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In complete analogy to chiral perturbation theory, systigiew-energy effective theories can be
used to describe the lightly doped antiferromagnetic s of high-temperature superconduc-
tors. The spinwaves or magnons are the Goldstone bosons sptintaneously broke®iJ(2)s
symmetry. The comparison of analytic effective field theoegults at the two-loop level and
Monte Carlo data obtained with a very efficient cluster alton leads to a determination of the
leading low-energy parameters with permille accuracy. léMiniagnons are analogous to the pions
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bers of doped holes emerge from non-trivial positions offtbke pockets in the Brillouin zone.
Magnon-exchange leads to the formation of two-hole boustgstanalogous to the deuteron, and
spiral phases of the staggered magnetization are a cordleragter analog of pion condensation
in nuclear matter.
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1. Introduction

To a large extent, the success of theoretical physics ig@sé¢he concept of effective theo-
ries. In particular, there is no need to know the “theory adrgthing” before one can address the
physics at a particular energy scale. Once the relevaneds@f freedom have been identified, and
symmetry considerations are taken into account, the lycalispace and time allows us to con-
struct a systematic low-energy effective theory. This reenldemonstrated in great detail in chiral
perturbation theory — the systematic low-energy effecfie@ theory description of the strong
interaction. Chiral perturbation theory was originallwdmped for the lightest strongly interact-
ing particles — the pseudo-Goldstone pions of the spontastgdrokenSU(2). x SU(2)g chiral
symmetry of QCD [1, 2]. It was then extended to baryon chieatyrbation theory [3—6] which
includes the nucleons as the lightest particles in the sedth baryon number one. Systematic
effective theories have also been developed for few nudgstems [7—10]. Thanks to asymptotic
freedom, the fundamental QCD theory underlying all theectfe theories is well-defined at ar-
bitrarily high energy scales, and can hence be considerdéaedt$heory of everything about the
strong interaction®. Given the value of the strong coupling constant as well agjtieek masses
(at some energy scale), QCD makes unique predictions fpratesses of the strong interactions.
The same physics is described by the corresponding effeitteories, order by order in a system-
atic low-energy expansion. The effective theories corddisrge number of a priori undetermined
low-energy parameters. Matching these parameters to therlying QCD theory is an important
incentive of lattice QCD, the nonperturbative first prinegpapproach to the underlying fundamen-
tal theory itself. Although lattice QCD will eventually uadbtedly solve QCD with high precision,
the corresponding systematic low-energy effective tlesonill always remain extremely valuable
because they add tremendous analytic understanding taithieers produced by lattice QCD. The
strong interactions provide a perfect example for how therplay between the underlying funda-
mental theory and the corresponding low-energy effectieeties can advance our understanding
of non-trivial dynamical phenomena.

Highly non-trivial dynamics is at work also in condensed t@iaphysics. In particular, under-
standing high-temperature superconductivity [11] remaine of the greatest challenges in con-
densed matter physics. Unlike in particle physics, themoigieneral agreement about what the
underlying “theory of everything about high-temperatunperconductivity” should be. Still, most
experts agree that some variant of the Hubbatdlanodel should capture the relevant microscopic
physics. Just like solving lattice QCD, it is a tremendoumatical and algorithmic challenge to
solve these microscopic models addressing high-temperatiperconductivity. In particular, at
non-zero doping (which is analogous to non-zero baryonigemsQCD) numerical simulations
suffer from very severe sign problems. Even the lightly dbpetiferromagnetic precursors of
high-temperature superconductors possess a highly ivigil-ttynamics and pose great theoretical
challenges. Using a variety of experimental and theofetiethods, a lot has been learned about
these systems. In particular, at zero doping the relevagreds of freedom are the magnon Gold-
stone bosons of thBU(2)s symmetry, which is spontaneously broken td @l)s subgroup by the
formation of the staggered magnetization order parambsmacteristic for antiferromagnetism. In
complete analogy to pion chiral perturbation theory, systic low-energy effective field theories

