17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042041 doi:10.1088/1742-6596/219/4/042041

Visual Physics Analysis VISPA

Oxana Actis, Michael Brodski, Martin Erdmann, Robert Fischer,
Andreas Hinzmann, Tatsiana Klimkoviclﬂ, Gero Miiller, Thomas
Miinzer, Matthias Plum, Jan Steggemann, Tobias Winchen
Physics Institute 3a, RWTH Aachen University, 52056 Aachen, Germany

E-mail: tatsiana.klimkovich@physik.rwth-aachen.de

Abstract. VISPA is a development environment for high energy physics analyses which
enables physicists to combine graphical and textual work. A physics analysis cycle consists
of prototyping, performing, and verifying the analysis. The main feature of VISPA is a
multipurpose window for visual steering of analysis steps, creation of analysis templates, and
browsing physics event data at different steps of an analysis. VISPA follows an experiment-
independent approach and incorporates various tools for steering and controlling required in
a typical analysis. Connection to different frameworks of high energy physics experiments is
achieved by using different types of interfaces. We present the look-and-feel for an example
physics analysis at the LHC and explain the underlying software concepts of VISPA.

1. Introduction

In the past decade, major progress has been achieved in the development of experiment-specific
software analysis frameworks, typically based on C++ and a specific configuration language (e.g.
[, 2]). In some of them the dynamically-typed programming language Python is being used for
the analysis environment [3, 4]. The visualizations of a physics analysis has been attempted in
the past [B] and has recently become a field of strong interest again. With the project VISPA
(Visual Physics Analysis) [6l [7], the step in between visualizing the measured objects in the
detector (event display) and physics distributions (histograms) is graphically supported. In this
step, the primary tasks of a physicist are prototyping, executing, and verifying a physics analysis
(Fig.). This is an iterative procedure until the analysis is finalized.

VISPA facilitates the analysis cycle by combining graphical and textual programming. This
combination has shown to speed up design and development in other fields, e.g. hardware control
using the LabView program [§].

To deploy a visual environment for physics analysis, VISPA provides a multi-purpose window
tool with a three column structure - a navigator panel, a window for graphical displays, and
a property panel (Fig.). For the text-based programming, both the C++ and the Python
languages are supported. VISPA has been developed independently of experiment-specific
software. It has well defined interfaces to connect to any high energy physics experiment. The
C++ toolkit PXL [9] serves as an underlying analysis software for the VISPA framework.

For designing a physics analysis, VISPA provides a graphical module steering which enables
physicists to add, connect, and configure the analysis modules. Based on a plug-in mechanism,

L Presenter

© 2010 IOP Publishing Ltd 1

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042041 doi:10.1088/1742-6596/219/4/042041

I Prototyping
VISPA

Execution e .
. Verification
(steering)

Figure 1. Analysis steps provided by VISPA.

modules are already provided for the purpose of reading/writing event data, or for individual user
analysis code. The latter can be coded directly within a corresponding editor. The visualization
of the module steering facilitates verification of the analysis structure and communication
between physicists doing analysis (Fig. Bl). For verification of the analysis, VISPA provides
an event browser to inspect the overall event structure, to display particle decay cascades, and
the properties of each particle (Fig. Bl).

This contribution is organized as follows: first, the underlying C++ toolkit PXL is described.
Then, the Graphical User Interface of VISPA and the Event Browser will be discussed. After
this, the design of the analysis within the VISPA framework will be explained. Finally, further
developments will be mentioned and different types of interfaces exploited by VISPA will be
discussed.

2. The PXL Toolkit

The C++ toolkit PXL (Physics eXtension Library) has been developed since 2006 [9]. It is
the successor of the PAX toolkit, which was developed from 2002 to 2007 [0, [T]. In 2009 the
version 2.1 of the PXL toolkit has been released.

PXL provides all necessary features for an experiment-independent high level physics
analysis with emphasis on user-friendly programming syntax. Particularly, PXL enables the
reconstruction of decay trees and the handling of analyses with reconstruction ambiguities. PXL
offers an extensible collection of physics objects, representing particles (pxl::Particle), vertices
(pzl:: Vertez) and collisions (pxl::Collision). In the analysis of an event containing reconstructed
data, new information can be added to each object by means of user event data (pzl:: UserRecord).
Between all objects, relations can be established, e.g. to build up decay trees, or to associate
reconstructed particles with generated particles. The class pzl::Fvent represents an entire
physics event and pzl::EventView is a special view of this physics event. These classes act
as containers for physics objects, holding the relations between them, and serve as the standard
interface to algorithms. Copies of these class instances preserve all contained information such
as the relations between particles. These features efficiently support the evaluation of possible
reconstructed particle cascades.

