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We study a conjectured correspondence between any codimension-two convex surface and a quantum 
state (SS-duality for short). By applying thermofield double formalism to the SS-duality, we show that 
thermal geometries naturally emerge as a result of hidden quantum entanglement between two boundary 
CFTs. We therefore propose a general framework to emerge the thermal geometry from CFT at finite 
temperature, without knowing many details about the thermal CFT. As an example, the case of 2d CFT is 
considered. We calculate its information metric and show that it is either BTZ black hole or thermal AdS 
as expected.
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1. Introduction

The fascinating idea that spacetimes might emerge from more 
fundamental degrees of freedom has attracted more and more at-
tention in the past few years. This idea was revived recently by 
the discovery of the AdS/CFT correspondence [1–3]. Even though 
it has lead tremendous progresses in the past few years, funda-
mental mechanism of the AdS/CFT correspondence still remains 
a mystery. The situation became better not until the discovery of 
Ryu–Takayanagi formula [4–6], which states that the entanglement 
entropy of a subregion A of a d +1 dimensional CFT on the bound-
ary of d +2 dimensional AdS is proportional to the area of a certain 
codimension-two extremal surface in the bulk:

S A = Area(γA)

4Gd+2
N

where γA is the minimal surface whose boundary coincides the 
boundary of A: ∂ A.

A recent step for our understanding of holography is made by 
Miyaji et al. in [7,8] where they proposed a duality called sur-
face/state correspondence (SS-duality). It claims that any codimen-
sion two convex surface is dual to a quantum state of a QFT. With 
the help of the SS-duality, one can, in principle, find out the equiv-
alent description of any spacetimes described by Einstein’s gravity. 
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In this way, we might encode the information of the boundary 
QFTs into the bulk geometry, and vice versa.

There is a very different way in mapping states and operators 
in the boundary Hilbert space to those in the bulk. This is known 
as the tensor networks. One specific example which is of partic-
ular significance is the multi-scale entanglement renormalization 
ansatz (MERA) [9–11] (see e.g. [12] for an introduction), and MERA 
of the ground state of a lattice model at critical point is naturally
related to CFT [13]. The connection between the AdS/CFT and the 
MERA was first pointed out by Swingle in [14], where he noticed 
that the renormalization direction along the graph can be viewed 
as an emergent (discrete) radial direction of the AdS space (see e.g. 
[15–18] for further discussion on the resemblance between MERA 
and AdS geometry). This elegant method was latter generalized 
to continuous version (cMERA), which makes entanglement renor-
malization available for quantum fields in real space [19]. Equipped 
with this toolkit, the holographic (smooth) geometry can naturally 
emerge from QFTs [20].

Though it is very successful, the full investigation of AdS/cMERA 
is still very limited. Most past works paid their attention to zero-
temperature systems. In this paper, we take a step forward and 
investigate how to emerge thermal spacetimes from boundary CFT 
at finite temperature, by making use of cMERA and SS-duality. At 
first glance the generalization is trivial and one can achieve this as 
long as the boundary CFT is replaced by a thermal one. However, 
there are two obstacles that prevent us from this generalization: 
First of all, the appearance of black hole (BH) horizon leads to a 
closed and topologically nontrivial surface in the bulk. This implies, 
according to the SS-duality, that the dual state in the boundary 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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QFT is no longer a pure state. All calculations must be replaced by 
thermal mixed states. Secondly, for finite-temperature CFT, turn-
ing on a temperature introduces a scale which screens long-range 
correlations and the state have thermal correlations in addition to 
entanglement. One important effect is that the thermal correla-
tions become more relevant as one runs the MERA. The MERA, 
therefore, truncates at a certain level, which is suggestive of a BH 
horizon [14]. We often call it the truncated MERA [21]. In our pre-
vious work [22], we discussed the emergent thermal geometry by 
generalizing the truncated MERA to continuous one.

