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From soft-collinear effective theory one can derive a factorization formula for thee+e− thrust dis-

tributiondσ/dτ with τ = 1−T that is applicable for allτ. The formula accommodates available

O(α3
s ) fixed-order QCD results, resummation of logarithms at N3LL order, a universal nonpertur-

bative soft function for hadronization effects, factorization of nonperturbative effects in sublead-

ing power contributions, bottom mass effects and QED corrections. We emphasize that the use of

Monte Carlos to estimate hadronization effects is not compatible with high-precision, high-order

analyses. We present a global analysis of all availablee+e− thrust data measured atQ = 35 to

207 GeV in the tail region, where a two-parameter fit can be carried out forαs(mZ) andΩ1, the

first moment of the soft function. To obtain small theoretical errors it is essential to defineΩ1 in a

short-distance scheme, called the R-gap scheme, free of anO(ΛQCD) renormalon ambiguity. We

find αs(mZ) = 0.1135± (0.0002)expt± (0.0005)Ω1 ± (0.0009)pert with χ2/dof= 0.9.
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A traditional method for testing the theory of strong interactions (QCD) and to make precise
determinations of the strong couplingαs is the analysis of event-shapes measured ate+ e− collid-
ers [1]. One of the most frequently studied event-shape variables is thrust [2]

1− τ = max̂t
∑i |t̂ ·~pi |
∑i |~pi |

, (1)

where the sumi is over all final-state hadrons with momenta~pi , and the unit vector̂t that maximizes
the RHS of Eq. (1) defines the thrust axis. For the production of a pair of massless quarks at tree
level dσ/dτ ∝ δ (τ), so the measured distribution forτ > 0 involves gluon radiation and is highly
sensitive to the value ofαs. Forτ values close to zero the event has two narrow pencil-like, back-
to-back jets, carrying about half the center-of-mass (c.m.) energy into each of the two hemispheres
defined by the plane orthogonal tot̂. For τ close to the kinematic endpoint 0.5, the event has
an isotropic multi-particle final state containing a large number of low-energy jets. The thrust
distribution can be divided into three regions,

peak region: τ ∼ 2ΛQCD/Q,

tail region: 2ΛQCD/Q≪ τ < 1/3,

far-tail region: 1/3 . τ ≤ 1/2.

For τ < 1/3 the dynamics is governed by three different scales. Thehard scaleµH ≃ Q, set by
the e+e− c.m. energyQ, the jet scale, µJ ≃ Q

√
τ , the typical momentum transverse tot̂ of the

particles within each of the two hemispheres, and thesoft scaleµS ≃ Qτ , the typical energy of
soft radiation between the hard jets. In thepeak regionthe distribution shows a strongly peaked
maximum. Sinceτ ≪ 1 one needs to sum large (double) logarithms,(α j

s lnkτ)/τ , anddσ/dτ is
affected at leading order by a nonperturbative distribution, called soft functionSmod

τ . In the analysis
presented in this talk we consider thetail region. It is populated predominantly by broader dijets
and 3-jet events. Here the three scales are still well separated and one still needs to sum logarithms,
but nowµS≫ ΛQCD so soft radiation can be described by perturbation theory and the first moment
of the soft functionΩ1 =

∫

dk(k/2)Smod
τ (k−2∆̄).

In this talk we present a new analysis ofe+e− thrust data using the soft-collinear effective
theory (SCET), an effective theory for jets [3], to derive the theoretical QCD prediction of the
thrust distribution. Within SCET it is possible to formulate a factorization theorem that allows to
describe the thrust distribution for allτ . The formula we use is [4]:

dσ
dτ

=
∫

dk

(

dσ̂s

dτ
+

dσ̂ns

dτ
+

∆dσ̂b

dτ

)(

τ − k
Q

)

Smod
τ (k−2∆̄)+O

(

αs
ΛQCD

Q

)

. (2)

We describe in the following only the main features of Eq. (2). For details and a complete set
of references we refer the reader to Ref. [4]. The term dσ̂s/dτ contains thesingular partonic
contributions. It factorizes into a hard coefficient, a jet function and a partonic soft function gov-
erned by the renormalization scalesµH , µJ andµS, respectively, and renormalization group (RG)
evolution factors that sum logarithms between the hard, jetand soft scales. Using results from
the existing literature, SCET allows to sum the logarithms at N3LL order [5], which is two orders
beyond the classic resummation method [6] that is valid up toNLL order. The jet and partonic soft
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cusp non-cusp matching β[αs] nonsingular γ
µ R
∆ δ

