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Abstract Building on the open-loop algorithm we intro-
duce a new method for the automated construction of one-
loop amplitudes and their reduction to scalar integrals. The
key idea is that the factorisation of one-loop integrands in a
product of loop segments makes it possible to perform var-
ious operations on-the-fly while constructing the integrand.
Reducing the integrand on-the-fly, after each segment multi-
plication, the construction of loop diagrams and their reduc-
tion are unified in a single numerical recursion. In this way we
entirely avoid objects with high tensor rank, thereby reducing
the complexity of the calculations in a drastic way. Thanks to
the on-the-fly approach, which is applied also to helicity sum-
mation and for the merging of different diagrams, the speed of
the original open-loop algorithm can be further augmented in
a very significant way. Moreover, addressing spurious singu-
larities of the employed reduction identities by means of sim-
ple expansions in rank-two Gram determinants, we achieve a
remarkably high level of numerical stability. These features
of the new algorithm, which will be made publicly available
in a forthcoming release of theOpenLoops program, are par-
ticularly attractive for NLO multi-leg and NNLO real–virtual
calculations.
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1 Introduction

The continuous improvement of statistics and experimental
systematics at the Large Hadron Collider (LHC) permits to
challenge the Standard Model of particle physics at steadily
increasing levels of energy and precision. In this context, the
uncertainty of theoretical predictions starts playing a criti-
cal role in many areas of the physics program of the LHC,
providing strong motivation for developing new techniques
that make it possible to push theoretical calculations towards
more complex processes and higher perturbative orders.

In the last decade, the advent of new powerful methods
for the calculation of one-loop scattering amplitudes [1–9]
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has opened the door to the automation of next-to-leading
order (NLO) calculations. Nowadays, one-loop calculations
are supported by a number of highly automated tools [10–
20] that provide the key to achieve NLO precision in the
context of multi-purpose Monte Carlo generators [21–27].
This recent progress has enabled NLO calculations for a huge
number of processes and has extended their reach up to multi-
particle final states of unprecedented complexity [28–32].
Nevertheless, in various cases the technical limitations of
one-loop generators still represent a serious bottleneck or
even a show stopper. These issues can be encountered in
processes with many final-state particles and for kinematic
configurations with two or more widely separated scales. An
important example is given by the real–virtual contributions
to next-to-next-to leading order (NNLO) calculations, which
require very fast and highly stable one-loop amplitudes in
deeply infrared regions of phase space.

Motivated by these considerations, in this paper we intro-
duce a new method that leads to very significant efficiency
and stability improvements in the construction of one-loop
amplitudes. This new method builds on OpenLoops [9,16],
a fully automated framework for the automated generation
of scattering amplitudes in the Standard Model. The original
implementation of the open-loop approach [9,16] supports
NLO QCD [31,33–39] as well as NLO EW [40–44] calcula-
tions and is interfaced to various multi-purpose Monte Carlo
tools. The OpenLoops program is also part of Matrix [45]
and has already been applied to several NNLO calcula-
tions [46–55]. The essence of the open-loop method [9] con-
sists of a numerical recursion that generates cut-open loop
diagrams, called open loops, by multiplying, one after the
other, the various building blocks that are connected through
loop propagators. More precisely, the construction of N -
point loop integrands is organised through the factorisation
of N loop segments, which consist each of a loop propagator
and a corresponding external subtree. Segment multiplica-
tions are implemented through process-independent numer-
ical routines that correspond to the Feynman rules of the
model at hand. This type of recursion was first proposed in the
context of off-shell recurrence relations for colour-ordered
gluon-scattering amplitudes [8]. Thanks to a tensorial repre-
sentation that retains the loop-momentum dependence of all
building blocks, this approach can be used in combination
with reduction techniques based on tensor integrals [4] or
with the OPP reduction method [5], resulting in both cases
in very fast computer code [9].

The new method presented in this paper exploits the fac-
torised structure of the open-loop representation in a com-
pletely new way. The key idea is that certain operations,
which are usually done when all building blocks of Feyn-
man diagrams have been assembled, can be anticipated and
performed on-the-fly during the construction of the diagrams.
Exploiting the factorised structure of the integrands, this on-

the-fly approach permits to perform various types of oper-
ations at a much lower level of complexity, thereby boost-
ing their efficiency. As we will show, it can be exploited in
order to factorise helicity summations as well as the sums
over different Feynman diagrams that share the same one-
loop topology. Moreover, based on the integrand reduction
method by del Aguila and Pittau [2], we will introduce an
on-the-fly technique for the reduction of open loops. In this
way, we will promote OpenLoops to an algorithm that com-
bines the construction and the reduction of loop amplitudes
in a unified numerical recursion. A notable feature of this
approach is that it permits to avoid high-rank objects at any
stage of the calculations. More precisely, tensor integrals are
always kept at rank two or lower, thereby reducing the com-
putational complexity in a dramatic way.

The on-the-fly technique leads to very significant improve-
ments of CPU efficiency. For what concerns numerical sta-
bility, in order to avoid severe instabilities that result from
squared inverse Gram determinants in the reduction identi-
ties of [2], we present a method that isolates such instabilities
in certain triangle topologies and circumvents them via ana-
lytic expansions in the limit of small Gram determinants. In
this way we obtain the first integrand-reduction algorithm
that is essentially free from Gram-determinant instabilities.
The achieved level of stability in double precision is compet-
itive with the most sophisticated tools on the market [19] and
with public implementations of OPP reduction in quadruple
precision.

The paper is organized as follows. In Sect. 2 we review
the original open-loop method. The on-the-fly approach is
introduced in Sect. 3 for the case of helicity sums and for the
merging of topologically equivalent open loops. In Sect. 4 the
on-the-fly approach is generalised to the reduction of open
loops. Details on the employed integrand-reduction identi-
ties and our treatment of Gram-determinant instabilities are
discussed in Sect. 5. The entire algorithm and its implemen-
tation are outlined in Sect. 6, where we also present technical
studies on the CPU performance and numerical stability. Our
conclusions are presented in Sects. 7, and Appendix A deals
with low-rank integrals that remain to be solved at the end of
the on-the-fly recursion.

2 The open-loop method

In this section we review the original open-loop method [9],
which is implemented in the publicly availableOpenLoops 1
program [16]. At variance with the original publication [9],
here we refine various aspects of the notation and we adopt a
particular perspective that sets the stage for the new methods
introduced in Sects. 3–5. These new techniques are going to
become publicly available in the OpenLoops 2 release.
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2.1 Helicity and colour bookkeeping

The task carried out by the open-loop algorithm is the cal-
culation of the tree-level and one-loop contributions to the
scattering probability density,

Wtree =
∑

h

∑

col

|M0(h)|2,

W1−loop =
∑

h

∑

col

2 Re
[
M∗

0(h)M1(h)
]
, (1)

or the squared one-loop contribution

W1−loop2 =
∑

h

∑

col

|M1(h)|2, (2)

for loop-induced processes. The polarised matrix elements
M0(h) and M1(h) should be understood as generic tree
and one-loop amplitudes, in the sense that the techniques
presented in this paper are applicable to any renormalisable
theory, including the QCD and electroweak sectors of the
Standard Model, as well as BSM theories. The sums in (1)–
(2) run over all helicity and colour degrees of freedom of the
scattering particles. While colour indices are kept implicit,
the helicity dependence is characterised by a single index h,
which corresponds to the global helicity configuration of the
event, as described below.

Scattering amplitudes are computed as sums of Feynman
diagrams,

M0(h) =
∑

I∈Ωtree

M0(I, h),

M1(h) =
∑

I∈Ω1−loop

M1(I, h), (3)

where Ωtree and Ω1−loop stand for the sets of tree and one-
loop diagrams. Each tree and one-loop diagram can be fac-
tored into a colour factor C(I) and a colour-stripped diagram
amplitude,1

ML(I, h) = C(I)AL(I, h), (4)

for L = 0, 1. The colour-stripped amplitudes AL(I, h) are
the main source of complexity. In the open-loop approach,
their calculation is addressed with numerical recursions as
described in Sects. 2.2–2.4. For what concerns colour factors,
exploiting the factorisation properties (4), all relevant oper-
ations can be reduced to the calculation of colour-summed
interference terms of the form

K(Ia, Ib) =
∑

col

C(Ia)∗ C(Ib), (5)

1 Quartic gluon couplings involve three independent colour structures.
Thus each diagram involving k quartic couplings needs to be split into
3k contributions of type (4) that are effectively handled as separate
diagrams.

which appear in the calculation of the scattering probabili-
ties (1)–(2). This task must be addressed only once per pro-
cess. It is handled by algebraically reducing all C(I) to a
standard basis {Ci } and relating the terms (5) to the interfer-
ence matrix [9,56]

Ki j =
∑

col

Ci ∗ C j . (6)

In OpenLoops we use a basis where all colour factors are
expressed through products and traces of the SU(3) genera-
tors T a

i j in the fundamental representation.
For the bookkeeping of external momenta and helicities

in a process with Np scattering particles we introduce the set
of particle indices

E = {1, 2, . . . , Np}. (7)

To characterise the helicity configurations s of individual
particles we use labels

λi =

⎧
⎪⎨

⎪⎩

1, 3 for fermions with s = −1/2, 1/2

1, 2, 3 for gauge bosons with s = −1, 0, 1

0 for scalars with s = 0

(8)

∀ i ∈ E . The configuration λi = 0 will also be used to char-
acterise unpolarised particles, i.e. fermions or gauge bosons
whose helicity is still unassigned or has already been summed
over. Since a particle can have up to four different helicity
states, it is convenient to adopt a helicity numbering scheme
based on the labels

h̄i = λi 4i−1, (9)

which correspond to a quaternary number with λi ∈
{0, 1, 2, 3} as i th-last digit and all other digits equal to zero.
In this way, the helicity configurations (λ1, . . . , λNp) of the
full event can be uniquely identified with the label

h = h̄1 + · · · + h̄Np, (10)

which corresponds to a quaternary number of Np digits, each
of which describes the helicity of a particular external parti-
cle. Let us also introduce the single-particle helicity spaces,
H̄i � h̄i , defined as

H̄i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{λi 4i−1|λi = 1, 3} for fermions or mass-

less gauge bosons,

{λi 4i−1|λi = 1, 2, 3} for massive

gauge bosons,

{0} for scalars,

(11)

where we do not include unpolarised states. Finally, the
global helicity space for the full set of scattering particles,
H � h, is defined as

H = H̄1 ⊗ · · · ⊗ H̄Np, (12)
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where the product is understood as A ⊗ B = {a + b|a ∈
A, b ∈ B}.

2.2 Tree amplitudes

At tree level, each colour-stripped Feynman diagram is con-
structed by contracting two so-called subtrees, which arise
by cutting the diagram in two pieces in correspondence of an
internal propagator,

(13)

A generic subtree wa corresponds to the part of a certain
Feynman diagram that connects an internal off-shell line with
outgoing momentum ka to a subset of external particles,

Ea = {αa1, . . . , αana } ⊂ E . (14)

In the numbering scheme (9)–(10), the helicity configura-
tions of a subtree are labeled

ha = h̄αa1 + · · · + h̄αana
, (15)

and the corresponding helicity space, Ha � ha , is defined as

Ha = H̄αa1 ⊗ · · · ⊗ H̄αana
. (16)

Subtrees are represented as complex n-tuples, w
σa
a (ka, ha),

where σa is the spinor or Lorentz index of the cut line. With
this notation, the contraction (13) takes the form

A0(I, h) = wσa
a (ka, ha) δσaσb w̃

σb
b (kb, hb), (17)

where kb = −ka , h = ha+hb, and summation over repeated
indices is implicitly understood. The propagator associated
with the cut line is included only in the subtree wa and not
in w̃b.

Subtrees are constructed by means of a numerical recur-
sion that starts from the external wave functions and recur-
sively merges subtrees by attaching their off-shell lines to the
vertices that occur in the various tree diagrams. A recursion
step for the case of a generic three-particle vertex is depicted2

in Fig. 1. Its algebraic form reads

wσa
a (ka, ha) = Xσa

σbσc (kb, kc)

k2
a − m2

a
w

σb
b (kb, hb)w

σc
c (kc, hc), (18)

where the tensor Xσa
σbσc describes the vertex that connects wb

and wc to wa , as well as the numerator of the propagator that
connects to wa . The related denominator, (k2

a −m2
a), appears

explicitly in (18).
The momentum of the resulting subtree is ka = kb + kc

and its helicity is ha = hb + hc. Each recursion step must

2 To draw Feynman diagrams we use Axodraw [57].

Fig. 1 Diagrammatic representation of a subtree and its numerical con-
struction through the recurrence relation (18). The outgoing momentum
ka and the spin or Lorentz indexσa are associated with the off-shell inter-
nal line, which is shown explicitly, while the on-shell external particles
with helicity ha are implicitly understood

be repeated for all independent helicity configuration ha ∈
Ha = Hb⊗Hc. The corresponding recursion step for quartic
vertices reads

wσa
a (ka, ha) = Xσa

σbσcσd (kb, kc, kd)

k2
a − m2

a
w

σb
b (kb, hb)

×wσc
c (kc, hc) w

σd
d (kd , hd). (19)

The recursion ends when all off-shell propagators that
have been cut in the beginning can be reconnected, such as
to obtain the colour-stripped amplitudes (17) for the full set
of tree diagrams.

Note that (18)–(19) are analogous to Berends–Giele recur-
rence relations for off-shell currents [58]. However, while
each subtree corresponds to a single topology, off-shell cur-
rents incorporate all possible subtrees associated with a cer-
tain internal line. The inefficiency due to the usage of indi-
vidual subtrees is compensated, especially at one-loop level,
by the optimisation opportunities that result from the colour-
factorisation identities (4) and from the fact that each subtree
can occur in multiple Feynman diagrams at tree and loop
level.

2.3 One-loop amplitudes

The amplitude of a colour-stripped N -point one-loop dia-
gram, IN , has the general form

(20)
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Symbols carrying a bar denote quantities in D = 4 − 2ε

dimensions, and for the loop momentum q̄ we adopt the
decomposition

q̄ = q + q̃, (21)

where q and q̃ denote its four-dimensional and (D − 4)-
dimensional parts, respectively. The denominators read

D̄i = (q̄ + pi )
2 − m2

i , pi =
i∑

j=1

k j , (22)

where k j is the external momentum flowing into the loop
at the j th loop vertex. Internal momenta are chosen such
that p0 = pN = 0, i.e. the momentum flowing through the
D̄0 = D̄N propagator is q̄ . The one-loop diagram IN in (20)
can be regarded as a sequence of loop segments,

IN = {S1,S2, . . . ,SN }, (23)

where the segment Si consists of a subtree wi that involves a
certain set Ei of external particles and is connected to the i th

loop vertex, vi , and to the adjacent loop propagator associ-
ated with D̄i . Segments associated to a quartic vertex involve
two subtrees, wi1 and wi2 . The helicity configurations of the
whole diagram are related to the ones of individual segments,
hi ∈ Hi , via

h = h1 + · · · + hN . (24)

The trace in (20) stands for the full contraction of the
spinor and Lorentz indices of propagators and vertices along
the loop. In general, the numerator N̄ (q̄) consists of a 4-
dimensional part N (q) and an ε-dependent remnant Ñ (q̄),

Tr
[
N̄ (q̄)

]
= Tr

[
N (q)

]
+ Tr

[
Ñ (q̄)

]
. (25)

The terms that result from Ñ (q̄) are known as rational terms
of type R2 and can be reconstructed separately as countert-
erms using appropriate Feynman rules [59–62]. Thus, the full
amplitude can be decomposed as

Ā1(h) = A1(h) + A1,R2(h), (26)

and in the following we focus on the nontrivial part

A1(IN , h) =
∫

dDq̄
Tr

[
N (IN , q, h)

]

D̄0 D̄1 · · · D̄N−1
, (27)

which stems from the four-dimensional part of the numerator
but involves the D-dimensional denominators (22).

