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Abstract Under a particular choice of the Ernst potential, we solve analytically
the Einstein–Maxwell equations to derive a new exact solution depending on five
parameters: the mass, the angular-momentum (per unit mass), α , the electromagnetic-
field strength, k, the parameter-p and the Kerr-NUT parameter, l. This (Petrov
Type D) solution is cylindrically symmetric and represents the curved background
around a charged, rotating cosmic string, surrounded by gravitational and elec-
tromagnetic waves, under the influence of the Kerr-NUT parameter. A C-energy
study in the radiation zone suggests that both the incoming and the outgoing radi-
ation is gravitational, strongly focused around the null direction and preserving its
profile. In this case, the absence of the k-parameter from the C-energy implies that,
away from the linear defect the electromagnetic field is too weak to contribute to
the energy-content of the cylindrically symmetric space-time under consideration.
In order to explain this result, we have evaluated the Weyl and the Maxwell scalars
near the axis of the linear defect and at the spatial infinity. Accordingly, we have
found that the electromagnetic field is concentrated (mainly) in the vicinity of the
axis, while falling-off prominently at large radial distances. However, as long as
k 6= 1, the non-zero Kerr-NUT parameter enhances those scalars, both near the axis
and at the spatial infinity, introducing some sort of gravitomagnetic contribution.
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1 Introduction

Cosmic strings are one-dimensional objects that can be formed as linear defects
at a symmetry-breaking phase-transition (for a detailed analysis see [1] and/or
[2]). If they exist, they may help us to explain some of the large-scale structures
seen in the Universe today, such as gravitational lenses [3; 4]. They may also
serve as seeds for density perturbations [5], as well as potential sources of relic
gravitational radiation [6].

The curved space-time around a straight, isolated cosmic string is constructed
by a flat background from which a wedge has been (locally) cut-off. The resulting
metric tensor acquires a conical singularity located on the axis of symmetry and
the corresponding angle-deficit is given by δφ = 8πµ , where µ is the mass-density
per unit length [1]. The cosmic-string radius is extremely small, of the order
10−27 m [7; 8]. Hence, from the macroscopic point of view, a cosmic string repre-
sents an
infinitely long line-source and the gravitational field produced by it has cylindrical
symmetry [3].

Cylindrically symmetric solutions to the Einstein–Maxwell equations, perti-
nent to the linear defects produced by phase-transitions in the early Universe [9;
10], have been modelled by several authors [11; 12; 13; 14; 15; 16; 17; 18; 19; 20;
21; 22; 23]. A particular method, developed by
Xanthopoulos [21; 22; 23], is based on the concept of the Ernst potential and the
existing analogy between plane-waves and cylindrically symmetric solutions of
the Einstein equations [24]. Xanthopoulos [22] derived a solution representing a
rotating cosmic string surrounded by cylindrical gravitational waves, which (later)
he extended, to include also electromagnetic waves [23]. Garriga and Verdaguer [25],
using the so called Belinski–Zakharov inverse scattering technique [26; 27], have
obtained several solutions describing straight cosmic strings interacting with solitonic-
like gravitational waves. Based on the same method, Economou and Tsoubelis
[28; 29; 30] derived a class of four-parameter, cylindrically symmetric solutions
to the Einstein equations in vacuum. On the other hand, Yazadjiev [31; 32] used a
technique of generating solutions, which creates exact cosmic-string backgrounds
from known solutions to the Einstein equations coupled to a massless scalar field.
In this way, he managed to describe the curved space-time around a non-rotating
cosmic string interacting with gravitational waves in the Einstein–Maxwell–Dilaton
gravity (EMDg).

Recently, Bičák et al. [33] (see also [34]) studied the linear and (mainly) the
rotational dragging effect, that can be caused by a cylindrical gravitational wave
on a local inertial frame. Adopting the Komar method [35], they have (thoroughly)
analysed the concept of the angular momentum in cylindrically symmetric space-
times, demonstrating that it is non-vanishing only in the case where cylindrical
gravitational waves interact with a rotating cosmic string [33]. In this context, the
metrics considered in [22; 23; 28; 36], do not possess angular momentum.

We see that there are many interesting solutions of the Einstein equations
which can be generalized to include infinitely long cosmic strings. In the present
article, a linear topological defect is embedded in the so-called Kerr-NUT space-
time [24]. This is a class of axially symmetric space-times with an additional (the
Newman-Unti-
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Tamburino) parameter (l). In this context, the space-time surrounding the cosmic
string is formed by removing a wedge of given deficit from the Kerr-NUT met-
ric and then gluing together the resulting edges. Tomimatsu and Kihara [37] and,
more recently, Abdujabbarov et al. [38] have raised several issues of astrophysical
significance related to the NUT-parameter.

The Paper is organized as follows: in Sect. 2, we present some known aspects
of the Einstein–Maxwell equations, based mainly on the work of Chandrasekhar
and
Xanthopoulos [13; 14; 15]. In Sect. 3, we use the method of Economou and
Tsoubelis [28; 29], to derive a new exact solution of the Einstein–Maxwell equa-
tions with non-zero Kerr-NUT parameter and in Sect. 4, we demonstrate that this
solution describes a charged, rotating cosmic string surrounded by gravitational
and electromagnetic waves.