LL 1 - tree 1 - - -

NLL 2 1 tree 2 - - -

NNLL 3 2 1 3 1 1 1

N3LL 4pade 3 2 4 2 2 2

NLL 2 1 1 2 1 1 1

NNLL 3 2 2 3 2 2 2

N3LL 4pade 3 3 4 3 3 3

, order αs(mZ) (No Gap) αs(mZ) (With Gap)

NLL 0.1203 ± 0.0079 0.1191 ± 0.0089

NNLL 0.1222 ± 0.0097 0.1192 ± 0.0060

NNLL 0.1161 ± 0.0038 0.1143 ± 0.0022

N3LL 0.1165 ± 0.0046 0.1143 ± 0.0022

N3LL 0.1146 ± 0.0021 0.1135± 0.0009

N3LL (no qed) 0.1153 ± 0.0022 0.1141 ± 0.0009

N3LL (no σ̂b/qed) 0.1152 ± 0.0021 0.1140 ± 0.0008

Figure 1: (a) Ingredients for primed and unprimed orders used in our analysis. The numbers give the loop
orders for the cusp and non-cusp anomalous dimensions, matching/matrix element contributions, theαs-
running, the nonsingular distribution, the gap-anomalousdimensions, and the perturbative subtractionsδ for
the R-gap scheme in whichΩ1 is defined. The 4-loop cusp anomalous dimension required at N3LL ′ order is
estimated from Padé approximants. The associated uncertainty is negligible. (b) Central values and theory
uncertainties for the fits at the different orders with and without the gap and renormalon subtractions.

functions containα j
s [lnk(τ)/τ ]+ andα j

s δ (τ) distribution terms. They are known toO(α2
s ), and

at O(α3
s ) all logarithmic terms are known from the renormalization group. Two unknownO(α3

s )

non-logarithmic constants contribute to the theory error in our highest order numerical analysis.
The hard function in our analysis is fully known atO(α3

s ) [14, 15] and also includes the axial-
vector singlet contributions atO(α2

s ). To achieve a definition of the soft function momentΩ1 that
is free of aΛQCD renormalon ambiguity, d̂σs/dτ contains subtractions that eliminate partonic low-
momentum contributions [8, 9]. This requires the introduction of the additional scale-dependent
model parameter̄∆(µR) (with µR∼ µS), called thegap parameter, visible in Eq. (2). In our numer-
ical tail-data fits∆̄(µR) is contained inΩ1. The evolution of∆̄(µR) follows a new type of infrared
RG equation formulated in Refs. [7]. We have also included final-state QED matrix elements and
QED RG corrections at NNLL order, derived from the QCD results. The term d̂σns/dτ , called the
nonsingular partonic distribution , contains the thrust distribution in strict fixed-order expansion
up toO(α3

s ) with the singular terms contained in dσ̂s/dτ subtracted to avoid double counting. At
O(αs) the nonsingular distribution is known analytically, and atO(α2

s ) andO(α3
s ) we rely on nu-

merical results obtained from the programs EVENT2 [10] and EERAD3 [11] (see also [12]). To
achieve a consistent behavior in the far-tail region infrared subtractions need to be implemented
here as well. A list of the perturbative ingredients for the different orders we consider is given in
Tab. 1a. N3LL ′ is the highest order we consider and contains all currently available perturbative
information. Finally,∆dσ̂b/dτ contains corrections to the singular and nonsingular distributions
due to thefinite b quark mass, using Refs. [13] for the consistent treatment and resummation for
the singular terms. The entire partonic distribution is convoluted with thesoft function Smod

τ that
describes the nonperturbative effects coming from large-angle soft radiation and can be determined
from experimental data. The last term in the brackets indicates the parametric size of the dominant
power corrections not contained in the factorization formula. For a proper summation of large loga-
rithmic terms it is necessary to adoptτ-dependentprofile functions for the renormalizations scales
µH , µJ, µS andµR that follow the scaling arguments given above. Forτ → 0.5 all profile functions
need to merge into the hard scaleµH to ensure that in the large-τ endpoint region the partonic
distribution coincides with the fixed-order result, so thatit does not violate the proper behavior at
multi-jet thresholds. The variations of these profile functions estimate higher order perturbative
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Figure 2: Plots ofΩ1 vs αs(mZ). (a) Includes perturbation theory, resummation of the logs, the soft model
function andΩ1 in the R-gap scheme, which is renormalon-free, atµR = 2 GeV. (b) As (a) but in theMS
schemeΩ̄1, which gives perturbative results without the corresponding renormalon subtractions. The shaded
regions indicate the theory errors at NLL′ (brown), NNLL (magenta), NNLL′ (green), N3LL (blue), N3LL ′