In the open-loop approach, loop diagrams are cut-open in
correspondence of the D̄0 propagator, in the sense that the
loop numerator is constructed as a tensor,

(28)

where β0 and βN are the spinor or Lorentz indices associ-
ated with the cut propagator. We use the Feynman gauge,
which means that the numerator of the gluon propagator is
simply −igβ

α . Once
[N (IN , q, h)

]βN
β0

is determined, we take
its trace,

Tr
[N (IN , q, h)

] = δ
β0
βN

[N (IN , q, h)
]βN
β0

, (29)

where summation over repeated indices is implicitly under-
stood.

A key feature of the open-loop approach is that, similarly
to the product of loop denominators D̄0 · · · D̄N−1 in (27), the
loop numerator (28) is factored into a product of segments,

N (IN , q, h) = S1(q, h1) · · · SN (q, hN ). (30)

Here and in the following, the matrix structure is implicitly
understood, i.e. (30) should be interpreted as

[N (IN , q, h)
]βN
β0

= [
S1(q, h1)

]β1
β0

[
S2(q, h2)

]β2
β1

· · · [SN (q, hN )
]βN
βN−1

. (31)

Segments involving a triple vertex have the generic form

[
Si (q, hi )

]βi
βi−1

= Xβi
βi−1σi

(q + pi−1, ki ) w
σi
i (ki , hi ), (32)

where w
σi
i (ki , hi ) is the corresponding external subtree. The

tensor Xβi
βi−1σi

(q + pi−1, ki ) corresponds to the interaction
term in (18) and embodies the q-dependent contributions
of the loop vertex vi and of the numerator of the adja-
cent Di propagator. In renormalisable theories, each segment
Si (q, hi ) is a q-polynomial of rank R ≤ 1. In the SM, the
structure of three-point vertices is

(33)
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β0

w1

D1

w2

D2

wk

Dk

βk

wk+1

Dk+1

wN−1

DN−1

wN

D0

βN

Fig. 2 Diagrammatic representation of an N -point open loop with k
dressed and N − k undressed segments. The segment containing the
last subtree, wN ≡ w0, is associated with the propagator D̄N ≡ D̄0 =
q̄2 − m2

0

while four-point vertices have rank zero,

(34)

with hi = hi1 + hi2 and ki = ki1 + ki2 .
The numerator (30) is built as a sequence of N segment

multiplications, and we refer to such a multiplication as the
dressing of a segment. In the following, we will represent the
state of the numerator after k dressing steps as,

N (IN , q, h) = NN (IN , q, h)

= Nk(IN , q, ĥk)Sk+1(q, hk+1) · · · SN (q, hN ), (35)

where Sk+1, . . . , SN are the still undressed segments, and

Nk(IN , q, ĥk) = S1(q, h1) · · · Sk(q, hk) (36)

is a q-polynomial of rank R ≤ k that incorporates the k
dressed segments. The symbol ĥk and its counterpart ȟk =
h − ĥk denote, respectively, the helicity configurations of
the dressed and undressed parts of a diagram with k dressed
segments and N−k undressed ones. They are defined through

h1 + · · · + hk︸ ︷︷ ︸
ĥk

+ hk+1 + · · · + hN︸ ︷︷ ︸
ȟk

= h, (37)

where h is the global helicity state.
The corresponding helicity spaces, Ĥk and Ȟk , are defined

by

H1 ⊗ · · · ⊗ Hk︸ ︷︷ ︸
Ĥk

⊗ Hk+1 ⊗ · · · ⊗ HN︸ ︷︷ ︸
Ȟk

= H. (38)

The q-dependent polynomials (36) are denoted open
loops, and this notion implicitly includes also the correspond-
ing undressed segments Sk+1, . . . , SN and loop denomina-
tors D̄0, . . . , D̄N . A graphical representation of a generic
open loop with k dressed segments is depicted in Fig. 2.

The dressing of open loops is implemented through a
numerical recursion

Nk(IN , q, ĥk) = Nk−1(IN , q, ĥk−1)Sk(q, hk), (39)

where ĥk = ĥk−1 + hk . This operation needs to be per-
formed separately for all relevant helicity configurations
ĥk ∈ Ĥk = Ĥk−1 ⊗ Hk and iterated for k = 1, . . . , N .
The initial condition is

N0(IN , q, ĥ0) = 11, (40)

where ĥ0 ∈ Ĥ0 = {0}, and the identity operator is understood

as [11]β
′

β = δ
β ′
β .

In order to capture the full q-dependence of open-loop
polynomials we use the tensorial representation

Nk(IN , q, ĥk) =
R∑

r=0

Nk;μ1...μr (IN , ĥk) q
μ1 · · · qμr , (41)

and numerical operations are always performed at the level
of the tensor coefficients Nk;μ1···μr (IN , ĥk). In particular,
the explicit form of a step of the dressing recursion (39) is

[
Nk;μ1···μr (IN , ĥk)

]βk

β0

=
{[

Nk−1;μ1···μr (IN , ĥk−1)
]βk−1

β0

[
Y k

σk

]βk

βk−1

+
[
Nk;μ2···μr (IN , ĥk−1)

]βk−1

β0

[
Zk

μ1;σk
]βk

βk−1

}

×w
σk
k (kk, hk) (42)

for a three-point vertex as defined in (33). For an efficient
implementation the μ1 · · · μr indices shall be symmetrised
throughout.

2.4 Parent–child relations and cutting rule

The original open-loop algorithm can be boosted by using
parts of pre-computed (N − 1)-point diagrams as a start-
ing point for the construction of more involved N -point dia-
grams. This approach is based on so-called parent–child rela-
tions, which connect open loops of type

(43)
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and

(44)

that start with identical segments S1, . . . ,Sk . Since open
loops are colour-stripped, i.e. they do not depend on the dif-
ferent colour factors of the loop diagrams

IN = {S1, . . .Sk,Sk+1, . . . ,SN } and

ĨN−1 = {S1, . . .Sk, S̃k+1, . . . , S̃N−1}, (45)

it is clear that the dressed parts of (43) and (44) remain iden-
tical up to step k of the recursion, i.e.

Nk(IN , q, ĥk) = Nk(ĨN−1, q, ĥk). (46)

This allows one to construct the more involved N -point
parent diagram (43) using a building block of the simpler
(N − 1)-point child diagram (44). In general, such relations
can be applied for any k with 2 ≤ k ≤ N − 2, and the maxi-
mum gain in efficiency is obtained when k = N − 2, so that
only the last two segments of the parent diagram remain to
be dressed.

The availability of child diagrams of type (44) is an obvi-
ous prerequisite for the applicability of the parent–child
approach, and in QCD most one-loop diagrams turn out to
be the parent of a corresponding child. Moreover, the corre-
spondence between the first k dressed segments in (43) and
(44) requires an appropriate cutting rule, i.e. a prescription
that determines the cut propagator and the dressing direction
in a similar way as in (43)–(44).

To this end, for each segment Si with external particles
Ei = {αi1, . . . , αini } we introduce a binary weight defined
as the sum of the weights 2α−1 for each particle α, i.e.

F(Si ) =
∑

α∈Ei
2α−1. (47)

For example, F(Si ) = 20 + 21 + 23 = 11 for a segment
connected to the external legs Ei = {1, 2, 4}. For the merging
of subtrees Si and S j into a single segment Si ⊕ S j with
external legs Ei ∪ E j , the weight function obeys the useful
distributive property

F(Si ⊕ S j ) = F(Si ) + F(S j ). (48)

This implies that merged segments always outweigh the orig-
inal segments. Based on this feature, for N -point diagrams
we adopt the cutting rule [9]

F(Sk) > F(S1) ∀ k > 1, (selection rule) (49)

F(SN ) > F(S2). (direction rule) (50)

The fact that the first segment is identified as the one with low-
est weight guarantees its stability with respect to the merging
ofSk+1⊕Sk+2 in (43)–(44), while (50) guarantees the stabil-
ity of the dressing direction for all configurations with k ≥ 2.
In this way, the parent–child approach permits to recycle the
longest possible open loops.

Note that relations of type (46) can be exploited also for
diagrams that involve the same number N of loop propagators
and identical dressed segments, but different undressed ones.

2.5 Helicity treatment and reduction to scalar integrals

In the following we discuss the operations that are required
in order to determine the contribution of a loop diagram IN
to the scattering probability density (1), starting form the
output of the open-loop recursion, i.e. from an open-loop
numerator (35) with k = N dressed segments.

Instead of proceeding via a direct construction of the one-
loop amplitude A1(IN , h) defined in (27), we start with the
associated colour structure C(IN ) defined in (4), and we pro-
ceed by building the colour-summed interference with the
Born amplitude,

U0(IN , h) = 2

(
∑

col

M∗
0(h) C(IN )

)
∀ h ∈ H, (51)

combining it with the trace of the colour-stripped loop numer-
ator,

U(IN , q, h) = U0(IN , h)Tr
[
N (IN , q, h)

]
, (52)

and performing helicity sums,

U(IN , q, 0) =
∑

h

U(IN , q, h). (53)

Here we use h = 0 for the configuration where all particles
are unpolarised, in the sense that their helicities have been
summed over. The above operations are performed at the
level of q-coefficients in the tensorial representation (41),
i.e. in practice we compute

Uμ1···μr (IN , 0) =
∑

h

Uμ1···μr (IN , h)

=
∑

h

U0(IN , h) Tr
[
Nμ1···μr (IN , h)

]
. (54)

After the summation over colours and helicities it is possi-
ble to combine all diagrams with the same one-loop topology,
i.e. diagrams of type

Iα1...αN
N = {Sα1

1 , . . . ,SαN
N } (55)

with all possible combinations of segments,

Si ≡ {Sαi
i

∣∣αi = 1, . . . ,mi
}
, (56)
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Fig. 3 Schematic
representation of the on-the-fly
helicity sums in (62). Taking the
interference with the Born
amplitude makes it possible to
sum over the helicities
h1, . . . , hk of the first k dressed
segments of an open loop, while
the remaining segments are still
undressed

that have the same external legs Ei and loop propagators D̄i

but different external subtrees w
αi
i and/or loop vertices v

αi
i .

To filter out combinations of segments that are not allowed
by the Feynman rules we introduce the tensor

δα1...αN =

⎧
⎪⎨

⎪⎩

1 if Sα1
1 , . . . ,SαN

N form a

valid one-loop diagram

0 else .

(57)

In this way, the full set of topologically equivalent one-loop
diagrams can be defined as

ΩN =
{
Iα1···αN
N

∣∣∣αi = 1, . . . ,mi with δα1...αN �= 0
}
, (58)

and their sum yields

Vμ1...μr (ΩN , 0)

=
∑

α1...αN

∑

h

δα1...αN Uμ1...μr (Iα1...αN
N , h). (59)

The contribution of the diagrams (58) to the scattering
probability (1) reads

W1−loop = Re

{∫
dDq̄

V(ΩN , q, 0)

D̄0 · · · D̄N−1

}

= Re

{
R∑

r=0

Vμ1···μr (ΩN , 0)

∫
dDq̄

qμ1 · · · qμr

D̄0 · · · D̄N−1

}
.

(60)

In OpenLoops 1, the calculation of the coefficients (59) is
entirely based on the open-loop approach, but the reduction
of the loop integrals (60) to scalar integrals, as well as the
numerical evaluation of the latter, are performed by means
of external libraries.

By default,OpenLoops 1 adopts the tensor representation
on the rhs of (60) and computes the relevant tensor integrals
with the Collier library [19], which implements the reduc-
tion techniques of [4,63] and the scalar integrals of [64]. One
of the powerful features ofCollier lies in sophisticated ana-
lytic expansions [4] that avoid dangerous numerical instabil-
ities in phase space regions with small Gram determinants.

Alternatively, the reduction to scalar integrals is per-
formed with Cuttools [10], and scalar integrals are com-

puted with OneLoop [65]. The Cuttools program imple-
ments the OPP reduction method [5], which is based on dou-
ble, triple and quadruple cuts of the integrand on the lhs of (1).
This requires a large number of evaluations of V(ΩN , q, 0),
and the high efficiency of the open-loop representation,
V(ΩN , q, 0) = ∑R

r=0 Vμ1···μr (ΩN , 0) qμ1 · · · qμr , results in
a dramatic boost of the OPP method.

Another key feature behind the high speed of the open-
loop method is the fact that, irrespectively of the reduction
method, the time-consuming reduction to scalar integrals is
performed after summing over colour and helicity degrees of
freedom.

3 Summing helicities and diagrams on-the-fly

In this section we introduce a new technique that makes it
possible to sum helicities and to merge different one-loop dia-
grams on-the-fly, i.e. after each step of the open-loop dress-
ing recursion. Besides boosting the open-loop algorithm in
a significant way, this approach is also a key aspect of the
on-the-fly reduction technique introduced in the Sect. 4.

3.1 On-the-fly helicity summation

In the original formulation of the open-loop method, helicity
sums (53) are performed at the end of the dressing recur-
sion. This implies that the kth dressing step (39) needs to be
performed for all helicity configurations of the dressed seg-
ments S1, . . . ,Sk . This feature, combined with the fact that
the number of relevant helicity states and the cost of a single
dressing step scale exponentially with k, result in a very rapid
growth of the CPU cost of dressing operations in the course of
the open-loop recursion. To avoid this negative trend, in this
section we introduce a method that exploits the factorisation
properties of the open-loop representation (30) in a way that
makes it possible to perform helicity sums on-the-fly, after
the dressing of each new segment.

The idea, sketched in Fig. 3, is that, upon taking the inter-
ference of open loops with the Born amplitude, it is possible
to sum over the helicities of all dressed segments, irrespec-
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tively of the presence of still undressed segments. To intro-
duce the technical aspects of this approach, let us rewrite
the interference (53) between the colour-summed Born term
U0(IN , h) and the one-loop numerator as

U(IN , q, 0) =
∑

h

U0(IN , h)Tr
[N (IN , q, h)

]

=
∑

h

U0(IN , h)Tr
[Nk(IN , q, ĥk)

× Sk+1(q, hk+1) · · · SN (q, hN )
]
. (61)

To take advantage of the factorisation of loop segments on
the rhs of (61), we then postpone the trace operation and
generalise (61) by defining

Uk(IN , q, ȟk) =
∑

ĥk

U0(IN , h)Nk(IN , q, ĥk)

=
∑

h1,...,hk

U0(IN , h)S1(q, h1) · · · Sk(q, hk),

(62)

where the interference with U0(IN , h) is restricted to the
first k dressed segments of the open loop, and the corre-
sponding helicities, ĥk = h1 + · · · + hk , are summed over.
As a result, the first k segments become effectively unpo-
larised, and (62) depends only on the helicities of the remain-
ing N − k undressed segments, ȟk = hk+1 + · · · + hN . Due
to this dependence, which is induced by the fact that the Born
term (51) depends on the helicities h = ĥk + ȟk of all exter-
nal particles (37), the sums over h1, . . . , hk in (62) cannot be
entirely factorised. However, they can be cast in the nested
form

Uk(IN , q, ȟk) =
∑

hk

[
· · ·

∑

h2

[∑

h1

U0(IN , h)S1(q, h1)

]

× S2(q, h2) · · ·
]
Sk(q, hk), (63)

which highlights the fact that each segment becomes effec-
tively unpolarised after its dressing.