2 The Einstein–Maxwell equations

Adopting the notation of Xanthopoulos [13; 22; 23], we consider a curved space-
time with line-element that can be put in the form

ds2 = eν+µ3
√

∆

[
dη2

∆
− dµ2

δ

]
− ∆δ

Ψ
dφ

2−Ψ (dz−q2dφ)2 , (1)

where we have set

∆ = η
2 +1, δ = µ

2−1 (2)

(cf. Appendix A). The metric (1) admits two space-like, commuting Killing fields
and the Einstein–Maxwell equations reduce to the Ernst equations [24](

ReZ−|H|2
)[

(∆Z,η),η − (δZ,µ),µ
]

= ∆(Z,η)2−δ (Z,µ)2−2H∗
(
∆Z,η H,η −δZ,µ H,µ

)
(3)

and (
ReZ−|H|2

)[
(∆H,η),η − (δH,µ),µ

]
= ∆H,η Z,η −δH,µ Z,µ −2H∗

[
∆(H,η)2−δ (H,µ)2] , (4)

where

Z−HH∗ = Ψ + iΦ . (5)

In Eqs. (3)–(5), Ψ and Φ are the Ernst potentials (e.g., see [24]), H measures
the strength of the electromagnetic field and H∗ is the corresponding complex-
conjugate quantity. In this gauge, for every solution to Eqs. (3) and (4), the metric
coefficients q2 and eν+µ3 are obtained by the equations

q2,η =
δ

Ψ 2

[
Φ,µ +2Im(HH∗,µ)

]
, (6)

q2,µ =
∆

Ψ 2

[
Φ,η +2Im(HH∗,η)

]
(7)
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and

µ

δ
M,η +

η

∆
M,µ =

1
Ψ 2

[
Ψ,ηΨ,µ +(Φ,η + I(η))(Φ,µ + I(µ))

]
+

2
Ψ

(
H,η H∗,µ +H∗,η H,µ

)
, (8)

2ηM,η +2µM,µ =
(

4− 3η2

∆
− µ2

δ

)
+

4
Ψ

(
∆H,η H∗,n +δH,µ H∗,µ

)
+

1
Ψ 2

{
∆
[
Ψ

2
,η +(Φ,η + I(η))

2]
+δ

[
Ψ

2
,µ +(Φ,µ + I(µ))

2]} , (9)

where we have set

M = ν + µ3 + ln
Ψ

4√
∆δ

, I(a) = 2Im(HH∗,a), a = η ,µ. (10)

3 A new exact solution

A first family of solutions to the Einstein–Maxwell equations describing an elec-
trified cosmic string, can be derived by imposing the ansatz Z = 1. In this case,
the corresponding metric is identical to that of Economou and Tsoubelis [28] (see
also [29]) and it will not be considered any further. On the other hand, imposing
the ansatz

H = Q(1+Z), k = (1−4QQ∗)1/2, (11)

where Q is a complex constant, a second family of electromagnetic string solutions
can be obtained, as

ds2 = eν+µ3
(e)

√
∆

[
dη2

∆
− dµ2

δ

]
− ∆δ

Ψ(e)
dφ

2−Ψ(e)
(
dz−q2(e)dφ

)2 (12)

We denote by E the Ernst potential corresponding to the vacuum solution

Ψ + iΦ =
1+E
1−E

(13)

of the Ernst equation

(1−EE∗)
[
(∆E,η),η − (δE,µ),µ

]
=−2E∗

[
∆(E,η)2−δ (E,µ)2] . (14)

Accordingly, we find

Ψ(e) =
k2(1−EE∗)
|1− kE|2

, Φ(e) =
ik(E∗−E)
|1− kE|2

(15)

and

Z(e) =
(1+ kE)
(1− kE)

, k = (1−4QQ∗)1/2, H =
2Q

1− kE
, (16)
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so that

eν+µ3
(e) =

1
4k2

[
(1− k)2

(
Ψ

2
(υ) +Φ

2
(υ)

)
+2(1− k2)Ψ(υ) +(1+ k2)

]
eν+µ3
(υ) , (17)

where the subscripts (e) and (υ) stand for the electric and the vacuum solution,
respectively. As regards q2(e), it is obtained from the equation

q2(e) =
(1+ k)2

4k2 q2(υ) +
(1− k)2

4k2 q(e)
2 , (18)

where, q2(υ) is given by Eq. (A23) of the Appendix A and q(e)
2 is a solution to the

system of differential equations

q(e)
2,η =

δ

Ψ 2
(υ)

[(
Φ

2
(υ)−Ψ

2
(υ)

)
Φ(υ),µ +2Φ(υ)Ψ(υ)Ψ(υ),µ

]
(19)

and

q(e)
2,µ =

∆

Ψ 2
(υ)

[(
Φ

2
(υ)−Ψ

2
(υ)