Lobviously, QCD is embedded in the Standard model, which —tdlifs triviality — is only an effective theory.
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| QCD | Antiferromagnetism
broken phase hadronic vacuum antiferromagnetic phase
global symmetry chiral symmetry spin rotations
symmetry groups SU(2). x SU(2)r SU(2)s
unbroken subgroupl SU(2) —r U(1)s
Goldstone boson pion magnon
Goldstone field irG/H U(x) € SU(2) 8(x) € &
order parameter chiral condensate | staggered magnetizatiows
coupling strength pion decay constant spin stiffnessps
propagation speed velocity of light spinwave velocityc
conserved charge | baryon numbeb (1)g electric chargd (1)q
charged patrticle nucleon or antinucleor electron or hole
long-range force pion exchange magnon exchange
inhomogeneous phase spiral phase pion condensate
dense phase nuclear or quark matter  high-T. superconductor
microscopic description lattice QCD Hubbard ott-J model
effective description chiral perturbation magnon effective
of Goldstone bosons theory theory
effective description baryon chiral magnon-hole
of charged fields perturbation theory effective theory

Table 1: Some analogies between QCD and antiferromagnetism.

have been developed for magnons both in ferro- and in arifexgnets [12—19]. In fact, thanks to
the interplay between analytic calculations in effectietdfitheory and accurate numerical simula-
tions [20, 21], the undoped antiferromagnetic precursbrégh-temperature superconductors like
Lap,CuOy and SpCuO,Cl, are among the quantitatively best understood condensddmagstems.

At low doping, in addition to the magnons, doped holes erdaetevant low-energy degrees
of freedom. The dynamics of doped holes has also been addresth effective theories [22—-25].
However, there has been no agreement on important issdediimg the transformation rules of the
hole fields under the various symmetries. In complete agatmbaryon chiral perturbation theory,
and based on experimental and numerical results [26, 2Théounderlying microscopic systems,
fully systematic low-energy effective field theories fagHily doped antiferromagnets have been
constructed in [28—33]. Several of these theories will lsgassed below. Some analogies between

QCD and antiferromagnetism are listed in table 1.

2. Undoped Antiferromagnets

In this section we discuss effective theories for undopdilesromagnets. A concrete under-
lying microscopic system is the quantum Heisenberg modl tlie Hamiltonian

H=Jy S-Supn  [SLS)] =idyEancS: (2.1)
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Herex denotes sites on a 2-dimensional bipartite (e.g. squarer@yttomb) lattice with spacirey
andi is a vector of lengtta in a lattice direction. The spié operatorsS, obey the standar8U(2)s
commutation relations. Note that we work in natural unitssich h= 1. The Hamiltonian
commutes with the total spif = zxé( and is thus invariant unde8U(2)s spin rotations. As
one has learned from detailed numerical simulations, &t teenperature th8U(2)s symmetry is
spontaneously broken down tdJd1)s subgroup, both on a square and on a honeycomb lattice.

The corresponding low-energy effective field theory is falated in terms of the staggered
magnetization order parameter field

&) = (e1(x),&2(x),&3(x)) € S, X =1, (2.2)

which takes values in the coset sp&t#(2)s/U (1)s = S*. Herex = (xq, %o, 1) is a point in Euclidean
space-time. The leading terms in the effective action ferstaggered magnetization field take the
form

Sg = /dzx dt%s <dié- a8+ C—lzdté- dé) (2.3)

whereps is the spin stiffness. Antiferromagnetic magnons have ktivéstic” dispersion relation
with the spinwave velocitg playing the role of the velocity of light. It should be poidteut that
Euclidean rotation invariance is just an accidental synmyneftthe leading terms of the effective
action.

It is interesting to note that the ferromagnetic quantunskleiberg model (which differs from
the antiferromagnet only by the sign of the Hamiltonian) taiser different symmetry properties at
low energies. Unlike guantum antiferromagnets, quantunoriegagnets have a conserved order pa-
rameter — the uniform magnetization. Consequently, feagmnetic magnons have a nonrelativis-
tic dispersion relation and the corresponding effectiiaccontains an additional Wess-Zumino
term [18], which breaks rotation invariance between spackEuclidean time already at leading
order. The resulting effective field theory for ferromagn@tagnons has been studied in [18, 19].

2.1 Determination of the Low-Energy Parametersin the Cubic e-Regime

Hasenfratz and Niedermayer have used the effective theatgrive the finite-size and finite-
temperature effects of the staggered susceptibility

22 2

from a 2-loop calculation in the-regime of magnon chiral perturbation theory [17]. Hes& is
the staggered magnetization density. Similarly, the unifsusceptibility takes the form

~ 2 ~ ~
m:%{u%ﬁmm%(&) lt) - 350600 w(é)} 25)

Herel = (Bc/L)Y2 determines the shape of an approximately cubic space-timeftsizeL x L x
B, with Bc~ L. The functiong5;(1), Ei(l), andy(l) are known shape-coefficients [15, 17].