In practice, in analogy with the standard open-loop recur-
sion (39), the helicity-summed open loops (62) are con-
structed with the recurrence relation

Uk(IN , q, ȟk) =
∑

hk

Uk−1(IN , q, ȟk−1)Sk(q, hk), (64)

where the helicities hk ∈ Hk of the dressed segment are
summed on-the-fly. To this end, the dressing operation needs
to be performed for all ȟk−1 = ȟk + hk ∈ Ȟk−1. The initial
condition reads

U0(IN , q, h) = U0(IN , h) · 11

= 2
∑

col

M∗
0(h) C(IN ) · 11, (65)

i.e. a fully undressed open loop is given by the interference of
its colour structure with the Born amplitude, whose helicity
states h live in the global helicity space H. At each dressing
step, helicity degrees of freedom are reduced by a factor equal
to the number of helicity states of the dressed segment, i.e. by
factor two for each external fermion or massless vector boson
and a factor three for each external massive vector boson in
the segment.

At the end of the recursion, when all N segments are
dressed, no helicity dependence is left over (ȟN ≡ 0), and
the unpolarised loop numerator (53) is obtained by taking
the trace

U(IN , q, 0) = Tr
[
UN (IN , q, ȟN )

]
. (66)

The recursion (64) is understood as matrix multiplication,
[Uk(IN , q, ȟk)

]βk
β0

=
∑

hk

[Uk−1(IN , q, ȟk−1)
]βk−1
β0

[
Sk(q, hk)

]βk
βk−1

, (67)

in the tensor representation

Uk(IN , q, ȟk) =
R∑

r=0

Uk;μ1···μr (IN , ȟk) q
μ1 · · · qμr , (68)

which leads to the same tensorial recursion as in (42).
In summary, performing helicity sums on-the-fly leads to

a decreasing number of helicity degrees of freedom when
the number k of dressed segments increases. In this way,
the effect of the growing CPU cost of dressing operations
at large k can be strongly attenuated. The price to pay is
that the parent–child approach (43)–(46) is not applicable
anymore, due to the fact that (65) incorporates the colour
structure C(IN ) of the whole one-loop diagram. However,
as we will see in Sect. 3.2, the parent–child relations can be
replaced by a similarly efficient method based on the merging
of topologically equivalent one-loop diagrams. Finally, let us
note that the recursion (64)–(65) is not applicable to squared
one-loop amplitudes. For this case we still rely on the original
open-loop algorithm.

3.2 On-the-fly merging of topologically equivalent open
loops

The key idea behind the recursion (64)–(65) is that, taking
the interference between the Born amplitude and the one-loop
colour structure C(IN ) as initial condition makes it possible
to anticipate operations that are usually performed after com-
pletion of the construction of a one-loop diagram. In partic-
ular, such operations become applicable on-the-fly after the
dressing of individual loop segments. This technique will
be denoted as on-the-fly approach, and its applicability goes
well beyond helicity sums.
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Fig. 4 Diagrammatic representation of helicity sums and diagram
merging. Upon taking the interference with the Born amplitude, the
helicities of the k dressed segments are summed, and the full set of

topologically equivalent diagrams with the same undressed segments
{Sαk+1

k+1 , . . . ,SαN
N } is merged in a single open loop. See (70) and (72)

As sketched in Fig. 4, the on-the-fly technique can be
extended to the double sums over helicity states and topo-
logically equivalent loop diagrams in (59). The idea is that,
rather than being constructed one by one, the topologically
equivalent diagrams

Iα1...αN
N = {Sα1

1 , . . . ,SαN
N } ∈ ΩN , (69)

defined in (55)–(58), can be merged in a recursive way by
summing over the various subtrees Sαi

i as soon as they get
dressed.

To this end, let us define subsets of diagrams, Ωk
N ⊂ ΩN ,

that share the same undressed segments, {Sαk+1
k+1 , . . . ,SαN

N },
after k dressing steps,

Ωk
N ≡ Ωk

N (αk+1, . . . , αN )

=
{
Iρ1...ρkαk+1···αN
N

∣∣∣ 1 ≤ ρ j ≤ m j

with δρ1···ρkαk+1···αN �= 0
}
, (70)

where the tensor δ, defined in (57), filters out one-loop dia-
grams that are not allowed by the Feynman rules. By con-
struction, all diagrams in the set (70) must undergo identical
future dressing steps, which can be performed only once after
merging the first k segments. This operation can be organ-
ised in a very similar way as helicity summations in Sect. 3.1.
Technically, taking as a starting point the nested helicity sums
in (63), it is sufficient to generalise the loop segments and
the Born term (65) by replacing

Si (q, hi ) → Sαi
i (q, hi ),

U0(IN , h) → δα1···αN U0(Iα1···αN
N , h), (71)

and to extend the summation over the helicities h1, . . . , hk of
the dressed segments to the corresponding “diagrammatic”
degrees of freedom α1, . . . , αk . This leads to the identity

Vαk+1...αN
k (Ωk

N , q, ȟk)

=
∑

αk ,hk

[
· · ·

∑

α2,h2

[ ∑

α1,h1

δα1···αN U0(Iα1···αN
N , h)

× Sα1
1 (q, h1)

]
Sα2

2 (q, h2)

]
· · ·

]
Sαk
k (q, hk), (72)

which defines an open-loop object with fixed undressed seg-
ments {Sαk+1

k+1 , . . .SαN
N } and helicities ȟk = hk+1 + · · · + hN

that incorporates all possible chains of dressed segments
{Sα1

1 , . . . ,Sαk
k } forming a valid Feynman diagram, summed

over the corresponding helicities h1, . . . , hk .
Note that the dependence of (72) on the helicities

hk+1, . . . , hN and diagrammatic indices αk+1, . . . , αN of the
undressed segments is due to the fact that the Born term
defined in (65) and (71) retains the full helicity dependence
of the Born amplitude as well as the tensor (57) and the colour
structure of the whole one-loop diagram.

In analogy with (39) and (64), the open-loop objects (72)
can be constructed with the recurrence relation

Vαk+1...αN
k (Ωk

N , q, ȟk)

=
∑

αk

∑

hk

Vαk ···αN
k−1 (Ωk−1

N , q, ȟk−1)S
αk
k (q, hk), (73)

where helicity sums and diagram merging are performed on-
the-fly. An explicit example of an on-the-fly merging step is
illustrated in Fig. 5. Similarly as for (64), the recursion (73)
is implemented in the form of tensorial relations (42). The
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Fig. 5 Example of a step of the diagram merging recursion (73). After dressing the second segment and summing over its helicity configurations
h2, all diagrams with equivalent one-loop topology and identical undressed segments Sα3

3 , . . . ,SαN
N are merged into a single open loop

relevant initial conditions at k = 0 are

Vα1···αN
0 (Ω0

N , h) = δα1···αN U0(Iα1···αN
N , h) · 11

= 2 δα1···αN

∑

col

M0(h)∗C(Iα1···αN ) · 11,

(74)

where each fully undressed contribution corresponds to an
individual diagram,

Ω0
N ≡ Ω0

N (α1, . . . , αN ) = {Iα1···αN
N

}
, (75)

with helicities h that live in the full helicity space H. Let us
point out that, thanks to the absorption of the colour factors
C(Iα1···αN

N ) in the Born interference term (74), in (73) it is
possible to merge parts of diagrams that carry different colour
structures in a single object, while respecting the exact colour
dependence.

After N recursion steps one obtains a single open-loop
object VN (ΩN

N , q, ȟN ), which merges the full set of topo-
logically equivalent diagrams (ΩN

N ≡ ΩN ) and is entirely

unpolarised (ȟN ≡ 0). At this stage, taking the trace that
closes the loop one arrives at

V(ΩN , q, 0) = Tr
[
VN (ΩN

N , q, ȟN )
]
, (76)

which is equivalent to (59).
As demonstrated in Sect. 6.2, performing helicity sums

and merging diagrams on-the-fly yields a very significant effi-
ciency improvement with respect to the original open-loop
algorithm. More precisely, if helicity sums are performed at
the end of the recursion as in (53), the merging approach and
the parent–child relations (46) permit to achieve a similar
speed-up factor of the order of two. However, contrary to the
parent–child technique, the on-the-the-fly approach is appli-
cable both to diagram merging and helicity sums. This leads
to a further speed-up factor that can vary from two to three,
depending on the process.

As we will see in Sect. 4, the on-the-fly approach will
be a crucial ingredient in order to arrive at a new efficient
algorithm that combines the operations of open-loop dressing
and tensor reduction at the level of each individual step of
the open-loop recursion.

4 On-the-fly reduction of open loops

In the original version of the OpenLoops program, the
construction of integrand numerators and the reduction to
scalar integrals are performed independently of one another
using different tools. Open-loop numerators of N -point dia-
grams are constructed by recursively dressing N segments
as described in Sect. 2.3. Each step of the recursion can
increase the tensor rank by one, and, upon symmetrisation of
all qμ1 · · · qμr monomials with r ≤ R, open-loop polynomi-
als of rank R involve

(R+4
4

)
independent tensor coefficients.

Thus their complexity grows exponentially with the number
of recursion steps. For instance, open loops with R = 6 and
R = 7 involve, respectively, 210 and 330 components, while
only 5 components are present for R = 1. As illustrated in
the left plot of Fig. 6, in the original open-loop algorithm
tensorial complexity keeps growing until the maximum rank
R ≤ N is reached at the end of the dressing recursion. At this
stage, upon summation of helicity configurations and loop
diagrams with equivalent one-loop topology, tensor integrals
are reduced to scalar integrals using external libraries, such
as Collier [66] or Cuttools [10], as described in Sect. 2.5.

Dealing with intermediate results with a large number of
tensor components requires a considerable amount of com-
puting power, both for the reduction of high-rank objects and
at the level of the tensorial structure of the open-loop recur-
sion (42), which needs to be performed for each relevant
helicity configuration and each [. . .]βkβ0

component. These
operations can be significantly accelerated by means of the
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(a) (b)

Fig. 6 Evolution of the tensor rank R and the number Ntcoeff (R) =(R+4
4

)
of open-loop tensor coefficients (right vertical axis) as a function

of the number k of dressed segments during the open-loop recursion.
Each dressing step is assumed to increase the rank by one. The origi-

nal open-loop algorithm, where tensor reduction is applied a posteriori
(left), is compared to the on-the-fly reduction approach (right). The red
diagonal lines illustrate the dressing steps and the blue vertical lines the
reduction steps

techniques introduced in Sect. 3. Nevertheless, they remain
the most CPU intensive aspect of multi-particle one-loop cal-
culations in OpenLoops.

Motivated by the above considerations, in this section we
introduce a new approach that avoids the appearance of high-
rank objects at any stage of the calculation. This is achieved
by extending the on-the-fly approach introduced in Sect. 3
to the reduction of open loops. In this way, interleaving the
operations of open-loop dressing and tensor reduction, we
build a single recursive algorithm, where each increase of
tensorial rank caused by a dressing step is compensated by
an integrand-reduction step.

As illustrated in the right plot of Fig. 6, the on-the-fly
reduction approach avoids the appearance of any intermedi-
ate object with rank higher than two. Besides the CPU cost
needed for the processing of high-rank objects, this alleviates
also possible memory issues due to their storage.

4.1 On-the-fly integrand reduction

For the on-the-fly reduction of open-loop polynomials we are
going to use the method of [2], which permits to reduce rank-
two monomials of the loop momentum through identities of
the form

qμqν = [
Aμν

−1 + Aμν
0 D0

] +
⎡

⎣Bμν
−1,λ +

3∑

j=0

Bμν
j,λDj

⎤

⎦ qλ.

(77)

The rank-one polynomial on the rhs is a linear combination
of four loop denominators, D0, . . . , D3, and the correspond-
ing tensor coefficients, Aμν

j and Bμν
j,λ, depend only on the

three external momenta p1, p2, p3. The coefficients of loop
denominators are labeled with indices j = 0, . . . , 3, while
j = −1 is used for the constant parts. Their explicit expres-
sions are presented in Sect. 5.2.

The identity (77) provides an exact reconstruction of qμqν

in terms of four-dimensional loop denominators, but can be
easily generalised to D-dimensional denominators by replac-
ing

Dj → D̄ j − q̃2 for j = 0, 1, 2, 3. (78)

Note that q̃2 contributions resulting from the terms Bμν
j,λDj

with j = 0, 1, 2, 3 must cancel among each other in (77)
since they generate rank-three terms of type qλ q̃2 that are
not consistent with the rank-two structure on the lhs. Thus
the substitutions (78) generate only an extra term −q̃2Aμν

0
on the rhs of (77).

The integrand reduction (77) holds at the integrand level,
irrespectively of the presence of extra loop denominators
D4, . . . , DN−1 or additional q-dependent factors that may
multiply the qμqν monomial. These properties, in combi-
nation with the factorisation of open loops into segments,
make it possible to apply the reduction (77) at any interme-
diate stage of the recursion (73). This on-the-fly reduction
approach is illustrated in Fig. 7, and the corresponding reduc-
tion identities for N -point integrands at step k of the dressing
recursion have the form
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Fig. 7 Diagrammatic representation of the on-the-fly reduction
step (79) for an N -point open loop at step k = 2 of the dressing
recursion. The symbols Vk(Ω

k
N ) and Vk(Ω

k
N [ j]) correspond, respec-

tively, to the rank-two polynomial on the lhs of (79) and its reduced

rank-one counterparts on the rhs. The red crosses indicate the pinch-
ing of the D̄ j propagators in the Vk(Ω

k
N [ j]) terms with j = 0, . . . , 3.

Since D̄0 = D̄N , in our graphical representation the D̄0 denominator
is located on the N th segment

Vk(Ω
k
N , q̄) Sk+1(q) · · · SN (q)

D̄0 · · · D̄3 · · · D̄N−1

=
3∑

j=−1

Vk(Ω
k
N [ j], q̄) Sk+1(q) · · · SN (q)

D̄0 · · · /̄Dj · · · D̄3 · · · D̄N−1
, (79)

where Ωk
N [ j] for 0 ≤ j ≤ 3 denote the (N − 1)-point

subtopologies that arise from Ωk
N by pinching the D̄ j prop-

agator, while terms with j = −1 on the rhs correspond
to the original topology, Ωk

N [−1] = Ωk
N . Note that the

denominators D̄ j can be pinched irrespectively of whether
the related S j (q) segments are already dressed or not. In (79)
we adopt the approach of Sect. 3.2, where open-loop polyno-
mials incorporate the colour-summed interference with the
Born amplitude as well as helicity sums and merging of all
dressed segments. However, for simplicity, the bookkeeping
of helicities, merged diagrams, and [. . .]βkβ0

indices is kept
implicit.

The partially dressed open loops on the lhs and rhs of (79)
have the general form

Vk(Ω, q̄) =
S∑

s=0

R∑

r=0

Vs
k;μ1···μr

(Ω) qμ1 · · · qμr q̃2s, (80)

where four-dimensional loop-momentum components are
accompanied by q̃2 terms that arise from (77) to (78). As dis-
cussed in Sect. 4.4, only a small fraction of the q̃2-dependent

terms can lead to non-vanishing contributions at the end of
the recursion. Thus, in order to avoid the proliferation of
tensor coefficients, all q̃2 terms that are expected to vanish
are identified and discarded in advance at each dressing and
reduction step.

In general, the relation (79) allows one to reduce any poly-
nomial Vk(Ω

k
N , q̄) of rank R ≥ 2 to rank R− 1 polynomials

Vk(Ω
k
N [ j], q̄). But, in practice, the reduction (79) can be

interleaved with the open-loop dressing recursion in a way
that the tensor rank never exceeds two. For R = 2 the coeffi-
cients of the rank-one open-loop polynomials that arise from
the reduction (79) read

Vs
k;(Ω

k
N [ j]) = Vs

k;ν1ν2
(Ωk

N )Aν1ν2
j + δ−1 j

[
Vs
k;(Ω

k
N )

− Vs−1
k;ν1ν2

(Ωk
N )Aν1ν2

0

]
,

Vs
k;μ1

(Ωk
N [ j]) = Vs

k;ν1ν2
(Ωk

N )Bν1ν2
j,μ1

+ δ−1 jVs
k;μ1

(Ωk
N ).