)
Φ(υ),η +2Φ(υ)Ψ(υ)Ψ(υ),η

]
, (20)

where Ψ 2
(υ) and Φ2

(υ) are given by Eqs. (A24) and (A26) of the Appendix A, re-
spectively. Demanding that Eqs. (19) and (20) satisfy the integrability condition
q(e)

2,ηµ
= q(e)

2,µη
, we find

q(e)
2 =

2
pY

[
qδ (1+ pη)+ lqδ (l +q)− p2

∆(µ−1)
]
, (21)

where the resulting integration constant is suitably chosen so that q(e)
2 vanishes

for µ = 1 (on the azimuthal axis). Since the metric coefficient q(e)
2 is determined

up to an additive constant, we use this freedom to simplify the expression of q(e)
2 .

Eventually, Eqs. (15)–(21), with the aid of Eq. (A23), give us all the coefficients
of the metric (12), in the form

q2(e) =
(1+ k)2

2k2 pY

[
qδ (1−η p)+qδ l(l−q)+ l p2(µ−1)∆

]
+

(1− k)2

2k2 pY

[
qδ (1+ pη)+qδ l(l +q)− l p2(µ−1)∆

]
, (22)

Ψ(e) = k2 Y
Π

, Φ(e) = 2k
(qµ− l pη)

Π
, (23)

and

eν+µ3
(e)

√
∆ =

α2Π

k2 (24)
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with q =
√

(1+ p2 + l2),Π = (k− pη)2 + (qµ − kl)2 and Y = p2∆ + q2δ . In
accordance, the line element (12) reads

ds2 =
α2Π

k2

[
dη2

∆
− dµ2

δ

]
− ∆δΠ

k2Y
dφ

2− k2Y
Π

[
dz−q2(e)dφ

]2 (25)

The metric (25) satisfies the Rainich–Wheeler–Misner conditions (e.g., see p.
529 of [39]) and, therefore, is a new exact solution to the Einstein–Maxwell equa-
tions, depending on five parameters (although the form of Eq. (25) does not render
their physical interpretation quite clear): the mass and the angular-momentum per
unit mass, α (in fact, both parameters are used in a way that reflects their physical
meaning in the context of the original stationary, axially symmetric space-time),
the strength of the electromagnetic-field, k, the parameter-p and the Kerr-NUT pa-
rameter, l. Based on the results of Bičák et al. [33], the fact that, in our case, α 6= 0
(in contrast to [22; 23; 28]), indicates that the Kerr-NUT parameter (l) introduces
some sort of coupling between the cylindrical gravitational waves and the rotating
cosmic string. A potential source of this coupling could be the magnetic properties
that (should be) attributed to the charged linear defect due to its rotation. Indeed, it
has been recently recognized that l corresponds to the gravitomagnetic monopole
moment of a charged Kerr-NUT compact object [38]. Whether this aspect applies
also in our case is an open question, the answer of which will be the scope of a
future work.

At present, we can conclude that, the solution (25) describes the space-time
around a charged (k 6= 1), rotating (α 6= 0) linear defect, surrounded by gravi-
tational and electromagnetic waves. In fact, the ansatz (11)—formerly imposed
to construct the Kerr–Newman solution from the corresponding Kerr one (e.g.,
see [24])—has been used to generate solutions of the Einstein–Maxwell equations,
describing the curved space-time which results from the collision of gravitational
and electromagnetic waves (e.g., see [14; 15]).

Upon consideration of the metric (25), a convenient Newman–Penrose null
basis may be found as in Xanthopoulos [22; 23]. The contravariant components of
this basis are written in the form

lµ =

(
1√
2

k
√

η2 + µ2

α
√

Π
,

1√
2

k
√

η2 + µ2

α
√

Π
, 0, 0

)
, (26)

nµ =

(
1√
2

k
√

η2 + µ2

α
√

Π
,− 1√

2
k
√

η2 + µ2

α
√

Π
,0,0

)
, (27)

mµ =

(
0, 0,

1√
2

i
k
√

Y
ω
√

Π
,

1√
2

ik2q2(e)Y +ωΠ

ωk
√

ΠY

)
(28)

and

m̄µ =

(
0,0,− 1√

2
i

k
√

Y
ω
√

Π
,

1√
2

−ik2q2(e)Y +ωΠ

ωk
√

ΠY

)
. (29)

In fact, one may use the above vectors to reconstruct the metric (25) by making
use of the relation gµν = lµ nν + lν nµ −mµ m̄ν −mν m̄µ . Furthermore, the vectors
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(26)–(29) satisfy the orthogonality conditions l ·m = l · m̄ = n ·m = n · m̄ = 0, as
well as the requirements l · l = n ·n = m ·m = m̄ · m̄ = 0 (in other words, they are
null) and the normalization conditions l ·n = 1 and m · m̄ =−1 [40; 41].