An alternative way which is more natural is based on the ther-
mofield double formalism [23] and the emergent tensor network 
is often called doubled MERA. This proposal [24] states that the 
eternal black hole is dual to two copies of the CFT, in the ther-
mofield double state |T F D〉. Each asymptotic boundary of AdS is a 
copy of the original dual CFT. With the help of the SS-duality, we 
will find by this formulation that the thermal spacetimes naturally 
appear as a result of hidden quantum entanglement between two 
boundary CFTs. The road map is the following: we first propose a 
TFD-like state in CFT which is dual to bulk locally excited state in 
thermal spacetime background and then write down two TFD-like 
states which differ by infinitesimal parameters. The bulk coordi-
nates can be naturally recognized as these parameters in CFT. Then 
similar to the proposal in [8], the Fisher information metric dis-
tance between two nearby TFD-like states which we propose to 
be dual to bulk local excitations is identified to the emergent bulk 
metric distance. Once the bulk metric is obtained, we get the emer-
gent spacetime. In this way, we formulate a general framework by 
which thermal geometries emerge from dual CFTs, without know-
ing the details of the thermal correlations of the CFT.

2. Thermofield dynamics and surface/state correspondence

2.1. Thermofield double formalism and doubled cMERA

We start by introducing a new QFT Htot which is two copies 
of the original QFT (with Hilbert spaces H1 and H2 respectively). 
The thermofield double formalism treat the thermal, mixed state 
ρ = e−βHi (i = 1, 2) as a pure state in the new double sys-
tem Htot = H1

⊗
H2. Thermofield double state (or Hartle–Hawking 

state in the dual bulk) in this doubled system is defined as

|T F D〉 = 1√
Z(β)

∑
n

e−βEn/2|n〉1|n〉2, (1)

where |n〉1, |n〉2 are energy eigenstates of the two copies of QFT 
respectively. This is a particular (entangled) pure state in the dou-
bled system. The density matrix of the doubled QFT in this state 
is

ρtot = |T F D〉〈T F D|. (2)

The thermofield double formalism can be applied to the case of 
the AdS eternal black hole. The Penrose diagram of an eternal black 
hole separates the whole spacetime into two asymptotically AdS 
regions as depicted in Fig. 1. Each asymptotic boundary of AdS is a 
copy of the original dual CFT. It is convenient to denote these two 
identical, non-interacting copies of CFT by CFT1 and CFT2, respec-
tively. According to Maldacena [24], this eternal black hole which is 
described by the Hartle–Hawking state |H H〉, is dual to two copies 
of the CFT in the thermofield double state |T F D〉.

Due to the presence of the horizon, observers in one of those 
two asymptotically AdS regions (say, region I) cannot come in con-
Fig. 1. Penrose diagram for an eternal black hole. There are two asymptotically AdS 
regions which are dual to two copies of CFT. The bulk quantized fields ψ̂1

α and 
ψ̂2

α are put in the bulk points (ρ, φ) in the two asymptotically AdS time slices, 
respectively.

Fig. 2. Doubled MERA network. At the center there is a bridge state which glues two 
copies of the standard MERA. This state is usually viewed as a black hole horizon.

tact with the other one directly.1 From the viewpoint of the dual 
CFTs, for CFT1, information from CFT2 must be traced out. As a 
consequence, the CFT1 is in a thermal state described by

ρ1 = Tr2ρtot = e−βH1 . (3)

The above picture nicely agrees with the MERA at finite tempera-
ture as proposed in [25–28], which is known as the doubled MERA 
network. It is composed of two copies of the standard MERA for 
a pure state which are gluing together at infrared points by a 
“bridge” state. Fig. 2 shows a schematic representation of the dou-
bled MERA network. The continuous version of MERA (cMERA) at 
finite temperature has already been considered in [29], where the 
authors found that, similar to the MERA, finite-temperature cMERA 
can be constructed by doubling two copies of the standard cMERA.