(81)

The transformations (79)–(81) can be used to reduce any
rank-two open loop with N ≥ 4 propagators to a rank-one
N -point object and four (N − 1)-point pinched objects of
rank one.

Rank-two open loops with only N = 3 loop propagators
can be reduced to rank one in a very similar way [2]. The
relevant identities (see Sect. 5.3) have the same structure as

123



70 Page 14 of 35 Eur. Phys. J. C (2018) 78 :70

(77) but involve only three reconstructed propagators, D̄0, D̄1

and D̄2. Moreover, they do not hold at the integrand level, but
only upon integration over the loop momentum. The tensors
Aμν
j and Bμν

j,λ for the case N = 3 depend only on p1 and p2.
They are obtained from the ones for N = 4 by simply setting
to zero the terms involving p3 (see Sect. 5.3).

The on-the-fly reduction formula for N = 3 has the form
∫

dDq̄
Vk(Ω

k
3 , q̄) Srem(q)

D̄0 · · · D̄2

=
2∑

j=−1

∫
dDq̄

Vk(Ω
k
3 [ j], q̄) Srem(q)

D̄0 · · · /̄Dj · · · D̄2
, (82)

where Vk(Ω
k
3 , q̄) is an open loop of rank R = 2 that results

from a certain number k ≥ 2 of dressing steps and k−2 or less
reduction steps. Possible undressed segments are denoted as
Srem(q), and (82) is valid only for terms Srem(q) of rank
zero or one. In general this allows for only Nrem ≤ 1 extra
segments, i.e.

Srem(q) =
{

Sk+1(q) for Nrem = 1

1 for Nrem = 0,
(83)

and these two cases are sufficient to cover all relevant N =
3 topologies and pinched subtopologies in renormalisable
theories.3 The relations between the rank-two polynomial
Vk(Ω

k
3 , q̄) and its reduced counterparts Vk(Ω

k
3 [ j], q̄) have

the same form as in (81).
Although the above three-point reduction holds only at the

integral level, the fact that the term Srem(q) can be factorised
makes it possible to apply (82) as soon as the dressed open
loop Vk(Ω

k
3 , q̄) has reached rank two, independently of the

remaining part of the numerator.
In summary, exploiting the fact that open loops are fac-

torised into segments, the identities (77) and (82) can be
applied on-the-fly during the dressing recursion, while an
arbitrary number of segments is still undressed.4 Thus, dress-
ing and reduction steps can be interleaved in a way that the
increase of tensorial rank resulting from dressing is promptly
compensated through an on-the-fly reduction. More pre-
cisely, on-the-fly reduction steps are applied to diagrams
and pinched sub-diagrams with N ≥ 3 at those stages of
the recursion where the next dressing step would generate

3 The fact that Nrem ≤ 1 follows from the inequality Nrem + R −
Nunpinched ≤ 0, where R = 2 is the rank ofVk(Ω

k
3 , q̄), and Nunpinched =

3 is the number of unpinched propagators in (82). The above inequality
is obviously fulfilled at the beginning of the open-loop recursion, where
k = R = Nrem − Nunpinched = 0, and its validity is guaranteed by the
fact that, in renormalisable theories, dressing and reduction steps cannot
increase Nrem + R − Nunpinched.
4 Note that the fact that the technique of [2] can be applied on-the-fly
is not a general feature of integrand reduction methods. For instance,
the OPP method [5] is not applicable on-the-fly since it is based on the
multiple poles of the entire integrand.

a rank-three object.5 The reduced rank-one objects with N
and N − 1 loop propagators are further dressed and possibly
reduced until one arrives at fully dressed open loops of rank
R ≤ 2 for all two- and higher-point contributions. An this
stage, the open-loop matrix structure can be eliminated by
taking the trace (76), and all rank-two objects with N ≥ 3
can be reduced to rank one with a final reduction step of
type (77) or (82).

After the above dressing and on-the-fly reduction steps,
the following types of integrals remain to be reduced:

(i) integrals with N ≥ 5 loop propagators
and rank R = 1, 0;

(ii) integrals with N = 4, 3 loop propagators
and rank R = 1;

(iii) integrals with N = 2 loop propagators
and rank R = 2, 1.

(84)

For their reduction to scalar integrals with N ≤ 4 we use a
combination of integral reduction and OPP reduction identi-
ties as described in Appendix A.

4.2 Merging pinched topologies

Since it allows one to keep the tensor rank low at any stage
of the calculations, the on-the-fly reduction approach has
the potential to accelerate one-loop calculations in a signifi-
cant way. However, some aspects of the on-the-fly reduction
approach could lead to a dramatic increase of the computa-
tional cost. First, the fact that the reduction is performed when
the loop is still open, i.e. before taking the trace (76), implies
that the entries of the [. . .]βkβ0

matrix have to be processed
as 16 independent objects. Second, the reduction has to be
performed for all not yet summed helicity configurations of
the undressed segments. Third, each reduction step (79) gen-
erates four pinched topologies that need to be processed as
independent contributions in subsequent dressing and reduc-
tion steps.

Due to the proliferation of pinched subtopologies, the
naive iteration of on-the-fly reduction steps would lead to
a dramatic increase of the CPU cost. Fortunately, this can
be avoided by means of the merging technique introduced
in Sect. 3.2, which makes it possible to absorb pinched N -
point open loops into unpinched (N − 1)-point open loops,
in such a way that they do not need to be processed as sep-
arate objects. As explained in the following, the merging of
pinched subtopologies requires a different implementation
depending on whether the pinch belongs to the dressed part

5 This means that, before performing an on-the-fly reduction, rank-two
open loops are first dressed with all possible adjacent segments of rank
zero. Delaying the reduction step in this way reduces the additional
CPU cost that results from the appearance of new pinched objects.
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of the open loop or not, as well as for the special case of a
D̄0 pinch.

4.2.1 Pinching a dressed propagator

Let us consider the on-the-fly reduction of an N -point open
loop with k dressed segments, focusing on contributions that
result from the pinching of a D̄ j denominator with j < k,

(85)

Here, consistently with the notation of Sect. 3.2, we have
restored the indices αi of the various undressed segments,
while helicity indices are kept implicit. The pinched prop-
agator in (85) is entirely dressed and merged, in the sense
that both adjacent segments, S j and S j+1, are dressed and
merged. Thus, for what concerns all future dressing and
reduction steps, apart from the disappearance of the D̄ j

denominator, the pinch has no effect. Consequently, the
above contribution can be absorbed into unpinched (N −1)-
point open loops that involve the same loop denominators,
D̄0 · · · D̄ j−1 D̄ j+1 · · · D̄N−1, and the same undressed seg-
ments, Sαk+1

k+1 , . . . , SαN−1
N−1 . To this end, it is sufficient to bring

the pinched open loop (85) in the standard form

(86)

which corresponds to an unpinched (N −1)-point open loop
with k − 1 dressed segments. The crossed vertex on the lhs
of (86) indicates that the two original segments that are con-
nected by the pinched propagator should be regarded as a
single effective segment. This symbolic contraction of seg-
ments does not change anything in the numerics of the open-
loop numerator, and the transformation (86) is nothing but a
trivial relabeling of the denominators and of the undressed
segments that lie on the right side of the pinch,

D̃i (q) = D̄i (q) for i < j,
D̃i (q) = D̄i+1(q) and S̃αi

i (q) = Sαi+1
i+1 (q) for i ≥ j.

(87)

The pinched open loop (86) can be merged with corre-
sponding unpinched open loops to form a single (N − 1)-
point object with k−1 dressed segments. The corresponding
formula reads

Ṽαk ···αN−1
k−1 (Ω̃k−1

N−1, q̄) S̃αk
k (q) · · · S̃αN−1

N−1 (q)

D̃0 · · · D̃3 · · · D̃N−2

= Vαk ···αN−1
k−1 (Ωk−1

N−1, q̄) S̃αk
k (q) · · · S̃αN−1

N−1 (q)

D̃0 · · · D̃3 · · · D̃N−2

+
∑

Ωk
N [ j]

Ṽαk ···αN−1
k (Ωk

N [ j], q̄) Sαk
k+1(q) · · · SαN−1

N (q)

D̄0 · · · /̄Dj · · · D̄3 · · · D̄N−1
.

(88)

A diagrammatic representation of this identity is given in
Fig. 8. The resulting object, for which we introduce the sym-
bol Ṽαk ···αN−1

k−1 , is a combination of unpinched and pinched
open loops, which enter, respectively, through the first and
second term on the rhs of (88). By construction, the cor-
responding set of diagrams (Ω̃k−1

N−1) includes all unpinched

(Ωk−1
N−1) and pinched (Ωk

N [ j]) diagrams with loop propaga-
tors D̃0 · · · D̃N−2 and undressed segments Sαk+1

k+1 , . . . , SαN−1
N−1 .

The set of pinched diagrams Ωk
N [ j] corresponds to an N -

point topology that results from ΩN−1
k−1 by undoing a D̄ j

pinch, and (88) involves all possible Ωk
N [ j] contributions

with 1 ≤ j ≤ k.
As a necessary condition for the merging operation (88)

to be applicable, the different open loops on the rhs of (88)
have to feature the same undressed segments. This implies
that they must be at the same stage of the dressing recur-
sion, and, most importantly, that the starting position and
the directions of the respective dressing recursions should
be equivalent to each other. With other words, D̃0 · · · D̃N−2

and D̄0 · · · /̄Dj · · · D̄N−1 should be two identical ordered sets
of propagators. In particular they should start from the same
cut propagator, D̃0 = D̄0. As discussed in Sect. 4.3 this can
be guaranteed, to some extent, by means of an appropriate
cutting rule.

Another obvious prerequisite for the absorption of pinched
N -point open loops is the existence of corresponding
unpinched (N − 1)-point Feynman diagrams. With other
words, the crossed vertex in (86) should have a physical
counterpart consisting of a triple or quartic vertex, which
can directly connect the D̄ j−1 and D̄ j+1 propagators to sub-
trees involving the external legs attached to ŵ j and ŵ j+1

(see Fig. 8). In QCD, this turns out to be the case for most
pinched configurations.

Moreover, pinched N -point configurations of the form (86)
can also be merged with other pinched higher-point diagrams
that get the relevant pinches in past or future reduction steps.
Thus, pinched objects of type (86) will always be denoted as
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Fig. 8 Diagrammatic representation of formula (88) for the merging
of pinched open loops. The first two unpinched diagrams on the rhs,
where the generic subtrees w

α j
j and w

α j+1
j+1 are directly connected to the

loop propagators D̃ j−1 and D̃ j , correspond to the first term on the rhs
of (88). The corresponding triple or quartic vertices of the Feynman

rules play an analogous role as the crossed vertex in the pinched open
loop (last diagram on the rhs). Besides merging all relevant unpinched
combinations α j , α j+1, also possible unpinched topologies where some
of the external legs in w j and w j+1 are interchanged (not shown) should
be included

absorbable, irrespective of whether corresponding unpinched
(N − 1)-point Feynman diagrams exist or not.

The merging procedure (88) needs to be applied after any
on-the-fly reduction step that creates new pinched objects.
Thus merging operations have to be interleaved with iterated
dressing and reduction steps. Since pinched N -point objects
are absorbed into lower-point objects, the algorithm should
start with the dressing and on-the-fly reduction of open loops
with N = Nmax, and continue towards lower N . The merging
operation (88) starts at stage N − 1 = Nmax − 1 and is
applied after every dressing step, together with the merging
of unpinched open loops (see Sect. 3.2). Note that, due to the
iterative nature of the algorithm, the term Ṽαk ...αN−1

k on the
rhs of (88) can be the result of multiple pinching and merging
steps.

4.2.2 Pinching an undressed propagator

The possibility to absorb pinched open loops as in Fig. 8
is based on the fact that all future dressing and reduction
operations can be performed only once at the level of a
merged object. Thus, the undressed segments of pinched and
unpinched open loops should be identical.

However, the segments connected to the D̃ j−1 and D̃ j

propagators are different for pinched and unpinched terms.
In the pinched case there are two separate segments, which
involve w j and w j+1 and require two subsequent dressing
steps. In contrast, unpinched open loops require a single
dressing step, since w j and w j+1 are combined in a single
segment.

It is thus clear that pinched open loops can be absorbed
only after the dressing of the segments that lie on the two
sides of the pinch. If this is not the case, i.e. when a D̄ j pinch

is applied to an open loop with k ≤ j dressed segments, its
absorption becomes possible only after (k− j+1) additional
dressing steps, which result in

Ṽα j+1...αN−1
j+1 (Ω

j+1
N [ j], q̄)

=
∑

α′
k+1···α′

j+1

Ṽα′
k+1···α′

j+1α j+1···αN−1

k (Ωk
N [ j], q̄)

=
∑

α′
k+1···α′

j+1

× S
α′
k+1

k+1 (q) · · · Sα′
j+1

j+1 (q), (89)

where Sk+1 · · · S j+1 are dressed. Note that in (89) we also
sum over all possible α′

i , and use indices α j+1, . . . , αN−1

with shifted labels for the undressed segments S j+2, . . . , SN
on the right side of the pinch.

As illustrated in Fig. 9, the dressing operation (89) com-
bined with the relabeling (87) brings the pinched open loops
in a configuration that can be absorbed with the merging for-
mula (88). However, the absorption of undressed pinched
propagators is more involved than the simplified picture
of Fig. 9. Pinched open loops can require more than one
dressing step to become absorbable, in which case, in gen-
eral, also new reduction steps are needed in order to keep the
tensor rank below three. Such new reductions generate addi-
tional pinches, and their iteration can lead to a proliferation
of multi-pinched configurations.

Thus, to avoid dramatic inefficiencies, it is crucial to
minimise the number of required dressing steps by keep-
ing pinchable propagators as close as possible to the dressed
part of the numerator. This is why we choose to perform the
on-the-fly reduction using the denominators D̄0, . . . , D̄3.6

6 The on-the-fly reduction (79) can be performed using any set of four
propagators, D̄i0 , . . . , D̄i3 .
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Fig. 9 Required dressing (89) and relabeling (87) operations before merging open loops with an undressed pinched propagator D̄ j

In this way, when the first two segments are dressed and the
first reduction step is applied (see Fig. 7), the various pinched
propagators are located at most one left-dressing step (D̄0)
and two right-dressing steps (D̄3) away from the dressed part.

In order to identify pinches that cannot be directly
absorbed and to anticipate how they propagate through the
recursion, let us consider generic open-loop configurations
before the creation of a new pinch through a reduction step. At
this stage the rank R must be equal to two. We first consider
the very first reduction step, which can occur after k ≥ R = 2
dressing steps, and we focus on a D̄2 pinch in the case where
only k = 2 segments are dressed. In this case, an on-the-fly
reduction step and a subsequent dressing step yield

(90)

i.e. the D̄2 pinch can be brought in the standard form (86)
and can thus be absorbed into unpinched contributions. The
same considerations apply also to D̄1 and D̄0 pinches (see
Sect. 4.2.3) and can be generalised to any step of the recur-
sion, since the structure of the dressed parts on the lhs and
rhs of (90) is the same.

