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Preface

In this thesis we will find ourselves in a difficult situation: it is definitely a string theory
work, but with a very strong motivation and truly direct relation to the experimental world.
Being this such a (difficult) mixture, we should also say it is therefore quite challenging
and very fun to work on it. We hope we have been able to present sensible things that do
not clash with the present knowledge in any of them.

This thesis is about how to compute certain properties of a plasma, when this plasma
happens to be non-Abelian and, more importantly, when it is strongly coupled. Ba-
sically we will say in this paragraph that string theory, and in particular the Anti-
deSitter/Conformal Field Theory correspondence (ads/cft), has turned out to be quite
an interesting tool, to say the least. That is so because using this correspondence one can
even perform quantitative computations which in some cases give incredibly close numbers
to those in the experiment. In this sense we can connect the experimental part with our
string theory approach. Of course, and as we will see, this 6-year old approach still needs
to develop until it reaches the maturity.

Building a bit more on that, why non-Abelian strongly coupled plasmas? There are
very good motivations to study this kind of plasmas, being the prominent example the first
microseconds after the Big Bang. The timeline of our Universe has a set of different peri-
ods, starting with the first 10−43 seconds where quantum gravity effects dominated. Before
the onset of inflation at around 10−35 seconds the medium was already an extremely hot
and dense soup made of free quarks and gluons, among other particles. As it evolved from
the initial state it expanded and cooled down (and still cools), losing part of its symmetries.
As a consequence it went through a series of phase transitions. The first one took place
about 10−11 seconds after the bang and it is the so-called electroweak phase transition,
which means that the weak and electromagnetic forces were no longer in disguise. The
plasma of quarks and gluons continued cooling reaching the next transition, this one of
much importance to us: the quark/hadron transition, also known in the more theoretical
world as the confinement/deconfinement transition. This one set up the scale for hadron
formation, the protons and neutrons as we know them appeared, and quarks and gluons
were no longer free in “normal” conditions, i.e. those of the surrounding medium. It took
place after the first ten microseconds, when the temperature was around 200 MeV. This
fancy way of measuring temperatures can be translated to Kelvins using Boltzmann’s con-
stant, giving a resounding 2× 1012 K; that is pretty hot indeed. After a couple of minutes
neutrons and protons formed deuterium and Helium nuclei, i.e. nucleosynthesis initiated,
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even though most protons remained uncombined as hydrogen nuclei; some 380,000 years
later radiation decoupled from matter and neutral atoms formed; afterwards basically all
we have had is structure formation like stars, galaxies and the like.

Thus, going back to the period roughly between inflation and the deconfinement tran-
sition, studying non-Abelian plasmas of quarks and gluons is no more but no less than
partly studying the first microseconds of our Universe.

Of course there are more down-to-Earth approaches, and these are the so-called “Little
Bangs”. These explosions with very hot and dense matter have been produced colliding
nuclei in the Relativistic Heavy Ion Collider (rhic) at Brookhaven National Laboratory,
USA. The outcome is a fireball mostly made of quarks and gluons, that thermalizes and
cools down by expanding. This plasma has been named the Quark-Gluon Plasma (qgp),
and it certainly resembles the process described two paragraphs above. The study of
these fireballs have already told us many things about the underlying theory, Quantum
Chromodynamics (qcd), above the deconfinement temperature. Understanding them may
as well play a role in our understanding of the primordial plasma.

However, it turns out that describing the qgp is a hard task. It is not easy to ex-
tract dynamical information from them, e.g. the transport parameters. Robust collective
phenomena in it seems to indicate that it is strongly coupled, enforcing the idea that com-
putations from first principles —qcd computations— are hard to perform. And indeed
this may be an opportunity for string theory, as we will try to show.

Our aim in the body of the thesis is two-fold. Firstly, we do not want to make this
long. This means we do not plan to talk about every detail, much more information and
technical parts may be found in the quite extensive literature. This leads to the second
objective, namely that this is balanced with pedagogy and simplicity. We hope this has
been achieved.

The work we present is split in two parts. In the first one we introduce the subject of
study and provide the tools we will be using to obtain the results too:

Chapter 1 is devoted to presenting a motivation for the qgp through the deconfinement
transition; explaining some basic notions of plasmas like the introduction of tem-
perature, the description of small perturbations and some of the collective modes
which can be found; and finally dealing in more depth with the rhic experiment,
which is our new tool to study the plasma phase.

Chapter 2 explains the basics of the Maldacena conjecture and its relevant generaliza-
tions to the present work, namely (a) how to put the gauge theory at finite tem-
perature by addition of a black hole to the background geometry and (b) how to
compute quantities coming from two-point functions in a real-time formalism and its
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relation to the so-called quasinormal modes. These are complex eigenfrequencies as-
sociated to boundary-value differential equations subject to very peculiar boundary
conditions.

Chapter 3 analyzes all the constraints that can be formally put on retarded Green’s
functions and on the quasinormal spectrum. It also makes an analysis of stability
for different perturbations of the background.

Our results are in turn analyzed and commented in the second part, consisting of:

Chapter 4 presents basic results on the contribution of each collective mode to a gluon
plasma. We compute the residues of the spectral function at the first four quasi-
normal modes for vector perturbations and for different values of the momentum.
Whenever they exist, we follow as well the hydrodynamic modes, which are purely
imaginary quasinormal modes. The results have an interesting interpretation as the
time of thermalization τtherm of the plasma.

Chapter 5 shows the computation of absorption lengths in a gluon plasma. The key
point is to complexify the momentum instead of the frequency; thus one has complex
momentum modes as a function of frequency ω instead of quasinormal modes as a
function of momentum q. The absorption lengths are given by the inverse of the
imaginary part of the complex momenta, and are shown to decay exponentially.
In the zero frequency case, the complex momentum modes are connected to the
spectrum of glueball masses in qcd3, for which we compute some of them.

Chapter 6 considers a more phenomenological plasma through the addition of funda-
mental degrees of freedom, i.e. “quarks”. Our results model the late time stages of
the process of melting for collective excitations in a plasma. This process is set up
in the gravity dual as a flavor brane falling through the black hole’s horizon. It is
argued that the picture drawn may be of use for studying charmonium suppression
at rhic.

I do not make any claim of originality concerning the first part of this thesis. Most of
chapters 1 and 2 has been shaped through the reading of many original and review papers,
plus one’s own perspective. The original work I present concerns part two, and is based
on our preprint paper [1] and our published papers [2–4].
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Plasma Physics

and

Holographic Duality





Chapter 1

Strongly coupled plasmas

In this chapter we will be interested in qcd plasmas that are strongly coupled. How do
they arise? We will devote the first section to the common lore on the phase structure
of qcd. It will become clear that qcd not only exists “in vacuum”, that is, as single
excitations that pop out of it, but in other dresses that correspond to different phases. In
particular, we will motivate some limits in which one can obtain the qgp. However, what is
a plasma? So far we have mentioned it several times but have said nothing about it: section
1.2 tries to explain some of the key features that define and describe it, focusing at the
end in non-Abelian plasmas for which the qgp is an example. One of the big motivations
for studying these systems is that they are now accessible in ultrarelativistic heavy-ion
collisions, so it looks like a good idea to describe those processes. This will be done in
section 1.3, explaining how it is created, which is the evidence for its thermalization, and
some of the observables that can be measured to explain its properties. Some results will
be commented, trying to make the case for applying string theory to these phenomena.

1.1 The QCD phase diagram

Quantum Chromodynamics is an example of a non-Abelian gauge theory, that is, a quan-
tum field theory whose interactions are governed by a local internal symmetry group with
a non-commutative structure; for real-world-qcd this symmetry group is the colour SU(3),
hence the prefix “Chromo” in its name. The carriers of the force, called the gluons, take
values on the adjoint representation of its algebra, whereas quark matter appears in the
fundamental representation. In our case this translates into the following: each quark
comes in three colours, where three is the dimension of the fundamental representation
and gluons come in eight different combinations of a colour and an anti-colour, where eight
is the dimension of the adjoint. This is a qualitative difference with Abelian theories like
Quantum Electrodynamics (qed), namely that the messengers of the force are charged
under the gauge group. It is clearly not the case for the photons and the electric charge.
In addition, in qcd we have six different flavours or types of quarks. Of course each of
them comes in three colours.

Let us build a bit more on the charge since it will motivate further discussion in this
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section. Suppose the coupling is small. As a quantum theory, qcd has corrections arising
in the loop expansion that sometimes are divergent. If lucky enough, we can still make
sense of the physics renormalizing the quantities that appear in the bare action to yield
finite results; this renormalization procedure leads to a dependence on the energy scale of
the processes, also called running. Take our gauge coupling gs as the example. From the
renormalization group equation, i.e. invariance of the renormalized effective action under
changes in the regularization parameter µ, one obtains that the coupling must fulfill [5]

µ
∂

∂µ
gs(µ) = β(gs) , (1.1)

where β(g) is the perturbative beta-function of the theory as a function of the coupling.
Therefore we see that the running depends on whether this function vanishes or not. Now,
the beta-function is a consequence of the effect of gauge interactions: had we not them
we would find a vanishing β(g), whereas distinct gauge interactions lead to different forms
of β(g). In this sense we expect a different qualitative behaviour between Abelian and
non-Abelian theories, or qed and qcd for instance.

And indeed that is the case. In perturbation theory it is possible to expand the beta-
function as a power series which reads as

β(g) = β0 g
3 + β1 g

5 + . . . . (1.2)

Notice that g being small, each term contributes less than the preceding ones so a few
terms may be enough to describe the behaviour of β. It turns out that for Abelian theories
like qed, the coefficients βi in the expansion are positive. Recalling eq.(1.1) this leads to
a coupling that increases with the energy scale µ, eventually becoming big or even infinite
in the so-called Landau pole.1 In the case of non-Abelian theories like qcd we find just the
opposite [6]; now the βi coefficients are negative. For example, the first term for qcd [7,8]
is obtained from the general SU(Nc) case imposing Nc = 3 and Nf = 6 in

β0 = − 1
16π2

(
11
3
Nc − 2

3
Nf

)
. (1.3)

This coefficient is negative as long as Nf ≤ 16 for Nc = 3, but our Nf = 6 is far below
that. This leads to a totally different qualitative picture. We can solve approximately
eq.(1.1) taking just β0. Indeed, we give the solution for the strong fine structure constant
αs := g2

s/(4π), since it is who governs the strength of the interaction and appears in the
observables:

1
αs(µ)

' 1
αs(µ0)

− 4πβ0 log(µ2/µ2
0) , (1.4)

where µ0 is an arbitrary scale set for the renormalization upon which physics do not
depend.

1However, this may not be the case since in that regime perturbation theory cannot be applied.
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Here we can see the two well-known facets of qcd at different energies. At large
momentum transfer µ, the strength of the interaction becomes small, and eventually goes
to zero where quarks and gluons behave as free particles; this is ultraviolet asymptotic
freedom. In that case perturbative computations have proved to be of much use and
helped establish qcd as the theory governing the strong interactions. In the opposite
regime, when µ becomes small enough the interaction as measured by αs becomes big,
and a perturbative expansion loses its predictable power. Below that scale the interaction
is sufficiently strong to force quarks and gluons to clump together in hadrons in a sort
of infrared slavery. This feature is often used to suggest confinement. How small is that
scale? We can use eq.(1.4) to approximate the scale µ ≈ Λqcd where αs becomes O(1)

Λ2
qcd ≈ µ2

0 e1/β0g2s(µ0) . (1.5)

This clearly shows that Λqcd has a relevant physical interpretation, setting the scale of
non-perturbative interactions. It can be seen as a true non-perturbative effect since it is
proportional to an exponential of ∼ 1/g2

s which cannot show up in Feynman diagrams.
We will be interested in the following on phases other than the confinement phase. To
grasp the qualitative difference it is thus important to understand confinement better, for
which we say a few words below.

Confinement is often presented as the statement that partons, i.e. quarks and gluons,
cannot escape the hadron since that would take an infinite amount of energy because
the strong coupling increases. The process is described as the formation of a flux of
chromoelectric force that ties the parton to the hadron; hence they are confined to live
inside it. But is there true confinement in real qcd? In this theory not all the masses are
bigger than Λqcd = 216+25

−24 MeV,2 which roughly sets the size of nucleons. For instance, u
and d quarks are O(1− 10 MeV) and even s still is O(100 MeV). Imagine one kicks hard
one of the quarks in the hadron. The object departs so much that the chromoelectric flux
energy becomes big, of order Λ4

qcd ∼ (200 MeV)4, allowing to form light (u, d, s) quark-
antiquark pairs that eventually break the flux tube: the quark that departs may combine
with one of the components of these pairs to form a new hadron and escape. Only if all
quark masses where well above Λqcd it would be almost impossible for the chromoelectric
flux tube to break into quark-antiquark pairs. Indeed, confinement has more to do with
the statement that the chromoelectric flux does not spread out all over the space, at least
no more than regions of radius around Λ−1

qcd.

So effectively the quark has released itself; however, it does so as a constituent of a new
hadron, not as an asymptotic single state. Thus, a new question arises: can we add more
ingredients to the theory, i.e. enlarge the phase diagram of qcd, such that we achieve a
different picture(s)? For example, may it be that quarks and gluons are not anti-screened

2We note this value was obtained for Nf = 5 active flavours at µ0 ≡ mZ ' 91 GeV in the MS scheme [9].
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but screened? A phase where quarks and gluons do not even have to depart from the
hadron since they are already asymptotic states? The rest of this section is devoted to an
overview of the current understanding of these issues. We will deal with a diagram that
has the temperature T and the baryon chemical potential µB as representative parameters.
Let us start by rising the temperature.

High temperatures. Telling this story is actually quite involved. Conceptually, one
could trace back to Pomeranchuk [10], who suggested that a hadron can be called so
if it has an independent volume to exist. This idea is better understood or sharpened
through Hagedorn’s limiting temperature [11]. The point is to consider a hadron gas
which is being heated: at low temperature the vacuum excites pions, kaons, and the like.
However, at temperatures above 100 MeV or so, massive resonances —hadrons other than
those before— start to contribute, and around 150 − 170 MeV they start dominating.
Furthermore, extra energy fed into the system is consumed in exciting more and more
massive resonances without really increasing the temperature. The system thus reaches
a stage where hadrons overlap so much that they lose their identity, and instead one sees
the constituent quarks and gluons.

This was really understood with the advent of asymptotic freedom in qcd, at least at
very high energies [12,13]. It became clear that the critical temperature we just mentioned
was actually signaling a phase transition to a new state of qcd matter; a soup of deconfined
quarks and gluons which turned to be called the Quark-Gluon Plasma or qgp [14–16].
Research on this transition is still actively pursued. In fact, qcd lattice computations
at µB = 0 show a steep rise in thermodynamical quantities like the entropy, pressure
and energy density, thus backing the arguments in the paragraph before (see figure 1.1).
Moreover, recent studies [17, 18] show that such a change is not quite a phase transition
of first or second order kind, but a rapid crossover, i.e. as opposed to a jump it is a
rapid change as the temperature is varied which does not proceed through any singularity.
Nevertheless, one still talks about phases in the sense of regions with different dominant
degrees of freedom. Thus, the “critical” temperature Tc is described as a region between
150−190 MeV where different values correspond to different observables used to extracting
it, at least at zero baryon chemical potential [19].

So at (really) high temperatures, where thermal fluctuations carry a lot of momentum,
one recovers asymptotic freedom and obtains a weakly coupled plasma gas of quarks and
gluons; this can be studied analytically in thermal perturbation theory. Meanwhile, below
the critical temperature the system is better described as a hadron gas. What is the
situation around Tc? Recall the rise in quantities, much more pronounced for the energy
density than for the pressure, so the sound velocity defined as c2

s = ∂P/∂ε drops below the
ideal gas value cs = c/

√
3. Also, even though ε increases fast it is not clear whether one
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Fig. 14. The energy density in QCD. The upper (lower) figure shows results from
a calculation with improved staggered [21] (Wilson [44]) fermions on lattices with
temporal extent Nτ = 4 (Nτ = 4, 6). The staggered fermion calculations have been
performed for a pseudo-scalar to vector meson mass ratio of mPS/mV = 0.7.

7 The Critical Temperature of the QCD Transition

As discussed in Section 3 the transition to the high temperature phase is continuous
and non-singular for a large range of quark masses. Nonetheless, for all quark masses
this transition proceeds rather rapidly in a small temperature interval. A definite
transition point thus can be identified, for instance through the location of peaks in
the susceptibilities of the Polyakov loop or the chiral condensate defined in Eq. 21.
For a given value of the quark mass one thus determines pseudo-critical couplings,
βpc(mq), on a lattice with temporal extent Nτ . An additional calculation of an
experimentally or phenomenologically known observable at zero temperature, e.g.

Lattice QCD at High Temperature and Density 13
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Fig. 5. The pressure in QCD with different number of degrees of freedom as a func-
tion of temperature. The curve labeled (2+1)-flavour corresponds to a calculation
with two light and a four times heavier strange quark mass [21].

This change of active degrees of freedom is clearly visible in calculations of
e.g. the pressure in the pure gauge sector and for QCD with different numbers of
flavours. As can bee seen in Fig. 5 the pressure strongly reacts to changes in the
number of degrees of freedom. It is this drastic change in the behaviour of the
pressure or the energy density which indicates that the QCD (phase) transition to
the plasma phase indeed is deconfining. However, it also is worthwhile to note that
the transition does, in fact, take place at rather small values of the pressure (and
energy density). Only for temperatures T>∼2Tc does the pressure come close to the
ideal gas limit so that one can, with some justification, identify the corresponding
light degrees of freedom. This is the case for QCD with light quarks as well as in
the quenched limit. At least for temperatures up to a few times Tc the dynamical
degrees of freedom are certainly not just weakly interacting partons.

4.2 Chiral symmetry restoration

As chiral symmetry restoration does not lead to a significant change of light degrees
of freedom, it also is not expected to have an appreciable effect on bulk thermo-
dynamic observables – apart from controlling details of the transition very close to
Tc. In particular, we expect that in the case of a continuous transition for nf = 2,
the chiral order parameter and its derivative, the chiral susceptibility, show critical
behaviour which is characteristic for O(4) spin models in three dimensions [12]. The
expected critical behaviour follows from standard scaling arguments derived from
the singular part of the free energy density,

fs(t, h) ≡ −T

V
ln Zs = b−dfs(b

ytt, byhh) , (23)

Figure 1.1: Plots of the energy density and pressure in qcd normalized to T 4 for different simu-

lations. It is also shown the asymptotic value corresponding to the Stefan–Boltzmann contribution

of an ideal non-interacting gas of quarks and gluons. From [20].

may claim that the new system will be at weak coupling. It is not clear if the asymptotic
regime of a gas of deconfined quarks and gluons can be pushed too much towards the
region around the critical temperature. As the plot shows, the energy density rises a lot
past Tc, but stays practically constant up to temperatures of 4Tc and amounts to about
an 80% of the ideal gas.

This and other reasons have led to a new paradigm, namely the strongly coupled quark-
gluon plasma or sqgp. While many people in the community were pointing to a weakly
coupled gas, some other thought the remaining 20% contribution was actually pointing
to the effect of strong interactions in a non-perturbative system. So it could be possible
that at temperatures T & Tc one finds a crossover plasma liquid of deconfined quarks and
gluons, instead of a gas. That is one reason for studying strongly coupled plasmas, which
motivates the title of this chapter.

Moving to non-zero chemical potential. The arguments given above are by them-
selves pretty exciting; however, the regions of physical interest move a bit or a lot
—depending on what one wants to study— to µB 6= 0. One can give an heuristic ar-
gument for a transition in the same spirit as that for high temperatures. In this case think
of a hadron system composed of baryons inside a volume that can be compressed using
a piston while keeping the temperature fixed. As one proceeds, the baryons get closer
and closer, and eventually lose again their identity to become a liquid of quarks. The
main difference is that now the state has a high number of quarks nq and a low number
of anti-quarks nq̄, whereas the populated high temperature system was producing meson
excitations, so it had both an equal number of quarks and anti-quarks. At low T this
transition is thought to appear around 5 − 10 times the normal nuclear matter density,
and the physically relevant situation is that of compact stars in astrophysics. Continuing
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to higher densities one eventually jumps to other phases which will not be relevant for the
thesis, like the colour superconductor where colorful bound states form.

Let us focus on smaller µB’s. It turns out that the most powerful tool for studying
non-perturbative qcd, namely the lattice approach, has a hard time when introducing
a finite chemical potential. This is related to the so-called sign problem: the action for
µB 6= 0 ceases to be positively defined and turns complex. This poses problems since it
is used to weigh field configurations when evaluating the path integral. In recent years
there has been some improvements though, and one can reach out to small values. This
is somehow enough for part of our interests, since close to the T axis one finds the path
followed by the early Universe when it suffered the quark/hadron transition. These lattice
calculations seem to show again a crossover instead of a sharp phase transition, and this
information might be relevant for our understanding of that physical setup.

What happens for bigger chemical potentials? Here the lattice is still poorly under-
stood, but we will see in section 1.3 that we have at our disposal the most important
tool among all: experiments in the form of relativistic heavy ion collisions. The idea is to
collide heavy nuclei in the hope that one creates the quark-gluon plasma going through
the crossover region. These experiments will be good to analyze such crossover at bigger
µB, and to even study the so-called qcd critical point: it is expected from effective models
that the crossover transition becomes a true first order phase transition for larger chemical
potential. To summarize, the state of the art has been depicted in figure 1.2.

µB(GeV)

T
(M

eV
)

100

200

0

Hadronic phase

Vacuum
∼ 0.93

cros
sove

r critical point

Quark-Gluon Plasma
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neutron stars

nuclear
matter

〈ψ̄ψ〉 #= 0

〈ψ̄ψ〉 = 0

〈ψψ〉 #= 0

RHIC

Early
universe

Colour superconductor

Figure 1.2: A bird’s eye view of the qcd phase diagram as currently understood.
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1.2 What is a plasma?

Looking back to the preceding section we have already cited the word ‘plasma’ ten times.
One thing that comes right to our minds nowadays are plasma TV’s. Well, that is right:
there is a “plasma at work” there. Indeed, there are estimations pointing out that nearly
99% of the visible matter in the whole universe can be considered a plasma (c.f. [21]).
This plethora of examples ranges from the man-made one cited above or the qgp, passing
through terrestrial plasmas like the polar aurorae and reaching to astrophysical ones like
stars, solar wind or even the interstellar and intergalactic mediums. But all of them, with
no exception, share a common feature: it is matter where charges are screened due to the
presence of other moving charges.

For example, for a qed plasma the electrons have been separated from the then ionized
atoms, and due to this mobility they modify Coulomb’s law to yield a distance-dependent
charge. In the qgp, one would talk instead of the “ionization” of quarks and gluons from
the hadrons. However, there is a big difference because now it is the color charge of the
quarks and gluons who is screened. This is important since this charge is non-Abelian,
and poses noticeable dissimilarities with Abelian plasmas.

In this context, transitions to the plasma phase as the one we studied in section 1.1
can be easily seen in electromagnetic examples. Take for instance a gas of hydrogen
atoms at thermal equilibrium, for which the binding energy of electrons is 13.6 eV. In
such equilibrated statistical systems Boltzmann’s constant kB serves as a bridge between
microscopic and macroscopic physics, and one can relate the energy to temperature roughly
as E ∼ kBT . If one heats the gas to a temperature where thermal fluctuations have an
energy of the order of the binding energy, the electrons can be released from the atom. In
this example that happens for

Tc ' 13.6 eV
8.617× 10−5 eV/K

' 1.6× 105 K . (1.6)

In qgp’s the situation is more difficult, and as we have seen one has to resort to other
techniques. Moreover, in electromagnetic plasmas one can define the strength of the
interaction through the so-called Γe.m. parameter given by the ratio of the average potential
to kinetic energies, Γe.m. = 〈PE〉/〈KE〉, whereas in relativistic plasmas like the qgp the
notion of potential (or ionization) energy can not be well formulated [22]. This forces
to consider other possibilities, like the ratio of the shear viscosity η (a measure of the
mean free path of particles) to the entropy density in volume s (a measure of the average
separation between particles).

We will see more of this on the following section, but now we turn to a more theoret-
ical description of these systems, introducing temperature in a quantum field theory and
showing the relevant scales and the treatment of small perturbations.
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(Near-)equilibrium plasmas and linear response theory. Relativistic quantum
field theories have an undetermined number of particles from pair creation, but here their
number is related to the charge, which we keep fixed, so one should describe its statistical
physics in the canonical ensemble. The partition function in such an ensemble is

Z = Tr e−βĤ =
∑

states

〈En|eβĤ |En〉 =
∑

states

e−βEn , (1.7)

where the temperature β := T−1 appears as a Lagrange multiplier for the mean energy
〈Ĥ〉. Now, the very presence of the Hamiltonian suggests a possible interpretation of the
exponential as a time evolution operator provided one has imaginary times t = −iβ. Thus,
we can now connect to path integrals since we know how to represent time evolution in
them. For imaginary times we have the Euclidean action so

Z =
∫

[Dϕ] e−Se[ϕ] =
∫

[Dϕ] e−
R β
0 dτ

R
d3xL[ϕ] , (1.8)

with an important proviso: the implementation in the statistical description of the trace
over states translates here to imposing (anti-)periodic boundary conditions on the fields

ϕ(0,x) = ±ϕ(β,x) , (1.9)

with the plus sign for bosonic excitations and the minus sign for fermionic ones. Therefore,
introducing temperature in the field theory in this way corresponds to compactifying time
in an Euclidean time circle and imposing certain boundary conditions on the fields. This
is the Matsubara formalism. It should be noted however that there is an equivalent but
quite distinct method which operates in real-time. It is the Keldysh formalism where the
time contour is chosen differently from the Matsubara one.

In the thermal medium the interactions “dress” the particles converting them in general
in collective modes with a mass and a decay width. A nice thing is that one can organize
physics by length scales à la Wilson, at least at weak-coupling g or very high temperature 3

• The first scale is 1/T , associated with the typical energy E ∼ T of individual quasi-
particles, i.e. particles just slightly modified which can be somehow connected to
the elementary excitations.

• However, already at one-loop there are modifications, like the appearance of a ther-
mal mass ∼ gT for the excitations which for instance modifies the initial dispersion
relation as E(p) ∼

√
p2 +m2

th(T ). Thus the scale is 1/(gT ), where g is from one
loop and T is the dimensionful parameter. It is associated with collective motion of
individual particles and sets the scale for the damping of (chromo-)electric fields, i.e.
Debye screening. In chapter 5 we study this for a strongly coupled gluon plasma.

3It should be said that in thermal field theory the natural expansion parameter is g and not α = g2/(4π).
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• One can ask what happens at larger length scales (for non-Abelian theories). In
such cases one cannot resolve the time circle and effectively sees a three-dimensional
theory, expanded as

Se =
1
g2

∫ β

0
dτ
∫

d3x trF 2
4d '

β

g2

∫
d3x trF 2

3d + . . . , (1.10)

so the three-dimensional coupling g2
3d = g2T is now dimensionful. For such theory

confinement is known, so beyond 1/(g2T ) there are no magnetic forces. Also, thermal
widths of collective excitations are proportional to this scale so only at weak-coupling
one may call them quasi-particles.

All of these physics is obtained studying the response of the theory to small external
perturbations that do not change significantly the state of the plasma. The time evolution
of such small disturbances of the equilibrium system is determined by the correlation func-
tions of pairs of observables; this is the domain of linear response theory, and formulated
in real-time. To apply this method one has to extract the effect of the perturbation on an
observable, measured as

δ〈Ô(t)〉 = 〈Ψs(t)|Ô|Ψs(t)〉 − 〈Ψs(t)|Ô|Ψs(t)〉 , (1.11)

where the barred state vector is suffering the perturbation and the unbarred one is not,
and subscripts (s,h) stand for Schrödinger and Heisenberg as usual. If the perturbation
is small as said, it can be modelled through an expansion in a potential term V̂h(t)

|Ψs(t)〉 = e−iĤt
(

1− i
∫ t

t0

dτ V̂h(τ) + . . .

