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Introduction

The N = 4 Super Yang-Mills (SYM) theory can be considered as the most symmetric gauge theory.

It has the maximal possible number of supersymmetry charges for a gauge theory without gravity and has
only two parameters, i.e. the number of colors N of the gauge group SU(N) and the gauge coupling constant
g. It is a conformal field theory even at the quantum level [1] since its S-function vanishes to all orders of
perturbation theory. This is why one refers to N'=4 SYM as a finite quantum field theory.

The AdS/CFT correspondence [2] claims that it is dual to string theory on an AdS; x S5 space-time
background and relates the local gauge invariant operators of A’ =4 SYM theory to string states. This has
motivated a great work in studying the correlation functions of gauge invariant operators in N' =4 SYM.
In the last years a remarkable progress has been achieved also in the study of scattering amplitudes which
in N'=4 SYM theory have a very simple structure.

At one loop an amplitude of a non-supersymmetric theory can be decomposed in a linear combination

of bubble, triangle and box scalar integrals®! | i.e. integrals with two, three and four internal propagators
respectively, plus a rational function of the kinematical invariants. The integrals are called scalar since no
loop-momentum factors appear in the numerator of the integrand.
In an amplitude of a supersymmetric gauge theory the rational function is vanishing. Moreover, in N = 4
SYM the high degree of supersymmetry implies that in the on shell amplitudes only boxes have-non vanishing
coefficients. These can be determined only by the knowledge of the branch cut singularities of the amplitude.
This is done by the so called (generalized) unitarity method [46]-[53] which extracts all information from on
shell physical states without using Feynman diagrams which involve unphysical off shell states.

In the large N (or planar) limit, the N/ = 4 SYM on shell scattering amplitudes exhibit remarkable
properties such as a duality between gluon amplitudes and the expectation value of Wilson loops for closed
polygons bounded by light-like edges both at strong [3] and at weak coupling [4], [76]-[78].

Moreover, additional symmetries emerge for the on shell planar amplitudes. In fact, the computation of
the planar four gluon amplitude [98]-[101] by generalized unitarity methods has allowed to discover a new
symmetry not manifest at the Lagrangian level. This is the dual conformal symmetry [75]-[78], which is
called dual since it acts on the momentum variables. It is not related, at least not in an obvious way, to
the conventional conformal symmetry of N'=4 SYM, but it is connected to the conformal symmetry of the
dual light-like Wilson loop. Later it was discovered that this symmetry extends to a dual superconformal
symmetry [86]-[87], which is an exact symmetry of all planar tree level amplitudes of N'=4 SYM.

Both the algebra of the conventional and the dual superconformal symmetry have finite dimension. But
it has been shown [88] that the commutation of the generators of these two algebras gives rise to the
infinite dimensional algebra of a Yangian symmetry, under which tree level amplitudes are invariant. One
could expect to have an infinite-dimensional symmetry algebra as a manifestation of the integrability of the
theory. In N' = 4 SYM integrability has been observed in the study of the spectrum of the scaling anomalous
dimensions of gauge invariant composite local operators. This spectrum is governed by the Hamiltonian of
a quantum spin chain which is integrable since it has an infinite number of conserved charges [5].

These extra symmetries give rise to the prospect to find an exact result for all the on shell-amplitudes of
the theory. In fact, a recursive formula for the all loop integrand of planar scattering amplitudes in N = 4
SYM with manifest Yangian symmetry is given in [6].

But at the loop level the fate of these symmetries is not clear. Even if N' = 4 SYM is finite in the
ultraviolet, its scattering amplitudes have infrared (IR) divergences since they involve massless particles.
The generalized unitarity method, which has been employed to obtain the amplitudes of the N' =4 SYM,

9111 the following we will refer to bubble, triangle and box scalar integrals also simply as bubbles, triangles and box.



assumes from the beginning of the computation that the particles are on-shell, i.e p?> = 0, and uses dimen-
sional regularization to regularize these IR divergences. Dimensional regularization breaks dual conformal
symmetry since to be unbroken this symmetry requires that the space-time dimension is kept equal to four.
In fact, the on shell planar four gluon amplitude is expressed in terms of dimensionally regularized Feynman
integrals. On the other hand, if one allows the external particles to be off-shell, i.e. p? # 0, and keeps the
space-time dimension equal to four then the integrals appearing in the computation up to four loop are
finite in the IR and are exactly covariant under the dual conformal symmetry. Thus, a regulator for IR
divergences which preserves dual conformal symmetry is given by the off-shell regularization, i.e. by letting
the external particles to have p? # 0. The use of this regulator in the computation of amplitudes implies
that one loses manifest gauge invariance and can no more employ unitarity techniques which are intrinsically
on shell but instead has to employ the conventional Feynman diagrams.

Up to now the only off shell four point amplitude which has been computed is that with four gluons in the
background field gauge [17]. As happens in the on shell dimensional regularized amplitude, in this off shell
version of the amplitude appears only the box scalar integral which is dual conformal covariant and so dual
conformal symmetry is present even in the off shell regime in this gauge.

Hence, it is important to know if in a different (supersymmetric) gauge this symmetry is still present or is
lost, or in other words if the dual conformal symmetry in the off shell regime depends or not on the choice
of the gauge.

We have computed the off shell four scalar amplitude A‘f’lc ({O‘;he” (¢¢T¢¢T) and the off shell four gluon am-

plitude A(f]ltgo‘;he” (AMAM A%AM) in a N = 1 supersymmetric gauge at one loop. We have found that in

these amplitudes there are integrals which are not dual conformal covariant. In fact, the decomposition in

(1)}; (J:O;h6”<¢¢T¢¢T> contains triangles, while that of A(l)};({ Oj)he” (AmAmAu:aAm) contains

triangles as well as bubbles. Both triangles and bubbles are not dual conformal covariant. Therefore, the
presence of the dual conformal symmetry for the off shell amplitudes depends on the choice of the gauge.
Moreover, triangles are finite in the ultraviolet (UV), while bubbles are UV divergent integrals. In spite of
the presence of these UV divergent integrals in its decomposition, the gluon amplitude is UV finite since
the sum of all the divergent terms arising from the bubbles vanishes ( see sections 3.6.2, 3.6.5 ).

There is another issue related to the off shell regime. It may happen that the on shell limit p> — 0 of
an off-shell amplitude differs from the on-shell dimensional regularized version of the amplitude where the
on shell condition is imposed from the beginning, i.e.

scalar integrals of A

lim Aoffshell?‘éAgnshell (0.0.1)

P20 im.reg.”

This is due to terms which are absent if one assumes the on shell condition from the beginning, but give a
non-vanishing result if one computes the off shell amplitude and then considers its on shell limit (see section
(3.4)).

However, we have found that for both A?’; ;”O;h ell <¢¢T¢¢T) and A(f]lt ({O;he” (AMAH2 Ay, A/u) , the on-shell limit

of the off-shell amplitudes coincides with the on-shell dimensional regularized version of the amplitudes, i.e.
lim AP (000" ) = Agialil (601007,
p2—0

. of f shell on she
lim A7} (AMAMQAMBAM) = Agh (AmAmAuaAm)- (0.0.2)

P20 1loop dim. reg.

Another theory we have studied in this thesis is the so called 3 deformation of N' =4 SYM. It is a theory
obtained by modifying the superpotential of N' =4 SYM in such a way to break SUSY down to N' = 1 but
maintaining the property of conformal invariance and finiteness. The superpotential of the 5 deformation
depends on two complex parameters, i.e. h and § which gives the name of the theory.

In [96] it has been shown that in the planar limit and with g real, all the amplitudes of the 5 deformation
coincide with the ones of N' = 4 up to phase factors.
We have studied some n—point correlation functions with n > 4 (or equivalently off shell amplitudes) in the

case of complex 5. More precisely, we have considered the correlation functions with four and six vector
superfields < V@1 V92V @3V > and < V@V RY By %1% > respectively. We have also considered the
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'mixed’ chiral-vector correlation functions with a chiral, an antichiral and two or three vector superfields
< @uPptyaye 5 and < PUPtRYBY @Y% > respectively (the flavor indices are omitted). We have
found that these Green’s functions are not equal to their value in A/ = 4 SYM, but receive non planar
corrections.

The thesis is organized as follows.

In the first chapter we review super Feynman diagrams, i.e. the perturbation theory in superspace which
represents the technique we have used to derive our results.

In the second chapter we discuss the decomposition of one loop amplitudes with particular attention to
the case of supersymmetric gauge theories. We describe the Passarino-Veltman method to reduce one loop
integrals in a basis of scalar integrals. We also discuss the decomposition of amplitudes as far as color factors
are concerned.

The third chapter is devoted to the presentation of our results.






Chapter 1

Superspace perturbation theory

This chapter deals with superspace, superfields and Super Feynman rules.

Superspace is an extension of ordinary space-time by the introduction of fermionic coordinates. It allows
to keep supersymmetry manifest and to calculate the quantum behavior of supersymmetric theories more
easily since a single superdiagram correspond to many component fields diagrams.

In section 1.1 we briefly review supersymmetry transformations, chiral and vector superfields and the form
of the lagrangian with manifest N’ = 1 supersymmetry .

Section 1.2 presents the algebra of supercovariant derivatives D, also named D-algebra, which is useful in
the calculations of superdiagrams.

Sections 1.3 and 1.4 respectively treat the propagators and the interactions vertices as originally constructed
by Salam and Strathdee in [7] and for N =1 Super Yang-Mills in [8].

In section 1.5, we review a new version of super Feynman-rules formulated in ref. [19] (also named improved
super Feynman rules ).

In section 1.6 we present some examples of computation of superdiagrams by applying both the old and
the new versions of super Feynman rules. Also, we give a brief discussion about the regularization of
supersymmetric theories.

In this chapter we have followed closely [14] and [17].

1.1 Supersymmetry and Superspace

According to the Coleman-Mandula theorem [9], the most general symmetry group with bosonic generators
of a quantum field theory having a mass gap is the direct product P x G, where P is the Poincaré group
and G is an internal symmetry group.

The direct product implies at the level of algebra that the generators of the Poincaré group, i.e. space-time
translations P* and Lorentz transformations M, commute with the generators T of G

[T, PH) = [T°, M"] = 0. (1.1.1)

Hence, for a generic quantum field theory the Poincaré algebra cannot be extended in a non trivial way .
If one allows the presence of fermionic generators, one can enlarge the Poincaré algebra. In fact supersym-
metry (for a review see [10] - [18]) is obtained adding to the Poincaré generators the fermionic generators
Q! and Q47, (o, & = 1,2), which transform as spinors under the Lorentz group (for the conventions see
Appendix A).

The supersymmetry (or in brief SUSY) algebra is

{QL, Qas} = 20 . Pu6Y,

{QL,Q3} =0, {Qar, Q3,5 =0

[QL, P, =0, [Qar, P, =0

[MMVv Qi] = _(Uuu)aﬂQé

(Mo, Q3] = —(5)%Q". (1.1.2)



where the indices I, J run from 1 to the total number of supersymmetries N/. This chapter deals only
with ' =1 SUSY, so in the following the indices I, J will be dropped. Moreover in the algebra (1.1.2) we
have neglected possible central charges.
The Poincaré group acts naturally on the space-time coordinates xz*. Thus, having added fermionic genera-
tors, it is straightforward to enlarge the space-time by introducing two anticommuting fermionic coordinates
0, and 0. This extended space is called superspace. An arbitrary function F(z,6,0) on superspace ( called
also superfield ) can always be expanded as a polynomial in § and 6:

F(2,0,0) = fo(z)+0% fra(2)+04 2% (x)+00 f3(x)+00 f4(x)+ 0070 f5,,(x)+000s f§ (x)+000% f1,(x)+0000 D(z),
(1.1.3)
since the product of any three or more components of 6 (or 5) vanishes

000350, = 050305 = 0. (1.1.4)

A representation of Q, and Qg as differential operators in superspace can be found in such a way that an
infinitesimal susy transformation is:

SeeF = F(z + 61,0 + €,0 + €) — F(2,0,0) = i(eQ + €Q).F. (1.1.5)

Here §x and the representation of Q, and Q4 can be determined using the SUSY algebra (1.1.2) and the
Baker-Campbell-Hausdorff formula e?e? = eATBHABI/2 (valid if the commutator [A, [A, B]] vanishes ')
for the product of two susy transformations U (x, €9, &) - U(z1, €1, € ), where U(z;, ¢;, &) = e/@nl"+a@+aQ)
Thus one obtains

St = —ifote + iect,
Qa = —i(Da +ic" ,079,),
Qa = i(0s + 0°0%,0,,), (1.1.6)

where 0, = 0/00% and 0; = 0/00% (see Appendix A). The product of any three or more components of
(or 0) vanishes and we will write 39 and 90 for 90, and 050* respectively. Dimensional analysis requires
that 6 and € have the mass dimension [0] = [¢] = —1/2, while [0,] =1/2 .

The SUSY transformation of a superfield induces for the component field D(z) in (1.1.3) the transformation
dD(z) = 0,K*(x) where K*(z) is a vector function on space-time. Since dD is a four divergence and
assuming that the surface terms can be discarded, any D—term, i.e the coefficient of 6660 in a superfield,
produces in the lagrangian density an action invariant under susy.

A D—term is also denoted as D(z) = [Flp = [Flpgag = J d*0F (,0,0).

1.1.1 Chiral and Vector superfields

The superfield (1.1.3) is reducible in the sense that one can impose on it constraints which are preserved by
SUSY transformations.

We shall consider two kinds of constraints: chirality and reality. To this end let us introduce the super-
covariant derivatives D, and Dy

D, =0, — iagﬁ.égau,
Dy = —04 +10° 0540, (1.1.7)
They anticommute with the SUSY generators @ and Q, i.e. {D,,Qs} = {DQ,QB} = {Ds,Qs} =

{Ds,Q B} = 0 which implies [D,, eQ] = 0, etc... if one contracts @, with the fermionic parameter ¢

These relations imply that D, F = 0 and Dy F = 0 are SUSY invariant constraints. In fact under a SUSY
transformation one has that F — F' = F + §.F, hence if D, F = 0 then

I1Since in this case, schematically, A and B are of the form P 4+ Q + @, from [P,Q] = 0, [P, P] = 0 and {Q, Q} = P we have
[A,B] = P and indeed [A,[A,B]] =0



DoF' = DoF + Da(0.F) = DoF + Do (ieQF) = 0 + ieQ(DoF) = 0. (1.1.8)

Moreover the product of any three or more components of D, (D) is equal to zero
DoDgDy =0, DyDyDs = 0. (1.1.9)
We will write DD (DD) for DD, (D3 DY) respectively. A superfield ®(x, 0, ) which satisfies the constraint
Dy ®(z,0,0) =0, (1.1.10)

is called chiral (left-handed) superfield, while a superfield ®' that satisfies D,®T = 0 is called antichiral
(right-handed) superfield. To find the general expression of a chiral superfield, it is useful to define new
coordinates y* = x# — ilc*0. It results that Day* = 0 and Dgh® = 0. Thus a left-handed chiral superfield
is a function of y and 6 only: ®(y,0) = ¢(y) + /20 (y) + 00F(y) (the v/2 is a convention). Expanding this
expression in @ and @ gives

B(y.0) = o(x) — i80"00,0(x) — 000003, 0() + V20 (x) + %eea,ﬂpaﬂé FOOF(z).  (1111)

The SUSY transformation induces on the component field F'(z) in (1.1.11) the transformation dF(x) =
9, H" where H* is a vector function. This implies that [ d*zF () is invariant under susy. It is called F-term
and is also denoted by F(z) = [F|r = [Fles = [ d*0®.

Similar expressions are valid for a right-handed superfield, which is a function of 7* = 2* +ifc*8 and 6, i.e.
®1(7,0) = ¢*(§) + V20¢(y) + 00F*(5). Expanding this in 6 and 6 gives

1(5,8) = ¢*(x) + i00"00,6" () — ieeééaﬂam*(x) +V200(x) — %e)eeauaw F 00 (@) (1.1.12)

Chiral superfields do not contain spin-1 bosons. To describe gauge fields another kind of superfield
(called the vector superfield) is introduced. It is characterized by the reality condition V = V. This leads
to the following decomposition for V'

V(x,0,0) = C(x) + V20x(x) + V20x(x) + 00S(z) + 005* (x) + 000 A, (x)

+000 (X(x) 6“(%)((36)) 466 H(A(x) U“@M)Z(x)> + %99 69 (D(x) - %6“(%0(36)) (1.1.13)

V2 V2

One can also find a supersymmetric generalization of a guage transformation. First we note that if A is
a left-handed chiral superfield, iA — iA is a vector superfield. Second, replacing in (1.1.11) ® with iA , the
transformation'2

V=V =V 4ih—iAt (1.1.14)

implies that A, transforms like an abelian gauge field

Ay — A, = A, — 29, Tm()

C — C' = C + 2Re(¢)

X=X =x+¢

S8 =5+F

Ao A =2

D—D =D. (1.1.15)

So A and D are invariant. The parametrization of the coefficients of 000, A0 and 0099 in the expansion
(1.1.13) is chosen so as to have these simple transformations.

1-21n the following discussion, we will also use the notation V* to indicate a gauge transformed superfield instead of V.
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One can choose a particular gauge, called the Wess-Zumino gauge, where c’, X/, S’ in V' vanish by imposing
that 2Re(¢) = —2C, ¢ = —x, F' = —S. Thus the vector supermultiplet reduces to D, A, and X

_ _ __ __ 1
Vivz(2,0,0) = 004, (x) + 00 OA(x) + 00 0A(z) + 50000 D (x) (1.1.16)

This gauge-fixing leaves the abelian U(1) gauge freedom, since no condition is imposed on Im(¢). The

Wess-Zumino gauge breaks manifestly supersymmetry because the conditions ¢° = x' = S = 0 can-
not be maintained under a supersymmetry transformation. In fact an infinitesimal susy transformation
0Vwz = ieQ(VWZ) generates, among many others, a term ieQ) (éé 9)\(3:)) = ffe). Such a term corresponds
to a S(z) component field that is absent in (1.1.16).
However, simultaneously with a supersymmetry transformation V — V' = V + 6.V, we can perform a com-
pensating gauge transformation generated by a chiral superfield A in order to leave the Wess-Zumino gauge
invariant: V' — VV/{/Z = V' —iAt +iA with V‘;[/,Z being in the form (1.1.16). Let us note that eq.(1.1.16)
implies that in this gauge V" =0ifn >3

1.1.2 The N =1 supersymmetric Lagrangian

Now we turn to the case of a non-abelian symmetry. We shall consider a gauge group G with the generators
T% of the group in the representation R of G. The generators T* satisfy

(7%, T = if®T., Tr(T°T") = 6%, (1.1.17)

where f%¢ are the real antisymmetric structure constants of G and 7% is a normalization constant. We

define A and V' as matrices having elements A;; = A“Ti‘;, Vij = VI3, where A% is a chiral superfield and

V¢ is a vector superfield, both in the adjoint representation of G. 3
Assume that there is a set of chiral superfields transforming in the representation R of G, i.e.

o} = [e T 0

(MR (1.1.18)

or infinitesimally 5@? = —igA\*(T*); ;®;. Since A” is a superfield, PN is a superfield as well.

To construct a Lagrangian invariant under supersymmetry and under gauge transformations, one can observe
that V' can be exponentiated since from (1.1.13) one sees that it has zero mass dimension.Then the term

Tr@tes” @]g555 = (@] (€9)i3®]9000 (1.1.19)

is invariant under supersymmetry because is a D—term. Also it is invariant under a gauge transformation
(1.1.18) provided that 9" transforms according to

A _ T .
eIV — eIV = ¢TI g9V giA (1.1.20)

To obtain an infinitesimal gauge transformation up to terms linear in A (A), one has to apply the Baker-
Campbell-Haussdorff formula to eq.(1.1.20)

eIV — gV AHIA—AT)+ S g[VAHATT+ 5 g2 [VIIVA-AT] 4. (1.1.21)

Hence, logarithm of eq.(1.1.21) gives
SVA=VA v = HV)A + H (V)AT + O(A?) (1.1.22)
where the linear operators H(V), Hf (V) on A, AT are defined as
AV)A=iA+ %g[V, Al + égﬁv, V,A]] + ...

HI(V)AT = —iAf + %g[V, At - L

1292[1/, [V, AT +.... (1.1.23)

13 Although V and A are matrices the expansion (1.1.13) and the discussion on the Wess-Zumino gauge remain the same.

8



If the group G is abelian, then eq.(1.1.22) is equal to eq.(1.1.14).
In literature, one can also find this formal expression for an infinitesimal gauge transformation'
VA =iL gy [(AT 4 A) 4 coth Ly (AT 4 A)] (1.1.24)
2 2
where the Lie derivative LxY is defined as

LxY =[X,Y]. (1.1.25)

Applying this definitions and expanding in power series the function coth in eq.(1.1.24) , one can prove that
eq.(1.1.24) coincides with eq.(1.1.22).

Eq.(1.1.19) provides the kinetic terms for the fields in the chiral supermultiplet and their interaction
with the fields in the vector supermultiplet.
The kinetic terms for the fields in the vector supermultiplet and the interaction terms between them are
constructed from the supersymmetric field strengths

a = __67 o€’ _d: (& _dei 1.
W, = DDe 9V D,e?. W, =DDed Dsye 9V 1.1.26

Eq.(1.1.9) implies that these superfields are chiral Dy W, = DoWy4 = 0. Furthermore, it can be shown
that under a guage transformation (1.1.20) they transform as

Wy — WO/} =e MW, e, Wy = WO/} — i I/T/ééemT (1.1.27)

Therefore a term of the form Tr[W*W,]gs (and similarly Tr[WsW%]g;) is gauge-invariant and is also
susy invariant because it is a F-term.
Finally, the mass and interaction terms for the component fields of the chiral superfields are obtained from
the so called superpotential W(®;):

1 1
W((I)z) = h;®; + §mij‘1>i‘1>j + 5)\@19‘1)@"1’]"1% (1,1,28)

In order to have a renormalizable Lagrangian, YW(®;) can contain at most cubic terms , i.e. coupling
constants with mass dimension equal or bigger than zero. In (1.1.28) m;; and A;j;, are symmetric in their
indices and the factors 1/2 and 1/3! are only a conventional choice.

Note that W(®;) is a chiral superfield since it is a product of chiral superfields . Thus the F-term W(®;)gp =
[ d?0W(®;) is susy invariant and is also invariant under the group G if each term in (1.1.28) is gauge

invariant. (For instance, h; can be non zero only for fields ®; invariant under G).

From the discussion above it follows that the most general Lagrangian with N = 1 susy is'®

La— = WeW, + WdW‘j‘} + [@j(egv)ij@j] + [W((I)i) + WT(QI)}
D

o
128¢%7R [
S S / d2OW W, + / d2OW W + / d*0D!(e9V);;®; + / d2OW(®;) + / oWt (@)

128Q2TR ? )
(1.1.29)

F F

1.2 D-algebra

The computation of correlation functions and Feynman diagrams in superspace is greatly simplified if one
makes use of the relations involving supercovariant derivatives (see also the Appendix B).

L4For a derivation of eq.(1.1.24) see [15].
1-5the factor 1/128 is chosen to have a simple form for the propagator of the vector superfield.
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Integration relations

First, there are some identities regarding the integration by parts with supercovariant derivatives. Assuming
that surface terms [ d4x8u(. ..) vanish, under a space-time integral [ d*z the superderivatives Dy, D%, Dg
and D% can be substituted with d,, —0%, —04 and 0% respectively. Moreover, the product of any three or
more components of 9 (or d) vanishes and integration with respect to the Grassmann variables is equivalent
to differentiation (see the Appendix A). Thus, if F(z,6,8) is a generic superfield, then

/dQH}' = iaaf (1.2.1a)
/dZéJ-“ = iéé]—“ (1.2.1b)
/d2«98a}‘ = iaaaaf =0 (1.2.1c)
/ P00F = (000F = 0. (1.2.1d)

From eqgs.(1.2.1), it follows also that the following integrals vanish

/ d*zd*0 D, F = / d*zd*0 0, F =0 (1.2.2a)
/ d*zd*0 DaF = — / d*xd®0 05 F = 0 (1.2.2b)
/d4xd29 DDF = — /d4xd2«9 00F =0 (1.2.2c)
/d4xd20‘DDf = — /d4xd26_5<§]—" =0 (1.2.2d)

In addition, there are two important identities which allow to extend the partial superspace integrations
[ d*zd?0, ([ d*zd*0) to the full one [ d*zd?0d?@ if in the integrand there is an operator DD(DD)

1 _ 1 _ _
- Z/d4xd2«9DD}": Z/d4xd2988}": /d4xd29d29}" (1.2.2¢)

1 _ 1 _ _
— Z/d4xd2«9DD}": Z/d4xd2988]:: /d4xd29d29}" (1.2.2f)

It is also possible to reduce an integral over d*zd?0(d?f) as an integral over d*z

/d4xd29}': i/d“x&&]—": —/d%%]—" (1.2.2g)
/d4xd20}': i/d‘*xaaf: —/d%%]—" (1.2.2h)
/ d*xd?0d*0F = 1—16 / d*xDDDDF (1.2.21)
/ d*zd*9d*0F = 1—16 / d*2DDDDF (1.2.2)

Leibnitz rules and integration by parts

From the definition (1.1.7) of the supercovariant derivatives, from the Leibnitz rule for the space-time
derivative 0, and for the Grassmann derivatives (A.5.4a)-(A.5.4b), a generalization of the Leibnitz rule for

D, can be derived
Da(BlBg) = (DaBl)BQ + Blpa(Bz), (1.2.3&)

Do(F1B2) = (DaF1)Bz — F1Do(B2), (1.2.3b)
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Dao(B1F2) = (DalB1)F2 + BiDa(F2), (1.2.3¢)
Do(F1F2) = (DaF1)F2 — FiDa(F2), (1.2.3d)

where By and By are bosonic superfields and F; and F» are fermionic ones. The same identities (1.2.3a)-
(1.2.3d) hold if one substitutes D, with D.

Furthermore, under an integral D, and Dg can be integrated by parts. In fact from the Leibnitz rules
(1.2.3a)-(1.2.3d) after discarding the surface terms (see egs.(1.2.2a)-(1.2.2b) with F = B1B283), one obtains

/ dxd*0 By (DoBs)Bs = — / d*zd*0 (Do B1)B2Bs — / d*zd*0 B1 By (Do Bs3) (1.2.4a)

/ dzd*0 By (DsB)Bs = — / d*zd*0 (DaB1)BaBs — / d*zd*0 B1By(DgBs), (1.2.4b)

where B, By and Bs are all bosonic superfields. B
Applying repeatedly egs.(1.2.4a)-(1.2.4b) and considering that D,B and Ds;B are anticommuting fermionic
superfields if B is a bosonic one, it follows that (see the Appendix B for other similar formulas)

/ d*zd 0 B,(DDBy)Bs = / d*zd* 0 (DDB,)ByBs + 2 / d*zd 0 (D*By)Ba(DaBs) + / d*zd 0 BBy (DDB3)
(1.2.5a)
/ d'zd*0 B, (DDBy)Bs = / d*zd*0 (DDB,)ByB3 + 2 / dxd*0(DsB1)By(DBs) + / d*zd*0 B1By(DDBs).
(1.2.5Db)

D-algebra in momentum space

To treat correlation functions in momentum space, it is useful to define the Fourier transform of the superfield
F(x,0,0):
_ dp . _
F(x,0,0) = / e P*F(p,6,0) (1.2.6)
(2m)*

Thus, a derivative d,, acting on F(x,6, 6) in momentum space becomes —ipuF(p,0, 6). Hence, to pass from
coordinate to momentum space it is necessary to substitute d,, with —ip, ( and viceversa p, with i9,, from
momentum to coordinate space).
We adopt the convention that the momentum p, appearing in the relation

O = —ipy (1.2.7)

with 8y, = 0/dx1, is the ingoing momentum corresponding to the superspace point (1,60, 0;).

2 p* 1 or =it
> oy = ip"
1.6

In momentum space the substitution (1.2.7) in eqs.(1.1.7) gives
DP =9, — ag‘ﬁ.éﬁpu (
Dre = —gr 1 Gyt b, (
DL = —0a + 070%,p, (1.2.8¢
DP = 9% — 1 YPogp, (

1-6The superscript p on DP and DP indicates the ingoing momentum p corresponding to the superspace point z = (x, 6, ).

If the theta variables 01, 6; have a further label, such as 1 in this case, then we will also use the notation DL, Dye, ete..., to

indicate DY, = 010 — agﬁéfpu, DY = —0f + 0, y5" ﬂo‘p“, etc... respectively.
In addition, D% = ¢**Dg and D% = edBﬁB.
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From (1.2.8a)-(1.2.8d) one can verify the anticommutation relations

{Da,Ds} = {Ds, Dy} =0 (1.2.9a)
{Da, Dy} = QO'ZBpu (1.2.9b)
and the identities

DotD + DatD = 4p* (1.2.10a)
[Da, DD) = 40" B@B Py (1.2.10b)
(D, DD] = —4Ds5"% p (1.2.10¢)
[Da, DD] = —4DP 0, py, (1.2.10d)
(D%, DD] = 46"*%Dg p,,, (1.2.10e)
[DD, DD] = 8Do*D p,, — 16p* (1.2.10f)
[DD, DD] = 8D D p,, — 16p? (1.2.10g)
DODDD, — DyDDD® — —8p° + %{m,@@} (1.2.10h)
DD DD DD = 16p*DD (1.2.101)
DD DD DD = 16p*DD (1.2.10)

(See the Appendix B for a derivation )

One can use an analogue of the Leibnitz rules (1.2.3a)-(1.2.3d) and of the integrations by parts (1.2.4a)-
(1.2.5b) also in momentum space (see the Appendix B) .

For example, eqgs.(1.2.3a), (1.2.4a) and (1.2.5a) become

Dg(BlBg) = (DgBl)BQ + Blpg_q(b’g) (1.2.11&)
/ d*0 B (DP2By) B3 = — / d*0 (DP1B1) By B3 — / d*0 B Bo(DP Bs) (1.2.11b)

/ d*0 B, (DP*DP2By) By = / d*0 (DP*DP1B))ByBs + 2 / d*0 (DP1*B,) By (DP3 Bs) + / d*0 B By(DP>DP3 B3)

(1.2.11c)

where By, By and Bs are the Fourier transforms of bosonic superfields. In eq. (1.2.11a) B; and By depend

on the momenta ¢ and p — ¢ respectively. In eqs.(1.2.11b) and (1.2.11c) py; + p2 + p3 = 0 and By, B2 and Bs

depend on the momenta pi,ps and ps respectively . Also, the momentum in the supercovariant derivative
can always be taken as the momentum of the superfield on which it acts.

The fermionic delta function §

The fermionic delta function can be defined as (see Appendix A) :

§2 ) =62 60 = 6> (1.2.12a)
54 (6) = 62 (9) 6@ (9) = 6%6° (1.2.12Db)
/d49 5 () = /d49 0600 = 1, (1.2.12¢)

where d*0 = d?0d%0. Using the symbol 615 for 15 = 6 — 0y and &1 for d19 = 6D (012) = 02,607, , one can
write

/d461 519 = /d402 612 = 1. (1.2.12d)
From the definitions of D, D and &, it follows that

sza (512 = —’DQ_OI; (512 (1213&)
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DY, 612 = =Dy 612 (1.2.13b)
DIfDIf (512 = D2—pD2—p (512 (12130)
DYDY 515 = Dy "D, T 612 (1.2.13d)

(See the Appendix B for a derivation.)
Finally, there are the relations

0= (512(512 = 512Da(512 = (512@@(512 = (512DD512 = (512@@512 = 512Da@@512 = 51275@7)1)(512 etc. (1214&)

while

§12DD DD613 = 16612 (1.2.14b)
512@@ DD(SH = 16(512 (12140)

To put it differently only the product of two D’s and two D’s between two d12s gives non-vanishing result.