Using the above null tetrad, the only non-vanishing Weyl and Maxwell scalars
for the metric (25) are given by the Eqs. (3.43a) – (3.43f) of Xanthopoulos [23]
and they are expressed in terms of the Ernst potential E (arising from the potentials
Ψ and Φ)

E =
1− il

pη− iqµ
. (30)

Accordingly, the Weyl scalars read

Ψ2 = − k2

2α2
(1− il)2

1+ l2
(E− k)(E∗)3

(1− kE∗)3(1− kE)
, (31)

1−E

1−E ∗
Ψ0 =

3k2

2α2

E(E− k)(
√

∆E∗,η +
√

δE∗,µ)2

(1−EE∗)(1− kE)(1− kE∗)3 , (32)

1−E ∗

1−E
Ψ4 =

3k2

2α2

E(E− k)(
√

∆E∗,η −
√

δE∗,µ)2

(1−EE∗)(1− kE)(1− kE∗)3 , (33)

while, the corresponding Maxwell ones are written in the form

Φ00 =
k2(1− k2)

2α2
(EE∗)2

(1− kE)2(1− kE∗)2 = Φ22 (34)
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and

1−E ∗

1−E
Φ20 =−k2(1− k2)

2α2

EE∗(
√

∆E,η +
√

δE,µ)(
√

∆E∗,η −
√

δE∗,µ)
(1−EE∗)(1− kE)2(1− kE∗)2 . (35)

For l = 0, all the above equations reduce to the corresponding formulas pre-
dicted by Xanthopoulos [23]. For l 6= 0, we verify that the consistency condition
for the Maxwell scalars

Φ20 ·Φ∗20 = Φ00 ·Φ22 (36)

is satisfied, while, their combination to the Weyl scalars satisfies the identities

Ψ0 ·Ψ4 = 9Ψ
2

2 (37)

and

3Φ00 ·Ψ2 = Φ20 ·Ψ0, (38)

which are the necessary and sufficient conditions for a metric to be of Petrov
Type D and the twice-repeated principal null directions of the Weyl and Maxwell
tensors to coincide [40; 41].

4 The electrified cosmic string at ω → 0+,ω → ∞

In what follows, we discuss both the mathematical and the physical properties
of the space-time (25), together with a measure of its energy-content (Thorne’s
C-energy [42]) and the Weyl scalars in three characteristic regions of the problem:
(i) Near the axis of the linear defect, (ii) at the spatial infinity and (iii) at the
vicinity of the null cone.

4.1 The metric at ω → 0+,ω → ∞

To investigate the behavior of the metric coefficients q2(e),e
ν+µ3
(e) and Ψ(e) near the

axis and at spatial infinity, we express the metric (25) in cylindrical coordinates
using Eqs. (A15) and (A16) (e.g., see [18; 19; 22; 23]). The expressions of the
metric coefficients in terms of t ∈ℜ and ω ∈ [0,∞) are quite difficult to handle. We
can bypass this problem, by considering the Taylor expansion of (η , µ) in terms
of (t, ω). The corresponding results also consist of lengthy expressions, which
(however) can be simplified (considerably) in the limits ω → 0+ and ω → ∞.
Accordingly, near the axis (ω → 0+) we have

η = t− ω2t
2(1+ t2)

+O(ω4), µ = 1+
ω2

2(1+ t2)
+O(ω4) (39)

and, hence, for ω � t, we obtain

α2Π

k2(η2 + µ2)
∼ α2N

k2 ,
ω2Π

k2Y
∼ ω2N

k2 p2 (40)
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and

k2Y
Π
∼ k2 p2

N
, q2(e) ∼

ω2B
k2 p3(1+ t2)2 (41)

where, we have set

B = q(1+ k2−2kpt)+ql2 (1+ k2)+ kl
[
−2q2 + p2 (1+ t2)]

and

N =
(k− t p)2 +(q− kl)2

1+ t2 .

Consequently, near the axis, the line-element reads

ds2 =
α2N
k2

[
dt2−dω

2− ω2

α2 p2 dφ
2
]
− k2 p2

N

[
dz− ω2B

k2 (1+ t2)2 p3
dφ

]2

. (42)

It is evident that the corresponding curvature is smooth and the measures of
the two Killing vectors are | ∂

∂ z |
2 =O(1) and | ∂

∂φ
|2 =O(ω2), which are first-order

orthogonal, that is ∂

∂ z
∂

∂φ
= O(ω2). Equation (42) implies that, given a small circle

lying on the hypersurface dt = 0 = dz and having its center at ω = 0, the ratio
circumference/radius differs from 2π , unless |α p|=1. When |α p| 6=1 the region
near the symmetry axis is characterized by an angle-deficit and the metric (42)
exhibits a conical singularity. In particular, the angle-deficit around this linear
defect is given by [31; 32]

δφaxis = 2π− lim
ρ→0

∫ 2π

0
√gφφ dφ∫ ρ

0
√gρρ dρ

= 2π

[
1− 1
|α p|

]
(43)

and the corresponding mass-density is µ0 = 1
4 [1− 1

|α p| ]. In this case, the Kerr-
NUT parameter does not make any contribution to the problem and the result is
the same as in the l = 0 case.