)
|Ψh〉 , (1.12)

where picking just the first term corresponds to the unperturbed evolution |Ψs(t)〉. A bit
of algebra yields the following form for the effect of the perturbation on the quantity O

δ〈Ô(t)〉 = −i
∫ +∞

t0

dτ 〈Ψh| θ(t− τ) [Ôh(t), V̂h(τ)] |Ψh〉+ higher V̂ . (1.13)

This is the linear response. We will be interested in examples where the perturbation
is introduced by a source, so that we can compute two-point correlation functions. Then
V̂ (τ) =

∫
d3ξ jb(τ, ξ) Ôs,b(ξ) and the linear response is

δ〈Ôa(t,x)〉 := −
∫

dτ d3ξ GR,ab(t− τ,x− ξ) jb(τ, ξ) , (1.14)

where we have introduced the definition of the retarded Green’s function. The appearance
of the retarded function is clear from causality: the system will respond only after the
perturbation starts. Possible sources j(τ, ξ) that we will use in this thesis involve dissipa-
tion if the perturbations are localized in time or absorption if they are localized in space.4

4There can also be diffusion effects if conserved charges are involved.
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Dissipation is related to correlations in time that describe how lumps of energy are lost
in the system. The absorption is directly related to spatial correlations in the equilibrium
state. At high temperatures the system is in a very disordered phase, so measurements
made in different parts of the plasma give uncorrelated results. For the same reason, a
small perturbation cannot travel too far in the plasma before being washed out by thermal
fluctuations. How far this can be depends on the details of the plasma, but in general one
expects that the characteristic absorption lengths decrease as the temperature increases.

Plasma hydrodynamics. A possible description of the evolution of the fireball pro-
duced at rhic supported by the data is in terms of hydrodynamics, so let us have a brief
look at it here.

Hydrodynamics is about the dynamics and thus near-equilibrium behaviour at large
distances and time scales. To formulate it one uses directly equations of motion instead
of an action principle. This is so because, as we said before, in the thermal medium the
collective excitations have an associated decay width and thus one has to accommodate in
a simple way for dissipation phenomena. We may start with an easy example: the hydro-
dynamic equation of motion for a conserved charge. Imagine we have some symmetry; in
this context we study the diffusion of the charge associated to it given by the continuity
equation

∂µ j
µ = 0 , (1.15)

where the current jµ can be expressed in terms of the relevant quantities for the medium
through the so-called constitutive equations

jµ = ρ uµ −D(gµν + uµuν) ∂νρ , (1.16)

with ρ the charge density, uµ the local fluid velocity and D the diffusion constant.

To gain full insight into the effect of such a current one has to compute the full real-
time retarded Green’s function, as seen from linear response theory, in the hydrodynamic
limit, i.e. low momentum and low frequency. In particular, the transport parameters can
be expressed in terms of the retarded function through the Green–Kubo relations. For
our charge diffusion

D = − factor× lim
ω→0

2T
ω

Im G̃j−jR (ω,k = 0) . (1.17)

Of course one can be somehow more ambitious, and be interested in the location of the
poles of the retarded Green’s functions to study the dispersion relations for these collective
modes. In this limit, one must look for normal modes of the form e−iωt+ikx, named the
hydrodynamic modes. In our example, using equations (1.15) and (1.16) one arrives at the
equation for charge diffusion

∂tρ−D∆ρ = 0 , (1.18)
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which for our particular modes has solution ω = −iD|k|2. Therefore, this pole in the
retarded Green’s function of two currents encodes the diffusive behaviour of the charge in
the thermal medium.

We end this section with the most important transport parameters, which in this case
are tied to the energy-momentum tensor. They describe the flow of energy and momentum
in the medium, but in spirit the steps one must take are the same. The conservation
equation is ∂µTµν = 0 and the constitutive relation to first order in dissipation

Tµν − Tµνideal = −Pµα P νβ
[
η
(
∂αuβ + ∂βuα − 2

3
gαβ∂λu

λ
)

+ ζ gαβ∂λu
λ

]
, (1.19)

with η and ζ the two transport parameters, called shear and bulk viscosities, respectively.
Pµν is a projector onto directions transverse to uµ. The corresponding hydrodynamic
modes are —choosing k = (0, 0, k)

• Shear modes, for fluctuations of T 0⊥ and T 3⊥ where ⊥= (1, 2). They are related
since T 3⊥ = − η

ε+P ∂3T
0⊥, and the evolution can be encoded in T 0⊥, for whom it is

diffusive: ∂tT 0⊥ − η
ε+P ∂

2
3T

0⊥ = 0. This yields the shear mode

ω = −i η

ε+ P
|k|2 , (1.20)

for diffusion of momentum in a given direction to the transverse ones.

• Sound modes, for fluctuations of T 00, T 03 and T 33. Now there are two conservation
equations, which upon diagonalization yield the sound mode

ω = cs|k| − i

2

(
4
3
η + ζ

) |k|2
ε+ P

, (1.21)

where cs is the sound velocity for the propagation of the energy density.

We will see more on these modes and related responses in (quark-)gluon plasmas from
string theory in chapters 4 and 5 of this thesis.

1.3 RHIC physics: QGP in more detail

Back to 1974, T.D. Lee suggested one could create a new phase of matter “by distributing
high energy or high nucleon density over a relatively large volume” [23, 24], and the way
to have such high densities and temperatures could be in relativistic heavy-ion collisions
[25,26]. The qualitative difference was that early accelerators collided a few particles at a
time, so it made little sense to talk about statistical quantities and a ‘macroscopic’ state
of matter. In simple terms, they were experiments in vacuum.
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Some of these facilities were thus modified to accelerate heavy ions and collide them
with a fixed target, like ags at Brookhaven and sps at CERN. Even though they produced
beams of 10 and 160 GeV per nucleon, the center-of-mass energy was somehow low, 5 and
17 GeV per nucleon pair respectively; and it is this energy the one relevant for collision
experiments. The purpose of rhic was to remove that fixed target by colliding nuclei on
nuclei, mainly gold ions. This has been achieved and currently the center-of-mass energy
reaches to 200 GeV, and in lhc it will be an order of magnitude above! That is a lot of
total energy indeed, around 39 TeV since for gold A = 197. But much more important
is the fact that it will produce energy densities above the critical one εcrit ≈ 1 GeV/fm3,
where the energy density of the medium is that of matter inside hadrons.

The ions after accelerated to 99.995% of the speed of light enter two rings, one for
each beam direction, which intersect at six different points. At four of them there are
detectors, named star [27], phenix [28], phobos [29] and brahms [30], whereas the
other two intersections are left for future experiments. Each of the detectors focus mainly
on different aspects of the system formed in the collision, although there is some overlap
in the analysis to allow for cross-checking.

Creation and evolution. How does the collision look like? As said above, at rhic

the heavy ions are travelling at light speeds, and for those quoted the corresponding
Lorentz factor is γ ' 100. In Bjorken’s own words, one has two “highly Lorentz-contracted
pancakes”. After approximating they eventually collide and recede leaving in between a
very hot and dense medium. The shortest time scale for the collision comes from the simple
estimation of the overlapping time between the pancakes in the laboratory/center-of-mass
frame

tmin = 2
R

γc
' 2

7 fm
100 c

= 0.14 fm/c , (1.22)

where R is the average size of the nucleus. Some estimates point to an energy density
of about 30 − 40 GeV/fm3. The medium inside comes from a lot of secondary particles
produced in the collision, where ‘slow’ ones are first formed in the central region whereas
‘fast’ ones —large momentum suffering time dilation— are produced later towards the
external part where the pancakes are receding. The production of these particles has an
associated time scale called formation time, t = τform; they are those that later will form
the qgp. Some estimates gives τform ' 0.35 fm/c, which is causally good since it is bigger
than tmin, and a peak energy density for created particles of about 15 GeV/fm3.

By later one means above that the system has to thermalize, and the way to achieve
this is through collisions between the formed particles. This is important since one of the
criteria for qgp formation at rhic is that matter must be to a good approximation in a
thermal state. A partial positive result is the fact that the particle yields on the detectors
can be fit to a thermal distribution. So provided this is the case one could use hydrody-
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namics to describe the further evolution of the system, first being one-dimensional where
one can use Bjorken’s cylindrical picture [31] and later three-dimensional and anisotropic,
as seen from the spectrum of particles transverse to the longitudinal collision line (see
below). Moreover, the thermalization time can be obtained matching data to collective
parameters in hydrodynamical simulations, giving τtherm ' 0.6− 1.0 fm/c. This number is
pretty small, and indeed it should not be much less than 1 fm/c since that is the typical
time taken by a signal from a parton to travel out of a hadron.

All of this picture has an associated cooling by expansion so eventually the energy
density and temperature will drop below εcrit and Tc, going through the deconfinement
crossover, producing jets by hadronization which are those actually measured on the de-
tectors. The full movie is depicted in figure 1.3.
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Figure 1.3: Representation of the energy density versus time as follows from the Bjorken picture.

Apart from creating the qgp one would like to study its properties too, and some
of these are at the same time giving an insight into e.g. thermalization. That is the
case of viscosity η. We mentioned that there is an anisotropy effect in the transverse
distribution of particles, which is most impressive when the collision between the nuclei
is not head-on; in this case the initial qgp region is “almond-shaped”, and its evolution
suffers a gradient pressure that pushes more particles in one directions than in others,
called the elliptic flow (see left of figure 1.4). The experimental anisotropic distribution
can be fitted in an expansion in terms of the azimuthal angle [27–29], where the first
and most important term is the elliptic flow parameter v2. To reproduce its value in the
hydrodynamic simulations [32–35] it is necessary to introduce viscosity, in particular a very
small value of η/s [36]. This ratio is basically mean-free-path over interparticle-distance,



16 Chapter 1. Strongly coupled plasmas

so a low value corresponding to large interactions even though being separated means
being at strong coupling, strengthening the liquid sqgp picture. As said above, this also
gives a short thermalization time.

RHIC and string theory, Gubser, PiTP 2006 40 4.3 The wake of a quark
look for the jet on the other side

STAR PRL 90, 082302 (2003)

Central Au + Au

Peripheral Au + Au

Medium is opaque!

_ high density

     large !interaction

1

A
trigger jet

2

!M

B

C

Figure 1. A schematic picture of flow created by a jet going through the fireball. The trigger
jet is going to the right from the origination point (the black circle at point B) from which sound
waves start propagating as spherical waves (the dashed circle). The companion quenched jet is
moving to the left, heating the matter and thus creating a cylinder of additional matter (shaded
area). The head of the jet is a “nonhydrodynamical core” of the QCD gluonic shower, formed
by the original hard parton (black dot A). The solid arrow shows a direction of flow normal
to the shock cone at the angle θM , the dashed arrows show the direction of the flow after the
shocks hit the edge of the fireball.

Elastic energy losses were first studied by Bjorken[1], while those due to “ionization” of
bound states in sQGP were recently considered by Shuryak and Zahed [6]. These mechanism
deposit additional energy, momentum and entropy into the matter. (Like for delta electrons
in ordinary matter, this excitation kicks particles mostly orthogonal to the jet direction.) It is
their combined magnitude, dE/dx = 2 − 3GeV/fm, the one we will use below. Even at such
loss rates, a jet passing through the diameter of the fireball, created in central Au-Au collisions,
may deposit up to 20-30 GeV, enough to absorb the jets of interest at RHIC.

Let us start our discussion of associated collective effects by recalling the energy scales
involved. While the total CM energy in a Au-Au collision at RHIC is very large (about 40
TeV) compared to the energy of a jet (typically 5-20 GeV ), the jet energy is transverse. The
total transverse energy of all secondaries per one unit of rapidity is dE⊥/dy ∼ 600GeV . Most
of it is thermal, with only about 100 GeV being related to collective motion. Furthermore,
the so called elliptic flow is a ∼ 1/10 asymmetry and therefore it carries energy ∼ 10GeV
which is comparable to that lost by jets. Since elliptic flow was observed and studied in detail,
we conclude that conical flow should be observable as well. (In order to separate the two, it
is beneficial to focus first on the most central collisions, where the elliptic flow is as small as
possible.)

Fig.1 explains a view of the process in a plane transverse to the beam. Two oppositely moving
jets originate from the hard collision point B. Due to strong quenching, the survival of the trigger
jet biases it to be produced close to the surface and to move outward. This forces its companion
to move inward through matter and to be maximally quenched. The energy deposition starts
at point B, thus a spherical sound wave appears (the dashed circle in Fig.1 ). Further energy
deposition is along the jet line, and is propagating at the speed of light, till the leading parton
is found at point A at the moment of the snapshot.

As is well known, the interference of perturbations from a supersonically moving body (such
as a supersonic jet plane or a meteorite) creates a conical flow behind the shock waves. Similar
flow was discussed in Refs[7] for shocks in cold nuclear matter, in which compression up to QGP

Figure 17: Left: A di-jet event with significant away-side jet quenching. From [28]. Right: The
away-side parton may generate a sonic boom, with θM = cos−1(cs/v) the Mach angle. From [29].

• Two hard partons collide near the surface of the QGP.
• One escapes and fragments into the “near side” jet.
• The other plows through the QGP and dissipates a lot of energy.
• Such events give us a hard probe of the QGP: “jet tomography.”
• All the low pT junk makes jet reconstruction impractical, so instead one trig-

gers on a high pT hadron and look at the angular distribution of one or more
associated hadrons, also with pT > 1 GeV to get above the backgrounds.

Figure 1.4: (Left) Initial configuration of a non-central collision that then flows elliptically.

From [37] (Right) Effect of jet quenching in the interior of the plasma: the red parton escapes and

hadronizes whereas the green one is lost in the medium through collisions and gluon radiation.

From [38].

Other paradigmatic property of the qgp is its large opacity to energetic coloured particles,
i.e. large energy losses. The simple idea behind that name is that in such a dissipative
medium a charged particle will lose its energy as it moves through it, partly from collisions,
partly from gluon radiation. A nice thing is that partons produced in the medium can
work as probes of it. At this stage one should distinguish heavy from light particles. For
instance, a heavy quark like the charm quark, with a mass notably above Tc, is expected
to lose energy more slowly, thus thermalizing more slowly and leading to a smaller elliptic
flow. So measuring its energy loss rate help to understand its thermalization time. On the
other hand and concerning light quarks, there is an observable effect called jet quenching.
Imagine a quark anti-quark pair produced close to the boundary of the plasma; it may
happen that one of them is produced pointing towards the external region and escapes
to later produce a jet seen in the detector. But the recoiling mate will go towards the
interior losing its energy and eventually disappearing (see right of figure 1.4). This would
lead to a missing jet in that direction, and indeed this is measured at rhic, so studying
its energy loss at strong coupling is important experimentally.

There are of course much more properties which can be studied. For instance the
suppression in the yields of heavy bound states like J/ψ, as compared to hadron-hadron
and hadron-nucleus collisions where there is no plasma formation that can help them
melt. In this thesis we will say nothing about a dual description of the formation time.
Concerning the thermalization time, an accurate description in terms of thermal field
theory is still lacking, due to the fact that it is in the regime far from equilibrium and linear
response theory cannot be applied. Some suggestions have though been made towards an
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explanation tied to plasma instabilities [39–46], but this point has to be made much more
precise yet. However, even though we do not dive into the mechanisms of thermalization,
in chapter 4 we will give an interesting point of view on early thermalization from the
application of the ads/cft correspondence. Also, in chapter 5 we will study absorption
lengths in a gluon plasma, which in the static limit can be seen as screening lengths of the
chromoelectric charge. As referred to meson melting and suppression, in chapter 6 we will
study the late time stage of the process of melting for low-spin mesons in a supersymmetric
quark-gluon plasma.

An interesting connection? So far we have set qcd as the theory behind the physics
of the qgp. However, performing first-principles qcd computations is a hard task. As
already said, after thermalization one resorts to hydrodynamic models to describe the
evolution of the fireball, and much effort is put in computing the relevant parameters that
can be related to the observables. Indeed, the value of αs is usually quoted to be around
1/2 for rhic scales. Thus, it is somehow clear that perturbative qcd will not provide
accurate results in general. For instance, the perturbative prediction for the Debye mass
mD seems to be one third of the measured one at around those energies [47–50]. Concerning
hydrodynamic parameters, the famous ratio of the shear viscosity to entropy density η/s is
about an order of magnitude higher in perturbative qcd than what seems to be measured
at rhic [51–55]. On the other hand, lattice qcd has proved to be a powerful tool when
we play with static quantities at strong coupling, which by itself are very important ones.
We have talked about some of them, e.g. the pressure and energy. But when it comes
to dynamical information, i.e. real-time phenomena like the afore-mentioned transport
parameters, the lattice has a hard time since it is formulated in the Euclidean. Take for
example recent attempts to obtain Lorentzian spectral functions [56–58].

Thus the question is: do we have an alternative tool to describe the dynamical non-
perturbative processes that take place in these kind of plasmas? Do we have an alternative
description of the hydrodynamical simulations? In fact, can we even go beyond and
describe in some way the thermalization process or part of it? Let us think for a moment
about string theory.

One of the on-going projects in theoretical high-energy physics today is to develop
a finite and sensible theory of quantum gravity. In many cases a classical description
is enough; however, there are some extreme situations such as the physics of black holes
where it is important to understand the quantum effects, think of the information paradox
for instance. These effects would take place at around the Planck energy scale, obtained
from the three most fundamental constants as

mP =
(

~ c
G

)1/2

≈ 1.2× 1019 GeV/c2 ,
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which is about 1020 times the scale of the confinement/deconfinement transition. Being
string theory a candidate for such an ultraviolet completion of gravity (plus the other
interactions), in the simplest approaches the characteristic mass ms of string excitations
will be around mP. Most of the “stringy” physics will occur at around that huge scale.
Therefore, and back to the original thought: how is it that we could use string theory
to address questions about strongly-coupled plasmas like ours, who operate around qcd

energy scales?

The answer for us in this thesis comes from the ads/cft correspondence.5 In its
weakest formulation, this correspondence is a conjectured duality, or map, relating two
seemingly different theories: a classical supergravity theory and a quantum gauge the-
ory. Of particular interest to us is the fact that it is a strong/weak coupling duality.
Supergravity computations on a weakly curved background (which we know how to do)
correspond to strong coupling computations in the dual gauge theory. In order that the
gauge coupling is large the processes in the latter theory must be at sufficiently “low”
energies, precisely those of the plasmas above. This is something remarkable. Were the
plasma weakly coupled, there would be no need for strong coupling computations; we
could perform first-principles perturbative qcd calculations. However, it really seems to
be strongly coupled, so by the particularities of the duality ads/cft may be of much use.

This interesting connection between string and gauge theory physics will hopefully
allow the community to gather new information about some non-perturbative dynamical
quantities, which where not accessible using the methods we talked about before. It feels
like we are the heart of a research “phase transition”. Indeed, the reference list in this
thesis may seem outdated in a couple of months.

5Particularly, a partial version of it with Lorentzian signature. See section 2.3 for an extended discussion.



Chapter 2

AdS/CFT correspondence

Holography in high energy physics is introduced as the statement that quantum gravity
in some region may be described in terms of a non-gravity theory living on its boundary
[59, 60]. How may one explicitly realize this idea? On parallel, it is been long since
’t Hooft suggested that a gauge theory might have a dual description in terms of effective
strings [61]. It turns out that both these ideas can be given a precise meaning through
the ads/cft correspondence [62]. As it will be described below, a version of this duality
shows how to relate a string theory in a product of two five-dimensional spaces with a gauge
theory on the conformal boundary of one of those two manifolds. Thus, it is holographic
since it relates theories living on spaces of different dimensionality, and it implements as
well ’t Hooft’s idea in terms of real and not just effective strings.

Originally the duality was conceived as a non-perturbative definition of M-theory. Even
though this may be quite suggesting, we will use the correspondence in this thesis as a
tool; hence our title. This also means that we are mainly interested in some partial aspects
of it and thus the first section is devoted to presenting the very basics of it. Much more
thorough explanations can be found in the famous three papers [62–64] and in the ever
increasing list of reviews [65].

In the next section we will be interested in some generalizations of the correspondence
to theories which bear more resemblance to qcd, since it is the one underlying the qgp.
In this direction one may start by introducing temperature, which it is done by putting
a black hole in the geometry [66–68]. This is nice too because the resulting theory is no
longer supersymmetric nor conformal, two features not present in the qgp. Now some
properties like the confinement/deconfinement transition for the dual theory explained in
section 1.1 appear geometrized [68], and can be modelled in terms of classical results like
the Hawking–Page transition in gravity [69].

We made though a strong point in the preceding chapter about the lack of non-
perturbative computations of dynamical quantities in strongly coupled plasmas. It turns
out that the original correspondence was formulated in the Euclidean, so like the lattice
it has proven good in computing static quantities such as entropies [66, 67], Wilson loops
giving the energy of a quark-antiquark pair [70], etc. On the other hand, formulating the
duality with Lorentzian signature has some problems, mainly tied to the non-uniqueness
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of supergravity fields solutions given a set of boundary conditions [71–76]. Of course one
could argue that first one calculates in the Euclidean to afterwards continue analytically
to Lorentzian signature, but in practice this is not possible because one needs the exact
expression of the Euclidean correlators. Fortunately, a kind of breakthrough in our opin-
ion came from work by Son and Starinets [76, 77], who proposed a recipe for computing
Minkowskian correlators. This allows to obtain out-of-equilibrium quantities describing
for instance transport properties of a plasma, and will be studied in section 2.3.

2.1 Zero temperature case

We shall start this section by drawing a simple picture for a connection between gauge and
gravity degrees of freedom, to later present a precise example concerning a supersymmetric
gauge theory and a closed string theory.

The motivation. Black hole solutions in general relativity have been known for a long
time. Introducing local supersymmetry in these theories gives rise to supergravity, which
will also contain this type of solutions. In general they need not be constrained to a
point, and their mass may be spread out over p-dimensional surfaces plus time. These
became known as black p-branes, in analogy with membranes but with the full range of
dimensions. In some cases, called extremal solutions, the horizon shrinks to zero size so
effectively the adjective black for the p-brane disappears. Notice this is not the case for
extremal black holes.

Being supergravity a low-energy effective theory of strings, it is natural to think that
these solutions will be present in the latter theory as well. If so, how do they look like?
The tension or energy per unit p-volume for this kind of solutions is split in two different
and broad classes: those for which it goes like 1/g2

s (with gs the closed-string coupling)
and those for which it behaves as 1/gs. We will be concerned in the thesis with the second
class; however, it is clear that for perturbative string theory, i.e. gs � 1 they are both
very heavy objects and can be seen as hyperplanes placed on the string background.

The microscopic or “stringy” description for these objects is that they provide the
place where open strings can end. This is like a Dirichlet condition for them on the
transverse directions to the brane; hence they are called D(irichlet)-branes. This is very
nice since we will be considering type IIb theory, which is a theory of closed strings, but
through D-branes one is able to introduce open strings as well. Even though they are
very heavy, they are dynamical objects in the sense that open string excitations make
the D-brane fluctuate. At low energies E � `−1

s , and more precisely for massless open
string excitations, these modes scatter like gauge bosons or other types of matter. This is
understood as the fact that in the world-volume of the brane there is a gauge theory living
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in it. In the same way, at those low energies the massless closed string modes behave as the
graviton and other particles which comprise the content of ten-dimensional supergravity.

Thus we have a two-fold description of the brane system. In one of them we have a
hyperplane with open strings attached to it whose low-energy world-volume theory is an
Abelian gauge theory. Indeed, one can obtain a non-Abelian gauge theory by placing a
stack of parallel branes. In this case open-string endpoints may be anchored on different
branes, so the possible permutations give rise to a U(N) gauge theory. This stack is stable
since there is a balance between the attractive and repulsive forces that arise through the
exchange of closed NS-NS and R-R string modes. The other point of view comes from
the supergravity description which motivated us to think of these objects in string theory.
The connection from the string version is that the open strings on the brane couple to bulk
closed string modes (as gravity couples to everything) and act as a source of gravitons,
dilatons, etc. which in turn source Einstein equations, effectively curving the geometry
from this backreaction to yield the metric and the other fields obtained in the supergravity
solutions.

Provided the underlying configuration is the same, it is tempting to consider limits of
the two descriptions to gather new insights from them. A clear limit which one may take
is that of low energies, i.e. E � `−1

s , or equivalently fix E and send `s → 0 so that it
effectively costs infinite energy to see string excitations. In the following we will be setting
p = 3 to consider 4-dimensional gauge theories:

• The D-brane picture. One may see the total action of the system as the sum of
the bulk, brane and interactions terms. At low energies the gravitational coupling
κ ∼ √G ∼ gs`4s goes to zero, so the closed-closed and closed-open string interactions
vanish. Since we are at low energies we focus on the light degrees of freedom; this
leaves us with free supergravity in the bulk which is also decoupled from the theory
on the branes. At these low energies we have come to agree that the theory on the
stack is a supersymmetric gauge theory, which as opposed to the bulk supergravity
it is interacting. The precise coupling can be extracted from the Born–Infeld action
of the branes, where for p = 3 is independent of the `s → 0 limit

g2
sym

4π
= gs(2π`s)p−3 p=3−→ g2

sym = 4πgs . (2.1)

• Strings in curved background picture. In this case there are no branes, and one rather
has closed strings propagating on the curved background given by a throat where
the source is, but asymptotically flat when afar from it —in the brane picture this
is also true, but in that case the gravitational radius of the throat is incredibly tiny
at weak string coupling gs. So again the closed strings in the flat region become free
supergravity at low energies, and decouple from the modes inside the throat since
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their wavelength becomes so big as to notice it. In technical terms, the absorption
cross section for the ‘out’ modes by the brane vanishes [78]. On the other hand, low
energies are now measured by an observer at the asymptotically flat region! This
means that closed string excitations of arbitrary fixed energy in the throat appear
red-shifted to the asymptotic observer. So the limit is compatible with low energies,
even though in the throat we have interacting closed strings.

Therefore, and just by comparison, if we match the two free supergravities in the two
descriptions, we are lead as well to match the interacting quantum gauge theory on the
branes with the interacting quantum string theory on the throat. This is the strong version
of the Maldacena conjecture, namely that a quantum gauge theory is dual to a quantum
string theory. In the following we make this a bit more precise with a particular example
central to the whole thesis.

The precise setup. Let us focus on the example set by a stack of N D3-branes in type
IIb string theory, and consider its low-energy limit. The corresponding gauge theory on
the world-volume is N =4 SU(N) super Yang–Mills in four dimensions [79], containing a
gauge field, four Weyl fermions and six real scalars, all of them in the adjoint representation
of the gauge group and connected through supersymmetry transformations. On the other
hand, how does it look like for the 3-brane solution and its low-energy limit? The metric
is given by

ds2 =
(

1 +
L4

r4

)−1/2

· dx2
‖ +

(
1 +

L4

r4

)1/2

· dx2
⊥ with L4 = 4πgsN`4s , (2.2)

where r parametrizes the radial coordinate in the transverse space. If one sets r � L then
recovers asymptotically 10-dimensional Minkowski space (dx2

‖ has Lorentzian signature).
Concerning the excitations in the throat, the red-shift factor relates its energy measured
at asymptotic Minkowski, E∞, with its proper energy in the throat, Ep, through

E∞ ∼
√−g00Ep =

(
1 +

L4

r4

)−1/4

Ep
throat−→ E∞ ∼ r

L
Ep ,

so the low-energy limit (E∞ → 0) corresponds to r � L. This is why it is called the
near-horizon limit, since one gets arbitrarily close to r = 0, even though in the extremal
case there is no such horizon. In this limit the metric takes the form

ds2 =
r2

L2
(−dt2 + dx2) +

L2

r2
dr2 + L2dΩ2

5 , (2.3)

which is AdS5 × S5 , and doing r ≡ L2/z gives the anti-de Sitter (ads) part in the so-called
Poincaré coordinates. These spacetimes are maximally symmetric solutions to Einstein’s
equations with a negative value of the cosmological constant. Thus, in this particular case
the ads/cft correspondence reads:
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Type IIb closed string theory on AdS5 × S5 with N units of R-R flux on the
5-sphere is equivalent to N =4 SU(N) gauge theory in four dimensions.