2.2. SS-duality description of thermofield dynamics

Now let us generalize the above picture to a description in 
terms of the SS-duality. The SS-duality argues a correspondence 
between any codimension-two convex surface 	 and a quantum 
state of a quantum theory which is dual to the Einstein’s gravity. 
It can be applied to any spacetimes described by Einstein’s grav-
ity and therefore can be viewed as a generalization of the AdS/CFT 

1 However, they connect with each other indirectly through hidden quantum en-
tanglement. The hidden quantum entanglement entropy of the thermal CFT can be 
viewed as the black hole entropy.
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correspondence. More specifically, this duality states that a closed 
topological trivial convex surface is dual to a pure quantum state 
|
(	)〉, while a closed topological non-trivial convex surface2 	

corresponds to a mixed quantum state ρ(	), such as the surface 
which wraps a black hole. In particular, the zero-size closed sur-
face (i.e. a point) is dual to a boundary state |B〉 [7,30,31]. When 
	1 and 	2 are related by a smooth deformation which preserves 
convexity, the deformation can be expressed by a unitary transfor-
mation

ρ(	1) = U (s1, s2)ρ(	2)U−1(s1, s2), (4)

where U = P exp{−i 
∫ u1

u2
M̂(s) ds} with P the path-ordering and 

M̂(s) a Hermitian operator.
To proceed, let us turn to a cMERA description of the CFT state. 

From [8], we learn that a CFT ground state can be expressed in 
terms of cMERA as follows:

|0〉C F T = P exp

⎛
⎝−i

0∫
−∞

duK̂ (u)

⎞
⎠|I0〉, (5)

where K̂ (u) is the disentangling operator of cMERA at scale u, 
and |I0〉 is the Ishibashi state. The cMERA flow can be adjusted 
by a conformal transformation. Specifically, for the case of 1 + 1
dimensions, it was shown in [8] that one has a transformation 
g(ρ, φ) which takes the origin ρ = 0 to any point (ρ, φ). After 
acting g(ρ, φ) transformation, Eq. (5) can be rewritten as

|0〉C F T = P exp

⎛
⎝−i

0∫
−∞

duK̂(ρ,φ)(u)

⎞
⎠|I0〉 ≡ U (ρ,φ)|I0〉, (6)

where

K̂(ρ,φ)(u) = g(ρ,φ)K̂ (u)g(ρ,φ)−1.

Similarly, the CFT excited states |�α(ρ, φ)〉C F T can be expressed in 
terms of Ishibashi states |Iα〉 for primary field �α

|�α(ρ,φ)〉C F T = U (ρ,φ)|Iα〉. (7)

According to surface/state correspondence, there are dualities be-
tween quantum states in the CFT and states in the bulk gravity. In 
particular,

|0〉C F T ⇔ |0〉bulk,

|�α(ρ,φ)〉C F T ⇔ |�α(ρ,φ)〉bulk ≡ ψ̂α(ρ,φ)|0〉bulk, (8)

where |0〉bulk ∈ Hbulk is the vacuum state of the bulk gravity, 
and |�α(ρ, φ)〉bulk ∈ Hbulk denotes the locally excited state in 
the bulk. The proposal [8] is to find the dual state of |�α〉bulk ≡
|�α(0, 0)〉bulk by noting that the S L(2, R) subgroup of S L(2, R) ×
S L(2, R) (whose generators are (L1, L0, L−1) and (L̃1, ̃L0, ̃L−1)) 
which preserves the point ρ = t = 0 impose constraints on 
|�α〉bulk . This is equivalent to impose the same constraints on 
|�α〉 ≡ |�α(0, 0)〉C F T in the dual CFT, i.e.,

(L0 − L̃0)|�α〉 = (L1 + L̃−1)|�α〉 = (L−1 + L̃1)|�α〉 = 0. (9)

In the same footing, as we try to generalize it to the thermal 
case, we firstly insert a locally excited field ψ̂α(ρ, φ) on the time 
slice of the thermal spacetimes, which is the Hartle–Hawking vac-
uum |H H〉3 for an eternal black hole as shown in Fig. 1. This 

2 Topologically trivial surface is the surface which can be smoothly deformed into 
a point, as a contrast, topologically non-trivial one fails to do so.

