array of practical problems in science and engineering,
even though we know them to not be the “True” laws of Nature. Newton’s laws are
in excellent agreement with the full predictions of our own organic belief network
concerning these kind of test experiments, so we make the perfectly rational and
pragmatic decision to use them “as if ” they were the “True” laws of Nature in these
particular cases. Analogous reasoning can be applied to the choice to use any given
model in any situation; in the context of the present thesis, the Standard Model of
particle physics is an obvious example (though it is beyond our current computa-
tional powers to apply the method I am currently outlining directly to that case,
due to the richness of the space of possible extended models; it is essentially the
job of the theorist to attempt this task via their mathematical insight and intuition,
though I hope that the present framework sheds some light on this task). The
point of the present testing formalism is to determine when such a substitution is
expected to produce good results.

D.A.1 Generalised marginalisation

Before looking at some toy problems, there is a book-keeping issue to sort out.
When visualising prior or posterior probability distributions, it is customary to
project them onto a one or two dimensional plane of interest via marginalisation.
That is, for a pdf f (a, b, c) which is a function of three variables, we may visualise
the information encoded in this pdf about a variable of interest, say a, by computing
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the marginal pdf
fa(a) =∬

D

f (a, b, c)dbdc, (D.69)

where D is simply the domain over b and c for which f is non-zero. In our usual
formal notation this can be expressed in the general (discretised) form

Pr(Ai) = Pr(Ai ∧ {⋁
j∈DB

B j} ∧ { ⋁
k∈DC

Ck})
= ∑

j∈DB

∑
k∈DC

Pr(Ai ∧ B j ∧ Ck) , (D.70)

where Ai , B j,Ck can be thought of as the proposition that the “True” model has
parameters ai , b j, ck etc., or whatever variation on this is appropriate to the scenario
at hand, and DB ,DC describe the domains of the corresponding parameters. The
marginal probability Pr(Ai) can then be plotted as a function of the single variable
ai , for easy visualisation.
Crucially, moving to the second equality of eq. D.70 requires the use of both

the independence and the mutual exclusivity of the propositions Ai ∧ B j ∧ Ck . In
our case our propositions of interestMα are notmutually exclusive, so we cannot
marginalise over them using the usual methods. Fortunately, the form of eq. D.70
immediately suggests what we should do instead. First let us rewrite D.70 in a
di�erent form to make things easier:

Pr(bini) = Pr(⋁
i∈b i

Ai) , (D.71)

where the idea is that a marginalised probability can be thought of as simply the
total probability of some set of propositions Ai meeting some criteria, such as
having the same ai parameter value, or falling into some speci�ed “bin” bi . In
model language we ask something like “what is the probability that the true model
lies in bin bi” (given it lies in some speci�ed set of models).
For appropriately chosen bins this is indeed exactly what “ordinary” marginali-

sation does, whatever the dimensionality, but here we see what the general case is.
For non-mutually-exclusive, non-independent propositions, eq. D.72 expands to

Pr(⋁
i∈b i

Ai) = i∈b i∑
i
Pr(Ai) − i , j∈b i∑

i< j
Pr(Ai ∣ A j)Pr(A j)

+ i , j,k∈b i∑
i< j<k

Pr(Ai ∣ A j ∧ Ak)Pr(A j ∣ Ak)Pr(Ak) − . . . ,
(D.72)

which for small numbers of propositions in the set bi is computable, but grows
combinatorically fast in complexity and so quickly becomes completely intractable.
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Fortunately there is way around this problem using the identity (thm. 5)

Pr(⋁
i∈b i

Ai) = 1 − Pr(⋀
i∈b i

¬Ai) , (D.73)

which, if the propositions are independent (though not necessarily mutually exclu-
sive) expands to

Pr(⋁
i∈b i

Ai) = 1 −∏
i∈b i

(1 − Pr(Ai)) , (D.74)

whose time-complexity is linear. The propositions we need to work with are in
fact independent, though not mutually exclusive, so this formula ful�ls our need.
The actual application of this will be to compute

Pr( ⋁
α∈bin

Mα) =∑
i∈Θ
Pr(MT

i )Pr( ⋁
α∈bin

Mα ∣ MT
i )

=∑
i∈Θ
Pr(MT

i ) [1 − ∏
α∈bin

(1 − Pr(Mα ∣ MT
i ))] ,

MT
C ∧ I′

(D.75)

with de�nitions as in sec. D.3.1, i.e. Θ speci�es the set of models under considera-
tion. This de�nition of marginalisation will be used in the following section for
visualisation purposes. Note that the marginal distributions are not constrained to
integrate to one, for the same reasons we need to perform the marginalisations in
this generalised way.