1.3 Propagators

1.3.1 The propagator of chiral superfield

The main subject of the next sections will be the computation of correlation functions (in momentum space)
at one loop. The terms correlation functions, correlators, n-points functions and Green’s functions will be
used as synonyms to indicate the same object that is the functional integral given by is

<T¢y...bp >= N/[dqj] b1 .. e (1.3.1)

where ¢; = ¢(x;) is a generic field belonging to any representation of the Lorentz group and of a gauge group
G. S is the classical action for the field ¢ and N is a normalization constant. The symbol T indicates time
ordering and will be omitted below. In the correlator one could also introduce any composite operator O[¢]
build from elementary fields ¢. Usually, the classical action can be divided in a free part which is quadratic
in the fields and in an interaction part:

S = Sfree + 9Sint, (1.3.2)

where ¢ is a coupling constant. If ¢ << 1, one can treat S;y; as a perturbation and expand e*int in Taylor
series in (1.3.1)

- Nk ) +o0 . Nk
(Z]g') N/[dgb] gbl e ¢n (Slnt)k GZSfree = Z (Zg) < qbl e gbn (Slmg)k >f7“ee . (133)

k!
k=0

+oo
<hropn>=)
k=0

This allows to express the correlator in the interacting theory in terms of the correlators in the free theory.
The Wick theorem gives an algorithm to compute a free correlator, that is a correlator with the action of
the free theory (also named correlator at tree level), such as < ¢. .. qﬁSfm > free, - In fact a free correlator
is given by the sum of products of two-point free correlators, also called free propagators or contractions,
for example < ¢¢ > frec -

Since the free propagators are the building blocks of the correlators in perturbation theory, this section
will be devoted to the computation of the propagator of the chiral superfield < ®®f > free,» While the next
one to the propagator of the vector superfield < V'V >y.c.. A peculiarity of a supersymmetric theory is
that both the propagators of ® and V involve the fermionic delta function 6(¥(;2), while the propagators
of ® involves also the supercovariant derivative D.
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Functional derivatives in superspace

In a generic quantum field theory, a correlation function can be obtained from a generating functional by
functional differentiation. To do so in superspace, one needs to extend the definition of functional derivatives
also to superfields.

In the discussion the following notation will be used: the points 1 and 2 in superspace will be represented by
supercoordinates z; = (z1, 01, 6_?1) and zo = (z2, 02, 6_?2), while the integration measures are Az = d*x d20d2§,
dbz = d*x d?0 and d°z = d*zd?6.

A functional derivative for a vector superfield V(z) can be defined with these properties :

() =0 (=) =00 (@ —a)6 D (6r2) (1.3.4)
and _—
3 z2)
/ Casrey = (1.3.5)

The functional product j -V of two vector superfields V' and j is defined as

j-V= / d®2j(2)V (2). (1.3.6)

We shall use the symbols j or J(J) to denote the sources for the superfields in what follows. A source of a
vector superfield is a vector superfield and a source of a chiral (antichiral) superfield is a chiral (antichiral)
superfield.

Integration over all the superspace of a chiral superfield as integrand gives zero. Indeed eqgs.(1.2.2¢)-(1.2.2f)
and the chirality condition Dg® = 0(D,® = 0) imply that

1 _
/d8z<I>(z) = /dGzppcb =0 (1.3.7)
1
/d%@*(z) = —Z/dGE’DD(I)T =0. (1.3.8)

So if one has a chiral (antichiral) integrand, one needs to restrict the integration only over d®z(d®z).
Thus for chiral and antichiral superfields the functional product is defined as

J o= /d6zJ(z)<I>(z) (1.3.9)
Jhoat = / dSzJT(2)®1(2), (1.3.10)
with
6 5‘1’(2’2) .
/d 2 1 (1.3.11)
(2
/d%g;gi =1 (1.3.12)

From eq.(1.2.2e), one has that fd6zQ (—i)@g@gég(@ —2z1) = fdng58(zQ — z1) = 1 and similarly for the
case with [ d°z. Hence, the equations (1.3.11) and (1.3.12) are solved by:

Xl 1. - 1= =
5(1)223 _ _192925(8)(Z1 — ) = _11317315(8)(Z1 — ) (1.3.13a)
5T (2 1 1= =
FTE;; = _12921)25(8)(,21 —29) = —ZD1D15(8)(Z1 — 22) (1.3.13b)

where we have used eq.(B.1.5¢).
The presence of supercovariant derivatives in the propagator of chiral superfield is due to the presence
of DD and DD in the previous functional derivatives.
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To find a common formalism for chiral and vector superfields that allows to integrate the former over all
the superspace, one makes use of

DD DD = —160°® (1.3.14)
DDDDP' = —160° ' (1.3.15)

which are a consequence of (B.1.2i)-(B.1.2j). Let us introduce a set of projection operators II; = (I, 1o, I1_)
defined by 17

DDDD
DDDD
_ 1.3.16b
1602 ( )
D*DDD,  D,DDD%
= = 1.3.16
0 852 852 ( )

The form of IT; and II_ is motivated by eqgs.(1.3.14)-(1.3.15) which imply, if ® is a chiral superfield, that

I,e=>o 10 =af (1.3.17)

Moreover, if F is a generic superfield, I F is a chiral superfield since DgIl,F = 0 and similarly II_F
is an antichiral one.
From the D—algebra eqgs.(B.1.2), it follows that the operators II; satisfy

d mi=1 (1.3.18a)

This justifies the name of projectors. Using the chirality of both the superfield ® and its source J, eq.(1.3.9)
can be written as

DD DD DD .. DD
_ 6 _ 6 _ 6
J b = /d 2®I1, J = —/d z<I>—4 —482J = —/d e (@—462 J). (1.3.19)

Then, using again eq.(1.2.2e), one has

DD DD
J o= /JS@WJ: /d%(E@)J (1.3.20)

where the last equality is a consequence of the fact in eq.(1.3.19) one could apply the operator I1; to ®
instead of J1®. Similarly for the antichiral superfields, one obtains

DD DD
— 3 — 8
Jh ot = /d 2 s T = /d (522" (1.3.21)

Generating Superfunctionals

An n-point correlation function of superfields V,® and ®' can be obtained by functional derivation from
the following superfunctional

Z[j, J,J1] = N/dVd(bd(I)T expi(S+j-V+J-d4J.0f), (1.3.22)

1-7the non local operator 1/8? is defined in such a way that (1/0%)g = f = g = d*f.
Partial superspace integrations such as eq.(1.2.4a) in general do not hold if the supercovariant derivatives are multiplied by the
non local operator 1/9°.

L-8here one cannot naively employ partial integration because of the presence of the non local operator 1/82: see footnote
(1.7).
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where j,J and J! are the sources of V,® and ®, N is a normalization constant and S is the action.
In fact from the definition (1.3.1), it follows that

i< TV (21) . V(2)®(2g1) - - P(2) T (2ing1) . BT (2) >=
" Z1j,J, J1] (1.3.23)
0j(z1) -+ 05(21)0T (2h41) - - - 0T (2 )T (2ims1) - 0T (2n) | = yi—g

The connected correlation functions < TV (z1)...V(2x)®(2ks1) .. P(20) T (2ims1) ... @T(2,) >c are
given by functional derivation of the superfunctional W

Wlj, J,J1 = —iln Z[j, J, JT), (1.3.24)
and then by evaluating it at j = J = JI =0

< TV (21) . V{(2)®(zhs1) - - P(2m) BT (2mg1) ... BT (20) >c=
S W3, J, JT] (1.3.25)
0j(z1) - 0j(2)0T (2h41) - - - 0 (2m) 0T T (2m1) - 0T (2n) |5 = yi—o

=1

The third important superfunctional I' is the generator of the one particle irreducible correlation functions
(1PI) and is the quantum analog of the classical action. 1PI Green’s functions derive their name from the
fact that they are associated to Feynman graphs that cannot be separated into two disconnected parts by
cutting only one internal line.

I" is obtained by a Legendre transformation. First, one defines the ’classical’ superfields i),(l;)T and V which
are solutions of the equations of motion

ow -
27t
6J "’

[«

W =W (1.3.26)

® :
7=

[«

Then one inverts these relations to obtain the expressions for J, J' and j in terms of i), T and V. After
substituting them in W, I is obtained from

r[®,of V)= Wi, V), J(®, o, V),J (2,0, V)] —j-V—-J-&—J o (1.3.27)
The 1PI Green’s functions are given by

<TV(z1) .. V(2)®(zt1) - - P(2m) BT (2img1) - .. BT (20) >1p1=
o'T[@, o, V] : (1.3.28)
6V (21) ... 0V (21)0® (2511 - - . 0B (200)0DT (21 - .. 6B (20) |6t —i—0

Since our goal is to find the free propagators, we need only to compute the free part of the generating
superfunctionals Zo[j, J, Jt] and Wy[j, J, JT]
Zolj, J,J1] = No / AV dPdD' expi(Stree + 5V +J- 0+ JT- 0) (1.3.29)
Wolj, J, JT] = —iln Zo[j, J, J'] (1.3.30)
where Sy, is the free part of the action which is quadratic in the superfields . From eq.(1.3.25) the free
propagator for the chiral superfield will be

§2Wo

f . 1.3.31
Z5J(21)5JT(22) j=J=Jt=0 ( )

< @(21)‘1)T(22) >C (free)= —
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Free two-points correlation functions

The free part of the action for a massless chiral superfield is simply Sfee = [ d®2®(2)®7(2) (cf. egs.(1.1.28)-
(1.1.29) with all the couplings equal to zero (h; = mi; = A\ijjr = g = 0) and neglecting the terms which
contain the vector superfields).

This leads to

ZolJ, 1] = No/dcpdqﬂ expi{® - ®+J - &+ 7. 5T}

= No/dcbcl@T expi{ /dgz[@T(zﬂ)(z) + @(z)f—;;](z) + @T(z)f—;;ﬁ(z)} }

o favavtespa{ [:[Sot 010) (0 1) () + (o o) (FEI)])

19?

In the second step has been made use of egs.(1.3.20)-(1.3.21) which allow to express all the integrals as
full superspace integrals [ d®z. In the last one, a matrix notation has been employed. To solve the gaussian
integral in eq.(1.3.32), one can use the identity

/dml ..dzy expi{%?TA? +z7. 7} = cexp{—%?TAA?} (1.3.33)

where 7 and 7 are n—dimensional vectors, A is a symmetric n X n matrix with nonzero determinant and
c is a constant independent on y; . In our case

(0 1
A=A _(1 0), (1.3.34)

thus eq.(1.3.32) becomes
i85 (DD DD 1t A1
12/ (2) ')

= 7,[0,0] exp{ - % /d%é (%JT(Z’)) g—?J(z)}

where J and DD(9?)~1JT are chiral superfields, while J f and DD(9%)~1J are antichiral ones. In eq.(1.3.35)
one can shift the nonlocal operator DD/d? from one factor to the other one, as in eq.(1.3.21) (see also
footnote (1.7)). Thus one can reconstruct the projector II; and from eq.(1.3.17) it follows that

NN

. o %J(z)
ZolJ, J1] = Z,]0,0] exp { — }

(1.3.35)

2. "] = Z0[0.0] exp / dsz[JT(z)a—lQJ(z)] L (1.3.36)

The functional derivatives 6.J(22)/6.J(21) and §J7(2)/6J7(21) are (cf. eqs.(1.3.13) )

5J(2’2) 1 - - 8

= —-D1D10°(z1 — 22),
6J(z) 4 ' (21 = 22) (1337)
0(=) _ g p 8%(21 — 22) h
I R S

Hence, substituting the eq.(1.3.36) obtained for Zj in eq.(1.3.31), the expression of the propagator of the
chiral superfield is

82WolJ, J1] 62 In Zo[J, J1]
< P(z T (2 >,~eez—i—’ =7
R MEZIEMT(@) Jesicg  O(20T1(z2) J=Ji=0, (1.3.38)
__iDDDDig
16 02 e
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where the last step follows by partial integration of the operator DD and by eq.(B.1.5¢). In momentum
space eq.(1.3.38) becomes

< ‘I’(pl, 01, él)@T(—pl, (92, 52) >free: #}92 1511)1@11)11)}1)17311)15(4)(012) (1.3.39)
1
P1
—(—
1 « 9

where p; is the ingoing momentum corresponding to the superspace point z; of the chiral superfield ®(zy).
In the picture above, the convention for the direction of the arrows of the fields is that in a point with a
chiral (antichiral) superfield one has an inward (outward) arrow.

The application of the supercovariant derivatives on §(% (012) = 0%,6%, in eq.(1.3.39) using the formulae in
the Appendix A gives an alternative form for the chiral propagator

_ - ) ) ~ T o= ) ~ 1 o 21 ~
< ®(p1,61,00)27(=p1,602,02) > free= — — —p1u010"01 + 0307 — — 1020102 + —0305 + =5 p1,010"05
pi P 4 P 4 p1

e i o o o .
— 070,05 — i036,0 + 16702 + I?pmplyalaﬂalaza"az - thﬂla”@lﬂgﬁg - meaza“aza%ef - §p1“920“919%9§
1

i -
+ 070303
(1.3.40)

From the propagator of the chiral superfield one can derive the propagator of its component fields, such
as < ¢(p1)¢*(—p1) >, or two point mixed correlators between a chiral superfield and its components, such
as < ¢(p1)®T(—p1,02,0) >.

The component fields ¢, and F and their complex conjugates can be obtained from @(CDT) by differentiation
in A and then by evaluating at # =0 =0

¢(p1) = ®(p1,061,061) - (1.3.41a)
Ya(p1) = %8104‘1)(171,91,‘91) bfico %Dﬁl@(pl"gl,el) oo (1.3.41Db)
F(p1) = ialal‘l’(pl,@l,él) b1Bid —ipflplfl‘b(ph@h@) R (1.3.41c)
¢*(p1) = @' (p1,61,01) oo (1.3.41d)
Ya(p1) = —%31a<1ﬂ(p1,91,91)‘660 = %@ﬁ@(m,@h@l)‘ee (1.3.41e)
F*(p1) = 35151@(191,01,91) oo —i@’f@?@*(pl,@l,%) )0 (1.3.41f)

In egs.(1.3.41) the Grassmanian derivatives J,(0,) can be substituted with the supercovariant derivatives
D, (D), because one is evaluating at # = § = 0. The introduction of the superderivatives again allows the
use of the D—algebra. We will call egs.(1.3.41) projection.
From eqs.(1.3.41) and from the expression for the chiral propagator (1.3.39) or (1.3.40) one has

< d(p1)d" (=p1) > free =< ®(p1,01,01) D7 (—p1,02,02) > free _ _
0120, =05—0>—0
7
S (1.3.422)
b1

1
< ¢a(p1)¢a(—P1) > free = Ppmdgd (1.3.42b)
1
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< F(pl)F*(_pl) >f7“ee =1 (1.3.420)

and

< ¢(p1)®T (—p1,02,02) > =< ®(p1,01,01)PT (—p1,09,02) > free _

01=01=0
sy + L0202 (1.3.43a)
iop " 4
o i iy
< @(p1,00,00),6"(=p1) > = 5 = 5pibi0"b + 10167 (1.3.43b)
1 1

Until now the correlators of the component fields have been derived from the correlators of the superfields.
But one could proceed in the opposite direction and construct the propagator of the chiral superfield from
the propagators of the component fields [18]. The latter can be computed by expanding in components the
free part of the action for chiral superfields which after neglecting surface terms is

Stree = / 2281 (2)®(2) = / d*z (ipo” 0, — ¢*0,0"¢ + F*F). (1.3.44)

By inverting these kinetic terms, one can obtain the component propagators (1.3.42). Then, the propagator
of the chiral superfield is obtained by substituting in < ®(p, 61, 0;)®T(—p, 6,02 > the expansions (C.0.3)-
(C.0.4) of ®(p,H,0) and ®(p,H,0) and the expressions of the component propagators.

There exists a third form for the chiral propagator:

< ®(p1,01,01)® (—p1, 02,02 > pree= ]%GXP ( — p1 (010701 + O20"05 — 2910“§2)> (1.3.45)
1

One can verify that the Taylor expansion of eq.(1.3.45) coincides with eq.(1.3.40).

1.3.2 The propagators of vector and superghosts superfields

In this section the expressions for the propagators of the vector V and of the ghost superfields will be
obtained. Before dealing with the quantization of super Yang-Mills(SYM) theories, let us briefly review the
case of ordinary Yang-Mills(YM) theories using the Faddeev-Popov method.

An infinitesimal gauge transformation is given by

SALY = A%Y — A% = 9w — g fapcALw"
or
0Ay = Ap — Ay = 0w +ig[Ay, wl, (1.3.46)

where w(z) = w®(x)T* is an element of the gauge algebra and A, (z) = Aj(z)T*
The YM action is gauge invariant by construction Ssya(A4,) = Ssym(4y), hence the naive expression for
the path integral

Z = /dAM expiSYM (1.3.47)

is not well defined because the integration is extended over all A,’s, even those related by gauge transfor-
mation. Another related problem is that the kinetic (quadratic) operator is not invertible over the set of all
field configurations so that the propagator, needed for doing perturbation theory, cannot be defined unless
one restricts this set, summing over a guage family only once.

To this end, one can introduce a guage invariant functional integral over the gauge group Ag(A4,), also
called Faddeev-Popov determinant

Bg(a,) = [ dwdlgaz) - £ (o) (13.49)
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where dw is the Haar measure with the property that under a change of variables from w — w” = W'w, it
remains invariant dw” = dw, G(A,) = G*(A,)T* is a guage variant function of A, while f(z) = f%(x)T°
a field independent function. Introducing in the functional integral a factor 1 = A;Ag leads to

7 = N/dAM Agl/dw S[G(AL) — flexp(iSy ) (1.3.49)

One can make a change of variables, i.e. a gauge transformation from A, to A%, under which dA, = dAj.

From the gauge invariance of Ag and of the action and after renaming the varlable of integration back to
A, the result is

7Z = N/dAM Agl/dw 5[G(A,) — flexp(iSy um) (1.3.50)

The integrand is independent of w and the integral in dw gives an (infinite) constant which can be absorbed
in the normalization N. Therefore Z can be written as

7 = N/dAM AG'O[G(AL) — flexp (iSy ) (1.3.51)

By construction Z is independent on both f and G , so one can average Z over f by introducing another
factor 1 in the functional integral in the form 19

1=N /df exp ( - /d4xTrf2>, (1.3.52)
aTR
where o is a parameter. By using §(G(A,,) — f)) for the integration in df, one arrives at
7 — N/dAM AG! expi(SYM n SGF) (1.3.53)
where the constant N has absorbed N' and the gauge-fixing part Sgr of the action is

Sar = L T [G(A))? (1.3.54)

TR

Finally, expressing Ag Lin eq.(1.3.53) as a functional integral produces a new term in the action. This can
be done by manipulating the — function of eq.(1.3.48). The gauge group can be parametrized by a gauge
parameter w(z) in such a way that G(A%) = f(z) for w = 0. Then "1

Ag(A,) :/dwa[g(A;j)—f] :/dw (det g—g)_la(w) :/dw5<§—gw)

w
/dwdw exp [ Tr (w’ g—gwﬂ,

where we have used the generalization to infinite dimensional spaces of the identities involving §— functions
in finite dimension ones L1 Tn the last equation § 5g has to be evaluated at w = 0 because of the presence
of 6(w). To obtain Ag ! it is enough to replace w® and w'® by the Grassmann fields ¢?(x) and c'%(z) called
ghost fields. So one arrlves at

(1.3.55)

ZJ] = /dAu eXPi<SYM + Sar + San + z’/d‘*xJ;‘Az). (1.3.56)

195ee for the definition of Tr eq(1.1.17)
110 Here a compact notation has been used. 5—9 stands for a matrix of functional derivatives

functional product [ d*y ‘;i Ex))wb(y) and - Trw w stands for [ d*zd'yw'®(z )gizgz;wb(y)

L-1Tn the second step of eq.(1.3.55) has been made use of the generalization of the identity 5(?(7)) =>. 6(?7?T)/| det %ﬁ— E
J

g% (=) g

5wb(y)’ s.w stands for the

where T, is a zero of ?(?) which is a function from RY to R™. The third step follows from the generalization of the identity
involving the vector ? and a matrix A: J(A?) = 6 /‘ det A‘ The last step is the generalization of the integral representation

of the §— function: 5 fd? exp(t e 7). In eq.(1.3.55) the role of Z is played by w’ and of e by £ 5—w
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where a term with sources has been included and the action for the ghosts Syt is given by

6G° ()
5 (y) Sy) (1.3.57)

1 0

Sgun = —Tr (cT—gc) = /d4x d*yc'(z)
™R ow

with ¢(x) = ¢*(z)T* and similarly for cf(z).

This discussion can be generalized to superspace. It is sufficient to consider only the pure super Yang-Mills

part of the action (1.1.29):

1

Seym = ——n
SYM ™ 19842 1g

Tr[/d‘ﬁzwawa + /d62WdW‘j‘] (1.3.58)
The two integrals in eq.(1.3.58) are equal to each other up to the surface term TretF7 [ d4xFWFpU tlr_la:c
can be neglected. Then, from the definition (1.1.26) of W,,, after integration by parts of the operator DD
and using eq.(1.2.2e), it follows that

1 1 _ _
Ssvm = g / d6zTr<WaWa> = o1z / d52Tr (DDegVDaegV> (DDegVDaegV>
9°TR 9°TR

i (1.3.59)
_ / @5 2Tr (e 9V DV ) DD (¢ Doet )
16g%27R

From the definition of the Lie derivative eq.(1.1.25), one can prove the relation e“XY = eXYe ™ by
expanding the exponentials. This allows to write the term e~YD,e" as power series in gV’

(679 DyedV) = [e £V D,] - 1

= (D + [V, Da] + 5 [~gV; [-gV Dal] + 51 [-gV gV, =gV, D] +--+) 1

L R (DaV). V], V] + - (1.3.60)

1
= gD,V + 592[(%‘/), VI+ 59

Note that in the first two lines D, acts on all the terms on its right. The third line, where D, acts only on
V, is obtained by developing the expression in the second line.

Thus, inserting the expansion (1.3.60) in eq.(1.3.59) and integrating by parts, one can read the various terms
in powers of V. The part quadratic in V', which is of zeroth order in g, is given by:

@ 1 g _ 1
Seyar = T6rm /dSzTr(VD DDD,V) = ﬁ/d%Tr(VHOOQV), (1.3.61)

where Ilj is defined in eq.(1.3.16) . In terms of V¢, Sg))/M has the form

1
S, = 5 / d®2VT1,0% V. (1.3.62)

The operator 9°I1j is not invertible because it annihilates the chiral and the antichiral parts of V, that is
I1,V and II_V, by applying the orthogonality of the projectors cf.(1.3.18). As in YM theory, it is necessary
to introduce a gauge-fixing term to have a quadratic kinetic operator that is invertible in order to derive a
propagator.

In SYM theory a gauge transformation (1.1.20) of the vector superfield involves two gauge functions which
are two superfields with opposite chirality A(z) and Af(z). Hence, two gauge fixing superfunctions C(V4)
and KT(V2), one chiral and the other antichiral , have to be introduced so as to define the Faddeev-Popov
superdeterminant

A = / dAdAT S[C(VA) = F(2)]0[KT (VA — £1]. (1.3.63)
Introducing a factor of 1 = A,ElA;C in the naive expression for the functional integral
20 = N / AV expi(Ssyar) (1.3.64)
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gives

Z0]=N / dVexpi(SSYM) At / dAdATS[IC(VA) = f(2)]SIKT (VD) — f1(2)]. (1.3.65)
A convenient choice for (V) and (V) is

KWV) = —i@@V(z), Ki(v) = —iDDV(z). (1.3.66)

Moreover, as in the YM case, averaging over f and fT with the weighting factor

/ dfdft exp ( — é / 42 Trff(2) f(z)) (1.3.67)
leads to
20/ =N [ avexpi(Ssvan + Sar) Ag, (1.3.68)
where )
SaF =~ fgor / &8 2Tr(DDVDDV) = e / dSzTr(V{ﬁﬁ,DD}V>. (1.3.69)

The second equality follows by partial integration and ciclicity of the trace. The sum of eq.(1.3.61) and
eq.(1.3.69), both quadratic in V, gives:

1 1 1 = =
Sg),M +Sap = % a8z Tr[V@QV + 16 (1 - E> V{DD’DD}V} (1.3.70)

where eq.(B.1.2k) has been used.

Choosing o = 1 makes the terms with fourth order derivatives vanish and hence there is no term of the
form k—14 in the vector propagator which would lead to an infrared divergence even off-shell. This is called
the (supersymmetric) Fermi-Feynman gauge (SFF). Thus, one can write

1 1
S + SEFT = pr /dgz Te(VO*V) = 5 /dgz VegRve, (1.3.71)

Including a source term, the free generating superfunctional for V is
1 1

Zo[3] = Zo[0] /dvexpz'(Sg2}M+S§§F+T—Tr(j-V)> - /dVexpi(/dSZ§Va(z)82va(z)—i—j“(z)V“(z)).
R

(1.3.72)
After performing the Gaussian integral by means of eq.(1.3.33), one has for Wy[j] = —iln Zy[j] the result:

1 1
GSFF _ 8, :
Wolj] =-3 /d 23“823“. (1.3.73)
Hence the two point connected Green’s function is
62 Wolj]

= L5050 (2 — ). (1.3.74)

< Ve Vb > free= —l oS =
(21) (ZQ) f 15'7@(21)5'717(22) 92

In momentum space eq.(1.3.74) becomes

< V“(pl,Hl,0_1)V”(—p1,62,§2) >= —1%5‘1[)(5(4)(012) (1.3.75)
1
b1
0 b

VNVNVNVVVVV
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As already done for the chiral superfield (cf. 1.3.41), one can obtain the component fields of vector superfield
by applying an appropriate 6 derivative on the expression (1.1.13) of V. For example

1_- . _ 1 - . _
A (py) = 551(5131(15”&&‘/&(?, 61,61) g0 —§D1a91a5”aava(p, 61,61)
1=V1=

(1.3.76)

91:91:0.
From this kind of projection one can get the propagator for the component fields (cf. 1.3.42)

1 _ _ B
< A (p1) A% (=p1) > free = Zgﬂaagl/ﬁﬁamamazgaw < V(p1,01,00)V°(—p1, 602,02 > free
21

01=0,=05=05=0

_ ——77””(5(1[).
P
(1.3.77)
Also, mixed correlators (cf. 1.3.43) can be derived
_ 1- . _ _ 21
< A" (p1)VP(=p1, 02,02 > free= 551a31a5”w < Vp1,01,01)V°(=p1,02,0) > pree b0 = —])—920”92
1=V1=
(1.3.78)

What remains to do is to find an expression for A,El . One can replace the two 0— functions in eq.(1.3.63)
by the integral representations eq.(1.3.55), introducing the chiral and antichiral parameters A’ and A’f

K AT and 5ICTA+ JICTA

respectively. Repeating the steps leading to eq.(1.3.55) w1th w replaced by 2 SK A—I— AT SAT

one can write 112

_ FaA A exo [ [ g (0K, 0K /6— (KT L KT
Ax(V) /dAdAdAdA expTR[/dzTr<A(5AA+5MA> 4+ [ dfzTr (A <5AA (WA)

(1.3.80)
To obtain A,El, the parameters A and A’ have to be replaced by the anticommuting chiral ghost fields C(z)
and iA(z) where C(z) = C%(2)T*, A(z) = A%(2)T* and the ”i” in front of A(z) is a convention.
Thus

ARl = / dCdAdCTdAT esz(SGH) (1.3.81)
where
1 5K . 0K skt 6K
_ 1 oK i i OKT
San = — [Tr(A(MC 5ATC)> r<A (Mc 5ATC>>} (1.3.82)

As in the YM case, the functional derivatives 6K /A and 6K /SAT have to be evaluated at A = AT = 0.
Thus, in C(VA), £T(V2) and in the expression of 6V (see eq.(1.1.22)), only terms linear in A(AT) have to
be kept

KA = —i@@VA - _i@@

1 1 AN A~
KH(V) = DDV = —2DD (v +H(V)A + HT(V)AT>,

/N

V+HWV)A+ ﬁT(V)AT>

ScH becomes

Ser = — [ d®2Tr [A AWV)C + AOT(V)CT — ATH(V)C - ATﬁT(V)CT}. (1.3.83)
™R

1-12Here %Tr (A'%A) stands for [d®zd®z’ A'*(z )gfb(iz,)) Ab(2') and similarly for the other integrals. The terms inside the

parenthesis multiplying A’ are chiral, while those multiplying A’f are antichiral.
If O is a matrix with bosonic components and M, M2 are two column vectors then

/dMldMg exp (M{OM,)  (det0)° (1.3.79)

. . . L . . N A

where a is —1 or +1 if the components of M7, M> are bosonic or fermionic respectively. In this case M1 = AT ) M> = AT
Sk SK
and O = <5§é\f g/@)
A AT
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From eq.(1.1.24), Sy can be written more compactly as
&m_——/f ) Lap [CF 4+ coth L, (€1 4] (1.3.84)

Substituting the expressions (1.1.23) for H(V) and H'(V) in eq.(1.3.83) and keeping only the linear and
quadratic terms in V gives

ScH :—/dSzTr ATC+ACT+ g(A — AV, C+CT+ 12 204t — A)[V, [V,C—CT]]+O(V4)>, (1.3.85)

where the chiral and antichiral terms AC and ATCT vanish because the integration is over the full superspace
i d®z. The free generating superfunctional for superghosts with source terms is

Zoln.n',nT, 0T = /dC’dCTdAdAJr expz{SfTee[C A, CT, AT]-i— Tr(n C+n-A+CT-nT 4 ATy )} (1.3.86)

where
[ — /dSzTr<ATC +Act), (1.3.87)
™R
ncz/fm@m@,cTn—/fmm)() (1.3.88)

and similarly for A, AT, 5,7/t Following the same steps as for the propagator of chiral superfield one finds
Wo f N L T 1.3.89
[, ' ") = g —n' g (1.3.89)

By functional differentiation of eq.(1.3.89) with respect to the sources of the superghosts, one can obtain
for the propagators of the superghosts

_ _ i o
< C%(p1,01,01) AT (=p1,02,02) > prec= Waab DI DDY DY W (6) (1.3.90)
1
P
[ A—
ce e, ATO
1 2
< A%p1,01,0,)CT(=p1,02,02) > pree= — Fé“b DY DI DD 54 (4, (1.3.91)
P
[ A—
A o /1o
1 2

Let us stress the minus sign in the propagator < ACT > with respect to the propagator < CA" > and to
the propagator of the chiral superfield (1.3.39).