All objects included into the PXL I/O scheme inherit from pzl::Serializable, e.g. an event
container pzl::Event with its physics objects and relations between them. The PXL I/O scheme
can handle the user defined classes which are explicitly included into it. Each file is made up
of isolated compressed binary data chunks which e.g. contain a certain number of events. The
current I/O system is able to handle the files from a local disk. In the future handling files of
the dCache system will be included.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042041 doi:10.1088/1742-6596/219/4/042041

Hle Edit Analysis Designer View Help
=8 28 4% O

bt training_single_ xml | *bdt_training_single_..xm|

Available Modules Property Value
. PySwitch Main

Name selection module

Type PyModule:

. PyModule
7 PyGenerator

Options
" Pypecide A

filename yiselection_module py
& PyAnalyse
.| File Output
4 File Input
AutoProcess

script

parameter

sinks 2
sources [N

Bl

Python Scripts (=
&[5 analysis
& [E Andreas
& |3 archive
& |8 backup

] btag L
& [E3 CMs_literature

 |E3 Desktop

& [E3 f2projekt

& [for Andreas
|8 for_naf

&[5 formulars

B ILC_old

& [£9 ILC_samples
@ |E3 Lehre

& [£3 literature

& local

& |3 Mail

- |3 mail

I ——

o)

{
IE2 2 [£

=]
=l

|8]

&

Figure 2. Analysis design within the VISPA graphical platform.

To enable the usage of all PXL objects and their methods within Python programs, a Python
extension PyPXL is provided (see Section B4)).

The structure of the PXL toolkit is the following. The core packages are the base library and
the 7o library. The base library contains classes for relation management, user data handling,
basic containers, etc. The io library has classes for input/output. The hep library contains more
specific classes for high energy physics analysis. For astroparticle physics experiments the astro
library is provided. The packages plugins and modules are especially designed for VISPA (see
Sections Bl and B3).

3. Graphical User Interface (GUI) of VISPA

The VISPA multi-purpose window serves as the graphical user interface for the design and
steering of analyses, and for the browsing of complete physics events. It provides a common
user interface for these different tasks (Figs. 21 B).

The Graphical User Interface of VISPA is designed as a framework for the applications for
graphical browsing and editing. It has been developed for maximum reusability. The browsers
and editors are plug-ins of the main application which controls the main window. The main
window provides icons for opening and saving data files. By using a tabbed document interface,
several files can be opened in parallel.

The plug-in browsers or editors define the content of the main window. Typically the main
window is split into three views. The graphical compounds, such as views or widgets, are shared
between different plug-ins. For example, the right view is typically a property grid which lists
the properties of an object selected in the center view.

The GUI framework is written in the Python programming language for fast development

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042041 doi:10.1088/1742-6596/219/4/042041

Hle Edit View Navigate Event Help

i@ 288 QOO0 0O 2

| tchannel pxiio |

H| > Tree View [=] Line Decay View ‘ Property Value
Cbiject info
Milon Type Particle
© Generated oMuon . Jet , Farticleld 6
b+ Locked |
u Workflag [
: \LJ 1d a2-4c8e68ef9451
ok 1[I 5305520565
nu_mu i -y Px 15.3350166
b o Py -110.3298216
d Pz -487.7697792
\N"z’/. n Mass 1705618896
o gy Pt 120.3111343
& ol B -2107783556
)3 6 Phi -1442987323
p+ u u P 502.3884219
£t 1270557142
Theta 2899764155
.) j

UserRecord
Name default
Pdgicl 6

Updating property view. done 3

Figure 3. The Event Browser within the VISPA graphical platform.

turnaround due to dynamic typing and automatic memory management. It is based on Qt [12],
a widely spread cross-platform application and user interface development framework. Due to
its implementation in PyQt [I3], VISPA has been successfully distributed on Linux, Mac OS X
and Windows based systems.