Even though the low-energy limit described above would lead one to consider su-
pergravity instead of strings, as Maldacena pointed out one should still think of the
AdS5 × S5 space as the background for the string theory. This was the strong statement
about the equivalence of quantum gauge and string theories. Being this such an inspiring
connection, one must tell a bit of bad news: we presently do not know how to quantize
the string theory on that background, we do not know the precise spectrum that comes
out. But at least it has been shown to be solvable, and much progress has been recently
made in an approach where one can determine the spectrum beyond the supergravity
limit, provided some quantum numbers like e.g. the spin become large [80–85].

Of course, even though the conjecture has not been totally proven there are hints that
point to its correctness, and one should start by looking at the symmetries of both theories
for instance:

• The string background has isometries, which are SO(2, 4) for the ads part and SO(6)
for the sphere, and since there are spinors present it is better to talk of their covering
groups SU(2, 2) and SU(4), respectively. It is further possible to see that they
combine in the super-Lie group SU(2, 2|4). The N = 4 theory is conformal, which
means that has vanishing beta-function, and in four dimensions translates to an
SO(2, 4) symmetry. Since the theory is supersymmetric, it has an R-symmetry,
which for the N = 4 theory it is SO(6). This supersymmetry enhances as well the
conformal group to its superconformal version SU(2, 2|4). Hence the two symmetry
groups agree, where there is a mapping from gauge transformations in the gravity
side to global symmetries on the gauge theory; this is a key feature of gauge/string
dualities.

It is nice to see how the RG-flow is geometrized in the string picture. Scale trans-
formations are trivial in the N = 4 theory, meaning that the action is quantum
invariant under (t,x) 7→ D (t,x). In the gravity side, this is the same provided
one scales not only the world-volume directions but also the radial coordinate as
r 7→ r/D. Therefore, ultraviolet or short-distance physics tied to D → 0 map to
r →∞, i.e. the boundary of the ads space —this really means going to the “bound-
ary of the throat”, not escaping to the asymptotically flat region. Alternatively,
infared physics corresponding to D � 1 map to r → 0. Thus, the radial r coor-
dinate acts as the renormalization group scale! Defining the supersymmetric gauge
theory at the ultraviolet fixed-point means that it is living on the boundary of anti-
deSitter space, and that its flow to the infrared is obtained falling down the throat,
which as we said corresponds to lower and lower energies. If one forgets for a moment
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about the S5 or does dimensional reduction on it, this sets in the idea of holography
with supergravity in five dimensions and the gauge theory in four, arising as the
conformal boundary in the r →∞ limit of the metric (2.3).

• One may also look at non-perturbative dualities of the theories like the SL(2,Z)
S-duality of type IIb strings, which acts on the axion-dilaton coupling τ = χ+ i e−Φ.
In the gauge theory the same S-duality is acting, now on the complexified gauge
coupling τ = θ

2π + 4πi
g2sym

, where θ is the vacuum theta-angle related to the strong
CP-problem. This one is known as Montonen–Olive duality.

So indeed it seems possible that they are equivalent in the strong sense. However, we
want to apply the correspondence, that is to compute some quantities. It turns out that the
weaker statement of the duality where one replaces string theory by supergravity is quite
fruitful, provided one puts some constraints on the gauge theories considered. Recalling
equations (2.1) and (2.2) one can connect the gravitational radius of the background and
string length with the ’t Hooft coupling (λ := g2

symN) of the gauge theory

L4 = λ `4s . (2.4)

In order that supergravity is applicable, one needs a weakly curved space. This means that
the gravitational radius or size of the throat must be quite big when measured in terms
of the string length, leading to the constraint λ � 1. In the ’t Hooft large N expansion
of gauge theories it is this parameter who governs the interactions, and as such it appears
in the amplitudes. Thus the supergravity limit corresponds to infinite ’t Hooft coupling.
This is good since the qgp seems to be strongly coupled, even though not infinitely. Now,
since supergravity corresponds to the low-energy limit of the tree-level string action one
must suppress string loop corrections and thence must send gs → 0. Provided we have a
fixed background radius, i.e. fixed λ, this translates into the fact that we are at very large
N in the gauge theory; this is the planar limit in its ’t Hooft expansion.

Therefore, “stringy” corrections correspond to a 1/
√
λ expansion in the gauge theory,

whereas string quantum loops correspond to 1/N corrections in the gauge theory. To
summarize, our tool will be classical supergravity on a weakly curved background, which
in turn will let us compute quantities in the multicolor limit of the gauge theory at infinite
strong coupling. As a first approximation it looks good, the question is how good it is for
the purpose of applying it to the qgp.

The field-operator dictionary. So far we have shown good motivations for believing
in the conjecture, and matching the symmetries in both theories was a starting point. But
further checks have been made concerning the spectrum of very particular operators, which
does not change as the coupling is varied, and also some correlation functions protected by
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supersymmetry were shown to match. How was all this made? In order to do so, one had
to go beyond the previous presentation and provide a computational recipe for correlators,
and a matching between gauge theory operators and string excitations [63, 64]. This is
important since it converts the ads/cft correspondence into a quantitative tool.

In string theory, the string coupling gs (∝ g2
sym here) is given by the expectation value

of the string dilaton Φ. Varying this field yields a modification of the coupling, and in
this spirit one may connect fields on the string side with operators on the gauge theory.
Even more explicitly, one can deduce for instance from the 3-brane Born–Infeld action the
coupling of dilatons, R-R scalars and gravitons to trF 2, trFF̃ and Tµν , respectively, where
Fµν is the field-strength for the non-Abelian gauge field and Tµν is the energy-momentum
tensor of the gauge theory. From the geometrical point of view, those couplings come from
absorption of asymptotic excitations which tunnel into the throat. Therefore, these can be
seen as perturbations of the ads boundary and can be encoded into boundary conditions
for the supergravity fields.

It turns out that there are two kinds of small fluctuations: normalizable and non-
normalizable ones. The former are quantized and used to construct the Hilbert space of
the boundary theory, whereas the latter are fixed by the conditions at the boundary and are
dual to the insertion of operators. This is the case since it is the non-normalizable ones who
under r 7→ r/D transform as a source does, whereas the normalizable transform as vev’s.
They are distinguished by their asymptotic behaviour at the boundary, scaling as r−∆+

and r−∆− respectively, with ∆+ > ∆− the characteristic exponents which depend on the
nature of the operator. For Euclidean ads normalizable modes are not independent of the
non-normalizable ones so boundary conditions are enough to determine both. Therefore,
in the supergravity approximation of interest to us, the precise statement is that its non-
normalizable modes at the boundary will act as sources for the gauge theory operators.
The ads/cft correspondence is thus formulated in this language as〈

e−Scft+
R

d4x j(x)O(x)
〉

= Zcft[j] ≡ Zsugra[φcl] = e−Ssugra[φcl] , (2.5)

where Ssugra is the classical action for the classical solution φcl to its field equations, subject
to the boundary condition

lim
r→∞

φcl(xµ, r)
r−∆−

= j(xµ) . (2.6)

Moreover, correlators in the Euclidean gauge theory are obtained by functional vari-
ation of the classical supergravity action with respect to the boundary fields who act as
sources as seen in equation (2.6), e.g. the two-point Euclidean correlator comes from two
variations

Ge(x− y) = 〈TeO(x)O(y)〉 =
δ2Ssugra

δj(x) δj(y)
. (2.7)
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It is important to stress that all of the above was formulated in the Euclidean regime.
In Lorentzian signature normalizable modes are independent, posing an ambiguity when
computing the correlators. Of course, at zero temperature the difficulties can be overcome
by an analytic continuation to Lorentzian signature. However, once finite temperature is
present it does not work any more, and one needs to refine the arguments; we will deal
with these issues in section 2.3. These are important if one wants to describe real-time
phenomena.

2.2 Finite temperature case

We have seen how to construct the gravitational description of a very particular theory,
conformal and supersymmetric, in a very peculiar regime: the planar and infinite ’t Hooft
coupling limit. But as stated we want to use the duality as a tool, and the physical setup is
a theory which among other things is not conformal but confining, is not supersymmetric
and is at finite temperature. In this section we describe a little step which can be taken
to get closer to the physical situation of interest.

The step consists in taking the decoupling limit on the non-extremal black 3-brane,
which has a black hole built in. The new near-horizon gravity background is

ds2 =
r2

L2

(−f(r) dt2 + dx2
)

+
L2

r2

dr2

f(r)
+ L2 dΩ 2

5 , (2.8)

with f(r) = (1 − r4
+/r

4). Notice that in contrast to the usual Schwarzschild metric the
horizon has three flat directions x, and hence one calls it the planar ads-Schwarzschild
background. The presence of such horizon allows to talk about Hawking radiation and
temperature, so in the dual field theory the temperature is given by that on the black hole’s
horizon. To see it properly we can proceed as in section 1.2, rotating to the Euclidean
and compactifying time in a circle. Since this “time” circle shrinks to zero size at r = r+

one has to demand regularity of the metric in that limit, which in turn fixes the value
of the temperature. Moreover, in such circle one may impose supersymmetric (periodic)
boundary conditions for fermions or thermal (anti-periodic) ones. Since we want a thermal
field theory we choose the latter, thereby breaking supersymmetry in the scenario.

To obtain the temperature we focus on the effect of the limit r → r+, i.e. the Euclidean
time τ and radial r parts. In that limit we may write r = r+(1 + ε), with ε � 1, so the
metric becomes

ds2
e,horizon =

L2

4ε
dε2 +

4ε r2
+

L2
dτ2 . (2.9)

This metric can be expressed in the form dρ2 + ρ2dϕ2, so matching the coordinates and
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demanding the absence of a conical singularity, i.e. that ϕ has period βϕ = 2π, one obtains
the temperature as

Tgauge := Tbh = β−1
τ =

(
L2

2r+
βϕ

)−1

=
r+

πL2
. (2.10)

Now we focus on conformal symmetry. Remember that the decoupling limit on the
non-extremal 3-brane leads to a modification of the ads part through the introduction of
a black hole. Thus, the isometry group of the ads spacetime is changed, and consequently
conformal invariance is not present in the gauge theory. Only in the far ultraviolet region,
with r →∞, the black hole factor values one and we recover the AdS5 × S5 space. In the
dual gauge theory this is just the statement that at large enough energies the temperature
plays no role, and one recovers conformal symmetry. Recall the theory has a fixed-point
there. This is nice, since now there exists the possibility of confinement and of a transition
between the confined and deconfined phases, even though the metric (2.8) is not suitable for
describing it (see below). Therefore, the question is which phase of the finite temperature
gauge theory is dual to the chosen background. It turns out to be the deconfined (or
plasma) phase [68], so all in all this allows to model a non-Abelian, not conformal, not
supersymmetric multicolor gluon plasma —of infinite extent— at very strong coupling.
Let us build a bit more on this in the next part of this section.

A natural question that might pop up is whether the gauge/gravity equivalence con-
tinues to hold at finite temperature. Many of the symmetries in the zero temperature
theory, which allowed to match quantities in both sides of the correspondence, are now
lost so it is more difficult to check it up on. Indeed, results from ads/cft at finite T may
rather be seen as predictions on the strongly coupled dual gauge theory. We would like to
comment on one of these predictions: in refs. [66,67] the entropy of the finite temperature
version of the N = 4 SU(N) theory at strong coupling was confronted with the result at
zero coupling for an Stefan–Boltzmann gas, both obtained from the derivative of the free
energy with respect to the temperature. The outcome was that

Fbh =
3
4
Fsb = −π

2

8
V N2T 4 , (2.11)

where βτFbh is the Euclidean action of the black hole and sb stands for Stefan–Boltzmann.
Now, in figure 1.1 we saw how in qcd closely above Tc the pressure (P = −∂F/∂V )
amounts to an 80% of the ideal gas value, and that it was not clear if one should view it as
evidence of almost weak coupling or not. Moreover, results at rhic commented in section
1.3 seem to push towards strong coupling. So provided one “believes” that ads/cft has
something to say at least universally on this issue, it should be clear that 75% is not that
far from 80%, thus supporting the strongly coupled qgp picture since the N =4 theory is
at very large ’t Hooft coupling!
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Confinement/deconfinement is Hawking–Page. Above we saw that the background
(2.8) is dual to the plasma phase of the gauge theory, but we really did not explain why.
If ads/cft is really stating an equivalence, one should be able to reproduce the transition
from confined to deconfined degrees of freedom in the gravitational picture. As explained
in section 1.1, it is possible to produce such transition by rising the temperature. Just by
analogy, we could start with some gravity background where we would heat the system
producing a gas of gravitons, that eventually would collapse to form a black hole when
rising the temperature. This is very well known in the context of semiclassical gravity,
being the process called a Hawking–Page phase transition [69] where an initially horizon-
less geometry nucleates spontaneously a black hole, which occurs when the free energies
of both configurations are equal. What would be the two backgrounds in this picture?

Recall that in the (Euclidean) correspondence we put boundary conditions on the
fields and continue them into the bulk, but for differential equations there can be different
solutions with the same boundary conditions. More generally, we could have different
metrics in the throat, all of them with the same boundary topology. So when evaluating
the right hand side of equation (2.5) it should be done over all possible contributions. At
large N , the saddle points that dominate are the solutions to the supergravity equations of
motion. Also, in such thermodynamical limit the free energies scale with N2 for the N =4
theory, so any slight difference between the configurations will favour dramatically one of
the solutions. In our case, the relevant metrics were given by Hawking and Page [69]

ds2
gas =

(
1 +

r2

L2

)
dτ2 +

dr2(
1 + r2

L2

) + r2 dΩ3
2 (2.12a)

ds2
bh =

(
1 +

r2

L2
− µ

r2

)
dτ2 +

dr2(
1 + r2

L2 − µ
r2

) + r2 dΩ3
2 , (2.12b)

where µ is related to the mass of the black hole. Both metrics share the same topology
at the boundary r →∞, which for compact Euclidean τ is S1 × S3. To compare the free
energies of the supergravity theories one has to match the radii of the two S1 and the two
S3 in order to reproduce the same boundary metric. It turns out that once this is done,
at high gauge theory temperature the black hole metric is favoured and dominates, so
dual gauge theory properties should be studied within this background. On the contrary,
at low temperatures it is the so-called thermal ads metric (2.12a) which should be used.
Just for completeness, let us note that in the limit where one sends the radius of the S3 in
(2.12b) to infinity, thus with boundary topology S1 ×R3, it is possible to do a change of
variables that takes to the Euclidean version of the ads part in (2.8). So this last metric
can be used as well to study the high temperature behaviour, but unfortunately is not
good for studying the transition.

Therefore, to finally answer the question one must study properties of the gauge the-



2.2 Finite temperature case 29

ory and associate a phase to each background. In this spirit, an order parameter for
confinement is the Polyakov loop, corresponding here to a string wrapped around the
time direction. This loop is roughly e−F with F the free energy of a probe static quark,
so a vanishing loop means that it costs infinite energy to place it in the medium, i.e.
confinement, whereas a non-vanishing loop value means it is possible to put it and thus
deconfinement. In the string description the value of the loop is proportional to the area
of a string worldsheet. At low temperatures the time circle is non-contractible and not
the boundary of a disc, so that the Polyakov loop vanishes. After the transition, this
circle becomes contractible because the S1 shrinks, resulting in a non-zero expectation
value for the Polyakov loop (see left panel on figure 2.1). Thus we see that the black hole
geometry corresponds to the deconfinement phase! Another thing that can be studied is

r+

r

S1 S1

black hole thermal AdS

r =∞

r = r+

q →← q q →← q

Figure 2.1: (Left panel) On the left the high temperature black hole metric, with the S1 shrinking.

The cigar can be deformed to a disc. On the right the S1 does not shrink since it has no black

hole factor multiplying and cannot be deformed to be the boundary of a worldsheet. (Right panel)

String splitting leading to deconfinement and glueball exchange.

the potential between probe quark anti-quark pairs, related to the string tension (in the
lattice sense). Let us take the black hole background, and model this by an open string
hanging on the boundary whose stretching is proportional to the energy. Of course, since
the boundary is at infinity one has to regularize the quantity by subtracting the value
for a sole string hanging from that boundary till the horizon; in the gauge theory this is
seen as the free energy of a static probe quark. As the pair separates, the equations of
motion for this string can be solved to find that the intermediate part sinks towards the
horizon more and more as they go. Eventually the string touches the horizon and splits
in two single strings stretching from the boundary down to the horizon, which happens
when E ∼ T ∝ r+ (the whole process is depicted on the right panel on figure 2.1). This
means that in the gauge theory it is favoured a configuration with the deconfined quark
and anti-quark. There can still be interactions between the two hanging strings through
the interchange of supergravity fields, seen as glueballs in the gauge theory. In chapter 5
we will compute some of these glueball (masses) as the static limit of absorption lengths
in the deconfined plasma.
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2.3 Going Lorentzian

In section 2.1 we showed the recipe to compute Euclidean correlators from the grav-
ity dual, but the major point of this thesis is to study real-time properties relevant for
strongly coupled plasmas. In particular, we saw that near-equilibrium properties can be
computed in linear response theory, provided one knows the structure of the real-time
retarded Green’s functions. Recall for example the use of the Green–Kubo formula (1.17)
to express the charge diffusion parameter in terms of the Lorentzian G̃R. Other examples
can be given: imagine one wants to follow a hydrodynamic mode, corresponding to low
frequency ω (and momentum). In the Euclidean prescription the frequencies associated
to the compact time circle appear as Fourier modes called Matsubara frequencies, which
for bosons are ωn = 2πiTn. If one continues analytically these values, even the smallest of
them turns out to be 2πT , which can be far above the values for the hydrodynamic mode.

Thus, it is clear that the Euclidean recipe needs to be generalized to the Lorentzian
case, where the new one should allow for a direct computation of real-time correlators.
Moreover, and since for our purposes we are interested in the retarded Green’s function,
we need to isolate which is the precise boundary condition on the gravity fields that
corresponds to the retarded function in the dual gauge theory.

The recipe for Lorentzian correlators.1 The Euclidean recipe for correlators (2.5)
builds on the ability to express the supergravity action in terms of the solutions to the
field equations. The idea is that providing a condition for the field at the boundary, say
φ|∂ = φ0(x), and demanding regularity at the horizon completely fixes the solution. This
allows to feed it back into the action to evaluate it on-shell, such that correlators come as
variations with respect to that solution. Let us illustrate it in the simplest example of a
massless scalar on the black hole background. We will work with the coordinate z = r+/r,
where the ads part of the (Euclidean section of the) metric (A.1) is

ds2 =
L2

z2

(
f(z) dτ2 + dx2 +

dz2

f(z)

)
, (2.13)

with the boundary at z = 0 and the horizon at z = 1. The equation of motion for the
massless scalar on this (Euclidean) background is that given in eq.(A.2) with a change of
sign in the φ̈ term and m = 0. As explained in appendix A.1 we can Fourier transform φ,
also with a sign change in ω

φ(z, τ,x) = T
∑
n

∫
d3k

(2π)3
eiωnτ+ikx Φk(z)φ0(k) , (2.14)

1The following argument will be based on the black hole background since we are interested in finite

temperature gauge theories, even though the final prescription for Lorentzian two-point functions is valid

at zero temperature as well.
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and again Φk(z = 0) := 1 to reproduce φ|∂ = φ0(x). The equation of motion in terms of
Φk(z) thus is

Φ′′k(z) +
(
f ′(z)
f(z)

− 3
z

)
Φ′k(z)−

(
ω2

f(z)2
+

k2

f(z)

)
Φk(z) = 0 . (2.15)

One can study the behaviour of the solution close to the boundary and the horizon using
the typical Frobenius method. At the boundary there are two solutions, which go like
1 and z4, respectively. On the other side and up to irrelevant numerical factors in the
exponents, the two solutions at the horizon behave as (1 − z)+ω and (1 − z)−ω. The
requirement of regularity demands one throws away the latter since it blows up in the
limit z → 1 (we choose ω > 0). Thus, from the ordinary theory of differential equations
one can match the behaviour at the horizon with those at the boundary and obtain the
solution to later compute the correlator. What happens when we perform the same study
on the Lorentzian background? The difference is basically a change of sign for the term
in ω2, but a dramatic one. Again, one finds the same characteristic exponents at the
boundary while at the horizon they change; now they give the behaviours (1 − z)+iω

and (1 − z)−iω. These are oscillatory solutions which do not explode, so one finds that
demanding regularity at the horizon is no longer enough to obtain an unique solution
which can be fed back to compute the correlator.

There is however an outstanding physical boundary condition at the horizon: classical
black holes do not radiate so one may choose the oscillation that falls into the horizon.
This is clearer if we recover time-dependence and rewrite (1− z)±iω = exp[±iω log(1−z)].
Changing variables as u ∝ log(1− z) ∈ (−∞, 0]

φ ∼ e−iωt±iωu = e−iω(t∓u) ⇒
{

+iω moves to the right in u, i.e. “outgoing”
−iω moves to the left in u, i.e. “infalling”

,

and one should pick (1− z)−iω. From the gauge theory point of view this is an oscillation
of the field sourced on the boundary that then travels to the horizon and disappears, so
just from causality it looks natural to associate that condition at the horizon with the
retarded correlator on the boundary theory. This allows to obtain an unique solution to
be fed back into the action, but unfortunately is not the end of the story.

As said, the solution can be inserted into the action to write it as

Ssugra =
∫

d4k

(2π)4
φ0(−k)F(k, z)φ0(k)

∣∣∣z=1

z=0
, (2.16)

where F(k, z) ∝ √−g gzz Φ−k(z) ∂zΦk(z). Notice that it receives contributions from both
the boundary and the horizon. If one tries to extend the recipe straightforwardly to the
Lorentzian case as〈

eiScft+i
R

d4xφ0O(x)
〉

= Zcft[j] ≡ Zsugra[φcl] = eiSsugra[φcl] , (2.17)
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the outcome for the Green’s function is

G̃(k) = F(k, z)
∣∣∣z=1

z=0
+ F(−k, z)

∣∣∣z=1

z=0
. (2.18)

Using the equation (2.15) for Φk and noticing that Φ−k = Φ∗k one can derive that Im F
has no dependence on z. This means that the imaginary parts at z = 0, 1 in this formula
cancel for each term and yields a real G̃(k). This is not good since one expects in general
that the retarded Green’s function be complex. Even if one drops the contributions from
the horizon one still obtains a real value, since F(−k, z) = F∗(k, z). Thus, it looks like
the direct variation of the action does not yield the retarded Green’s function.

In ref. [76] a conjecture for the actual formula was put forward without any direct
evidence, except to look like the one at zero temperature; this was

G̃R(k) ?= −2 lim
z→0
F(k, z) , (2.19)

suitable for the computation of real-time two-point functions. It is curious that even
though the definition of the retarded correlator relies on the existence of a horizon and on
imposing a very precise boundary condition on it, at the end of the day the recipe for that
correlator involves just the evaluation of the function F(k, z) at the boundary. A more
rigorous approach was used in [77] building on an earlier suggestion by Maldacena [86],
which relies on the Schwinger–Keldysh formalism of finite temperature field theory named
in section 1.2, and allows in principle to compute arbitrary n-point functions.

Retarded correlators and quasinormal modes. The prescription outlined above
seems useful and, whenever applicable, happens to reproduce the results for correlators
obtained from other methods [76]. But for non-extremal backgrounds such as the one
we are interested in, applying the recipe is only possible in some limits, for instance very
low or very high temperature. Fortunately, there is a way out building on the connection
between retarded correlators and the necessity to impose infalling boundary conditions in
the black hole background.

Infalling boundary conditions are the constitutive ingredient for the calculation of the
quasinormal modes of black holes; these are time-dependent solutions to the linearized
equations of motion with complex frequency whose imaginary part represents their damp-
ing on the background. Thus, quasinormal modes can be seen as excitations that dissipate
their energy into the horizon or spread it out to infinity. In our case we have an asymp-
totic ads geometry, so all the energy is dissipated into the horizon since its curvature
acts effectively as a box. Traditionally these modes have been studied in the context of
black holes in asymptotically flat space (see [87, 88] for a review). In the context of the
ads/cft correspondence they were first studied in [89], and later extended on [90–100].
The picture is quite nice since the dual field theory interpretation is that the inverse of the
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imaginary part gives the relaxation time back to equilibrium under a small perturbation
of the plasma.

The key point of the authors of ref. [91] was to realize that the quasinormal frequencies
of btz black holes coincide with the poles of the retarded two-point functions in the dual
two-dimensional conformal field theory. In [96, 99] it was shown that this observation
extends generally to the Lorentzian ads/cft correspondence, i.e. quasinormal frequencies
in ads can be interpreted as the poles of retarded Green’s functions in the dual field theory.
Let us see this in more detail.

In general, the problem of finding the quasinormal modes can be reduced to a quantum
mechanical problem of scattering in a one-dimensional potential. In asymptotically flat
spaces the potential vanishes both at infinity and at the horizon, so the solutions are in
general a superposition of infalling and outgoing waves, to which we impose the infalling
boundary condition at the horizon. In spaces that are asymptotically ads the situation
is similar at the horizon, but the potential does not vanish at infinity and a different set
of boundary conditions should be considered. For a scalar field the usual choice is the
Dirichlet condition at the boundary. However, for other perturbations like vectors or the
metric, which in the boundary couple to conserved currents, such condition is less clear
since those quantities are gauge-dependent. The way out is to use gauge-invariant com-
binations from them (see e.g. the vector field in A.1) and study which are the conditions
that need to be imposed in order that their quasinormal spectrum matches the poles of
the retarded Green’s function. If one calls them Zk, playing the generalized role of Φk

above, one can express the infalling solution in terms of those at the boundary as

Zk(z) = A(ω,k) y1(z) + B(ω,k) y2(z) , (2.20)

which near the boundary looks like

Zk(z ' 0) ' A(ω,k) z∆−(1 + . . .) + B(ω,k) z∆+(1 + . . .) , (2.21)

with A and B the so-called connection coefficients of the differential equation, and ∆+,∆−
its characteristic exponents close to the boundary. These were for instance 0 and 4 in the
massless scalar case above. One can take in general ∆+ > ∆−, with ∆+ positive. If
one rewrites the action to quadratic order in terms of these gauge-invariant variables, the
on-shell version reduces reduces to the boundary term

S ' lim
z→0

∫
d4k F (ω,k) g(z)Z ′(z)Z(z) + . . . , (2.22)

where F (ω,k) contains the dependence on the parameters and the normalization of the
action, g(z) carries the dependence on the radial coordinate and periods stand for contact
terms which do not contain derivatives of Z. Application of the recipe (2.19) to obtain
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the correlator of the operator dual to Z yields

G̃R(ω,k) = 2(∆+ −∆−)F (ω,k)
B(ω,k)
A(ω,k)

lim
z→0

(
g(z)z∆+−∆−−1

)
, (2.23)

which is valid whenever (∆+−∆−) /∈ Z, though there are cases where one finds an integer
difference between the characteristic exponents. When that happens, there is the chance
that a logarithm in one of the two boundary solutions appear and the analysis has to
be slightly modified. An example of this kind can be found in the longitudinal vector
perturbations studied in the absorption lengths chapter 5.

In the cases we will be considering, the last z-dependent term will be regular, so the
poles of the retarded Green’s function will come as the values of ω and k which make
the connection coefficient A zero. Holographically this condition is that they should be
normalizable modes, so in the gauge theory they correspond to states and not to the
insertion of sources or couplings (c.f. [99]). From the gravity point of view, the equation
A = 0 imposes a relation between the frequencies and momenta that allows to solve for
one of them in terms of the other. This is just the statement that A = 0 defines the
quasinormal spectrum for the perturbations on the background. Thus, knowledge of such
quasinormal frequencies allows to obtain the poles of the retarded correlators and in turn
determine the dispersion relations for near-equilibrium collective excitations of the plasma!