(red). The dark red ellipses in (a) and (b) represent the(χ2
min+1) error ellipses for the combined theoretical,

experimental and hadronization uncertainties. The ellipse in (a) is displayed again in Fig. 3b. The best fit
points at N3LL ′ with gap and renormalon subtractions shown in red in (a) eachhaveχ2/dof≃ 0.90.

uncertainty, and constitute our major source of theory uncertainty.

In our analysis we fit the factorization formula (2) in the tail region to all availablee+e−

thrust data from c.m. energiesQ between 35 and 207 GeV. In the tail region the distribution
can be expanded inΛQCD/(Qτ) and thus described to high precision usingαs(mZ) andΩ1. We
carry out a two-parameter fit for these two variables. Fitting for Ω1 accounts for hadronization
effects in a model-independent way. For thefitting procedure we use aχ2-analysis where we
account for experimental correlations of thrust bins obtained at oneQ value by one experiment
through the minimal overlap model. To estimate thetheoretical errors in the αs−Ω1 plane we
carry out independent fits for 500 different sets of theory parameters (for two unknownO(α3

s )

non-logarithmic constants, the four-loop cusp anomalous dimension, numerical uncertainties for
theO(α2,3

s ) nonsingular distributions, parameters of the profile functions/renormalization scales)
which are randomly chosen in their natural ranges with a flat distribution. We take the area covered
by the points of the best fits in theαs−Ω1 plane as the theory uncertainty.

The result of our fits for our default thrust tail range 6/Q ≤ τ ≤ 0.33 (487 bins), at the five
different orders we consider is displayed in Fig. 2. The leftpanel shows the results including the
gap and renormalon subtractions and the right panel withoutthe gap and renormalon subtractions.
Each dot corresponds to a best fit for a given set of theory parameters. The shaded areas envelop
the best fit points and give the theory uncertainties. The numbers for central values and theory
errors at each order are collected in Tab. 1b and also displaythe size of the QED andb quark mass
effects. We see the excellent convergence of the fit results and the decrease of the respective theory
uncertainties with increasing perturbative order. Moreover, including the gap and the renormalon
subtractions leads to uncertainties that are about a factorof two smaller at the highest three orders.

4



P
o
S
(
D
I
S
 
2
0
1
0
)
1
2
4

Thrust distribution at N3LL with power corrections and precision determination ofαs(mZ) Vicent MATEU

This illustrates the impact of the renormalon contributions and the necessity to subtract them from
the partonic distribution. Our scan method is more conservative than the traditional error-band
method.

Forαs(mZ) we get a purely experimental error of(δαs)exp= 0.0002 and ahadronization error
from the variations ofΩ1 of (δαs)Ω1 = 0.0005. The dark red “circle” shown in Fig. 2a represents
the total error including experimental, theoretical and hadronization errors. We note that to obtain
stable fit results in theαs−Ω1 plane it is essential to simultaneously fit data from different c.m.
energiesQ because there is a strong theoretical degeneracy betweenαs andΩ1. It can be lifted by
considering data from many differentQ values within a single global fit.

Our final result from our global analysis reads

αs(mZ) = 0.1135± (0.0002)expt ± (0.0005)Ω1 ± (0.0009)pert = 0.1135± (0.0011)tot . (3)

This work was supported in part by the European Community’s Marie-Curie Research Train-
ing Networks MRTN-CT-2006-035505 (HEPTOOLS), and MTRN-CT-2006-035482 (Flavianet),
the Office of Nuclear Physics of the U.S. Department of Energy, DE-FG02-94ER40818 and DE-
FG02-06ER41449, the Alexander von Humboldt foundation, the German Academic Exchange Ser-
vice D/07/44491, Deutsche Forschungsgemainschaft under contract MA 4882/1-1, and the Max-
Planck-Institut für Physik guest program.
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