4. The Event Browser
At the beginning of any analysis it is often useful to inspect the input data. VISPA provides
such a tool not only for the input data, but also for inspecting the structure and the contents of
the data at any step of the analysis. The Event Browser is designed as a plug-in of the VISPA
GUI (see Section Bl). Browsing physics event data in VISPA allows the verification of physics
analyses on an event-by-event basis (Fig. Bl). In the left window a complete content of an event
is represented as a tree. Each object can be explored by selecting it and inspecting its contents
in the property grid on the right-hand side. The user can search or filter objects with respect
to their name, any of their properties, or using a user defined Python script. In addition, the
visualization of decay trees allows to check if all relations have been established correctly. In
the decay tree the particle type (boson, lepton, quark) is indicated by its color and line shape.
To display complex decay trees, the VISPA Event Browser incorporates an algorithm for
their proper layout (pzl::AutoLayout). The algorithm is based on a model of physical forces,
like spring forces, or gravity. Each starting point and end point of a particle is provided with
a node subjected to these forces. Using an iterative procedure, the positions of the nodes are
optimized with respect to balanced forces. This algorithm results in a well-distributed view of,
e.g., asymmetric decay trees.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042041 doi:10.1088/1742-6596/219/4/042041

5. VISPA Components for Designing a Physics Analysis
In this section, the software tools provided by the VISPA environment for prototyping the
analysis will be explained.

5.1. Analysis Designer

The Analysis Designer is developed as a plug-in of the VISPA GUI (see Section B). The content
of the main window is the following (Fig. Bl): the frame on the left-hand side contains the list
of available modules, the main window displays the analysis modules, and the frame on the
right-hand side shows the properties of the item selected in the main window. All objects in
the main frame can be selected and moved like in popular software (drag-and-drop). Icons for
opening and saving data files as well as other analysis modules are provided. It is possible with
double click on, e.g., the input file module to open the data file.

5.2. Module Steering

The design of a physics analysis with VISPA is based on the decomposition of an analysis into
modules. Whereas a simple analysis may require only a few modules which are connected serially,
a complex analysis requires more modules and more sophisticated streams of data. The VISPA
module steering system controls the data flow as well as the selection and settings of analysis
modules. The module selection is based on a plug-in mechanism, guaranteeing extensibility and
efficiency as only libraries for the analysis modules deployed in the current analysis need to be
provided. The data flow is managed by connections between sinks (data input) and sources
(data output) of the respective modules. This permits the usage of multiple data streams as
needed in complex physics analyses.

5.3. Analysis Modules

A variety of analysis modules is provided for tasks of different complexity within a physics
analysis. File operations are handled by input and output file modules. For user-demanded
tasks within an analysis, a number of Python scriptable modules are provided, such as event
generator PyGenerator, decision module PyDecide etc.

One of the available modules is the C++ based analysis module AutoProcess. 1t is developed
for the automated reconstruction of particle cascades, a task arising in the reconstruction of
particles with combinatorial ambiguities [I4]. Given a template of a particle decay cascade and
reconstructed particle data as input, this module generates all possible reconstruction versions.
For events simulated with a Monte Carlo generator it supports finding the reconstructed version
corresponding to the correct decay chain. The performance of the module is optimized for low
memory and CPU time consumption.

Other user modules can be written in C++ and steered within VISPA module steering system.

5.4. Python Interface

To enable the usage of all PXL objects and their methods within Python programs, a Python
extension PyPXL is provided. A fragment of Python code using PyPXL for jet selection looks
as follows:

for particle in eventview.getParticles():
if (particle.getName() == ’Jet’ and particle.getPt() > 30.):
print ’Jet with Pt > 30.°

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042041 doi:10.1088/1742-6596/219/4/042041

vispa - /home/homel/institut 3a/klingebiel/SingleTop/erdmann/singletop/bdt training single top. bkg.xm|

File Edit Analysis Designer View Help
- = =) [
SEH ABA O

bt fraining single xmi '] bdt_evaluate_single__xml [|

Available Modules 3 [=]] " property Value
.| Pyswitch 3 Main
- PyModule ()2 Name bk training
= PyGenerator = : Tyu§ PyModule
& PyDecide i o z::r:nmse
6. PyAnalyse : p/bdt training single_top_bkg.py
" File Output S script
. File Input sl fﬁ
= Autqum(siS : /: A‘ parameter
= v | |sinks S —
- < [ar) || sources G