We would not like to end this section without taking one more step, which will be
the subject of chapter 5. In the gravity dual picture the dissipative properties of the
plasma rely as said on the presence of a horizon, where small classical perturbations end
up falling into the horizon either after a finite time or after travelling a finite distance. We
have just explained how the first are described by complex values of the eigenfrequency:
the quasinormal modes. Complementarily, the second class will be described by complex
momentum values. Both are intimately related, they correspond to solutions of the linear-
ized equations of motion and also satisfy the same boundary conditions. The difference
is that quasinormal modes decay exponentially in time while complex momenta describe
the decay along the direction of propagation; it is the choice of boundary conditions what
restricts the possible values of complex frequency or momentum to a discrete set. So if the
first ones are interpreted in the dual gauge theory as inverse relaxation times τ , the second
ones will be seen as inverse absorption lengths λ of the plasma. While the relaxation time
depends on the (real-valued) wave number k, the absorption length will depend on the
(real-valued) frequency ω, i.e. λ = λ(ω). In the gravity theory we therefore fix a frequency,
impose infalling boundary conditions on the horizon and then search for a solution of the
boundary condition at infinity in the complexified momentum plane. In this way we can
compute the frequency dependence of the absorption lengths.

Complex momenta are not that odd, and have been studied for horizons of compact
spatial geometry, where they correspond to Regge poles [101] of the black hole S-matrix.
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Stability of small fluctuations

In section 1.2 we saw that the effect of a small perturbation can be obtained in linear
response theory as the convolution of its source j(τ, ξ) with the retarded Green’s function
GR(t − τ,x − ξ). In particular, provided one knows the shape of the source everything
that lacks is the determination of the function GR. In this chapter we will show that even
though stability arguments do not determine the precise location of its singularities nor
the values at them, they partly constrain the analytic form of these functions. The precise
determination of the locations and residues for different kinds of perturbations will be the
subjects in the next chapters with different physical motivations.

3.1 General field theory arguments

Let us try in this section to obtain some preliminary results on the structure of the poles
and residues of the retarded Green’s functions. We can replace in equation (1.14) the
quantities by their Fourier transforms, without any recourse to the precise shape of the
source. The formula of linear response theory now reads

δ〈O(t,x)〉 = −
∫

dω d3q
(2π)4

e−iωt+iqx G̃R(ω,q) j̃(ω,q) . (3.1)

Constraints on quasinormal modes. At this point we choose to make the analytical
continuation to the complex ω-plane and use Cauchy’s theorem, with the only assumption
that the singularities of the retarded Green’s function on the complex frequency plane are
single poles, so

G̃R(ω,q) =
∑
poles

Rn(ωn(q),q)
ω − ωn(q)

, (3.2)

where ωn := Ωn − iΓn and Rn are the residues of G̃R evaluated at them. In order that
our integrals converge for t > 0 we form a closed contour with a semicircle at infinity on
the lower-half ω-plane, whereas for t < 0 we would close it in the upper-half plane. Thus
the response is

δ〈O(t,x)〉 = i sign(t)
∫

d3q
(2π)3

eiqx
∑

ωn: poles

Rn(q) e−iΩn(q)t−Γn(q)t j̃(ωn(q),q) . (3.3)
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As an example we may choose a perturbation that is localized in time, i.e. we strike the
medium once at time t = 0 and with a periodic profile such that j(t,x) = δ(t) cos(k x), to
find

δ〈O(t,x)〉 = i sign(t) cos(k x)
∑
ωn

Rn(k) e−iΩn(k)t−Γn(k)t . (3.4)

We can now use this equation to derive a restriction on the location of the poles and on
the residues. This restriction can be derived either from the condition that the response
(3.4) has to be real or from symmetry under time reversal ρ(ω,k) = −ρ(−ω,k), where
ρ(ω,k) = −2 Im G̃R(ω,k) is the spectral function. Both conditions lead to the result that
the poles come in pairs and that the residues at a pair are related according to

ω̃n = −ω∗n , R̃n = −R∗n . (3.5)

Apart from these ones there can also be unpaired poles lying on the imaginary axis, for
which their residues have to be purely imaginary.

We can do more yet. From its very definition, in order to ensure causality the retarded
Green’s function is proportional to the Heaviside θ(t), such that for t < 0 it vanishes
whereas for t > 0 it is in general non-zero. Remember that for negative values of time
we closed the contour on the upper plane, so the requirement that G̃R vanishes for t < 0
translates to the fact that we should find no poles on it. The same arguments applied to
t > 0 means that at least one pole should be found in the lower plane. To summarize, all
poles of the retarded Green’s function should lie on the lower-half plane.

Since these poles correspond to complexifying the frequencies the dual analysis corre-
sponds to the computation of quasinormal modes in the black hole background. This is
indeed the analytic structure that appears in the Lorentzian ads/cft correspondence at
finite temperature [99]. In general, the analytic structure of retarded two-point functions is
of course more complicated and involves also branch cuts. The authors of [102] computed
the retarded two-point function of trF 2 at weak coupling and found a tower of branch
cuts with branch points located at ω ± k = −i4πnT . However, we will only consider the
strict large N and strong ’t Hooft coupling limit in this thesis. Therefore, the response of
the system to a perturbation localized in time is determined by the sum over the residues
of G̃R at the poles.

Instabilities, i.e. exponentially growing modes, appear as quasinormal frequencies with
positive imaginary part. This is consistent with the interpretation as retarded Green’s
function, where singularities in the upper-half plane would correspond to tachyonic modes
travelling backwards in time. A typical arrangement of quasinormal frequencies as they
appear in the analysis of small perturbations of asymptotically ads black hole spacetimes
is depicted in figure 3.1.
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Im ω

Reω

Figure 3.1: The relevant integration contour for the poles in the ω-plane. All the poles are in

the lower-half plane, corresponding to the interpretation of quasinormal modes as the poles of a

retarded Green’s function.

Constraints on complex momentum modes. Let us choose now another kind of
perturbation. This time we will switch the roles of time and one space coordinate with
respect to the discussion above. Of course we proceed again using eq.(3.1) but now assume

G̃R(q, ω) =
∑
poles

Rn(qn(ω), ω)
q − qn(ω)

, (3.6)

in the spirit of what was motivated at the end of section 2.3, with poles qn = qrn+iqin in the
complexified momentum plane. To be more concrete we pick a periodic fluctuation local-
ized in space, i.e. we assume a source of the form j(t,x) = δ(x) exp[−i(νt−k⊥x⊥)]. Doing
the Fourier transform of the retarded propagator and performing ξ⊥ and τ integrations
one finds

δ〈O(t,x)〉 = − 1
(2π)

e−i(νt−k⊥x⊥)

∫
dq G̃R(ν,k⊥, q) eiqx . (3.7)

This is the response of the system to a periodic perturbation with frequency ν that is
localized in the x-direction and has the form of a plane wave in the perpendicular directions
x⊥. We have assumed that the perturbation has started far in the past such that all
transient oscillations have already vanished and the system has reached a stationary state.
In the following we will also assume that the perturbation is not further modulated in the
x⊥-directions, i.e. we set k⊥ = 0. Now one can use again Cauchy’s theorem, closing in
the upper or lower-half planes for x > 0 and x < 0, respectively. The result is

δ〈O(t,x)〉 = −i sign(x) e−iνt
∑

qn:poles

eiqnxRn(qn(ν), ν) . (3.8)

In this case, parity symmetry x→ −x imposes that if qn = qrn+ iqin is a pole then q = −qn
has to be a pole too.

For complex momentum modes there is no analogous argument of causality and the
Heaviside function. However, we would like the poles in the upper-half to lie in the first
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quadrant and those in the lower-half in the third quadrant: with such and arrangement
of poles the perturbation is creating damped waves moving to the right for x > 0 and to
the left for x < 0. The waves propagate away from the origin of the perturbation at x = 0
and are exponentially decaying with the distance from the perturbation. In section 3.2 we
prove that for the holographic retarded two-point functions the poles do indeed fall into
the first and third quadrants of the complex momentum plane, and in chapter 5 we check
it numerically for different kinds of perturbations. A typical setup with the corresponding
integration contours is depicted in figure 3.2.

Im q

Re q

Im q

Re q

(a) (b)

Figure 3.2: The relevant integration contours for the poles in the complexified momentum-plane.

Figure (a) shows the contour for x < 0, and figure (b) shows the contour for x > 0. In order

to obtain exponentially decaying waves travelling away from the origin of the perturbation it is

necessary that the poles lie in the first and third quadrants.

The imaginary part of the complex wave number can be interpreted as the inverse of
an absorption length. For a given complex momentum pole qn the right-moving wave has
the form e−i(νt−qRn x) e−qInx. The amplitude of the wave has decayed to a factor of 1/e at a
distance of λn = 1/qin.

3.2 Gravity arguments for complex momentum

We will now perform a stability analysis analogous to the one for quasinormal modes
done in ref. [89]. We will see that the complex momentum wave numbers indeed lie in
the first and third quadrants of the complex q-plane for positive frequencies. Note that
a pole in the second or fourth quadrants would allow to construct outgoing waves that
are exponentially growing with the distance from the perturbation; for the stability of
the system under the fluctuation the absence of such poles is therefore crucial. We start
recalling from (3.8) that the time and space dependence of the field is given by simple
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exponentials
φ(t, x) ∼ e−iωt eiqx ,

where q := qr + iqi, and we will distinguish between the cases x > 0 and x < 0.

In the case x > 0 stability demands an exponentially decaying wave and therefore
sign qi = +1. We further demand that the wave is outgoing from the origin of the pertur-
bation which imposes signω = sign qr. Taking these two facts together amounts to the
condition

sign
(
ω

qr

)
= sign qi . (3.9)

Doing the same analysis for x < 0, one finds that the perturbation moves away to the
left if signω = − sign qr, whereas the stability condition is now sign qi = −1. This again
amounts to eq.(3.9).

We want to prove now that in the gravity dual the complex momentum modes of the
black hole follow indeed the rule given by equation (3.9). As an example we consider a
minimally coupled scalar Φ in AdS5 × S5 with mass m in the background (A.1), modulo
the overall L2 factor. We will set without any loss of generality the momentum to be
k = (q, 0, 0), and further split the field as Φ(z) = σ(z) y(z), in order to find an equation
for y(z) that is Schrödinger-like in a ‘tortoise’ z∗ coordinate defined through

dz∗ =
dz
f(z)

⇒
(
∂2
z∗ + ω2 − V (z∗)

)
y(z∗) = 0 , (3.10)

provided that σ(z) fulfils
σ′(z)
σ(z)

=
3
2z

. (3.11)

In the z coordinate the Schrödinger potential reads

V (z) =
f(z)
4z2

(
15 + 4m2 + 4q2z2 + 9z4

)
:= V0(z) + Re (q2) f(z) + i Im (q2)f(z) , (3.12)

where we have separated it into its real and imaginary parts. In the z∗ coordinate the
horizon lies at z∗ → +∞ and the potential vanishes there, so the wavefunction can be
described as a superposition of plane waves. The infalling boundary condition corresponds
to setting y(z∗) = eiωz∗ χ(z∗) with χ(+∞) = const. Thus we find(

∂2
z∗ + 2iω ∂z∗ − V0(z∗)− Re (q2) f(z∗)− i Im (q2) f(z∗)

)
χ(z∗) = 0 . (3.13)

If we multiply by the conjugate χ(z∗) and pick out the imaginary part of the equation we
obtain

− i
2

(χ∂2
z∗χ− χ∂2

z∗χ) + ω ∂z∗ |χ|2 − Im (q2)f(z∗)|χ|2 = 0 , (3.14)

Now we integrate this equation between the boundary (z∗ = zb∗) and the horizon. Upon a
partial integration the derivative terms cancel each other: χ(z∗) vanishes at the boundary
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due to the Dirichlet boundary condition we impose there, and at the horizon the derivative
vanishes ∂z∗χ(+∞)=f(1) ∂zχ(1) = 0. The remaining terms in equation (3.14) amount to

ω |χ(z = 1)|2 = Im (q2)
∫ ∞
zb∗

dz∗ f(z∗)|χ(z∗)|2 = Im (q2)
∫ 1

0
dz |χ(z)|2 , (3.15)

The integral on the right hand side is positive definite, which in turn implies that
signω = sign Im (q2) = sign(qrqi), i.e. it is precisely the stability condition (3.9).

There is a further stability condition involving the properties of the potential. When
ω = 0, we have the condition that Im (q2) = 0, so either qr = 0 or qi = 0. Consider
now the real part of the Schrödinger equation (3.13). After multiplying by χ(z∗) and
integrating between the boundary and the horizon we find∫ ∞

zb∗
dz∗

(|∂z∗χ(z∗) + iωχ(z∗)|2 + (V0(z∗)− ω2)|χ(z∗)|2
)

= −Re (q2)
∫ 1

0
dz |χ(z)|2 ,

(3.16)
Clearly, if V0(z∗) ≥ 0 between the boundary and the horizon, then, at ω = 0, Re (q2) < 0
and we will have qr = 0 and qi 6= 0. On the other hand, if the potential is negative on some
region then there could be solutions with Re (q2) > 0 or equivalently qr 6= 0 and qi = 0.
Considering four-dimensional Minkowski slices of AdS5, these modes can be regarded as
tachyonic instabilities of negative mass squared m2 = −(qr)2. Notice that with our choice
the boundary conditions are ∼ eiωz∗ , and fixing ω to be real this condition actually refers
to the presence of ‘negative energy’ modes in the scattering spectrum, so only when the
potential is negative at the horizon this kind of instabilities could appear. Besides, other
instabilities associated to the presence of bound states could be present; see appendix A.3
for a discussion.

If Re (q2) > 0 instabilities are present in the bulk theory, and the gauge correlation
functions associated to the dual operators will show an oscillatory behavior at large sepa-
rations, as opposed to vanishing, indicating that the plasma is actually out of equilibrium.
From the point of view of the effective three-dimensional theory, instabilities will appear
as tachyonic states in the spectrum.
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Chapter 4

Weight of collective excitations

In the next two chapters we will focus on the location of the poles of the retarded Green’s
function —that determine the dispersion relations for collective excitations— for complex
momenta defining absorption lengths in a gluon plasma, as well as quasinormal modes on
a flavour brane defining dissipation of a meson excitation. Let us though start here with
the basic example of quasinormal modes on a gluon plasma, but going a bit beyond by
computing not only the location of the poles for a given set of perturbations, but also the
residues at them. This is important because it allows in principle for a full determination
of the response to the perturbation.1

It is helpful to remember the situation at weak coupling for correlators of field compo-
nents: the poles of the retarded Green’s functions correspond to quasiparticle excitations.2

As explained in section 1.2, a hard scale of order the temperature T can be distinguished
from a soft scale of order gT . Far in the hard scale the relevant excitations are the hard
partons, i.e. the quarks and gluons. At the soft scale there are however quasiparticles cor-
responding to the dressed partons and collective excitations, e.g. the so-called longitudinal
plasmon mode. Both types of poles can be distinguished by the behaviour of their residues
at short wavelengths: the residues of the particle poles scale like q−1 with the momen-
tum q whereas the collective excitations show exponentially decaying residues of the form
exp(−αq2/g2T 2), with a mode dependent constant α [103]. To gain a better understand-
ing of the quasinormal frequencies that appear in the holographic model of the strongly
coupled plasma it is thus of utmost importance to study the behaviour of their residues. In
particular we will concentrate on the transverse and longitudinal R-charge vector current
correlators. The corresponding quasinormal frequencies and spectral functions have been
studied before in [99] and [104–106], respectively.

Following the arguments presented in section 2.3 we will be able to compute the lo-
cation of the poles and the value of the residues using the gravity dual. We would like
to note that in our numerical calculations we have checked that the stability and time

1To know the response exactly one would need the values of all poles and residues. In practice this is

not possible; however, computing some of them is enough since each quasinormal mode is a subleading

correction to the preceding ones.

2At weak coupling one also finds branch cuts corresponding to e.g. Landau damping.
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reversal relations from section 3.1 indeed hold for the quasinormal modes.

Apart from that, in this chapter we present what we see as a nice result concerning
heavy-ion physics, which rely on the computation of hydrodynamic modes —such as those
presented in section 1.2— whose frequencies vanish as the momentum goes to zero. At
sufficiently small momentum the hydrodynamic mode has the smallest imaginary part of
all poles and therefore dominates the long time behaviour. Moreover, knowledge of the
residues allows us to define the time τh from when on the system enters the hydrodynamic
regime. From (3.4) we find

τh =
log |Rh| − log |R1|

Γh − Γ1
. (4.1)

This value restricts the validity of the hydrodynamic approximation to times larger than τh,
where we can expect hydrodynamics to be a good approximation. For shorter times more
and more higher poles will contribute. Since hydrodynamic simulations of the evolution
of the quark-gluon plasma are at the heart of the new sqgp paradigm, it is therefore
important to know the hydrodynamic time scale τh, which in turn requires knowledge of
the residues of the quasinormal modes. At the end of this chapter we give a rough estimate
on this value, as computed from the R-current correlators.

4.1 An exactly solvable example

In general the quasinormal modes of the five-dimensional ads-black hole can be determined
only numerically. There are however some special cases where the wave equations simplify
and can be solved analytically. Two such cases are the equations at zero momentum
for the gauge-invariant variables corresponding to longitudinal and transverse vector field
perturbations, El = qA0 + ωAl and Et = ωAt, given in appendix A.1. In this case we
work in the x = 1 − z2 coordinate, whose horizon and boundary sit at x = 0 and x = 1,
respectively. According to the holographic dictionary the vector field in ads acts as a
source for the R-charge currents Jaµ of the SU(4) R-symmetry in the dual gauge theory.
Denoting the retarded correlator of two currents as Gµν one can write for the non-vanishing
components [99]

G̃tt = Πt(ω,q) , G̃ll =
ω2

ω2 − q2
Πl(ω,q) , (4.2a)

G̃t l =
−ω|q|
ω2 − q2

Πl(ω,q) , G̃tt =
q2

ω2 − q2
Πl(ω,q) , (4.2b)

so the correlators and consequently the response of the system are thus defined by the
transverse and longitudinal polarization tensors Πt,l(ω,q).

At zero momentum q = 0, the longitudinal and transverse components become indis-
tinguishable from each other, Et = El ≡ E(x), and obey the same wave equation which
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in terms of the dimensionless frequency w := ω/(2πT ) reads

E′′ +
f ′(x)
f(x)

E′ +
w2

(1− x)f(x)2
E(x) = 0 . (4.3)

This equation can be solved exactly and has two solutions, both proportional to the
Gauss’ hypergeometric function. Choosing the one that reproduces the infalling boundary
condition at the horizon as explained in section 2.3, the polarization tensor was found to
be [106]

Π(w)
N2T 2/8

= lim
x→1

E′(x)
E(x)

= iw + w2

[
ψ

(
(1− i)

2
w

)
+ ψ

(−(1 + i)
2

w

)]
, (4.4)

where ψ is the digamma function and N the number of colors. The locations of the poles
and their residues are

ω±n = 2πTn(±1− i) = 2πT wn , R±n =
π

2
N2T 3n2(∓1− i) = 2πT Rn , (4.5)

with n ∈ N, where the quasinormal modes and residues fulfil the reality conditions (3.5).
Notice that at q = 0 the residues of the non-vanishing retarded Green’s functions Gtt and
Gll equal these above for Π(w). In the general q 6= 0 case one has to multiply by the
preceding factors in equations (4.2) to obtain the true values.

At first glance it looks strange that the residues grow quadratically with the mode
number. If we want to write the retarded Green’s function as a sum over the poles this
leads to a divergent expression. However, we have to remember that the poles determine
the Green’s function only up to an analytic part and that this analytic part can be infinite.
In order to obtain a well-defined pole representation one has therefore to substract a con-
veniently chosen analytic part. This is made explicit in the well-known pole representation
of the digamma function

ψ(x) = −γe −
∞∑
n=1

(
1

x− 1 + n
− 1
n

)
, (4.6)

where γe ' 0.577 is the Euler–Mascheroni constant. Using this we can find a pole repre-
sentation of the polarization tensor as

Π(w) =
N2T 2

8

{
− iw− 2γe w2 + w3

∞∑
n=1

1
n

(
1

w− n(1− i) +
1

w + n(1 + i)

)}
, (4.7)

where the linear term in w can be understood as the zero momentum limit of the R-charge
diffusion pole. This suggests that the retarded Green’s function at non-zero momentum
would be a meromorphic function of frequency and momentum and admit an expansion

Π(w, q) =
∑
n

Rn(w, q)
w−wn(q)

, (4.8)
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where Rn(w, q) are analytic functions. Notice this was a bold assumption in section 3.1
whereas here it looks a bit more natural. We will do a numerical evaluation of the residues
at the pole Rn(wn(q), q). This implies that our method does not disentangle the frequency
from the momentum dependence.

A rather interesting point is to ask what is the spectral line produced by a single
isolated quasinormal mode. Due to the fact that the residue is complex the line spectrum
of an isolated quasinormal mode does not have the shape of a Lorentzian function. Writing
Y = Im (R)/Re (R), we find

ρqnm(w) ∝ Γ− Y (w− Ω)
(w− Ω)2 + Γ2

. (4.9)

For non-vanishing imaginary part of the residue the peak is higher than that of a Lorentz
curve with Y = 0, and it is shifted to lower frequencies if Y > 0 or to higher frequencies
if Y < 0. In the case at hand where the Γ/Ω ≈ 1 the quasiparticle approximation is not
valid and the line spectrum of an isolated quasinormal mode does not approximate the full
spectral function in any range of the frequency. In cases where Γ/Ω� 1 and Y different
from zero it would show up as an asymmetry in the form of the observed resonance in the
spectral function and a correct interpretation is possible only if the residue is known.3

The expression found as a sum over poles and the exact one differ only by some contact
terms, coming from the analytic pieces we have neglected. Neglecting the contact terms,
the Green’s function in position-space diverges at t = 0 as t−3, coinciding with the zero-
temperature result. This shows that the sum over poles is enough to recover most of the
dynamical information and only the contact terms require a more detailed analysis. In
principle they should be related to the Schwinger terms of the T = 0 theory.

4.2 Numerical computation

According to the holographic dictionary the retarded Green’s function can be computed
as the ratio of the connection coefficients that relate the local solution at the horizon with
infalling boundary conditions to the non-normalizable (A) and normalizable (B) solutions
at the boundary. Defining (α) := (t,l) as the two components, the connection is

Eh
(α)(x) = A(α)E

1
(α)(x) + B(α)E

2
(α)(x) . (4.10)

The retarded polarization tensors are given then by [99]

Π(α) = −N
2T 2

8
B(α)

A(α)
. (4.11)

3Narrow peaks in holographic spectral functions have been recently observed in [106,107].
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As seen in section 2.3, the quasinormal modes are normalizable solutions where the connec-
tion coefficient A(α) = 0. Using eq.(4.10), the polarization tensor follows from demanding
the solution to be smooth at a matching point in the interior of the interval x ∈ (0, 1)

B(α)

A(α)
=
Eh

(α)(E
1
(α))
′ − (Eh

(α))
′E1

(α)

E2
(α)(E

h
(α))
′ − (E2

(α))
′Eh

(α)

. (4.12)

We computed the Frobenius series up to O(x50). Matching the series expansions, one
can see numerically that the ratio (4.12) remains constant for a fair interval in the radial
coordinate. We chose x = 0.53 to evaluate the ratio and checked that the spectral function
agrees with previous numerical (for non-zero momentum) and exact (for zero momentum)
results [104–106]. In appendix A.2 we show that the residue can be computed as

R(α)
n = −π

4
N2T 3

[
∂

∂w

(A(α)

B(α)

)∣∣∣∣
w=wn

]−1

. (4.13)
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Figure 4.1: (Left) Real and imaginary parts of the residues for the first four quasinormal modes

in the transverse component Et (right) Idem for the longitudinal component El. The apparent

non-analyticity in the first mode is due to a lack of resolution at that point. The n2 scaling is

necessary to recover the asymptotic behaviour of the spectral function at large frequencies. Close

to the crossing with the diffusion mode q ∼ 1, the residues of the longitudinal component present

peaks. The residues grow with momentum, this is also reflected in the growth of the spectral

function.

Our results for the residues (normalized by [(−πN2T 3n2)/4]−1) of transverse and lon-
gitudinal vector fluctuations are plotted in figure 4.1. The longitudinal fluctuations show
an interesting behaviour related to the diffusion mode. The peaks and dips in figure 4.1
appear roughly at the locations where the hydrodynamic mode 4 crosses the imaginary part

4We continue calling it like this even outside the regime where the actual hydrodynamic approximation

is valid.
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of the quasinormal frequency. The hydrodynamic mode behaves in a completely different
way. The diffusion pole quickly moves towards negative imaginary frequencies, while the
residue first grows according to hydrodynamics and later goes as a damped oscillation.
Numerically the zeroes coincide with w = −in. On the other hand, the location of the
other quasinormal modes remains fairly constant until the diffusion pole reaches an integer
value that coincides with the imaginary part of the quasinormal pole at zero momentum.
After this point, the quasinormal pole starts approaching the real axis. This first happens
at q2 = 1/2, when the diffusion pole is at w = −i. For larger momentum, the long time
behaviour of the fluctuations will be dominated by the first quasinormal mode and not by
the hydrodynamic mode.
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Figure 4.2: In the lower figure, we show the real and imaginary parts of the quasinormal fre-

quencies in the longitudinal channel and the value of the frequency for the diffusion mode. The

quasinormal frequencies remain fairly stable as momentum increases, until there is a ‘crossing’

with the diffusion mode (it reaches a special value w = −in). Then, there is a qualitative change

in the behaviour of the quasinormal frequency that starts approaching the real axis. The residue

of the diffusion mode, shown in the upper figure, has a zero at each crossing value, and shows and

oscillatory and decaying behaviour with momentum. Quasinormal frequencies in the transverse

channel approach smoothly the real axis as momentum increases.

We also find some interesting analytic structure related to the zeroes of the residue of the
hydrodynamic pole (see figure 4.2). When w = −in, the exponents of infalling and outgo-
ing solutions at the horizon differ by an integer. The infalling solution should then develop
a logarithmic term since it has the lower exponent. However, for very special values of
the parameters, i.e. the momentum q, it can happen that the coefficient of the logarithm
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vanishes. We found numerically that the zeroes of the residues of the hydrodynamic mode
coincide with these special values at (w, q2) = (−i, 1/2), (−2i,

√
3 − 1), (−3i,

√
6 − 3/2)

and (−4i, 1.4436).

4.3 Conclusions

The analytic structure we have found for the R-charge correlator at finite temperature
is very interesting. At zero momentum, an infinite set of evenly spaced poles on the
complex frequency plane is a generic feature of correlators. At weak coupling, they lie
on the imaginary axis [102], but according to the ads/cft computation they move away
at strong coupling. The right ultraviolet behavior, that is analytic at zero temperature,
is recovered after summing over all the poles. The value of the residues is crucial, and
especially the vanishing of the hydrodynamic mode at zero momentum. When we consider
momentum dependence, the analytic form of the diffusion residue in the hydrodynamic
approximation ∼ q2 will induce a singularity in the correlator at short times, on top
of the usual ultraviolet singularity. This clearly cannot be the right answer, and we can
understand this as a limit in the validity of the approximation. The damped and oscillatory
behavior of the hydrodynamic residue can cure this problem, making the contribution from
the diffusion mode smooth at short times. The hydrodynamic mode effectively decouples
for momenta q > 1, and in this respect behaves as the collective modes present at weak
coupling. In this sense, our results go beyond the hydrodynamic approximation. In
principle, we expect that other hydrodynamic modes appearing in the stress-tensor two-
point functions, the shear and the sound mode presented in section 1.2, to have a similar
collective mode behavior.