3 To make it more readable, we use |H H〉 to denote the bulk TFD state, so as to 
distinguish it from TFD state in the CFT.
implies that the following dual relation which is similar to (8)
holds

|�β
α(ρ,φ)〉C F T ⇔ |�α(ρ,φ)〉bulk ≡ ψ̂1

α(ρ,φ)ψ̂2
α(ρ,φ)|H H〉,

(10)

where two equivalent local bulk quantized fields ψ̂1
α and ψ̂2

α act 
on C F T1 and C F T2, respectively, and superscript β introduced in 
|�β

α(ρ, φ)〉 to distinguish them from the one at zero temperature. 
And the bulk coordinate (ρ, φ) can be naturally recognized as pa-
rameters in CFT.

As the second step, we would like to learn what is the explicit 
form of the states |�β

α(ρ, φ)〉C F T . Without loss of the generality, 
we only need to focus on |�β

α 〉C F T ≡ |�β
α(0, 0)〉C F T . Other cases 

can be obtained by using |�β
α(ρ, φ)〉C F T = g(ρ, φ)|�β

α 〉C F T . The 
dual relation (10) implies that |�β

α 〉C F T should satisfy the follow-
ing conditions:

(i) The duality (10) strongly favors that these are TFD-like 
states;

(ii) |�β
α 〉C F T should be the energy eigenstates of the dual CFT;

(iii) Just like the zero-temperature case, constraints imposed by 
the generators which preserves the point ρ = t = 0 in the bulk 
will, through the duality, impose the same constraints on |�β

α 〉C F T

in the dual doubled CFTs, equally. Each of them is similar to (9).
The above conditions force us to propose the following form of 

|�β
α 〉C F T

|�β
α 〉C F T ≡ |T F D − like〉C F T = 1√

Z(β)

∑
α

e−β�α/2|�̃α〉1|�̃α〉2,

where |�̃α〉i are eigenstates of the dual CFTs and as well, should 
be solutions of the constraints similar to (9), which implies they 
should be generated by some primary states |α〉 (and their de-
scendants) with conformal dimensions �α . In the next section we 
will show that in the case of BTZ black hole, |�̃α〉i are nothing 
but |�α〉C F T in (8) i.e. the zero-temperature solution satisfying the 
constraints (9).

The density matrix of the double CFTs which is dual to bulk 
locally excited state is given by

ρtot = |�β
α 〉C F T 〈�β

α | ≡ |T F D − like〉C F T 〈T F D − like|. (11)

Note that the TFD-like state though is not the usual TFD states, 
they are very similar. It can be viewed as a perturbative version 
of the usual TFD state. The reason is the following: the duality (8)
shows that the vacuum |0〉C F T corresponds to a pure AdS configu-
ration in the bulk, and the excitations |�α〉C F T are dual to pertur-
bative bulk states, which are perturbative configurations deviated 
slightly from the pure AdS. The TFD-like state here is a generaliza-
tion of the above picture to the eternal black hole case, by putting 
two equivalent local bulk quantized fields into the bulk. The in-
duced bulk configuration is a deviation from the unperturbed ge-
ometry.

Similar to the thermofield double, the thermal density matrix 
in one of the copies of the CFT is obtained by tracing out the con-
tributions of the other copy of the CFT, as shown in (3). Explicitly, 
for density matrix of the double CFT given by (11), the reduced 
density matrix of one of the CFT is

ρC F T1 = TrC F T2 ρtot

= 1

Z(β)

∑
α

e−β�α |�̃α(ρ,φ)〉C F T1〈�̃α(ρ,φ)|, (12)

where Z(β) = Tr
∑

α e−β�α |�̃α(ρ, φ)〉〈�̃α(ρ, φ)| is the partition 
function.
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Fig. 3. The 2+1 dimensional (spinless) BTZ solution in coordinates (t , ρ , φ). All 
points inside the cylinder belong to anti-de Sitter space, its surface (ρ = 1) rep-
resenting spatial infinity. The BTZ spacetime lies between the two surfaces inside 
the cylinder which are identified under an isometry generated by (16)–(18). The 
RG flow and the horizon (bridge states) are indicated by the dashed lines in the 
constant time slices to the right.