1.4 Interaction vertices
The complete action containing the ghost, gauge and matter superfields is given by:
Stor = Ssyu + SEEE + Sar + Swar (1.4.1)
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Expanding the sum of the super Yang-Mills part of the action Sgy s and the gauge-fixing term ng;F in the
super-Feynman guage (SF'F) up to the fifth order in V' gives

1 3

1 2
Ssyar + SE5F = — / d8zTr(§V62V + SV V. DV = SV VLIV, Do VI + LV V[V, V. D VI + O(V

- 5!
(1.4.2)

By substituting V' = VT in eq.(1.4.2) and using eqgs.(1.1.17), one obtains the self interaction vertices for
V® with explicit color indices

Val V(LQ
Vs
Sé?;)/M = _116 gfd1a2a3 /d8z<DDDava1) (DQVGQ)VGS' (143)
ve Ve
Vs Ve

S§va1 = 9° Farazb foasas / dz [6—14 (verpeves) (DD(veD,ve)) - % (ver (peves)ves ) (DDD, v )|

= 9° farash foasas / d®z [ﬁ (DDDoVer vy (D v ) - 3—12 (Dve)ve (Dapav™ ) DoV
+ é (pver)ve (Daves ) DDV

(1.4.4)
For the quintic vertex see Appendix D.

The interaction terms between the vector superfield and the superghosts is

] ree 1 1 1
Sty = San — SEF = %/dSzTr(§g(AT—A)[MC+CT]+Eg2(AT—A)[V, [V,C—CT]]+O(V4)) (1.4.5)

In terms of V¢, C% etc.. the V-ghost-ghost vertices are given by

Ve Ve Ve Ve
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Sg])-] — %falagag /dSZ[ — Amyaz(ras _ Aa1y/a2 CTas + ATm Vazoes 4+ ATa1 Va2 CTag (1.4.6)

while the V2-ghost-ghost vertices are

Vos 1o Ve Vs

2
Sgl) = % fa1a2bfa3a4b / dSZ (Aal Vaeyasce - AMye2y/as CT(M — ATal Vaeryesgas + Ale yaezyas CT(M) .

(1.4.7)
Since coth is an odd function, eq.(1.3.84) implies that the only (symbolically written) vertex AVPC, where
p is odd, different from zero is when p = 1.

Finally, if the chiral superfields belong to the representation R of the gauge group with type index ¢ and
also have flavor indices I, Spsar is

Syar = / d®2®f [ (e¥ )i + / A2V (®; 1) + / d®zwWi (@] ) (1.4.8)

where W is the superpotential (see eq.(1.1.28)).
The interaction terms between the matter and gauge superfields is

Sz‘(i’v) = /d8z<1>3,1 [(ev)zj - 5ij] D, 7. (1.4.9)

The gauge-matter vertex at order g is

A
A

Sy ® = g/dgz (I)I7I(Ta)ij¢’j,lva- (1.4.10)

where T are the generators of the gauge group. The gauge-matter vertex at order g2 is

2
2 g
oy L= 5 /dgz ‘I)I,I(Ta)ik(Tb)kj o, VeVL, (1.4.11)
The self interaction vertex for the matter superfield is given by the cubic part of W(W?):
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1 o 1 o _
se = a,\{]{f(/dﬁz i) ph = gA{J{f/dgz L7 o 52(0). (1.4.12)

fi
®;

; k
SN

1 L 1 oL
Sy = TR / dzoliol et — SR / 2ol ool 5%(0), (1.4.13)

IJK
ijk

Let us note that in the gauge-matter vertices there is always an ingoing chiral line and an outgoing
antichiral line. Instead in the gauge-ghost vertices the two lines can both be chiral or antichiral.

where the constants A have to be invariant both under the gauge group and the flavor group.

1.5 Improved super-Feynman rules

The form of the superpropagator and the interactions terms discussed above correspond to the original
conventions of [7] and [8].

A modified set of super-Feynman rules was proposed in [19] and leads to a considerable simplification for
chiral superfields. These new conventions adopt for all the superpropagators the expression +idjo/p? and
associate an integral over [ d*0 to all the vertices.

In fact one can move the factors —i@@ and —iDD in (1.3.13) from the chiral superpropagator, which now
assumes the form

i

<2(p)2(-p) >= =, (1.5.1)

to the vertices for each chiral (or antichiral) superfield. Symbolically we have

3 _
—iDzDQ p2 _iplpl

2

—_

In the presence of a ®3 (or ®T3) vertex this rule has to be additionally modified in order to convert [ d*¢
(or [d?@) into [ d*0 . In fact, let us consider the part of a superdiagram involving a chiral vertex (in z4)
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The internal chiral lines ending in z4 give

iDyDyD1D1614 iDyDyDoD2doy ,iDyDyD3Dsdss
/ 0204 ) ( ) (

1.5.2
16p? 16p3 16(py + p2)? ) (1.5:2)

By partial integration of D4D, in the first factor since 154‘5‘@46'254"7 =0, eq.(1.5.2) becomes

DiDy iD1D1614 ,iDsDsDsD202s ,iDyDyDsDsd34
e e e T )] s)
4 4p7 16p3 16(p1 + p2)
Then, from eq.(1.2.2e), it follows that
.../d494( PPy ¢ Daooty 1) (1.5.4)
4pi 16p3 16(p1 + p2)

Thus, the result is that one of the three factors —i154154 has been absorbed to convert f d?6, in f d*6,.
A similar discussion is valid for the ®f3 vertex and a factor —iD4D4. Moreover, if one is computing
1PI diagrams for the effective action, an appropriate superfield is associated to each amputated external
line. If this external superfield is chiral (antichiral), one has to omit the factor —%@4@4 (—%D4D4) on the
corresponding amputated external line. We can summarize the so called improved super-Feynman rules for

the computation of the effective action as follows! 13
e for chiral superfields the propagator is < ®®T >= D12 for vectors superfields is < VV >= —%2
while for the super-ghosts < C A" >= 1153_122 and < ACT >= —Zg—g;

o [ d*0,e,¢ is associated to each vertex with an extra —i@@ (or jﬁDD ) for each internal chiral (or
antichiral) superfield. In a ®* ( ®¥) vertex one factor of —1DD (—1DD) has to be omitted for
converting [ d?0 ( [ d*@) into [ d6;

e an appropriate superfield must be associated to each external line. A factor —
be omitted at a vertex for each external chiral (antichiral) superfield;

1DD ( —1DD) has to

o f—(gf)kD is associated to each independent loop''* and 1L, % [(2#)45(4)(Zem pext)] for the

external momenta.

The improved super Feynman rules and the use of D— algebra are very useful if one has to compute the
effective action (or 1PI diagrams ) in superspace. In this case, the external lines have not the factor —%@@
( —iDD) with superderivatives. In fact the superderivatives have to be integrated by parts and this leads
to a rapid increase of the terms to compute.

Instead, the conventional super Feynman rules are more appropriate to the computation of reducible dia-
grams. In fact one can use the form (1.3.40) for the chiral propagator which has no explicit superderivatives.
Also, with this method, if one has to calculate Green’s functions with external component fields, one can

I13¢hese rules give a 1PI superdiagram. To obtain the corresponding term of the effective action I' an overall factor —i is
needed (see eq.(1.3.28) )
1'14f dPk indicates supersymmetric dimensional regularization (see below)

28



project on them from the beginning (see eq.(1.3.43)) without computing before the effective action in su-
perspace.

We have used the technique based on conventional super Feynman rules to obtain the results of chapter
(??7) after implementing it in a Maple program. Some of the super-diagrams are calculated also with the
improved Feynman rules and D—algebra to have a check of the correctness of the results.

1.6 Examples of computation in superspace
In this section we apply the formalism introduced before to compute some diagrams with external component

fields. The calculations will employ both the conventional and the improved super Feynman rules.
To simplify the notation we consider a single chiral superfield ® coupled to an abelian vector superfield

* 1 o
S = /dSzCI)T@—i—%/d6z<I>3—|—%/d%@—i—a(/dGzW‘lWa—i—/d%WdW‘l) +/d8z¢>TegV<I>. (1.6.1)

In the following discussion, ¢ indicates the scalar component of the chiral supermultiplet, while < ij >,
< ¢i>P, <ig¢* >Pand <ij P are shortcuts for < <I>(9i,c9i,p)<I>T(9j,¢9j,—p) >, < o(p)®T(0;,0;,—p) > ,
< ®(60;,0;,p)¢*(—p) > and < V(6;,0;,p)V(6;,60;,—p) > respectively.

1.6.1 < ¢¢" >1100p using the conventional Feynman rules

From the vertices of the lagrangian and by the Wick theorem , one can deduce that the super-diagrams
contributing to the amplitude < ¢p¢* >1100p are

— o Vb

We are neglecting diagrams with self-contractions inside a vertex such as

—
which corresponds to the self-contraction |®'VV®|. In fact in the Dyson formulation of S-matrix these
contributions are automatically neglected.

In momentum space the first superdiagram




gives (see appendix E for the symmetry factor)

|f|2 d?0,d0, A2k <1g* >P< 2 >P< 12 >E< 12 >8P (1.6.2)
(27-[-)D (b (b . U,

In the last expression, one has to substitute egs.(1.3.40)-(1.3.43). The terms containing 61 or O can
be neglected since chiral integrals [ d?6; and [ d?fy can be written as [ d%0; 6@ (6,) and [ d*0s 63 (6y)
respectively. Hence, the expression (1.6.2) becomes

yfy2 0, oz [ APk i i i i 2 i 2i WA L 022
d“0,d"0, @m)P (1?)(]?)(1{:2 kzk 010" 05 + 03 92)((/<:+p)2 — (k+p)2(k+p)”910 92+u91¢92).
(1.6.3)
The only terms that survive are those involving 6263
[fI? (i 2/2 2/de i oop (20)> 1 o0 25
—— = d?0,d%0y | ——= (1007 — ———— 0205k - (k 99 1.6.4
Making the integration, one obtains
iN2 /]S
() (5502 Buio) (165)
where "
d“k 1 1
B = — . 1.6.
0= | G 160
The second superdiagram is
% ¢

In momentum space it is equal to (see Appendix E for the symmetry factor)

dPk
g2/d491d402/W < 1¢* >P< ¢2 >P< 21 >3F< 21 STP (1.6.7)
s

The delta 012 in the correlator < 21 >k+p drops one the two 6 integrals. Hence, from eqs.(1.3.40)-(1.3.43),
one can write

de _. .
/d4«91/ as 2p“910 01+ — 9292)(p p2puc910 01 + 9%%(@)(%). (1.6.8)

Only terms involving §20? survive, giving

(]%)2 ( - g*p? Bo(p))- (1.6.9)
Thus the total result is
i 2
< ¢(p)¢" (=P) >1Loop= (P)Z(p2 Bo(p)) (% - 9%). (1.6.10)
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1.6.2 < ¢¢" >1100p using the improved Feynman rules

Using the improved Feynman rules, the same results can be reproduced but in a little more indirect way.
In fact, first the part of the effective action associated to a 1PI super-diagram is calculated. Thus, one has
an effective vertex I';,; as in eq.(1.3.3). After Wick contractions with the external component fields, one
obtains the result.

In the first superdiagram

we have indicated the factors —2DD(—1DD) on the internal lines and the external superfields ® (®7) on
the external lines. Thus, one has

fI2 r dPp dPk iS5 DkD-Fk PPk is
_%/(%)D (%)Dd4¢92d491qﬂ(—p,92)(k+1;)2 (-) 24 2 () 14 1k_122 D(p, 01) (1.6.11)

where according to our conventions the momentum label on the super-derivative at 1 is k, while that on the
super-derivative at 2 is —k, since the momentum & flows into vertex 1 and out of the vertex 2. The use of
D—algebra allows to express a term in the effective action as an integral over a single d*f. In fact, in our
case by the identity (B.2.7d), one can replace DD} by Dy *D;*; after applying the identity (B.2.7f), a &2
remains and it allows to eliminate a 6 integral giving

2 D
%/ (;ﬂ)pDBO(p)/d4‘9‘1’T(—P’9)<1>(P,9)- (1.6.12)

Wick contractions with the external ¢, ¢* finally give again (1.6.5).
As for the second super-diagram,

k+p

the associated part of the effective action is

d%p d"k —1012 Dy*Dyk  DEFDE s,
_g2/ @m)D (%)Dd492d401<1ﬂ(—p,02)(k+p)2 ((—) 2 - 2 () 14 1?>¢>(p,91). (1.6.13)

By the same steps as before, one obtains

D
¢ [ G5 B} (2,020 (0.01) (1.6.14)

and after Wick contractions, the result is eq.(1.6.9).
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1.6.3 Supersymmetric dimensional regularization

The integral (1.6.6) is logarithmically divergent, so it has to be regularized. Dimensional regularization does
not preserve supersymmetry, that is, it violates certain supersymmetric Ward identities. This is to due to
the fact that a necessary condition for supersymmetry is the equality of fermionic and bosonic degrees of
freedom. This equality in general is lost if the number of space-time dimensions is changed.

A modified version of dimensional regularization called dimensional reduction has been proposed to render
it compatible with SUSY [23]-[25]. In this regularization scheme the momentum integrals are D-dimensional
while the number of field components is kept fixed. Thus y—matrix algebra and D—algebra is done in
four dimensions, while loop momentum integrals are done in D—dimension. Even dimensional reduction
presents some problems related to the treatment of the Levi-Civita symbol €#*? when the number of loops
gets large(> 4) [26]. The question whether there exists a supersymmetric regularization scheme valid for
Super Yang-Mills theory to all orders in perturbation theory is open[25]

Another variant of dimensional regularization preserving supersymmetry is the four dimensional helicity
scheme[27]-[29]. As in dimensional reduction, in this scheme all external momenta and polarization vectors
are kept in four dimensions, only the loop momenta are continued to D dimensions.
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Chapter 2

Decomposition of one loop amplitudes

In the last years there has been a great progress in the computation of loop amplitudes by the so called
on shell (or unitarity) methods [46]-[52]. In this approach one reconstructs scattering amplitudes from
their singularities, which are determined by simpler (lower-point and lower loop) amplitudes. Hence all the
information is extracted from on-shell amplitudes, i.e with external physical states without using Feynman
diagrams (which require building blocks with off-shell states).

The power of these methods relies on the possibility to decompose loop amplitudes in a basis of known
integrals. In fact at one loop an amplitude can be reduced to a linear combination of integrals plus a
possible rational function. The coefficients multiplying the integrals can be determined only by the (branch
cut) singularities of the amplitude.

The computation of the remaining rational function R is more complicated. The presence of R is related
to the ultraviolet behavior of the theory under consideration. In fact, it is absent if the loop momentum
integrals of the amplitude satisfy a certain power counting criterion and in this case the amplitude is called
cut-constructible. This happens for the supersymmetric gauge theories which have an improved ultraviolet
behavior with respect to non-SUSY theories because of cancellation between bosons and fermions in the
loop.

In the first section of the chapter we present the notation and discuss a first decomposition of one loop
integrals based on Lorentz covariance. A brief review of ultraviolet and infrared divergences for loop integrals
is also given.

In the second section we discuss in detail the Passarino-Veltman method [42] to reduce one loop integrals
in a basis of known scalar integrals.

The third section deals with the power-counting criterion for the absence of the rational function R in the
decomposition. Moreover, there is a brief presentation of unitarity methods.

In section four we review the proof that gluon amplitudes in super Yang-Mills theories are cut-constructible.
In the last section we discuss another kind of decomposition for the amplitudes which deals with the color
factors and in fact is called color decomposition.

In this chapter we have followed closely [44] and [48].

2.1 One loop integrals

In the computation of one-loop amplitudes or correlation functions, one is faced with a Feynman diagram
with a given topology. For example, let us consider the diagram
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E+aq +q

i
—’—q2> + <

k+q

q1 dm—1
/ im
It corresponds to an integral of the form (the following discussion deals only with massless internal lines)

Pk P, (k)
CrPEk+q)(k+qa+e¢)?...(k+qa+q...¢m1)?

Inl, (k) = | (211)
where ¢;, ¢ = 1..m are the momenta or sums of the momenta of the external particles which are all assumed
to be incoming. Here m is the number of the interaction vertices (and of the internal propagators) in
the given topology and of the denominators in the integral. P, (k) is a polynomial of degree r in the loop
momentum k and is a tensor of rank r (for example for r = 2, P, (k) could be Py(k) = k*#k"). The dimension
of space-time is set to D = 4 — 2¢ to regularize the divergences of the integral (see the discussion below).
The integrals I,,,[P-(k)] or in short I}, are called m-point tensor integrals of rank r. In the case P,(k) =1,
the integrals I,,[1] or in short I,,, are called scalar integrals.

The loop momentum k* can be contracted with the external momenta and polarization vectors.

We will assume that the external vectors are purely four-dimensional as happens in dimensional reduction
and in the four dimensional helicity scheme ( see section (1.6.3) ). As we will show below, any amplitude
can be written as a linear combination of scalar integrals. In the limit € — 0, one needs to include scalar
integrals with up to four propagators

A loop = Z <C4;jl4;j + c3;il3,5 + CQ;jIQ;j) + R+ O(e), (2.1.2)
J

where the coefficients ¢y ;, c3 ;,c4; and R are rational functions of the kinematical invariants and are eval-
uated in D = 4, i.e. are independent on e¢. The symbol j specifies which combination of the external
momenta enters the scalar integral.

The function R is called the rational part of the decomposition and the scalar integrals Is, I3, I4 with two,
three and four propagators are named bubbles, triangles and boxes respectively.

The decomposition (2.1.2) reduces the calculation of any one-loop amplitude to the determination of both
the coefficients ¢y j, c3 j,c4; and the rational part R, since the analytic expressions of the scalar integrals
are known [30]-[33].
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In literature there is another notation for the scalar integrals I, I3, I4 which are indicated as By, Cy, Dy
respectively.2!  According to this alternative notation ( we will employ both the notations), the tensor
integrals up to four-point and rank-four ( which are relevant for the discussion below ) are denoted as

dPk 1,k kMEY

2m)P k2(k + p1)?’

dPk 1; k#s kREY; KRRV EP

(2m)P k2(k + p1)?(k + p1 + p2)?

dPk 1; k#s kREY KREVEP KPRV EPEY

(2m)P k2(k + p1)2(k + p1 + p2)*(k + p1 + p2 + p3)?

Using Lorentz symmetry, one can write the bubble tensor integrals B* and B*” as

B (p1) = p} b1 (p}), B" (p1) = n"boo(p1) + PP} bi1(p7). (2.1.7)

As in [44], we will refer to the coefficients by (p?), boo(p?), b11(p?) as forms factors or reduction coefficients.
Moreover, we will say that a form factor has m points and rank r if it is associated to an m point tensor
integral of rank r.

Similarly for the triangle tensors integrals, one has

By; B*; B* (p1) :/

Co O G, CH¥P (py, pg) = /

Dy; D*; D" DFP; DFPY(py, p2, p3) = / (2.1.6)

CH* =pler + phes
CH = coo + pipienr + phpheas + (Pph + phpY)crz

2
= n"coo + Z pl{upjy'}cij
i<j=1

2 2
CcHP = Zn{“” f}com + Z p;{“p?pg}cl-jk (2.1.8)
i=1 i<j<k=1
where the symbol {...} denotes completely symmetrization

pip =i, pipy! = plvh + Pt (2.1.9)

and we have omitted to indicate the dependence of the c—form factors on pi, ps. For the box tensors integrals
one has

3
D' =pidy + phdy + phds, D™ =ndoo+ Y P;{“P?}dz‘j

i<j=1
3 3
e =N oo+ > plpipl dige
i1 i<j<k=1
3 3
DR =t oo + U{”fop}}domj ++ > pl{“pﬁpipl”}dijkz, (2.1.10)
1<j=1 i<j<k<l=1

where the dependence of the d—form factors on p1, ps, p3 has not been indicated.

21 In dimensional regularization and in its variants, one can neglect the ’tadpole’ scalar integral, indicated in literature as Iy
or Ap, with a single massless internal propagator

d”k 1
Ap = —. 2.1.3
o= [ G 218)
In fact, requiring linearity, uniqueness of the result and analyticity in € forces a regulated Feynman integral with a scaleless
integrand
d’k 1
—_—— 2.1.4
| Gy (244

to vanish (see [80] and appendix A of [41]). For the same reason, the integrals
dPk 1; k" kK
2m)P k2(k + p1)?

Bo;B“;B”D(pl)Z/( (2.1.5)

with p? = 0 can be assumed to vanish. Infact, if p? = 0, after the Feynman parametrization these can be expressed as integrals
of the form (2.1.4).
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2.1.1 Divergences of the integrals
Ultraviolet divergences

The integrals I7, can have ultraviolet (UV) and/or infrared (IR) divergences.

As far as the UV divergences are concerned, from power counting one has that in four dimensions an integral
I7 is ultraviolet divergent only if the rank r is higher than r > 2m — 4. In a renormalizable quantum field
theory the highest rank r for an m point integral is » = m. Thus, in four dimensions for m > 5 an m point
integral is UV finite and the only UV divergent integrals are

(Ag), By, B*, B ,C CHP DI, (2.1.11)

while the scalar integrals Cy and Dg are UV finite .

There are various methods to regularize the UV divergences. One can introduce a cut-off A for the mo-
mentum of the virtual particles or use dimensional regularization by shifting the dimension of integration
to D = 4 — 2¢. In the former method, the divergences?? appear as powers of In A, in the latter one as poles
in 1/e, i.e. there is the correspondence In Ayy <> %

In a renormalizable theory at L loops, UV divergences give at most the pole 1/e” (or the power (In Agy)%).
Also, the cancellation of UV infinities requires renormalization of the parameters in the Lagrangian.

Infrared divergences

In presence of massless particles, the integrals I, can have also infrared divergences [36]-[40].

These arise in the integration over the phase-space when one computes the physical measurable cross section
and in the integration over the loop momentum when one computes the loop contributions to an amplitude.
The IR divergences in the phase-space are due to a configuration with an external (on shell) massless particle
which is soft, i.e. with vanishing momentum p* — 0, or with collinear massless external particles, i.e. with
proportional momenta p; o< p;. In a guage theory infrared divergences have an universal form [81]-[83].

As for the loop momentum integral, one can find IR divergences for example in a one-loop diagram with
internal massless propagators and at least one of the external particles which is on shell and massless. The
IR divergences arise in the region of integration over the loop momentum when a virtual particle is on-shell
and soft or collinear to an external massless particle.

In contrast to UV divergences, the IR ones don’t need renormalization, since in the computation of a phys-
ical cross section IR infinities coming from phase-space cancels those produced by loop integration [38]. If
one regularizes IR divergences by dimensional regularization, at one loop a purely soft or a purely collinear
virtual particle gives a pole 1/e, while a soft and collinear virtual particle gives a pole 1/€2. At L loops one
has at most a pole 1/€*. Dimensional regularization allows to keep the massless external particles on shell
and hence use the on-shell methods (see the introduction) for the computation of amplitudes.

In a massless gauge theory, an alternative regularization for IR infinities is obtained by giving a (small)
mass to the external particles, i.e. to consider them off-shell. This off-shell regularization allows to keep
the dimension of space-time equal to four (see section 3.2). In our results of chapter 3, we will use off-shell
regularization for the IR divergences.

The correspondence between poles in 1/e and powers of Inm? for IR infinities is the same as for UV ones,
ie. lnm%R e %

The scalar integrals with massless lines, which are relevant for the following discussion, can have IR diver-
gences as well. In fact the triangles Cjy and the boxes Dy with internal massless lines have IR divergences if
at least one of the external legs is massless, while are IR finite if all the external legs are massive. Note that
one has a 'massive’ leg , i.e. ¢> # 0, even in the case of more massless particles i1, 4p,etc... that converge at
the same vertex, since in this case the total inflowing momentum is ¢? = (p;, + ps, +...)2 # 0.

As for the bubble scalar integral By(p), it is IR divergent if p? = 0. In dimensional regularization this kind
of integral can be neglected (as the scalar tadpole Aj integral, see footnote 2.1 ).

In ref. [47], one can find the explicit expressions in dimensional regularization of the scalar integrals
By, Cy, Dy in the case where one or more of the external lines are massless. An expression of Cy and
Dy in the case where all the external lines are massive is given in [32]-[34].

22we are considering only logarithmic divergences and not power-law divergences
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2.2 Passarino-Veltman decomposition

There are various techniques [42]-[44] to reduce tensor integrals I’ to scalar integrals according to eq.(2.1.2).
We illustrate the technique developed by Passarino and Veltman [42] in the case of up to four point tensor
integrals, since as discussed below an m-point tensor integral with m > 4 can be reduced to these.

In particular, let’s consider C* in (2.1.6).

Contracting the Lorentz decomposition of C* in (2.1.8) with p; and ps one obtains

P1,C" = pY(pie1r + p1 - p2cia + coo) + Py (picia + p1 - p2caz),
P2, = p{ (p1 - p2 et + 3 c12) + p5 (1 - p2 iz + P3 c22 + coo)- (2.2.1)
Using the definition (2.1.6) of C*¥, the left-hand side of egs.(2.2.1) can be expressed as

p1,CH = / dk k-pLk”
K (2m)P k2(k + p1)%(k + p1 + p2)?
Pk k- py kY
o _ / 2.2.2
Pzu (2m)P k2(k + p1)?(k + p1 + p2)? ( )

The scalar products k - p; and k - p2 in the numerators can be written in terms of the denominators, which
are inverse Feynman propagators, by the identities

1
kepr= 5 ((k+p1)* =K —pi)
1
kepr =5 ((k+p +p2)? — (k+p1)? — p3 — 2p1 - pa). (2.2.3)

Shifting if necessary the variable of integration k& — k — p; to make always appear the term k2 in the
denominator, one can express the right-hand sides of (2.2.2) in terms of triangle tensors of rank one C*,
bubble tensors of rank one B* and the bubble scalar integral By. Then one uses the Lorentz decompositions
(2.1.7)-(2.1.8) to write B* and C* in terms of forms factors b; and ¢;.

Finally, equating the expressions multiplying p¥, p5 in egs.(2.2.1) with those obtained from egs.(2.2.2) after
these manipulations, one gets the linear algebraic systems

e C11 _ [161} GQ C12 _ [162} (2 9 4)
New )™ R[;” T e ) R[zcz} o
where, following the notation of [44], G2 is the 2 x 2 Gram matrix

2 .
< pl b1 2p2 >’ (225)

p1 P2 V%)

the constants terms R[fl}, R[Qd] are

Rgcl} = —(bi(p1 + p2) — Pici(p1, p2) + Bo(p2) — 2c00(p1, p2))

N~ N~

R = (b1(p1) — bi(p1 + p2) + (—p3 — 2p1 - p2)er(p1, p2)), (2.2.6)

while R[ld} , R[262] are

RID = (by(p1 + p2) — b (p2) — pPea(pr, p2)

N — DN

Rgd] = —( = bi(p1 + p2) + (—p3 — 2p1 - p2)ca(p1, p2) — 2c00(p1, p2)) (2.2.7)

In ref.[44], one can find the constants terms, like R[lcl}’ R[Qd],etc.., of the linear algebraic systems for all the
form factors up to four point and four rank.
Solving eqs.(2.2.4), one can write all ¢;; as a linear combination of cq, ¢;, b, By

Cij — €00, Cis by, Bo, (2.2.8)
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where the symbol — means that the term on the left is a linear combination of the terms on the right.
Let’s note that from eqs.(2.2.4) the coefficient c12 can be determined in two different ways. This gives a
check for the computation.

The form factors cgg, doo, doooo>> which multiply only 7"V tensors in eqgs.(2.1.8)-(2.1.10) have to be treated
in a little different way.

For example, to determine cgg, one contracts with n* the expression for C*” in eq.(2.1.6) and (2.1.8),
obtaining respectively (after shifting k& — k — p; in the integral of eq.(2.1.6))

77/“,0“” = Bo(pz), UW,C/W = DCOO +p%611 + 2p1 * P2 Ci12 +p5622. (2.2.9)

One can equate the right-hand sides of the two equations and note from the two systems in (2.2.4) that the

expression p2ci1 + 2p1 - p2 ¢12 + p3cae is the sum of R[fl] and R[QCQ]. Hence, using eqs.(2.2.6)-(2.2.7) one can

write

co0 = 72(1)1_ %) (Bo(m) — (= p3—2p1-p2) c2(p1,p2) + prca (p17P2)>- (2.2.10)

Note the presence of the dimension of the space-time D in the first factor of eq.(2.2.10).
All the form factors of the tensor integrals with m < 4 have been studied ([42],[44]).
One can write the reduction chain ( taken from [44])%4

dijkr — dooij, dijk, Cijks Cijs Ciy Cos
dooij — dijk, dij, Cij, Ci,
doooo — dooi> doo, oo,
dijr — dooi, dij, Cij, Cis
doo; — d;j,d;, c;, Co,
dij — doo, d;, c;, Co,
doo — d;, Dy, Co,

di — Do, Co,

Cijk — C00is Cij, bij, i,
Co0i — Cij» Ci, by, Bo,
Cij = €00, Cis by, Bo,

coo — ¢, Co, B,

c¢; — Co, Bo,

bij — boo, bl

boo — bi, Bo,

For the discussion on the rational part R below, it is important to note that the external vectors are assumed
to be purely four dimensional and consequently the contraction procedure just described does not introduce
an explicit dependence on the space-time dimension D in the reduction equations.

This explicit dependence on D (or €) comes from the contraction 7,, n**. So it appears in the equations
determining those forms factors in (2.1.6) which multiply at least one n*¥ tensor

D € boo, co0, c00i > doo, dooi» dooii » doo0o - (2.2.12)

Hence, from the reduction chain (2.2.11), one has that all the form factors of rank r > 2 are dependent on
D (or €), since in their reduction path there is at least one of the reduction coefficient of (2.2.12).
Also, for the form factors by (p1), b11(p1), and consequently for all the other form factors depending on them,

23the form factors with 'mixed’ indices, i.e. cooi, dooi, dooi; can be computed in both ways. The computation of b is trivial
24Unlike our discussion, in [44] the internal propagators are supposed to be massive
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one has to distinguish the case p? = 0 from the case p? # 0. In the case p? # 0, which is relevant for the off
shell amplitudes of chapter 3, they can be written as (see appendix A of [44])

bi(p1) = —%Bo(m)7 bii(p1) = 1LBO(}%), (2.2.13)

4D —1
while, in the case p? = 0, they vanish (see footnote 2.1).
Following the reduction chain (2.2.11), finally one can express all the form factors for m < 4 as linear
combination of By, Cy, Dy.

boo, b11,b1 — By

Ci» €005 Cij» Co0i» Cijk — Co, Bo

d;, doo — Do, Co

d;j, dooi, dijk, doooo, dooij, dijki — Do, Co, Bo. (2.2.14)
(2.2.15)

In particular, all the form factors in (2.2.12) are reduced to a linear combination of scalar integrals multiplied
by a coefficient depending on D, for example by is

boo(p) = — p*Bo(p) (2.2.16)

4D —1)

Another important consideration is that even if the form factors ¢;, d;;, d;ji, doo; are UV finite, in their
decomposition there is By which is UV divergent. Thus expanding in powers of € the By’s?® present in the
reduction, the sum of all the UV poles 1/¢ has to give zero. This happens if the sum of all the coefficients
multiplying the By’s in the decomposition vanishes.

The discussion above can be easily generalized to the case of an m-point tensor integral with m > 4. In
fact, one can express the form factors of an m point tensor integral of rank 7 in terms of those associated
to an m point integral of rank r — 1 and of those associated to m — 1 point integrals of rank r — 1 or
less. Thus, the iteration of this procedure reduces an m—point tensor integral with m > 4 to box tensor
integrals (m = 4) and scalar m point integrals. As shown above, tensor integrals with m < 4 can be reduced
to bubble, triangle and box scalar integrals. Finally, as proven in [43],[45], if one neglects, in dimensional
regularization, terms of order ¢, scalar integrals with m > 4 can be reduced to box integrals, i.e.

