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= Abstract

Accelerator physics studies at the storage ring KARA at
£ KIT produce terabytes of diagnostics data per day, which
& is recorded once and then reused on a long-term basis to
§ answer different research questions at KIT. Finally, raw data
‘E and intermediate analysis results should be published along
£ with scientific results. Thus storing from the very beginning
2 the data of all analysis steps and its metadata in a central
§ portal would be very beneficial. Similar requirements exist
.§ for synchrotron X-ray micro tomography at the KIT imaging
£ cluster and there is an interest to share the large data analysis
€ effort. By using a new collaborative approach, the NOVA
Z project aims to create tools, to enable an efficient use of
E valuable beam time. For micro tomography beamlines the
§ project will build up a comprehensive database of various
.2 demonstrator organisms for the morphological analysis of
. animals. The NOVA portal is integrated in the local data
= handling procedures and the datasets automatically appear in
the NOVA portal as they are recorded. For both applications,
accelerator diagnostics and X-ray tomography, the NOVA
portal will offer new collaborative tools to enable synergetic
data analysis.
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INTRODUCTION

Scientific data management is becoming increasingly im-
o portant for large scale physics facilities. The European Com-
§ mission points out already in 2016 that e-science is essential
S to meet the challenges of the 21st century in scientific discov-
% ery and learning [1]. The emerging question is: Is your data
o, useful for somebody in 10 years? Experiments nowadays
U produce data at extremely high rates, which are put high
£ demands to the whole data acquisition chain with respect to
° data analysis, curation, storage and usages. While the first
E two steps are naturally in the focus of the scientists, the later
o Steps are often not handled with the same effort. However,
§ the basics of the data lifecycle must be considered as early as
"qé possible so that curated data sets with high-quality content
2 are stored. The experimental boundary conditions must be
Qg) described in form of metadata as completely as possible in
8 order to be able to analyze data later and reuse it interdisci-
 plinary. For providing open access to these data, the FAIR
_z data principles, as introduced by Wilkinson et al. [2], are im-
3 portant. Data have to be Findable, Accessible, Interoperable
£ and Reusable. To be findable, data should have a globally
unique and eternally persistent identifier. To be accessible,
also (meta)data have to be online. For being accessible,
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(meta)data have to be retrievable by their identifier using a
standardized open, free and platform independent protocol,
e.g. a public repository. To be interoperable, (meta)data use
aformal, accessible, shared, and broadly applicable language
for knowledge representation. To be reusable, metadata have
a plurality of accurate and relevant attributes and should be
published together with a clear and accessible data usage
license.

Detectors with high temporal and spatial resolution are
nowadays available and used in an increasing number of
experiments. The resulting data rates are faster growing
than data handling technologies. Thus, we move to an era
where data becomes to large to copy and more and more
scientists in smaller organizations are excluded from latest
technologies. During the last ten years several large effort
has been taken to find solutions for improved analysis, man-
agement and access to large data sets. Synchrotron X-ray
tomography has served as an example for imaging applica-
tions in general. The integration of online data processing in
DAQ systems is essential for high data rate applications. It
improves the quality of recorded data and enables advanced
experimental control. For the demonstrator application X-
ray tomography, a suite of modular software components,
called the UFO GPU computing platform, has been designed
and implemented. It is intended to execute complex beam-
line protocols, including real-time data investigation and
on-site data processing [3—6]. New methods are added to
enhance reconstruction quality and to compute acceptable
reconstructions from few data [7, 8]. To manage scientific
data at all processing levels, we started the NOVA project. In
NOVA, the Network for Online Visualization and Synergistic
Analysis, a group of X-ray experts, engineers, computer sci-
entists, mathematicians and biologists teams up to advance
analysis tools for tomographic data. The project aims for
synergistic data analysis and is building up a comprehensive
data portal for morphologic images of small insects [9, 10].