To proceed, let us employ the idea of Fisher information metric

ds2 = DB = 1 − Tr
√

ρ
1/2
1 ρ2ρ

1/2
1 , (13)

where

ρ1 ≡ ρC F T (λ) = 1

Z

∑
α

e−β�α |�̃α(λ)〉C F T 〈�̃α(λ)|, (14)

ρ2 ≡ ρC F T (λ + δλ)

= 1

Z

∑
α′

e−β�α′ |�̃α′(λ + δλ)〉C F T 〈�̃α′(λ + δλ)|, (15)

and it measures the distance between two infinitesimally close 
states ρ1 and ρ2 which parameterized by λ = (ρ, φ). As usual, we 
identify this information metric with the metric of the time slice 
of the emergent spacetime. In this way, the dual geometry of the 
eternal black hole can be obtained, according to the SS-duality, by 
considering the distance between two local excitations, which is 
given by (13).

3. Emergent BTZ black hole

As an explicit example, in this section we would like to employ 
our proposal to 2d CFT and to see how the expected BTZ black 
hole is emergent. The quantum distance (13) plays a significant 
role in the derivation of the geometry. The key to the derivation is 
to find out the form of the states |�̃α(ρ, φ)〉C F T = g(ρ, φ)|�̃α〉C F T

which is the building blocks of our proposal |�β
α 〉C F T . This can be 

achieved by imposing conditions (ii) and (iii) as mentioned in the 
last section.

Let us start with a brief review on how to make a BTZ black 
hole (the AdS black hole in 2 + 1 dimensions [32,33]). Fig. 3 shows 
a sketch of the way in obtaining a BTZ black hole. Roughly speak-
ing, we first find out the “identification surfaces” in AdS. These 
are hypersurfaces that divide the whole spacetime into several re-
gions, some of them have the timelike or null Killing vectors. These 
regions must be cut out from anti-de Sitter space to make the 
identifications permissible. This means that they should lie entirely 
within the region where the Killing vector field is space-like. Iden-
tifying corresponding points on these surfaces gives us the BTZ 
black hole. Before identification, it is a patch of the whole AdS 
space, whose isometry is given by S L(2, R) × S L(2, R) generated 
by the (global) Virasoro generators (L1, L0, L−1) and (L̃1, ̃L0, ̃L−1)

of the dual 2d CFT. In the global coordinate, they are

L0 = i∂+ = i
∂

∂x+ , L̃0 = i∂− = i
∂

∂x− , (16)

L±1 = ie±ix+[cosh 2ρ

sinh 2ρ
∂+ − 1

sinh 2ρ
∂− ∓ i

2
∂ρ], (17)

L̃±1 = ie±ix−[cosh 2ρ

sinh 2ρ
∂− − 1

sinh 2ρ
∂+ ∓ i

2
∂ρ], (18)

where x± = t ± φ. The identification breaks the symmetry group 
from S L(2, R) × S L(2, R) to S L(2, R) ×U (1), however, the BTZ black 
hole (and its higher dimensional generalization [34]) remains lo-
cally AdS. Our procedures of deriving the thermal spacetimes in 
the last section only need local information, it is therefore safe 
enough to start with (16)–(18). For the same sake, the fact that 
the BTZ geometry has the same local isometry as the AdS3 sug-
gests the same constraints should be imposed on |�̃α〉C F T as the 
one given in (9), which implies |�̃α〉C F T has exactly the same so-
lution as the one for AdS, i.e., |�̃α〉C F T = |�α〉C F T .

Following [8], the excited state |�α(ρ, φ)〉C F T can be obtained 
by acting the conformal transformation g(ρ, φ) to |�α〉C F T ≡
|�α(0, 0)〉C F T , that is

|�α(ρ,φ)〉C F T = g(ρ,φ)|�α〉C F T , (19)

where g(ρ, φ) = eiφl0 e
ρ
2 (l1−l−1) with l0 = L0 − L̃0, l−1 = L̃1 − L−1, 

l1 = L̃−1 − L1. We will see later that the CFT parameters (ρ, φ) can 
be recognized as bulk coordinates. The state |�α〉C F T turns out to 
be of the following form

|�α〉C F T ∝ e−δ(L0+L̃0)ei π
2 (L0+L̃0)| Jα〉, (20)

where δ ∼ 1/c is a UV cut off, | Jα〉 = ∑∞
k=0 |k〉L ⊗ |k〉R are bound-

ary states, and |k〉L ∝ (Lk−1)|α〉, |k〉R ∝ (L̃k−1)|α〉 are descendants of 
the primary states |α〉. In the following manuscript, we just denote 
|�α〉C F T as |�α〉 to simplify notation.