On the other hand, away from the axis (ω � t), we have

η =
t
ω

+
t(t2−1)

2ω3 +O(ω−4), µ = ω +
(1− t2)

2ω
+O(ω−2) (44)

α2Π

k2(η2 + µ2)
=

α2q2

k2 −
2α2lq

kω
+O(ω−2),

ω2Π

k2Y
=

ω2

k2 −
2lω
kq

+
(1+ l2)(1+ k2)

k2q2 +O(ω−3), (45)

k2Y
Π

= k2 +
2lk3

qω
+O(ω−2)

and

q2(e) =
1

k2 pq
Λ +O(ω−1), (46)
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where we have set Λ = [(1+ k2)(1+ l2

2 )+ kl(l−2q)]. In accordance, away from
the axis (ω → ∞), the line-element (25) reads

ds2 =
α2q2

k2

[
1− 2kl

qω
+O(ω−2)

][
dt2−dω

2− ω2

α2q2 dφ
2
]

− k2
[

1+
2kl
qω

+O(ω−2)
][

dz− 1
qpk2 Λdφ

]2

. (47)

For the metric (47), the angle-deficit is given by the formula,

δφ∞ = 2π− lim
ρ→∞

∫ 2π

0
√gφφ dφ∫ ρ

0
√gρρ dρ

= 2π

[
1− 1
|αq|

]
. (48)

Equation (48) implies that the electromagnetic field does not make any con-
tribution to the angle-deficit. In this case, the mass-density of the linear defect is
given by the equation

µ0 =
1
4

[
1− 1
|αq|

]
. (49)

As regards the metric (47), the measures of the two Killing vectors are | ∂

∂ z |
2 =

O(1) and | ∂

∂φ
|2 = O(ω2). These are not hypersurface orthogonal [not even in the

first order since ∂

∂ z
∂

∂φ
= O(ω)] unless l = 0 or k = 1. Combining Eqs. (42) and

(48) we find that

δφasym > δφaxis, (50)

since q2 = 1 + p2 + l2. In other words, the angle-deficit as measured asymptoti-
cally is always greater than the corresponding deficit as measured near the axis.
This excess in the deficit is (probably) attributed to the contribution of the energy
of the intervening gravitational waves. Thus the choice |α| = q−1, which would
erase the asymptotic deficit, requires a string with negative mass-density. There-
fore, although near the axis the string can be erased for a suitable choice of the
parameter α (e.g., |α|= p−1), the asymptotic angle-deficit can not be eliminated
in a physically acceptable situation.

4.2 The C-energy

As regards the cylindrically symmetric solutions to the Einstein equations, the
quantity

C = ν +
1
2

ln
[
Ψ(e)

]
(51)

is often referred to as their C-energy [42], being proportional to the energy-
density per unit length contained in a cylinder of radius ω . However, recently,
Ashtekar et al. [43; 44], demonstrated that Thorne’s C-energy gives the correct
energy expression for cylindrically symmetric space-times only in the weak-field
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limit. With this in mind, we calculate the C-energy for the metric (25). In this case,
with the aid of Eqs. (23) and (24), Eq. (51) is written in the form

C =
1
2

ln
[

α2Y
(η2 + µ2)

]
. (52)

Notice that Eq. (52) does not depend on k. This feature of the C-energy im-
plies that, away from the linear defect the electromagnetic field is too weak to
contribute to the energy-content of the space-time (25) [as it happens also with the
case of the angle-deficit at infinity (cf. Eq. (48)]. A physical explanation of this
result can be obtained in terms of the Weyl and the Maxwell scalars and is pre-
sented in the next Section. Accordingly, we expect that, both the incoming and the
outgoing radiation consists solely of gravitational waves. It is easy for someone
to see that, near the axis (i.e., as ω → 0) Caxis ∼ ln |α p|, while, asymptotically (as
ω → ∞), Casym ∼ ln |αq|. Since q2 = 1 + p2 + l2, we have Casym > Caxis. This re-
sult could be a manifestation that the intervening gravitational waves contribute to
the curved space-time a positive energy-amount. Furthermore, the behavior of the
C-energy flux along the null-directions reveals that the presently considered solu-
tion, although it is quite tedious, exhibits the same radiative behavior and the same
fall-off properties away from the null-direction of propagation as the solution of
Economou and Tsoubelis [28; 29; 30].

To examine its behavior, we introduce the so-called retarded and advanced
null-coordinates, u = t−ω and v = t +ω , for the metric (25) and we express the
C-energy and its first derivatives ∂C/∂u = C,u and ∂C/∂v = C,v in terms of u and
v. Accordingly, we obtain:

Behavior at past null-infinity:

lim
u→−∞

C,u = O(1/u2),
(53)

lim
u→−∞

C,v =
1+ l2

[(p2 +q2)
√

(1+ v2)+ v(1+ l2)](1+ v2)
+O(1/u).
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Behavior at future null-infinity:

lim
v→∞

C,u = − 1+ l2

[(p2 +q2)
√

(1+u2)−u(1+ l2)](1+u2)
+O(1/v),

(54)
lim
v→∞

C,v = +O(1/v2).