Im = cajlaj+O0(e), m>4. (2.2.18)

2.3 Rational parts and cut constructibility

From the considerations above, it follows that any one-loop amplitude can be decomposed as follows

Attoop =) (04;j(€)f4;j + c3ij(€) sy + C2;j(€)f2;j) +0(e), (2.3.1)
J

where the coefficients of eq.(2.3.1) depend on e unlike the coefficients of eq.(2.1.2) which can be read as
Cg;j(€)|€:0 = C25, etc...
Rational terms, which are related to ultraviolet singularities, arise if one expands the coefficients of eq.(2.3.1)
in e. In fact, terms of order O(¢) cancel the UV poles 1/e giving a finite result?S.
For an amplitude with massless internal propagators, the only UV divergent scalar integral is By (in the
massive case there is also the tadpole integral Ag). Therefore, in order to have a rational part R, the
decomposition of a tensor integral has to contain terms of the form

eBy(p) =1+ O(e). (2.3.2)

25 Tn dimensional regularization By is [47]
1
Bo(p) =~ —Inp"+2-7, (2.2.17)

where «y is the Euler’s constant.
Z6here UV divergence are assumed to be regularized by dimensional regularization while IR divergence by off-shell regular-
ization
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Let us consider first the case of bubble, triangle and box tensor integrals (m < 4). From the previous
discussion, one can conclude that the tensor integrals of rank r» < 2 have R = 0, since all their form factors
are independent of e.

From (2.2.12), (2.2.14) and from the consideration after eq.(2.2.14), it follows that all the reduction coef-
ficients boo, co0, €005 d00i, dooiis doooo contain €By(p). Thus, B, CH CHP DFPY which are UV divergent
and D*P_ which is UV finite, have R # 0 because have one of these form factors. For example

2

oV Ny
B/u/(p): (p p _77 p

3 12 )Bo(p) THES (p“p” —n" pz) + O(e). (2.3.3)

18

On the contrary, D has R = 0, because the dependence on e of its form factors d;; is due to dpp which
does not contain By. Thus, by direct inspection, one has that for m point integrals with m < 4, if the rank
r is r < m — 2 then their decomposition has not rational parts. The only exception to this rule is for r =1
and m = 2, i.e. for B*, which is UV divergent. In fact, its form factor b; is independent on € and so R = 0.
So one can summarize the condition to have R = 0 as

r < max{m —2,1}. (2.3.4)

Higher point-integrals (m > 4) in four dimension are all ultraviolet finite. Also, the Passarino-Veltman
reduction maintains the difference m — r, since at each step the most ultraviolet-singular term has both m
and r reduced by one unit with respect to the previous step. Hence, their reduction path cannot generate
a rational part if the rank is 7 < m — 2 as stated in (2.3.4). .

Unitarity methods

The importance of having a decomposition (2.1.2) with R = 0 is related to the possibility to construct an
amplitude only by its branch cut singularities [46]-[50].

In fact an amplitude can have singularities. At tree level, these are represented by poles as kinematic
invariants vanish due to an almost on-shell internal propagator. At the loop level, amplitudes can have
poles as well as branch cuts when more than one internal propagators are on shell. The scalar integrals
appearing in (2.1.2) are expressed by logarithms and dilogaritms, which indeed have branch cuts. On the
contrary rational functions can’t have this kind of singularities.

If in the expansion (2.1.2) the rational part is absent R = 0, then the amplitude can be determined only by
the discontinuities across its branch cuts and, as already said in the introduction, if this happens is called
cut-constructible.

In a given channel, one can compute the branch cut discontinuity for both sides of (2.1.2). Since the scalar
bubble, triangle and box integrals I,,, are all known, their discontinuity A, are known as well. A color-
ordered or planar amplitude (see section 2.5) receives contribution only from diagrams with a particular
cyclic order of the external legs and so can have singularities only in kinematic invariants made out of squares
of sums of cyclically adjacent momenta. This implies [46]-[47] that a planar amplitude can be decomposed
in scalar integrals containing logarithms and dilogarithms which produce cuts that are independent of those
produced by other integrals. Thus, choosing the appropriate channel one can pick up a single term in (2.1.2)

AA = AL (2.3.5)

To determine the coefficient ¢; from (2.3.5), one has to compute the discontinuity AA in a given channel in
a different way. In fact, the unitarity of the S matrix (from this the name of unitarity methods),

SST =1 (2.3.6)
implies that the interaction matrix 7" defined by S = 1 4 ¢T" obeys
2ImT = T'T. (2.3.7)

This equation relates terms of different order in perturbation theory. Expanding it in the coupling constant,
one has that the imaginary part of loop amplitudes can be determined from (four dimensional) phase-space
integrals of products of lower-order on shell amplitudes (from this the name on-shell methods) without the
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need of computing all the off-shell Feynman diagrams of a given order in the coupling constant.

In particular, the imaginary part of one-loop amplitudes is related to the product of two tree amplitudes
(this is equivalent to putting on-shell two internal propagators of the one-loop amplitude, i.e. to doing a
"double cut’).

This imaginary part is related to the discontinuity AAj o0, across a branch cut in a given channel [54].

A possible rational part of the amplitude has no branch cut singularities and cannot be found by the unitarity
method just described (where the cut is evaluated strictly in four dimensions). If one evaluated the cut in
D dimension, then had information even on the rational part [51], [85]. Hence, amplitudes for which the
condition (2.3.4) is satisfied are cut-constructible.

A generalization of the method just described consists in putting on shell (cutting) three or more propagators
[52]. This technique has been extended also to (on-shell) superspace [53].

2.4 Decomposition of Super Yang-Mills Amplitudes

One-loop color-ordered gluon amplitudes in massless supersymmetric gauge theories satisfy the power-
counting criterion (2.3.4), i.e. they are cut-constructible [46]-[48]. To show this, it is enough to study
only the effective action F(AZ) at one loop since the presence of trees attached to the loop does not change
the power-counting of the loop integrand.

The reason why super Yang-Mills theories satisfy the power-counting criterion (2.3.4) is that in the loop di-
agrams of SYM theories there are cancellations between fermionic and bosonic fields which lower the degree
of divergence of the loop integral.

Background field method

We will study the effective action using the background-field method [54]-[60]. It allows to quantize a gauge
field theory without losing explicit gauge invariance.
In fact in the conventional formulation, one derives Feynman rules from a total Lagrangian which is not
gauge invariant because is the sum of the classical Lagrangian and of gauge-fixing and ghosts terms. Any
physical quantity will be gauge-invariant but quantities with no direct physical interpretation like off-shell
Green functions or counterterms may not be gauge invariant.
Let’s consider a renormalizable gauge theory with vector, spinor and scalar fields ( in this section we are
dealing with conventional (component) fields not superfields). Ghosts fields are also included.
In the background-field method one has to split the gauge field in a ’classical’ background field A% ., and in
a 'quantum’ field AZ? u

Al — Ap, + AL, (2.4.1)

One can compute the effective action F(AC‘BM) treating AaBM as an external fixed field, while AaQ ,, can appear
only in the internal lines of 1PI diagrams and is the variable of integration in the functional integral.

To find the propagator for A%, one has to choose a gauge-fixing function. Let’s consider the covariant
derivative D, with respect to the background gauge field

D, = 0, — iA% T4, (2.4.2)

where the T} are the generators of the gauge group in the representation R. One can choose a gauge-fixing
function G(Ap) dependent on A%
G(Ap) = D'Ag,. (2.4.3)

This allows to write a total Lagrangian L., which includes gauge-fixing and ghosts terms, which is gauge-
invariant with respect to the background gauge transformation

%, — A%, + Dya, (2.4.4)

where a® is the gauge parameter. Under this transformation AaQ transform as a matter field in the adjoint
representation.
To compute the effective action I'(A%) at one loop, one has to drop the terms linear in Ab, (which are
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associated to reducible diagrams) and consider only terms quadratic in AaQ and in the other fields ( since
these are the terms that produce the vertices for the 1PI diagrams at one loop ). After some manipulation
this quadratic part of the lagrangian Lg,qq can be written as a sum of terms of the form [54]

DAR (1)@ (2.4.5)

where here ® is one of the fields in the Lagrangian belonging to the representation R of the gauge group
and to the representation (m,n) of the Lorentz group ( with a notation that uses the isomorphism between
the Lie algebra of the Lorentz group and that of SU(2) x SU(2) ).
The symbol Ag (, ) stands for the operator

AR (mn) = DuD"1( 0y — FﬁySW TR (2.4.6)

(m,n)

where Fj, is the background tensor field strength associated to A%, Sé‘rz n)
group for the representation (m,n). Thus, assuming to have a guage theory with a Weyl fermion and a
complex scalar both in the representation R of the gauge group, the effective action for the background field

A% at one loop is obtained from

are the generators of the Lorentz

el AB)1100p — /D:@eifd‘*wZ‘PAR,(m,n)‘b

= (det Ag,(0,0)) " (det Ag (1/2,0)"/(det A gy 1/2,1/2)) "/ (det A gy 00) " (2.4.7)

where the first term in the right-hand side of eq.(2.4.7) comes from the complex scalar, the second from
the Weyl fermion, the third from the vector and the last one from the ghosts (Adj stands for adjoint
representation). For a supersymmetric gauge theory with a vector supermultiplet N = 1 SUSY (which has
a Weyl fermion and a vector) and n, chiral supermultiplets N = 1 SUSY?7(each with a Weyl fermion and
a complex scalar), eq. (2.4.7) implies that

a ne+1 1
'(AB)1100p = —ncIn(det Ag 0,0)) + (ne 1) In(det Ag (1/2,0)) — B In(det A 445,(1/2,1/2)) + In(det A 445 0,0))
(2.4.8)
From eq.(2.4.6), by factorizing D*D,, = D? and by using the identity
1 1
Indet(1 + M) = Trin(1 + M) = Tr(M) — 5Tr(z\42) - gTr(M?’) +... (2.4.9)
where M is an operator, one has schematically
Indet(Ag (n,n)) = Indet(—D?) Tr(p ) (1) + O(F?) Tr(y, ) (SH171.5H272)
+ O(F?) T (g, (SHHESH2P2GHES) L (2.4.10)

where F? stands for the quadratic term Fj,,, F},,.,, etc.. and we have explicitly written the operator D?
only in the first term. Also, the symbol of trace over color indices has been omitted.

In eq.(2.4.10) the term linear in F* is absent since the Lorentz generators are traceless Tr(y, ,)S*” = 0.
As for the first term in eq.(2.4.10) with no F*¥, one has that

11
272
As said above, in a renormalizable theory for an m point 1PI diagram the power of the loop momentum &
is at most m.

In the Lagrangian the derivative d, inside D, acts on A%, while that inside F*¥ acts on A%. It follows
that D? contains the loop momentum k, while F*” contains only the external momenta. Thus the leading
behavior in k is given by the first term of eq.(2.4.10). But after substituting eq. (2.4.10) in eq.(2.4.8),
from (2.4.11) one has that the coefficient in front of this term is zero for every value of n.. Therefore, for

274 vector supermultiplet N = 2 SUSY can be decomposed in a vector supermultiplet N = 1 plus a chiral supermultiplet,

while a vector supermultiplet N = 4 is formed by a vector supermultiplet N = 1 and three chiral supermultiplet N = 1
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super Yang-Mills theories the leading term in k£ contains two F'*”. Each F* reduces by one the number
of powers of k in the numerator of the loop integrand. It follows that for the effective action for external
gluons and hence for the amplitudes whose external gluons are all gluons, the maximum degree of k in the
loop integrand is m — 2. So these amplitudes verify the criterion (2.3.4) and have no a rational part in their
decomposition, R = 0.

Up to now we have discussed only amplitudes with external gluons. In ref.[47] an argument is given that
extends this result to any amplitude (with any external particle) in a generic supersymmetric gauge theory
with a vector supermultiplet N' = 1 coupled to n. chiral supermultiplets A/ = 1 with no superpotential.
This result is conjectured to be valid even in presence of a superpotential [47].

Moreover, on-shell amplitudes with particles belonging to the same supermultiplet are related by linear
relations due to the supersymmetric Ward identities [61]-[65].

Let us consider the supermultiplet NV = 4 SYM which is composed of a vector supermultiplet N' = 1 and
three chiral supermultiplets N' = 1, i.e. it has one gluon, four Weyl fermions and six real (or three complex)
scalars (see section 3.1). This combination of fields implies that in (2.4.8) the terms with traces of products

of two Sé‘l"/m) cancel those with two 55111/2,1 /o) In fact the trace of two 5511/2,0) gives
Tr(1/2,0) (SHIVl SMQVQ) — %(nullmnmm _ nulugnulug 4 ,L'Ep,lljlugljg) ) (2.4.12)

The Levi-Civita tensor can be neglected since gives a term of the form F F. The trace of two 55111/2 1/2) is

Tr(1/271/2) (SM1V1SM2V2> — 2(nulu2nmug _ nulugny“@) ) (2.4.13)

By considering the coefficients appearing in eq.(2.4.8) with n. = 3, one obtains that terms with two F*
vanish. The same cancellation happens for terms with three F*” and hence the first non vanishing term has
four FH¥.

Thus for one loop gluon amplitudes in N' = 4 SYM the maximum degree of k in the loop integrand is
m — 4. This implies that the decomposition of these amplitudes contains only boxes, but neither triangles
nor bubbles. Super Ward identities, which for the A/ = 4 theory have been solved [64]-[65], allow to extend
this result to amplitudes containing also the other particles of the supermultiplet.

In ref.[66] it is shown that other gauge theories have gluon scattering amplitudes free of bubbles and triangles
if the representation of the matter fields satisfy certain conditions.

Also, supergravity with /' = 8 SUSY is believed to be closely related to the N' = 4 theory and to have an
S-matrix which is free of bubbles and triangles [67].

The discussion above is summarized by the picture below

Ano SUSY Z

1Loop = =+ R + O(E)

- A O
A Lo =Y + é + —Q— +0(e)

AL =% " O(e)

2.5 Color decomposition

In the following, we will deal with N' = 4 SYM whose fields belong to the adjoint representation of the gauge
group SU(N). In the case of amplitudes with particles in the adjoint representation, one can use group
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theory to decompose them in color structures given by single traces or product of traces of the generators
of the gauge group [68]-[71] .

The fact that the generators T of SU(N) form a complete set of traceless hermitian N x N matrices implies
the "Fierz identities’

. , o 1 . .
(T3 (T = 6260 — 300187 (2:5.)

As can be seen by contracting both the members of the previous equation by 6;11, the —% term guarantees
the tracelessness condition.

By contracting appropriately both sides of eq.(2.5.1) with the matrix elements of two generic matrices X
and Y, one has the two identities

Te(T*X)TH(T?Y) = Tr(XY) — %Tr(X)Tr(Y)
ﬂ@WTWp;mXﬂmq—%ﬂuyy (2.5.2)

In the following, we will be interested in the study of the large N limit, which is also called planar since in
this limit the leading contribute is given by planar Feynman diagrams that can be drawn in a plane without
self-intersections. Hence we will neglect the terms with — in the egs.(2.5.2).

If one is dealing with a Feynman diagram with particles in the adjoint representation, the vertices provide
products of structure constants of the gauge group f°, which using (1.1.17) can be written as

Fabe — L y([7e, Tb)T°), (2.5.3)
TR
while the propagators give 6?° factors which allow to contract the color indices coming from different vertices.
Let’s consider a tree diagram like

a2 aq

a4
(12

S

After using eq.(2.5.3) to express the structure constants in terms of the generators 7%, one obtains products
of traces of the generators, like
Te(TT2TO) T (TP TS T™) (2.5.4)

where the index b is contracted.
In the case of tree diagrams, the contracted indices belong always to different traces and using eq.(2.5.2),
one can reduce (2.5.4) to

Te(TT2TSTH). (2.5.5)

So any tree diagram with n external states in the adjoint can be reduced to a sum of single trace terms
terms Tr(T% M T ?) T“G(")), for some permutation ¢ of the n particles.

This leads to the following decomposition for an amplitude at tree level with n external particle in the
adjoint

Alree({p; hiya;}) = g™ 2 Z Tr(T% WO T% @, T%) AT (o(p1, hy), ..., 0(Dps hn)). (2.5.6)
O‘ESn/Zn

In this equation A®® represents the total amplitude of n particles with momenta p;,i = 1...n, helicities h;
and adjoint indices a;. The factors AY¢® multiplying the traces are called partial or color-ordered amplitudes
and contain the kinematic information. S, is the set of all permutations of n objects, while Z,, is the subset
of the cyclic permutations which leave invariant the trace and hence also the associated partial amplitudes.
In fact the sum is over all the non-equivalent orderings of the n particles which are (n — 1)! and are denoted
by o € S,,/Z,, = Sp-1.
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This decomposition is useful since the partial amplitudes receive contribution only from planar Feynman
diagrams whose external legs follow the ordering of the color trace associated to the partial amplitude under
consideration. Hence, the singularities of the partial amplitudes can occur only in kinematic invariants made
out of squares of sums of cyclically adjacent momenta.

Moreover, since these color structures are independent, each color ordered partial amplitude has to be gauge-
invariant.

The decomposition (2.5.10) of tree amplitudes is valid for each value of N [48]. At loop level, one has a
similar decomposition, but it is valid only in the large N limit. For example, let’s consider the diagram

The iterated use of the first of eqs.(2.5.2) finally gives two kind of terms depending on whether generators
with contracted indices are next to each other inside a trace or are separated by other generators

Te(TU T2 TPTO T T%4)
Te(TU T T T TP T%). (2.5.7)

In the first case, since Tr(1) = N, the second of eqs.(2.5.2) gives

N Te(TUT2T*T™), (2.5.8)
while in the second case, it gives the product of two traces

Te(TT*2)Te(T43TH). (2.5.9)

This discussion can be generalized to L loops. As before, one can split traces or generate additional powers
of N keeping the number of traces fixed. The terms with T traces at L loops will have an explicit coefficient
NL+H1-T

Hence in the large N limit, the leading term has single-trace color structures N*Tr(7% ...T%) , while the
terms with two or more traces have a lower power in N. In the large NV limit, at L loops the leading term
can be written as

AL (i, hi 0P lptanar = 2PN S Te(T 0T ) T 0) AL (0 (pr, ), ., 0 (s ).
0€Sn/Zn
(2.5.10)
't Hooft suggested that in the planar limit guage theories simplify considerably and can have a stringy
description [72]. The Maldacena’s conjecture gives a concrete realization of this idea [2].
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Chapter 3

Off shell amplitudes in N =4 SYM

This chapter is devoted to the presentation of our results. In particular, we discuss our computation of
the off shell planar amplitudes ( or equivalently the Green’s functions ) with four external scalars and with
three and four external gluons in the A" =4 SYM theory. Explicit expressions for the three and four gluon
amplitudes can be found in the appendix G.

Moreover, we discuss our results concerning the n—point correlation functions with n > 4 in the §— defor-
mation of N'=4 SYM theory.

For completeness we also review some known results. In fact we discuss the two point function both for
scalars and gluons and the three point function for scalars in N' =4 SYM, which are all vanishing. We give
a discussion of the off-shell planar four gluon amplitude at tree level whose explicit expression can be found
in the appendix G.

Moreover, we discuss the on-shell limit for all the off-shell amplitudes. This chapter is organized as follows.
The first section treats the formulation of N'=4 SYM in terms of N' = 1 superfields.

The second section deals with the dual conformal symmetry and the box scalar integral which is covariant
under this symmetry.

In the third section we present our conventions and a brief description of the Maple program which we have
developed to do the computations.

The forth section is devoted to the motivations and the summary of our results.

The fifth and the sixth sections respectively deal with the scalar and the gluon amplitudes.

In the seventh section we discuss the correlation functions in the S— deformation of N' =4 SYM.

In the last section there are our conclusions.

For the first section we have followed [73], while for the second section we have followed [76], [78].

3.1 Formulations of =4 SYM with N = 1 superfields

The action of NV = 4 super Yang-Mills theory in four dimension was first obtained by dimensional reduction
of N'=1 SYM theory in ten dimensions [84] and has the form ( taken from [78] )

1 1 1 )
L :%Tr( — 2B " 4 i\ DX = 2D,y D"

+ighilg, 6]+ igN [V, 6] + L1y, dml[6, 6] ). (3.11)

This form of the lagrangian has no manifest supersymmetry, i.e. it cannot be expressed in terms of super-
fields. In fact, one refers to (3.1.1) as the N/ = 0 formulation of the N' = 4 theory. One can also refer
to (3.1.1) as the N' = 0 gauge since for the quantization one introduces a gauge-fixing term which is not
supersymmetric.

One can verify that the lagrangian (3.1.1) is invariant under N' = 4 SUSY transformations. Because of
not manifest SUSY, these transformation close only on-shell, i.e. by using the equations of motion, and are
nonlinear in the fields.

Instead, (3.1.1) has manifest R—symmetry SU(4). Indeed, the theory has a vector field A,,, which is a singlet
under SU(4), four Weyl fermions A\’ (i = 1..4) which transform in the fundamental 4 of SU(4) and six real
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scalar fields ¢;; = —¢ i, (i = 1..4) transforming in the 6 of SU(4). The 6 correspond to an antisymmetric
rank two tensor ¢;; of SU (4)31. This representation is real since for an antisymmetric tensor ¢ij, one can
define the following SU(4) invariant reality condition

ol =0 = %eiﬂ“(pkl. (3.1.2)
Since all these fields belong to the adjoint representation of the gauge group SU(N), one can express them
with matrices as in (3.1.1) by contraction with the generators of the gauge group, i.e. A, = AjT ete..
There are other formulations or gauges in which N’ =4 SYM theory can be studied. In our results we have
used a formulation in terms of AV = 1 superfields. The field content of the theory is given by one N' = 1
vector superfield V = VT and three N’ = 1 chiral superfields ®; = ®¢7%, all in the adjoint representation
of the gauge group.
In this formalism the six real scalars are grouped in three complex scalar fields ¢; which are the scalar
components of the chiral superfields ®;. Three of the Weyl fermions belong to the ®;, while the fourth
fermion belongs to the vector superfield V.
Thus, unlike the /' = 0 formulation where all the four fermions are in the same representation of SU(4),
in this formulation the fermions are no longer all explicitly related to each other and only the subgroup
SU(3) x U(1) of the original SU(4) symmetry is manifest. In the N’ =1 formulation , the remaining three
supersymmetry transformations and the global SU(4)/SU(3) x U(1) are realized non linearly [20].
The representations of SU(4) decompose in representations of SU(3) according to 6 — 3+ 3", 4 — 3+ 1.
The chiral superfields ®¢ transform in the 3 ( and the antichiral ones @}L in the 3*), while the vector superfield
V' is a singlet of SU(3).
The condition of having manifest A/ = 1 SUSY and the superfield content leads to the lagrangian to have
the form (1.1.29) where now the chiral superfields have a flavor index in the representation 3 of SU(3).
The only term which remains to be fixed is the superpotential

W ik paghee (3.1.3)

31 abe i ] k

But this has to be invariant under the flavor group SU(3) and under the gauge group and so the tensor )‘Z;IZ
has to be a singlet under these to groups . The only singlet with three indices in the fundamental of SU(3) is
€'7% which is completely antisymmetric and so there has to be complete antisymmetry of the adjoint indices
a, b, c as well. Since the only singlet under the gauge group with three indices in the adjoint and completely
antisymmetric is fu., the superpotential has to be

1 ..
W~ ge”k Fabc D) RLDS,
= fupDIDLDS

= L T(®y, [y, Bs)). (3.1.4)
TR

Hence, the action for the N' = 4 theory in the gauge A" = 1 has the form [19]-[22]

1 1
S = —Tr[ / d4:c<d4¢96_9vf1>Tegv<I>i +—— [ Rowew, + ig / d*01, [®y, B3]
™ E 6492
_ 1 _
+ig / a*9e}, [0}, of) - — / d49fDDVfDDv)}, (3.1.5)

where we have included the gauge-fixing term but not the superghosts terms and N' = 4 SUSY imposes to
have only one coupling constant g. AN/ = 4 SUSY also fixes the numerical factor in front of the superpotential
in eq.(3.1.5).

Expanding this action up to order g2, one can write

1 , 2
S = / d'd*(SVIPV + @] + ig faraar @1 VO = L furapaa Faarar ] VIV +0(g7))

3-1in fact, the antisymmetric part of the product of two 4 is equivalent to a 6, i.c. 4 ® 4|ant; =~ 6
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— 9faravas / d*zd?0 DV DL — gfuiaras / d*zd?0 D1 ol ol (3.1.6)

If one integrates eq.(3.1.5) over the 0 variables, eliminate the auxiliary fields by the equations of motion and
chooses the Wess-Zumino gauge, one obtains a component field formulation with only symmetry SU (3)xU (1)
manifest. This formulation can be seen to be perfectly equivalent to eq.(3.1.1)32.

There exists also a manifestly N/ = 2 formulation which uses harmonic superspace [74] and an infinite
number of auxiliary fields. On the contrary, a formulation with manifest A = 4 is not available. It is
important to remark that even if the A’ = 4 theory is finite, in a non-supersymmetric gauge such as that of
eq.(3.1.1), the gauge dependent propagators do get divergent corrections. On the contrary the propagators
have no or only finite corrections in a supersymmetric formalism [73].

Only the § function, which is gauge independent, vanishes in all the gauges.

3.2 Conformal integrals

The N = 4 theory is conformal invariant even at the quantum level since its S-function vanishes to all
orders of perturbation theory. The conformal properties are manifest when one considers gauge independent
quantities such as correlation functions of gauge invariant composite operators.

It has been observed [98]-[101] that the four-gluon planar amplitude in A/ = 4 theory has another kind of
conformal symmetry called dual since it acts in momentum space [75]-[78]. This hidden symmetry is not
related, at least not in an obvious way, to the conventional conformal symmetry of N'=4 SYM theory.
The four gluon planar amplitude has been calculated with the generalized unitarity method which employs
the dimensional regularization scheme to regularize the infrared divergences and assumes that the external
legs are on shell, p? = 0.

The integrals appearing in the on-shell dimensional regularized amplitude up to four loops have a special
property. In fact if one puts their external legs off-shell and keeps the dimension of space-time equal to four,
these integrals are finite and covariant under dual conformal symmetry.

Let’s consider the one-loop amplitude. In this case, there is the one-loop scalar box integral

d*k
k4 p1)2(k + p1 +p2)?(k + p1 + p2 + p3)?’

Do(p1,p2,p3) = / =1 (3.2.1)
where we have followed the notation of section 2.133 and the space-time dimension is equal to four. To
study its conformal properties, one has to pass to the dual variables z;

P1 = T12, P2 = T23, P3 = T34, P4 = T41, k= T51, (3.2.2)

where x;; = z; — x;.

This choice of variables, which are not related to the coordinates of the original coordinate space, automat-
ically satisfies the constraint given by the conservation of momentum ), p; = 0.

Also, one can introduce a dual diagram by associating a dual coordinate to each face delimited by the lines
of the original diagram

pz\ T2 / p1

xT5 I
3

A X P4

D3 T4

3-21f one only integrates eq.(3.1.5) over the § variables, one obtains an action in which all the component fields of the superfields
appear ( even F,C, S, D, etc.. see egs.(1.1.11)-(1.1.13). Obviously this action is completely equivalent to eq.(3.1.5) [73].

330ne can find the on-shell dimensional regularized version of the box scalar integral with infrared poles for example in [47],
while its off-shell finite version in [31]-[32].
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By using these variables, the integral (3.2.1) becomes

d*x
D0($1,$2,$3,$4)=/ 5 > (3.2.3)

2.2 .2 "
L15L25%35L 15
It is manifestly invariant under translations and rotations of the z coordinate. To check the covariance
under special conformal transformation, it is convenient to introduce the conformal inversion operator [

h
Iiah — —. (3.2.4)
x

In fact, a special conformal transformation is given by composing an inversion, a translation and another
inversion. Under I, one has

2.2 4
1 7Ty d*x
T3 T (x?)
Hence, the integral (3.2.3) is covariant under inversion only if the space-time dimension is equal to four
d*zs (2222)(2202)(2322) (2322
I: Dy / . 4( 125) = g> 5 g)< it5) = zia3x3a] Do. (3.2.6)
(@3) T15T25T35% 45

In fact, in four dimension, the factors x? provided by the propagators are canceled by those provided by the
measure. Thus, to be unbroken dual conformal symmetry requires that the space-time dimension is kept
equal to four. On the other hand, if one regularizes the infrared divergences of the one loop amplitude with
dimensional regularization, which shifts the dimension of the space-time from four to D = 4 — 2¢;r (with
err < 0), then dual conformal symmetry is broken.
On the contrary, dual conformal symmetry is preserved, if one uses the off-shell regularization®
lets the external particles to have p? # 0.

Moreover, one can also say that under inversion Dy transforms homogeneously with weight +2 for each
of the coordinates z;. Under dilatations Dg transforms homogeneously as well

4 i.e. if one

" — Az”: Dy — ADy. (3.2.7)

In the four-gluon amplitude at one loop, Dy is multiplied by (p; + p2)?(p2 + p3)?. Expressing this product
with dual variables x;, one obtains

4 55%335%4
M toop(1, T2, T3, T4) = /d T5 55 5 5 (3.2.8)
L152L25L35L 5

which is invariant under all the generators of the dual conformal symmetry.

The covariance of Dy under conformal transformation implies that it can be expressed as a conformally
covariant factor multiplied by a function <I>(1)(s, t) 3 of the conformally invariant cross-ratios s and ¢

1

Dy = ———5dW(s,1), (3.2.9)
$%3$34
where
2 .2 2 .2
L19%34 L1423
S e e (3.2.10)
AR Ti3Toy

and the function ®1)(s,t) is expressed in terms of logarithms and dilogarithms 3 [31]-[32]

2

1 t 1 t
dW (s,t) = 3 [QLig(—ps) + 2Lig(—pt) + In . In %,/0)5 + In(ps) In(pt) + %], (3.2.11)

34In this off-shell regularization, the internal propagators k% remain massless. One could have a different IR regulator by

replacing the massless internal propagators with massive propagators ﬁlﬁm—, but in this case dual conformal symmetry would

be broken. o

35the superscript (1) refers to the fact that the one loop scalar box (or ladder) integral is the first of the series of L loop
ladder integrals whose expression with off-shell external legs is known [31]-[32],[79].

3-6this formula is valid for s,t > 0. See [103] for a discussion of the analytic continuation
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where

Ms,t) =/ (1—s—t)2—4st,  p(s,t) =2(1—s—t+ )L (3.2.12)

The same function &) (s,t) appears in the triangle scalar integral Cj. In fact due to conformal covariance
one can multiply (3.2.9) by #2, and take the limit #4 — oco. Thus, one gets

d4.%'5 . 1 Ao
Co(x1, w2, 23) E/m = lim 2{,Do(z1, 32, 3, 74) = T@(l)(s’t) (3.2.13)
Ti5To5L35  T4TIO0 13
where § and ¢ are the limit for z4 — oo of s and ¢ respectively
2 2
Tiy ~ T

§="12 (=12 (3.2.14)

13 13

Triangle scalar integrals (as well as bubbles) are not conformal integrals.

The infrared limit corresponds to set p? = ,CC?Z 41 = m? and take m? — 0. In this limit s — 0, ¢ — 0
and ®1)(s,t) behaves like (In(m?))2. Thus, in the infrared limit triangles and box scalar integrals have
a logarithmic divergence, as expected ( see section (2.1.1) ). Finally, it is important to note that dual
conformal invariance is a property of planar amplitudes only. In fact, a non-planar box diagram expressed
in terms of the dual variables (3.2.2) doesn’t transform homogeneously under the conformal inversion I.