Also D̄3 pinches can be absorbed in a similar way in case
there are at least three dressed segments before the reduction
step. Otherwise, when only two segments are dressed, the
combination of an on-the-fly reduction step with a subsequent

dressing step leads to

(91)

where the pinch is applied on the last dressed segment. Unless
another dressing step can be applied before reaching rank
three, this kind of pinch cannot be absorbed without a fur-
ther reduction and dressing step. Dressing one more segment
allows one to absorb the original D3 pinch as well as new D̄0,
D̄1, and D̄2 pinches that arise from the new reduction step.
However, the new reduction leads again to a configuration
with a D̃3 pinch on the last dressed segment,

(92)

Again, the dressed parts on the lhs and rhs of (92) have the
same structure, which implies that such D̄3-pinched config-
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Fig. 10 Required dressing, loop-momentum shift and relabeling operations (94)–(96) before merging an open loop with a pinched D̄0 propagator

urations are stable with respect to further reduction steps.
Thus, open loops with multiple non-absorbable pinches do
not occur, and the only type of configuration with a single
non-absorbable pinch is the one in (92).

4.2.3 Pinching the D̄0 propagator

Finally, we consider open loops with k dressed segments and
a pinched D̄0 denominator,

(93)

For convenience, here and in the following we put D̄0 at
the end of the chain of denominators. Similarly as for the
cases discussed in Sect. 4.2.2, the above pinched configura-
tion becomes absorbable only when the segments connected
to the D̄0 propagator, i.e. SN (q) and S1(q), are dressed. How-
ever, this happens only at the end of the standard dressing
recursion.

In order to anticipate the absorption of the most advanced
pinch one could replace the denominators D̄0, . . . , D̄3 used
for the on-the-fly reduction by D̄1, . . . , D̄4, which lie all
directly on the right side of the cut. However, the absorp-
tion of each D̄4 pinch would require up to three extra dressing
steps and two related reduction steps, resulting in the creation
of multiple new pinches. This problem can be circumvented
by observing that the D̄0 propagator lies only one step away

from the dressed part of the open loop, if one reverts the
dressing direction. Therefore, as illustrated in Fig. 10, the
pinched D̄0 propagator can be entirely dressed by means of
a single left-dressing step. This operation results in

Ṽαk+1···αN−1
k+1 (Ωk+1

N [0], q̄)

=
∑

αN

SαN
N (q) Ṽαk+1···αN−1αN

k (Ωk
N [0], q̄), (94)

where the left multiplication of the N th segment should be
understood as
[
SN (q) Ṽk(Ω, q̄)

]βk+1

β0
=

∑

βN

[
SN (q)

]βN

β0
×

[
Ṽk(Ω, q̄)

]βk+1

βN

=
[([

Ṽk(Ω, q̄)
]T [

SN (q)
]T

)T
]βk+1

β0

. (95)

Technically, as indicated on the rhs, this operation can be eas-
ily implemented through a standard right-dressing step upon
transposition of the input matrices and back-transposition of
the result.7

As usual, before merging with unpinched open loops, the
propagators and undressed segments that lie on the right side
of the pinch need to be brought back in standard form. In
case of a D̄0 pinch, all remaining N − 1 denominators and
segments preserve their relative position along the open loop.
Thus, only D̄N−1 needs to be relabeled, since it assumes
the role of the new D̃0. Moreover, the standard form D̃0 =
q2 − m̃2

0 requires a loop momentum shift q → q − pN−1 for

7 Note that in a three-gluon vertex this transposition leads to a flip of the
colour indices of the two gluons in the loop and hence a minus sign in
the colour factor. Since the colour factor has been fixed in the beginning
this minus sign has to be taken into account in the colour-stripped open
loop.
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the entire open loop. The corresponding reparametrisations
for the various denominators and segments read

D̃0(q) = D̄N−1(q − pN−1),

D̃i (q) = D̄i (q − pN−1) for 1 ≤ i ≤ N − 2,

S̃αi
i (q) = Sαi

i (q − pN−1) for k + 1 ≤ i ≤ N − 1.

(96)

In terms of masses and momenta this corresponds to m̃0 =
mN−1, m̃i = mi and p̃i = pi+pN−1 for 1 ≤ i ≤ N−2. With
these transformations the left-dressed D̄0-pinched open loop
(94) can be merged with related unpinched objects according
to

Ṽαk+1...αN−1
k (Ω̃k

N−1, q̄)S̃αk+1
k+1 (q) · · · S̃αN−1

N−1 (q)

D̄1 · · · D̃3 · · · D̃N−2 D̃0

≡Vαk+1...αN−1
k (Ωk

N−1, q̄)S̃αk+1
k+1 (q) · · · S̃αN−1

N−1 (q)

D̄1 · · · D̃3 · · · D̃N−2 D̃0

+
∑

Ωk
N [0]

Ṽαk+1...αN−1
k+1 (Ωk+1

N [0], q̄)

D̄1 · · · D̄3 · · · D̄N−1 /̄D0

× Sαk+1
k+1 (q) · · · SαN−1

N−1 (q)

∣∣∣∣
q→q−pN−1

. (97)

Apart from the loop momentum shift, q → q − pN−1, this
formula is entirely analogous to (88). Let us note that, since
the shift is applied to a single term, the identity (97) holds
only upon loop momentum integration. Nevertheless, as far
as the correctness of final results at integral level is concerned,
it can be safely applied at the integrand level.

As demonstrated in Sect. 6.2, using the on-the fly reduc-
tion with pinch absorption in combination with the on-the-
fly techniques of Sect. 3 results in a very fast and numeri-
cally stable one-loop algorithm. In particular, as compared to
the original version of OpenLoops, we find very significant
improvements, both in terms of speed and numerical stability.
Actually, using only the new techniques of Sect. 3 without
on-the-fly reduction yields even higher CPU efficiency. How-
ever, as we will see, the moderate extra CPU cost that results
from the on-the-fly reduction approach is counterbalanced by
a very significant gain in numerical stability, which implies a
reduced usage of quadruple precision for exceptional phase
space points.

4.3 Cutting rule

As pointed out in Sect. 4.2.1, the possibility to merge pinched
N -point open loops and corresponding unpinched (N − 1)-
point open loops depends on the way they are cut. In order
to identify the relevant requirements, let us consider the cut-
open topology defined by the following ordered set of loop
segments,

IN = {S1,S2, . . . ,SN }. (98)

Here we have applied our standard labeling scheme, where
the cut is located between SN and S1, i.e. on the D̄0 propaga-
tor, while the dressing recursion starts with S1 and is directed
towards S2. This configuration will be referred to as a SN /S1

ordered cut. Since the labeling scheme is a consequence of
the position of the cut, and not vice versa, we have to define a
cutting rule that selects SN /S1 out of all possible Si /S j cuts.

The cutting rule should enable the merging of pinched
subtopologies that arise from (98) by pinching certain prop-
agators D̄ j , i.e. by combining S j and S j+1 in a single seg-
ment S j ⊕ S j+1. To this end, unless the cut propagator D̄0

is pinched, the cutting rule should guarantee that the posi-
tion of the cut and its direction remain unchanged after a
pinch. More explicitly, the desired cut configurations after a
D̄ j pinch with j > 0 are

IN [1] = {S1 ⊕ S2,S3, . . . ,SN }, (99)

IN [ j] = {S1, . . . ,S j−1,S j ⊕ S j+1,S j+2, . . . ,SN }
for 2 ≤ j ≤ N − 2, (100)

IN [N − 1] = {S1,S2, . . . ,SN−1 ⊕ SN }. (101)

In this way, as required for the merging operations described
in Sects. 4.2.1–4.2.2, the dressing of pinched and unpinched
objects always starts and ends with segments that contain
the external legs attached to S1 and SN , respectively. In the
case of a D̄0 pinch, where the original cut propagator disap-
pears, in order to enable the merging of left-dressed pinched
subtopologies described in Sect. 4.2.3, the cut should be
moved to the left of SN ⊕ S1, so that

IN [0] = {SN ⊕ S1,S2, . . . ,SN−1}. (102)

In order to ensure, at least in part, that pinched topologies are
cut as in (99)–(102), we replace the original cutting rule (49)–
(50) by the new prescriptions

F(S1) > F(Sk) ∀ k > 1, (selection rule) (103)

F(SN ) > F(S2), (direction rule) (104)

where the weights F(Sa) are defined in (47). The key prop-
erty of the above cutting rule is the pinch-invariance of the
selection rule, which determines the first segment S1. In fact,
if this condition is realised for (98), then it is guaranteed
to hold also for all pinched configurations (99)–(102). For
j = 0, 1 this is an obvious consequence of the fact that
F(S1 ⊕ Sa) > F(S1) for any a �= 1. In the other cases,
the fact that S1 remains the first subtree in spite of the
appearance of a new pinched subtree S j ⊕S j+1 with weight
F(S j ) + F(S j+1), is guaranteed by

F(S1) >

N∑

i=2

F(Si ). (105)
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This inequality is an automatic consequence of (103) and of
the binary nature of the weights (47). This is easily under-

stood by observing that, due to 2Np−1 = 1 + ∑Np−1
α=1 2α−1,

the last external particle (α = Np) outweighs the ensemble
of all other particles. Therefore the last external particle must
belong to the leading-weight subtree S1, which implies that
F(S1) ≥ 2Np−1 and leads to (105).

Unfortunately, the direction rule (104) is not sufficient in
order to preserve the direction of the cut. For instance, in case
of a D̄1 pinch, the desired cut (99) requires F(SN ) > F(S3),
which does not automatically follow from F(SN ) > F(S2).
More generally, apart from the case of a D3 pinch, where the
second and last subtree do not change, there is no guarantee
that the condition (104) preserves the direction of the cut.

Thus the above cutting rule does not allow one to absorb
all pinched open loops. Nevertheless, as demonstrated in
Sect. 6.2, it is sufficient to obtain a very fast on-the-fly reduc-
tion algorithm. Moreover, it should be possible to further
increase CPU efficiency, either by means of an improved cut-
ting rule or by inverting the dressing direction after certain
pinches.

4.4 Rational terms of type R1

As discussed in Sect. 4.1, each reduction step of type (79)
and (82) generates terms D̄i − Di = q̃2 that account for the
mismatch between the D-dimensional and four-dimensional
parts of loop denominators. The resulting tensor integrals
with (D−4)-dimensional q̃2 terms in the numerator can give
rise to finite terms. As is well known [2,59], these so-called
rational terms of type R1 can arise only in the presence of
1/(D−4) poles of ultraviolet type. Thus, vanishing integrals
of type R1 can be easily identified by means of the simple
power counting criterion
∫

dDq̄
qμ1qμ2 · · · qμr q̃2s

D̄0 D̄1 · · · D̄N−1
= O(D − 4)

if s ≥ 1 and r + 2s + 4 < 2N . (106)

In a renormalisable theory, where each loop segment
increases the rank at most by one, r+2s ≤ N and all integrals
with N ≥ 5 and s ≥ 1 vanish. Thus, the only non-vanishing
integrals of type R1 that remain at the end of the on-the-fly
reductions of Sect. 4.1 are [2]
∫

dDq̄
q̃2

D̄0 D̄1
= −iπ2

2

(
m2

0 + m2
1 − p2

1

3

)

+O(D − 4), (107)
∫

dDq̄
qμ q̃2

D̄0 D̄1 D̄2
= iπ2

6
(p1 + p2)

μ

+O(D − 4), (108)
∫

dDq̄
q̃2

D̄0 D̄1 D̄2
= −iπ2

2
+ O(D − 4), (109)

∫
dDq̄

q̃4

D̄0 D̄1 D̄2 D̄3
= −iπ2

6
+ O(D − 4). (110)

The power counting criterion (106) can be exploited in a
way that makes it possible to discard irrelevant terms of type
R1 at any intermediate step of the open-loop recursion. To this
end, for each number k of dressing steps we anticipate the
maximum rank Rmax

k of the segments Sk+1(q), . . . , SN (q)

that remain to be dressed. Given this information, it is clear
that monomials of type qμ1qμ2 . . . qμr q̃2s in the dressed
open loop cannot give rise to terms of D-dimensional rank
higher than r + 2s + Rmax

k at the end of the recursion. Thus,
we can anticipate that,

∫
dDq̄

qμ1 · · · qμr q̃2s Sk+1(q) · · · SN (q)

D̄0 D̄1 · · · D̄N−1
= O(D − 4)

if s ≥ 1 and r + 2s + 4 + Rmax
k < 2N . (111)

The systematic application of this condition allows one to
filter out a very large number of q̃2 terms, thereby improving
the efficiency of the algorithm.

Note also that the unpinched contributionsVk(Ω
k
N [−1]) in

the reduction identities (81) involve terms that reduce r+2s−
2N , and thus the degree of ultraviolet divergence, by one and
two. Depending on the values of N and Rmax

k , this can result
in vanishing R1 contributions that can also be immediately

discarded. For instance, in the reduction of
∫

dDq qμ1qμ2 q̃2

D̄0 D̄1 D̄2 D̄3
all unpinched contributions apart from those of type (110)
can be neglected.

5 Reduction identities and numerical stability

This section deals with the reduction method of [2], which
provides the basis of the on-the-fly reduction approach of
Sect. 4.1. In Sects. 5.1–5.3 we outline the derivation of the
tensor coefficients Aμν

j and Bμν
j,λ in the reduction identities

(77) and (82). In doing so we set the stage for Sect. 5.4,
where we discuss numerical instability problems and present
a systematic approach for their solution.

5.1 The reduction basis

The reduction identities of [2] are based on a decomposition
of the four-dimensional loop momentum,

qμ =
4∑

i=1

ci l
μ
i , (112)

in a basis l1, . . . , l4, formed by massless momenta in two
orthogonal planes,

l2i = 0, l1,2 · l3,4 = 0. (113)
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This reduction basis is defined in terms of the external
momenta p1, p2, which enter the propagators D1,D2. The
basis momenta l1,2 are chosen in the plane spanned by p1

and p2,

lμ1 = pμ
1 − α1 p

μ
2 , lμ2 = pμ

2 − α2 p
μ
1 , (114)

while l3,4 lie in the plane orthogonal to p1,p2 and are defined
as

lμ3 = v̄(l1)γ
μ

(
1 − γ 5

2

)
u(l2),

lμ4 = v̄(l2)γ
μ

(
1 − γ 5

2

)
u(l1), (115)

where u and v̄ are massless spinors. This definition of l3,4

implies l∗3 = eiχ l4, where χ is twice the phase difference
between the u and v spinors. The normalization of the basis
is chosen such that

γ = 2(l1 · l2) = −1

2
(l3 · l4), (116)

and the α1,2 coefficients in (114) read8

αi = p2
i

(p1 · p2) ± √
Δ

, (117)

where Δ is related to the rank-two Gram determinant Δ12 =
det(pi · p j ) via

Δ = −Δ12 = (p1 · p2)
2 − p2

1 p
2
2 . (118)

The Gram determinant is related to the normalisation fac-
tor γ via

γ = 4Δ

(p1 · p2) ± √
Δ

, (119)

and these two parameters play a critical role for the stability of
the reduction. In fact, in the limit of vanishing Gram determi-
nant, (116) and (119) imply that (l1 · l2) ∝ (l3 · l4) ∝ γ ∝ Δ.
Thus

lim
Δ→0

(li · l j ) = 0 ∀ i, j, (120)

which implies that all light-like basis momenta li become
parallel to each other9 leading to severe numerical instabili-
ties in the decomposition (112).

8 The sign of the square root is chosen such that ±√
Δ = sign(p1 ·

p2)
√

Δ. This guarantees that the limits lim
p2
i →0

αi = 0 are approached in

a smooth way.
9 As a consequence of lμ1,2 ∈ R and (l1 ·l2) = E1E2(1−cos(θ12)) → 0,
the first two basis vectors become parallel to each other, i.e. lμ1,2 →
ξ1,2 ημ with ξ1,2 ∈ R and ημ ∈ R. As for the C-valued basis vectors
l3,4, using l∗3 = eiχ l4 one can define their real and imaginary parts

Note that in [2] the basis momenta li contain an additional
normalisation factor10

β = 1

1 − α1α2
= ± (p1 · p2) ± √

Δ

2
√

Δ
, (121)

which diverges like 1/
√

Δ when Δ → 0. As a consequence,
in [2] numerical instabilities are in part visible as factors β

in the reduction formulas and in part hidden in the defini-
tion of the basis vectors. Instead, the basis momenta defined
in (114)–(115) are stable in the Δ → 0 limit. Thus, in the
reduction formulas presented in Sects. 5.2 and 5.3, instabil-
ities related to the Gram determinant (118) are fully mani-
fest in the form of inverse powers of the parameter γ ∝ Δ.
More precisely, for p2

1 = 0 and p2
2 �= 0, Gram-determinant

instabilities arise also from α2 = ±p2
2/(2

√
Δ). However,

the parametrisation adopted in Sect. 5.3 ensures that α2 is
always regular.