We observe that as the momentum increases, diffusion becomes less important and
other collective excitations of longitudinal modes describe charge density fluctuations. In
contrast with the dressed partons of the weak coupling regime, they do not decouple at
high momentum. The behaviour is also different from the poles found for gauge invariant
operators. At weak coupling, these poles open up in branch cuts at fixed positions in the
imaginary axis, while the holographic computation predicts that at infinite coupling the
only singularities are poles that come closer to the real axis. Eventually a new peak appears
in the spectral function, located close to w = q. This peak persists at higher momentum,
and can be interpreted as a quasiparticle excitation of charge density fluctuations. This
shows a change of behaviour of the system as we increase the momentum, from diffusive to
reactive. Transverse fluctuations are comparatively featureless, there are no quasiparticle
excitations appearing; this reflects the fact that there are no propagating modes in the
zero temperature conformal theory.

Now, as suggested in the introduction to this chapter we may apply our results to
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the calculation of the hydrodynamic time scale τh. Recalling eq.(3.4) we can estimate the
moment where the diffusion mode’s contribution is on par with that of the first quasinormal
mode

|Rh(q) e−iΩH(q)τH−ΓH(q)τH | ' |R1(q) e−iΩ1(q)τH−Γ1(q)τH | , (4.14)

which after some algebra leads to q-dependent formula (4.1)

τh =
log |Rh/R1|

Γh − Γ1
=

1
2πT

log |Rh/R1|
Im (w1 −wh)

.

Using our numerical results we plot τh as a function of q, to find that in units of (2πT )−1

the minimal time scale is τh = 3.7 − 3.2 in a rank q = 0.3 − 0.48, rapidly growing for
higher values of the momentum. For lower values it also grows, but this is due to the
fact that the charge distribution is already quite uniform, so we can take this value as the
onset of diffusion. In fact, the dispersion relation starts to deviate from the hydrodynamic
approximation for q ≈ 0.45 which corresponds to Compton wavelengths of 1.2 fm, roughly
the size of a proton. As a model for the sqgp at rhic described in section 1.3, let us
pick T ' 2Tc ' 350 MeV. The hydrodynamic time scale is then τh ≈ 0.3 fm/c. This
is a remarkable short time, even a bit smaller than τform. In fact it indicates that the
hydrodynamic approximation is valid from very short times on. Recall that at rhic the
thermalization time is τtherm ≈ 0.6 − 1.0 fm/c and the hydrodynamic approximation is
therefore valid already for t . 1 fm/c [108]. We expect that the values for shear or sound
modes related to momentum and energy flow will be slightly different, but it is reassuring
to find the right orders of magnitude even for N =4.



Chapter 5

Absorption lengths

At the end of section 2.3 we saw the possibility of having complex momentum modes in the
gravity background instead of quasinormal ones. The associated complex wave numbers
corresponded in the dual gauge theory to poles of the retarded Green’s function in the
complex q-plane, where the inverse of their imaginary part plays the role of an absorption
length in the medium. In the gravity side we have to solve wave equations with purely
infalling boundary conditions at the horizon just as in the calculation of quasinormal
modes. At the boundary of ads we have to specify the same boundary conditions that
have been described in refs. [96, 99] for the quasinormal modes. The imaginary part of
these complex momentum wave numbers give absorption lengths characteristic of the black
hole. After having travelled a distance λn a part of the wave has fallen into the black hole
such that the amplitude is diminished by a factor of e−1.

In the following we will be interested in computing these absorption lengths and their
frequency dependence in the holographic dual of theN =4 supersymmetric gauge theory in
the gluon plasma phase. We will do this for different kinds of perturbations corresponding
to certain gauge-invariant operators, namely we compute the largest correlation lengths
for scalar operators of conformal dimension ∆ = 4 in section 5.2, global currents in section
5.3, and the transverse and shear channels of the stress-energy tensor in section 5.4,
respectively. To achieve this we will map all of our equations of motion to a so-called
Heun equation, i.e. a second order linear ordinary differential equation with four regular
points. There is a method, which we will describe, that allows to obtain the absorption
lengths in a semi-analytical treatment. Recall that in the preceding chapter the analysis
performed was wholly numerical. This method based on the Heun equation will also be
used in one of the cases addressed in chapter 6.

Finally, there is also a particular limit in the absorption lengths obtained above of
interest for the three-dimensional reduced theory. If one takes their zero frequency limit,
one will be computing the screening lengths for a static field in the plasma. These are
directly related to the glueball masses in the dimensionally reduced theory, which are
bound states made of gluons with a mass of order the confinement scale, but not much
above since one should start to see the gluons, which are massless. We point out that the
longest screening length corresponds to an operator with non-vanishing R-charge, and thus
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does not have an interpretation as a qcd3 glueball. In the ads/cft correspondence, part
of the glueball masses of qcd3 had already been analyzed, as computed in refs. [109–111].

5.1 Another exactly solvable case

It is clear from the discussion above that in both cases —relaxation times and absorption
lengths— the gravity waves are subject to the infalling condition at the horizon. The ques-
tion is simply which parameter of the retarded Green’s function is analytically continued
to complex values, either the frequency or the momentum. To compute these complex
momentum wave numbers one can therefore follow the same strategy that is used for the
calculation of quasinormal frequencies, but fixing the frequency ω to be real-valued instead
of the momentum q.

This switch of roles is particularly clear in the case of the ads3/cft2 correspondence,
where a solvable two-dimensional conformal field theory is dual to the three-dimensional
btz black hole background. In this case the exact retarded Green’s functions can be
calculated in both sides of the correspondence and seen to match [91]. Let us consider a
particular case to see how such a switch of roles takes place. For a field with conformal
dimension ∆ = 2, the retarded two-point function is

G̃
(2d)
R (ω, q) =

ω2 − q2

4π2

[
ψ

(
1− i ω − q

4πT

)
+ ψ

(
1− i ω + q

4πT

)]
, (5.1)

where ψ is again the digamma function. Thus, the poles of such function determine the
quasinormal frequencies ωn = ±q−4πiT (n+1). For each quasinormal mode the dispersion
relation ωn = ωn(q) is linear. Because of this linearity the poles can also be interpreted in
a different way by writing

qn = ±[ω + 4πiT (n+ 1)] , n ∈ N , (5.2)

where we see explicitly that the complex momentum modes lie in the first and third
quadrants for the right- and left-movers respectively, as it was shown both from field
theory as well as gravity arguments in chapter 3.

In higher dimensions the dispersion relations for the quasinormal frequencies are not
linear and can be computed only numerically. At zero momentum, the position of large
frequencies in the complex momentum plane has been estimated using semiclassical meth-
ods [112, 113]; it would be interesting to extend those analysis to non-zero momentum.
Since the dispersion relation for the quasinormal modes is known only numerically we
also have to resort to numerical methods to find the complex wave numbers and absorp-
tion lengths. The only exception is given by the hydrodynamic modes that appear for
small frequency and wave numbers [93, 95] presented in section 1.2. We will see that our
numerical results are in agreement with the analytic dispersion relations of these modes.
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5.2 Numerics I: scalar operators

As a first example we want to compute the absorption lengths of a scalar operator O(t,x)
of conformal dimension ∆ = 4. We choose this particular case because it is the simplest
setup we can use to illustrate the method, since the dual supergravity field corresponds
to a minimally coupled, massless scalar. A possible example is given by O = trF 2, that
maps to the dilaton in the holographic dual.

Consider the retarded two-point correlation function in the theory at temperature T

GR(t− t′,x− y) = −i θ(t− t′) 〈[O(t,x),O(t′,y)]
〉
. (5.3)

At large distances |x− y| � T−1, the Green’s function decays exponentially due to ther-
mal screening. As we have explained, this behaviour is determined by a set of discrete
lengths that in linear response theory describe the absorption of out-of-equilibrium per-
turbations. For the theory in equilibrium they are identified with correlation lengths in
the plasma, as proposed in ref. [114], with the squared inverse of the zero frequency cor-
relation lengths regarded as the glueball masses1 of a three-dimensional effective theory
in the high-temperature limit [109–111]. Via the ads/cft correspondence we can reduce
this complicated non-perturbative problem in the gauge theory to finding the complex
momenta that allow the dilaton fluctuations to obey infalling boundary conditions on the
horizon, and Dirichlet ones on the boundary. In this example, and in the other cases
we consider in this thesis, after a suitable transformation the equations of motion can be
reduced to Heun equations, which we can solve using semi-analytic methods.

The Heun equation method. The equation of motion for this field (A.4) was already
derived in appendix A.1. Throughout the chapter we use dimensionless frequency and
momentum. In order to recover the dimensionful quantities it is enough to make the sub-
stitution (ω, q) 7→ πT (ω, q), where we have set without loss of generality the momentum
along one of the three spatial directions. Changing coordinates from z to x = 1− z2, the
equation now reads

Φ′′ +
1 + (1− x)2

x(1− x)(2− x)
Φ′ +

(
ω2

4x2(1− x)(2− x)2
− q2

4x(1− x)(2− x)

)
Φ(x) = 0 . (5.4)

This equation has four regular singular points at x = 0, 1, 2,∞, with characteristic
exponents from the Frobenius expansion

{0;−iω/4,+iω/4} , {1; 0, 2} , {2;−ω/4,+ω/4} , {∞; 0, 0} .
Therefore, we can transform it into a Heun equation and we can follow the analysis de-
scribed in [94]. To compute the complex wave numbers we simply have to analytically

1In this particular example we are considering JPC = 0++ glueballs.
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continue the momentum instead of the frequency. It is interesting to observe that none of
the characteristic exponents at the singular points depend on the momenta. If we factorize
Φ(x) as

Φ(x) = x−iω/4 (1− x)2 (2− x)−ω/4 y(x) , (5.5)

then we are allowed to write the equation of motion in the standard form of a Heun
equation for y(z)

y′′(x) +
(
γ

x
+

δ

x− 1
+

ε

x− 2

)
y′(x) +

αβx−Q
x(x− 1)(x− 2)

y(x) = 0 , (5.6)

with parameters

α = β = 2− ω

4
(1 + i) , Q = 4 +

q2

4
− (1 + 7i)

ω

4
− (2− i)ω

2

8
, (5.7)

γ = 1− iω
2
, δ = 3 , ε = 1− ω

2
. (5.8)

All the other perturbations we will consider in this chapter can be transformed to Heun
equations in a similar manner. Just in the same way as we saw in section 2.3 for quasi-
normal modes and applied in chapter 4, we can compute the poles of the retarded Green’s
function

G̃R(ω, q) ∝ B(ω, q)
A(ω, q)

,

as the solutions to the equation A = 0, i.e. solutions that are analytic in the interval
x ∈ [0, 1]. These boundary conditions determine a discrete set of complex momentum
eigenvalues if we fix the frequency ω to real values.

We can find local solutions that define A and B using the Frobenius method close to
the singularities. In the equation above, choosing y(0) and y(1) to be constant selects the
appropriate normalizable and infalling behaviour of the fluctuation Φ. In particular, a
solution with boundary condition y(0) = const. will be a superposition of solutions with
exponents 1 − δ ≤ 0 and 0 close to the ads boundary (x = 1). The Dirichlet boundary
condition y(1) = const. for Φ can be only satisfied for a discrete set of frequencies ω
or momenta q. In the preceding chapter we used this approach, and computed these
values imposing matching conditions at some intermediate point for the Frobenius series.
However, as one considers higher frequencies the number of terms in the expansion needs
to be increased and the convergence gets worse.

Fortunately, whenever we can map to the Heun equation there is an alternative method
which we can use, based on the improved convergence of the solutions. Normal solutions
are convergent for |x| < 1, but for some values of the parameters the solutions can converge
for |x| < 2. This happens when we have two possible solutions for the recursion relations
of the Frobenius series at the horizon, such that one can satisfy the requirements for
the modes at the ads boundary. This condition of extended convergence boils down to a
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transcendental equation for the frequencies or momenta in the form of a continued fraction
(see [94, 115] for more details) using Pincherle’s theorem on the existence of minimal
solutions to three term recursion relations.

The coefficients of the Frobenius series at x = 0 should satisfy the recursion relation

an+2 +An(ω, q) an+1 +Bn(ω, q) an = 0 , n ≥ 2 , (5.9)

where

An(ω, q) = −(n+ 1)(2δ + ε+ 3(n+ γ)) +Q

2(n+ 2)(n+ 1 + γ)
, (5.10)

Bn(ω, q) =
(n+ α)(n+ β)

2(n+ 2)(n+ 1 + γ)
, (5.11)

and a0 = 1, a1 = Q/2γ. Then one obtains the following recursive definition

rn =
an+1

an
= − Bn(ω, q)

An(ω, q) + rn+1
. (5.12)

Pincherle’s theorem states that a minimal solution to the three term recursion relation
(5.9) exists if and only if the continued fraction on the right hand side in (5.12) converges.
Moreover, in this case it converges precisely to an+1/an. In [94, 96] it was pointed out
that the minimal solution corresponds precisely to a solution of the Heun equation that is
analytic at x = 1 therefore fulfilling the correct boundary conditions. Choosing n = 0 we
find

r0 =
Q

2γ
, (5.13)

and computing r0 recursively gives a transcendental equation for q (or ω in the quasinormal
case). Using this formula, we can compute numerically the complex momentum modes
with high precision. In order to do that, we cut the fraction at a large value n = n∗ =
100 and use the asymptotic value rn = 1/2 − (2 + ω)/4n∗. It is important to realize
that Pincherle’s theorem applies only if we are dealing with genuine three term recursion
relations. For some pathological cases it can happen that the recursion relation involves
three terms only from a certain value of n = n1 on. This happens for example if either
α = 0 or β = 0 when B0 = 0. In such a case one has to use (5.12) with n = n1. We will
see that we are faced with this in the cases of the longitudinal vector field perturbations
and of the shear mode perturbations at ω = 0. Since α = 0 in both cases it is sufficient to
take n1 = 1 and use

r1 =
Q2 + 3Qγ − 2αβγ + 2Qδ +Qε

4Q+ 4Qγ
, (5.14)

instead of (5.13).

We have numerically computed the complex momentum eigenvalues using this method.
The results for the scalar field perturbations are shown in figure 5.2. The real and imagi-
nary parts of the five lowest complex momenta are plotted as a function of the frequency.
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The real parts start out at qr = 0 for zero frequency. The imaginary parts start out
at a finite value at ω = 0, develop a shoulder that is more pronounced for the higher
modes and then fall off rather fast until they enter a regime of slow decrease for large
frequencies. Numerically we found that the lowest mode becomes almost constant at large
frequencies with qi ≈ 0.83 at ω = 100. Also the higher modes flatten out for high fre-
quencies. As expected, higher frequencies can penetrate farther into the plasma. It is an
interesting question if the plasma becomes transparent for some high but finite frequency,
if transparency is reached only in the limit ω =∞ or if the absorption length stays finite.
Unfortunately our algorithm does not allow us to explore this asymptotic regime. We can
speculate however using the underlying conformal invariance of the N =4 theory. Since for
high frequencies the temperature is less and less important we expect that the absorption
length diverges as ω → ∞, i.e. qi(ω = ∞) = 0. A finite absorption length would point
to an underlying scale in the theory. On the other hand, if the plasma were to become
transparent at some finite value of ω, we would expect that to happen at a scale that is
set by the temperature. However, our numerical results show finite absorption lengths for
much higher frequencies.

0
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14
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Im q

Re q

qI versus qR for the first five complex momentum eigenvalues

Figure 5.1: We have traced the locations of the five lowest momentum eigenvalues in the complex

q-plane for different frequencies as a function of the frequency out to ω = 50. The momentum

eigenvalues vary continuously with the frequency and lie on the analogues of Regge trajectories.

Glueball masses. Of particular interest are the absorption lengths in the static limit
ω → 0. In this case we will refer to the absorption length as the screening length. The
equation (5.4) with ω = 0 has been studied before in [109, 110]. There the interpretation
of the eigenvalues in the momentum with q2 < 0 was as masses of glueballs in the three-
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dimensional theory that is obtained by reduction on the thermal circle in the Euclidean
continuation of the ads-black hole we saw in section 2.2. The glueball masses can be
calculated as the discrete eigenvalues M2

n = −q2
n. Our numerical results at ω = 0 for the

first ten modes are compiled in table 5.1 and are in good agreement with results given
by refs. [109, 110]. It is important to see if the eigenfunctions correspond to the wave

n q2
n

1 −11.5877

2 −34.5270

3 −68.9750

4 −114.9104

5 −172.3312

6 −241.2366

7 −321.6265

8 −413.5009

9 −516.8597

10 −631.7028

Table 5.1: The first ten glueballs of the scalar mode.

functions of the glueballs too. In [111] the authors observe that for all the glueball masses
the correct boundary conditions correspond to demanding analyticity of the wave function
at the horizon and the boundary. These are precisely the same boundary conditions that
emerge in our case at ω = 0. Therefore, the screening lengths for static fields corresponds
precisely to the glueball masses computed earlier in [109–111].

5.3 Numerics II: global currents

In the N =4 theory, the global currents associated to R-charges map to mixed components
of the S5 and AdS5 metrics, that can be seen as graviphotons after dimensional reduction
to AdS5. In general, any global symmetry in the field theory will map to a local gauge
symmetry in the holographic dual. Then, to find the poles of the retarded Green’s functions
in the plasma

Gµν(t− t′,x− y) = −i θ(t− t′) 〈[Jµ(t,x), Jν(t′,y)]
〉
, (5.15)

we have to compute the complex momentum eigenvalues for vector fields in the ads-black
hole.2 We will see that there are two decoupled sectors, corresponding to transverse and

2We are assuming that the total charge in the equilibrium state vanishes, so there are no chemical

potentials.
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longitudinal channels. The reason is that temperature breaks four-dimensional Lorentz
symmetry to three-dimensional rotational symmetry. In the glueball language, the zero
frequency masses correspond to JPC = 1−− and 0−+ states. However, the states arising
from the vector fields are also charged under the global R-symmetry and therefore do
not form part of the superselection sector that constitutes qcd3. For simplicity we will
refer to these states also as glueballs. The longitudinal channel is special because it also
describes the diffusion of the conserved charge through the plasma, that does not appear
as a glueball state in the three-dimensional theory because the residue of the diffusion
mode vanishes in the zero frequency limit. We will show that the diffusion pole is also
captured by complex momentum eigenvalues.

We can compute the complex momentum eigenvalues corresponding to a vector field
in the ads-Schwarzschild background in an analogous way to the scalar field case. The
equations of motion for such a field are given in the appendix A.1, equations (A.6) or
equations (A.7), which are the ones we will be working with. Notice that there is a
choice of gauge invariant variables El = qA0 + ωAl and Et = ωAt that describe the
diffusive and transverse channel respectively [99], given by equations (A.8) and which we
used in chapter 4. However, the spectrum of complex momentum values (equivalently
of quasinormal modes) is gauge invariant, so it should not matter if we choose to work
with gauge components, that obey simpler equations and which allow a map to Heun
equations. Since the invariant quantity is El, this means that A0 and Al should have the
same spectrum, as the constraint (A.6a) points out.

As promised, in the x = 1 − z2 coordinate and for a suitable factorization of each
component, equations (A.7) can be written as Heun equations:

• Temporal. The critical exponents at the singularities are(
0;−iω

4
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ω

4

)
,
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2
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,
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2
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)
.

V0(x) = x−iω/4(x− 1)1/2(x− 2)−ω/4y(x) . (5.16)

• Longitudinal. The critical exponents at the singularities are(
0;−1− iω
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1
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,
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2

+
√
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)
.

Vl(x) = x−1−iω/4(x− 1)1/2(x− 2)−1−ω/4y(x) . (5.17)

In both cases we find the same parameters for the Heun equation

α = −ω
4

(1 + i) , β = 2−
(ω

4
(1 + i)

)
, Q =

q2

4
− (1 + 3i)

ω

4
− (2− i)ω

2

8
,

γ = 1− iω
2
, δ = 1 , ε = 1− ω

2
. (5.18)
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Notice that the boundary conditions for Vl(x) are not infalling ones. They are
determined by the constraint (A.6a).

• Transverse. The critical exponents at the singularities are(
0;−iω

4
, i
ω

4

)
, (1; 0, 1) ,

(
2;−ω

4
,
ω

4

)
, (∞; 0, 1) .

At(x) = x−iω/4(x− 1)(x− 2)−ω/4y(x) , (5.19)

with the following parameters in the Heun equation

α = 1− ω

4
(1 + i) , β = 2−

(ω
4

(1 + i)
)
, Q =

q2

4
+ 2− (1 + 5i)

ω

4
− (2− i)ω

2

8
,

γ = 1− iω
2
, δ = 2 , ε = 1− ω

2
. (5.20)

As we had anticipated, the temporal and longitudinal components have the same spectrum,
since they obey the same Heun equation, although this was not evident in equations (A.7a)
and (A.7b).

The results are shown in figures 5.3 and 5.4. The real and imaginary parts of the five
lowest complex momentum are plotted as a function of the frequency. The behaviour is
similar to the one found for the scalar operator. The imaginary parts start out at a finite
value at ω = 0, develop a shoulder that is more pronounced for the higher modes and then
fall off rather fast until they enter a regime of slow decrease for large frequencies. The real
parts start out the qr = 0 for zero frequency.

So far, we have described the absorption of R-current excitations in the plasma. How-
ever, a conserved global charge cannot be dissipated, it is spread out by the slow process of
diffusion. This is described in the hydrodynamic regime ω, q � T by a diffusion pole [93]
(units restored)

ω = −i q2

2πT
. (5.21)

In our analysis of complex wave numbers we are able to see numerically this mode
(q = (1 + i)

√
ω with our conventions) that fits nicely with the analytic prediction in

the hydrodynamical regime; see fig. 5.6.

Glueball masses. In the zero frequency limit, the absorption lengths can be interpreted
as the inverse glueball masses of an effective three-dimensional theory. Note however that
these states do not lie in the superselection sector that constitutes the holographic dual
of qcd3! For the longitudinal channel we have to take into account that α(ω = 0) = 0
so we have to use the modified recursion relation starting at n = 1 (5.14). It turns
out that the glueball masses of the longitudinal channel coincide with the ones found for
the scalar operator, table 5.1. Indeed, at ω = 0 we can transform the Heun equation
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n q2
n

1 −5.1313

2 −22.4816

3 −51.2098

4 −91.4106

5 −143.0926

6 −206.2577

7 −280.9066

8 −367.0395

9 −464.6566

10 −573.7580

Table 5.2: The first ten glueballs of the transverse mode.

with parameters (5.7) into the Heun equation with parameters (5.18). First, make the
coordinate transformation x→ x−2

x−1 , that shuffles the singular points 2↔ 0, 1↔∞. Then,
the redefinition y(x)→ (x−1)2y(x) (explained in appendix A.4) shows that both equations
are equivalent. Notice that the solutions that are analytic in [0, 1] in the transformed
equation correspond to solutions that are analytic in [2,∞) in the original equation, and
not to the physical modes. However, such solutions can be generated from the physical
ones by conformal transformations on the two-sphere,3 so both types appear for the same
values of the parameters. Notice that both solutions have a similar analytic structure,
the only singularity is a branch cut joining two of the singular points. Also the fact that
the auxiliary parameters Q of both equations are the same for the particular cases we are
considering, allows an immediate identification of the complex momentum numbers.

The transverse channel has different spectrum, whose first modes are in table 5.2.
Although the glueballs associated to vector fields have non-zero R-charge, and are usually
not considered, our computation shows that the lightest three-dimensional state and hence,
the longest correlation length, belongs to this class.4

5.4 Numerics III: stress-energy tensor

The stress-energy tensor of the gauge theory encodes important dynamical and thermo-
dynamical properties of the plasma. Correlation functions of the stress-energy tensor

Gµν,ρσ(t− t′,x− y) = −i θ(t− t′) 〈[Tµν(t,x), Tρσ(t′,y)]
〉
, (5.22)

3See [116] for an exhaustive list of Heun solutions and their relations.

4This state is even lighter than the lightest qcd3 glueball listed in [111].
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are related to perturbations of the metric that leave the S5 factor invariant. Therefore,
we want to introduce a small fluctuation of the four-dimensional part of the metric gµν =
g0
µν + hµν .

In the gauge theory, the breaking of Lorentz symmetry to rotational symmetry by
temperature splits the Green’s functions in transverse, shear and sound channels, that in
the zero frequency limit contain the JPC = 2++, 1++ and 0++ glueball spectrum. This
is reflected in the gravity dual, where the perturbations fall into three different classes
with decoupled field equations [93, 95, 99]. The associated spin to each of these channels
is also 2, 1 and 0, so we will refer to them also as tensor, vector and scalar. In the shear
and sound channels there are also hydrodynamical modes that describe the diffusion of
conserved momentum and the propagation of sound. We will not study the sound channel
since we cannot map its equation to a Heun one, but we will show that complex momentum
modes also capture the shear pole.

In this section we will work within the gauge-invariant formalism developed in [117],
where we can distinguish among the three different channels named above. The relevant
equations —in Schrödinger-like form— are in appendix A.1, given by equations (A.12). By
making the change of variable x = 1−z2, the equations for tensor and vector perturbations
lead to a Heun equation. For scalar perturbations (related to the sound channel) the
situation is not so simple, and it requires a separate analysis that we leave for future work,
so in the following we will be concerned only with tensor and vector perturbations.

• Tensor perturbations. The characteristic exponents are(
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• Vector perturbations. The characteristic exponents are(
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Notice that tensor fluctuations obey the same equations as a massless scalar field, so the
first modes of the spectrum are plotted in figure 5.2. The Heun equation we have for the
vector perturbations goes over to the one the authors in [96] found for the shear mode
after the transformation described in appendix A.4.

As we have commented above, vector fluctuations correspond to the shear channel of
the gauge theory. This channel is associated to the momentum of the plasma, that as a
conserved quantity is not absorbed but diffused. In the hydrodynamical limit it is possible
to find an analytic expression for the diffusion pole [93]

ω = −i q2

4πT
. (5.27)

We find good numerical agreement for this mode q = (1+ i)
√

2ω, as can be seen in fig. 5.7.

The results for the shear mode are shown in figure 5.5. The real and imaginary parts
of the five lowest complex momentum are plotted as a function of the frequency. Again,
we find a similar behaviour to scalar and vector modes. The imaginary parts start out at
a finite value at ω = 0, develop a shoulder that is more pronounced for the higher modes
and then fall off rather fast until they enter a regime of slow decrease for large frequencies.
The real parts start out the qr = 0 for zero frequency.

Glueball masses. We can find the glueball spectrum of the effective three-dimensional
theory by taking the static limit ω = 0. Again we have to use the recursion relation
starting n = 1 (5.14) since α(ω = 0) = 0. The results for the shear channel are compiled
in table 5.3. The glueball spectrum for neutral glueballs has been computed using a similar
supergravity approach in [111]. The numbers we find differ actually somewhat from the
ones quoted in [111] for the 1++ glueballs. We attribute this to the different numerical
methods that have been used to obtain them.

5.5 Conclusions

In this chapter we have established on more firm grounds the relation between solutions
to linearized field equations with complex momenta in an ads-black hole background and
the absorption lengths of a conformal gauge theory in a plasma phase. This was done
computing explicitly some simple examples corresponding to scalar, vector and metric
fluctuations.

Due to conformal symmetry, all the absorption lengths scale simply with the inverse of
the temperature T−1. At zero frequency we find agreement with previous computations
of the effective three-dimensional glueball spectrum [109–111]. However, we prefer in this
thesis to interpret our results as screening lengths for static fields. This interpretation
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n q2
n

1 −18.6758

2 −47.4951

3 −87.7228

4 −139.4167

5 −202.5882

6 −277.2408

7 −363.3762

8 −460.9949

9 −570.0974

10 −690.6838

Table 5.3: The first ten glueballs of the shear mode.

has also recently and independently been proposed in ref. [114]. Furthermore, we have
computed the dependence of the absorption length on the frequency. The results for the
first modes are compiled in figures 5.2, 5.3, 5.4 and 5.5. In all the cases, the plasma
is less absorptive for higher frequencies. The complex wave numbers also capture the
hydrodynamical behaviour for R-charge and momentum diffusion. Our numerical results
are in agreement with the simple analytic continuation of the dispersion relation for the
hydrodynamic modes. This is shown in figures 5.6 and 5.7.