3.3 Conventions and sketch of the computation

e In the following, we will consider only planar amplitudes, that is only the part of the total amplitudes
containing single trace terms Tr (7T T2 T%3T%).

e We recall that we use the following normalization for the generators of the gauge group
1
Tr(T°T%) = 55“’), (3.3.1)

ie. TR = % in egs.(1.1.17).

e The computations are done with super Feynman diagrams in the A/ = 1 formulation of the N' = 4
SYM theory. In particular we have employed the supersymmetric Fermi-Feynman gauge, i.e. & =1 in
eq.(1.3.69), since for o # 1 one has infrared divergences even in the off-shell regime (see section 1.3.2)

e All the external momenta are assumed to be incoming,.

e Moreover, the complex scalars belong to the fundamental representation 3 of SU(3), thus they can
have three flavors. For simplicity, in the amplitudes with external scalars we will always assume that
they have the same flavor®7 and so will omit the flavor index

e We have computed Green’s functions ( or correlation functions or n-point functions ). The correspond-
ing off-shell amplitudes are obtained simply by neglecting ( amputating ) the external propagators.
For example the relation between the Green’s function with four scalars and the corresponding off
shell amplitude is

T 1

< ¢ (p1) @1 2(p2) 63 (p3) ¢! 4 (ps) >= ( . 202

> w A0S shell <¢“1 (p1) @12 (p2) 6°* (p3) ¢' (p4)) '
(3.3.2)

=

—of <
= |
Y ~.

For the scalar integral By, Cy, Dy, we will follow the notation of eq.(2.1.6). Here, we give their definitions
and their properties under the dual conformal symmetry when the external legs are off-shell, i.e. p? # 0.

3TThe only exception is given by the three point function
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b1 —~
Loi
-
k + p1
dPk 1
B = 3.
o(p1) / 2m)D k2(k + p1)? (3.3.3)

The bubble scalar integral By is divergent in the ultraviolet and is not covariant under the dual conformal
Symimetry.

d*k 1

(3.3.4)

Co(p1,p2) = .
ot p2) /<2w>4 K20k + p1)2(k + p1 + p2)?
The triangle scalar integral Cj is finite in the ultraviolet and is not covariant under the dual conformal
symmetry.

P4 p1
R ¥
k
——
k+p1+p2+p3 + + k+p1
—
k+p1+p2
,)3{ \pQ
d*k 1

(3.3.5)

D ) b =
0(P1; P2, p3) / (2m)* k2(k + p1)2(k + p1 + p2)?(k + p1 + p2 + p3)?

The box scalar integral Dy is finite in the ultraviolet and is covariant under the dual conformal symmetry.

sketch of the computation

In order to perform the computation we developed a Maple program which is based on the conventional
super Feynman rules (see sections 1.3 and 1.4) and carries out the following operations

e it makes Wick contractions,
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e computes color factors and extracts the planar terms,

e integrates over the  variables of the superspace with the chiral propagator as in eq.(1.3.40)
e computes traces of ¢ matrices and products of Levi — Civita tensors et1#2H3H4 ]

e performs the Passarino-Veltman reduction.

For a check of the correctness of the results, we have computed the irreducible diagrams of the amplitude
with four scalars also with the improved super Feynman rules and the D—algebra (see sections 1.2 and 1.5

).

3.4 Motivations and summary of the results

In this chapter we have computed the off shell planar amplitudes ( or equivalently the Green’s functions )
with four external scalars, and with three and four external gluons in the N' =4 SYM theory.
The reasons for these computations are the following

e There has been considerable effort motivated by the AdS-CFT correspondence to compute the corre-
lation functions of gauge invariant composite operators in the A/ =4 SYM theory , while correlation
functions of elementary fields have received much less attention. In [17] one can find the off-shell
four gluon amplitude computed in the background field gauge, but other four point functions are not
known.

e The dimensional regularization breaks dual conformal symmetry ( see section (3.2) ). To preserve this
symmetry one has to keep the number of space-time dimensions equal to four. To do so, one can use
off shell regularization to regularize IR divergences even if one looses manifest gauge invariance.?®

In the off shell four gluon amplitude computed in [17] with the background field method, only the box
scalar integral appears. This scalar integral is covariant under dual conformal symmetry ( see section
(3.2) ) and so dual conformal symmetry is present even in the off shell regime in this gauge.

Hence, it is important to know if in a different (supersymmetric) gauge, the decomposition of an off
shell four point amplitude gives only a box scalar integral or also triangle and bubble scalar integrals,
which lack this symmetry.

In our computation in a N’ = 1 supersymmetric gauge, we have found that the off shell four scalar

off shell (gbqugbng) is built out of a box integral as well as triangles, while the off shell four

1loop
of f shell
1 loop

Therefore, in the decomposition of these amplitudes appear integrals which are not dual conformal
covariant. In other words, the presence of the dual conformal symmetry for the off shell amplitudes
depends on the choice of the gauge.

amplitude A

gluon amplitude A (AMAM A, Au4) is built out of a box as well as triangles and bubbles.

e While triangle and box are finite in the ultraviolet, bubbles are UV divergent integrals. We have
found that both the off-shell one loop amplitude with three gluons and that with four gluons have
a decomposition containing bubbles. In spite of the presence of these UV divergent integrals, these
amplitudes are finite since the sum of all the divergent terms arising from the bubbles vanishes.

e In the off-shell regularization, the regulator is obtained by giving a (small) mass m to the external
particles. To remove this regulator one has to set p? = m? and take m? — 0. If one removes the
regulator in the expression of observable quantities, such as cross sections, all the divergent terms
cancel out and the result is finite.

On the other hand, removing the regulator in the amplitudes, which are not observables, produces

3-8In [109], another kind of regularization, called Higgs or massive regularization, is introduced. It regularizes IR divergences
by giving an expectation value to some of the scalar fields. Even if this regularization allows to work in four dimensions, it
breaks dual conformal symmetry. But one can ’deform’ the generators of the symmetry in such a way that Higgs regularization
preserves this extended version of the dual conformal symmetry
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a divergent result. In the following, we will consider the ’on shell limit’ of the off shell amplitude
lim,2_, AeTTshell “that is those parts of the off shell amplitude which don’t vanish (but are finite or
divergent) when one removes the regulator (p> — 0). One can compare this on-shell limit of the off shell
amplitude with the on-shell dimensional regularized version of the amplitude Ag%hfgg where the on-
shell condition p? = 0 is imposed from the beginning. It is important to stress that in lim,2_, Aol shell
the integrals are off-shell regularized, while in Agfnihfé; they are dimensionally regularized.

It may happen that this on-shell limit lim2_,4 Aoffshell contains more terms with respect to A

In fact, in the off-shell amplitudes there could be contributions such as

p*I(p), (3.4.1)

on shell
dim.reg."

where I(p) is some term. These contributions cannot be present if one imposes from the beginning the
on shell condition p? = 0, as happens in the generalized unitarity method which has been employed
in the computation of the four gluon on shell amplitude up to four loops [98]-[101].

If in the on shell limit p?> — 0, the term I(p) behaves like 1% then contributions like (3.4.1) give a non

vanishing result. Hence, in this case one has that lim,2_,, AcfTshell qoesn’t match Afl%hfélg, ie.
lim A°S7shell £ qanshell (3.4.2)

p2—0

In our case, this is due to the form factors of the Passarino-Veltman decomposition which are different
depending on whether p? = 0 or p? # 0 (see eqs.2.2.13). Therefore, it is important to compute the off
shell amplitude and then make the on shell limit.

We have found that for the four scalar and four gluon off shell amplitudes, in the on shell limit terms
like (3.4.1) are all vanishing and hence the on-shell limit of the off-shell amplitudes matches the on-shell
dimensional regularized version of the amplitudes, i.e.

Tim AL (001001) = Agl, (00100 ).

lim AP (A Ay Ay Ay ) = Attt (A A A A, (3.4.3)

P20 1loop dim.reg.

e We have also studied the so called 8 deformation of N =4 SYM. It is a theory obtained by modifying
the superpotential of N'= 4 SYM in such a way to break SUSY down to N/ = 1 but maintaining the
property of conformal invariance and finiteness. The superpotential of the 3 deformation depends on
two complex parameters, i.e. h and 8 which gives the name of the theory.

In [96], it has been shown that in the planar limit and with 8 real, all the amplitudes of the [
deformation coincide with the corresponding amplitudes of N' = 4 up to phase factors. In [94] three
point functions of elementary (super)fields have been studied in the case of complex 8. It has been
observed that the three point functions involving vector superfields are equal to their value in N' = 4
SYM up to two loops.

We have studied some n—point correlation functions with n > 4 (or equivalently off shell amplitudes)
in the case of complex . In particular, we have considered the correlation functions with four and six
vector superfields < V1 V92V V% > agnd < V*V®R2Y@yuyasy/ae > respectively. We have found
that at two loops they are different from to their value in N/ =4 SYM, since they receive non planar
corrections.

We have also considered the 'mixed’ chiral-vector correlation functions with a chiral, an antichiral and
two or three vector superfields < @1 T2V By > and < 1Ptz @Y 4% > respectively (the
flavor indices are omitted). Already at one loop they receive a non planar correction with respect to
the corresponding correlation functions of N' =4 SYM.

Summary of the results in ' =4 SYM

The decomposition in scalar integrals of the off shell amplitude with four scalars contains a box and triangles
as well.

o4



AT (gt pept

= @

+ Ny \Y + N2><( +N3)>< + N4ZS

All the coefficients @, N1, No, N3, Ny multiplying the scalar integrals are functions of the external momenta.
In the on shell limit all the terms with triangles vanish. In fact, taking p% = m? and considering the limit
m? — 0, the scalar triangles Cy behave like Cy =~ (In(m?))? (see sections 2.1.1, 3.2), while the coefficients
N; like N; ~ m?. Hence, the product N;Cy vanishes in the on shell limit.

As for the off shell amplitude with three gluons, its decomposition contains a triangle and bubbles as

well

f fshell
"4(1)1008126 (AWA“?A%): Ny pops \V/

+ M1 i3 popis >O_ + M3 pops é + M3 p0ps _O<

All the coefficients Ny, s s M1 pops > M2,y pio s » M3,11 po i multiplying the scalar integrals are functions of
the external momenta.

Even if the bubble scalar integrals are divergent in UV, the amplitude remains UV finite since the sum of
the coefficients multiplying the bubbles is zero

M iy pops + M2,y oy + M3,y pops = 0, (3.4.4)

and hence the sum of all the UV divergent terms vanishes. On shell all the terms with both bubbles and
triangle vanish.

The decomposition of the off shell amplitude with four gluons contains a box as well as triangles and
bubbles

hell
Aij;cj)ccfp ‘ (Aﬂl A#Q AHS AFL4 ) = Q,Lu 2 43 [l

+  Nipipopspa \Y + N2y popspa ><( +N37u1uzu3“4>< + N47M1M2M3M4ZS

+ M popsug ;2 + Mo s popspa >O_+M3,MH2#3H4_O< _|_M47m#2#3“4€:§

+  Ms i popsp >O< + Mé,p1popspa ié

All the coefficients @, uopuspas N1, popspas - - - Nap popspias M,y pops s - - - M6 it po s e OULLIPlying the scalar
integrals are functions of the external momenta.
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As in the case of the amplitude with three gluons, the finiteness in the off-shell regime is guaranteed by the
vanishing of the sum of all the coefficients multiplying the bubbles

Z Mi,ylugyglu,zl = 0 (345)
1=1..6

On shell the terms with bubbles and triangles vanish and only the box remains. Hence, as in the case of four
scalars, in the on-shell limit no new integrals appear with respect to the dimensional regularization scheme,
where the on-shell condition is applied from the beginning.

Thus, in this gauge which preserves N’ = 1 SUSY, the off-shell amplitudes do contain non-conformal integrals,
but in the on-shell limit they vanish.

3.5 Amplitudes with scalars

3.5.1 The two-point function at one loop

The two point function at one loop is zero [19]

+ =0
In fact, the first superdiagram
k
—_——
a1 ag
—)—
p
gives
i\ 2
NTH(T®T®) (3) (29%p%) Bo(p). (3.5.1)
p
The second superdiagram
k
+
ay az
—_—
p
gives
i\ 2
NTH(T%T4) (3) (—24%p?) Bo(p). (3.5.2)
p
Hence,
< ¢T “ (p) ¢a2 (_p) >1 Loop=— 0 (353)
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3.5.2 The three-point function at one loop

At one loop, the three point function < ¢ (p1) #3%(p2) #5% (P3) >1 Loy gives zero. In fact its only super-
diagram

vanishes.

3.5.3 Four scalar planar amplitude at tree level

At tree level, the planar four-point function < ¢ (p1) @' 2 (p2) ¢ (p3) ¢ * (ps) >fﬁ§2“’"
is given by the two superdiagrams

a2 a
b2 P P2 P
a9 aq \ /
X ¥
_|_
T A
a3 b3 ay
P4 A & P4
b3
(7,3 (1,4

One can impose the conservation of momenta ), p; = 0 to express one momentum in favor of the others
i.e po = —p1 — p3 — p4. The result for the planar off-shell amplitude is

AL (6 (1) 61 (p2) 0 (p3) 61 () ) = P DT DT

2 2
2Z.((pl +p3)2 L +p3)2> (3.5.4)
(1 +pa)?  (p3+pa)
On shell one can impose further kinematic conditions
pi=p3=pi =0,
p5=(p1+p3+ps)°=0=p1-ps=—p1-ps—ps-pa
(3.5.5)
Hence, the on-shell amplitude is given by
2
Agn shell <¢a1 ¢T a2 ¢a3 ¢T a4) - —9; gZTr(TalTagTa3Ta4) « (p1 -PS)
e P1-DaD3 - P4
. . 2
— 2 PTy(T T o) x P PAT P DY) (3.5.6)

P1-PaP3 - P4

391n this case the flavor indices have to be all different. In fact, because of the R—symmetry SU(3), the correlation functions
have to be singlet under SU(3). The complex scalars ¢ belong to the fundamental 3 of SU(3). Since the only singlet with
three indices in the fundamental of SU(3) is €;;, which is completely antisymmetric, all the flavor indices have to be different.
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3.5.4 Four scalar planar amplitude at one loop
At one loop, the planar four-point function is given by one-particle irreducible and reducible superdiagrams

a2 a1 a2 aq
Plana
1 Loop -
as a4 as a4
a9 al
a9 al
a a
/ 2 a9 !
aj
- + / + +
a4
as as Gy
as Qa4

The 1PI part is composed by the superdiagrams

a2 ai as a1 a9 ai a al

AN

a4

as aq as :
ai

Y A
+
+

as a1 a N

a
4 a4

The superdiagram

vanishes, since involves the product of two propagators of the vector superfield and so the product of two
The 1PI part of the four-point function is given by the

fermionic delta functions 19912 which is zero.
expression
——=—5 | X

!
< g gl g7 glos SHE— NGATH(T O T (5 25 5 2
b1 P35 P3Py

p2 + pa)?
(41?1 -p3p2 - P4 Do(p1,pa, p3) + %(Co(pl,m + pa) + Co(p1,pa) + Co(p1 + pa, p3) + Co(pa,p3))
3.

)5.

7

The reducible superdiagrams that contribute are

o8



LY YYYY

while the superdiagrams

ovg e

don’t contribute, because contain the one-loop two-point functions which vanish.
Neither contributes the superdiagram

because of the color factor which gives zero.

The reducible part with the color indices as indicated in the figure

as a1

AN

has the expression

N T (T Ta2Toa o) (iiii) !

————— Co(p1,p3 + pa) X
pip3p3pi/ (p1+p2)?

1

5 ( iP5 — pipi — P3p3 — P3Pi — 4PT D2 pa — 2p5p2 - pa — 2D P12 — 4p1-pap2 - pa+ 2D3 P -p4)-
The other reducible parts can be obtained from this one by symmetry. As one can see neither the irreducible

part neither the reducible part have bubbles in their decomposition.
The one loop planar off shell amplitude with four scalars has the expression

A({]l”({o;hell <¢a1 ng as ¢a3 ng a4> :Ng4TI'(Ta1 Ta2as Ta4) %

(41?1 - p3p2 - pa Do(p1,pa, p3)

2 2
PiP2 P4+ P5P1P3
- Co(p1,p3 + p4
(p1 + p2)? ( )
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2 2

PiP2 P4+ PiP1-P3
- Co(p1,p4
(p1 + pa)? ( )

2 2
P3 P2 - P4+ P5P1 '1030

- o(p1 + pa,p3
(ps + p2)? )

2 2
_P3p2'p4+P4P1'p30 > 353
s 7 21)? 0(p4,p3) ). (3.5.8)

or pictorially

Aoff shell :Ng4Tr(Ta1 Ta2a3 Ta4) %

1loop
(3.5.9)
4p1 - p3p2 - pa
\y/ ~ gy (P12 4+ D3 p1 - p3)
1
><( —mz‘(lﬁprlh +p?1p1-p3)
1
)>< —mz‘@%p2'p4 +p3p1-p3)
f ~ Gt (D3 P2 pa+ pip1 - p3)
where we have not eliminated the momentum variable po = —p; — p3 — p4 to present the result in a more

symmetric form.
Using the conservation of momenta, one obtains for the on-shell limit of the one loop amplitude the expression

AZphell — Ng*Te(T T T*T*) x 4(py - p3)* Do(p1, pa, p3)

on shell

= 2iNg? p1 - paps - pa AN Do(py, pa, p3) (3.5.10)

3.6 Amplitudes with gluons

3.6.1 The two-point function at one loop

The two point function < Af (p) A2 (—p) >1100p at one loop is given by the superdiagrams

where around the loop chiral superfields, vector superfields and ghost superfields propagate respectively.

The superdiagram with the chiral loop
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+
—>—
gives
— i\ 2
NTH(T®T42) <—2) X
p
dPk 1 1 5 ,
/ (2m)P k2(k + p)? 3 (§pu1pu2 + Nz k™ + N P K+ iR T €vrp o) (3.6.1)
The superdiagram with the vector loop
D k
-
ai ag

gives

o 2i\2
NTHTOT 2)(—) X
P

dPk 1 3 5 )
5 - 6.2
/(27T)D k2(k+p)2(2pulpu2 477M1M2p ) (3.6 )

Since we have various vertices involving the superghosts (see section 1.4), actually there are four super-
diagrams with the ghost loop

k k k
LA T JAT =0 L , Al C
AV VA VR I VAV S VA VR T VAV AV A V- T VAV S VA VI
C-._,(..- AT CT'-.).-'A A’-.,(.-' CT C...(“-AT

which give the total result

202
NTHT“T 2)(—) x
P

dPk 1 5 5 5 5.,
/ (27T)D k2(k7 + p)Q (inulu2k2 + 577#1112 p-k+ anu2p2 + 5”‘7 pTEVTmm)' (3~6~3)

After summing all the contributions and making the Passarino-Veltman reduction (neglecting the tadpole
scalar integral), one has that the two-point function vanishes [19]

< Ale (p)AZQQ(_p) >1loop: 0. (364)
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3.6.2 Three gluon planar amplitude at one loop

The one loop planar three-point function < A%l (p1)A%2 (p2) A% (p3) >€ll‘zzzr has superdiagrams with three

possible topologies (now the pictures don’t indicate bubble or triangle scalar integrals but topologies)

—O<

The topology

N /
N~— \

doesn’t contribute since involves the one loop two point-function which is zero.
The superdiagrams associated to the second topology are

Only the superdiagram with the vector loop contributes since both the superdiagram with the chiral loop
and the superdiagram with the ghost loop give zero since their color factor vanishes.
The superdiagrams of the third topology are

After doing the Passarino Veltman decomposition and substituting ps with po = —p; — ps, the final
result for the planar off shell amplitude with three gluons is

AL (AL (1) A (p2) A7 (b)) = N Te(T T2 T x

(Ml S U2 3 BO(pl) + M2 S 2 3 BO(pl +p3) + M3 S 2 43 BO(PB) + N,Luug,us CO(pl,p:S)), (365)

or pictorially (omitting the color indices and the color factor)
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f fshell
"4(1)1051;e (AP“A“?A”S): Ny pops \V/

+ My popis >Q_ + Mo pipops Eé + M3 pipops _O<

where the coefficients N, o, M1 1 oz s M2, i1 popis s M3, 1 po s Multiplying the scalar integrals are func-
tions of the external momenta and are given in the appendix G.1.

As already stated, even if in the decomposition there are bubbles, the amplitude is finite since
My s pipis + M iy o + M3 o = 0, (3.6.6)

and hence the sum of all the UV terms vanishes.
On shell, one has to impose the conditions

p?=0,p3=0,p3=(p1+p3)>=0= p1-p3 =0. (3.6.7)

Hence, in the on-shell limit all the terms of the amplitude vanish (see the appendix G.1).

3.6.3 Four gluon planar amplitude at tree level

The planar off-shell amplitude AGTT shell (Al‘ill (p1) A2 (p2) A2 (p3) Ajd (p4)) is obtained by computing the

tree

superdiagrams

1
a2 aq

as a
a2 ai
M g ~ L
as Qa4
az (a

A
3

The result, for A% shell (AZl1 (p1) AS2 (p2) A2 (p3) AS (p4)) is given in the appendix G.2.

tree

3.6.4 The on-shell limit

To do the on shell limit, one can choose the spinor representation of the polarization vectors as made in the
spinor helicity formalism ( see Appendix F).

Also, one can employ the notation i,i~ to indicate the external gluon i with helicity +1 or —1 respectively.
Using super Ward identities , one can prove that in a SYM theory the on-shell n—gluon amplitudes with all
helicities the same, like A°7sPell(1+ 2+ . nt) vanish [48)].

The amplitudes with all helicites the same but one, like A°"shell(1= 2% . ,nt) vanish as well. Thus, the
first non-zero n— gluon amplitude (n > 4) has two gluons with helicity —1 and the remaining with helicity
+1 or vice-versa and is usually referred to as the maximally helicity violating (MHV) amplitude.

Let’s consider the amplitude with the configuration (17,27,3%,4") and eliminate one of the momenta, i.e
P2 = —p1 — P3 — Pa, in favor of the others.

The polarization vectors \; have to satisfy the condition of trasversality

X - p; = 0. (3.6.8)
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( We don’t indicate the helicities explicitly. Thus, in the configuration (17,27,3%,4%), A\ stands for A\], A3
stands for Aj, etc.. ). Choosing as reference momenta ( see Appendix F) ¢; = g2 = ps, q3 = q4 = p1 or in
brief (p4, p4, p1,p1), one has that the polarization vectors satisfy

)\i-)\j:O except )\2-)\3%0
Al-pa=A2-pr=A3-p1=As-p1.=0 (3.6.9)

The amplitude with four gluons has four vector indices and can be decomposed in 138 Lorentz structures
which have three forms (see eqs.(2.1.10) ). The first form (nn) has two 1 tensors, like 7, ;1,734 the second
form (npp) has one 7 tensor and two momenta, such as 7, 1,1 usP3u, and the third form (pppp) has four
momenta, like p1 1, D3 1o P1 134 s -

Off shell all the 138 Lorentz structures could contribute, but on shell if one chooses the reference momenta
appropriately only a few of them contribute.

In fact, with the choice (p4, ps, p1,p1) for the reference momenta, from eqs.(3.6.8),(3.6.9) one has that after
contracting with the external polarization vectors, only the structures 7,,,,03 41 P3 s> P3 i1 P1 12 P4 p3 P3 g a0d
P3 111 P3 115P4 113 P3 11 » COTTESPONAIng t0 Ad2- A3 A\1-p3 Aap3, A1-P3 A2-p1 Az paAa-p3 and A1-p3 A2-p3 A3 paAa-p3
respectively, contribute.

Moreover, while off-shell all these structures are independent, on-shell they can be dependent. In fact, for
example from Ay - po = 0 and Ay - pg4 = 0 it follows that

Xo-(pr+p3) ==X - (p2+p1) =0= Xy p1 = —Aa - ps. (3.6.10)

Thus
A1 P3 A2 P1A3 - PaAs P33 = —A1-P3A2-DP3A3 - PaAs-ps. (3.6.11)
As for the off shell tree level amplitude AffefeShe” (Azll (p1)AS2 (p2) AL (p3) At (p4)> , one has (see the appendix

G.2) that the structures ps ,,P1 uoD4 3 P3 s A0 D3 11y D3 1o P4 3 P3 g are not present in the result. Thus, at tree
level the on shell planar amplitude with the configuration (17,27,3%,4") has the expression

7
2p3 - pa

Aonshell(l— 2~ 3+ 4—!—) — 92 Tr(TalTQQT%TM)

tree

)\2 . )\3 )\1 - P3 )\4 * P3. (3.6.12)

3.6.5 Four gluon planar amplitude at one loop

The topologies associated to the 1PI superdiagrams which contribute to the four gluon planar amplitude
hell
at one loop ACLS she (Azll (pl)AZQ2 (pg)Afg (pg)Aﬁfl (p4)) are

The topologies associated to the reducible superdiagrams are

Y ¥

The topologies

64



=< o<

don’t contribute since they contain the two-point function which is vanishing.

Summing all the superdiagrams and making the Passarino-Veltman procedure, one obtains for the off
shell four gluon planar amplitude at one loop the decomposition

A{l)}l”({;)hell (Ale (pl)AZQQ (pQ)AZ:; (p3)AZi (p4)) — Ng4Tr(Ta1Ta2Ta3Ta4) X

(Qu1u2u3u4 Do(pl,p4,p3)

+ N1 popus s Co(p1,p3 + pa) + N2y o g Co(p1,pa) + N3 i1 o aa Co(p1 + pa,p3) + Ny popispia Co(p4,ps3)
+ M17M1M2M3M4 BO(pl) + M2,M1M2M3M4 BO(p4) + M3,M1M2M3M4 Bo(p1 +p3 + p4) + M4,M1M2M3M4 BO(p3)

+ M5,u1u2u3u4 BO(pl + P4) + M67u1u2u3u4 BO(pB + P4))a (3-6-13)

or pictorially (omitting the color indices and the color factor)

AoffShell(Aﬂl A#QAHSA#4)

1 loop

= Quipspspa

+  Nipipepspa \Y + N2y popspa ><( +N37MM2M3WJ>< + N47M1M2M3M4ZS

+ M popsug ;2 + M2 s pouspa >Q_+M3’#1“2#3“4_Q< _|_M47m#2#3“4€:§

+  Ms i popsp >Q< + Mé,p1popspa ié

This off-shell amplitude is finite since the sum of the coefficients of the bubbles vanish

Z Mi7M1M2M3M4 =0 (3-6-14)
1=1..6

and all the UV divergent terms cancel out.

We have found that all the possible (138) Lorentz structures (see egs.(2.1.10) and section 3.6.4) contribute
to the one loop off-shell four gluon amplitude. In the off-shell regime there cannot be cancellations between
terms containing different Lorentz structures, since off-shell all these Lorentz structures are independent of
each other. Hence, the vanishing of the sum of all the UV terms has to happen for each Lorentz structure
independently of the others. In fact, let’s consider the Lorentz structure 7, ,,p3 4, 3, Which is relevant for

the on-shell amplitude A{7 (17,27, 3%, 4%) (see section 3.6.4 and the discussion below).
Let’s define as

Qv,Nvi,...Nya, My ... Mg (3.6.15)

those parts of the coeflicients

QH1M2M3M4’ Nl,uwwamv s N4,u1u2u3u4v M17u1u2u3u4 s Mﬁ,umzusm (3-6-16)
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which multiply this Lorentz structure 7,,,,p3,,P34,- In the appendix G.3 we give the expressions of
Qv,Ny1,...Nyy, My ... Mg. One can verify that for this Lorentz structure the sum of all the coefficients
multiplying the bubbles vanishes, i.e.

> M;=o.

i=1...6

Moreover, since the Ny; are different from zero, one has that, in the decomposition of the off-shell four
gluon amplitude, appear triangles as well.

The on-shell limit

As in section 3.6.4, for the on shell limit let’s consider the configuration (17,27,3%,4") with reference mo-
menta (p4, pa, p1,p1)- In this case only the structures 1, D3 1 D3 pas P31 P1 poP4 s D3 pa AN D3 113 D3 112 P4 3 P3 s
contribute.

We have found that in the off-shell one loop amplitude the coefficient multiplying p3 ., P1 yuoP4 u3P3 s 18
equal to the coefficient multiplying ps,, 03 u,P4 s P3,4- Since one has that Ay -p3 Ao - p1 A3 - paAs - p3 =
—A1-D3A2 - P33 - paAg-p3 (see eq.(3.6.11) ), when these two Lorentz structures are contracted with the
external polarization vectors, their sum vanish. Hence, as in the case of the tree level amplitude, for the one
loop amplitude in the on shell limit contributes only the Lorentz structure 7, ;03 ;03 jus -

In the on shell limit, where p? = 0,7 = 1...4 and py-p3 = —p1-Pa — P3 - P4 (see eqs.3.5.5), all the coefficients
multiplying the triangles and those multiplying the bubbles vanish (see the appendix G.3) , i.e.

N‘c}qshell - . N‘c}zshell — 0’ an shell _ o M60n shell _ 0.

The only non vanishing coefficient in the on shell limit is @y, which gives

hell
QU = —p1 - pa.

Hence, one has
A(lnlloso];)e”(l_v 27,3%,4%) = =N g" Te(T“ T T*T*) Ay - A3 A1 - p3 A1 - p3 p1 - pa Do(p1, pa, p3)
= 2iNg’ p1 - paps - pa Afed " (17,27,3%,4%) Do (p1, pa, p3). (3.6.17)

This result agrees with the expected result as computed in [110].

3.7 Correlation functions in the f-deformed N=4 theory

In [89] Leigh and Strassler found that it is possible to deform the N' =4 SYM, i.e. to modify its superpo-
tential Wyr—4, obtaining a class of N/ = 1 SYM theories which has the same superfield content as N' = 4
SYM and which maintains conformal invariance and finiteness.

An important example of these theories is represented by the so called S-deformation. It is obtained by
replacing the superpotential of the A" =4 SYM by

W/\/’:4 = 2’ig /dGZTI‘q)l[q)Q, (133] —
Ws = 2ih /d6zTr(ew<I>1(I>2<I>3 — e PP D30,), (3.7.1)

where the parameters h and 3, which gives the name to the theory, can be considered as complex functions of
the gauge coupling ¢ and expanded in power series in g. The coefficients of the expansions can be determined
by requiring to have conformal invariance.

The gravitational dual of the 8 deformation in the case of real 5 has been found in [90].

The superpotential of the 3 deformation breaks N' = 4 SUSY to A/ = 1 and the original SU(4) R— symmetry
to U(1)r. However, a global U(1) x U(1) survives. Its generators can be chosen to act as follows

U(l)l : ((I)l, (I)Q, @3) — ((I)17 ei<.01 (1)27 e*igol (1)3)

66



Ul)g: (P, By, P3) — (7928, 2Dy, 3). (3.7.2)
Also, there is a discrete symmetry Zs x Z3 which is given by the transformations

(®1, Do, P3) — (P2, 3, P1)
(®1, g, P3) — (P1,wPg, w Ps), (3.7.3)

with w? = 1.

In the case of a theory with ' = 1 SUSY and superfields in the adjoint representation, as the 3 deformation,
to guarantee conformal invariance it is sufficient to impose the finiteness of the propagator of the chiral
superfield < CD?CI);.[) >.