D.A.2 Toy problem
To explicitly demonstrate the technique, let us consider a very simple scenario;
polynomial �tting. In this example we will �t polynomials of order 1,2,3 and 6, i.e.
the models families

p1 ∶ y = a + bx ,
p2 ∶ y = a + bx + cx2,
p3 ∶ y = a + bx + cx2 + dx3,
p6 ∶ y = a + bx + cx2 + dx3 + ex4 + f x5 + gx6.

(D.76)

Throughout this example, the training data is taken from p2, with a = −1, b = 0
and c = 1/25, from measurement positions x = {−10,−9, . . . , 9}, assuming a y
measurement standard deviation of 1. units (i.e. with training measurements
drawn from normal distributions with standard deviation 1, and with mean given
by p2 with the speci�ed x positions and parameter values).
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Our �rst interest is to see what “ordinary” priors for the model parameters,
corresponding to priors for theMT

α propositions, imply about the priors for theMα

propositions. To this end, let us arbitrarily choose �atMT
α priors for the a, b, c...,

with range (−100, 200) for a and b, and range (−300, 300) for all other parameters.
For the “test experiment”, with which we de�ne Mα, we set our measurement
positions to x = {−20,−9, . . . , 19}, and set the y standard deviation to 0.1 units.
Let us dub these test experiment settings as the ‘high precision’ scenario. For the
statistical test that must be passed, we choose the χ2 test, whose probability of
being passed is computed via eq. D.48. The threshold con�dence level for passing
the test is set to 95%.

This ‘high precision’ test experiment has high discrimination power, so we
should expect the distributions forMα to closely follow those forMT

α , since roughly
speaking

Pr(Mα) =∑
i∈Θ
Pr(Mα ∣ MT

i )Pr(MT
i )

≈ Pr(Mα ∣ MT
α )Pr(MT

α ) = 0.95Pr(MT
α ) , MT

C ∧ I′

(D.77)

if a model has negligible probability of passing the test experiment when it is not
the “True” model, which occurs as the test experiment gains a high power to
discriminate amongst all models in Θ. Figures D.3 and D.4 shows marginal prior
and posterior distributions for the variousMα corresponding to the toy models.
Figure D.5 shows the training data, true model predictions for the test experiment
outcomes, and model averaged posterior predictive distributions for the test data,
where the latter is computed in the usual way according to

Pr(y j ∣ D) =∑
i∈Θ
Pr(y j ∣ MT

i ∧ D)Pr(MT
i ∣ D) ,

MT
C ∧ I′

(D.78)

where y j is the candidate data prediction for measurement point x j, and D is the
observed training data as detailed above.

As well as the ‘high-precision’ test scenario, let us also consider a ‘low-precision’
test scenario, in which we set our measurement positions to x = {−5,−3,−1, 1, 3},
and set the y standard deviation to 2 units. Other aspects of the test are le� the
same as the ‘high-precision’ scenario. Figures illustrating the results obtained
under this scenario are illustrated in �gures D.6,D.7 and D.8.
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Figure D.3: Marginal prior probability distributions of bothMα (blue, ‘\’ hatched)
andMT

α (yellow, ‘/’ hatched), over the polynomial models p1, p2, p3 and p6, under
the ’high precision’ test experiment scenario. Distributions are based on 10000
samples drawn from theMT

α priors described in the text. We see that theMα prior
is identical to theMT

α prior from which it is derived, up to a scaling of about 0.95,
as expected when the MT

α probability weight is spread across a wide variety of
models which can be easily discriminated by the test experiment.

D.A.3 Discussion

The high precision scenario is the less interesting of the two. Its purpose is primarily
to demonstrate the limit in which the distributions forMα coincide well with those
for the MT

α distribution. It also shows in practical terms some similar results to
those obtained in section D.3, that it, it illustrates circumstances in which we can
elucidate our model probabilities in terms ofMα rather thanMT

α .
The low precision scenario is where the more practical bene�t of considering

Mα can be seen. When the training data is powerful enough to train the prob-
ability network to know with high con�dence what will be observed in the test
experiment, it becomes possible to know which models will (probably) be capable
of accurately describing the results of that experiment. This then allows us to make
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Figure D.4: Marginal posterior probability distributions of both Mα (blue, ’\’
hatched) andMT

α (yellow, ’/’ hatched), over the polynomial models p1, p2, p3 and
p6, under the ’high precision’ test experiment scenario. Distributions are obtained
using Multinest v3.5, using priors and training data as described in the text. For
the models with the higher degrees of freedom we again see matching between the
Mα andMT

α distributions up to a scaling of 0.95, however for the more constrained
models we see that the posterior forMα is ampli�ed overMT