One of the interesting results of our study is that the longest screening length (the
lightest “glueball” mass in the dimensionally reduced theory) corresponds to a state with
non-vanishing R-charge. Such a state does not belong to the spectrum of the qcd3 theory,
i.e. the mass gap of the effective three-dimensional theory is not the one of qcd3! Glueball
masses play an important role in the determination of the Debye screening length. Here
one studies the glueball exchange between open strings in the ads-black hole background.
As has been pointed out in [114] the mass gap by itself is not important for the Debye
screening, because only specific operators can couple to the open string. Since these open
strings are R-charge neutral, the low mass states with non-zero R-charge do not couple
to the string. However, the string configuration one considers usually has its endpoints
fixed on one point on the S5 and it is also possible to consider strings that end on different
points on the S5. In such a situation the light non-zero R-charge states might become
relevant and could modify the result for the screening length.

In this chapter we have only studied the cases that can be reduced to Heun equations
and allow the application of the efficient continued fraction approach to the calculation
of the complex momentum eigenvalues. It would certainly be interesting to extend the
present investigations to the cases that cannot be reduced to Heun equations. In these cases
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one has to resort to the elementary method of Frobenius expansions, which slows down
the numerical calculation considerably. Nevertheless we think that this is an interesting
problem especially in view of the comparison to the glueball mass calculations.

Another rather intersting point is the question whether the absorption length diverges
in the limit of infinite frequency or whether it stays finite. Unfortunately, so far we know
only about numerical methods to evaluate the absorption lengths.

A related problem is the calculation of the the absorption lengths in non-conformal
holographic theories. Due to the presence of an underlying scale the dependence on the
frequency is likely to show a more complicated pattern than the one we have found for
the conformal case in this thesis. It will also be of high interest to compute absorption
lengths for the meson states that appear in theories with D7-brane embeddings in the ads-
black hole, using the same methods that we employ in chapter 6 in the study of meson
quasinormal modes [3]. In [106] it has recently been emphasized that instabilities arise for
near critical black hole embeddings. Such instabilities show up as quasinormal modes with
positive imaginary part. As we have seen, similar instabilities can also arise in the study
of the absorption lengths. Since the instabilities in the screening lengths arise at ω = 0
and for real values of q2 it might be much easier to search for these instead of unstable
quasinormal modes.
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Figure 5.2: Real and imaginary parts of the lowest five complex momentum eigenvalues versus

the frequency. In the lower-right corner of the first figure we have zoomed in to show the separation

between the five modes.
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Figure 5.3: Longitudinal perturbations of the vector field on AdS. At ω = 0 the values coincide

with the ones of the scalar field perturbations. For ω > 0 the shape is however different.
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Figure 5.4: The complex momentum eigenvalues of the transverse vector field components. Note

that the lowest mode gives the longest absorbtion length. The plasma is most transparent to

transverse vector perturbations.
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Figure 5.5: The lowest five complex momentum eigenvalues above the diffuse mode for the shear

channel perturbations.



5.5 Conclusions 69

0

10

20

30

40

50

0 10 20 30 40 50

Re q

ω

Re q vs. ω

0

1

2

0 10 20 30 40 50

Im q

ω

Im q vs. ω
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line is the analytic formula from hydrodynamical analysis.
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Figure 5.7: Shear mode. The solid line represents the numerical solution while the dotted line is

the analytic formula from hydrodynamical analysis.





Chapter 6

Meson melting

In this chapter we will be concerned with the dissociation of mesons in a holographic
quark-gluon plasma, but so far we have computed properties of gluon plasmas without
fundamental matter. These only have particles in the adjoint representation since the
N =4 theory is supersymmetric, and all states in a given representation transform equally
under the gauge group. However, this limitation can be overcome by giving the strings
new places to end on, i.e. introducing a new set of different D-branes. From the point
of view of the D3-branes, strings that stretch between them and the new ones represent
particles in the fundamental representation of the SU(N) gauge group, i.e. “quarks”.
In our case, fundamental matter is modelled in this way through the embedding of D7-
branes in AdS5 × S5 , where the holographic dictionary in section 2.1 relates the asymptotic
behaviour at the conformal boundary of the D7-brane to the quark mass mq and the quark
bilinear condensate 〈qq̄ 〉. So far these embeddings have been achieved only in a sort of
quenched approximation, where the number of flavours Nf is much less than the number
of colours N .1 In the ads context it means that the D7-branes are introduced as probe
branes in the gravity background, ignoring their backreaction onto the geometry [126].2

To have finite temperature one would like to embed them in a black hole geometry. This
was studied some time ago in [128,129], where it was found that there are two topologically
distinct classes of embeddings. The first class, called the Minkowski embedding, stays
everywhere outside the black hole whereas the second class, the black hole embedding,
reaches down to the horizon such that the induced geometry on the brane is itself a black
hole. Again focusing in our case, D7-brane embeddings in ads black hole geometries were
first considered in [130]. The two types of embeddings give rise to a first order phase
transition where the value of the quark condensate jumps by a finite amount [131–135];
this was generalized to other types of backgrounds and D6- or D8-brane embeddings where
there is a chiral U(1) or even a non-Abelian chiral symmetry, with the quark condensate
as an order parameter for chiral symmetry breaking [136,137].

The model we consider in this chapter, IIb supergravity on the ads-Schwarzschild
background with D7-branes partially wrapped on the S5, is dual to N = 4 SU(N) gauge

1See however [118–125] for (very) recent and exciting progress beyond the quenched approximation.

2A recent review on adding fundamental matter to the gauge/gravity correspondence is [127].
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theory at finite temperature T in the large N limit with one (or few) N = 2 hypermulti-
plets of mass mq in the fundamental representation. Because of the underlying conformal
symmetry we can either set T or mq to one. Varying the mass of the quarks is therefore
equivalent in this model to varying the temperature, i.e. lowering the mass is the same as
rising the temperature. High values of the mass mq correspond to Minkowski embeddings
and low values to black hole embeddings. Therefore we can also think of the two kind
of embeddings as being at low temperature (Minkowski embedding) or high temperature
(black hole embedding).

Quark anti-quark bound states give rise to mesons. In the holographic dual high-spin
mesons are modelled by spinning open strings ending on the probe branes. The decay of
high-spin mesons has been studied in [138–141]. We will be concerned with the decay of
low-spin mesons in this thesis. Low-spin mesons are represented by the small fluctuations
around the equilibrium configuration of the D-brane world-volume. The spectrum of the
D-brane fluctuations is very different for the two different classes of embeddings. In the
case of the Minkowski embeddings there is a discrete spectrum of modes with eigenvalues
that can be identified with the meson masses [126,142]. Technically one imposes Dirichlet
or Neumann boundary conditions for the fluctuations at the endpoints of the embedded
brane. A wave travelling along the brane will then get reflected at the endpoint and this
gives rise to a discrete set of eigenmodes and eigenfrequencies. If the brane embedding is
however such that it touches the horizon, a wave travelling down the brane will eventually
reach the horizon, fall through it and not come back again (see figure 6.1). In this case one
has to impose purely infalling boundary conditions at the position of the horizon. These
boundary conditions give rise to our old friends the quasinormal modes, but now on the
brane!

Our interpretation of the quasinormal modes on the branes is as follows: they represent
the late stages of the melting process of a meson inserted in a plasma at high temperature.
The imaginary part of the quasinormal frequency gives the decay constant of the collective
mode corresponding to the quasinormal mode in the plasma.3 In other words: mesons built
up of sufficiently light quarks (or equivalently at sufficiently high temperature) inserted
in the plasma will melt just as an icecube melts in hot water. At a late stage the typical
timescales of this melting process is given by the inverse of the imaginary part of the
quasinormal frequencies. We could start for example with a Minkowski type D7-brane
embedding in an excited state with a normal mode fluctuation on it representing a stable
meson. If we now increase the temperature slowly the D7-brane with the normal mode on

3For the N =4 theory, the analysis of refs. [99,104,105] shows that these poles can not be automatically

given a quasiparticle interpretation. Our case is slightly different in that we are considering an N =2 theory

with an additional scale (the quark mass). Nevertheless we do not want to interpret the quasinormal modes

as quasiparticles, solely as the collective modes representing the late time stages of the decay of a meson

perturbation inserted in the plasma.
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Figure 6.1: Waves travelling down a D7-brane towards the interior of an ads-black hole. For

Minkowski embeddings the wave meets the end of the brane and is reflected there. This gives

rise to normal modes and frequencies that are the holographic duals of low-spin mesons and their

masses. In the case of the black hole embeddings the wave travels down the brane and through the

horizon and simply never comes back. The fluctuation has to obey infalling boundary conditions

giving rise to quasinormal modes.

it will eventually enter the unstable regime and undergo the phase transition to the black
hole embedding. Since the fluctuation is considered to be a small perturbation we can
assume that the phase transition is basically unchanged from the one that takes place for
the ground state of the D7-brane. After the phase transition, the additional energy present
due to the meson perturbation will eventually drop into the black hole, with this decay
process governed by the quasinormal modes. In this way we can study holographically the
melting of the meson at high temperature.

In section 6.2 we first compute the quasinormal modes for the trivial embedding. This
is the embedding that corresponds to massless quarks in the dual field theory, for which
we present the first ten quasinormal frequencies computed with the Heun method. Then
we go over to brane embeddings that correspond to massive quarks. The branes are bent
for these embeddings and the embedding itself can be calculated only through numerical
integration of a highly non-linear differential equation. This makes the computation of
the quasinormal modes around these embeddings much more difficult. We employ two
strategies. First we approximate the numerical embedding by an ansatz that is introduced
in the differential equation of the fluctuations. We solve the equations at the boundary
and at the horizon using series expansions with the right asymptotics. We use the horizon
series to give initial values close to the horizon and integrate numerically towards the
boundary. We then match the numerical solutions with the boundary series at a point
close to the boundary and demand that the resulting solution is smooth. This fixes the
quasinormal frequency. We were able to find the three lowest quasinormal modes for a
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number of brane embeddings up to masses that actually lie already above the critical mass,
where the phase transition to the Minkowski embeddings occurs.

We also employed a second method to find the quasinormal modes. This second
method consists in converting the differential equation into a finite difference equation.
In this approach one imposes the correct boundary conditions at the endpoints and uses
an ansatz solution that is fed into the finite difference equation. An improvement to the
ansatz solution y can be computed by demanding that y + ∆y fulfils the finite difference
equations to first order, in an expansion in the correction ∆y. This gives a new ansatz
solution and therefore it amounts to a recursive algorithm that eventually relaxes to the
correct quasinormal mode and frequency within a given accuracy goal. We describe this
relaxation method in more detail in appendix A.5. In praxis, it turned out that the
relaxation method worked well only for the lowest quasinormal mode. The agreement of
the quasinormal frequencies as computed with the relaxation method or with the midpoint
shooting algorithm is however excellent and typically of the order of∣∣ωshoot − ωrelax

∣∣
|ωshoot + ωrelax| ≈ 10−4 ,

so we are confident that the quasinormal frequencies are accurate up to the quoted uncer-
tainty, and thus we will state only the results from the midpoint shooting method.

In section 6.3 we briefly discuss the masses of the mesons that are represented by the
fluctuations around the Minkowski embeddings and in section 6.4 we conclude.

6.1 D7-brane embeddings

As said in the introduction, there are two qualitatively different embeddings of the D7-brane
in this ads-Schwarzschild geometry. At large mq/(

√
λT ), with mq the quark mass, the

tension of the D7-brane pulls enough to maintain itself outside of the black hole, ending at
a finite value r0 > r+ of the radial coordinate. This is the so-called Minkowski embedding.
On the contrary, for small mq/(

√
λT ) the brane is forced to fall through the horizon, thus

inheriting the black hole structure. In this case one calls it the black hole embedding.

In our discussion we use the metric in the z = r+/r coordinate (A.1), with the overall
L2 factor absorbed, and further write the S5 element as

dΩ 2
5 = dθ2 + sin2 θ dψ2 + cos2 θ dΩ 2

3 , (6.1)

where θ and ψ parametrise the transverse directions to the brane. The D7 wraps all of
AdS5 (either down to the horizon or not) and the S3 inside the S5. Its action is the dbi

action
SD7 = TD7

∫
d8ξ

√
−det P[G] , (6.2)
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Figure 6.2: Minkowski (thin and thick dot-dashed) and black hole (dashed) D7-brane embeddings.

We have also plotted the critical embedding (solid).

with P[G] the pullback of the bulk metric G onto the brane. The profile of the em-
bedding is characterised by its shape in the transverse coordinates. We will consider
embeddings that have a simple profile characterised by the dependence of the S3 radius
on the AdS5 × S5 radial direction (θ(z), ψ = const.). Absorbing the tension and volume of
the S3 into the normalization, the action is

SD7 =
∫

dz
cos3 θ(z)

z5

√
1 + z2(1− z4) θ′(z)2 . (6.3)

The embedding is obtained by solving the equation of motion for θ(z), which after
some simplifications is

0 = 3 sin θ(z)
[
− 1 + z2 (−1 + z4) θ′(z)2

]
(6.4)

+z cos θ(z)
[
(3 + z4) θ′(z) + 2z2 (1− z4) (2− z4) θ′(z)3 + z(−1 + z4) θ′′(z)

]
.

For the Minkowski embedding one demands the brane to end outside the black hole,
so the S3 has to shrink to zero size at z0. Therefore one imposes θ(z0) = π/2. The
second boundary condition comes from the requirement of a smooth ending without conical
deficit. This imposes that θ′(z0) → ∞ which we simulate in the numerical integration
of (6.4) by setting the derivative to 104. In the black hole case, one sets the angle to
some value θ(1) = θ0 at the horizon z = 1, whereas the second boundary condition is
θ′(1) = (3/4) tan θ0. This can be seen by demanding the embedding to be smooth at
the horizon.4 Figure 6.2 shows the two embeddings for different values of the boundary
conditions.

4This boundary condition translates to Neumann boundary conditions when Fefferman–Graham coor-

dinates are used as in [135].
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The solid curve in figure 6.2 represents the critical embedding which is associated to the
fundamental phase transition of the theory. In order to compute the critical embedding one
needs to compute separately the free energy of the Minkowski and black hole embeddings
which correspond to the same quark mass, given by the derivative at the boundary. These
free energies need to be renormalised,5 where a holographic renormalization scheme may
be used [143–145]. For this particular setup this was done in [146]. The critical embedding
corresponds to the configuration where the difference of free energies changes sign, with
the free energy for the embedding given by the action (6.3), and with a discontinuity jump
of the quark condensate.

The asymptotic expansion of the embedding

θ(z) = Θ0 z + Θ2 z
3 +O(z5) + . . . , (6.5)

allows to obtain the quark mass

mq =
1
2

Θ0

√
λT ≡ Θ0 ∆m(T ) , (6.6)

where we introduce the thermal rest mass factor ∆m(T ) := 1
2

√
λT , and also the conden-

sate through [135]6

〈qq̄ 〉
π2T 2∆m(T )

= lim
ε→0

1

ε3
√
−det P[G]

∣∣∣
z=ε

δSreg.

δ θ(ε)
= −4Θ2 +

2
3

(Θ0)3 . (6.7)

This computation has been done in a variety of papers [130, 131, 133]. The value of the
quark mass for the critical embedding is mcrit. ≈ 0.92 ∆m(T ). The physical situation
corresponds to a discontinuous jump from a black hole embedding to a Minkowski one.
It was also studied recently in [135] in the case of a curved boundary S1 × S3, where the
deconfinement transition of the dual gauge theory was also analysed with similar results.

6.2 Quasinormal modes on the flavour brane

According to section 2.2, the black hole geometry corresponds to a strongly interacting
quark-gluon plasma. From the point of view of mesons, there has been a deconfinement
phase transition so they no longer provide a good description of fundamental degrees of
freedom, though we still may introduce a one of them in the plasma with an associated
finite lifetime.

The spectrum of mesons turns out to be real and continous, so the associated two-
point correlation functions will show a branch cut along the real axis pointing at the

5One introduces an effective cutoff integrating down to z = ε ∼ 0, and later renormalises ε→ 0.

6We have used a definition of the mass that differs by a factor
√

2 from the one given in [135].
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deconfinement of mesons. As we know the poles of such functions can be the quasinormal
frequencies; those vanishing with the spatial momentum will correspond to wide and
slow fluctuations thus describing the hydrodynamical properties of the plasma. Other
quasinormal modes will also describe dissipation processes of the mesons. In principle,
quasinormal modes could describe unstable bound states of quarks in the plasma, with
the same quantum numbers as the low temperature analog mesons and a finite lifetime.
This will be true if distinct resonances appear in the spectral function, with a small
enough width and an appropriate dispersion relation ω(q) so they can be interpreted as
quasiparticles. In [99] it is shown that in N = 4 plasma the quasinormal poles actually
do not lead to resonances and that the high frequency behaviour is dominated by the
underlying conformal symmetry. The case studied here is slightly different because for non-
zero quark mass, the theory is already non-conformal and the structure of mesonic Green’s
functions is given by an infinite set of discrete poles localized to the real axis, that we can
identify with the stable spectrum of mesons. Also the fact that the plasma is strongly
coupled for quarks and gluons does not affect mesons, because their interactions decrease
at least as ∼ 1/N in the large N limit, so from their point of view the plasma is a weakly
coupled gas. This is confirmed by the zero drag force computed for mesons [138–141].

However, the relation between hypothetical bound states in the plasma and the actual
mesons in the low temperature phase is not completely clear, since the wavefunction of a
meson entering the plasma will probaly suffer strong non-linear effects before diluting. On
the other hand, if we consider a single meson or a small number, the process of melting
can be seen as a small fluctuation losing energy into the plasma and should be described
by linear response theory and the related quasinormal modes.7

In the case that interests us, we introduced a set of D7 probes in an AdS5 × S5 black
hole geometry. The fields living on the branes are gauge fields and two scalar fields θ and
ψ, parameterising the directions transverse to the brane. According to the correspondence,
we can associate them to meson operators in the dual theory. From now on, we will be
interested only in fluctuations of θ, a scalar of mass squared m2 = −3, that in the dual
theory maps to a meson operator of dimension ∆ = 3, a quark bilinear. The normalizable
modes of this field should correspond to scalar meson states in the dual theory.

From the two possible situations, let us consider D7-brane embeddings that fall into
the black hole. Then, the induced metric on the branes has a horizon and there will be
quasinormal modes in the spectrum of fluctuations of the brane. Since the black hole
brane configuration corresponds to a deconfined situation for quarks, the meson spectrum
associated to normal modes will be continuous [134,136].

For simplicity, we will consider only singlet states on S3, and since we are interested

7Remember that we are considering low-spin mesons only.
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only in the mass and decay width, we will consider space-independent perturbations.
However, it could be an interesting issue to see the effect of non-zero momentum with
respect to the plasma rest frame on bound states. On general grounds, we expect that the
states will be more stable.

Let us write the coordinate θ as θ(z, t) = θ0(z) + ϑ(z, t), that is, embedding plus
fluctuations over it. The action for the fluctuations is the dbi action of the brane

SD7 '
∫

dt dz
cos3 (θ0(z) + ϑ)

z5

√
1− z2

1− z4
(∂tϑ)2 + z2(1− z4)(θ′0(z) + ∂zϑ)2 . (6.8)

If we consider small fluctuations, we can use the linearised equations of motion. Using
ϑ(z, t) = e−iωtϑ(z), we are left with a second-order differential equation in z

ϑ′′(z) +A1(z)ϑ′(z) + (B(z)2 ω2 +A0(z))ϑ(z) = 0 , (6.9)

where using
s(z) = 1 + z2(1− z4) θ′0(z)2 , (6.10)

the coefficients of the differential equation are

B(z) =
√
s(z) (1− z4)−1 , (6.11a)

A0(z) = s(z)
3 sec2 θ0(z)
z2(1− z4)

, (6.11b)

A1(z) = − 3 + z4

z(1− z4)
+ 6θ′0(z)

(
tan θ0(z)− z(2− z4)θ′0(z)

)
, (6.11c)

where we have used the equations of motion of the embedding (6.4) to eliminate θ′′0(z).
As we noted in section 3.1, if ϑ(z) is a solution for some frequency ω = ωr − iωi, then
ϑ∗(z) is also a solution for a frequency ω̃ = −ω∗. This Z2 symmetry allows to form real
combinations of quasinormal modes, that will be true geometric deformations of the brane.

Close to the boundary of ads (z → 0+), the differential equation is approximately

ϑ′′(z)− 3
z
ϑ′(z) +

3
z2
ϑ(z) = 0 , (6.12)

with solutions ϑ(z) ∼ a z + b z3. According to the dictionary of the correspondence, we
should set a = 0 in order to study the spectrum of states. Otherwise, we will be introducing
couplings for meson operators in the Lagrangian. Notice that the behaviour is universal
for any embedding and frequency ω.

Close to the horizon (z → 1−), the differential equation becomes

ϑ′′(z) +
1

z − 1
ϑ′(z) +

ω2

16(z − 1)2
ϑ(z) = 0 , (6.13)

with solutions ϑ(z) ∼ a′(1 − z)iω/4 + b′(1 − z)−iω/4. In this case, we will impose ingoing
boundary conditions a′ = 0. The asymptotic behaviour is also universal for any embed-
ding.
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Equation (6.9) can be transformed into a Schrödinger equation, useful to derive analytic
properties of the frequencies [147–149]. Using ϑ(z) = σ(z)f(z) with

σ′(z)
σ(z)

= −1
2

(
A1(z) +

B′(z)
B(z)

)
, (6.14)

the equation for quasinormal modes is(
1

B(z)
d
dz

(
1

B(z)
d
dz

)
+ ω2 − V (z)

)
f(z) = 0 , (6.15)

so the Schrödinger equation is recovered after changing variables to the ‘tortoise’ coordi-
nate dz∗ =

√
s(z)dz/(1 − z4), that is defined such that the horizon is at z∗ → ∞. The

potential is

V (z) = −(1− z4)2

s(z)

(
A0(z) +A1(z)

σ′(z)
σ(z)

+
(
σ′(z)
σ(z)

)2

+
(
σ′(z)
σ(z)

)′)
. (6.16)

Consider now solutions that fall into the horizon, which in the z∗ coordinate are f(z∗) =
exp(+iωz∗)ψ(z∗), multiply equation (6.15) by the conjugate solution ψ∗(z∗) and integrate
between the boundary and the horizon∫ ∞

zb∗
dz∗ (−ψ∗(z∗)ψ′′(z∗)− 2iω ψ∗(z∗)ψ′(z∗) + V (z∗)|ψ(z∗)|2 ) = 0 . (6.17)

The solution ψ(z∗) should vanish at the boundary and go to a constant at the horizon. The
second-derivative term can be integrated by parts giving a result proportional to |ψ′(z∗)|2.
Taking the imaginary part of this equation and integrating by parts we find the relation

2iIm ω

∫ ∞
zb∗

dz∗ ψ∗(z∗)ψ′(z∗) = −ω∗|ψ(∞)|2 , (6.18)

that can be plugged back into the original equation∫ ∞
zb∗

dz∗ ( |ψ′(z∗)|2 + V (z∗) |ψ(z∗)|2 ) = −|ω|
2 |ψ(∞)|2
Im ω

. (6.19)

If the left hand side is positive, the imaginary part of the frequency must be negative.
This depends on the value of the potential. The potential (6.16) is non-negative between
the boundary z = 0 and the horizon z = 1 for the massless case θ0(z) = 0. For the massive
case we found numerically that the potential is non-negative up to values θ0(1) ∼ 0.83.
Above this value the potential starts developing a well close to the horizon, so in principle
there could be unstable modes of positive imaginary frequency. The numerical plots of
the potential are in figure 6.3.

Other qualitative properties of the frequencies can also be deduced from the shape of
the potential. The frequencies of brane fluctuations are given by the energy spectrum of the
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Figure 6.3: Schrödinger potential close to the horizon for different horizon embeddings, corre-

sponding to θ0(1) = 0.1, 0.5, 0.83, 0.9, 1.0, 1.2, 1.3 and 1.5. As θ0(1) increases, the potential develops

a negative-valued well.

Schrödinger potential. For Minkowski embeddings, the potential is an infinite potential
well, so the spectrum is real and discrete. For black hole embeddings, the potential is
qualitatively the same close to the boundary, but it vanishes at the horizon. In both cases
the potential develops a negative well close to the horizon as the embedding approaches the
critical one separating Minkowski and black hole topologies. For Minkowski embeddings,
the well starts developing for z0 > 0.955. If the well is deep enough, we expect that
negative-energy bound states will appear. Bound states correspond to modes of tachyonic
mass on Minkowski slices [150, 151] and they are probably signalling an instability of the
brane. We checked the presence of no tachyons up to z0 = 0.99. At z0 = 0.999 we find that
there is a single tachyon with ω ' 0.69 i, thus a true instability of the D-brane embedding.
For black hole embeddings, the instability appears between θ0(1) = 1.29 and θ0(1) = 1.295,
where we find a mode with frequency ω ' 0.0014 i. Therefore, the first order transition
occurs before these instabilities are present. Near-critical embeddings have been shown
to be thermodynamically unstable [152], both instabilities seem to be related because the
appearance of tachyonic modes coincide with the onset of the thermodynamical instability,
in agreement with [153,154].

Massless case. We will consider first the simplest case of massless quarks, where the
D7 embedding is trivial θ0(z) = 0. The frequencies of the massless embedding can then
be used as a starting point for the search of quasinormal frequencies in the massive case.
It is more convenient now to change our coordinate to x = 1− z2. The equation takes the
simpler form
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ϑ′′(x) +
1 + (1− x)2

x(1− x)(2− x)
ϑ′(x) +

(
ω2

4x2(1− x)(2− x)2
+

3
4x(1− x)2(2− x)

)
ϑ(x) = 0 ,

(6.20)
with four regular singularities x = 0, 1, 2,∞, with exponents {iω/4,−iω/4}, {1/2, 3/2},
{ω/4,−ω/4}, {0, 0}. Therefore, it is a Heun equation and we can follow the analysis
described in [94] and used by us in the preceding chapter for the absorption lengths, now
to compute the quasinormal frequencies.

Using the transformation

ϑ(x) = x−iω/4(x− 1)3/2(x− 2)−ω/4 y(x) , (6.21)

we can write the equation in the standard form for a Heun equation

y′′(x) +
(
γ

x
+

δ

x− 1
+

ε

x− 2

)
y′(x) +

αβx−Q
x(x− 1)(x− 2)

y(x) = 0 , (6.22)

with parameters

α = β =
3
2
− ω

4
(1 + i) , γ = 1− iω

2
, δ = 2 , ε = 1− ω

2
, (6.23)

Q =
9
4
− ω

4
(1 + 5i)− ω2

8
(2− i) . (6.24)

Quasinormal modes correspond to solutions of this equation defined in the interval [0, 1]
with boundary conditions y(0) = y(1) = 1, that select the appropriate normalizable and
ingoing behaviour of the solution. Back to the Heun method, using formula (5.13), we can
easily compute numerically the quasinormal frequencies with high precision, in a totally
analogous fashion as for the absorption lengths. It should be noted that in this case we do
not encounter problems with false frequencies. For the first ten modes these are compiled
in table 6.1. Higher modes k � 1 seem to have the asymptotic behaviour

ωk ' 1.219− 0.779i+ (2k − 1)(1− i) . (6.25)

Massive case. When we consider massive quarks, associated to a non-trivial D7 profile
θ0(1) 6= 0, the situation gets much more involved. First of all, we only know the embedding
numerically, and second, we know that it is not an analytic function, since its expansion
close to ads boundary involves logarithmic terms. So we have to use mainly a numerical
approach to compute the quasinormal frequencies.