In any N = 1 supersymmetric gauge theory the only potential divergences are those of the chiral and the
vector propagators < ®®T > and < VV >. In fact,

e from the non renormalization theorem of the superpotential VW [19], one has that in the chiral sector
the only divergence is given by the chiral propagator < ®®' >, while the chiral vertex can have only
a finite renormalization. In other words, the beta function of the Yukawa coupling By depends only
on the anomalous dimension of the chiral superfield vg.

e In the gauge sector, one can choose the background field gauge where the renormalization of the
vertices coincides with that of the vector propagator. In any gauge there are Ward identities which
relate B4 to yv.

e Moreover, if the chiral superfields belong to the adjoint representation, the divergence of the vector
propagator is related to that of the chiral propagator . This can be seen in the background field gauge
[91] or from the exact form of the S, nsy 7z function for SYM theories found in [92](we recall that its
vanishing is scheme-independent).

e Further, in the §-deformation, because of the discrete Z3 x Z3 symmetry of the action, the matrix
(fyq>){, of y-functions of the chiral superfields is proportional to the unit matrix in the flavor space

(vo)§ = ~d7, (3.7.4)

and so it is enough to require a single condition v = 0 to ensure conformal invariance.

In other words, in the S-deformation to assure that both the gauge and Yukawa functions 3, and 8y
vanish and so the theory is conformal invariant, it is sufficient to impose that the chiral propagator
< CD‘fCI)Ib > is finite. The choice of flavor indices is a mere convention since they are all on the same
footing because of the Z3 x Z3 symmetry (in the following we will omit to indicate them).

In the S-deformed theories one can make one further simplification [93],[94].
To find the condition of conformal invariance at a certain order g?" in perturbation theory®!° instead of
computing the chiral propagator < ®®T >g in the S-deformed theory, it is more convenient to compute the
difference? 1!
< D(21)07(22) >nma — < B(21)07(22) >5. (3.7.5)

We already know that the chiral propagator in N’ = 4 SYM < ®®' >,r_, is finite, thus if the difference
(3.7.5) is finite, the chiral propagator of the 3 deformation < ®®T > g if finite as well. In the difference, all
the superdiagrams without the chiral vertex, which comes from the superpotential, cancel out. In fact, the
(anti)chiral vertex is the only vertex which is different in the two theories.

Actually, it is only the color factor associated to the vertex which differs in the two theories. In fact, for the
N =4, one has

Wi—y = 2ig / dS2 Tr®d, [y, B3]

3-10gince the couplings h, 3 are dependent on g, a diagram of order g2 could have a number of loops lower than n, so in this

. . 2n - .
case by a calculation to n loops one means a calculation up to order g“" in the coupling constant
3-11in this section it doesn’t make difference whether we work in coordinate or in momentum space since we are interested

essentially in the computation of color factors

67



= —9furavas / dS2 1 D5 P33, (3.7.6)
while for the §-deformation
Wg = Qih/dGzTr(e”BCI)1<I>2@3 — e PP D3Ds)
= —h(farasas COSTB + dayagas SN TH) / dO 20 0523, (3.7.7)

where we have introduced the completely symmetric invariant tensor dg, 4,4, Which (using the normalization
(3.3.1) for the generators of the gauge group) is given by

da1a2a3 =2Tr (Tal {TQQ , T }) . (378)

An alternative way to parametrize the superpotential (3.7.1) is the following
Ws = 2f /d% Trd, [®q, B3] + 2d /d% Trd, { Py, P3}

= (Zf fa1a2a3 + ddalaQag) /dGZ cI)Lll1 (I)gQ(I)gg (3'7'9)
where the complex parameters f and d are related to h and 8
f =ihcosmp d= —hsinmf. (3.7.10)

At order g? the only superdiagram contributing to (3.7.5) is

—>—<:>—>—

As stated above, this superdiagram differs in the A/ = 4 SYM and in the S-deformation only by the
color factor which factors out from the rest of the diagram which is the same in the two theories (and so its
divergent part is the same ). Hence, the condition for the finiteness of the chiral propagator at order g? is
given by the vanishing of the difference A%%(g, h, 3) of the color factors in the two theories, ]-'X[b: 4 and Fg’b
respectively

A (g,h, B) = Fyily - F§" =0, (3.7.11)
After computing the colour factors and using that
N?—4
falblbgfa2b1b2 = N5d1d2 da1b1b2da2b1b2 - T(Salaga (3-7-12)
one has that the finiteness condition at order ¢ is given by
_ 2 — _
|h|? (cos B cos B + Wsinwﬁsinwﬁ) = ¢%, (3.7.13)
or in terms of f and d
o N?—4 2
[fF+ = ld” =g~ (3.7.14)

In the planar limit and with real 8, the condition (3.7.13) reduces to
N = oo: g% =|h]? (3.7.15)

independently of the value of 5. In [95], it has been shown that in the planar limit and with § real the
condition (3.7.15) guarantees the conformal invariance to all orders in perturbation theory.

Moreover, all the amplitudes of the S-deformed theory with 8 € R coincide with the ones of N'= 4 up to
phase factors [96].

If 3 is complex the order g condition which is g?> = |h|? cosh(27Imp3) is not more sufficient to assure
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conformal invariance at higher orders [93]-[94].

The considerations made above for the chiral propagator are valid for any n-point correlation function
(O1(21)...0p(2yn)) where O;(z;) is an elementary field or a composite operator (present in both theories).

In fact, to study if a correlation function in the f— deformed theory receives a correction with respect to
N =4 SYM, one has to compute the difference

<O01(21)...0p(2n) >N=14 — < O1(21) ... Op(2n) >5 . (3.7.16)

As before, in the difference all the superdiagrams without chiral vertices don’t contribute and the difference
of each superdiagram in the two theories is given by the difference of the color factors multiplying the rest
of the diagram which is the same in the two theories.

In [94], three point functions, that is the triple chiral (antichiral) vertex, the chiral-antichiral-vector vertex,
the triple vector vertex and the ghost-ghost-vector vertex, have been studied.

s A 5 B

At order g® and order g° all three vertices with external vector lines are exactly equal to the corresponding
ones in N' = 4 SYM. Only the triple chiral vertex has at order ¢° a finite non-planar correction. At order
g” the ghost-ghost-vector vertex is equal to the corresponding vertex in A' = 4 SYM, while the other three
vertex receive corrections from non-planar diagrams. Only the triple chiral vertex receives also finite planar
corrections at order g7.

Here we have studied some n—point functions with n > 4. In fact we have considered the correlation function
with four and six vector superfields < VA V2V %3V % > gand < V@1V 92yas)/ea)/a5)/9% > regpectively.

At one loop3!2, there are no superdiagrams with (anti)chiral vertices contributing to these correlation
functions. So, at one loop these are equal to their AV = 4 value.

At two loops, all receive non-planar corrections. Hence, unlike the three point functions, n—point functions
with n > 4 differ from their /' = 4 value already at the first order in which there are diagrams with chiral
vertices.

In fact, let’s consider the four point function < V@V @12 > The difference between its value in the
N =4 SYM and in the S-deformation is given by the two superdiagrams

The superdiagram on the left is planar, that on the right is non planar. For each of these two superdiagrams
we have computed the difference between the color factors

AMa20301 (g £ J) = Fpoa00s _ Fiazeacs (3.7.17)

which is a function of g, f and d (we have considered the parametrization of (3.7.9)).
After substituting in (3.7.17) the condition of conformal invariance (3.7.14), we have contracted A®1#2%3%4
with all the non-cyclically equivalent traces of four generators Tr(T %W T %@ T%®T%®) with o € S,,/Z, =
Sp—1 (see section 2.5 ).
As already stated in section 2.5, in the large N limit, at two loops, the leading contribution in the colour
factor is given by single-trace terms like N2Tr(T T2 % %),
Also, the contraction of Tr(T@T®2T%T%) with Tr(T% M T%@T%®T%®) is at most of order O(N*) (for
n generators it would be of order O(N")).
Hence, if the contraction

C = AM20304 Ty(T% (1) T% () T%(3) T% 1)) (3.7.18)

3-12}ere there is no mismatch between the number of the loops in the diagrams and the order of perturbation theory
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is of order O(N®), then one has a planar correction, while if it is of lower order, we have a non-planar
correction. With the aid of a Maple program, we have obtained the following results for the contractions C
of all the various non-cyclically equivalent traces Tr(T% M T %@ T %) T% @) with the A®19293% associated
to each of the two superdiagrams

aq a4

ag
a2
{T’f’ (al)a2)a3)a4) ) Tr (a’la CL2,CL4,CL3) 3 Tr (ala as, a4, CL2) 5 Tr (a1)a4)a3)a2)}

C:—ZdJ(N—l) (N=2)(N+2)(N+1) (3.7.19)

{Tr (a1,as3,a2,a4), Tr (a1, a4, a2,as)}

C= ;dJ(N— 1)(N—=2)(N+2)(N+1) (3.7.20)

a4

o QAN

as

a2

<

{Tr(a1,a2,a3,a4), Tr (a1, a2,a4,a3), Tr (a1, a3, as,a2), Tr (a1, a4,a3,a2)}

C=>dd(N—1)(N—-2)(N+2)(N+1) (3.7.21)

e~ w

{Tr (a1,as3,a2,a4), Tr (a1, a4, a2,as)}
C= —g dd(N —1)(N —2) (N +2) (N +1) (3.7.22)

Here, we have grouped together the traces giving the same contraction C and we have used for the traces a
notation such that, for example, T'r(aq, ag, a3, aq) stands for Tr(T* T2 T 7). Since the contractions C are
of order O(N*?), one has that the four point function < V#1219V % > receives a non-planar correction
with respect to its value in the N'=4 SYM.

As for the six point function < V@V 2y as}/e4/a5)/9 > we have that the superdiagrams appearing in the
difference < VAUV RVBYUY BV >,y — < VOV RV BV UV >0 and the associated contractions
C are

as
a2
Qa4
A as
al ae
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{T’f’ (a’la az, CL3,CL4,CL5,CL6) 3 Tr (ala az, ag, a5, 04, a’3) 3 Tr (CLl,CLg,CL4,CL2, ae, CL5) ) Tr (al)a3)a4)a5)a6)a2) )

TT(CLl,CLg,CL5,CL2,CL6,CL4) TT(CLl,CLg,CL6,CL2,CL5,CL4) Tr(al,a4,a3,a2,a5,a6) Tr(al,a4,a5,a2,a6,a3),

Tr (alaa4aa65a2aa5aa3) (CL CL5,CL3,CL2,CL4,CL6) (CL CL5,CL4,CL2,CL3,CL6) (CL CL5,CL6,CL2,CL4,CL3),
Tr (ala ag, as, az, a4, CL5) 3 Tr (CLl,CL6,CL4,CL2, as, CL5) 3 Tr (CLl,CL6,CL5,CL2,CL3,CL4) ) Tr (a’la ag, a5, 04,03, CLQ)}
3 _
C= 16 dd(N —1)(N=2)(N+2)(N+1) (N? +1) (3.7.23)

{T’f’ (a15a25a3)a4)a6)a5) 3 Tr (alaa2aa3aa5aa4aa6) 3 Tr (a1)a2)a3)a5aa65a4) ) Tr (CLl,CLQ,CLg,CL6,CL4,CL5)
Tr (CLl,CLQ,CLg,CLG,CL5,CL4 aTT ai, az, a4, as, as, ag ,T’f’ ai,az,aq4,as, as, ds ,T’f’ ai,az, a4, as, a3, ag
r(ai,a9,aq4,as,a6,a3), Tr (a1, a9, a4, ag,as,as) , Tr (a1, a2, a4, ag, as,as) , Tr(ay,asz,as,as, a4, ag) ,

ai,as2,as,as,a¢,0a4), 1r (a1, as, as, aq, as, ag) , Tr (a1, as, as, aq, ag,as) , Ir (a1, as, as, ag, ag, as

)

ai,as,as,ag,04,a3), 1r (a1, as, ag, as, a4, as) , Tr (a1, as, ag, as, as,a4) , Tr (a1, as, ag, ag, as, as) ,
a1, a2, ag,04,0s5,0a3), 1r (a1, as, ag, as,as,aq) , Tr (a1, as, a4, as, as,ag) , ITr (a1, as, aq, ag, as, as) ,
ai,as,as, a4, ag,a2), Ir (ay,as, as, ag, a4, as) , Tr (a1, as, ag, as, a4, as) , Tr (a1, as, ag, aq, as, as) ,
T T T
, Tr(a1,aq4,as,as,a¢,a9), T , T ,

,Tr
,Tr

ai, a4, as, az, ag, a2 ai, a4, as, ag, a3, az) , ai, a4, 06, 0a3,02,05) , ai, a4, ae, az, as,az) ,

ai, a4, e, as, a3, a2 ai,as, az, a3, ae,0a4) , ai, as,az, a4, 06,03 ) , ai,as, as, a4, 06,0a2) ,

ai, as, as, ae, a2,04) , ai,as, as, ag, a4,0a2), ai, as, a4, a2, 06,03 ) , ai,as, a4, asz, ag,az) ,

3 3

, Ir , Ir

ai, ae, as, a4, a5, a2 7TT ai, Gg, as, as, a2, a4 7TT ai, e, as, as, a4, az

ai, as, a4, ae, a3,az), ai, as, ae, a2, a3, a4 ai, as, ae, a3, 4, a2 ai, as, aeg, a4,03,02) ,

ai, ag, as, az, as, a4

), Tt ( ), T ( ), T ( )
Tr( az), Tr ( as) , Tr ( az), Tr ( )
Tr( as), Tr ( ag) , Tr ( az), Tr ( as)
Tr( az), Tr ( as) , Tr ( as), Tr ( as)
Tr( az), Tr ( as) , Tr ( ag) , Tr ( az)
Tr( az) , Tr ( az) , Tr ( as), Tr ( as)
(a1, as,a6,a4,as5,a2), Tr (a1,as, ag, as, as,a2) , Ir (a1, a4, a2, as, as, ag) , Tr (a1, aq, a2, ag, as, as) ,
(a1, a4,a3,a2,a¢,as) , Tr ( az) , Tr (a1, a4,a3, a6, as,az), Tr (a1, a4, as, az, as, ag)
( az), Tr ( az), Tr ( as), Tr ( az)
( az), Tr ( as), Tr ( az), Tr ( az)
( as), Tr ( az), Tr ( az), Tr ( az)
( az), Tr ( as), Tr ( az), Tr ( az)
r( as), Tr ( az) , Tr ( as), Tr ( az)
r( ), Tr ( ), Tr ( ), Tr ( )

SECIC RS RN

7T )
(a1, a6, 04,03, as,a2), Tr (a1, as, as, a5, a3, az) , Tr (a1, ag, as, a2, as, a3) , Ir (a1, ag, as, a3, a4, a2)}

)

c— %dJ(N— 1) (N = 2) (N +2) (N +1) (3.7.24)

{Tr (a1,as3,a9,a4,as,a6), Tr (a1, as, az, a6, as,a4) , Tr (a1, as, aq,as, az,a¢) , Ir (a1, as, aq, ag, az,as),
Tr (a1,as3,as,a6,a2,a4) , Tr (a1, aq, a2, a3, as,a¢) , Tr (a1, aq, as, ag, as, as) , Ir (a1, a4, as, ag, az, as) ,

( ( (a1, a6, az,as,as,as)
( ( (

ai, ag, as, a4, a2, a3)}

ai,as,aq,as,az,a¢), Ir

ai,ag, as,as, az,a4), Ir

ai,as,az, a6, a4, a3), Ir

ai,ag, 4,03, a2, as), Ir

Tr (a1, as,az, a3, a4, a6) , Tr

Tr (a1, ae, a2, as,a4,a3) , Tr

C= —1—36 dd(N —1) (N —2) (N +2) (N +1) (N? +2) (3.7.25)

{Tr(a1,as,az,a4,a6,as), Tr (a1, a3, az, as, as,a6) , Tr (a1, a3, az, as, ag, asa) , Ir (a1, as, az, ag, a4, as) ,

Tr (a1, as,as,a2,a4,a6), Tr (a1, a3, as, aq, a2, a6) , Ir (a1, as, ag, as, as, aq) , Ir (a1, aq, az, as, ag, as) ,

Tr (a1, aq4,a9,as,a¢,as3), Tr (a1, a4, as, as, a2, a6) , Ir (a1, aq, a3, ag, az, as) , Ir (a1, aq, as, as, az, ag) ,
Tr (a1, aq4,a6,a2,a3,as), Tr (a1, a4, ag, as, az,a3) , Ir (a1, as, az, a4, a3, ag) , Ir (a1, as, as, ag, as, aq) ,
Tr (a1, as,a3,a2,a¢6,a4), Tr (a1, as, as, aq, a2, a6) , Ir (a1, as, aq, ag, az, as) , Ir (a1, as, ag, as, az, aq) ,
Tr (a1, as,a¢,a4,a2,a3), Tr (a1, aq, az,as,as,aq) , Ir (a1, ag, az, aq, a3, as) , Ir (a1, ag, az, aq, as, as) ,
Tr (a1, a6, a9,as,a3,a4), Tr (a1, aq, as, aq, a2, as) , Ir (a1, ag, aq, a2, as,as) , Ir (a1, ag, a4, as, az,as)}
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c— —g dd(N —1) (N —2) (N +2) (N +1) (3.7.26)

as

a9 ay

a
1 ag

{Tr (a1, a2,a3,a4,as5,a¢6) , Tr (a1, a2, as, as, as,a3) , Tr (a1, a3, as, az, ag,as) , Tr (a1, as, as, as, ag, az)

Tr (a1, as, as, a2, as, as) , Tr (a1, a3, ap, az, as,as) , Ir (a1, a4, as, az, as, ag) , Ir (a1, a4, as, a2, ag, az) ,
( (CL CL5,CL4,CL2,CL3,CL6) (CL CL5,CL6,CL2,CL4,CL3),
( ( (

Tr (alaa4aa65a2aa5aa3) ay CL5,CL3,CL2,CL4,CL6)

Tr (CLl,CLG,CLg,CLQ,CL4,CL5) 3 Tr CLl,CL6,CL4,CL2,CL3,CL5) 3 Tr CLl,CL6,CL5,CL2,CL3,CL4) 3 Tr CLl,CLG,CL5,CL4,CL3,CL2)}

C= —1—36 dd (N —1) (N —2) (N +2) (N +1) (N? + 1) (3.7.27)

{T’f’ (a’la az, CL3,CL4,CL6,CL5) 3 Tr (ala az, as, as, a4, CLG) 5 Tr (CLl,CLQ,CLg,CL5, ae, CL4) ) Tr (CLl,CLQ,CLg,CL6,CL4,CL5)
Tr (CLl,CLQ,CLg,CLG,CL5,CL4 aTT ai, az, a4, as, as, ag ,T’f’ ai,az,aq4,as, ags, ds ,T’f’ ai,az, a4, as, as, ag

Tr ai, az, a4, as, ag, as aTT ai, az, a4, a6, a3, as ,T’f’ ai, az, a4, ae, as, a3 ,T’f’ ai, az,as,az, a4,06) ,

), Tt ( ), T ( ), T ( )

( az), Tr ( as), Tr ( az), Tr ( )
Tr (a1, as,as,as3,a¢6,a4), Tr (a1, a2, as, aq,as,ag) , Ir (a1, az, as, aq, ag, as) , Ir (a1, as, as, ag, as, ayq) ,
Tr (a1, as,as,a6,a4,a3), Tr (a1, a2, ag, as, aq,as) , Ir (a1, az, ag, as, as, aq) , Ir (a1, az, ag, aq, as, as) ,
Tr (a1, az,a¢,a4,a5,a3), Tr (a1, a2, ag, as, as,aq) , Ir (a1, as, aq, az, as,a¢) , Ir (a1, as, aq, ag, as, az) ,
Tr (a1,as3,as,a4,a6,a2), Tr (a1, as, as, ag, ag, a2) , Tr (a1, as, ag, a2, aq,as5) , Ir (a1, a3, ag, as, az,as) ,
Tr (a1,as3,ag,a4,as5,a2), Tr (a1, as, ag, as, ag, a2) , Tr (a1, a4, as, as, as, ag) , Ir (a1, a4, a2, ag, as, as) ,
Tr (a1, a4, as,az2,a6,as5), Tr (a1, a4, as, as, ag, a2) , Tr (a1, a4, as, ag, as, a2) , Ir (a1, a4, as, az, as, ag) ,
Tr (a1, a4, as,as,a6,a2), Tr (a1, a4, as, ag, as, a2) , Tr (a1, a4, ag, as, az, as) , Ir (a1, a4, ag, as, as, asz) ,
Tr (a1, a4, ag,as5,as,a2), Tr (a1, as, az, as, ag, a4) , Tr (a1, as, as, aq, ag,as) , Ir (a1, as, as, aq, ag, as) ,
Tr (a1, as,a3,a6,a2,a4), Tr (a1, as, as, ag, aq,a2) , Tr (a1, as, aq, a2, ag, as) , Ir (a1, as, aq, as, ag, az) ,
Tr (a1, as,a4,a6,a3,a2), Tr (a1, as, ag, az,as,aq) , Ir (a1, as, ag, as, aq, a2) , Ir (a1, as, ag, aq, as, az) ,
Tr (a1, ae,a3,a2,as,a4), Tr (a1, a6, as, aq,as,a2) , Ir (a1, ag, as, as, as, aq) , Ir (a1, ag, as, as, aq, az) ,
Tr (a1, ae,a4,0as3,as,a2), Tr (a1, aq, aq,as,as,az) , Ir (a1, ag, as, az, aq,as) , Ir (a1, ag, as, as, aq,a2)}

C= —% dd(N —1) (N —2) (N +2) (N +1) (3.7.28)

{T’f’ (a’la as, CL2,CL4,CL5,CL6) 3 Tr (ala as, az, ag, as, CL4) 3 Tr (CLl,CLg,CL4,CL5, az, CLG) ) Tr (al)a3)a4)a6)a2)a5) )

Tr (ala as, as, ag, a2, CL4) 3 Tr (al) a4, a2, as, as, CLG) Tr (a’l) a4, az, ag, as, CL3) Tr (a’la a4, as, g, a2, CL3) 3
(CL CL5,CL4,CL3,CL2,CL6) (CL a65a2aa3aa4)a5)a
( (

Tr (ala as, a2, a3, a4, CLG) 3 Tr ai, as, az, g, a4, a’3)

—~

Tr (CLl,CLG,CLQ,CL5,CL4,CL3) 3 Tr CLl,CL6,CL4,CL3,CL2,CL5) 3 Tr CLl,CL6,CL5,CL3,CL2,CL4) ) Tr CLl,CLG,CL5,CL4,CL2,CL3)}
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3 -
= —dd(N —
¢ 16 (

1) (N —

2) (N +2)(N+1) (N?+2)

(3.7.29)

{Tr(a1,as, a2, a4,a6,a5), Tr (a1, a3, az, as, as,a6) , Tr (a1, a3, az, as, ag, asa) , Ir (a1, as, az, as, a4, as) ,

Tr(al,ag,a5,a2,a4,a6 , Tr (a1, a3, as,a4,a2,a¢) , Ir (a1, a3, ag, as, az,a4) , Tr (a1, as, az, as, ag, as

r(ay,aq4,as,as,a¢,as3), Tr(ai,aq,as,as,as,ag), Ir (a1, aq, a3, ag, a2, as), 1r (a1, aq, as, as, as, ag) ,

a a’47a67a27a37

Tr

), Trr ( ), T (
Tr( az), Tr ( ag) , Tr (
( as), Tr (a1, aq, ag,as,az,a3) , Tr (a1,
(a1,as,as,a2,a¢,a4), Tr (a1, as,as,aq,az,a¢) , Ir (aq,
( az), Tr ( as) , Tr (
( ), Tr ( ), Tr (
3
C:§dd(N—1)(N—
as
ag
A
ay

). Tr(
as), Tr (
as,az, a4, a3,a¢) , I (
as,ay,ag,az,as), Ir (
as), Ir (
). Ir(

2)(N+2)(N+1)

QNN

as

ag

{Tr(a1,a2,a3,a4,as,a¢), Tr (a1, as, as, as, a3, az)}

€= -2 gan?
16

(N

1) (N —

2) (N +2) (N +1)

)

)

Tr (a1, as, a2, as, as, as) ,
ai,as,aeg,a3,a2,qa 4)
a3)

)

)

ai, as, aeg, a4, a2,as aTT ai, ae, a2, 03,05, a4 ,T’f’ ai, ag, a2, a4, a3, as ,T’f’ ai, ag, az, a4, 05,03 ) ,

ai, ae, a2,05,a3, G4 aTT ai, ae, a3, a4,a2,as ,T’f’ ai, ag,a4,0a2,0a5,a3 ,T’f’ ai, ae,Q4,0a5,02,a3 }

(3.7.30)

(3.7.31)

{T’f’ (a’la az, CL3,CL4,CL6,CL5) 3 Tr (ala az, as, as, a4, CLG) 3 Tr (CLl,CLQ,CLg,CL5, ae, CL4) ) Tr (CLl,CLQ,CLg,CL6,CL4,CL5)

Tr (CLl,CLQ,CL4,CL5,CL6,CL3 aTT ai,az, aq,0e,as5,a3 ,T’f’ ai, az,as, a4, a6, a3 ,T’f’ ai, az,as, g, 4, a3

Tr ai, az, dg, a4, 05, as aTT ai, az, aeg, as, a4, as ,T’f’ ai,as, az, a4, as, ag ,T’f’ ai,as, az,a4,06,0s) ,

Tr (a1, as3,a2,as,a4,a

=3

riap,as, a4, as, a6, 4

Tr (a1, as3,a6,a4,a5,a
Tr

=3

r\ai,as,az,as, a3, a
Tr

(
(
(
(
(a1,a4,a3,a¢,a2,a
(
(
Tr(

), Trr ( ), T ( ), T (

az), Tr ( az), Tr ( ag) , Tr (

ag), Tr (a1, as, a2, as,a6,a4) , Tr (a1, as, as, ag, a4, as) (

az), Tr (a1, as,aq,a6,as,a2) , Tr (a1, as,as, aq, ag,az) , Tr (

az), Tr (a1, as, as,as,aq,a2), Tr (a1, aq,a2,as,a3,a¢) , Tr (

as), Tr (a1, aq,as,a6,a2,a3) , Tr (a1, a4, ag, as, a2, as) , Tr (

aq), Tr (a1, as,as,ag,az,a4) , Tr (a1, as, aq, ag, az, as) (

ai,as, ag, aq,a2,a3), 1r (a1, as, ag, aq, as,az), Tr( ) (
ay,ag, a4, as,as, a2), 1r (a1, ag, as, aq, a2, a3)}

C=0

{Tr (a1, a2, a3, as,as,a4), Tr (a1, a4, as, ag, az, a2)}

3
= 2 ddN?(N —
C 16dd (

1) (N -

73

2)(N+2)(N+1)

7TT ai,as, az, ag, as, a4

ai, as, as, ag, a4, a2

riai,aq, a6, 05,03, a2

)
)
as)
az)
(a1, a4, az,a6,a3,as),
az)
, Tr(ay,as, a4, ag, a3, az)

)

)

)

)

)

ai, ag, as, as, a2, a4 ,T’f’ ai, ag, a4, as,a2,0a3) ,

(3.7.32)

(3.7.33)



{T’f’ (a’la az, CL4,CL3,CL5,CL6) 3 Tr (ala az, a4, as,0a3, CLG) 3 Tr (CLl,CLQ,CL4,CL6, as, CL5) ) Tr (CLl,CLQ,CL5,CL3,CL4,CL6)
Tf’(a1,a2,a5,a6,a3,a4 , Ir (a1, az, a6, a3, a4, a5) , Tr (a1, a3, as, a2, a5, a6) , Ir (a1, as, as, as, az, ag

r(a1,as3,as,a6,a2,a4), Ir (a1, as, ag, a2, a4, as) , Ir (a1, a4, a2, a3,as,a6) , Tr (a1, a4, az, ag, as, as) ,

|

a1, aq4,as,a2,a6,0as), 1r (a1, a4, as, ag, as, as) , Tr (a1, a4, as, as, as, ag) , ITr (a1, aq, ag, as, as, as) ,

|

a1, ae,02,0s,04,0a3), 1r (a1, ag, as, as, as,a4) , Tr (a1, ag,as, as, aq,as), Ir (a1, ag, ag, ag, as, as

), Tr ( ), Tr ( ), Tr ( )
as), Tr ( as) , Tr ( ag) , Tr ( )
as), Tr ( az) , Tr ( ag) , Tr ( as)
ai,as,ag,as, aq,ag) , Tr (a1, as, as, as, ag, aq) , Tr (a1, as, as, ag, ag, a2) , Ir (a1, as, aq, az, ag,as)
ag) , Tr ( az) , Tr ( as), Tr ( as)
az), Tr ( as), Tr ( az), Tr ( as)
), Tt ( ), T ( ), T ( )

(a as,ay4,a3,az,a6), 1r (a1, as, a4, a3, a6, a2) , Tr (a1, as, ag, az, a3, aq) , Tr (a1, ag, az, as, as, as) ,

}

Tr ai, ae, a4, a3, as, a2 aTT ai, ae, as, a2, 04,03 ,T’f’ ai, ag, as, a3, a2, a4 ,T’f’ ai, ag, as, a3, a4, a2
3 _
C=5 ddN* (N —1) (N —2) (N +2) (N + 1) (3.7.34)

{Tr(a1,a2,a4,a3,a6,as5) , Tr (a1, az, as, a3, as, as) , Tr (a1, az, as, as, a3, ag) , Tr (a1, a2, as, as, as, as) ,
Tr (CLl,CLQ,CLG,CL4,CL3,CL5 aTT ai,az, ag, as, as, a4 ,T’f’ ai, a3, aq,a2, e, as ,T’f’ ai, as,as,a4,a2,aq

Tr ai,as, aeg, a2, as, a4 aTT ai, as, ae, as, a2, a4 ,T’f’ ai, a4, 0a2,as, ag, as ,T’f’ ai, aq,az,as, ag,as ) ,

.
), Tt ( ), T ( ), T ( )
( as), Tr ( as), Tr ( as), Tr ( )
Tr (a1, aq4,a3,a2,as,a6), Tr (a1, a4, as, as, ag,az) , Ir (a1, a4, as, a2, ag,a3) , Ir (a1, aq, as, as, az, ag) ,
Tr (a1, aq4,as,as3,a¢6,a2), Tr (a1, a4, ag, as, az,as) , Ir (a1, aq, ag, a3, as, az2) , Ir (a1, as, az, as, ag, ayq) ,
Tr (a1, as,a3,as,a4,a6), Tr (a1, as, as, aq, ag,az) , Ir (a1, as, aq, az, a3, ag) , Ir (a1, as, ag, az, a4, as) ,
Tr (a1, as,a¢,a3,a2,a4) , Tr (a1, as, ag, as, aq, a2) , Tr (a1, ag, as, as, as,aq) , Ir (a1, ag, a2, aq,as,as3),
Tr (a1, a6, a3, a2,a4,as5), Tr (a1, ag, as, aq, as, a2) , Tr (a1, ag, aq, az, a3, as) , Ir (a1, ag, as, az, as, as)}
C= —;—2 ddN? (N —1) (N —2) (N +2) (N +1) (3.7.35)

{T’f’ (al)a3)a4)a6)a2)a5) 3 Tr (a’laa’3aa’5aa’2)a4)a6) 3 Tr (alaa5aa2aa65a4aa3) 3 Tr (al)a6)a4)a2)a5aa3)}

C= %dd(]\f— 1) (N —2) (N +2) (N +1)(N? +6) (3.7.36)

{T’f’ (al)a3)a5)a2)a6)a4) 3 Tr (CLl,CLg,CLG,CL4,CL2,CL5) 3 Tr (alaa4aa65a2aa5aa3) 3 Tr (al)a5)a2)a4)a6aa3)}

C= —3% dd(N —1) (N —2) (N +2) (N +1) (N? +6) (3.7.37)