For later convenience, we first calculate the following inner 
product,

|〈�α(ρ,φ)|�α′(ρ + dρ,φ + dφ)〉|2

=[1 − 1

8
(dρ2 + sinh2 ρdφ2)〈�α|l−1l1 + l1l−1|�α′ 〉]2

=[1 − 1

8δ2
(dρ2 + sinh2 ρdφ2)δαα′ ]2, (21)

where in the second line the following relations have been em-
ployed [8]

|〈�α(ρ,φ)|�α(ρ + dρ,φ + dφ)〉|
=1 − 1

8
(dρ2 + sinh2 ρdφ2)〈�α |l−1l1 + l1l−1|�α〉, (22)

and in the third line, we used (see Appendix A for more detail).

C F T 〈�α |l−1l1 + l1l−1|�α′ 〉C F T

=C F T 〈�α |l−1l1 + l1l−1|�α〉C F T δαα′ � 1

δ2
δαα′ . (23)

With the above preparation, we are now in the situation to de-
rive the Fisher information metric. In the limit β3δλ3 � 1, we have 
(see Appendix B for more detail)
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ds2 = DB = 1 − Tr
√

ρ
1/2
1 ρ2ρ

1/2
1

� 1 − Tr
√

ρ1ρ2

= 1 −
√∑

k, j

〈k|ρ1| j〉〈 j|ρ2|k〉

= 1 −
√∑

k

〈k|ρ1ρ2|k〉. (24)

After substituting (19) and (20) into (12) and making use of 
(13)–(15) and (21) and (24), it becomes

ds2 = 1 −
√√√√ 1

Z

1

Z(ρ + dρ,φ + dφ)

∑
α,α′

e−β(�α+�α′ )|〈�α(ρ,φ)|�α′ (ρ + dρ,φ + dφ)〉|2

= 1 −
√

1

Z

1

Z(ρ + dρ,φ + dφ)

∑
α

e−2β�α [1 − 1

8δ2
(dρ2 + sinh2 ρdφ2)]2

= 1 − f (β)[1 − 1

8δ2
(dρ2 + sinh2 ρdφ2)], (25)

where

f (β) =
√

1

Z

1

Z(ρ + dρ,φ + dφ)

∑
α

e−2β�α . (26)

If we treat (δλ)2 ≡ dρ2 + sinh2 ρdφ2 as small perturbations in 

the parameters λ = (ρ, φ), then F(β, λ1, λ2) = Tr
√

ρ
1/2
1 ρ2ρ

1/2
1 by 

definition is the quantum fidelity of the field [35]. The explicit ex-
pression of f (β) can be calculated in this way. Noticing that the 
metric is given by ds2 = 1 −F(β, λ1, λ2), Eq. (B.5) implies that

F(β,λ1, λ2) ∼ e− β
8 (δλ)2χ � 1 − β

8
(dρ2 + sinh2 ρdφ2)χ

= 1 − β

8δ2
(dρ2 + sinh2 ρdφ2), (27)

where χ = 1/δ2 has been used. This implies that

f (β) ∼ 1 + 1 − β

8δ2
(dρ2 + sinh2 ρdφ2), (28)

after plugging it into (25), the metric of time slice turns out to be4

(keeping only quadratic terms)

ds2 � β

8δ2
(dρ2 + sinh2 ρdφ2). (29)