We use a shooting method to compute the frequencies. We approximate our numerical
embeddings by a power expansion in order to keep computation time bounded. This is our
main source of error, typically we trust our results up to the fourth decimal. Close to the
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k Re (ωk) Im (ωk)

1 2.1988 −1.7595
2 4.2119 −3.7749
3 6.2155 −5.7773
4 8.2172 −7.7781
5 10.2181 −9.7785
6 12.2186 −11.7787
7 14.2180 −13.7788
8 16.2193 −15.7789
9 18.2195 −17.7790
10 20.2183 −19.7790
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Im ωk

Re ωk

Lowest quasinormal modes
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Table 6.1: Quasinormal frequencies for massless quarks using the convergence method (n = 200
for k < 10 and n = 250 for k = 10).

singular points we approximate the modes by a series expansion with the right behaviour,
as z3 at the ads boundary (z = 0) and like (1 − z)−iω/4 at the horizon (z = 1). We use
then the series expansion at the horizon to give initial values for the numerical solution.
Close to the boundary, we try to match smoothly the numerical solution with the series
expansion at z = 0. The matching points between the numerical solution and the series
expansions are selected so that the error in the differential equation coming from the series
is less than 10−8, all values lying in the intervals [0.0375, 0.15] and [0.85, 0.9625].

The matching can be done only for discrete values of the frequency that we find ex-
ploring the complex ω plane. The frequencies that we have found for the massless case
are very useful to give a starting point for our search, and we also use them to check the
method for the massless case. Since the method becomes quite expensive in terms of CPU
time for higher modes, especially when we approach the critical embedding θ0(1) = π/2,
we have limited to the first three modes. The results can be found in tables 6.2 and 6.3
and in figure 6.4. We see that the evolution drives the quasinormal frequencies from their
values in the massless embedding toward values closer to the real axis. Unfortunately, we
are not able to reach the limiting embedding numerically, so we cannot confirm what is the
endpoint of the evolution. It would be interesting to make an improved numerical analysis
or an analytic computation of quasinormal frequencies for near-limiting embeddings to
address this issue.

We have checked the results using the relaxation method. In this method we use the
numerical values of the embedding, lowering significantly this source of error. We find that
the results for the first mode have a very good agreement; typically the absolute relative
error in the frequencies is of order 10−4, as quoted in the introduction to this chapter.
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Figure 6.4: Evolution of the first three quasinormal frequencies in the complex plane as we change

the embedding. All of them show the same behaviour when θ0 is increased: firstly they go to the

right to reach a returning point and start moving to the left decreasing their imaginary part.

θ0(1) Re (ω1) Im (ω1)

0.00 2.1988 −1.7595
0.10 2.1989 −1.7636
0.20 2.1999 −1.7765
0.25 2.2016 −1.7868
0.30 2.2051 −1.8001
0.40 2.2225 −1.8371
0.50 2.2712 −1.8855
0.60 2.3785 −1.9133
0.70 2.5153 −1.8546
0.80 2.6057 −1.7172
0.90 2.6299 −1.5454
1.00 2.5935 −1.3665
1.10 2.4972 −1.1867
1.20 2.3342 −1.0135
1.30 2.0866 −0.8488
1.40 1.7078 −0.6846

θ0(1) Re (ω2) Im (ω2)

0.00 4.2119 −3.7749
0.10 4.2090 −3.7808
0.20 4.2035 −3.8020
0.25 4.2057 −3.8218
0.30 4.2136 −3.8477
0.40 4.2818 −3.9122
0.50 4.4607 −3.9061
0.60 4.6172 −3.7287
0.70 4.6822 −3.4663
0.80 4.6585 −3.1643
0.90 4.5558 −2.8370
1.00 4.3784 −2.4866
1.10 4.1243 −2.1242
1.20 3.7945 −1.7345
1.30 3.3796 −1.3415

Table 6.2: (Left) first and (right) second quasinormal frequencies for different D7 embeddings.
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θ0(1) Re (ω3) Im (ω3)

0.00 6.2155 −5.7773
0.10 6.2064 −5.7813
0.20 6.1851 −5.8052
0.25 6.2067 −5.8341
0.30 6.2299 −5.8666
0.40 6.3867 −5.8924
0.50 6.6466 −5.7291
0.60 6.6925 −5.3760
0.70 6.6829 −4.9753
0.80 6.5846 −4.5276
0.90 6.4048 −4.0423
1.00 6.1417 −3.5153
1.10 5.7917 −2.9881
1.20 5.3629 −2.4019
1.30 4.7783 −1.8763

Table 6.3: Third quasinormal frequencies for different D7 embeddings.

6.3 Meson masses and lifetimes

We have identified small fluctuations of D7-probe branes with the low energy spectrum of
mesons. In the zero temperature case (T = 0), the spectrum of mesons is given by regular
and normalizable modes on the brane. The bare mass of the quarks mq is identified with
the asymptotic properties of the embedding, as in (6.6). If the mass is finite, then the
embedding ends at a finite value of the radial coordinate, providing an IR cutoff for the
modes on the brane. The spectrum is discrete with a mass gap M ∼ mq/

√
λ and grows

linearly [126, 142]. If the bare mass is zero, then the induced metric on the brane is
conformal AdS5 × S3 and the spectrum becomes continuous.

For Minkowski embeddings, the spectrum will be similar to the zero temperature
case for mq/∆m(T ) � 1. We show the first modes of the meson spectrum for several
embeddings in table 6.4 and figure 6.5, notice that the mass gap grows linearly with the
quark mass for embeddings with mq/∆m(T ) > 1.

Below the critical mass mq ' 0.92 ∆m(T ), there can be a first or a second order
transition to a black hole embedding [130, 131, 133–135, 154, 155]. Free energy arguments
show that the branch of black hole embeddings reached by the first order transition will
dominate. However, the second order transition is interesting because its properties are
similar to type II critical collapse of black holes and black hole/black string merger tran-
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Figure 6.5: First modes of the meson spectrum for Minkowski embeddings ending at z0 =
0.25, 0.5, 0.75, 0.99. We observe that the spectrum grows linearly and the mass gap increases with

the distance of the embedding to the horizon z+ = 1.

sitions [134, 155]. In black hole embeddings, the theory is in a deconfined phase and the
spectrum of mesons is continuous. From the geometric point of view, this is due to the
presence of a horizon.

mq/∆m(T ) 1 2 3 4

0.91784 0.9589 2.3411 3.4388 4.5087
1.27999 3.4357 5.9163 8.3647 10.7981
1.98432 5.5717 9.6391 13.6312 17.5994
3.99805 11.3081 19.5905 27.7128 35.7863

Table 6.4: First meson masses in temperature units for different quark masses in Minkowski

embeddings.

Let us consider the results of the previous section. The mass and the width of quasi-
normal modes are roughly proportional, and proportional to the temperature (see fig. 6.6).
As we increase the quark mass there is some change, close to the critical value where the
two branches of black hole embeddings merge. The width decreases appreciably, specially
for higher modes, while the mass does not change as much. In any case, before the first
order phase transition the mass and the width are of the same order, which makes a
quasiparticle interpretation unlikely.

The melting is therefore characterized by the temperature, showing little dependence
on the quark mass after the transition. This implies that mesons made of light quarks will
start melting at lower temperatures but will have longer lifetimes just after the transition.



86 Chapter 6. Meson melting

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

Ωn

mq/∆m(T )

Mass vs. mq/∆m(T )

Ω1

× × × × × × × × ×××××××××
Ω2

+ + + + + + + + +++++
+
+

+
Ω3

! ! ! ! ! !
! ! ! !!

!
!
!
!

! 1
2
3
4
5
6
7
8
9

10
11
12

0 0.2 0.4 0.6 0.8 1

Γn

mq/∆m(T )

Width vs. mq/∆m(T )

Γ1

× × × × × × × ×××××××××
×

Γ2

+ + + + + + + + +
+
+
+
+
+
+

+
Γ3

! ! ! ! ! ! !
!

!
!
!
!
!

!
!

!

Figure 6.6: (Left) Quasinormal masses in temperature units for the first three modes as a function

of the bare quark masses, and (right) quasinormal widths in temperature units for the first three

modes as a function of the bare quark masses. We have defined ωn := Ωn − iΓn/2.

Considering mesons made of quarks of fixed mass, heavier mesons with the same quantum
numbers (in our case, zero spin mesons associated to the scalar operator qq) will initially
decay through higher quasinormal modes, so they will lose energy faster. Then, a heavy
meson that goes through a plasma region will usually emerge as a lower mass state. If the
meson does not emerge, then the decay is dominated by the lowest quasinormal mode at
large times and becomes universal, it is no longer possible to distinguish the original state.
This means that any scattering process will in principle increase the energy and entropy
of the plasma, as we expect from a dissipative medium.

6.4 Conclusions

We have proposed a holographic picture (of the late stages) of the melting process of
low-spin mesons in the quark-gluon plasma. The important ingredient are D7-brane em-
beddings in ads-black hole backgrounds that do reach down to the horizon. The induced
metric on the world-volume of these D7-branes is itself a black hole and therefore it makes
sense to compute the quasinormal modes of the brane fluctuations. These modes describe
the dissipation of the energy of mesonic excitations by the plasma, in particular the melting
of mesons. One important point is that this process of melting in the holographic plasma
is only available for mesons built out of quarks with masses up to mq = 0.92

√
λT/2,

where T is the plasma temperature and λ is the ’t Hooft coupling. Heavier quarks are
represented by D7-branes with no horizon on their world-volume and therefore have stable
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meson excitations.

The melting of quarkonium states is of high importance in the physics of the quark-
gluon plasma. It has long been regarded to be one of the cleanest signatures of plasma
formation. In particular, quarkonium states such as the J/ψ meson are expected to melt
in the quark-gluon plasma and therefore the abundance of these particles measured in
processes where quark-gluon plasma formation takes place should drop significantly if
compared to nuclear collisions without plasma formation.

Although the model we have considered here is quite far from qcd it is still interesting
to have a look to this problem from our perspective of holographic meson melting. We
found that the melting process takes place only for quarkonium states built out of quarks
with masses of at most the order of the temperature of the plasma. The mass of the
charm quark is mc ≈ 1.4 GeV and the rhic temperatures is Trhic / 300 MeV. ads

predicts critical mass to temperature ratios of 1− 2 if we use the recent estimates on how
to relate 5.5 < λ < 6π to qcd [156]. It is quite interesting that very recently meson
melting has been considered in a real time approach in Hard Thermal Loop resummed
perturbation theory [157]. There the authors found an imaginary part in the static quark
anti-quark potential giving rise to a decay width and that this decay width can be ignored
for quarks heavier that mq = 12πT/g2. One is tempted to speculate that this is the weak
coupling qcd analog of the holographic value mq = 0.92

√
λT/2 and that there exists an

interpolating function f(λ) such that mq = f(λ)T , where f(λ) ≈ √λ at strong coupling
and f(λ) ≈ 1/λ at weak coupling.

The biggest drawback of the ads-model is that the background corresponds to plasmas
made up only of particles in the adjoint representation. Although in a background with
dynamical quarks included one still expects heavy quarks being reasonably well modelled
by D-brane embeddings the presence of fundamental quarks in the deconfined plasma
might change the dissociation rates even for heavy quarks in a drastic way. In any case,
the quasinormal modes on D-branes embedded in gravity duals of gauge theories offer a
unique way of studying quarkonium dissociation in a holographic way.

It is of high interest to apply our approach to meson melting also to other models, such
as models with non-Abelian chiral symmetries [137] or the phenomenological holographic
models of qcd developed in [158, 159]. In view of the above mentioned problem of J/ψ
suppression it would be of extreme interest to have a phenomenological holographic qcd

model that includes heavy flavours such as the charm quark.

In this thesis we have only considered modes with vanishing momentum on the S3

as well as on R3. Especially, the dependence of the quasinormal modes on momentum
relative to the rest frame of the plasma should be quite interesting. Furthermore one
could study the modes of the other fields on the D7-brane world-volume, such as the
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vector fields whose excitations correspond to vector mesons. We also have found evidence
that quasinormal modes show an interesting behaviour when the system goes through the
second order phase transition, allowing a continuous connection of both phases.



Outlook

As a summary of some of the suggested continuations of this work we may think of

• Going to the tensor channel and compute the residues for those quasinormal modes.
Following the shear and sound hydrodynamic modes is interesting, since they de-
scribe the flow of momentum and energy, and thus provide a truly direct connection
with thermalization time in the plasma. Actually this is work in progress,

• Again, concerning the residues and merging with the next chapter one could compute
them for absorption lengths. This allows to see distances where damping of collective
excitations becomes important,

• One could also overcome the inability to map the sound mode (scalar part of tensor)
in the absorption lengths to a Heun equation, by doing a full numerical treatment
like those performed in chapters 4 for the residues and in chapter 6 for the massive
embedding of the D7-brane,

• Since one expects the mesons to be moving in the plasma, it would be nice to
introduce the dependence on momentum for them. Even more so, this could be
done for other kinds of perturbations in the D7 embeddings apart from the scalars
in chapter 6,

• Provided the potential of these methods as applied to more realistic phenomena,
it would be very much desirable to do these analyses for more phenomenological
setups, like the Sakai–Sugimoto model [137], or string theory completions that have
recently appeared.

At this level, but with a different target

• One could consider expanding and not static plasmas using time-dependent back-
grounds,

• Our plasmas have infinite extent, but real ones are finite, so this feature could be a
nice add on,

• We have complexified the frequency and momentum, but one still could complexify
the angular momentum corresponding to modes on the S5.

Finally on more theoretical grounds
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• we could try to go to next orders in linear response theory to see if there are noticeable
corrections,

• there have been very recently papers on second order hydrodynamics, so it could
be nice to see how these field theory computations might match the string theory
results.



Appendix

A.1 Conventions and equations of motion

In the main text we have obtained the backgrounds for supergravity fields dual to the
gauge theories at both zero and finite temperature. These were given by the metrics (2.3)
and (2.8), respectively. In general we work with the ads part only, except for chapter 6
were we put a D7-brane that wraps also part of the S5.

The conformal symmetry of the underlying ads spacetime can be used to set r+ to one.
We will do this implicitly in the following by using the coordinate z = r+/r and rescaling
gauge theory coordinates as r+L

−2(t,x) 7→ (t,x)

ds2 =
L2

z2

(
−f(z) dt2 + dx2 +

dz2

f(z)

)
+ L2 dΩ 2

5 . (A.1)

The boundary is now located at z = 0, the horizon at z = 1 and the black hole factor is
just f(z) = 1− z4.

Scalar fields. The equation of motion for a minimally coupled scalar of mass m follows
from its action in the background (A.1), and reads

φ′′(t,x, z) +
(
f ′(z)
f(z)

− 3
z

)
φ′ − φ̈

f(z)2
+

∆φ
f(z)

− (mL)2

z2 f(z)
φ = 0 . (A.2)

It is now fair to assume that rotational as well as translational invariance are unbroken in
the boundary theory, so one may express φ in terms of its Fourier transform

φ(t,x, z) =
∫

d4k

(2π)4
e−iωt+ikx Φk(z)φ0(k) , (A.3)

where as usual in the ads/cft correspondence we demand Φk(z = 0) := 1 to reproduce the
boundary condition for the supergravity field, φ|∂ = φ0(x). Through this transformation
one obtains the final form of the equation of motion in terms of Φk(z)

Φ′′k(z) +
(
f ′(z)
f(z)

− 3
z

)
Φ′k(z) +

(
ω2

f(z)2
− k2

f(z)
− (mL)2

z2f(z)

)
Φk(z) = 0 . (A.4)

Usually we will throw away the L2 factor in front of the metric by setting it to one. At
the level of equations of motion it only leaves a fingerprint on the mass term as seen
above. Besides, in the main body we only consider massive scalars on (a) the arguments
of stability for absorption lengths in section 3.2 and (b) in the discussion of massive scalar
mesons of section 6.2. In both cases setting L = 1 plays no important role.
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Vector fields. In this case the equations of motion for such a field are given by the
Maxwell equations

1√−g ∂ν
(√−g gµρgνσFρσ) = 0 , (A.5)

where Fµν = ∂µAν − ∂νAµ. We can choose the Az = 0 gauge in the metric (A.1) and
expand in plane waves Aµ as we did for the scalar field. Separating the vector field in
longitudinal and transverse components, Al(z) = q

q ·A(z) and q ·At(z) = 0, the equations
of motion are

0 = ωA′0(z) + q f(z)A′l(z) , (A.6a)

0 = A′′0(z)− 1
z
A′0(z)− 1

f(z)

(
ωqAl(z) + q2A0(z)

)
, (A.6b)

0 = A′′l(z) +
z

f(z)

(
f(z)
z

)′
A′l(z) +

ω

f(z)2

(
qA0(z) + ωAl(z)

)
, (A.6c)

0 = A′′t(z) +
z

f(z)

(
f(z)
z

)′
A′t(z) +

(
ω2

f(z)2
− q2

f(z)

)
At(z) . (A.6d)

The first three equations are not independent so we can use the first one to write decoupled
equations for A′0(z) and A′l(z). Then the relevant equations for the temporal, longitudinal
and transverse components of the vector field read

0 = V ′′0 +
(
f ′

f
− 1
z

)
V ′0 +

(
ω2

f2
− q2

f
− f ′

zf
+

1
z2

)
V0(z) , (A.7a)

0 = V ′′l +
(

3
f ′

f
− 1
z

)
V ′l +

(
ω2

f2
− q2

f
+
(
f ′

f

)2

+
f ′′

f
− 2

f ′

zf
+

1
z2

)
Vl(z) , (A.7b)

0 = A′′t +
(
f ′

f
− 1
z

)
A′t +

(
ω2

f2
− q2

f

)
At(z) , (A.7c)

where we defined V0(z) = A′0(z) and Vl(z) = A′l(z). These will be used in chapter 5.

Notice that there is also a choice of gauge-invariant variables El = qA0 + ωAl and
Et = ωAt, which we will use in chapter 4 for the analysis of residues of retarded Green’s
functions. In this case they are written in the coordinate x = 1 − z2 = 1 − r2

+/r
2, such

that the horizon sits at x = 0 and the boundary at x = 1. Introducing the dimensionless
frequency and momentum 2πT (w, q) := (ω, q), the equations of motion for these gauge
invariant combinations of the vector field perturbations with frequency ω and momentum
q are [99]

E′′t +
f ′(x)
f(x)

E′t +
w2 − q2f(x)
(1− x)f(x)2

Et(x) = 0 , (A.8a)

E′′l +
w2f ′(x)

f(x)(w2 − q2f(x))
E′l +

w2 − q2f(x)
(1− x)f(x)2

El(x) = 0 . (A.8b)
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The metric. In chapter 5 we analyze perturbations of the metric. In this case we work
with a set of gauge-invariant variables, following [117]. There, the authors consider general
metrics of the form

ds2 = −F(r) dt2 +
dr2

F(r)
+ r2dσ2

n , (A.9)

where dσ2
n corresponds to a metric of a n-dimensional space of constant sectional curvature

K = 0,±1, and

F(r) = K − 2M
rn−1

− λr2 . (A.10)

In our case, K = 0, n = 3, λ = −1 and M = r4
+/2.

The Einstein equations are decomposed in tensor, vector and scalar components rel-
ative to the three-dimensional metric. It is thus possible to define three different gauge-
invariant quantities to which we can associate a Schrödinger-like equation of motion [117].
In the z coordinate they read

−f(z)
d
dz

(
f(z)

dψI
dz

)
+ VI(z)ψI = ω2 ψI , I ≡ {t,v,s} , (A.11)

where for each perturbation we will have a different potential. Rewriting the Schrödinger
equation by shifting (ω, q) 7→ r+(ω, q), the potentials V are given by

Vt(z) =
f(z)
4z2

(15 + 4 q2z2 + 9z4) ,

Vv(z) =
f(z)
4z2

( 3 + 4 q2z2 − 27z4) , (A.12)

Vs(z) =
f(z)
4z2

1
(1 + 6q−2z2)2

(
−1 + 4 q2z2 + 9z4 + 156z6 − 108

z2

q2
+ 540

z4

q4
+ 324

z8

q4

)
,

for tensor, vector and scalar perturbations, respectively.

A.2 Residues from the connection coefficients

We have seen in the main text that the retarded Green’s functions can be expressed in
terms of the connection coefficients as Π(α) ∝ B(α)/A(α), for (α) a given channel (which
will be hidden except for the last equation) and modulo a prefactor associated to the
precise Gµν . How can we extract the expression for the residues from it? In the main
text we have motivated that close to the poles the Green’s function can be decomposed
basically as a “peak”, so

Π(w, q) =
∑
n

Rn(w, q)
w−wn(q)

,
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and therefore its inverse can be rewritten as

Π−1(w, q) =
1∑

n
Rn

w−wn

=
1∏

n(w−wn)−1
∑

i

(
Ri
∏
j 6=i(w−wj)

)
=

∏
n(w−wn)∑

i

(
Ri
∏
j 6=i(w−wj)

) . (A.13)

We can extract the poles differentiating with respect to w and evaluating at the quasinor-
mal modes. For example, if there were just two poles

∂w Π−1 =
(w−w1) + (w−w2)

R1(w−w2) + R2(w−w1)
−(w−w1)(w−w2)

R1 + R2(
R1(w−w2) + R2(w−w1)

)2 ,

and particularizing to w = w1 gives R−1
1 . In the general case of interest to us, the

derivative reads

∂w Π−1 =

∑
i

∏
j 6=i(w−wj)∑

i Ri
∏
j 6=i(w−wj)

−
all∏
n

(w−wn)× term . (A.14)

Since the second term contains all the quasinormal modes, evaluating w at any of them
will make it automatically vanish. Thus,

∂w Π−1
∣∣
w=wn

=

∏
j 6=n(wn −wj)

Rn
∏
j 6=n(wn −wj)

=
1

Rn
, (A.15)

or, equivalently,

R(α)
n =

[
∂

∂w
Π−1

(α)

∣∣∣∣
w=wn

]−1

= factor×
[
∂

∂w

(A(α)

B(α)

)∣∣∣∣
w=wn

]−1

, (A.16)

where “factor” is dependent on the type of perturbation, for instance −N2 T 2/8 for the
vectors —see (4.11).

A.3 Effective potentials

In section 3.2 we have presented the stability analysis for a scalar field but it can be gener-
alized for any field component ϕ(z) satisfying a decoupled linear second order differential
equation

ϕ′′(z) +A1(z)ϕ′(z) +A0(z)ϕ(z) +B(z)2ω2ϕ(z) = 0 . (A.17)

Factorizing ϕ(z) = σ(z)φ(z) and normalizing the φ′′ term

φ′′ +
(

2
σ′

σ
+A1

)
φ′ +

(
A0 +A1

σ′

σ
+
σ′′

σ

)
φ+B(z)2ω2 f = 0 . (A.18)
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We now change B(z)dz = dz∗ and divide by B(z)2

∂2
z∗φ+ω2φ+

1
B(z)

(
2
σ′

σ
+A1 +

B′(z)
B(z)

)
∂z∗φ+

1
B(z)2

(
A0 +A1

σ′

σ
+
σ′′

σ

)
φ = 0 . (A.19)

This expression becomes a Schrödinger equation when σ satisfies

2
σ′

σ
+A1 +

B′(z)
B(z)

= 0 . (A.20)

Then, the same stability arguments can be applied with the proper identification of the
potential

V0(z) = − 1
B(z)2

(
A0 +

1
4

((
B′

B

)2

−A2
1

)
− 1

2

(
A′1 +

(
B′

B

)′))
. (A.21)

We will now apply this to the other equations under consideration in this paper.

• transverse vector components

V0 =
f(z)
4z2

(
3 + 5z4 + 4q2z2

)
(A.22)

• longitudinal and temporal vector components

V0 = −f(z)
4z2

(
1 + 7z4 − 4q2z2

)
(A.23)

• gravitational vector perturbation (shear mode)

V0 =
f(z)
4z2

(
3− 27z4 + 4q2z2

)
(A.24)

Due to the underlying analyticity of the solution of the corresponding Heun equation
all fields, At, Vl, V0,Φv, fulfill the boundary conditions leading to (3.15) and (3.16). The
effective potential is positive in the case of the transverse vector fields. For the longitudinal
and temporal vector field components it is negative and therefore the stability argument
presented in section 3.2 does not apply. We note that the asymptotic behavior at the
boundary is the same as that of a scalar field saturating the Breitenlohner–Freedman
bound. We take this as an indication for stability, in the original analysis in ads a positive
energy condition is satisfied even for fields with negative potential [160]. The asymptotic
behavior of the fields is restricted by the condition of having a well-defined conserved
energy. In turn, the positive contribution of the kinetic energy always overcomes the
negative contribution from the potential. A formal analysis [161] can be applied that
shows the stability of vector perturbations. The ‘Hamiltonian’ operator H = −∂2

z∗ + V0

must be positive definite over the set of normalizable solutions∫ ∞
zb∗

dz∗χ∗Hχ > 0 . (A.25)
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We can rewrite (A.25) as

− [χ∗Dρχ]∞zb∗ +
∫ ∞
zb∗

dz∗
(|Dρχ|2 + Vρ|χ|2

)
> 0 , (A.26)

where we have introduced an auxiliary function ρ, such that Dρ = ∂z∗ + ρ and

Vρ = V0 + ∂z∗ρ− ρ2 . (A.27)

A convenient election that makes Vρ ≥ 0 for vector fluctuations is ρ = −f(z)/2z. We
can easily see that there is no contribution from the boundary term at the horizon, since
χ(∞)→ const. and ρ(∞)→ 0. Therefore, we are left with the condition

lim
z→0

χ∗
(
∂z − 1

2z

)
χ = 0 . (A.28)

Close to the boundary, V0 ' −1/4z2, so the solution is a combination of Bessel functions
χ ∼ a

√
zJ0(ωz) + b

√
z Y0(ωz). Then, the condition (A.28) satisfied when b = 0, that is

equivalent to choose the normalizable solution at the boundary.

The effective potential of the shear mode is also interesting. It is negative close to
the horizon. Equation (3.16) shows that this is a necessary requirement for existence of
the hydrodynamic shear mode with Re (q2) = 0. We would expect that if the potential
is deep enough, instabilities will appear. This is in agreement with other analysis that
exhibit a negative well in the interior. Purely imaginary frequencies have been found in
the study of electromagnetic and gravitational perturbations in global ads [90,162]. In the
extremal limit, the frequencies seem to reach the real axis at ω = 0, and the geometry was
conjectured to be marginally unstable. Recent works also suggest that instabilities of D7
probe branes in ads appear when a quasinormal mode cross the real axis at ω = 0 [3,106].

A.4 Changing parameters in a Heun equation

In this appendix we show how to map a given Heun equation with given parameters into
another Heun equation for a different function with a different set of parameters. This
will allow in some cases to avoid the problem with “fake” modes.

Let us start with a Heun equation for y(x)

y′′ +
(
γ

x
+

δ

x− 1
+

ε

x− 2

)
y′ +

αβx−Q
x(x− 1)(x− 2)

y(x) = 0 , (A.29)

where the parameters are subject to the condition α+β+1 = γ+δ+ε. The characteristic
exponents at the ads boundary (x = 1) are in general

{1; 0, 1− δ} ,
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for y(x). In the cases where δ ∈ {0 ∪ Z−}, the first solution is logarithmic, but the
logarithm might accidentally vanish at the “false frequencies”

y(x) = A[1 + (1− x) + . . .+ h(1− x)(1−δ) log(1− x) + . . .] +B[(1− x)(1−δ) + . . .] , (A.30)

where h = 0. According to [96] and as seen in section 2.3, the Green’s function is pro-
portional to the ratio B/A, and the false frequencies are the ones for which accidentally
h = 0.

Now we would like to change the function y(x) such that we find a related Heun
equation with different parameters. Let us define

y(x) = (1− x)% Y (x) . (A.31)

This allows us to find a Heun equation for Y (x), provided % = 1 − δ, and where the new
set is

α̃ = α+ % = α+ 1− δ ,
β̃ = β + % = β + 1− δ ,
Q̃ = Q+ 2γ% = Q+ 2γ(1− δ) , (A.32)

δ̃ = δ + 2% = 2− δ ,
γ̃ = γ , ε̃ = ε .