{T’f’ (a’la aq, CL3,CL5,CL2,CL6) 3 Tr (ala as, a2, a4,0a3, CLG) 3 Tr (CLl,CL5,CL3,CL4, az, CLG) ) Tr (CLl,CL6,CL2,CL4,CL3,CL5) )

Tr (ala ag, a2, as5,0a3, CL4) 3 Tr (CLl,CL6,CL3,CL4, az, CL5)}

C= %dJ(N— 1)(N—-2)(N+2)(N+1) (3.7.38)
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“ QNN
al

ag ae

{T’f’ (a’la az, CL3,CL4,CL5,CL6) 3 Tr (ala az, as, a4, ae, CL5) 3 Tr (CLl,CLQ,CLg,CL5, aq, CLG) ) Tr (CLl,CLQ,CLg,CL5,CL6,CL4)
Tr (CLl,CLQ,CLg,CLG,CL4,CL5 3 Tr ai,as,az,aq4,06,0s5) , Tr ai,as,az,as,a4,06), Tr ai,as,az, as, ag, a4
Tr ai,as, az, ag, 4, as aTT ai, as, az, a6, as, a4 ,T’f’ ai, a4, a2, a6, a3, as ,T’f’ ai, aq,as,as, a2,ae) ,

Tr (a1, a4,a3,a6,a2,as5), Tr (a1, aq, as, ag, az, as

)

|
|

=3

Tr (a1, as,a4,0a6,02,a3), Tr (a1, as,a4,a¢,a3,a2) , Tr (a1, as, ag, as, az,a3) , Tr (a1, as, ag, as, az, as

) )

( (
( (
, Tr (a1, a4, a6, as,az2,a3) , Tr (a1, aq, ag, as, as, as
( (
( (
( (

r\a,as, a3,a6,02,a 4)7
Tr (a1, a6, a3, a4, a2,as) , Tr (a1, as, a4, as, az, as) ,

ai,ag,az,a4,as3,as), Tr (a1, ag, az, as, as, ay

), Trr ( ) )

( as), Tr ( as) as)

( as) , Tr ( as) a3)

Tr (a1, as,a2,a4,as,a6), Tr (a1, as, az, ag, as, aq) , Tr (a1, as, as, aq, az, ag) ,

( az) , Tr ( az) a3)

Tr( as) , Tr ( as) )
Tr( ), Tr ( )

}

r(a1,a6,a4,as5,a3,a2), Ir (a1, ae, as, as, az, az

C= —% dd (N —1)(N =2)(N+2)(N +1) (3.7.39)

{T’f’ (CLl,CLQ,CLg,CL6,CL5,CL4) 3 Tr (CLl,CLg,CLQ,CL4,CL5,CL6) 5 Tr (alaa4aa5aa65a3aa2) 3 Tr (al)a6)a5)a4)a25a3)}

C= —1—36 dd(N —1) (N —2) (N +2) (N +1) (N? + 1) (3.7.40)

{Tr (a1, a2,a4,a3,as,a¢) , Tr (a1, a2, a4, as, ags, as) , Tr (a1, a2, as, a3, as, a) , Tr (a1, a2, ae, a3, as, as) ,

Tr (CLl,CLQ,CLG,CLg,CL5,CL4) Tr al)a3)a4)a25a5aa6) CLl,CLg,CL4,CL2,CL6,CL5) a’laa3aa5aa2aa65a4)

r (a1, as,a6,a2,a4,as), Ir (a1, a3, ag, az, as,as),

( Tr( Tr(
Tr( ) ( ), Tr (a1, a4, a5, a2,a6,a3) , Tr (a1, a4, as, a3, ag, az)
Tr (a1, a4, ag, a2,as,a3), Tr (a1, as, aq, as, ag,a3) , Tr (a1, as, aq, as, ag, a2) , Ir (a1, as, ag, az, as,as) ,
Tr ( ), Tr( ), Tr ( ), Tr ( )}

r(a1,as,a6,a3,a4,a2), Ir (a1, as, as,as,as,az2) , Tr (a1, as, as, az, as,a3) , Tr (a1, ag, as, az, as, a2

C= %dJ(N— 1) (N —2) (N +2) (N +1) (N? +4) (3.7.41)

{T’f’ (a’la az, CL4,CL5,CL3,CL6) 3 Tr (ala az, as, a4,0a3, CLG) 3 Tr (CLl,CLQ,CL5,CL6, as, CL4) ) Tr (CLl,CLQ,CL6,CL4,CL3,CL5)

Tr (a1, as,a¢,as,a3,a4), Tr (a1, a3, aq,as, a2, a6) , Ir (a1, as, aq, ag, az, as) , Ir (a1, as, as, aq, az, ag) ,
Tr (a1, as,as,a6,a2,a4), Tr (a1, a3, ag, as, az,aq) , Ir (a1, a4, az, a3, as, ag) , Ir (a1, aq, az, as, ag, as) ,
Tr (a1, a4, a2, a6,as,a3), Tr (a1, aq,as, as, ag, as) , Tr (a1, a4, as, as, ag, a2) , Ir (a1, a4, as, ag, as, az) ,
Tr (a1, a4, a5, a2,as,a6) , Tr (a1, aq, ag, as, as, as) , Tr (a1, as, as, as, aq, ag) , Ir (a1, as, az, ag, as,as) ,
Tr (a1, as,as,az2,a6,a4) , Tr (a1, as, as, aq, ag,a2) , Tr (a1, as, aq, as, az, ag) , Ir (a1, as, ag, az, as, aq) ,
Tr (a1, a6, a2, as3,a4,as5), Tr (a1, ag, az, aq,as,a3) , Tr (a1, ag, as, as, aq,as3) , Ir (a1, ag, as, az, as, aq) ,
Tr (a1, a6, a3, a4,as,a2), Tr (a1, ag, as, as, aq, a2) , Tr (a1, ag, aq, as, az, as) , Ir (a1, ag, as, as, az, aq)}

3 -
— ——dd(N -
C = — 55 dd(

1) (N —

75

2) (N +2) (N +1) (N?+2)

(3.7.42)



{T’f’ (CLl,CLQ,CL4,CL5,CL6,CL3) ) Tr (CLl,CLQ,CLG,CL5,CL4,CL3) 3 Tr (alaa3aa4aa5aa65a2) 3 Tr (al)a3)a6)a5)a4aa2)}

C= %dd(]\f— 1) (N —2)(N+2)(N+1)(N?+2) (3.7.43)

{T’f’ (CLl,CLQ,CL4,CL6,CL3,CL5) ) Tr (CLl,CLg,CLG,CL4,CL2,CL5) 3 Tr (alaa5aa2aa4aa65a3) 3 Tr (al)a5)a3)a6)a4aa2)}

C= —;—2 dd (N —1) (N +1) (N —2)* (N +2)? (3.7.44)

{Tr(a1,a2,a4,a6,as,a3), Tr (a1, a2, as, as, as, az) , Tr (a1, az, as, ag, as, a3) , Ir (a1, az, ag, as, as,as) ,
Tr (a1,as, a4, as, a5, a2) , Tr (a1, a3, as, as, ag,a2) , Ir (a1, a3, as, ag, as,a2) , Tr (a1, a3, ag, as, as, az) ,

Tr (a1, a4, a2,as,as,a6), Tr (a1, ag, as, as, az, aq)}

C= ng(N— 1)(N—=2)(N+2)(N+1) (3.7.45)

{Tr (a1, a2,a5,a3,a6,a4) , Tr (a1, a3, as, a2, as, as) , Tr (a1, a4, a2, a3, ag,as) , Tr (a1, as, a3, az, as, ag)
Tr (a1, a4, a5, as3,a2,a6) , Tr (a1, aq, ag, as, az, as) , Tr (a1, a4, ag, as, as, a2) , Ir (a1, a5, az, as, ag, aq) ,
Tr (a1, as,as, az, a4, ag) ai, ag, az, a3, as, a4) ,

ai, ag, a5, a2,a3,04) }

Tr (a1, a5, a4, a2,as3,a6) , Tr (a1, as, ag, as, az,aq) , Tr (
Tr (a1,a6,a3,a2,a4,as5), Tr( Tr( Tr (

ai,ag, a4, 02,03,as) , Tr (a1, ag, as, az, as, as)

C= %dJ(N— 1)(N —2) (N +2) (N +1) (N?-2) (3.7.46)

“ QNN @

2

as

ai

{Tr(a1,a9,as,a4,as,a¢), Tr (a1, az,as,as,as,aq) , Ir (a1, a4, a3, ag, as,a2), Ir (a1, ag, as, aq,as, az)}

c— —332 dd(N —1) (N +1) (N —2)2 (N 4 2)? (3.7.47)

{T’f’ (a’la az, CL3,CL4,CL6,CL5) 3 Tr (ala az, a4, asz, as, CLG) 3 Tr (CLl,CLQ,CL4,CL3, ae, CL5) ) Tr (CLl,CLQ,CL5,CL6,CL4,CL3) )
Tr (ala az, ag, a5, a3, CL4) 3 Tr (CLl,CLQ,CL6,CL5, aq, a’3) 3 Tr (al)a3)a4)a5)a6)a2) ) Tr (a’la as, a4, ag, CL5,CL2) 3

Tr (ala a4, as, as, g, CL2) 3 Tr (al) as, aeg, a3, a4, CL2) 3 Tr (a’l) as, ae, a4, a3z, CLQ) ) Tr (a’la ag, a5, a3, 04, CLQ)}
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C:%dJ(N—l)(N—Q)(N+2)(N+1) (N2 1 4)

{Tr (a1,a2,as,as,aq,aq), Ir (a1, as, as, ag,aq,as) , Ir (a1, as, a4, as, as, ag) , Tr (a1, a2, a4, a6, as,as) ,
Tr (a1, as,as,as3,a¢,a4) , Tr (a1, a2, as, aq, ag,as) , Tr (a1, az, ag, as, as,aq) , Tr (a1, az, ag, aq, as, as

ai,as,as,aq,ag,as), 1r (a1, as, as, as, ag,aq), Ir (a1, as, as, ag, as, aq) ,
, Ir

Tr ai,as, az, a4, as, g aTT

ai,as,aq,as,a2,0a6) , ai,as, a4, a6, a2,0s) , ai, ag, as, a4, a6, a2 ai,as,as, ag, a2,04) ,

33
=

ai,as, ae, a4,05,02) , ai,as, ae, a5, 02,04 ) , ai, a4, a2, as,as,a¢6), 4101, a4, a2, a3, de, ds) ,

|
|

ai, aq,az,as, 06,03 ) , ai,aq,az,a6,05,0a3), L1 (A, a4, ag, as, az,ae), L7 \ai, a4, as, e, a2, as) ,

=3

r(ai,as,as,as,a4,a¢), Tr(ai,as,as,aq,as,ag), Ir (a1, as,as,ag,a3,a4), Tr (a1, as, as, ag, aq, as

)

=3

ai,as,as,aq,az,a6), Tr (a1, as, a3, ag, ag, a2) , Tr (a1, as, aq, a3, az, ag) , Ir (a1, as, aq, ag, az, az) ,

T
Tr (a1, as,a6,a3,a2,a4), Tr (a1,as, as, as,az,a3) , Ir (a1, ag, a2, a3, as, as) , Ir (a1, ag, a2, a4, a3, as) ,

Tr (a1, a¢,a2,as,as3,a4), ITr (a1, ag, a2, as, a4, a3) , Tr (a1, ag,as, aq,as,as), Tr (a1, ag, ag, as, aq, as

), Trr ( ), T ( ), T ( )
( ag) , Tr ( as), Tr ( as), Tr ( )
( ag) , Tr ( as), Tr ( az), Tr ( as)
( az), Tr ( as), Tr ( ag) , Tr ( as)
( az), Tr ( az), Tr ( ag) , Tr ( as)
r (a1, aq4,as,as3,a¢,a2), Tr (a1, a4, as, ag, a2,as3) , Ir (a1, a4, ag, as, as, az), Tr (a1, aq, ag, as, az, as) ,
( ag) , Tr ( ag) , Tr ( as), Tr ( as)
( ag) , Tr ( az) , Tr ( ag) , Tr ( az)
( as), Tr ( az), Tr ( as), Tr ( as)
( as), Tr ( az), Tr ( as), Tr ( az) ,
( ), Tt ( ), T ( ), T ( )}

Tr ai, ae, a4, a3, a2, as aTT ai, ae, a4, a5, a3, a2 ,T’f’ ai, ag, as, a3, a2, a4 ,T’f’ ai, ae, as, a4, a2, a3

C:—S%dJ(N—l)(N—Q)(N+2)(N+1) (N? 4 2)

{TT’(CLl,CLQ,CLg,CL5,CL6,CL4) T (alaa2aa4aa5aa65a3) TT(CLl,CLQ,CL5,CL3,CL4,CL6),TT’(CLl,CLQ,CL6,CL3,CL4,CL5),

TT(CLl,CLg,CL4,CL2,CL5,CL6) Tr al)a3)a5)a25a4aa6) Tr(al)a3)a6)a2)a4)a5) TT’(CLl,CLg,CLG,CL5,CL4,CL2),

p
(

TT(CLl,CL4,CL3,CL2,CL6,CL5 ,TT(CL a4, e, 02,03, as )T (CL CL4,CL6,CL5,CL3,CL2) (CL CL5,CL3,CL2,CL6,CL4),
( Tr (a1, a5, a6, a2, a3,a4) , Tr (a1, as, as, az, as, az) ,
(

) )
Tr (a1, as,a4,a2,a6,a3), Tr (a1, as, a4, as, ag, az) ,
Tr (a1, a6, a4, a3, as,a2) , Tr (a1, ag, as, az, as,a3)}

)

C:%dJ(N—l)(N—Q)(NJrQ)(NJrl)(N2+2)

{TT (a'17 ag, a37a67a57a4) ) Tr (a/h az, a4, ag, as, a3) ) Tr (a17a27a57a47 as, a’6) ) Tr (a17a27a67a47a37a5)7
Tr (a1,as, a4, a2,a6,as) , Tr (a1, a3, as, ag, as, a2) , Tr (a1, as, a3, az, as, ag) , Tr (a1, as, as, ag, ag, az) ,

Tr (alaa5aa3aa4aa65a2) 3 Tr (a1)a5)a6)a25a45a3) 3 Tr (CLl,CL6,CL3,CL4,CL5,CL2) ) Tr (CLl,CLG,CL5,CL2,CL3,CL4)}

C:ng(N—l)(N—Q)(N+2)(N+1)

{T’f’ (a’la as, CL2,CL5,CL4,CL6) 3 Tr (ala as, az, g, a4, CL5) 3 Tr (CLl,CLg,CL5,CL2, ae, CL4) ) Tr (al)a3)a5)a4)a2)a6)
Tr (CLl,CLg,CLG,CLQ,CL5,CL4 aTT ai,as, ae, a4, a2, as ,T’f’ ai,aq,az,as, as, ag ,T’f’ ai,aq4,az, ae, a3, as

Tr ai, a4, as, az, ag, as aTT ai, a4, as, az, a2, dg ,T’f’ ai, a4, de, a2, as, a3 ,T’f’ ai, a4, ae, a3, a2,0as) ,

(3.7.48)

(3.7.49)

(3.7.50)

(3.7.51)

)
( as)
(a1,as,a2,as3,a¢,a4), Tr
( ag)
( )

(
(
(a1,as,az,a4,a¢,a
(
(

), T (
ag) , Tr (
as), Tr (aq,
az), Tr (
), Tr (

). Ir(
ag), Tr (
as,as,az,aq,ag), Ir (
as), Tr (
). Tr(

)
)
ai,as,as, ag,az, ay) ,
as)
)

Tr

Tr (a1, as,aq4,092,as3,a¢), Tr (a1, as, a4, ag, as,a3) , Tr (a1, ag, as, as, as,a4) , Tr (a1, ag, as, ag, as, as) ,

Tr (a1, a6, a3, a2,a4,as5) , Tr (a1, ae, as, as, az, as) , Tr (a1, ag, a4, a2, as, as) , Tr (a1, as, as, as, az, az)}
3

7

(3.7.52)



{TT (a’la a4, as, CL2,CL3,CL6) 3 Tr (ala ag, as, az, as, CL4)}

c— %dJ(N— 1) (N +1) (N — 2)% (N +2)2 (3.7.53)

Since the contractions C are at most of order O(NY), the six point function < V1 V2)/ %}/ a1}/451/46 > has
a non-planar correction with respect to its value in the ' =4 SYM ( a planar correction would be of order
O(N?®)).

We have also studied the 'mixed’ chiral-vector correlation functions with a chiral, an antichiral and two or
three vector superfields < @@ ®Fa2yY% > and < M Pf2yayaayes > respectively (the flavor indices

They have a non planar correction already at one loop, which is in this case the first order with diagrams
containing chiral vertices.

In fact, for the correlation function < ® ®f@21a1% >  the superdiagrams contributing to the difference
between the 8 deformation and N'= 4 SYM and the associated color contractions C are

as
az

2
2
N

{Tr(a1,a2,a3,a4), Tr (a1,a2,a4,a3), Tr (a1,as, a2, a4), Tr (a1, as, as,az),

Tr (a’la a4, az, a’3) 3 Tr (al) a4, as, CL2)}

(N-1)(N—-2)(N+2)(N+1)
N

C= %dcf (3.7.54)

a2

al as
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{T’f’ (al)a2)a3)a4) ) Tr (ala az, a4, a’3) 3 Tr (CLl,CLg,CLQ,CL4) ) Tr (a’la CL3,CL4,CL2) 5

Tr (a’laa’4aa’2aa’3) ’ Tr (a1)a4aa3aa2)} (3755)
C:_%mﬂN—lﬂN—Q%N+2MN+1) 5.7.56)

Since, the color contractions C are at most of order O(N?3), there is a non-planar deviation (a planar
correction would be of order O(N®)). As for the five point correlation function < @ $fa2)/ )4}/ > the

superdiagrams contributing to the difference between the 8 deformation and N/ = 4 SYM and the associated
color contractions C are

az

aj a4 as

{Tr(a1,a2,a3,a4,as), Tr (a1, a2, a4,as,a3), Tr (a1, az,as, a3, as), Ir (a1, a3, as, a2, as) ,

Tr (a1,as,as,a2,a4), Tr (a1, a4, a2,a3,as) , Tr (a1, a4, a5, az,a3)}

C=-dd(N —2)(N+2)(N+1) (3.7.57)

1
4

{Tr(a1,a2,a3,as5,a4) , Tr (a1, a2, a4,as3,as) , Tr (a1, az, as, as, a3) , Ir (a1, as, a2, as,as) ,
Tr (a1,as, a4, a5,a2), Tr (a1, a4, a3,a2,as) , Tr (a1, as, as, a3, a2), Ir (a1, as, a2, az, as)

Tr (a1, as,as,a4,a2), Tr (a1, as, aq, az,as)}

C=0 (3.7.58)

{Tr(a1,as,a2,as5,a4) , Tr (a1, a3, as, as,a2) , Ir (a1, as, az, as, a3) , Ir (a1, as, as, as, az) ,

Tr (a1, as,a2,a4,a3), Tr (a1,as, a3, a2, a4) , Tr (a1, a5, a4, a3,a2) }

C= —i dd(N —1) (N —2) (N +2) (N +1) (3.7.59)
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as
aq
a2

{Tr(a1,a2,a3,a4,as), Tr (a1, a2, a4,as,a3) , Tr (a1, az, as,as, as) , Ir (a1, aq, as, az,as3) ,

Tr (a1, as,a2,a3,a4)}

C=-dd(N—-1)(N—-2)(N+2)(N+1) (3.7.60)

i
4

{Tr (a1,a2,a3,as,a4), Tr (a1, a2,a4,as,as), Tr (a1, a2, as,a4,as3), Tr (a1, a3, az,aq,as),
Tr (a1,as3,a4,a2,as5), Tr (a1, a3, a4, a5,a2), Tr (a1, aq, a2, as,as), Tr (a1, aq, as, as, as),

Tr (a1, as,a2,a4,a3), Tr (a1, a5, a3, az,a4) , Tr (a1, a5, a3, aq,a2), Tr (a1, as, aq,az,a3)}

C=0 (3.7.61)

{Tr (a1,as,a2,as,a4), Tr (a1,as,as,aq,a2), Tr (a1, a4, as,az,as), Ir (a1, a4, as, as,asz),

Tr (ala as, a4, a3z, CL2)}

C= —i dd(N —1) (N —2) (N +2) (N +1) (3.7.62)

{Tr(a1,as,as,a2,a4)}

C:

% dd(N — 1) (N — 2) (N +2) (N +1) (3.7.63)
{Tr (a1, a4, a2,as,a3)}
C= —%dJ(N—l) (N=2)(N+2)(N+1) (3.7.64)

Since, the color contractions C are at most of order O(N*), there is a non-planar deviation (a planar
correction would be of order O(N?)).
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3.8 Conclusions and Outlook

As for the N'=4 SYM theory, we can summarize our results as follows

e In the off-shell regime dual conformal symmetry depends on the choice of the gauge. In fact, we
have computed in a A" = 1 supersymmetric gauge the off-shell planar amplitude with four external

scalars A‘fJZO‘;he” (¢¢T¢¢T) and with four external gluons A‘f];gg‘;he” (Auleu A%AM) at one loop. The

decomposition of these amplitudes contains non-conformal scalar integrals.

1loop 1loop
the on-shell dimensional regularized version of the amplitudes, i.e.

e The on-shell limit of the off-shell amplitudes A%/ 5!l (¢¢T¢¢T) and A%/T shell (AMAMQ Ay, AM) matches

Tim AL (601001) = Ag, (00T00 ).

lim AP (A Ay, Ay A ) = Attt (A Ay A Ay, ). (3.8.1)

P20 1loop dim. reg.

e The decomposition of the one loop off-shell planar amplitudes with three and four gluons contains
bubble scalar integrals which are divergent in the ultraviolet. In spite of the presence of these UV
divergent integrals, these gluon amplitudes are UV finite since the sum of all the divergent terms
arising from the bubbles vanishes

As for the 8 deformation of the N' =4 SYM, we have found that at two loops the correlation functions
with four and six vector superfields < V@ V@2V 3V > gnd < V@V 2) @)/ )/ 51796 > receive non planar
corrections with respect to their value in ' =4 SYM.

The 'mixed’ chiral-vector correlation functions with a chiral, an antichiral and two or three vector superfields
< puPtazyayau > and < @1 Pf 23y ay e > receive non planar corrections at one loop.

Outlook

As for the N/ = 4 SYM theory, one could compute off-shell planar four-point amplitudes at one loop in a
manifestly N' = 2 formulation using harmonic superspace. Thus one could see whether in this gauge the
decomposition of the amplitudes gives only box scalar integrals or in other words whether in this gauge dual
conformal symmetry is present or not.

As noted in [76], one should compute at two loop the off-shell planar four gluon amplitude (in a N' =1
supersymmetric gauge) to see whether the on-shell limit of the off-shell amplitude differs from the on-shell
dimensional regularized version of the amplitude where the on shell condition p? = 0 is imposed from the
beginning.
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Appendix A

Conventions and identities

A.1 Metric

We use the space-time metric tensor

N =N = diag(+1, -1, -1, -1).

Thus the mass shell condition is p? = m?

A.1.1 Weyl spinors

The two component Weyl spinor ¢, (left-handed) and 14 (right handed) belong to the representations
(1/2, 0) and (0, 1/2) of the Lorentz group SO(3,1) respectively.

They can be also defined as the objects carrying the fundamental representations of the group of complex
2 x 2 matrices with determinant equal to one, SI(2,C), which is the universal covering group of SO(1, 3).
In fact 1, and 14 transform as

where M is an element of SI(2,C). Note that 1, and 1) give inequivalent representations and that g is
identified with ().

A.2 Epsilon Tensors

The antisymmetric epsilon tensors ¢, €@ and their inverse €aps €45 have components €12 = (12 = 21
—e2l =1 and €12 = €j5 = —€21 = —€5{ = —1. Thus:
5 0 1 0 —1
Eaﬁ = 6015 = (_1 O> , €aB = EdB = <1 0 > s (A2la)
6043667 = 6766[3(1 =07, eaﬁem = G&BGBd = 53 (A.2.1b)

They are used to lower and raise spinorial indices

P =Py, Yo = eapt)’

P =y = ey,
One can verify [15] that the transformation of the spinors with upper indices under an element of SI(2,C)
is '@ = (MflT O‘ﬁwﬁ and

G5 = ey
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A.2.1 Spinor contractions

Spinors anticommute. Spinors in the (1/2, 0) representation are contracted ’in the “\, direction’
X = "X = €PPpxa = = Paxa = —Uax” = X = x¥
Spinors in the (0, 1/2) representation are contracted in ’in the ,” direction’
VX = Yax” = ePihaxy = — M haxy = —97x; = X0" = 10
()T = (X)) = x¢ = ¥
The product of spinor components are proportional to the € tensor
apnB 1 afs
040" = ——€e*700
2
1
0,05 = 560‘699
. 1 p
0°0° = %0
2
1
050, = _§€aﬁ'0‘9

We also use the notation 6% and 62 for 20, and 04,0% respectively.

A.3 Sigma matrices

The sigma matrices o are defined as
ot = (1,0',0% 0%)

/10y ;[0 1\ 5 [0 =i\ 5 (1 0
=0 1) =0 o) =0 0) = 5

Their natural spinor indices are undotted and dotted lower indices 05 &

The barred sigma matrices with their natural (dotted and undotted upper) indices are

with

t=(1,—0',—0% —0?)
& B i
€ s

oty = capeyso

Fhae = ¢

ot = —(ota” — o”a")

ot = —(gto” — a"ot)

"SI S

A.4 Identities for the sigma matrices
Useful identities for the the sigma matrices are

(cha” +ova") P =28 ie. oMGY + o¥eH =21
(cto¥ + 6”0“)‘5‘6 = 277“”5% ie. oto” +a"ct =201
o5 P = 2555,

oloVoP = n,uuap _ n,upaz/ 4 nupa,u _ ,L'e/,u/pTO_T
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(A.2.2)

(A.2.3)

(A.2.4)

(A.2.5a)
(A.2.5b)
(A.2.5¢)

(A.2.5d)

(A.3.1)

(A.3.2)

(A.3.3a)
(A.3.3D)

(A.3.3c)

(A.3.4)



Trl =60 =68 =2 (A.4.1e)
Tr(o"5") = ot V4 = 2" (A.4.1f)
Tr(ota"oPc™) = 2" nf™ + nh"n"P — nhPn¥T — ielPT) (A.4.1g)
D01 o€ — %nuvee & (A4.1h)
(xo" )T = oIy = Yo'y (A.4.10)
xoth = —patx (A.4.1)
xato 1 = patoty (A.4.1k)
xota¥p = po¥atx (A.4.11)
xota" ol = —haPo’ ety (A.4.1m)
xota¥aly = —poPc’ oty (A.4.1n)
xato’aPoT) = e o5 a! (A.4.10)
xotaV o™ = Yo oVt (A.4.1p)

The totally antisymmetric pseudo-tensor /7 satisfies €123 = —eg193 = —1 The identities (A.4.1j)-(A.4.1p)
can be easily generalized to an arbitrary even or odd number of matrices o and *.
For example the derivation of (A.4.11) is A1

U=V a1 svdian
xo'c" P = xM oy, 4,0 Yay

alagxas (60410446@1 dzaudQOm)(6a1a36a2a50a5a3)€a2a6¢a

= (€M €arasXas)T" ¥ 00 4o (—€anaa €410 ) (—€ ¥ €pz0 )9,
e MO¢3 O¢40a5a3w0¢5

= ¢a5 0-25@3 ot Gad Xay

=o’atx.

=€

(A.4.2)

where in the second step eqs.(A.3.3b)-(A.3.3c) have been employed and the third one follows from antisym-
metry of e. In the forth step eq.(A.2.1b) has been used, while in the fifth one spinors have been swapped.
Other identities can be found in [97].

A.5 Grassmann differentiation
Let’s consider differentiation with respect Grassmann variables d, = 0/90%,0% = 0/00,,0% = 0/004 and

Ja = 0/00°
By definition,

d,0° =68 (A.5.1a)
0“05 = 6% (A.5.1b)
0:0° = 60 (A.5.1¢c)
9%, = 5% (A.5.1d)
aa«95 = —€ap (A 9. 16)
908 = —eB (A.5.1f)
s 95 = —€45 (A.5.1g)
§40° = — 98 (A.5.1h)

ATA faster way to derive the same result is obtained by observing that in a generic expression one can convert a contraction
of indices in one direction, i.e ® ... o, to another direction by putting a minus sign, i.e. ... 4 = — 4 ... ¢. If these indices
belong to sigma matrices, then one have to convert ¢ matrices in & and vice versa.

For example xo"G"1 = x*o" 5" “P1ps = () xa@*® o} WP = Yoty
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Obviously 9,0 = 8a0” = 0°0° = 9°0; = Dabs = 00" = 0%6° = 305 = 0
Indicating 9/00¢ with Oy, 61 — 02 with 015 and (01 — 02)? with 6,, there are other useful identities

O 075 = 20124 (A.5.2a)
O Oy = —20124 (A.5.2b)
O 03, = —20%, (A.5.2¢)
Oy 07y = 207, (A.5.2d)
Oa thbz = b2q (A.5.2¢)
O 010, = —05 (A.5.2f)
D16 0102 = —0Oa4 (A.5.2g)
850,05 = 03 (A.5.2h)
All components of 0, 9 anticommute with one another
0= {0n, 95} = {04,953} = {0a, 93} (A5.3)

When 0, and 94 act on a product, they satisfy the Leibniz rules. If in this product there are fermionic fields
and/or Grassmann coordinates, there can be a minus sign. For example, if ¢ and x are fermionic fields,
then

9 (¥x) = (0atb)x — ¥(Fax) (A.5.4a)
da(¥x) = (Da®)x — 1¥(0aX). (A.5.4Db)

Applying the Leibnitz rules (A.5.4a)-(A.5.4b) and eqs.(A.5.1a)-(A.5.1h), one obtains two useful identities
involving 90 = 0“0, and 00 = 0,0%

00(00) = 00(00) = 4 (A.5.5)
In fact 0%0,(0°05) = 8 (85 05 — 0°(—€ap)) = 5650‘ Be,p = 4, where we have used eqs.(A.4.1e) and
(A.2.1b). Acting on O or 0 with the epsilon tensor gives a minus sign
ePog = —0° (A.5.6a)
€apd’ = —04 (A.5.6D)
edéég = —04 (A.5.6¢)
70, = 0" (A.5.6d)
A.6 Grassmann integration
Grassmann integration is defined using the rules
1
d*0 = — A0 0, (A.6.1a)
d?0 = —ldé ,df* (A.6.1b)
d29d2 (A.6.1c)
/d20 = /d20 = /d200a = /dQéé‘i =0 (A.6.1d)
/ d?06°6° = —56 (A.6.1e)
/ 29 6%6% = %e‘j‘g (A.6.1f)
/d20 00 = /d20_§§ =1 (A.6.1g)
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/d490999: 1

(A.6.1h)

The integration measures (A.6.1a)-(A.6.1c) are defined in such a way that (A.6.1g) and (A.6.1h) hold.

Grassmann integration and differentiation are equivalent. In fact

/d2c9f(«9,¢9) = iaaf(a,é)

/ 20£(0,0) = iééf(e,é)
/d266af(0,§) = /d2§5df(6,§) =0
/d‘*@f(@,@) = 1—1688 00f(0,0)

where f(60) is a generic function of § and 6.