We observe that, at the past null-infinity there is a flux of incoming gravita-
tional radiation toward the axis, with its profile given by Eq. (53). At large val-
ues of v, Eq. (53) behaves as limu→−∞ C,v ∼ 1+l2

(1+l2+q2)v3 . Thus, the original pulse
of incoming radiation is concentrated around v = 0 and for large values of v it
falls-off quite rapidly, i.e., as v−3. Therefore, it may interpreted that, near the past
null-infinity there is a beam of incoming radiation. Similarly, at large values of
u, Eq. (54) behaves as limu→∞ C,u ∼ − 1+l2

p2u3 , suggesting that, near the future null-
infinity, there is only outgoing null radiation, which is beamed around u = 0.

These results indicate that the entire space-time (25) is filled with a mixture of
incoming and outgoing gravitational radiation, originated at the past null-infinity,
which is reflected by the cosmic string and propagate toward the future null-
infinity. Both waves, incoming and outgoing, are beamed around the null-direction
in the radiation zone.

4.3 The Weyl and Maxwell scalars close to the axis and at infinity

Accordingly, we evaluate the Weyl and the Maxwell scalars corresponding to
Eq. (25). The expressions are quite long to be of any physical significance. There-
fore, we are interested only in their asymptotic behavior near the axis, ω → 0 and
in the asymptotic region ω → ∞.

In the vicinity of the axis, with the aid of Eqs. (31)–(35), we find that all the
Weyl and Maxwell scalars approach finite, non-zero values, which do not depend
on time, but only on the parameters α,k and l. In particular, the Weyl scalars read

Ψ2 → −
k2

2α2 (1+ l2)(1+ il)
1+ i(kq− l)

[k2 +(q− kl)2][−k + i(q− kl)]2
, (55)

1−E

1−E ∗
Ψ0 →

3k2

2α2 (1+ l2)(1+ il)
1+ i(kq− l)

[k2 +(q− kl)2][−k + i(q− kl)]2
(56)

and

1−E ∗

1−E
Ψ4→

3k2

2α2 (1+ l2)(1+ il)
1+ i(kq− l)

[k2 +(q− kl)2][−k + i(q− kl)]2
, (57)

while, the Maxwell ones are written in the form

Φ00→
k2(1− k2)

2α2 (1+ l2)2 1
[k2 +(q− kl)2]2

←Φ22 (58)
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and

1−E ∗

1−E
Φ20→−

k2(1− k2)
2α2 (1+ l2)2 1

[k2 +(q− kl)2]2
. (59)

We observe that the presence of a non-zero Kerr-NUT parameter results in the
enhancement of both the Weyl (as l2) and the Maxwell (as l4) scalars.

At the spatial infinity (i.e., as ω → ∞), the Weyl scalars behave as

Ψ2 =
ik3

2α2q3ω3 (1+ l2)(1+ il)+O(ω−4), (60)

1−E

1−E ∗
Ψ0 =

3ik3

2α2q3ω3 (1+ l2)(1+ il)+O(ω−4) (61)

and

1−E ∗

1−E
Ψ4 =

3ik3

2α2q3ω3 (1+ l2)(1+ il)+O(ω−4), (62)

while, the Maxwell ones as

Φ00 =
k2(1− k2)
2α2q4ω4 (1+ l2)2 +O(ω−5) = Φ22 (63)

and

1−E ∗

1−E
Φ20 =

k2(1− k2)
2α2q4ω4 (1+ l2)2 +O(ω−5). (64)

In this case, we observe that the Weyl scalars fall-off as ω−3, while the
Maxwell ones as ω−4. The latter result suggests that, as we depart from the lin-
ear defect, the electromagnetic field decreases quite prominently, thus becoming
insignificant at large radial distances; probably too weak to contribute to the C-
energy. On the other hand, both the Weyl and the Maxwell scalars are (once again)
enhanced due to the non-zero Kerr-NUT parameter (also as l2 and l4, respec-
tively), indicating that l can mediate in an interaction between gravitational waves
and a charged, rotating linear defect, probably, by the introduction of a gravito-
magnetic contribution (in connection, see [38]).

5 Discussion

In the present article, we have solved analytically the Einstein–Maxwell equations
with the particular choice of the Ernst potential E = 1−il

E∗k
, where Ek = pη + iqµ

is the corresponding potential of the Kerr solution. Accordingly, we have de-
rived a new exact solution to the Einstein–Maxwell equations depending on five
parameters: the mass, the (specific) angular-momentum per unit mass (α), the
electromagnetic-field strength (k), the parameter-p and the Kerr-NUT parameter
(l). The (Petrov Type D) solution (25) has cylindrical symmetry and represents
the curved background around a charged (k 6= 1), rotating (α 6= 0) cosmic string,
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surrounded by gravitational and electromagnetic waves under the influence of the
Kerr-NUT parameter. In what follows, we summarize the most important mathe-
matical and/or physical properties of this space-time.