The susceptibilitiegs and x, have been calculated numerically for the antiferromagrsin
% guantum Heisenberg model on the square lattice using a ¥iciept loop-cluster algorithm
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[20, 34]. In arecent study using a zero-temperature vakeooe projector method, a very accurate
result was obtained for the staggered magnetization per.#gi= .#sa® [35]. The best estimate
of the low-energy parameters is given by [36]

M= 0.307431), ps=0.18084)J, c=1.658510)Ja (square lattice) (2.6)

In addition to the cuprates, another superconducting mahtéMa,CoO,-yH,O, has drawn
a lot of attention both theoretically and experimentallynfattunately, due to the fact that the
underlying lattice geometry of the spgrobalt sites in these materials is triangular — which leads
to strong geometric frustration — a first principles Monterl@atudy is impossible in practice.
Nevertheless, at filling = % the unhydrated parent compound,8a0, may be described by the
Heisenberg model on a honeycomb lattice which allows onartalate the system efficiently with
the loop-cluster algorithm. In this case one obtains [37]

Mo = 0.26883), ps=0.1022)J, c=1.297(16)Ja (honeycomb lattice) (2.7)

The reduction of the staggered magnetization per sﬁnand the spin stiffnesps compared to
the square lattice case indicates larger quantum fluchstim the honeycomb lattice. This is
expected since the coordination number of the honeycontibdas smaller than the one of the
square lattice. Once the low-energy parameters are detedmvith high precision, the effective
theory makes unambiguous predictions, which in turn ataldesin numerical simulations.

2.2 Rotor Spectrum in the Cylindrical d-Regime

In the very low temperature limit, one enters the cylindridaregime of space-time vol-
umes withBc > L. In this case, the staggered magnetization vector acts aardugn rotor and,
correspondingly, the low-energy end of the spectrum takesfarm Es = S(S+ 1)/20. Here
Se€{0,1,2,...} is the total spin an® is the moment of inertia of the quantum rotor which is given

by [17]
B psL? 3.900265¢ 1
0= B[y, 200020, (1)) ”

The probability distribution of the uniform magnetizatibi¥ = S° takes the form

M3 = 2 —E,zzmzsl —BEs). 2.9
P(M%) == > exp(—BEs) go( +1)exp(—BEs) (2.9)

S>[M3|

Having determined the values of the low-energy paramek%gsps, andc from the cubic
space-time regime, one can now test the effective theotyeireylindrical regime. Figure 1 shows
a comparison of the effective theory prediction for the jattaility distribution p(M?3) of eq.(2.9)
with Monte Carlo data for the system on the honeycomb latfiée observed excellent agreement
— which does not involve any adjustable parameters — confiregjuantitative correctness of
the effective theory.
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Figure 1. Cylindrical space-time volume for a honeycomb latticetfleEomparison of the effective theory
prediction for the probability distribution @3) with Monte Carlo data in the cylindricad-regime on a
honeycomb lattice (right).

2.3 Constraint Effective Potential for the Square L attice Antiferromagnet

Let us again consider the system in a periodic cubic spate-tolumelL x L x 8 with the
inverse temperature fixed t=L/c. The space-time average of the staggered magnetization is

given by
1 2 3y
2L2[3/d X dt &(x 2L3/d (2.10)

Due to theSU(2)s symmetry, the probability distribution
/Dé exp(—Sd) (“ /d3xé ) — ¥ exp(—U (D). (2.11)

of the mean staggered magnetization vectoonly depends on the magnitude = ]?D\. The
constraint effective potential (®) represents the free energy density of configurations cinstt

to a fixed mean staggered magnetizationGockeler and Leutwyler have used chiral perturbation
theory to systematically work out the finite-size effectshaf constraint effective potential near its
minimum [38, 39]. At leading ordet) (®) = Uo(y) is a known universal function of the rescaled
variabley = psL (P — ///s)////sc Some values of the functiddy(y) extracted from the numerical
data of [36] are compared with the analytic result of [38, Bjgure 2. It should be pointed out
that the observed perfect agreement does not depend on jasyasde parameters, and thus again
confirms the correctness of the effective theory in greaitlet

3. Lightly Doped Antiferromagnets

The standard microscopic models for antiferromagnetischhégh-temperature superconduc-
tivity are Hubbard and-J-type models. The symmetries of these models are of cemaiitance
for the construction of the low-energy effective theoriesrhagnons and holes. Tl model is
defined by the nearest-neighbor hopping Hamilton operator