5.2 On-the-fly box reduction

In the following we discuss the reduction identity (77), which
can be rewritten in a slightly more compact form as

qμqν =
3∑

j=−1

[
Aμν
j + Bμν

j,λ q
λ
]
Dj , (122)

with D−1 = 1. Since qμqν is reconstructed in terms of
D0, D1, D2, D3, we denote (122) as box reduction identity,
although it is applicable to any integrand with N ≥ 4 loop
propagators. The starting point for its derivation is given by
the decomposition (112). Since the basis momenta l1,2 and
l3,4 lie in mutually orthogonal planes, it is natural to split the
loop momentum into corresponding components,

qμ = qμ
‖ + qμ

⊥, (123)

with qμ
‖ = c1l

μ
1 +c2l

μ
2 and qμ

⊥ = c3l
μ
3 +c4l

μ
4 . The respective

ci coefficients can be easily related to scalar products (q · li )
using (113) and (116). This leads to,11

qμ
‖ = 2

γ

[
(q · l1) lμ2 + (q · l2) lμ1

]
and

Footnote 9 continued
as l3(4),+ = [l3(4) + eiχ l4(3)]/2, l3(4),− = [l3(4) − eiχ l4(3)]/(2i), and
show that (120) leads to (l̃i · l̃ j ) → 0 for all real-valued vectors l̃i , l̃ j ∈
{l1, l2, l3,±, l4,±}. Thus, similarly as for l1,2 we have l̃i → ξ̃iη

μ ∀ i ,
and we arrive at lμ3,4 → z3,4η

μ with z3 = z∗4 ∈ C, i.e. also the basis
vectors l3,4 become parallel to l1,2.
10 More explicitly, the basis momenta of [2] correspond to l̃i = βli
and the various li -dependent quantities are related in a similar way,
e.g. γ̃ = β2γ , while li -independent quantities such as Δ and αi are
identical.
11 This decomposition of q corresponds to qμ

‖ = Dμ/γ and qμ
⊥ =

−Qμ/(2γ ) in [2].
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qμ
⊥ = − 1

2γ

[
(q · l3)lμ4 + (q · l4)lμ3

]
. (124)

The qμ
‖ component can be directly reduced to rank zero

by reconstructing the scalar products (q · l1,2) in terms of
D0, D1, D2 using

pi · q = 1

2
(Di − D0 + fi0) , fi0 = m2

i − m2
0 − p2

i .

(125)

This yields

qμ
‖ = 1

γ

[
f10r

μ
2 + f20r

μ
1 + D1r

μ
2 + D2r

μ
1 − D0

(
rμ

1 + rμ
2

)]
,

(126)

with

rμ
1 = lμ1 − α1l

μ
2 and rμ

2 = lμ2 − α2l
μ
1 . (127)

In order to obtain an identity that reduces also q⊥ to a linear
combination of D0, . . . , D3 one has to move to rank two by
squaring (123) in a way that does not generate qμ

‖ qν‖ terms.
To this end one can write

qμqν = 1

2

[ (
qμ − qμ

⊥
) (
qν + qν⊥

) + qμ
⊥q

ν⊥
]

+ (μ ↔ ν)

= 1

2

[
qμ
‖

(
qν + qν⊥

) + qμ
⊥q

ν⊥
]

+ (μ ↔ ν). (128)

Applying (126) to the rhs of (128) reduces qμ
‖ qν and qμ

‖ qν⊥
to rank one, such that only

qμ
⊥q

ν⊥ = 1

4γ 2

4∑

i, j=3

(q · l̂i )(q · l̂ j ) lμi lνj , (129)

with l̂3,4 = l4,3, remains to be reduced. This is achieved by
means of the relations [2]

(q · l3)(q · l4) = γ
(
qλ‖ qλ − D0 + m2

0

)
, (130)

(q · l3(4))
2 = γ

(p3 · l4(3))

×
[ (

D0 + m2
0 − qλ‖ qλ

)
(p3 · l3(4))

−
(
D3 − D0 + f30 − 2p3,αq

α‖
)

(l3(4),λq
λ)

]
, (131)

where the quadratic terms (q · li )(q · l j ) with i, j = 3, 4 are
reconstructed in terms of D0 and D3 using also the external
momentum p3.

Combining (126)–(131) leads to the reduction iden-
tity (122) with

Aμν
−1 = m2

0A
μν
0 , Aμν

1,2,3 = 0,

Aμν
0 = 1

4γ

(
αLμν

33 + 1

α
Lμν

44 − Lμν
34

)
,

Bμν
−1,λ =

3∑

i=1

fi0B
μν
i,λ , Bμν

0,λ = −
3∑

i=1

Bμν
i,λ ,

Bμν
1,λ = 1

4γ 2

[
2(p3 · r2)

(p3 · l3)
(
Lμν

33 l4,λ + 1

α
Lμν

44 l3,λ

)

−
(
rμ

2 Lν
34,λ + rν

2 L
μ
34,λ

)]
+ 1

γ

(
rμ

2 δν
λ − Aμν

0 r2,λ

)
,

Bμν
2,λ = Bμν

1,λ

∣∣
r1↔r2

,

Bμν
3,λ = − 1

4γ (p3 · l3)
(
Lμν

33 l4,λ + 1

α
Lμν

44 l3,λ

)
, (132)

where we have introduced

Lμν
33 = lμ3 l

ν
3 , Lμν

44 = lμ4 l
ν
4 ,

Lμν
34 = lμ3 l

ν
4 + lμ4 l

ν
3 , α = p3 · l4

p3 · l3 . (133)

The relations between the Aμν
j and Bμν

j,λ tensors in the first
two lines of (132) follow from the requirement that terms of
rank different from two vanish on the rhs of (122). Note also
that the tensor Lμν

34 can be rewritten in terms of l1, l2 and gμν

as

Lμν
34 = 4

(
lμ1 l

ν
2 + lμ2 l

ν
1 − γ

2
gμν

)
. (134)

5.3 On-the-fly triangle reduction

The identity (82), which reconstructs qμqν in terms of
D0, D1, D2 at the integral level, will be denoted as trian-
gle reduction. Its derivation is based on the observation that
the only terms that involve D3 and p3 in Sect. 5.2, i.e. the
squared scalar products (q · l3)2 and (q · l4)2 in (131), do
not contribute in three-point integrals of rank R ≤ 3. More
precisely [2], for i = 3, 4,
∫

dD q̄
(q · li )2

D̄0 D̄1 D̄2
=

∫
dD q̄

(q · li )2 qρ

D̄0 D̄1 D̄2
= 0. (135)

As a consequence, the derivations of Sect. 5.2 are also
applicable to three-point functions at the integral level upon
replacing (129) by

qμ
⊥q

ν⊥ → 1

4γ 2 (q · l3)(q · l4) Lμν
34 . (136)

In this way one arrives at the reduction identities
∫

dDq̄
qμqνS(q)

D̄0 · · · D̄2

=
2∑

j=−1

∫
dDq̄

(
Aμν
j + Bμν

j,λ q
λ
)
S(q)

D̄0 · · · /̄Dj · · · D̄2
, (137)

where S(q) = S+Sρqρ is an arbitrary rank-one polynomial,
and the tensors Aμν

j and Bμν
j,λ are obtained from (132) through
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q

p1
q + p1

p2 − p1

q + p2− p2

Fig. 11 Triangle t-channel (sub)topology that gives rise to Δ12 → 0
numerical instabilities when (p2 − p1)

2 = 0 and p2
1 → p2

2

the trivial replacements

Lμν
33 → 0, Lμν

44 → 0. (138)

5.4 Treatment of Gram-determinant instabilities

As pointed out in Sect. 5.1, when the rank-two Gram deter-
minant Δ12 tends to zero the reduction basis (114)–(115)
becomes degenerate. This leads to spurious singularities that
manifest themselves as factors γ −k ∝ Δ−k

12 in the reduction
identities. In practice, the residues of Δ−k

12 poles are sup-
pressed at O(Δk

12) as a result of subtle numerical cancel-
lations between various contributions. Thus, for Δ12 → 0
the results of the reduction are finite but suffer from severe
numerical instabilities. As can be seen from (132), spuri-
ous singularities reach the maximum power k = 2, i.e. each
reduction step results in a numerical instability that scales
quadratically in the inverse Gram determinant Δ12.

The reduction (132) involves also spurious singularities
related to the rank-three Gram determinant, Δ123, which
enter through the terms (l3 · p3)

−1 ∝ |Δ123|−1/2 [2]. How-
ever, as compared to the Δ123 → 0 case, Δ12 → 0 instabili-
ties are statistically more likely and are also more enhanced
due to their Δ−2

12 scaling behaviour. In fact, studying high
statistics samples for various representative processes, we
have found that the numerical instabilities of the on-the-fly
reductions of Sects. 5.2–5.3 are very strongly correlated to
the parameter γ ∝ Δ12. Therefore, as we will see in the
following, avoiding Δ12 → 0 spurious singularities in a sys-
tematic way makes it possible to reach excellent numerical
stability.

5.4.1 Box reduction

In the case of the on-the-fly box reduction (122), poles in Δ12

arise only through the factors 1/γ 2 and 1/γ in (132), which
are a direct consequence of the choice of the momenta p1, p2

for the construction of the reduction basis (114)–(115). Since
rank-two Gram-determinant instabilities depend on only two

of the three available momenta, they can be easily avoided by
constructing the basis with p1, p3 or p2, p3 instead of p1, p2,
depending on the values of the respective Gram determinants
Δ13,Δ23,Δ12.

In practice, in order to avoid small rank-two Gram deter-
minants we perform the box reduction upon a permutation,

{D1, D2, D3} −→ {Di1, Di2 , Di3}, (139)

which orders loop denominators with related momenta and
masses in such a way that

|Δi1i2 |
Q4

i1i2

= max

{
|Δ12|
Q4

12

,
|Δ13|
Q4

13

,
|Δ23|
Q4

23

}
. (140)

The scales Q2
i j , which render the above ratios dimensionless,

are defined as the largest element of the respective Gram
matrices, i.e.

Q2
i j = max{|pi · pi |, |p2

i |, |p2
j |}. (141)

Note that the permutation (139) can be applied without
changing the order of the corresponding segments Si (q), i.e.
without any modification of the open-loop dressing recur-
sion. Moreover, the choice of the optimal permutation (139)–
(140) can be done in a fully flexible way at runtime and
locally in individual reduction steps, depending on the kine-
matics of the actual phase space point. In practice (139) is
applied only to compute the reduction basis and the coeffi-
cients (132), which are then converted back to the original
ordering.

Avoiding a spurious Δ12 → 0 singularity with (139)–
(140) does not guarantee its disappearance in future reduction
steps. In fact, all reduced contributions where D1 and D2

remain unpinched will still involve the same small Gram
determinant. However, the permutation trick (139) can be
iterated as long as N ≥ 4 loop denominators are available.
In this way, rank-two Gram-determinant instabilities can be
isolated in triangle contributions, which arise only at later
steps of the open-loop recursion for loop diagrams with N >

3.

5.4.2 Triangle reduction

For the case of triangle topologies one can show that, exclud-
ing regions where the external particles become soft or
collinear, vanishing Δ12 Gram determinants can arise only
from the t-channel topology depicted in Fig. 11, where the
triangle exhibits two space-like external momenta, p1 and
p2, and a time-like external momentum, p2 − p1. Since the
Gram determinant vanishes when p2

1 → p2
2, we adopt the

parametrisation

p2
1 = −p2 < 0, p2

2 = −p2(1 + δ), (p2 − p1)
2 = 0,

(142)

123



70 Page 24 of 35 Eur. Phys. J. C (2018) 78 :70

where p1 and p2 can be ordered such that δ > 0. The param-
eters Δ and γ are related to δ via

√
Δ = p2

2
δ and γ = −p2δ2, (143)

i.e. the Δ → 0 limit corresponds to δ → 0.
In kinematic regions with small δ, the numerical reduction

of rank-r triangles via iterated on-the-fly reductions (132)
and subsequent rank-one reductions (A.12)–(A.14) can lead
to spurious singularities up to order 1/δ4r−2. In order to
avoid numerical instabilities, we first perform a full alge-
braic reduction of 3-point tensor integrals,

Cμ1···μr = (2πμ)2ε

iπ2

∫
dDq̄

qμ
1 · · · qμr

D̄0 D̄1 D̄2
, (144)

to scalar integrals. This leads to a cancellation of the leading
spurious singularites, and the resulting analytic expressions
for rank-r triangles involve only poles up to order 1/δr+1.
For instance, for the case of triangles with massless internal
lines, m0 = m1 = m2 = 0, reducing tensor integrals of rank
r = 1, 2, 3 to scalar integrals we obtain

Cμ = 2

δ2 p2

{
B0(−p2, 0, 0)

[
−pμ

1

(
1 + δ

2

)
+ pμ

2

]

+ B0
(−p2(1 + δ), 0, 0

) [
pμ

1 (1 + δ) − pμ
2

(
1 + δ

2

)]}

+ 1

δ
C0

(−p2,−p2(1 + δ), 0, 0, 0
) [ − pμ

1 (1 + δ) + pμ
2

]

+ 1

δp2 B0(0, 0, 0)
[
pμ

2 − pμ
1

]
, (145)

Cμν = B0(−p2, 0, 0)

[
− gμν

4δ
+ pμν

11

p2

(
3

δ3 + 5

δ2 + 3

2δ

)

− pμν
12

p2

(
3

δ3 + 5

2δ2

)
+ pμν

22

p2

3

δ3

]
+ B0

(−p2(1 + δ), 0, 0
)

×
[
gμν

4δ
+ 1

4
gμν − pμν

11

p2

(
3

δ3 + 6

δ2 + 3

δ

)
+ pμν

12

p2

(
3

δ3

+ 7

2δ2 + 1

2δ

)
+ pμν

22

p2

(
− 3

δ3 − 1

δ2 + 1

2δ

)]
+ B0(0, 0, 0)

×
[
pμν

11

p2

(
1

δ2 + 3

2δ

)
− pμν

12

p2

(
1

δ2 + 1

2δ

)
+ pμν

22

p2

(
1

δ2

− 1

2δ

)]
+ C0

(−p2,−p2(1 + δ), 0, 0, 0
) [

pμν
11

(
1

δ2

+ 2

δ
+ 1

)
− pμν

12

(
1

δ2 + 1

δ

)
+ pμν

22

δ2

]
− 1

2

[
−1

2
gμν

+ pμν
11

p2

(
2

δ2 + 2

δ

)
− pμν

12

p2

(
2

δ2 + 1

δ

)
+ 2pμν

22

δ2 p2

]
, (146)

Cμνρ = B0(−p2, 0, 0)

[
pμνρ

111

(
− 11

3δ4 p2 − 10

δ3 p2

− 17

2δ2 p2 − 11

6δp2

)
+ pμνρ

112

(
11

3δ4 p2 + 20

3δ3 p2 + 17

6δ2 p2

)

+ pμνρ
122

(
− 11

3δ4 p2 − 10

3δ3 p2

)
+ pμνρ

222
11

3δ4 p2 + p{μ
1 gνρ}

×
(

1

12δ2 + 1

6δ

)
− p{μ

2 gνρ}

12δ2

]
+ B0

(−p2(1 + δ), 0, 0
)