In the absence of the electromagnetic field (i.e., for k = 1), the line-element (25)
is reduced to the corresponding solution obtained by Economou and Tsoubelis [28;
29; 30], while for k = 1 and l = 0 it results in the solution obtained by Xanthopou-
los [22], describing a cosmic string of zero angular momentum in the presence of
cylindrically symmetric gravitational waves. On the other hand, for l = 0 and k 6= 1
one finds the solution obtained also by Xanthopoulos [23], regarding a linear de-
fect in the space-time of colliding gravitational and electromagnetic waves, which
(once again) do not interact with the cosmic string, since, in this case, α = 0, as
well (in connection, see [33]).

In our case (i.e., for l 6= 0 and k 6= 1), the space-time is smooth everywhere
and exhibits a conical singularity, both near the axis and at the infinity. The angle-
deficit near the axis is always smaller than the corresponding deficit as determined
asymptotically. The deficit near the axis signals the existence of a cosmic string
with mass per unit length given by Eq. (43). On the other hand, the deficit at
infinity is attributed to the combined effect of the string and of the energy carried
by gravitational radiation. The particular choice |α| = p−1 erases the string at
small distances. In a similar fashion, one could erase also the asymptotic deficit,
but this would require a linear defect with negative mass per unit length. Therefore,
the angle-deficit at infinity cannot be erased.

The study of the C-energy in the radiation zone suggests that both the incom-
ing and the outgoing radiation is gravitational, very strongly focused around the
null-direction and preserves its profile. The absence of the k-parameter from the
C-energy and its derivatives suggests that, away from the linear defect the electro-
magnetic field is too weak to contribute to the energy-density of the cylindrically
symmetric space-time (25). For the same reason, there is no electromagnetic flux
either near or far from the linear defect. In order to explain these results, we have
evaluated the (Weyl and the) Maxwell scalars near the axis of the linear defect and
at the spatial infinity. Accordingly, we have found that the electromagnetic field is
concentrated (mainly) in the vicinity of the axis, while falling-off prominently (as
ω−4) at large radial distances. However, as long as k 6= 1, the non-zero Kerr-NUT
parameter enhances the Maxwell scalars both near the axis and at infinity (cf. Eqs.
(58), (59) and (63), (64), respectively), introducing some sort of a gravitomagnetic
contribution [38].

Other remarkable features of the space-time (25) in the vicinity of the axis,
are:

1. For |α p|> 1, i.e., at time-like infinity, the axis region of the metric (42) is flat
with a conical singularity and the axis is occupied by a static string.

2. The original Killing vectors ∂

∂ z and ∂

∂φ
of the metric (25) are not hypersurface

orthogonal at large distances (although they are in the vicinity of the axis).
This is (probably) due to the non-zero value of the Kerr-NUT parameter and
the strength
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of the electromagnetic field. However, with a transformation of the form z→
z̃ = z−Λφ , where Λ = 1

qpk2

[
(1+ k2)+ l2

2 (1+ k2)+ kl(l−2q)
]
, the last term

in Eq. (47) can be gauged away (only locally) and the corresponding Killing
vectors ∂

∂ z̃ ,
∂

∂φ
can become hypersurface orthogonal. In any other case, the

last term of the metric (47) will give rise to global effects, analogous to those
arising in stationary space-times, when the time-like Killing vector is not hy-
persurface orthogonal [28].

We believe that the metric (25) might be useful to discuss some astrophysical
implications, either close to the string or far away from the electrified linear defect,
in the spirit of Abdujabbarov et al. [38] and/or Hiscock [45]. In particular, in a
forthcoming paper we intend to examine MHD phenomena in the frame of the
metric (25), which may lead to stability criteria of astrophysical significance.

Appendix A

For completeness, we review the techniques of generating solutions to the Einstein–
Maxwell equations with cylindrical symmetry, as formulated by Chandrasekhar
and Xanthopoulos [13; 14; 15]. The corresponding line-element for a vacuum
space-time reads

ds2 = e2ν
[
dt2−dω

2]− ω

χ
[dz−q2dφ ]2−ωχdφ

2, (A1)

where ∂/∂ z and ∂/∂φ are the axial and the azimuthal Killing fields, while ν ,χ,
and q2 depend only on t and ω . The Weyl and Maxwell scalars of a solution to the
Einstein–Maxwell equations may be derived both in terms of the Ernst potential
denoted by E (arising from the metric coefficients χ and q2) or by E (arising from
the metric coefficients Φ and Ψ ). Setting

χ + iq2 = Z =
1+E

1−E
, (A2)

the complex potentials Z and E satisfy the Ernst equations

(Z +Z ∗)
[
Z,tt −

1
ω

(ωZ,ω),ω

]
= 2

[
(Z,t)2− (Z,ω)2] (A3)

and

(1−E E ∗)
[
E,tt −

1
ω

(ωE,ω),ω

]
= 2

[
(E,t)2− (E,ω)2] . (A4)