α . This occurs because
the learning system is able to become con�dent in its predictions for the high
precision test experiment when the model space is small, and so is able to assign
non-negligible or even quite high probabilities to Pr(Mα ∣ MT

i ∧ I′) for certain
α ≠ i. In other words, there is a “boosting” e�ect to the Mα probabilities when
most of the models which well �t the training data all predict similar outcomes for
the test experiment, i.e. when there is a “consensus” among the surviving models
about what will happen. See �g. D.5 for further visualisation of this e�ect.
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Figure D.5: Visualisation of training data and predictive distributions for �ts of
polynomial models p1 and p6, under the ‘high precision’ test experiment scenario.
The components of the �gures are as follows: (black dashed) Mean predictions
of “True model” from p2, as described in the text; (orange band) One sigma
band around mean true model predictions, with precision set to match the test
experiment; (black data points with error bars) Training data as sampled from
the true model; (green, yellow and red bands) Minimum 68, 95 and 99.7 percent
credible regions for themodel-averaged posterior predictions of the test experiment
data; (blue solid lines) Mean predictions of �ve models from the model set, chosen
with probability in proportion to theirMα probabilities. The range P indicated in
the legend shows the maximum and minimum Pr(Mα ∣ MT

C ∧ I′) in this sample.
For the p1 model we see much higher probabilities of passing the test experiment
obtained than in the p6 case, which can be understood by observing that the p1
model average is much more ‘con�dent’ in its predictions for what data will be
observed in the test experiment (though it is actually greatly over-con�dent, since
the p1 model ensemble is not sophisticated enough to correctly match the data
produced by the true model in p2) . In contrast, the p6 model ensemble has ‘no
idea’ what to expect of the test experiment data in regions extrapolated even a small
distance from the training data, so it cannot con�dently predict which models
are likely to pass the higher precision test without additional training to better
constrain its remaining degrees of freedom.
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Figure D.6: Marginal prior probability distributions of bothMα (blue, ‘\’ hatched)
andMT

α (yellow, ‘/’ hatched), over the polynomial models p1, p2, p3 and p6, under
the ’low precision’ test experiment scenario. Distributions are based on 10000
samples drawn from theMT

α priors described in the text. As in the ‘high precision’
scenario we see little di�erence between the priors forMα andMT

α , because not
enough information is known to predict the test experiment outcomes with any
con�dence.

simpli�cations in the treatment of that test experiment data, such as using some
simple and easy to work with model from the family of candidate models.



D.A Appendix: Demonstration of “future test” method to polynomial fitting259

3 0 3 6
a

0.0

0.2

0.4

0.6

0.8

1.0

P
r/

b
in

1 0 1

b

(a) p1

4 0 4
a

0.0

0.2

0.4

0.6

0.8

1.0

P
r/

b
in

2 1 0 1 2

b
0.3 0.0 0.3 0.6

c

(b) p2

8 4 0 4
a

0.0

0.2

0.4

0.6

0.8

1.0

P
r/

b
in

1.5 0.0 1.5

b
0.4 0.0 0.4

c
0.12 0.060.00 0.06

d

(c) p3

10 5 0 5
a

0.0

0.2

0.4

0.6

0.8

1.0

P
r/

b
in

6 3 0 3

b
0.8 0.0 0.8 1.6

c
0.25 0.00 0.25 0.50

d
5 0 5

e 1e 2
4 0 4

f 1e 3
8 4 0 4

g 1e 4

(d) p6

Figure D.7: Marginal posterior probability distributions of both Mα (blue, ’\’
hatched) and MT

α (yellow, ’/’ hatched), over the polynomial models p1, p2, p3
and p6, under the ’low precision’ test experiment scenario. Distributions are ob-
tained using Multinest v3.5, using priors and training data as described in the
text. The distributions for Mα and MT

α di�er greatly in this instance. The Mα
distributions are much wider and higher than the MT

α distributions, because in
this case the training data is su�ciently informative as to what will happen in the
test experiment that the learning system can predict with high con�dence which
models will pass this test. The test experiment has little discriminatory power, so
there are many models which don’t �t the training data particularly well yet will
still perform well in the test experiment. This shows that these models can be
well substituted for the full model average, or best-�t models, when predicting
test experiment outcomes. This is desirable in the case where such models are
computationally or conceptually simpler than the models which actually �t the
training data better (and of course they are always simpler to work with than the
full model average). Some numerical artefacts appear in theMα distributions be-
cause they extend far beyond theMT

α distributions, into parameter regions where
the sampling is sparse.
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Figure D.8: Visualisation of training data and predictive distributions for �ts of
polynomial models p1 and p6, under the ‘low precision’ test experiment scenario.
The components of the �gures are as follows: (black dashed) Mean predictions
of “True model” from p2, as described in the text; (orange band) One sigma band
around mean true model, with precision set to match the test experiment; (black
data points with error bars) Training data as sampled from the true model; (green,
yellow and red bands) Minimum 68, 95 and 99.7 percent credible regions for the
model-averaged posterior predictions of the test experiment data; (blue solid lines)
Mean predictions of �ve models from the model set, chosen with probability in
proportion to theirMα probabilities. The range P indicated in the legend shows the
maximum and minimum Pr(Mα ∣ MT

C ∧ I′) in this sample. In contrast to the ‘high
precision’ test experiment scenario, we see that in both the p1 and p6 cases there are
many models predicted to pass the test experiment with probability approaching
the maximum possible (95%). This is of course because the test experiment is not
very discriminatory, and the training data is su�cient to predict the test experiment
outcomes with high con�dence under both model families.



