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During the investigation of possible geometries for the 
radiofrequency system of the Brookhaven linear accelerator, 
one of the schemes considered by the writer was the travelling-wave, 
cavity accelerator (see fig. 1) in which 
resonant cavities are arranged in sequence, mutually 
coupled through small holes in their common walls. 
Investigation of the losses in such resonant cavities showed 
that, as the ratio of drift-tube diameter to tank diameter 
was decreased, the losses also decreased in spite of the 
fact that the magnetic field intensity increased sharply in 
the region 3 (fig. 1) in the center of the cylindrical part 
of the drift tube. The decrease in losses is due to the 
decrease in gap capacity and hence in the currents necessary 
to charge that capacity. Therefore it appeard possible 
to decrease the losses still further by shaping the drift 
tube as shown in fig. 2 so that the gap capacity is low, 
but the diameter at the center is increased so that the field 
is less concentrated in that region. Two problems arise 
in this approach : first, solution of the field equations is 
extremely difficult and, second, there is no assurance that 
any particular assumed oval shape presents the optimum 
shunt impedance for a given tank diameter, and gap to 
pitch ratio. 
In view of the above, a quite different procedure was 

followed to solve the problem. Instead of assuming a 
shape and then solving the field equations, it was assumed 
that the solution is the sum of a finite number of cylindrical 
harmonics; after determining the coefficients of these 

Fig. 1. 

harmonics from the boundary conditions, the shape is 
determined by numerical integration of the equation 

dr = -Ez (1) dz = -Er 
(1) 

where r and z are cylindrical coordinates and Er and E z 
are the radial and axial components of the electric field. 
The following quantities are considered to be given : 
b = radius of the tank 
L = Length of the unit cell 
g = gap between drift tubes 
k = 2Π/Λ (λ is the free space wavelength). 
Because of the capacitative load of the drift tubes, the 

tank radius must be less than the radius given by the first 
zero of the Bessel (J0) function. Consequently, to make 
Ez zero at the outer radius it is necessary to include the 
Neumann function which becomes infinite on the axis. 
Hence different solutions must be used for the region around 
the axis and the region remote from the axis. These 
solutions will be matched at an intermediate radius a. In 
these two regions the axial component of electric field 
will be assumed to have the forms : 
for a < r < b 

E1z = c1J0 (kr) - c2Y0 (kr) + 
n=m 

αnK0 (knr) cos (nkLz) E1z = c1J0 (kr) - c2Y0 (kr) + Σ 
αnK0 (knr) cos (nkLz) E1z = c1J0 (kr) - c2Y0 (kr) + 

n=1 
αnK0 (knr) cos (nkLz) 

(2) 

Fig. 2. 
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for 0 < r < a 

E2Z = βnJ0 (kr) + 
n=m 

βnI0 (knr) cos (nkLz) (3) E2Z = βnJ0 (kr) + Σ 
βnI0 (knr) cos (nkLz) (3) E2Z = βnJ0 (kr) + 

n=1 
βnI0 (knr) cos (nkLz) (3) 

where J0 and Y0 are the Bessel and Neuman functions 
respectively 

K0(kr) = i(π/2)H0(1)(ikr) 
I0(kr) = J0(ikr) 
kL = 2π/L 
kn2 = (nkL2-k2. 

In principle the matching radius, a, is arbitrarily chosen 
but in practice it is found that its value must lie between 
rather close limits. At the matching radius it is possible 
to match exactly two components : the radial component 
of the electric field and the azimuthal component of the 
magnetic field. Then the average value of the other 
component (the axial electric field) across the gap is 
matched thus : 

∫ 

g/2 
= 

∫ 
g/2 

(4) 
∫ 
E1zdz = 

∫ 
E2Zdz (4) 

∫ 0 
= 

∫ 0 
(4) 

As a result of matching only the average value of the axial 
component, the electric field will be discontinuous at the 
drift-tube surface. Since the drift-tube surface is determined 
by numerical integration of equation (1), it is 
obvious that a physical discontinuity will appear on the 
drift tube. To avoid such a discontinuity we require that 
Er = 0 at r = a, z = g/2. Then the slope dr/dz become 
infinite at that point and the physical discontinuity is 
removed. 
The field components can now be tabulated as follows : 
for a < r < b 

Ez = α(g/L)C0(kr) + 
n=m 

αnK0 (knr) cos (nkLz) (5) Ez = α(g/L)C0(kr) + Σ 
αnK0 (knr) cos (nkLz) (5) Ez = α(g/L)C0(kr) + 

n=1 
αnK0 (knr) cos (nkLz) (5) 

Fr = -
n=m 

αn (nkL/kn) K1 (knr) sin (nkLz) (6) Fr = -Σ 
αn (nkL/kn) K1 (knr) sin (nkLz) (6) Fr = -

n=1 
αn (nkL/kn) K1 (knr) sin (nkLz) (6) 

Hφ = α(g/L) C1 (kr) -
n=m 

αn (k/kn) K1 (knr) cos (nkLz) Hφ = α(g/L) C1 (kr) -Σ 
αn (k/kn) K1 (knr) cos (nkLz) Hφ = α(g/L) C1 (kr) -

n=1 
αn (k/kn) K1 (knr) cos (nkLz) 

(7) 
for 0 < r < a 

Ez = β0J0(kr) + 
n=m 

βnI0(knr) cos (nkLz) (8) Ez = β0J0(kr) + Σ βnI0(knr) cos (nkLz) (8) Ez = β0J0(kr) + 
n=1 

βnI0(knr) cos (nkLz) (8) 