This is the spatial part of the AdS metric in global coordinate up to 
a constant factor, but now it involves temperature through the pa-
rameter β , and possibly can be viewed as thermal AdS for low 
temperature (large β). However, for temperature larger than its 
critical value the Hawking–Page transition [36] will be induced, 
and it becomes a BTZ black hole. In this case, we define a set of 
new coordinates

r = r+ coshρ, t̂ = i
√

βφ

2
√

2r+δ
, θ =

√
βt

2
√

2r+δ
, (30)

the full thermal metric (29) after adding gtt (which is a prior given 
by assumption) can be recast as

ds2 = −
(

r2 − r2+
)

dt̂2 + β

8δ2

dr2

r2 − r2+
+ r2dθ2. (31)

This is exactly the BTZ metric as expected. With the help of the 
thermofield double formalism, above procedures allow us knowing 

4 This is correct only when β3δλ3 � 1 as explained in Appendix B.
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tle information about the thermal CFT, which is one of the main 
erits of the proposal.

We would like to make a comment here. The fact that the BTZ 
etric relates to the thermal AdS merely through a coordinate 
ansformation (30) is based on an observation that BTZ geometry 
 locally equivalent to AdS3 [32,33]. However, this does not mean 
e BTZ black hole is trivially the same as the AdS spacetime—
ey have different topology [32,33] which can be influenced by 
mperature. Therefore, there is finite-temperature phase transition 
tween AdS and BTZ black hole which is called Hawking–Page 
ase transition [36]. Our method in this paper is to construct 
lk local excited sates to probe bulk metric. Thus, we can only ac-
ss to local information. The global topology, however, cannot be 
tained in the present approach. To probe global properties, e.g. 

awking–Page phase transition, we need non-local objects such as 
erator product expansion (OPE) block constructed by Czech et al. 
7], which is a new challenge and will be discussed in the future 
ork.

 Conclusions

In this paper we have studied emergent geometries from CFT 
 finite temperature in the setup of the surface/state correspon-
nce. We propose a general framework through which thermal 
ometries emerge from boundary CFTs. Instead of introducing a 

uncated level to the MERA tensor network, our proposal is re-
ized by applying the thermofield double formalism to the SS-
ality, and the thermal correlations are read off by tracing over 
e of the copies of the CFT. The main advantage of this frame-

ork is that the details of the thermal correlations of the CFT are 
ot required. As an explicit example, we computed the information 
etric for a locally excited mixed state of two dimensional CFT at 

nite temperature, and showed that the emergent spacetimes are 
ther thermal AdS or BTZ black hole as expected.

In the present framework, the information metric only depends 
 the behavior of two nearby states. This implies, according to 
e SS-duality, emergent bulk metric can be obtained by merely 
owing the local information. This is one of the advantages of this 

amework. However, the other side of the coin is that nonlocal in-
rmation is missing and the global symmetry cannot emerge from 
cal operators. Although it is important, it is a tough difficulty and 
 out of the scope of the present paper. One possible clue is to 
sort to the entwinement (long geodesics which is no longer the 
e in the Ryu–Takayanagi prescription in BTZ case) which extracts 

on-local information as shown in [38,39], where the authors de-
loped tools for constructing bulk curves in spacetimes beyond 
re AdS, such as conical geometry and BTZ black hole, further, en-
inement can be described well by kinematic space, and together 

ith entanglement, can be used to reconstruct bulk geometry [37,
,41].
Another important future problem which is of close correlation 

 to find which factor determines the emergent spacetime to be 
ermal AdS or BTZ black hole, or equivalently, the Hawking–Page 
ase transition [36]. That is to say, how to determine the criti-
l temperature of the transition? In our previous work [22] we 

ave found a cMERA description of the Hawking–Page phase tran-
tion in the framework of the truncated MERA. In the present 
amework, however, its solution obviously depends on the details 
 the global behavior, implying that the entwinement can be a 
ndidate. Nevertheless, the full picture is far from being achieved 
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currently.5 We hope in the future work we can find its description 
in this framework.
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Appendix A. Orthogonal relation of the fidelity susceptibility

In our main letter we show that 〈�α |l−1l1 + l1l−1|�α′ 〉 can be 
interpreted as fidelity susceptibility between two boundary states 
associated with two different primary states |α〉 and |α′〉. Follow-
ing [8], we have