- Cx 2 o
H:P{—t;(olcx+r+c§+fcx)+J;&-%+r}P, cx=<cxl>, S=C5% (1)
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Figure 2: Probability distributions §@) of the mean staggered magnetization on the square lattiagiffo
ferent volumes (left). In the infinite-volume limit the #ritolume curves approach the vertical line which
marks the order parameter/s = 0.307431). The analytic result for the universal functionW) is com-
pared to Monte Carlo data without any adjustable parame(gght).
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Figure 3: The energy-momentum dispersion relation for a single hokhé t-J model on a square lattice
over the corresponding Brillouin zone (left). The holesdesn momentum space pockets centered at lattice

momenta( + 7%, +4L) which are represented by the four crosses (right).

The fermion creation and annihilation operators obey stahdnticommutation relations and act
in a restricted Hilbert space of empty or at most singly o@disites, while states with doubly
occupied sites are eliminated from the Hilbert space by th@ption operatoP. Thet-J model

is invariant againsBU(2)s spin rotations,U (1)q fermion number transformations, the discrete
rotations, reflections, and shift symmetries of the spédttite, as well as against time-reversal. At
zero doping, i.e. at half-filling, theJ model reduces to the Heisenberg model.

As illustrated in figure 3, numerical simulations of the $inbole sector of the-d model show
that the holes reside in momentum-space pockets center@ﬁi g,i%) in the Brillouin zone
[26, 27, 30]. There are four half-pockets which give risevto tifferent species of holes. In the
effective theory the location of the two species in diffénagions of the Brillouin zone manifests
itself as a flavor index that responds to discrete rotatigfiections, and shift symmetries.
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3.1 Nonlinear Realization of the SU(2)s Symmetry

In order to couple the holes to the magnons, a nonlinearzegedh of theSU(2)s symmetry
has been constructed in [28]. The glols4(2)s symmetry then manifests itself as a loth(1)s
symmetry in the unbroken subgroup. This is analogous todmachiral perturbation theory in
which the spontaneously brok&u(2), x SU(2)r chiral symmetry of QCD is implemented on the
nucleon fields as a loc&8U(2),_g transformation in the unbroken isospin subgroup. The d&fini
of the nonlinear realization of thBU(2)s symmetry proceeds as follows. First, one diagonalizes
the magnon field by a unitary transformatiofx) € SU(2)s, i.e.

u(X)= (1 +8(x)-8)ux)" = %(]1 +03) = (é 8) . up(x) > 0. (3.2)

NI -

Under anSU(2)s transformatiorg, the diagonalizing fieldi(x) transforms asi(x)’ = h(x)u(x)g",
which implicitly defines the nonlinear symmetry transfotima h(x) € U (1)s. The traceless anti-
Hermitean field

Vu(X) = u(x)9uu(x)", Vu(X) = Vi(X)Ga, Vi (X) = Vi (%) FivE (%), (3.3)

decomposes into an Abelian “gauge” fie@l(x) and two “charged” vector fieldsﬁ(x) to which
the doped holes can couple.

3.2 Effective Lagrangian for Magnonsand Holes on the Square L attice

The effective field theory is defined in the space-time caniin and the holes are described
by two independent Grassmann-valued fie},d$x) and (,Usf T(x) carrying a “flavor” indexf = a, 3
that characterizes the corresponding hole pocket. Theisde+ denotes spin paralleh{) or
antiparallel ) to the local staggered magnetization. A detailed symneeiglysis was carried out
in [30]. The resulting leading terms in the effective Lagy@m with two fermion fields (containing
at most one temporal or two spatial derivatives) describeptiopagation of holes as well as their
couplings to magnons and are given by

1

L=y Mpd'yd + gD + oDl DI + o
f=a,B
S=+,—

AW o gl ) + NI o (v ol + gl Nav )| (34)

M (DllﬂszDZLpsf + DZLI—’SfTDILI"Sf)

HereM is the rest mass ar/d’ andM” are the kinetic masses of a holejs a hole-one-magnon,
andN; andN, are hole-two-magnon couplings, which all take real valuBse signos is + for

f = a and— for f = B. The covariant derivatives are given By, . (x) = [0 £iv3 (X)] Wl (%).
Remarkably, the term in the Lagrangian proportiona\t@ontains just a single (uncontracted)
spatial derivative (which is contained V). Due to the nontrivial rotation properties of flavor, this
term is still 90 degrees rotation invariant. Due to the smalthber of derivatives it contains, this
term dominates the low-energy dynamics. In particularldha is responsible for one-magnon
exchange and for the existence of spiral phases. The QCBgaobA is the couplingga.
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Figure 4. One-magnon exchange between two holes (left), and pratyatiistribution for the bound state
of two holes with flavorsr and 3 (right).