The instrumentation in accelerator physics is currently
undergoing a dramatic change. With the new instruments
KAPTURE and KALYPSO developed at KIT continuous
monitoring of electron beams is possible [11]. These tools
uncover phenomena in elctron bunch dynamics and enable
advanced beam control [12]. Similar to the imaging appli-
cations mentioned before multidimensional datasets with
sizes up to the Terabyte level are recorded. Common to all
this high rate and high resolution measurements is the need
to describe datasets carefully and to provide hierarchical
exploration of these datasets. Due to the size of the datasets,
storage is costly and access is complex and time consuming.
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Repositories like the European projects EUDAT or ZEN-
ODO allow to store datasets with searchable metadata, but
currently there are no suitable tools available to browse this
kind of datasets and to inspect multi-scale phenomena. In
order to share analysis effort in international communities
and to provide access to raw data with scientific publications
we will adapt the technologies developed with the NOVA
web portal and investigate methods to browse in multidimen-
sional datasets. We are convinced, complex datasets need
precise textual metadata and visual exploration. Improved
visualization is the key to the development of better metadata
for multidimensional datasets.

As a first prototype of the NOVA portal for the tomo-
graphic datasets has been already developed. In the next
step we will adapt the NOVA environment for electron beam
diagnostics at KIT. It is intended to explore with a second
community the benefits of collaborative data analysis. The
system is constantly evolving and integrated with both user-
visible front-end components to enhance the view on the
data as well as back-end components that connect the system
with the actual experiment setup. In the future, the system
will enable scientists to structure their data automatically in
a hierarchical manner, which is a prerequisite for efficient
storage of large data volumes.

NOVA DATA PORTAL

Synchrotron X-ray microtomography offers unique op-
portunities for the morphological analysis of small animals.
Internal structures become observable even in opaque organ-
isms in a non-invasive, three-dimensional way at sub-micron
resolution. By using a new collaborative approach, NOVA
aims to create new possibilities allowing for a more effi-
cient use of valuable beam time at tomographic synchrotron
beamlines. At the same time the project establishes a com-
prehensive database of various demonstrator organisms and
develops the NOVA data portal to archive, analyze, and share
these datasets.

The NOVA data portal is split into a core system and
third-party services. The core system provides login, au-
thentication, and management facilities as well as a REST
API to interact with those facilities remotely. Third-party
services can register with the core system to provide addi-
tional functionality and features that should or could not run
on the same machine as the portal backend itself. Two main
services that are currently implemented are the thumbnail
service and a 3D visualization service. The thumbnail ser-
vice is used to generate iconic images to get a quick idea
what kind of data is contained in a data set. The service reads
the middle slice of a dataset, shrinks it to a user-defined size
and maps the grey values to an RGB triple and saves the
resulting JPEG in an on-disk cache from which a browser
request is served. Instead of using a generic icon, part of
the data with a distinguishing color helps to identify a previ-
ously seen data quicker (Fig. 1, left). The 3D visualization
service generates on-demand slice maps from the raw image
data for client-side rendering using a 3D WebGL browser
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library WAVe. The service receives a description of the de-
sired dataset and its volume origin and region, then reads
the required slices, rescales them and re-orders them in a 2D
slice map. This process happens in asynchronous fashion, i.e.
the client requests the generation and waits for the service to
finish processing and get the final slice map URLs. The slice
map’s filename is determined by a hash computed from the
size requirements for efficient on-disk storage and retrieval.
On the front-end side the 3D visualization is started as soon
as the slice maps for the entire volume is generated. The
user can then translate, rotate, and scale the volume and
define a bounding box to “zoom in” to load a smaller part
of the volume with a higher resolution. This zoom request
will then generate a new task for the slice map server with a
new origin and a new region. The right-hand side of Fig. 1
shows the front-end after zooming in on a particular area of
the volume.