×
[
pμνρ

111

(
11

3δ4 p2 + 11

δ3 p2 + 11

δ2 p2 + 11

3δp2

)
+ pμνρ

112

×
(

− 11

3δ4 p2 − 23

3δ3 p2 − 13

3δ2 p2 − 1

3δp2

)
+ pμνρ

122

(
11

3δ4 p2

+ 13

3δ3 p2 + 1

2δ2 p2 − 1

6δp2

)
+ pμνρ

222

(
− 11

3δ4 p2 − 1

δ3 p2

+ 1

2δ2 p2 − 1

3δp2

)
+ p{μ

1 gνρ}
(

− 1

12δ2 − 1

6δ
− 1

12

)

+ p{μ
2 gνρ}

(
1

12δ2 − 1

12

)]
+ B0(0, 0, 0)

[
pμνρ

111

(
− 1

δ3 p2

− 5

2δ2 p2 − 11

6δp2

)
+ pμνρ

112

(
1

δ3 p2 + 3

2δ2 p2 + 1

3δp2

)

+ pμνρ
122

(
− 1

δ3 p2 − 1

2δ2 p2 + 1

6δp2

)
+ pμνρ

222

(
1

δ3 p2

− 1

2δ2 p2 + 1

3δp2

)]
+ C0

(−p2, −p2(1 + δ), 0, 0, 0
)

×
[
pμνρ

111

(
− 1

δ3 − 3

δ2 − 3

δ
− 1

)
+ pμνρ

112

(
1

δ3 + 2

δ2 + 1

δ

)

+ pμνρ
122

(
− 1

δ3 − 1

δ2

)
+ pμνρ

222

δ3

]
− 1

2

[
pμνρ

111

(
− 10

3δ3 p2

− 22

3δ2 p2 − 37

9δp2

)
+ pμνρ

112

(
10

3δ3 p2 + 14

3δ2 p2 + 10

9δp2

)

+ pμνρ
122

(
− 10

3δ3 p2 − 2

δ2 p2 + 2

9δp2

)
+ pμνρ

222

(
10

3δ3 p2

− 2

3δ2 p2 + 1

9δp2

)
+ p{μ

1 gνρ}
(

1

6δ
+ 5

18

)
+ p{μ

2 gνρ}

×
(

1

9
− 1

6δ

)]
, (147)

with the tensors

pμν
i j =

∑

π(i, j)

pμ
i pν

j , pμνρ
i jk =

∑

π(i, j,k)

pμ
i pν

j p
ρ
k ,

p{μ
i gνρ} = pμ

i g
νρ + pν

i g
μρ + pρ

i g
μν, (148)

where i, j, k = 1, 2, and the sums are restricted to inequiv-
alent permutations, e.g. pμν

11 = pμ
1 pν

1 , pμν
112 = pμ

1 pν
1 p

ρ
2 +

pμ
1 pν

2 p
ρ
1 + pμ

2 pν
1 p

ρ
1 , etc.

Analytic expression of type (145)–(147) guarantee a
reduced sensitivity to Gram-determinant instabilities. Thus
they are used as default for the reduction of triangles config-
urations of type (142) with δ > δthr. The freely adjustable
threshold parameter δthr is set to δthr = 10−3. To avoid
numerical instabilities in regions with δ < δthr we perform
systematic expansions in δ. In particular, for a complete can-
cellation of the 1/δ poles also the δ-dependent C0 and B0

scalar integrals have to be expanded in δ. To this end we use
LiteRed [67], and expanding the residues of δ−k poles up to
order δk+m we obtain regular Taylor series including terms
up to order δm .
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For the case m1 = m2 = m3 = 0, expanding up to order
δ2 yields

Cμ = pμ
1 + pμ

2

2p2 (1 − ΔB0) + δ
pμ

1 + 2pμ
2

6p2 ΔB0

− δ2 pμ
1 + 3pμ

2

12p2

(
ΔB0 + 1

2

)
+ O(δ3), (149)

Cμν = 2pμν
11 + pμν

12 + 2pμν
22

6p2

(
ΔB0 − 1

2

)
+ 1

4
gμνB0

− δ

[
pμν

11 + pμν
12 + 3pμν

22

12p2

(
ΔB0 + 1

2

)
− 1

8
gμν

]

+ δ2
[

2pμν
11 + 3pμν

12 + 12pμν
22

60p2 (ΔB0 + 1)

+ 1

24
gμν

]
+ O(δ3), (150)

Cμνρ = 3pμνρ
111 + pμνρ

112 + pμνρ
122 + 3pμνρ

222

12p2

(
1

6
− ΔB0

)

− p{μ
1 gνρ} + p2 p{μ

2 gνρ}

72
(6B0 + 1)

+ δ

[
3pμνρ

111 + 2pμνρ
112 + 3pμνρ

122 + 12pμνρ
222

60p2

×
(

ΔB0 + 5

6

)
+ 1

36
p{μ

1 gνρ} + 1

18
p{μ

2 gνρ}
]

− δ2
[
pμνρ

111 + pμνρ
112 + 2pμνρ

122 + 10pμνρ
222

60p2

×
(

ΔB0 + 4

3

)
− 1

144
p{μ

1 gνρ} − 1

48
p{μ

2 gνρ}
]

+O(δ3), (151)

where

B0 = B0(−p2, 0, 0),

ΔB0 = B0(−p2, 0, 0) − B0(0, 0, 0). (152)

Similar results have been obtained for the case of mas-
sive internal propagators. More precisely, we have imple-
mented all needed mass configurations for NLO QCD calcu-
lations, i.e. (m0,m1,m2) = (0, 0, 0), (m,m,m), (0,m,m)

and (m, 0, 0), with m > 0, including terms up to order δ2

in the expansions. The extra cases needed for NLO EW cal-
culations, i.e. (0,m1,m2), (m1,m2,m2) and (m1,m2,m3),
with mi > 0, will be implemented soon.

Since the analytic expressions (145)–(147) and their
expansions (149)–(151) reduce triangles of rank r to rank
zero in a single step, in order to be able to apply them in a fully
flexible way, the on-the-fly reduction of triangles (82) has to
be postponed at the end of the open-loop recursion, where
triangle contributions have reached the maximum rank. This
means that, in addition to the contributions listed in (84), we
also generate N = 3 terms with R = 3. After taking the
trace (76), depending on the actual value of δ, the reduction

Fig. 12 Evolution of the total number N of loop segments and the
number n of dressed segments during the open-loop recursion. Hori-
zontal and diagonal arrows describe, respectively, dressing steps and the
generation of pinched subtopologies in the on-the-fly reduction. Corre-
sponding unpinched contributions, where the rank is reduced but (N , n)

remains unchanged are not shown. The algorithm starts at (Nmax, 0) and
first proceeds towards the highest possible n before moving one step
lower in N

of triangles is done either using the expansion formulas or
the on-the-fly reduction (82) followed by Passarino–Veltman
reduction steps (A.12)–(A.14).

6 Implementation and performance

This section summarises the key structure of the new algo-
rithm, outlines some aspects of its implementation, and
presents technical performance studies.

6.1 Structure and implementation of the new algorithm

Similarly as for the original open-loop method, given a cer-
tain scattering process the algorithm starts with the genera-
tion of all tree and one-loop diagrams. This is done in sym-
bolic form, including only topological information and par-
ticle content. One-loop diagrams are colour stripped and cut-
open, and the interference of their colour structure with the
Born amplitude is taken as initial condition for the open-loop
recursion.

The recursion is organised by grouping open loops accord-
ing to the total number N of segments and the number n of
dressed segments. Dressing steps increase n and reduction
steps reduce N or keep it constant. Thus, as illustrated in
Fig. 12, the (N , n) groups are dressed through a series of
iterations with N = Nmax, Nmax − 1, Nmax − 2, . . ., where
N is kept fixed while all segments n = 0, 1, 2, . . . , N are
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processed. A step of the open-loop recursion, to be applied
to all objects in an (N , n)-group, consists of the following
operations:

1. Merge all open loops with the same one-loop topology,
the same cut and the same undressed segments into a
single object. Note that one can merge open loops of
different rank.

2. For each open loop with n < N and rank R determine
the rank Rnext that would be reached by performing the
subsequent dressing step.

2(a) If Rnext = 3 or if n = N and R = 2 avoid the
dressing step and perform an on-the-fly reduction,
which generates unpinched and pinched terms with
R = 1. The unpinched terms remain in the (N , n)

group. As for the pinched terms, if the adjacent seg-
ments of a pinched propagator are dressed they can be
reduced to a single effective segment, thereby turning
(N , n) → (N − 1, n − 1). Otherwise, contributions
with an undressed pinch stay in the (N , n) group.

2(b) If n < N and Rnext ≤ 2 perform a dressing step,
which turns (N , n) → (N , n + 1). If this step dresses
a pinched propagator that was previously undressed,
the corresponding segments can be reduced to a single
effective segment turning (N , n + 1) → (N − 1, n).

3. Sort all open loops into the proper group and repeat
steps 1–3 for all open loops in the (N , n)-group until
the group is empty or n = N and all open loops in the
group have rank R ≤ Rlast (see below).

Topologies with N = 2 are dressed without reduc-
tion, and, in order to enable Gram-determinant expansions
(see Sect. 5.4.2), also N = 3 contributions are dressed with-
out on-the-fly reduction. Thus Rlast = N for N = 2, 3,
while open loops with N ≥ 4 are reduced on-the-fly down
to Rlast = 1. The algorithm starts at (N , n) = (Nmax, 0)

and terminates with the dressing of two-point contributions
at (N , n) = (2, 2). At this point all open loops are closed
with the trace operation (76), and the last reduction steps
described in Appendix A are applied.

The above on-the-fly algorithm has been implemented in
the framework of the original OpenLoops program [16],
which consists of a computer-algebraic code generator writ-
ten in Mathematica and a numerical part written in For-
tran 90. Given an arbitrary Standard Model process, the
Mathematica generator simulates the full chain of recur-
sion steps in symbolic form and translates it into Fortran 90
code for the calculation of the actual scattering amplitude.
The only external tools that need to be interfaced to the
new OpenLoops program are Feynarts [68], for the gen-
eration of tree and one-loop diagrams, and Collier [19],
for the calculation of scalar integrals. All other aspects of
the open-loop method are directly implemented as process-

independent Mathematica and Fortran routines. This
includes the management of colour algebra, the kernels of the
dressing recursion at tree and one-loop level, the on-the-fly
and integral reductions, the helicity bookkeeping system, R2

rational terms, UV counterterms, and several other aspects.
The entire program is fully automated, the new on-the-fly

methods are implemented and widely tested at NLO QCD
and they will soon be extended to NLO EW. These methods
will be made publicly available with the upcoming release
of OpenLoops 2. Similarly as for OpenLoops 1, numerical
routines generated with the new on-the-fly techniques will be
accessible through an automated download and installation
system and the standard OpenLoops interfaces to a variety
of public Monte Carlo programs. In addition to the on-the-fly
approach, OpenLoops 2 will support also the original open-
loop method, which requires additional third-party tools such
as Collier or Cuttools [10] and OneLOop [65] for the
reduction to scalar integrals.

6.2 Technical performance

In this section we study the technical performance of the
new algorithm. Similarly as in [9], we present speed and
stability benchmarks for the one-loop QCD corrections to
four families of partonic processes,

(a) uū → tt̄ + n g,

(b) gg → tt̄ + n g,

(c) ud̄ → W+g + n g,

(d) uū → W+W− + n g,

(153)

with n = 0, 1, 2, 3 additional gluons, i.e. including processes
with up to 7 scattering particles. Top quarks andW bosons are
not decayed, and sums over the colour and helicity degrees
of freedom of the external particles are included throughout.

Benchmarks obtained with the new open-loop algorithm,
denoted as OpenLoops 2, are based on Collier for the cal-
culation of scalar integrals. In order to highlight the effect
of the new on-the-fly methods of Sects. 3–4, we also con-
sider variants of the OpenLoops program where these new
methods are not used. Specifically, as detailed in Table 1, we
restrict the on-the-fly approach to helicity sums and diagram
merging, using Collier for tensor reduction. This approach
is denoted as OpenLoops 2+Collier. Alternatively, we
apply the original open-loop method in combination with
tensor integrals (denoted as OpenLoops 1+Collier) or
OPP reduction (denoted as OpenLoops 1+Cuttools). The
OpenLoops 1+Cuttools mode relies on OneLOop for the
scalar integrals and is used also to generate benchmarks in
quadruple precision.

By default, OpenLoops calculations are monitored
through a built-in stability system that estimates the level
of instability of one-loop results and automatically triggers
re-evaluations in double or quadruple precision for critical
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Table 1 List of the different variants of theOpenLoopsprogram that are compared in Sects. 6.2.1–6.2.2. As third-party tools we useCollier1.2 [19],
Cuttools1.9.5 [10] and OneLOop3.6.1 [65]

Method Tensor reduction Scalar integrals Diagram merging Helicity summation

OpenLoops 2 On-the-fly Collier On-the-fly On-the-fly

OpenLoops 2+Collier Collier Collier On-the-fly On-the-fly

OpenLoops 1+Collier Collier Collier Parent–child Standard

OpenLoops 1+Cuttools Cuttools OneLOop Parent–child Standard

Quad Precision Cuttools OneLOop Parent–child Standard

Fig. 13 Runtimes per phase
space point for the calculation of
the one-loop scattering
probability (1) on a single Intel
i7-4790K core with
gfortran-4.8.5. Results for the
processes in (153) are plotted
versus the number of one-loop
diagrams. Timings of
OpenLoops 2 with on-the-fly
reduction (tOL2

on-the-fly) are shown
in the upper frame. The lower
frame presents a comparison to
OpenLoops 2+Collier and
OpenLoops 1+Collier
(see Table 1)
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phase space points. In the following, in order to avoid any
bias in the comparisons, the stability system is switched off.
In this way, one-loop amplitudes are computed only once per
phase space point in double precision. Unless stated other-
wise, Gram-determinant expansions are always kept active,
both in the on-the-fly reduction ofOpenLoops2 and inCol-
lier.

6.2.1 Speed benchmarks

To illustrate the speed of the new algorithm, in Fig. 13 we
plot runtimes per phase space point for the calculation of
the one-loop scattering probability (1). The processes listed
in (153) involve a number of one-loop Feynman diagrams
that ranges from the order of 1 to 105. The corresponding
runtimes, measured on a single Intel i7-4790K core with
gfortran-4.8.5, vary from the order of 10−1 to 104 ms. In this
range, we confirm that runtimes tend to grow linearly with
the number of one-loop diagrams up to 2 → 4 processes [9],
and we find that this scaling behaviour persists up to 2 → 5

processes. As compared to OpenLoops 1+Collier, the new
algorithm with on-the-fly reduction is up to a factor 2–3
faster for multi-particle processes. Depending on the process,
using OpenLoops 2+Collier, i.e. restricting the on-the-fly
approach to helicity sums plus diagram merging and reduc-
ing tensor integrals with Collier, can result in a further sig-
nificant speed-up. However, the moderate slowdown caused
by the on-the-fly reduction can be counterbalanced by the
improved numerical stability, which implies a reduced need
of re-evaluations in quadruple precision (see Sect. 6.2.2).