N
Python Scripts [+ \P
© [SingleTop L
E (&5 Analyse ﬂ
& (€3 plots L
£ (&8 scripts -
E [general b H
= Hig CID
(78 i viE ~ x
--- process started = ‘ Analysis Execution
single top autoproc: opened single_top_autoprocess_steering.pxlio

single top autoproc: opened single_top_autoprocess_steering pxlic
single top : opened pxlio/muon single top_cuts pxiio

background composition: opened mc_background_composition.pxlio
4 Begin job

4 Begin job

**4 start splitting data into 3 streams *+¥

**4 start splitting data into 3 streams *++

#+4 Begin TMVA training job

- Factory You are running ROOT Version: 5.22/00b, May 14, 2009
- Factory

- Factory fadrd])
- Factory
- Factory
- Factory
- Factory

- Stafistics

#Modules: 11
#input Files: NA
#Events; >=0

T hectoy =] =)
--- Factory TMVA Version 3.95, Aug 09, 2008 D

- Factory %] Automatically start execution
defining wariabies (] Remember decision

* tmva _reader started i

defining variables

- Reader Parsing option string

--- Reader : "1Color" i

- Reader - The following options are set: H

--- Reader :- By User =

®

Figure 4. Executing the analysis interactively within VISPA.

6. Analysis Flow in VISPA
A typical analysis flow within the VISPA framework is demonstrated in Fig. [l In a first step, a
physicist performs an inspection of the input data using the Event Browser (see Section H). After
this, the design of the analysis chain using the Analysis Designer (see Section BJl) takes place. A
user develops an analysis script in the Python programming language. Any state of the analysis
design can be stored and received back either in XML format or in Python. The analysis can
be executed either in batch mode, or interactively from the VISPA graphical window (Fig. H).
After the execution of the analysis its results can be verified using ROOT [I5}, I6] histograms.
The output of the analysis modules for particle reconstruction can be checked in the Event
Browser. As an example, the output of the automated reconstruction of particle cascades for
the case of single top production is demonstrated in Fig. Bl

7. Further Developments and Use

In the CMS experiment the VISPA GUI (see SectionB)) is used as a platform for the Configuration
Browser [17,[I8]. This application allows to visually browse and edit the job configuration system
of the CMS experiment.

A further plug-in project which is under development using the VISPA GUI is the Edm
Browser [I9] - an event browser which allows to inspect the content of CMS data files, event by
event.

Currently the VISPA framework is used for different CMS analyses, e.g. a single top
analysis [20], a model independent search, etc. Currently, an interface between the ILC format
and the PXL format is being developed. The framework is also being used for student exercises
within the course “Elementary particle physics” at the RWTH Aachen University.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042041 doi:10.1088/1742-6596/219/4/042041

vispa - /home/home1/institut 3a/klingebiel/SingleTop/erdmann/singletop/mc_untrained signal single top bkg.pxlio

File Edit View Navigate Event Help

S @3 AB8HK OQO0xwQ Q0 2

bdt_training_single__xml 1 | bdt evaluate_single__xml [] | mc_untrained signal_...pxiio [|

> | Tree View = Line Decay View | Property value
© Event Object info

& Reconstructed Name Top
Muon
et Type Particle
Jet Charge 0
Jet low-pt Particleld 0

E: MET P Locked]

8 GE'LEF‘E Workflag o
g 1d 8c47bb7-0a15-5b44-9842-24919¢753c31
dbar Vector
:N E 1099 843938

v

g Px 3631888843
nu_mu Py -62.78426354
b_fop = Pz 1084199837

e r Mass 170.0190489
R Pt 7253223701
MET Eta 3.398830592
w Phi -1.046357259
JTEt P 1086 623307
J:[D Et 73.41471573
5 Theta 006679978884

El AutoProcess SoftRelations
Muon UserRecord

& AutoProcess
Muon
MET
w
Jet
Top
Jet
™

El AutoProcess
Muon

®

Updating property view... done.

Figure 5. Verification of analysis results within VISPA: output of the AutoProcess module.

8. Connection to Experiments
There are different types of interfaces exploited by VISPA to connect to any high energy physics
experiment.

The possibility of performing analyses in any experiment is provided by an interface based
on the C++ toolkit PXL (Section B). Any experiment specific data can be stored in the
experiment independent PXL I/O format using the pxl:Event, a general container to hold all
relevant information of a high energy physics event.

The Python interface to the software classes from different experiments allows to use VISPA
graphical tools in combination with data from any experiment, by means of introspection. For
instance, VISPA accesses PXL classes through PyPXL. The Edm Browser from CMS inspects
in this manner the content of CMS data files using the PyEDM.

The third interface to experiments provided by VISPA is the GUI framework of VISPA which
allows to create graphical browsing and editing applications as plug-ins of the main application.
The examples of such applications are the Event Browser and the Analysis Designer in VISPA,
the Configuration Browser and the Edm Browser at CMS.