The WAVe Library for 3D Web Visualization

The WAVe library is a web-based 3D visualization appli-
cation that renders volumetric slice map data as 3D objects.
It consists of multiple modules which render the data in dif-
ferent forms, i.e. using surface rendering or direct volume
rendering. These modules are implemented as shaders that
enable a high flexibility in fine-tuning the GPU usage such
as varying the ray-casting steps or performing various in-
terpolation schemes. The library is based on the Three.js
framework which simplifies the 3D scene management. Fig-
ure 2 shows the architecture of the library. The API layer
allows users to integrate the library into any user interface
designs.

ADAPTING NOVA FOR ACCELERATOR
RESEARCH

The presented data management workflow has been de-
veloped from the beginning in a modular and portable way.
It is meant as a generic approach for applications with large
multi-dimensional datasets. While being developed for orga-
nizing tomographic datasets of biological origin, it can easily
being adopted to other fields. We have identified a second
use-case for accelerator physics data recorded at the KARA
light source, which was also used to acquire tomographic
data in the ASTOR campaigns. The accelerator research
data e.g. Terahertz research, consists of one Terabyte per
machine physics day, with the capability of one Terabyte
per hour, and has been acquired by different detectors like
EO-Laser, Streak camera, HEB detector, KAPTURE and
KALYPSO. The development of fast detection methods for
comprehensive monitoring of electron bunches is a prereq-
uisite to gain comprehensive control over the synchrontron
emission in storage rings with their MHz repetition rate. For
example the “KArlsruhe Linear arraY detector for MHz-
rePetition rate SpectrOscopy” (KALYPSO) developed at
KIT allows to detect longitudinal electron bunch profiles via
single-shot,near-field electro-optical sampling at the Karl-
sruhe Research Accelerator (KARA) [12]. For one analysis,
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g 100.000 samples with 0,91 Mhz are taken with signal and  stored data, some metadata is partially digitally no available
E another set of 100.000 samples as calibration measurements  (e.g. paper logbooks) or differently structured depending on

Z and ar stored structured as tables in the container format each experiment type. This means importing can only hap-
% HDF5. The organization of the data takes place on file sys- pen case-by-case. To alleviate this, we identified common
2 tem level with a structuring by date/ filling number / detector ~ metadata structures and began writing an import description

§ and measuring station. The metadata is recorded separately =~ format and an import tool that is capable of transforming
£ in a digital log book (elog) and the accelerator’s operat-  input data to a common format usable by the NOVA portal.
S ing data is automatically logged into a NoSQL Cassandra  This tool processes an easy extensible job list in JSON for-
g database. mat (Fig. 3), which collects all available metadata of the
Z  The interesting use case for NOVA is, that these data datas.ets of a certain °xp eriment type anq ?OUId be added.by
5 specific filters collecting data from additional sources like
£ has been recorded only once and can be reused on a long-

e-logbooks and the Cassandra database.
& term base for different accelerator physic research questions.

£ Informations like the shift of the bunch profile center in rela-
£ tion to different machine parameters could be automatically SUMMARY AND OUTLOOK
0 calculated and displayed in the portal. Thus, offering all Existing repositories like EUDAT or Zenodo allow one to

2 these data enriched with metadata in a central portal would  publish digital data with a digital object identifier and make
% be a big benefit for accelerator research. The core infras- it searchable. The NOVA portal is not only a repository,
£ tructure is capable of hosting this data, the question that  but allows to browse digital 3D datasets. We are planning
arose was how to ingest it into the system. For the already  to adapt the NOVA collaborative research approach to the
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Figure 1: Overview of the NOVA web portal. Left. Thumbnails shown are generated by the thumbnail service allow for
easier and quicker distinction between different datasets. Right. Interactive 3D visualization for a selected dataset as surface
(upper image) and voxel rendering (lower image). The two smaller blue boxes denote the current zoom area in the x-y- and
y-z plane, the blue bounding box in the 3D view shows the current slicing operation.Scheme of the FLUTE accelerator with
all installed and planned components.
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Figure 2: The image represents the high-level architecture
of the WAVe library.
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Figure 3: Concept of importing metadata to NOVA portal.

accelerator community for the new generation of detectors
for accelerator beam diagnostics.
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