〈�α|l−1l1 + l1l−1|�α′ 〉 = 2〈�α|l−1l1|�α′ 〉
= 2(2 + e2δ + e−2δ)〈�α |L−1L1|�α′ 〉 � 2

δ
〈�α |L0|�α′ 〉, (A.1)

where

〈�α|L0|�α′ 〉
= 〈 Jα |e−i π

2 (L0+L̃0)e−δ(L0+L̃0)L0e−δ(L0+L̃0)ei π
2 (L0+L̃0)| Jα′ 〉

= 〈 Jα |e−2δ(L0+L̃0)L0| Jα′ 〉. (A.2)

Using the commutation relation [L0, L−1] = L−1, [L̃0, ̃L−1] = L̃−1
repeatedly, we have

L0| Jα′ 〉 =
∑

k

(k + �α′)(L−1)
k|α′〉(L̃−1)

k|α′〉, (A.3)

and

e−2δ(L0+L̃0)L0| Jα′ 〉

=
∑

k

(k + �α′)e−4δ�α′
(

1

e2δ + 1

)2k

|k〉α′ |k〉α′ . (A.4)

We therefore get

〈 Jα |e−2δ(L0+L̃0)L0| Jα′ 〉

=
∑
k,k′

〈k|α〈k|α(k′ + �α′)e−4δ�α′
(

1

e2δ + 1

)2k′

|k′〉α′ |k′〉α′

=
∑
k,k′

〈k|α〈k|α(k′ + �α)e−4δ�α

(
1

e2δ + 1

)2k′

|k′〉α |k′〉αδαα′

= 〈 Jα |e−2δ(L0+L̃0)L0| Jα〉δαα′ , (A.5)

where we have used the orthogonality between the highest weight 
states 〈α|α′〉 = δαα′ . In the end, one has

5 Since the exact definition of entwinement in the CFT side is still missing, the 
exact mapping of this quantity between gravity and gauge theory has not been ob-
tained.
〈�α|l−1l1 + l1l−1|�α′ 〉 = 〈�α |l−1l1 + l1l−1|�α〉δαα′ = 1

δ2
δαα′ ,

(A.6)

which is the formula (23) in our main letter.

Appendix B. Simplification of noncommutative density matrix

In this section, we would like to give a simplification of 

Tr
√

ρ
1/2
1 ρ2ρ

1/2
1 (physically this is field fidelity) under a general 

perturbation (δλ) in the parameter space. Generally speaking, 
ρ1 and ρ2 do not commute. Formally, we can write ρ1 and ρ2
in terms of Hamiltonian

ρ1 = e−βH(λ1)

Z(β,λ1)
,ρ2 = e−βH(λ2)

Z(β,λ2)
(B.1)

where λi (i = 1, 2) denotes the parameters with λ2 = λ1 + δλ. The 
Trotter–Suzuki formula [42] can be used to give an approximation∣∣∣∣∣∣ρ1/2

1 ρ2ρ
1/2
1 − e−βH(λ1)+H(λ2)

Z(β,λ1)Z(β,λ2)

∣∣∣∣∣∣
< β3�2[H(λ1), H(λ2)]eβ‖H(λ1)‖+‖H(λ2)‖ ∼ (βδλ)3, (B.2)

where

�2[H(λ1), H(λ2)] = 1

12
(‖ [[H(λ1), H(λ2)], H(λ2)] ‖

+ ‖ [H(λ1), H(λ2)], H(λ1)] ‖) . (B.3)

If β3δλ3 � 1, then the fidelity becomes

F(β,λ1, λ2) ≡ Tr
√

ρ
1/2
1 ρ2ρ

1/2
1

≈ Tr

√
e−βH(λ1)+H(λ2)

Z(β,λ1)Z(β,λ2)
= Tr

√
ρ1ρ2. (B.4)

It was shown in [35] that in this limit, the fidelity has the follow-
ing behavior

F(β,λ1, λ2) ≈ e− β(δλ2)χ
8 , (B.5)

where χ is the fidelity susceptibility.
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