9. Support

All the software is continuously maintained, fully documented and available online [7, @].
Recently the version 0.1.3 of VISPA and the version 2.1.3 of PXL have been released. There are
installers provided for Windows, Mac OS X and Debian/Ubuntu platforms.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042041 doi:10.1088/1742-6596/219/4/042041

10. Conclusion

A physics analysis environment, VISPA, has been presented. VISPA facilitates prototyping,
performing, and verifying a physics data analysis by combining graphical and textual
programming. It provides the so far missing graphical support for physicists in the step between
displaying events, and visualizing physics distributions.

11. Acknowledgements
We are very grateful for financial support of the Ministerium fiir Innovation,Wissenschaft,
Forschung und Technologie des Landes Nordrhein-Westfalen, the Bundesministerium fiir Bildung
und Forschung (BMBF), the Deutsche Forschungsgemeinschaft (DFG) and Helmholtz Alliance
“Physics at the Terascale”.

References

[1] A. B. Meyer [H1 Collaboration], A new object-oriented physics analysis framework for the H1 experiment,
Prepared for International Europhysics Conference on High-Energy Physics (HEP 2001), Budapest,
Hungary, 12-18 Jul 2001.

[2] F. Fabozzi, C. D. Jones, B. Hegner and L. Lista, Physics analysis tools for the CMS experiment at LHC,
CERN-CMS-NOTE-2008-015.

[3] G. Barrand, M. Frank, P. Mato, E. de Oliveira, A. Tsaregorodtsev and I. Belyaev, Python-based physics
analysis environment for LHCb, In Interlaken 2004, Computing in high energy physics and nuclear physics,
377-380.

[4] C.D. Jones, L. Luca and B. Hegner, Analysis Environments for CMS, J. Phys. Conf. Ser. 119 (2008) 032027.

[5] B. Ferrero Merlino, The LHC++ environment, CERN-OPEN-2000-191.

[6] O. Actis et al., Visual Physics Analysis (VISPA) - Concepts and First Applications, arXiv:0810.3609
[physics.data-an)]

[7] VISPA (Visual Physics Analysis), http://vispa.sourceforge.net

[8] National Instruments, LabView, http://www.ni.com/labview

[9] M. Erdmann, G. Mueller, J. Steggemann, Physics eXtension Library 2.0, http://pxl.sourceforge.net

[10] M. Erdmann, D. Hirschbuehl, Y. Kemp, P. Schemitz and T. Walter, User oriented design in high energy
physics applications: Physics analysis expert, Prepared for 14th Topical Conference on Hadron Collider
Physics (HCP 2002), Karlsruhe, Germany, 29 Sep - 4 Oct 2002

[11] S. Kappler et al., The PAX toolkit and its applications at Tevatron and LHC, IEEE Trans. Nucl. Sci. 53
(2006) 506 [arXiv:physics/0512232]

[12] Qt - A cross-platform application and Ul framework, http://www.qtsoftware.com

[13] PyQt, http://www.riverbankcomputing.co.uk/software/pyqt

[14] O. Actis et al., Automated Reconstruction of Particle Cascades in High Energy Physics Experiments,
arXiv:0801.1302 [physics.data-an]

[15] R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A
389 (1997) 81

[16] ROOT, http://root.cern.ch

[17] Configuration Browser for CMS, https://twiki.cern.ch/twiki//bin/view/CMS/SWGuideConfigBrowser

[18] M. Erdmann, R. Fischer, B. Hegner, A. Hinzmann, T. Klimkovich, G. Miiller, J. Steggemann, Visualisation
of the CMS Python Configuration System, Prepared for 17th International Conference on Computing in
High Energy and Nuclear Physics (CHEP 2009), Prague, Czech Republic, 21 - 27 March 2009

[19] Edm Browser for CMS, https://twiki.cern.ch/twiki//bin/view/CMS/SWGuideEdmBrowser

[20] G. Miiller Development and Application of a Novel Graphical Environment for Physics Data Analysis with
the CMS Experiment, Diploma thesis, September 2008

http://vispa.sourceforge.net
http://www.ni.com/labview
http://pxl.sourceforge.net
http://www.qtsoftware.com
http://www.riverbankcomputing.co.uk/software/pyqt
http://root.cern.ch
https://twiki.cern.ch/twiki//bin/view/CMS/SWGuideConfigBrowser
https://twiki.cern.ch/twiki//bin/view/CMS/SWGuideEdmBrowser