The interesting thing about this shift is that we can find a positive δ̃ ∈ Z+ when in the
original Heun equation we encounter fake frequencies. This always eliminates the false
frequencies since the second solution is never analytic but goes like (1− x)(δ−1), which is
a negative (or zero) exponent for δ̃ ∈ Z+. Now, the Frobenius solution is

Y (x) = A[(1−x)−%+ . . .+h(1−x)(1−δ−%) log(1−x)+ . . .]+B[(1−x)(1−δ−%) + . . .] . (A.33)

The recursion algorithm of Leaver [115] and its adaption to the Heun equation by Starinets
[94] computes when the solution of the Heun equation is analytic at x = 1. Now the solu-
tion that goes with the coefficient A is never analytic, and therefore the false frequencies
do not appear.

A.5 Relaxation method

It is common practice to use the shooting method to solve two-point boundary value
differential equations. Indeed, we have used this method to compute the first three quasi-
normal modes of the massive embedding for a variety of bare quark masses at the horizon.
However, in order to check at least those results for the first mode, we follow the spirit
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of “always shoot first and only then relax”. The reference for this appendix is Numerical
Recipes [163].

The idea behind this method consists in replacing the differential equations by a finite-
difference system (fde) on a grid. One will then modify the value of the dependent
variables at each point relaxing to the configuration which solves the differential equation.
In our case, we will convert our second order complex ode into a set of four first order
equations, with the real and imaginary parts separated, and then into an fde.

In general one has the set of N ode’s

dyi(x)
dx

= gi(x, y1, . . . , yN ;λ) , (A.34)

where each dependent variable depends on the others and itself, on the independent vari-
able x, and possibly on additional parameters, like λ above. In our case this (complex)
parameter takes the role of the quasinormal frequency. Those extra parameters can be
embedded in the problem giving equations for them too

yN+1 ≡ λ ,

dyN+1

dx
= 0 , since it is constant .

(A.35)

The solution to the problem involves N ×M values, for the N dependent variables in a
grid of M points. Concerning boundary conditions, for the system to be determined one
needs N of them, supplying it with extra boundary conditions for the extra parameters if
present.

The system is discretized as usual

x→ 1
2

(xk + xk−1) , y → 1
2

(yk + yk−1) , (A.36)

for points in the bulk (not in the boundaries). One may arrange the whole set of yi’s in
a column vector yk = (y1, . . . , yN , yN+1)kT , where the subscript k refers to evaluation at
the point xk, k = 1, . . . ,M. With this matrix notation, the system (A.34) is rewritten as

0 = Ek ≡ yk − yk−1 − (xk − xk−1) gk(xk, xk−1,yk,yk−1) , k = 2, . . . ,M , (A.37)

where the Ek are the aforementioned fde’s. These are the equations that we need to fulfil.
Notice there are N equations at M−1 points, so the remaining N equations are just given
by the boundary conditions. We will set n1 of them on the left at x1, called E1, and the
rest n2 = N − n1 at xM , called EM+1 (no typo in the subscript!).

Now one is set with all the necessary material. Suppose one has a good ansatz that
nearly solves the fde’s Ek. By shifting each solution yk → yk+∆yk and Taylor expanding
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in the shift, one obtains a relation

0 = Ek(y + ∆y) ' Ek(yk,yk−1) +
N∑
n=1

∂Ek

∂yn,k−1
∆yn,k−1 +

N∑
n=1

∂Ek

∂yn,k
∆yn,k , (A.38)

⇒ −Ej,k =
N∑
n=1

(
Sj,n ∆yn,k−1

)
+

2N∑
n=N+1

(
Sj,n ∆yn−N,k

)
, (A.39)

which by inverting it allows to find the ∆yk that improve the solution. This is done by
merging the two differentials

Sj,n =
∂Ej,k
∂yn,k−1

, Sj,n+N =
∂Ej,k
∂yn,k

, n = 1, . . . , N , (A.40)

in a N × 2N matrix, for each bulk grid position xk. For the boundaries the expressions
follow equally

−Ej,1 =
N∑
n=1

Sj,n ∆yn,1 =
N∑
n=1

∂Ej,1
∂yn,1

∆yn,1 , j2 + 1, . . . , N , (A.41)

−Ej,M+1 =
N∑
n=1

Sj,n ∆yn,M =
N∑
n=1

∂Ej,M+1

∂yn,M
∆yn,M , j = 1, . . . , n2 , (A.42)

where n runs in both from 1 to N . The whole (NM ×NM) S matrix possess a block di-
agonal structure. This allows for a somewhat fast Gaussian elimination, since off-diagonal
entries are already zero, and forms the basis of an iterative process which can be put to
run until one reaches a desired accuracy in the result. Concerning this last point, we
computed the error of our solution as

err =
1

MN

M∑
k=1

N∑
j=1

∣∣∣∣ ∆y[j][k]
scalevar[j]

∣∣∣∣ < conv , (A.43)

where scalevar[j] is an associated scale for each of the dependent variables (e.g. the
value at the midpoint or so). The idea is that when that averaged value of the shift to get
a better solution is smaller than conv, we accept the former values we had as the actual
solution. In our computations we set conv = 10−6.
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Introducción

En esta tesis nos encontramos en una situación dif́ıcil: es claramente un trabajo de teoŕıa
de cuerdas, pero con una fuerte motivación y relación directa con el mundo experimental.
Siendo ésta tal mezcla, debeŕıamos decir que es igualmente un desaf́ıo y muy divertido
trabajar en ella. Esperamos haber sido capaces de presentar las cosas con profundidad,
sin conflictos con los conocimientos que poseemos hoy en d́ıa.

Esta tesis versa sobre cómo calcular ciertas propiedades de un plasma, cuando éste
resulta ser no-Abeliano y, de forma más importante, cuando está acoplado fuertemente.
Diremos en este párrafo que la teoŕıa de cuerdas y en particular la correspondencia Anti-
deSitter/Teoŕıa Conforme de Campos (ads/cft por sus siglas en inglés) ha resultado ser
una herramienta como poco muy interesante. Esto es aśı porque utilizando dicha corres-
pondencia uno puede realizar cálculos cuantitativos que, en algunos casos, dan incluso
resultados muy cercanos a los obtenidos en el experimento. En este sentido podemos
conectar la parte experimental con la teoŕıa de cuerdas. Aún aśı, veremos que esta aproxi-
mación cuerdosa al problema todav́ıa necesita desarrollarse más hasta alcanzar la madurez.

Siguiendo con lo anterior, ¿por qué plasmas no-Abelianos fuertemente acoplados? Hay
muchos motivos para estudiar este tipo de plasmas, siendo el mejor ejemplo los primeros
microsegundos después del Big Bang. La historia temporal del Universo tiene una serie
de periodos distintos, comenzando con los primeros 10−43 segundos donde los efectos de
gravedad cuántica dominaron. Antes del inicio de inflación alrededor de 10−35 segundos
el medio ya era una especie de sopa extremadamente caliente y densa hecha de quarks
y gluones libres, entre otras part́ıculas. Según evolucionó y expandió desde el estado
inicial se enfrió (y aún lo hace), perdiendo parte de sus simetŕıas. Como consecuencia
de ello pasó por una serie de transiciones de fase. La primera tuvo lugar alrededor de
los 10−11 segundos tras el estallido y es conocida como transición de fase electrodébil,
lo cual significa que las fuerzas electromagnética y débil se observaban por separado. El
plasma de quarks y gluones continuó enfriándose llegando a la siguiente transición, esta
mucho más importante para nosotros: la transición quark/hadrón, también conocida en
el mundo más teórico como la transición confinamiento/deconfinamiento. Ésta fijó la
escala de formación de materia hadrónica, donde los protones y neutrones tales y como los
conocemos aparecieron, y donde los quarks y gluones dejaron de ser libres en condiciones
“normales”, i.e. aquellas del medio que los rodea. La transición ocurrió tras los primeros
diez microsegundos, cuando la temperatura era de unos 200 MeV. Esta forma tan moderna
de medir temperaturas puede traducirse en Kelvins usando la constante de Boltzmann,
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dando unos 2× 1012 K; un medio realmente caliente. Tras un par de minutos los neutrones
y protones formaron deuterio y núcleos de helio, i.e. se inició la nucleośıntesis, aunque
la mayor parte de los protones quedaron sin combinarse formando núcleos de hidrógeno.
Unos 380 000 años más tarde se vió el desacoplo de radiación de la materia y la formación
de átomos neutros, y después básicamente todo lo que hemos tenido ha sido formación de
estructuras como estrellas, galaxias, etc.

Aśı, volviendo más o menos al periodo entre inflación y la transición de deconfi-
namiento, estudiar plasmas no-Abelianos de quarks y gluones es nada más y nada menos
que estudiar parcialmente los primeros microsegundos de nuestro Universo.

Por supuesto hay aproximaciones a esta cuestión más terrenales, que son los llamados
“pequeños Bangs”. Estas explosiones con materia muy caliente y densa han sido produci-
das haciendo chocar núcleos en el Colisionador de Iones Pesados Relativistas (rhic de sus
siglas en inglés) en el Brookhaven National Laboratory, en EE.UU. El resultado es una bola
de fuego hecha en gran parte de quarks y gluones, que termaliza y enfŕıa en su expansión.
Este plasma ha sido llamado el Plasma de Quark-Gluón (qgp del inglés), y ciertamente
guarda un parecido con el proceso descrito dos párrafos arriba. El estudio de estas bolas
de fuego nos ha mostrado ya muchas cosas sobre la teoŕıa subyacente, la Cromodinámica
Cuántica (qcd), por encima de la transición de deconfinamiento. Su comprensión puede
igualmente jugar un papel clave en nuestra comprensión del plasma primordial.

Sin embargo, resulta que la descripción del qgp es una dura tarea. No es sencillo
extraer información dinámica de él, por ejemplo los parámetros de transporte. Grandes
fenómenos colectivos en él parecen mostrar que está fuertemente acoplado, reforzando la
idea de que cálculos desde primeros principios —cálculos en qcd— son dif́ıciles de llevar
a cabo. Y de hecho esto puede ser una oportunidad para la teoŕıa de cuerdas, como
trataremos de probar.

Nuestro objetivo en esta tesis es doble. En primer lugar, no queremos hacer el camino
largo. Esto significa que no planeamos hablar sobre cada detalle, mucha más información y
partes técnicas pueden encontrarse en la extenśısima literatura. Eso nos lleva al segundo
objetivo, que no es más que esa falta de información sea equilibrada con pedagoǵıa y
simplicidad. Esperamos haber conseguido esto.

El trabajo que presentamos está dividido en dos partes. En la primera presentamos el
caso a estudiar y proporcionamos las herramientas que utilizaremos para obtener resulta-
dos también

Caṕıtulo 1: está dedicado a presentar una motivación para el qgp a través de la tran-
sición deconfinante; explicando algunas nociones básicas de los plasmas como la
introducción de temperatura, la descripción de pequeñas perturbaciones y algunos
de los modos colectivos que pueden encontrarse; y finalmente mostrar en mayor pro-
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fundidad el experimento en rhic, que es nuestra nueva herramienta experimental
para estudiar la fase de plasma.

Caṕıtulo 2: se explica lo básico de la conjetura de Maldacena y sus generalizaciones más
relevantes para este trabajo, es decir (a) cómo poner la teoŕıa gauge a temperatura
finita mediante la adición de un agujero negro al background y (b) cómo calcular
cantidades que vienen de funciones a dos puntos en un formalismo en tiempo real y
su relación con los llamados modos cuasi-normales. Éstos son modos de frecuencia
compleja asociados a ecuaciones diferenciales con valores en la frontera sujetos a
condiciones muy peculiares en ella.

Caṕıtulo 3: en él analizamos todas las ligauras que pueden imponerse formalmente en
las funciones de Green retardadas y en el espectro cuasi-normal. También hacemos
un análisis de estabilidad para diferentes perturbaciones del background.

Nuestros resultados son analizados y comentados en la segunda parte, que consisten en:

Caṕıtulo 4: presentamos resultados de la contribución de cada modo colectivo a un
plasma de gluones. En este sentido calculamos los residuos de la función espec-
tral para los primeros cuatro modos cuasi-normales de perturbaciones vectoriales,
con diferentes valores del momento. Siempre que existen hacemos un seguimiento
de los modos hidrodinámicos, que son modos cuasi-normales puramente imaginarios.
Estos resultados tienen una interpretación interesante como tiempo de termalización
τtherm del plasma.

Caṕıtulo 5: se muestra el cálculo de longitudes de absorción en un plasma de gluones.
El punto clave es hacer complejo el momento en lugar de la frecuencia; aśı uno tiene
modos de momento complejo como función de la frecuencia ω en lugar de modos
cuasi-normales como función del momento q. Las longitudes de absorción vienen
dadas por el inverso de la parte imaginaria del momento complejo, mostrándose que
decaen exponencialmente. En el ĺımite de frecuencia cero, los modos de momento
complejo están conectados con el espectro de masas de glubolas en qcd3, de quienes
obtenemos los valores en algunos casos.

Caṕıtulo 6: se considera un plasma más fenomenológico a través de la adición de grados
de libertad en la fundamental, i.e. “quarks”. Nuestros resultados modelizan las
etapas finales del proceso de disociación de excitaciones colectivas en tal plasma.
Este proceso se construye en el dual gravitatorio mediante una brana que cae en el
agujero negro. Se argumenta que la descripción puede ser útil para el estudio de
supresión de charmonium en rhic.
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El trabajo original presentado en esta tesis concierne al preprint [1] y a nuestros
art́ıculos publicados [2–4].
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En esta tesis se han estudiado tres aspectos de la f́ısica de plasmas en acoplo fuerte desde
una perspectiva holográfica. En lo que sigue damos las conclusiones sobre cada uno de
ellos.

Caṕıtulo 4. Hemos encontrado una estructura anaĺıtica para el correlador de la carga-
R a temperatura finita muy interesante. Cuando el momento es cero, una propiedad
genérica de los correladores es la existencia de un conjunto infinito de polos equiespa-
ciados en el plano de frecuencias complejas. A acoplo débil éstos se colocan sobre el
eje imaginario [102], pero de acuerdo con el cálculo en ads/cft se alejan de él en acoplo
fuerte. El comportamiento correcto en el ultravioleta, que se puede obtener anaĺıticamente
a temperatura cero, se recupera sumando la contribución de todos los polos. El valor de
los residuos es crucial, especialmente el hecho de que el modo hidrodinámico se anule a
momento cero. Cuando consideramos dependencia en el momento, la forma anaĺıtica del
residuo para el modo difusivo en la aproximación hidrodinámica, proporcional a q2, in-
ducirá una singularidad en el correlador a tiempos pequeños, a añadir a la singularidad
ultravioleta usual. Esto claramente no puede ser la respuesta correcta, y se entiende como
una limitación a la validez de la aproximación. El comportamiento amortiguado y oscila-
torio del residuo hidrodinámico puede curar este problema, haciendo que la contribución
del modo difusivo sea suave a tiempos pequeños. De hecho, el modo hidrodinámico se
desacopla para momentos q > 1 y de esa forma se comporta como los modos colectivos
presentes a acoplo débil. En este sentido nuestros resultados van más allá de la aproxi-
mación hidrodinámica. En principio esperamos que otros modos hidrodinámicos que
aparecen en el correlador a dos puntos del tensor de esfuerzos —los modos sónico y de
cizalladura— presentados en la sección 1.2 tengan un comportamiento colectivo similar.

Observamos también que según aumenta el momento, la difusión se hace menos impor-
tante y las otras excitaciones colectivas de los modos longitudinales describen las fluctua-
ciones de la densidad de carga. En contraste con los partones vestidos por interacciones
en el regimen de acoplo débil, éstos no desacoplan a gran momento. El comportamiento
es también diferente del de los polos encontrados para operadores invariantes gauge. En
acoplo débil estos polos se convierten en cortes de ramificación en posiciones fijas del eje
imaginario, mientras que el cálculo holográfico predice a acoplo infinito que las únicas
singularidades existentes son polos que se acercan al eje real. Finalmente un nuevo pico
aparece en la función espectral, localizado cerca de w = q. Este pico sobrevive a momento
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más grande, y puede ser interpretado como una excitación de tipo cuasi-part́ıcula de las
fluctuaciones de la densidad de carga, lo cual muestra un cambio de comportamiento del
sistema según se aumenta el momento, de difusivo a reactivo. Por contra, las fluctuaciones
transversas apenas tienen propiedades caracteŕısticas, aśı que no aparecen cuasi-part́ıculas
para ellas; esto refleja el hecho de que no hay modos que se propaguen en la teoŕıa conforme
a temperatura cero.

Tal y como se sugirió en la introducción del caṕıtulo 4 podemos aplicar nuestros resul-
tados al cálculo de una escala de tiempo hidrodinámica τh. Recordando la ecuación (3.4)
podemos estimar el momento en el que la contribución del modo difusivo está a la par con
el primer modo cuasi-normal

|Rh(q) e−iΩH(q)τH−ΓH(q)τH | ' |R1(q) e−iΩ1(q)τH−Γ1(q)τH | ,

que tras un poco de álgebra lleva a la fórmula dependiente de q

τh =
log |Rh/R1|

Γh − Γ1
=

1
2πT

log |Rh/R1|
Im (w1 −wh)

.

Usando nuestros resultados numéricos representamos τh como función de q, para encontrar
que en unidades de (2πT )−1 la escala temporal mı́nima es τh = 3.7 − 3.2 en el rango
q = 0.3 − 0.48, aumentando rápidamente para valores más grandes del momento. Para
valores más bajos también crece, pero esto es debido al hecho de que la distribución de
carga ya es bastante uniforme, de manera que podemos tomar esos valores como aquellos
donde comienza la difusión. De hecho, la relación de dispersión comienza a desviarse
de la aproximación hidrodinámica para q ≈ 0.45, que corresponde a longitudes de onda
Compton de 1.2 fm, básicamente el tamaño del protón. Como un modelo para el sqgp

en rhic descrito en la sección 1.3, cojamos T ' 2Tc ' 350 MeV. La escala temporal
hidrodinámica es entonces τh ≈ 0.3 fm/c. Es un tiempo notablemente pequeño, incluso
un poco menor que τform. De hecho indica que la aproximación hidrodinámica es válida
desde tiempos muy pequeños. Recordemos que en rhic el tiempo de termalización es
τtherm ≈ 0.6 − 1.0 fm/c y que la aproximación hidrodinámica es por tanto válida ya en
t . 1 fm/c [108]. Esperamos que los valores para los modos sónico y de cizalladura
relacionados con el flujo de momento y enerǵıa cambien un tanto, pero es tranquilizador
encontrar los órdenes de magnitud correctos incluso para la teoŕıa N =4.

Caṕıtulo 5. En este caṕıtulo hemos puesto en piso firme la relación entre las solu-
ciones a las ecuaciones de campo linealizadas con momento complejo en un background
de agujero negro en ads y las longitudes de absorción en una teoŕıa gauge conforme en
la fase de plasma. Esto se realizó calculando expĺıcitamente algunos ejemplos sencillos
correspondientes a fluctuaciones escalares, vectoriales y de la métrica.
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Debido a la simetŕıa conforme subyacente, todas las longitudes de absorción escalean
simplemente como el inverso de la temperatura T−1. A frecuencia cero encontramos
acuerdo con cálculos previos del espectro de glubolas en la teoŕıa efectiva tridimen-
sional [109–111]. Sin embargo, preferimos en esta tesis interpretar nuestros resultados
como longitudes de apantallamiento para campos estáticos. Esta interpretación ha sido
propuesta recientemente y de manera independiente en la referencia [114]. Es más, también
hemos calculado la dependencia de la longitud de absorción con la frecuencia. Los resul-
tados para los primeros modos se muestran en las figuras 5.2, 5.3, 5.4 y 5.5. En todos los
casos, el plasma es menos absorbente a frecuencias mayores. Los números de onda com-
plejos capturan igualmente el comportamiento hidrodinámico para la difusión de carga-R
y para el momento. Nuestros resultados numéricos están de acuerdo con la simple con-
tinuación anaĺıtica de las relaciones de dispersión para los modos hidrodinámicos. Esto se
muestra en las figuras 5.6 y 5.7.

Uno de los resultados interesantes de nuestro estudio el que la longitud de apan-
tallamiento más larga (la masa de “glubola” más liviana en la teoŕıa reducida dimen-
sionalmente) corresponde a un estado con carga-R no cero. Tal estado no pertenece al
espectro de qcd3, i.e. ¡el mass gap de la teoŕıa efectiva tridimensional no es el de qcd3!
Las masas de glubola juegan un papel importante en la determinación de la longitud de
apantallamiento de Debye. En tal caso uno estudia el intercambio de glubolas entre cuer-
das abiertas en el background de agujero negro en ads. Tal y como se hizo notar en [114]
el mass gap por śı solo no es importante para el apantallamiento de Debye, dado que sólo
ciertos operadores pueden acoplarse a la cuerda abierta. Puesto que estas cuerdas abiertas
son neutras bajo carga-R, los estados de masa baja con carga-R no cero no se acoplan a
la cuerda. Sin embargo, la configuración de cuerdas que uno normalmente considera tiene
sus extremos fijados en un punto de la S5, o también es posible considerar cuerdas que aca-
ban en puntos diferentes de la S5. En tal situación los estados de carga-R no cero ligeros
pueden volverse importantes y modificar el resultado para la longitud de apantallamiento.

En este caṕıtulo hemos estudiado tan sólo los casos que pueden reducirse a la ecuación
de Heun permitiendo aplicar el método eficiente de fracciones continuas para el cálculo
de los autovalores del momento complejo. Seŕıa ciertamente interesante extender estas
investigaciones a los casos que no son reducibles a la ecuación de Heun. En éstos uno debe
utilizar métodos elementales como el de Frobenius, que hace que los cálculos numéricos
sean más lentos. Aún aśı creemos que es un problema interesante, especialmente teniendo
en cuenta la comparación con los cálculos de las masas de glubola.

Otro punto interesante es la cuestión acerca de si las longitudes de absorción divergen
en el ĺımite de frecuencia infinita o si permanecen finitas. Desafortunadamente hasta ahora
los métodos numéricos no permiten acceder a ese regimen.
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Un problema relacionado es el cálculo de las longitudes de absorción en teoŕıas holográfi-
cas puramente no conformes. Debido a la presencia de una escala subyacente la dependen-
cia en frecuencia probablemente mostrará un patrón más complicado que el encontrado en
el caso conforme. También será de gran interés el cálculo de las longitudes de absorción
para estados mesónicos que aparecen en teoŕıas con D7-branas embebidas en el agujero
negro en ads, usando los mismos métodos que empleamos en el caṕıtulo 6 para el estudio
de los modos cuasi-normales para mesones [3]. En [106] se ha enfatizado recientemente
que aparecen inestabilidades para embebimientos con horizonte cercanos al cŕıtico. Tales
inestabilidades aparecen como modos cuasi-normales de parte imaginaria positiva. Como
hemos visto, inestabilidades similares pueden aparecer igualmente en el estudio de las lon-
gitudes de absorción. Puesto que éstas aparecen para las longitudes de apantallamiento a
ω = 0 y para valores reales de q2, puede que sea mucho más sencillo buscar éstas en lugar
de las asociadas a modos cuasi-normales inestables.

Caṕıtulo 6. Hemos propuesto una descripción holográfica (de las etapas finales) del
proceso de disociación de mesones con esṕın bajo en el plasma de quarks y gluones. El
ingrediente clave es el embebimiento de D7-branas en el background de agujero negro
en ads que caen en el horizonte. La métrica inducida en el volumen de mundo de estas
D7-branas es igualmente un agujero negro, y por tanto tiene sentido calcular modos cuasi-
normales para las fluctuaciones de la brana. Estos modos describen la disipación de
enerǵıa de excitaciones mesónicas en el plasma, en particular la disociación de mesones.
Un punto importante es que el proceso de disociación en el plasma holográfico es sólo
accesible para mesones formados por quarks de masas hasta mq = 0.92

√
λT/2, donde T

es la temperatura en el plasma y λ es el acoplo de ’t Hooft. Quarks más pesados vienen
representados por D7-branas sin horizonte en su volumen de mundo y por ello tienen
excitaciones mesónicas estables.

La disociación de estados de quarkonium es de gran importancia para la f́ısica del
plasma de quarks y gluones. Desde hace tiempo se le ha considerado como una de las
pruebas más limpias de la formación del plasma. En particular, estados de quarkonium
tales como el mesón J/ψ se espera que se derritan en el plasma, y por tanto su abundancia
medida en los procesos donde hay formación de plasma se vea reducida significativamente
en comparación con colisiones nucleares donde no hay formación de plasma.

Aunque el modelo que hemos considerado está bastante lejos de qcd es aún aśı intere-
sante mirar al problema de la disociación de mesones desde nuestra perspectiva holográfica.
Encontramos que el proceso se da para estados de quarkonium hechos de quarks con masas
como mucho del orden de la temperatura del plasma. La masa del quark charm es mc ≈ 1.4
GeV y la temperatura en rhic es Trhic / 300 MeV. ads predice ratios de masa cŕıtica
respecto de la temperatura de 1 − 2 si usamos estimaciones recientes sobre cómo rela-
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cionar 5.5 < λ < 6π con qcd [156]. Es muy interesante que recientemente la disociación
de mesones ha sido considerada en un contexto de teoŕıa de perturbaciones Hard Thermal
Loop [157]. En él los autores encontraron una parte imaginaria para la parte estática
del potencial quark-antiquark, dando lugar a una anchura de desintegración que puede ser
ignorada para quarks más pesados que mq = 12πT/g2. Uno se siente tentado a interpretar
esto como el análogo a acoplo débil de qcd para el valor holográfico mq = 0.92

√
λT/2, y

que existe una función de interpolación f(λ) tal que mq = f(λ)T , donde f(λ) ≈ √λ en
acoplo fuerte y f(λ) ≈ 1/λ en acoplo débil.

El inconveniente más importante del modelo ads es que el background corresponde a
plasmas hechos con quarks sólo en la representación adjunta. Aunque en un background
con quarks dinámicos uno espera aún que los quarks pesados estén bien modelizados
por embebimientos de D-brana, la presencia de quarks en la fundamental en el plasma
deconfinado puede cambiar las tasas de disociación incluso para quarks pesados de manera
drástica. En cualquier caso, los modos cuasi-normales en D-branas embebidas en duales
gravitacionales de teoŕıas gauge ofrecen una manera única de estudiar la disociación de
quarkonium de forma holográfica.

Es de gran interés aplicar nuestro método a la disociación de mesones en otros mode-
los, tales como aquellos con simetŕıas quirales no-Abelianas [137] o a modelos holográficos
fenomenológicos de qcd desarrollados en [158, 159]. En vista del problema mencionado
arriba de la supresión del J/ψ, seŕıa de interés grand́ısimo tener un dual holográfico
fenomenológico de qcd que incluyera sabores pesados como el quark charm.

En esta tesis hemos considerado únicamente modos con momento cero en la S3 aśı
como en R3. En especial, la dependencia de los modos cuasi-normales con el momento
en relación al sistema de referencia en reposo debeŕıa ser muy interesante. Aún más, uno
podŕıa estudiar otros campos en el volumen de mundo de la D7-brana, como por ejemplo
excitaciones correspondientes a mesones vectoriales. Hemos encontrado igualmente evi-
dencia de que los modos cuasi-normales muestran un comportamiento interesante cuando
el sistema sufre la transición de fase de segundo orden, permitiendo una conexión continua
entre ambas fases.
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Quiero acordarme aqúı de mis dos padrinos oficiales, César y Enrique, tan importantes en
estas lides. Muchas gracias a los dos, por las clases y por los congresos tan surrealistas en
los que nos hemos encontrado, respectivamente. Igualmente quiero agradecer a todos los
miembros del tribunal su disponibilidad para fijar el d́ıa D y la hora H de la lectura de
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haber dedicado a la f́ısica estos años ha sido indudablemente la calidad humana y juerguil
de todos los estudiantes y algún que otro post-doc (ese Parmesano). Me he encontrado
con gente que ha hecho grandes lugares del IFT y de los páıses que hemos visitado. No
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