3.3 Magnon-mediated Two-Hole Bound States

Figure 4 shows the Feynman diagram for one-magnon exchatgedn two holes. Depend-
ing on the flavor-combination, the resulting potentialsgiven by

)

wherey = A\? /2mps. Herer is the distance vector between the two holes @uiglthe angle between
rand a lattice axis. The corresponding two-hole Schrédiegeation has been solved analytically
in [30]. Figure 4 also illustrates the resulting probailitistribution for the bound state of two
holes with flavorsx and. Although it seems to resembtk._,» symmetry, it actually has p-wave
symmetry. Since the Cooper pairs of high-temperature sopductors have d-wave symmetry,
one may conclude that magnon-mediated two-hole boundsstatelightly doped antiferromagnet
do not resemble Cooper pairs. They are, however, a condemster analog of the deuteron.

3.4 Spiral Phases of the Staggered M agnetization

The systematic effective field theory for antiferromagnetiagnons and holes has also been
used to investigate the propagation of holes in the backgtaf a spatially varying staggered
magnetization field [31]. For large values @, distortions in the staggered magnetization cost a
large amount of energy and a homogeneous phase is endigetwoared. In that case, all four
hole pockets are equally populated with doped holes. Follemalues ofps, on the other hand,
the doped holes can gain energy from a spiral in the staggeegphetization. For intermediate
values ofps a zero degree spiral is realized, in which only two hole ptxlkee populated. The
homogeneous as well as the spiral phase are illustratedurefls It should be noted that spiral
phases arise due to the leading magnon-hole couplintn electron-doped antiferromagnets the
charge carriers reside in other places in the Brillouin zoAe a consequence, an analog of the
A-term is absent in the electron-doped case, and spiral plds@ot arise [32]. Spiral phases
have indeed been observed in certain hole- but not in electoped antiferromagnets. They are a
condensed matter analog of pion condensates in nucleagmmatt
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Figure 5: The homogeneous phase with constant staggered magrmtifkit) as well as a zero degree
spiral oriented along a lattice axis (right). k

<

Figure 6: The energy-momentum dispersion relation for a single holthé t-J model on a honeycomb
lattice over the corresponding Brillouin zone (left). Thalds reside in momentum space pockets centered
at lattice momenta at the zone corners (right).

3.5 Effective Lagrangian for Holes on the Honeycomb L attice

The single hole sector of the model on the honeycomb lattice has been investigated in [37]
The resulting dispersion relation is illustrated in figureAgain, in the effective continuum theory
the location of holes in lattice momentum space manifestdfias a flavor index. The leading
terms of the effective Lagrangian with two fermion fieldsr{taining at most one temporal or two
spatial derivatives) are given by

1 .
s D "Dl + Al (s + o)

L= 3 Myl + gl +
f=a,8
S=+,—

+ 1K [(D1+is071D2) Yl ( +iso1v3) s — (3 +is013) (D1 +isorD2) g
+ orLd ey 10+ Nagd Sl isorNa (wdVivaSud - wdhevitud)]. (36)

10



Effective Theories for Magnetic Systems

HereM is the rest mass arM’ is the kinetic mass of a holé, is the leading an& is a sub-leading
hole-one-magnon coupling, while, N, and N, are hole-two-magnon couplings, ari@(x) =
0iv?(x) — 0J-vi3(x) is the field strength of the composite Abelian “gauge” fieldueDo the single-
derivative coupling\, spiral phases arise in this case as well [33].

4. Conclusions

Both for the strong interactions and for lightly doped amibmagnets systematic low-energy
effective field theories provide valuable analytic insightb the highly non-trivial dynamics, as
well as accurate predictions depending on a number of ai pmoletermined low-energy param-
eters. Using very efficient cluster algorithms, for quantantiferromagnets some of these pa-
rameters have been determined with permille accuracy. @hdts presented here should also be
encouraging for lattice QCD simulations, were the numépecablem is much harder. Eventually,
one may expect agreement between lattice QCD and chirairpatton theory at the same level of
accuracy as achieved in the condensed matter problemsségthere.
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