Er = 
n=m 

βn (nkL/kn) I1 (knr) sin (nkLz) (9) Er = Σ 
βn (nkL/kn) I1 (knr) sin (nkLz) (9) Er = 

n=1 
βn (nkL/kn) I1 (knr) sin (nkLz) (9) 

Hφ = β0J1(kr) -
n=m 

βn (k/kn) I1 (knr) cos nkLz Hφ = β0J1(kr) -Σ βn (k/kn) I1 (knr) cos nkLz Hφ = β0J1(kr) -
n=1 

βn (k/kn) I1 (knr) cos nkLz 
(10) 

where C0 (kr) = 
Y0(kb)J0(kr)-J0(kb)Y0(kr) (11) where C0 (kr) = Y0(kb)J0(ka)-J0(kb)Y0(ka) (11) 

C1(kr) = 
Y0(kb)J1(kr)-J0(kb)Y1(kr) (12) C1(kr) = Y0(kb)J0(ka)-J0(kb)Y0(ka) 

(12) 

From the requirement that Er and Hφ are to be identical 
functions of z at the matching radius a, we determine the 
constants 

β0 = α 
g C1(ka) 

(13) β0 = α L J1(ka) (13) 

βn = - αn 
K1(kna) 

(14) βn = - αn I1(kna) (14) 
Three conditions remain to be satisfied 

∫ 
g/2 

= 1 (15) ∫ 
E1zdz = 1 (15) ∫ 0 

= 1 (15) 

∫ 
g/2 

= 1 (16) 
∫ 
E2zdz = 1 (16) 

∫ 0 
= 1 (16) 

Er = 0 at r = a, z = g/2 (17) 
The equations (15) - (17) can define three coefficients. 
Consequently we can choose m = 2 in equations (5) to 
(10). We now have α, α1, and α2 determined by equations 
(15) - (17) and the β's determined by equations (13) and (14). 
Actually, the harmonics involving the K0-functions 

should have had the form 
αn K0(knr) - γn I0(knr) 

with coefficients chosen so that the combination is zero 
at the tank wall. But it turns out that, at the tank wall, 

Fig. 3. 
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the K0-functions are several orders of magnitude smaller 
than the C0-functions and, consequently, the γ's can be 
neglected. 
When the coefficients have been determined as described 

above, and Ez and Er are known, it is possible to proceed 
with numerical integration of equation (1). The integration 
starts from the point 0 (fig. 4) where r = a, 
z = g/2. The result of the integration is usually one of the 
curves indicated by 1 or 3 in fig. 3. Curve 3 turning 
downward offers no solution and indicates that the matching 
radius selected was too small. A higher value of matching 
radius is selected and the procedure is repeated. A 
limiting solution is indicated by the curve 2 in fig. 3. At 
z = L/2 and at the radius of the drift tube, both E z and 
Er are zero. In this case, the drift-tube surface is continuous 
with the surface of the drift tube in the adjacent unit cell 
and the wall (2, fig. 1) can be removed. The system has 
now become the Berkeley system, but with new drift-tube 
shapes. This particular solution is the one which has 
been choosen for use in the Brookhaven machine. 
With the additional requirement that Ez = Er = 0 on 

the drift-tube surface at z = L/2, it is possible to find a 
solution for only one value of the matching radius a. 
Consequently, in order to vary and minimize the shunt 
impedance, one more harmonic was introduced and the 
constant α is now arbitrarily selected, α is now varied 
to find the solution which gives optimum shunt impedance. 
The results of the analysis thus far are as follows : 
1. A constant tank diameter can be used throughout 

the length of the linear accelerator from 0.75 Mev to 
50 Mev. Some difficulty was experienced in the high 
energy range where it has been found necessary to add 
one more harmonic. The constant of this harmonic is 
determined by the additional requirement that 

(g/2)Ez (at z = 0, r = a) = ∫ 
g/2 

(g/2)Ez (at z = 0, r = a) = ∫ 
Ezdz. (g/2)Ez (at z = 0, r = a) = ∫ 0 

2. With a tank diameter of 92 cm. the diameter of the 
drift tubes varies from 25 cm. at 0.75 Mev to 18 cm. at 
50 Mev. This large drift-tube diameter is more than 
adequate to contain the strong focusing quadruploes plus 
an efficient water-cooling so that the drift-tube temperature 
perturbations will be held down to about a tenth of 
a degree centigrade. Due to this efficient watercooling 
(the temperature difference between cooling water and 

Fig. 4. 

drift-tube surface will not exceed .2 or .3°C), it is possible 
to construct a Berkeley-type machine 110 ft long with 
a flat mode. It can be shown that the first harmonic 
of the temperature perturbation along the tank should be 
kept within .5°C in order to maintain a mode flatness of 
5%. With the water-cooling now possible, both the drift 
tubes and the tank can be maintained within these temperature 
limits; consequently automatic tuning devices 
to maintain the mode flatness are not necessary. 
3. The overall power consumption, estimated from 

computation of five drift tubes along the machine, appears 
to be less than 2.5 megawatts. 
A prototype cavity including a drift-tube shape computed 

by the above method has been constructed and tested. The 
measured resonant frequency agreed with that predicted 
within one tenth of one percent. 
The problem of computing the necessary 124 drift-tube 

shapes is now (April, 1956) being programmed on the 
UNIVAC. The UNIVAC program also includes computation 
and optimization of shunt impedance for about 
ten drift tubes distributed throughout the range. This 
should be sufficient to establish the optimum parameters 
for the intermediate drift tubes by interpolation. 
A typical drift tube computed by the above methods is 

shown in fig. 6 of the paper by J. P. Blewett. (See p. 159). 