6.2.2 Stability benchmarks

In this section we study the numerical stability of the new
open-loop algorithm. To this end, one-loop scattering prob-
ability densities computed in double precision (WDP

1−loop)
are compared against benchmarks in quadruple precision
(WQP

1−loop). More precisely, defining the relative difference
between two results as
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Fig. 14 Probability of finding events with instability A > Amin as a
function of Amin in a sample of 106 gg → tt̄gg events. The stability of
quad-precision benchmarks (blue) is compared to different variants of
the OpenLoops 2 algorithm in double precision. Unstable results with-

out special treatment of Gram determinants (“on-the-fly”) are stabilised
using the permutation trick (139) for boxes (“perm”), exact analytic for-
mulas for triangles (“analytic”) and Gram-determinant expansions for
δ < δthr (“exp”). See Sect. 5.4.2

A(Wa,Wb) = log10

∣∣∣∣
Wa − Wb

Wmin

∣∣∣∣ with

Wmin = min {|Wa |, |Wb|} , (154)

we estimate the instability of double-precision results as12

ADP = A
(
WDP

1−loop,WQP,R
1−loop

)
. (155)

This quantity can be regarded, up to a minus sign, as the
number of correct digits of the double-precision evaluation.

To estimate the intrinsic accuracy of quad-precision
benchmarks, computed using OpenLoops 1+Cuttools and
OneLoop, we use a so-called rescaling test [9,69], where
scattering amplitudes are computed with rescaled masses and
momenta and scaled back according to their mass dimension-
ality. Thus for a given phase space point the accuracy of the
quadruple precision benchmarks is assessed as

AQP = A
(
WQP

1−loop,WQP,R
1−loop

)
, (156)

where WQP
1−loop and WQP,R

1−loop are the original and rescaled
quad-precision evaluations. This quantity represents the
finite resolution of the instability estimate (155). As we will

12 Note that, in order to avoid possible sources of bias, the quad-
precision benchmark WQP,R

1−loop is computed with rescaled kinematics
as detailed below.

see, quad-precision benchmarks can become more unstable
than double-precision results obtained with OpenLoops 2.
In this case, the instability estimate (155) yields ADP ∼ AQP

but should be interpreted as ADP < AQP.
To assess the stability of OpenLoops 2, for each process

in (153) we have studied a sample of 106 homogeneously
distributed phase space points at

√
s = 1 TeV. To exclude

soft and collinear regions we have required pi,T > 50 GeV
and ΔRi j > 0.5 for all massless final-state QCD partons.

Figure 14 illustrates the effect of Gram-determinant
instabilities and the goodness of the solutions introduced
in Sect. 5.4 in the case of gg → tt̄gg. For this challeng-
ing multi-particle process, using the OpenLoops 2 on-the-
fly reductions without any special treatment of Gram deter-
minants we observe an extremely high level of numerical
instability in double precision. The probabilities to obtain
one-loop results with less than four or zero correct digits are
around 10−1 and 10−2, respectively, and the tail of the stabil-
ity distribution extends up to a level of instability of ten orders
of magnitude and more. Applying the permutation trick (139)
(“perm”) and using analytic expressions for three-point inte-
grals (“analytic”) result in a dramatic stability improvement
for the box and triangle reductions, respectively. Combining
these two improvements (“analytic+perm”) reduces the prob-
ability of finding points with only few correct digits by three
orders of magnitude, and yields a maximum level of instabil-
ity around 102. Finally, switching on the Gram-determinant
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Fig. 15 Correlation between the instability A of OpenLoops 2 in dou-
ble precision and the largest (Q4/Δ)2 in the event, where Δ is any
rank-two Gram determinant and Q2 is the maximum scale in the corre-
sponding Gram matrix. See (141). Probability densities correspond to

106 events. Unstable results without special treatment of Gram deter-
minants (left) are stabilised using the permutation trick (139) for box
reduction and analytic expressions for triangle reduction (middle) plus
Gram-determinant expansions for δ < δthr (right)

expansions for δ < δthr leads to a further very drastic reduc-
tion of the probability of finding results with less than 3–4
correct digits. In this range, we observe an overlap with the
tail of the quad-precision distribution. As discussed above,
this indicates that OpenLoops 2 in double precision is more
stable than the quad-precision benchmarks, and its estimated
instability represents only an upper bound. Most likely, the
tail of the true OpenLoops 2 stability distribution ends at
10−3.

To gain more insights into the origin of numerical insta-
bilities in the on-the-fly reduction of OpenLoops 2, let us
investigate the correlation between the instability (155) and
rank-two Gram determinants Δ in the gg → tt̄gg sample
of Fig. 14. More precisely, in Fig. 15 we consider the min-
imal value of the dimensionless parameter Δi j/Q4

i j in the

event, where Q2
i j is the largest |pi · p j | in the corresponding

Gram matrix (see Sect. 5.4.1). As demonstrated by the left
plot in Fig. 15, the instability of the entire scattering ampli-
tude features a remarkably strong correlation with rank-two
Gram determinants over twenty orders of magnitude. More-
over we observe a quadratic or faster scaling in Q4/Δ, con-
sistent with the form of the γ −2 ∼ Δ−2 poles in (132). The
middle plot shows the combined effect of the permutation
trick (139), which avoids the smallest Gram determinant of
the event in all reductions with N ≥ 4 loop denominators,
and the attenuation of spurious singularites through analytic
expressions for three-point configurations of type (142). In
this way the probability of having less than four correct digits
is reduced to 0.1 permil. Finally, in the right plot we see that
points with less than 3–4 correct digits disappear completely
when Gram-determinant expansions are switched on.13 As
one can clearly recognise in the right plot, the threshold for

13 Points with unreliable quad-precision benchmarks (AQP ∼ ADP) are
not considered in Fig. 15.

the activation of Gram-determinant expansions corresponds
to (Q4/Δ)2 ∼ δ−4

thr = 1012.
Finally, in Figs. 16 and 17 we compare the stability of

OpenLoops 2 against OpenLoops 1+Collier and Open-
Loops 1+Cuttools for the 2 → 3 and 2 → 4 pro-
cesses in (153). In OpenLoops 2 the stability improvements
of Sect. 5.4 are applied throughout. The results of Open-
Loops 1+Cuttools feature the highest instability tails for
all considered processes. The probability of finding less than
four correct digits can exceed 10−3 in 2 → 3 and 10−2 in
2 → 4 processes, while the fraction of fully unstable points
with A ≥ 0 can reach 10−3 in 2 → 4 processes. Switching
to OpenLoops 1+Collier we find that, depending on the
process, the probability of finding only a few correct dig-
its goes down by one to three orders of magnitude, while in
eight samples of 106 points we do not find a single result with
A > 0.14

Using OpenLoops 2 can lead to a further significant sta-
bility improvement. This is especially evident for 2 → 3
processes, where the stability of the on-the-fly reduction
in OpenLoops 2 is remarkably close to the quad-precision
benchmarks and even superior than quad precision for the
case of tt̄g production. When quad precision is sufficiently
accurate to resolve the instabilities of OpenLoops 2 we
observe improvements of one–two orders of magnitude with
respect to OpenLoops 1+Collier. In the case of 2 → 4
processes, depending on the process and the considered num-
ber of digits, OpenLoops 2 can perform somewhat better or
slightly worse than OpenLoops 1+Collier, like in the case
of ud̄ → W+ggg or uū → W+W−gg, respectively. How-

14 As discussed above, due to the insufficient quality of quad-precision
benchmarks, instability estimates in the tail of gg → tt̄gg are not sig-
nificant.
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Fig. 16 Stability distributions
for 2 → 3 processes defined as
in Fig. 14. The stability of
OpenLoops 2 with on-the-fly
reduction is compared to
OpenLoops 1 with Collier or
Cuttools. The instability of
the employed quad precision
benchmarks is also shown
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Fig. 17 Stability distributions
for 2 → 4 processes defined as
in Fig. 16
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ever, both approaches guarantee excellent numerical stabil-
ity.

7 Conclusions and outlook

We have presented a new approach for the automated calcula-
tion of scattering amplitudes at one loop. This new technique
is based on the open-loop approach, where cut-open loop
integrands are factored into a product of loop-momentum
dependent segments that are combined through recursive ten-
sorial multiplications.

The key idea behind the new method is that various oper-
ations, which are typically done at the level of full Feynman
diagrams or amplitudes, can be performed on-the-fly during
the open-loop recursion, i.e. after the multiplication of each
loop segment. Since it exploits the factorised structure of
open loops in a systematic way, this on-the-fly approach can
reduce the complexity of certain operations in a very signif-
icant way.

We have first applied the on-the-fly method to helicity
summations and to the merging of topologically equivalent
open loops, finding speed-up factors of up to two or three
as compared to the original open-loop algorithm. Moreover,
using the integrand reduction method by del Aguila and Pit-
tau, we have introduced an on-the-fly technique for the reduc-
tion of open loops. With this approach, the construction of
loop amplitudes and their reduction are interleaved step by
step within a single numerical recursion. In this way, objects
with tensor rank higher than two are avoided throughout, and
the complexity of the calculations is reduced in a very drastic
way. The proliferation of pinched subtopologies that emerge
from the reduction is avoided by absorbing them on-the-fly
into topologically equivalent open loops.

The employed integrand reduction method suffers from
severe numerical instabilities that are dominated by kine-
matic regions with small rank-two Gram determinants Δ and
scale like 1/Δ2. In the reduction of N -point objects with
N ≥ 4, we have shown that Δ-instabilities can easily be
avoided through appropriate permutations of the loop denom-
inators. In this way we were able to isolate Δ-instabilities
in triangle topologies with a particular kinematic configura-
tion and to cure them by means of analytic expansions in
Δ. This approach is the first example of an integrand reduc-
tion algorithm that is essentially free from Gram-determinant
instabilities. The level of stability that is achieved in double
precision is competitive with public implementations of OPP
reduction in quadruple precision.

The new algorithm is fully automated and validated at
NLO QCD and can be extended to electroweak interactions.
It will become publicly available in the upcoming release of
OpenLoops 2. Its technical features can be especially bene-
ficial in NLO calculations for challenging multi-particle pro-

cesses. Moreover, in view of its excellent numerical stabil-
ity, the new algorithm is very attractive for the calculation
of real–virtual contributions at NNLO. Finally, the idea of
simplifying the construction of loop amplitudes through the
factorisation of loop integrands and their on-the-fly reduction
may open new interesting perspectives for the automation of
two-loop calculations.
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Appendix A: Reduction of the remaining tensor integrals

After the on-the-fly reduction described in Sect. 4.1 we are
left with a few types of low-rank integrals (84) that need to be
reduced to the standard basis of one-loop scalar integrals. The
relevant reductions are performed upon taking the trace (76)
as described in the following. In this appendix we restrict our-
selves to tensor integrals with four-dimensional qμ terms in
the numerator, while contributions with additional q̃2 terms
in the numerator are described in Sect. 4.4.

A.1: Five- and higher-point integrals with R = 0, 1

Integrals with N ≥ 5 loop propagators and a numerator of
rank R ≤ 1,

N (q) = N + Nμq
μ, (A.1)

can be reduced to a linear combination of scalar boxes,

∫
dDq̄

N (q)

D̄0 D̄1 · · · D̄N−1

=
N−1∑

i0<i1<i2<i3

∫
dDq̄

di0i1i2i3
D̄i0 D̄i1 D̄i2 D̄i3

. (A.2)

To determine the box coefficients we use the OPP reduction
formula [5]

di0i1i2i3 = 1

2

[
Ri0i1i2i3(q

+
0 ) + Ri0i1i2i3(q

−
0 )

]
, (A.3)
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where q±
0 are the solutions of the quadruple-cut conditions

D̄i0 = D̄i1 = D̄i2 = D̄i3 = 0, and

Ri0i1i2i3(q) = N (q)

N−1∏
i �=i0,i1,i2,i3

D̄i

(A.4)

are the corresponding residues.
For the special case d0123, where pi0 = p0 = 0, the

explicit solutions of the quadruple cut equations read

q±
0 = x1 l1 + x2 l2 + x±

3 l4 + x±
4 l4, (A.5)

where li are the basis momenta defined in (114)–(115). The
x1,2 coefficients are given by

x1,2 = 1

γ

(
d2,1 − d0

(
1 − α2,1

) − d1,2 α2,1
)
, (A.6)

with di = m2
i − p2

i . The terms α1,2 and γ are defined in
Sect. 5, and the remaining coefficients in (A.5) are given by

x±
4 = ax±

3 = − (b ± c0)

2
, (A.7)

with a = (p3 · l3)/(p3 · l4) and

b = 1

p3 · l4
(
d0 − d3

2
+ x1 (p3 · l1) + x2 (p3 · l2)

)
,

c0 =
√

b2 − a

(
x1 x2 − d0

γ

)
. (A.8)

The other coefficients di0i1i2i3 can be obtained from the
above formulas through an obvious reparametrisation of
masses and momenta (i0i1i2i3 → 0123) and a subsequent
momentum shift, pμ

i → pμ
i − pμ

0 for i = 0, 1, 2, 3, which
has to be applied throughout in (A.4)–(A.8).

A.2: Four-point functions with R = 1

The reduction of rank-one boxes,

∫
dDq̄

qμ

D̄0 · · · D̄3
=

3∑

j=−1

∫
dDq̄

Aμ
j

D̄0 · · · /̄Dj · · · D̄3
, (A.9)

results into a scalar box ( j = −1) and four scalar triangles
( j = 0, 1, 2, 3). For the corresponding coefficients we use
the reduction formulas [2],

Aμ
1,2 = 1

2γ

[
rμ

2,1 − p3 · r2,1

p3 · l3
(
lμ3 + 1

α
lμ4

)]
,

Aμ
3 = 1

4

1

p3 · l3
(
lμ3 + 1

α
lμ4

)
, (A.10)

and

Aμ
−1 =

3∑

i=1

fi0A
μ
i , Aμ

0 = −
3∑

i=1

Aμ
i . (A.11)

The relevant ingredients, γ, α, lμi , rμ
i , fi0, are defined in

Sect. 5.

A.3: Three-point integrals with R = 1

For rank-one triangles we use the covariant decomposition

Cμ(p1, p2,m0,m1,m2) = Cε

∫
dDq̄

qμ

D̄0 D̄1 D̄2

=
2∑

i=1

pμ
i Ci (p

2
1, p

2
2,m0,m1,m2), (A.12)

where Cε = (2πμ)2ε/(iπ2), and we compute the Ci coeffi-
cients via Passarino–Veltman reduction [70,71].

A.4: Two-point integrals with R = 1, 2

Also for two-point integrals with rank R = 1, 2 we perform a
Passarino–Veltman reduction [70,71] based on the covariant
decomposition

Bμ(p1,m0,m1) = Cε

∫
dDq̄

qμ

D̄0 D̄1

= pμ
1 B1(p

2
1,m0,m1), (A.13)

Bμν(p1,m0,m1) = Cε

∫
dDq̄

qμqν

D̄0 D̄1

= pμ
1 pν

1 B11(p
2
1,m0,m1)

+gμνB00(p
2
1,m0,m1). (A.14)

Besides the standard reduction formulas for B1, B11, and B00,
for p2 = 0 we have implemented the special cases

B1(0,m0,m0) = −1

2
B0(0,m0,m0), (A.15)

B1(0,m0,m1) = 1

4(m2
0 − m2

1)

(
2A0(m1)

−2m2
0B0(0,m0,m1) − 1

)
, (A.16)

B11(0, 0, 0) = 1

3
B0(0, 0, 0) = 0, (A.17)

B11(0,m0,m0) = −1

3
+ A0(m0)

3m2
0

, (A.18)

B11(0,m0,m1) = 1

18(m0 − m1)3(m0 + m1)3

×
(

5m6
0 − 9m2

0m
4
1 + 4m6

1 + 6m4
0A0(m0)

− 6(3m4
0 − 3m2

0m
2
1 + m4

1)A0(m1)
)
.

(A.19)

with the scalar master integrals

B0(p
2
1,m0,m1) = Cε

∫
dDq̄

1

D̄0 D̄1
,
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A0(m
2
0) = Cε

∫
dDq̄

1

D̄0
. (A.20)
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