Appendices: Supplementary
publications

261





Natural gauge mediation with a
bino NLSP at the LHC

E

Natural gauge mediation with a bino NLSP at the LHC

James Barnard, Benjamin Farmer, Tony Gherghetta, Martin White

Published in Physical Review Letters 109 (2012) 241801
DOI: 10.1103/PhysRevLett.109.241801
e-Print: arXiv:1208.6062 [hep-ph]

(not reproduced in electronic version of thesis)

263





A simple technique for combining
simpli�ed models and its
application to direct stop
production

F

A simple technique for combining simpli�ed models and its application to direct
stop production

James Barnard, Benjamin Farmer

Published in JHEP 1406 (2014) 132
DOI: 10.1007/JHEP06(2014)132
e-Print: arXiv:1402.3298 [hep-ph]

(not reproduced in electronic version of thesis)

265




	Contents
	Abstract
	List of research outputs
	General Declaration
	Acknowledgements
	Acronyms
	1 Introduction
	2 The Standard Model and supersymmetry
	2.1 The Standard Model
	2.2 Problems with the Standard Model
	2.2.1 The hierarchy problem

	2.3 Supersymmetric models
	2.3.1 Solution to the hierarchy problem
	2.3.2 Gauge coupling unification
	2.3.3 Supermultiplets
	2.3.4 The MSSM
	2.3.5 Soft SUSY breaking
	2.3.6 The NMSSM
	2.3.7 Experimental constraints on the MSSM and NMSSM


	3 Bayesian naturalness
	3.0.1 The hierarchy problem revisited
	3.1 Naturalness priors
	3.1.1 MSSM/CMSSM priors
	3.1.2 Evidence factors and the  problem
	3.1.3 NMSSM/CNMSSM priors

	3.2 Model selection measures
	3.3 Conclusions
	3.A Appendix: Derivatives of NMSSM EWSB conditions
	3.B Appendix: Implicit computation of Jacobians from systems of constraint equations
	3.C Appendix: Fine-tuning in the BIC

	4 Application of subjectivist statistical methods to the CMSSM
	4.1 Introductory remarks
	4.2 Published material: Paper I
	4.3 Published material: Paper I (conference summary)

	5 Bayesian naturalness in the CMSSM and CNMSSM
	5.1 Introductory remarks
	5.2 Published material: Paper II

	6 Conclusions and outlook
	6.1 Summary
	6.2 Outlook

	Bibliography
	Appendices: Probability theory and statistics
	A Notation and basic identities
	B Philosophy of probability
	B.1 Kolmogrov's system of probability
	B.2 The `classical' interpretation
	B.3 The `logical' interpretation
	B.4 The `subjectivist' interpretation
	B.4.1 Exchangeable events

	B.5 The `frequency' interpretation
	B.6 The `propensity' interpretation
	B.7 Algorithmic probability
	B.7.1 Turing machines
	B.7.2 Kolmogrov complexity
	B.7.3 Solomonoff induction

	B.8 Approach taken in this thesis
	B.8.1 What is the probability of a model?

	B.A Appendix: Logical constraints on the probabilities of generalisations

	C Frequentist statistical methods
	C.1 Notation
	C.2 The 2 distribution
	C.3 2 tests
	C.4 Likelihood ratio tests
	C.5 Global Fits
	C.6 Summary

	D Bayesian statistical methods
	D.1 Conventional formulation
	D.1.1 Simple hypotheses
	D.1.2 Compound hypotheses

	D.2 Logical formulation
	D.2.1 Simple hypotheses
	D.2.2 Compound hypotheses

	D.3 Beyond ``games''
	D.3.1 Example test experiments
	D.3.2 Replacing the ``true model'' concept

	D.4 Conclusions
	D.A Appendix: Demonstration of ``future test'' method to polynomial fitting 
	D.A.1 Generalised marginalisation
	D.A.2 Toy problem
	D.A.3 Discussion



	Appendices: Supplementary publications
	E Natural gauge mediation with a bino NLSP at the LHC
	F A simple technique for combining simplified models and its application to direct stop production