The imaginary part of Eq. (A3) is determined by[
ω

χ2 q2,t

]
,t
−
[

ω

χ2 q2,ω

]
,ω

= 0, (A5)
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which can be solved, setting

Φ,ω =
ω

χ2 q2,t , Φ,t =
ω

χ2 q2,ω , Ψ =
ω

χ
. (A6)

Now, introducing the potentials Z and E by

Ψ + iΦ = Z =
1+E
1−E

, (A7)

we verify that Z and E also satisfy Eqs. (A3) and (A4), respectively. Then,

χ =
1−E E ∗

(1−E )(1−E ∗)
, q2 =

i(E −E )
(1−E )(1−E ∗)

(A8)

and similar expressions can be found also for Ψ and Φ in terms of E. Any solu-
tion to the Ernst equations (A3) and (A4) is associated to any of the two distinct
complex Ernst potentials E or E. In this case, having obtained E or E by some
method, ν is determined by simple quadratures. Working in terms of E , we have

ν,t =
ω

2χ2 (χ,t χ,ω +q2,tq2,ω) =
ω

(1−E E ∗)2

[
E,tE

∗
,ω +E ∗,t E,ω

]
(A9)

and

4ν,ω = − 1
ω

+
ω

χ2

[
(χ,t)2 +(χ,ω)2 +(q2,t)2 +(q2,ω)2]

= − 1
ω

+
4ω

(1−E E ∗)2

[
E,tE

∗
,t +E ∗,ωE,ω

]
. (A10)

On the other hand, working in terms of E we obtain(
ν + ln

√
Ψ

)
,t

=
ω

2Ψ 2 (Ψ,tΨ,ω +Φ,tΦ,ω)

=
ω

(1−EE∗)2

[
E,tE∗,ω +E∗,tE,ω

]
(A11)

and (
ν + ln

√
Ψ

)
,ω

=
ω

4Ψ 2

[
(Ψ,t)2 +(Ψ,ω)2 +(Φ,t)2 +(Φ,ω)2]

=
ω

(1−EE∗)2

[
E,tE∗,t +E∗,ω −E,ω

]
. (A12)

Defining

χ̃ =
χ

χ2 +q2
2
, q̃2 =

q2

χ2 +q2
2
, Ψ̃ =

ω

χ
(A13)

and

Φ̃,ω =
ω

χ̃2 q̃2,t , Φ̃,t =
ω

χ̃2 q̃2,ω , (A14)
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the complex potentials Z̃ , Ẽ , Z̃, Ẽ, given by the tilde version of Eqs. (A2) and
(A7),
satisfy Eqs. (A3) and (A4). Thus, any solution to the Ernst equation (A4) does as-
sociates to any of the four complex potentials E , Ẽ ,E or Ẽ. Now, we perform the
transformation

ω =
√

∆δ , t = ηµ, (A15)

where

∆ = η
2 +1, δ = µ

2−1, (A16)

while, η and µ range as

η ∈ℜ, µ ≥ 1, (A17)

with µ = 1 corresponding to the axis ω = 0. In this way, we can transfer the
problem in the coordinate system (η ,µ,z,ϕ), where the metric (A1) reads

ds2 = (η2 + µ
2)e2ν

[
dη2

∆
− dµ2

δ

]
−
√

∆δ

Π
(dz−q2dφ)2−

√
∆δΠdφ

2, (A18)

since

dt2−dω
2 =

(
η

2 + µ
2)[dη2

∆
− dµ2

δ

]
. (A19)

To describe cylindrically symmetric space times, instead of stationary axisym-
metric ones, we perform the analytic continuation

η → iη , p→ ip, (A20)

under which, the Ernst equation (A4) reads [24; 25; 26; 27; 28; 29; 30; 31; 32; 33;
34; 35; 36; 37; 38; 39; 40]

(E E ∗−1)
[
∆(E,η),η − (δE,µ),µ

]
= 2E ∗

[
∆(E,η)2−δ (E,µ)2] (A21)

and a similar equation is obtained when E ←→ E. Accordingly, for the Kerr-NUT
solution (e.g., see [24]), we have

Π = (1− pη)2 +(l−qµ)2, Y = p2
∆ +q2

δ , q2 = p2 +1+ l2, (A22)

q2(υ) =
2

pY

[
l p2

∆(µ−1)+q(1+ l2− lq− pη)δ
]

(A23)

and

Ψ(υ) =
Y
Π

, χ(υ) =
ω

Ψ(υ)
, e2ν

(υ) =
α2Π

η2 + µ2 . (A24)

Upon consideration of the equations

Φ,µ =
∆

χ2 q2,η , Φ,η =
δ

χ2 q2,µ , (A25)
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we can calculate Φ(υ) (e.g., see [21; 22; 23]), to obtain

Φ(υ) =
2(qµ− pη l)

Π
. (A26)

Therefore, according to Eq. (A7), the Ernst potential of the Kerr-NUT solution
(A18), (A22)–(A24) is

E =
1− il

E∗k
, (A27)

where Ek = pη + iqµ is the corresponding potential of the Kerr solution.
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