A.7 Fermionic delta function

The fermionic delta functions are defined as

§2) =600, §2() =00

and satisfy / d?06@(9) = / d*06@ () =1
D (0) =62 (0)6® (6) = 0060
/ 405 ) =1.

We use the symbol 415 to indicate

612 = 0W (01 — ;) = 6D (01) = 62,62,

/ d*0y 619 = / d*05 615 = 1.

(A.6.2a)
(A.6.2b)
(A.6.2¢)

(A.6.2d)

Choosing two points in the superspace with z; = (z1,61,01) and 2o = (2,02, 02), and denoting d®z = d*zd*0

one can define

5(8)(21 — ZQ) = (5(4) ((91 — 02)(5(4) (.%'1 — 1‘2)

/d8z1 5(8)(,21 —29) = /d822 5(8)(21 —2) = 1.

87

(A.7.1h)
(A.7.1i)



88



Appendix B

D-algebra

In this appendix we list some useful identities for the superderivatives.

B.1 D-algebra in coordinate space

B.1.1 Definitions

The covariant superderivatives are defined as
Dy = 0o — ic" Be‘ﬁau
D = —9% + 0,570,
Dy = —0g + i@ﬂagdau
DY = 9% — ighPg,0),

They are spinors and hence satisfy D¢ = eo‘ﬁD[g and DY = e‘w@ﬂu

B.1l.1a

—~ o~

B.1.1b
B.1.1c
B.1.1d

—~
—_ — O

—~

If the theta variables 6;,6; have a further label, such as 1 in this case, then we will also use the notation
. _ . _ A B .
D1, DY, etc..., to indicate Dy = 1o — 205691 Oy, Df =0+ “9160“60‘8,“ etc... respectively.

B.1.2 Anticommutation and commutation relations

{Da,Ds} = {Ds, Dy} =0
{Da, Dy} = 22’056@

(D, DP} = 2i5+P29),
Do"D + DD = 4io"
[Da, DD)] = 4ic™ B@ﬁ O

_ _ _. 1 _
DYDDD,, = Dy DDD* = 89 + 5{7)7), DD}

DDDDDD = —1690 DD
DDDDDD = —1690 DD
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B.1.3 Leibnitz rules

Da(Bllgg) = (Da81)82 + Blpa(Bg) (B.1.3a)
Do(Fi1B2) = (Do F1)Ba — F1 Do (Ba), (B.1.3b)
'Da(Blfg) = ('Dalgl)fg + B1D, (.7:2) (B.1.3C)
Do (F1F2) = (DoF1)F2 — Fi1Do(F2) (B.1.3d)

where B1 and By are bosonic superfields, while /7 and F5 are fermionic ones.

Note the minus sign in egs.(B.1.3b) and (B.1.3d).

B.1.4 Integrations by parts

/ d*zd 0 By (Do By)Bs = — / d*zd*0 (Do B,) BBz — / d*zd*0 BB (Do Bs) (B.1.4a)

/ d*xzd 0 By (DsBs) Bz = — / d*xd* 0 (D By) By B3 — / d*xzd 0 BB (D Bs) (B.1.4b)

where B1,B5,B3 are bosonic superfields, while F; is a fermionic one.
(Note the minus sign in the second term of the r.h.s of eq.(B.1.4e) with respect to eq.(B.1.4c) since Fj is
fermionic while B; is bosonic)

B.1.5 D and fermionic delta §

The action of the superderivatives on the fermionic ¢ functions is

Dia 5(8)(,21 — 29) = —Dag 5(8)(21 — 22), (B.1.5a)
D14 6®) (21 — 23) = —Dog 6®) (21 — 23), (B.1.5b)
DDy 6®) (21 — 29) = DyD2 6®) (21 — ), (B.1.5¢)
DDy 6®) (21 — 29) = DyDa 6 (21 — 29). (B.1.5d)

For the action on products of § functions one finds

512(512 = 512Da512 = (512150'1(512 = 512@1)(512 = (5121515(512 = (5121)011515(512 = 51215@1)1)512 =0 (B.1.5e)

§12DDDD613 = 16612 (B.1.5f)
512@@ DD(SH = 16(512 (B15g)

B.2 D-algebra in momentum space

The momentum-space counterpart of the above relations is immediate.
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B.2.1 Definitions

DP = 9, — agﬂ.éﬁpu (B:2.1a)
DPa — _ 9 4 éﬁ'&MBapM (B.2.1b)
DY = —94 + gﬁagdpu (B.2.1c)
DPY = 9% — 5B ap, (B.2.1d)

D = #Df and DP4 = 9Dl
The superscript p on DP and DP indicates the ingoing momentum p corresponding to the superspace point
z = (x,0,0). Also, the momentum in the supercovariant derivative can always be taken as the momentum

of the superfield on which it act.
If the theta variables 61,01 have a further label, such as 1 in this case, then we will also use the notation

po

.. DY, ete..., to indicate DY, = 014 — Ugﬁéfpu, DY = 9% + 5156”50‘19“, etc... respectively.

B.2.2 Anticommutation and commutation relations

{Da,Dg} = {Ds, Dy} = 0 (B.2.2a)
{Da. Dy} = 20" ., (B.2.2b)
(D>, DP} = 25+P°p, (B.2.2¢)
DotD + DD = 4pt (B.2.2d)
[Da, DD] = 40" 5.155 Dy (B.2.2¢)
[D®, DD] = —4D "% p (B.2.2f)
[Ds, DD] = —4D 0l pyu (B.2.2g)
D%, DD] = 45" Dy p,,, (B.2.2h)
[DD, DD] = 8Do*Dp,, — 16p? (B.2.2i)
[DD, DD = 8D5"D p,, — 16p* (B.2.2j)
_ _ _ . 1 _
DYDDD,, = DyDDDY = —8p? + i{DD,DD} (B.2.2k)
DD DD DD = 16p*DD (B.2.2])
DD DD DD = 16p*DD (B.2.2m)
For instance, the derivation of eq.(B.2.2e) is
(Do, DD] = D,D;D° — D;D D,
= —@BDa@ﬁ + 2agﬂ-@ﬁpﬂ - @B@BDO,
= DPDDy + 2055@%“ —DsDPD,, (B.2.3)

= ~D’DyDa + 204, D%p;, + 20" ;DPp, — DD D,
— 4ot PP
= 4UQBD Dy
In the second step D, has been anticommutated with @B (eq.(B.2.2b)), while the third one follows from

@BDQ@B = —@BDQ@B. In the forth step D, has been anticommutated again with @B (eq.B.2.2b) and the
last one follows from @ﬁ-@ﬁDa = —755156-Da
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B.2.3 Leibnitz rules

DP(B1B2) = (DLB1)B2 + B1DY4(B2) (B.2.4a)
DE(F1Bs) = (DL F1)By — FiDE(Ba), (B.2.4b)
DE(B1F2) = (DLB1)F2 + B1DE U (F2) (B.2.4c)
DE(F1F2) = (DEF1)F2 — FiDh U (Fa), (B.2.4d)

where B; and By are the Fourier transform of bosonic superfields , while F; and F» of fermionic ones.

B.2.4 Integrations by parts

/ d*0 B, (DP2Bs)Bs = — / d*0 (DP1B1) By B3 — / d*0 B, By (DP3 Bs) (B.2.5a)
/ 040 By (D By) By — — / 440 (D' By) BBy — / 040 By By (D By). (B.2.5b)
/ d*0 B, (DP>DP2By) By = / d*0 (DP*DP1B,)ByBs + 2 / d*0 (DP1*By) By (DPF3 Bs) + / d*0 By By (DPDP3 B3)
(B.2.5¢)
/ d'0 B1(DP>DP*By) By = / d*0 (D" DP' By) By By + 2 / d* (DL By)Bo (D> Bs) + / d*04 B, Bo(DP*DP3 B3)
(B.2.5d)
/ d*0 F(DP>DP2By) By = / d*0 (DP*DP* Fy) BBy — 2 / d'0(DP* Fy)Bo (DL Bs) + / d*0 JF1 By (DP*DP* B3)
(B.2.5e)

where By, By and B3 are the Fourier transform of bosonic superfields, while F; of a fermionic one and
p1+p2+ps = 0. We have assumed that By (F;), By and B3 depend on the momenta p1, ps and p3 respectively.

For example, Eqgs.(B.2.5a) can be derived simply by using the definition of supercovariant derivatives
(B.2.1a) and the Leibnitz rules for the Grassmann derivatives d, and 0.
Eq.(B.2.5¢) follows from:

/ d*0 By (DP>DP2By) By = / d'0 B, (DP>*(DP?By)) By = — / d*0 (DP1*B,)(DP2By) B3 + / d*0 B, (DP2By) (DP**Bs)
- / d*0 (D2 DP By ) BoBs + / d*0 (DP'*B,) By (D22 Bs) — / d*0 (DP' By) Bo(DP**Bs) — / d*0 B Bo(DE3DP** B3)

= / d*0 (DP*DP B))ByBs + 2 / d*0 (DP1*B,) By (DP3 Bs) + / d*0 B By(DP D3 Bs)
(B.2.6)

In the second and third step we used repeatedly the integration by part (B.2.5a) making attention of the
fact that DE?By and DP1@B; are fermionic superfield. In the last step the identity ... = — ..., has been
used.

B.2.5 D and fermionic delta function §

The action of the superderivatives on the fermionic ¢ functions in the momentum space is

Dll)a 512 = —’D;OI; (512 (B27a)
DV 612 = =Dy P 612 (B.2.7b)
DIfDIf 512 = D2—pD2—p 512 (B27C)
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DIDY 619 = Dy "Dy 7 619 (B.2.7d)

512(512 = 512Da512 = (51215@(512 = 512@1)(512 = (5121515(512 = (5121)011515(512 = 51215@1)1)512 =0 (B.2.7e)

812DD DD613 = 16612 (B.2.7f)
512@@ DD(SH = 16(512 (B27g)
Eq. (B.2.7a) can be derived by observing that 01,012 = 01407 = —0200% = —aad12. and that

pu512 = —(—pu)512-
Eq. (B.2.7c) follows from

DYDY 615 = VDY, 61y = —DP*DyP b1y =

—pypo —pPy—po —Py—P (B.2.8)
=Dy, D;" 012 = =Dy, Dy " " 012 = Dy "Dy " d12.

In the second and forth steps eq.(B.2.7a) has been used and the third one follows from {Ds,, D'} = 0.
The last one is a consequence of Dy, DS = —DGDay = D2Ds.

In eq. (B.2.7e), for example d12D,012 = 0 follows from
812D1a012 = 075075 (D10 — Ugﬁ-éfpu)eﬁéﬁ
= 015015(260120)01; — Uggéfpue%ﬁ%z 07,01 (B.2.9)
=0

In the second step the relation 9;,60% = 26012, has been employed, while the third step is a consequence of
the fact that the product of three or more component of ;5 or of 615 gives zero.

In fact, the only way to have a non zero result is to act with two chiral derivatives 8, on 62, and
with two antichiral derivatives J, on é%Q. Doing so, one can write 812D D1D1D1612 = 61201010101012 =
512(81610%2)(51515%2) = 16612 because DD = 90 + ..., DD = 9 + ... and 8161(9%2 = 516_15%2 =4 (see
eq.(A.5.5).
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Appendix C

Propagators

The expansion in components of a chiral (antichiral) superfield ®(z,6,0) (®'(z,,0)) is given by

(2,0,0) = o) — 0060, ¢(x) — i@@éé@“@uqﬁ(x) +V300(z) + éeea,ﬂpa“é FOOF(),  (C.0.1)

1(2,0,0) = ¢*(x) + i00100,6" (x) — i@@éé@ﬂ@uqﬁ*(x) +V200(x) — %55@0“8M15 +O0F (). (C.02)

The expansion in components of the Fourier transform of a chiral (antichiral) superfield ®(p, 6, ) (®%(p, 8, 0))
is:

®(p,0,0) = o(p) — pubot0¢(p) + ipz@ﬁé%(p) + V204 (p) + %99 P(p)od + 60 F (p) (C.0.3)
®'(p,0,0) = ¢*(p) + pu 0508 (p) + ipz 00004" (p) + V201 (p) — p—\/% 0000+ (p) + 00F*(p).  (C.0.4)

The expansion in components of a vector superfield V (z, 0, 0) is

V(x,0,0) = C(x) + V20x(x) + V20x(x) + 00S(x) + 005* (x) + 00”0 A, (x)

+ 000 (x _ %6“8,0((90)) + 06 H(A(x) auaug(x)> + %00 40 (D(x) - %8”(%(3’(90)). (C.05)

V2

The expansion in components of the Fourier transform of a vector superfield V(p, 6, 0) is

V(p,0,0) = C(p) + V20x(p) + V20x(p) + 00S(p) + 005" (p) + 05"0A,,(p)

+ 999<>\(p) - %a“pux(p» + 999(A(p) - %rﬂpux(p)) + %«9«9 99<D(p) + %pQC(p)) (C.0.6)

C.1 Propagator of the chiral superfield
_ _ i
< ‘I’(pl, 01, 01)‘1’T(—p1, (92, (92) >free: sz Df1D€1Df1D11715(4)(012) (C.l.l)
1
A \en t - ol ) ug T 979 7 ua 1 979 21 ua
< ®(p1,01,01) P (—p1,02,02) >free= —5 — —5p1u010"01 + 0107 — —5p1,020"02 + —0505 + —p1,010"02
pi P 4 pi 4 p

1 1 1
(C.1.2)

— 20%5152 — 255(91(92 + 19%5% + ]%pmpl,ﬁla“élﬁga”ég — %pluela”«gﬁ%@g — %pluﬁga“éﬁféf — %pluﬁga%—l@f@%
1

(C.1.3)
+ 101070365 (C.1.4)
< @(pl,el,él)‘bT(—pl,Hg,ég >free: Z%GXp ( —pu(elduél + 920“52 — 2910”52)) (C.1.5)

1
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C.2 Propagator of the vector superfield
< V(p1,01,00)V(—p1,02,02) > free= —]%5”1)5(4)(912)
1

C.3 Mixed correlators

< ¢(p1) @1 (=p1,02,02) > free =< ®(p1,01,01) T (—p1,02,02) > free

7 ) - 1 o=

= —55 — —5pP1 020“02 + —(9202

— * 7 ) ua ) 979

< ‘I)(pl,‘gl,@l),ﬁf) (—Pl) > free = 5 — —2P1p910 01 + 0701
pT DI 4

_ 1 . _ _
< A" (p1)VP(—p1, 02,02 > prec= §a1a31a5”(m < Vp1,61,00)VP(=p1,02,02) > pree ,
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01=0,=0
(C.3.1a)
(C.3.1b)
= —2—;020”0_2
1=01=0 pl
(C.3.2)



Appendix D

Interaction vertices for N =4 SYM

In this appendix we give the expression of the interaction vertices for N'=4 SYM.

The self interaction vertices for the vector superfield V¢ up to order ¢> are

Val V(IQ
Ve
SSvar = —f—6 9 farazas /d82<DDD°‘V“1) (DaV‘”) Ve, (D.0.1)
Val V(IQ
Vs Ve

S§yar = 9 Farazo frasas / d*z [6—14 (verpoves) (DD(veD,ve)) % (ver (poves)ves ) (DDDLv )|

= 9 farasb frazas / d®z [é (DDDover ey es (D) - 3—12 (Dover)ve (Dapaves ) DoV
+ é (pver)ve (Daves ) DDV

(D.0.2)
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Ve
Ve

Vs
1/ a5 1/ a4

4 4

6y _ .3
SSYM =19 fa1a2b1fa3b1b2fa4a5b2'

/ d52 [19% (verpeves)veve (DDD,ve ) - % (ver (poves ves (DD(vepLv™) )|

D.0.3
= —ig® @[ — (verpaye )yaya (Dpp,ve (D02)
tg fa1a2b1fa3b1b2fa4a5b2 < 192 «a
+ % (verpeves)ve (Dove) (Daves) + % (verpeves)ve (Deves ) (Dhves) .
The gauge-matter vertex at order g is
Ve
(I)Tcn PUs
I 1
SEVL — g faranas / d®z ®I V2993 (D.0.4)
where [ is the flavor index.
The gauge-matter vertex at order g2 is
Vaz Va3
a4
q);[al (I)I
PV29 9 8. Flai1a217a3 a4
Sint = _Efa1a2bfba3a4 d Z(I)I Vv 3(1)1 . (D.0.5)
The ghost-vector vertices up to order g2 are
a9 az az az
V V |4 V
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Sg])-] — %f@l(m% /d82|: — AM Y92 as _ Aa11/a2 CTa3 + ATa1 Vezas 4 ATal Ve C]‘ag (D.0.6)

Vs Ve Y yas Ve yas  ye Vs

2
S = 35 farasbFoasas / diz(Anyoeyce - qnyeayeactn - glayeyece g glnyeeyesch)

(D.0.7)
The self interaction vertices for the matter superfields are
az
(I)Q
a as
o7 o,
qu:mt = —g farazas /d6z @?1@32@33 (D.0.8)
Tas
(I)Q
@Ty\ﬁréw
1 3
ot 65 g Ta1 g taz gtas
Sint = _gfa1a2a3 /d Z(I)l (I)Q (I)g . (D.O.g)
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Appendix E

Symmetry factors

Feynman rules give the rules for associating analytic expressions to each part of a Feynman diagram, i.e.
propagators, vertices and external points. However, the overall numerical factor has to be determined sep-
arately. This factor is called the symmetry factor of the diagram ( see for example [54],[102] ).

Usually the coefficients of the interaction terms in the Lagrangian are chosen so that the symmetry factor
is one. One can determine the symmetry factor by the symmetry of the diagram, that is by the number of
ways of interchanging components without changing the diagram, but there can be the possibility to be in
doubt. Another way is to count the equivalent Wick contractions which give the same analytic expression.
We have chosen this second way and in this appendix we give some examples.

Here, to simplify the notation, we work in (super)coordinate space. Moreover, below ¢ is the scalar compo-
nent of the chiral supermultiplet and < ij >4, < ij >4 and < ij >4« are shortcuts for < ®(z;), @T(zj) >,
< ¢(x;), ®T(2j) > and < ®(2;), ¢* () > respectively.

¢* ¢

3 4

This diagram corresponds to the Wick contraction

[ oz < 6" ()o@ 200 8128 ()8 ()] > (E0.1)

It is formed by the two vertices ® and ®'3, hence it is obtained considering the second order term

2q2 .
: Sé""t in the exponential ™t (see eq.(1.3.3)). Inside S? = (... + @3+ @3 ... )2 = ... +20301 4+ the

coefficient in front of ®3®13 is 2. Thus the Taylor expansion gives a factor ZQTXQ =—1
The other combinatorial factor arises from the Wick contractions. Starting from the left, the first contraction
—

¢*(x3)®(21) =< 13 >4+ can be done in three different ways because there are three superfields ® at 2,

—
and similarly the second contraction ¢(z4)®f(z) =< 42 >4 gives another factor of 3. Then one of the two
[ —

remaining superfields ® at z; can have two contractions ®(z;)®(22) with the two remaining superfield at
1

zo. Finally what remains is a superfield at z; and one at zo that gives one obliged contraction @(zl)@T(ZQ).
So the factor from the contractions is 3 X 3 X 2 which has to be multiplied by % % coming from the numerical

constants in front of the superpotential in the action. Thus the total symmetry factor is % = —%.

¢* ¢
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This diagram correspond to the Wick contraction

| f 1 |
/d8Z1d822 < ¢*(x3)¢(x4)‘q)‘fg21)v<|21)@(21)’(I)T(ZQ)V(%Q)(I)(ZQ)‘ > (E.O.Q)

It has two identical vertices (®TV®)(®TV®), hence it comes from the second order term % in the
exponential et . Inside 5% = (... +®TVO+... )2 = ...+ (®'V®)2+..., the coefficient in front of (®TV ®)

is 1. Thus the Taylor expansion gives a factor % = —%. From the Wick contractions, one has two ways
to connect ¢*(x3) to a ®TV® vertex since we have two identical vertices of this kind. After choosing this
vertex connected to ¢*(z3), then all the contractions are obliged and don’t provide any other combinatorial

factor. Thus, the total symmetry factor is —% x2=-1.
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Appendix F

Spinor helicity formalism

The spinor helicity formalism [104]-[108] allows to have extremely compact representations of amplitudes
involving massless particles. In this formalism one expresses the momentum and the polarization vector of
a massless particle of spin one in terms of spinor variables.

Any momentum vector p, can be represented by a 2 X 2 matrix p,s by contracting p, with the sigma
o

matrices o >

Pas ZPMUZd- (F.O.l)

Any 2 x 2 matrix has rank at most two, so it can be written as [104]

Paa = Ma/lo'c + )\a)\da (FOQ)

where A, u are some Weyl spinors belonging to the representation (1/2,0) of the Lorentz group, while A, i
belong to the representation (0,1/2).
For a light-like momentum of a massless particle, one has that the determinant of the matrix p,s vanishes
since

det(pag) = p* = 0. (F.0.3)

In this case the matrix p,4 has rank which is at most equal to one and can be written as p,q = Aa g, that
is

p2 =0« Paa = )‘aj‘d- (F04)

If the momentum p* is real then A\ and X are the complex conjugate of each other, i.e. A = A\*. On the
contrary, if one assumes that p* is complex as in the generalized unitarity methods then X and )\ are not
related by complex conjugation, but are independent.

Let’s consider the case of more than one particle and let’s denote as p;, the momentum of the i—th particle
having the matrix representation p;ne = )\mS\ia. One can introduce the spinor products

<) >=< )\Z)\J >= Eﬁa)\ia)\jﬁ, [’L]] = [5\15\]] = EBdS\?E\iB, (F05)

which are antisymmetric and hence < ¢ >= [ii] = 0. With these definitions a scalar product between the
momenta of two particles can be written as

2pi - pj =< ij > [ij]. (F.0.6)

Polarization vectors

The polarization vectors eff of a massless vector particle with helicities +1 or —1 respectively can also be
expressed in terms spinor variables. They have to satisfy the conditions

p . ei = 0’ (ei)Q = 0’ €+ . 67 = —1’ (FO?)

where p,, is the momentum of the particle and as above p, has the representation p,s = Aadd.
Let’s consider an arbitrary reference light-like momentum ¢*, i.e. ¢> = 0, satisfying the condition ¢ - p # 0.
Since ¢? = 0, from eq.(F.0.4) one has that ¢* can be represented as ¢ng = flajia for some spinors p and fi,
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_ Iz
where goa = qu044-
Then, one can choose for eff the representation

s Mede o Aol F.0.8
fad = N> e T R (F08)
where €5, = eu ob .. In fact, the representation (F.0.8) satisfies the eqs.(F.0.7).

Changing the reference momentum corresponds to making a gauge transformation. Hence, the on-shell
amplitudes are independent of the choice of the reference momentum, since they are gauge-invariant.

Let’s consider the case of more than one massless vector particle and let’s introduce for the polarization
vector of the i—th particle the notation ei(pi, gi) where the first argument indicates the momentum of the
particle and the second argument the reference momentum.

One can prove the identities

q Epi @) =
p’u QZ) - Ji( )
ph Qz) : G;F(p]v ) = (F.O.g)

From these identities, it follows that it is convenient to choose the reference momenta of like-helicity particles
to be the same and to coincide with the external momenta of some of the particles with the opposite helicity.
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Appendix G

Off-shell planar amplitudes

In this appendix we give the explicit expressions for the planar three gluon amplitude at one loop

of f shell
“41 loop

Aoff shell

tree

(A/‘jl1 (p1)AS2 (p2) A2 (pg)) and for the planar four gluon amplitude at tree level

(A/‘jl1 (p1)AS2 (p2) A2 (p3) At (p4)>. We also give the explicit expression of the part of the four gluon

of f shell

1 Loop (Azll (p1) A2 (p2) AGZ (p3) At (p4)) associated to the Lorentz structure

planar amplitude at one loop A
Mo s P3 1 P3 g Which is relevant for the on-shell amplitude A‘l’?jg};eu(lﬂ 27,3%,47) (see section 3.6.4).

G.1 Three gluon planar amplitude at one loop

After doing the Passarino Veltman decomposition, substituting ps with po = —p; — ps and introducing the
variable u = p1 - ps, the final result for the off-shell planar three gluon amplitude is

AOff shell (Ale (pl)AZQQ (pQ)AZg (p3)> — NQBTr(TalTGQTas) %

1loop
(Ml ST 243 Bo(p1) + M S 2 3 Bo(p1 + p3) + M3 ST 243 Bo(p3) + Ny popus Co(p1,p3)), (G.1.1)

where

M pops =
_9ph 4 T 4 2_ o 2
P1 Ny pa P33 P1paP1psP1pn U T W Nz g P3,ps T P3,us i pe U Ny p2 UP3,u3P1
2 2
= Pl P32 P31 U+ 21 M1 11 P13 ¥+ 2 D103 My jin @™ — PLpia D3, P33 — 2 P33 03,201,101 U
2 2 2 2

+ 2UNpsp P3,poP1” + 4D3,503,01 P33P + PLpsP3,uaP1pn P17+ P3,03 D3, 1201, P1
= P3,u3P1p P1us ¥ + 2p3:M3p1:M1p1:M2p12 - 2plyu3p3yu2p17u1u = P1,p2P3,p1 P13 U

2 2 2 2 2
+ 2p1=M2p3:M1p3,M3p1 —2 Ny p2UP3,u1P1" + P1usP3,uaP3,u1 P1™ — Plus Muzpa P17P3

2 2 2 2.2 2

= P33 Mpua p2P1°P3° + 203" Mpg pia P1,pn U — D3,pup Mpuspn P13~ — U Mg g P1,pas

+p1,u2p3,u1p1,p3p12 +2p1 77M3u2u2 —2p3 4, 77#3#217121732 ) (G.1.2)

Ma iy s =

21 s o P35+ 2 Mg WD3, 101 + A PLpa P11y U — 20 Ny D3 iy — 2 M paP3 Py

+ P3gus s a8+ ATy o UD3,15 D1 — 2P0 N i PLpis e — 2P s My W — P1yia D3, P3 it — A D310 03,1 P3 g5
+ 2N o P31 P30 + D313 D3, 10Dy U — 2 UWllpas i P3,pn D1 — 403110 P3,1 P35 PL° — PlLyas P3,pn Py D1

— P3uaP3,ua Pl P1. = P3usPLun Pluath — 2D3.u5P1y0 PlyuaP1” + PLyuaD3uaPlyn th — 2 D1, D3,40 D313 P1
273 UD3 iy D1 — P yis D312 D301 PL + D3 i s s P1 D3 — 403 Mpas i D1y U

D3 DLy PLuaP3” + AD1y0 PLusPlusD3” — DLyn MuspaP1 P3” + PLyuaD3yn P1usP3”

DLy D3y P3,pusP3” — 2UNpy D1 yisP3° + PLusP3,a D340 P3° + 2P D3 pua P P3°

F 2 Uy PLysoP3” = 2 D15 My paP1°D3% + 203,003 D3, 0P P3° + 2 U Ny iy Pljss — PLopis D3y PLys D1
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— P 77#3#21/42 + 2p3,,u1 77#3#21012]732 s (G.1.3)

M3 iy pops =

— 2Ny pn D3 gy + Uy D3 s 2 NP3 Py — 2803 M 2 — 2y i UP3ua D1 + D1y P31 D3y U
+ 2 D1 s D3 3t A D305 D3 1 D3 — 2 My a3, P3 U + D303 D310 Py U+ 203,131 guy DL U

+ D1y P32 DL U+ PLys D3 Pl U+ DLpin Mpasys PLD3” + 203 Mg D1 U + D3 iy My P13

— P3usPLyn PLyuaP3” — AD1p0 PLunPLusP3” + DLyn MuspaP1 P3” — P1ysD3y PLpsP3”

— PLuaP3yu P3.usP3” + 2 U D1 pisP3° — PLpsP3,uaD340 D3 — 2P D3 pioPLpn P3°

2 2 2 2 2 2
- 21”]“3“1]71,“2]73 + 2p1,u377ulu2p1 b3 — 2P3,u3P3,u2P1,u1P3 = U Npzpa Plipe — PliuaMuspa ¥ 5 (G-1-4)

Ny pops =

2U°P3 o Muspy + AMpua o WWP1 s + 20109030 P33 U + 4 P17 M o P1 i U°

— DL P s 0+ P1yo P Mg P3° + D1y D1 My D3” — 6 Mpas i D3 D1y U

+ 4y o U P1 s D3+ P37P3 s s o 6+ P37 D3 paa a0+ 6 UMy P3 i1

— 13" D3 s T a1 — BUP Ty D1 pisP3” + 6 Mo D3 D3 yn P1° = 4 a1 D3, D370

+ 6 D1 D3,y MuspiaP3” + 503" PLpa sy P12 — A0 pn02P3,0, 21>+ 201 iy o D3, 1

— 6 D1 N 2P1y13P3” = 2P s P3,pa Py U — 21 iy s P35 P3° — 501 D3 s My P3°

— 6 P15 D3 s a1 A+ BUP Ny D311+ 2 Mpas D3 DLy P12 — D1y D1 My o U

— 21D Py U — 3" P3 s My DL + 203,413 D3,pn D1y U — 2P3.415 D1 iy Ly U

— AUy P3P D3 — AP35 U gy — 408,05 D3 1y D31 D1 D

+ 2315 3,5 DLy UP3” + AT P1po D1 7P3% + AD1 o P ps DLy P1°P3° — 2P1,11 D310 P33 UDL
— 43 1y P31 P33 UPL” + B TpasuaP3 D3,y UPL” — 2Tpas o UP1 g P1P3 — D35 D3, 115D,y UD1

+ PLyisD3a D3, UP3° — 8 D1 M 1o D1 i UD3” + 2 My iy U315 D1 D3 + AD1 o D1 D1 g1y U3

- 2P3,u3p1,u1p1,ugup12 + Pl,pgpz«;,mpa,pgupf - p3,u3p3,u2p1,u1p12p32 + 3p1,u3P3,u2p1,u1p12p32
+ 215 P3ps DLy UPS” — P1yiP3ao D3, UPL + P33 DLy PLysa P13

— 33,1 P1yuaP3,us P13 — PyisP3,un Pl UDL” + D1yisD3,gun 1y UP3

- p1=M2p3,M1p1,M3up12 +p3,u3p1,u1p1,u2uz932 - 2u3nu3ulp1,u2 . (G-1-5)

On shell, one has to impose the conditions
2 _ 2 _ 2 _ 2 _ — _
pi=0,p53=0,p5=(p1+p3)*=0= u=pi-p3=0. (G.1.6)
Hence, in the on-shell limit all the terms of the amplitude vanish.
G.2 Four gluon planar amplitude at tree level
After substituting ps with po = —p1 — p3s — p4, introducing the variables u = py - p3, v = p1-p4 and w = p3 - p4,

one obtains for the off-shell planar four gluon amplitude at tree level the result

of f shell ) i
AL (AR A AR A7 90) =TT T

( — 1/2 4Pt s Mpapa D1y — 1/2 D1 Mo i P30 03.1

2 2

+ 3/4 P4 P4 o M pa P31 — P1pisPapis Mpapua P4~ + 2 Mo pus D iy D3, g

+ 2Ny psPa, g P3, g W + 1/2 Dt gy My p3P1pp ¥ + 1/2 Nuops P1,p1 VP4, pa

+ PLpa 2P D1 s + 1/ 4Dy M paD3°D3, 15 + 1/2 Pt s M ja D37 D1y
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— PLpa M s Pl ® — /4Dt o Dy My s 03° — 1/ 2 Mg Wi iy 03

+ 3/4 D4 Ny ja P s Pz + 1/ 4 s D1 pr PPt

— 1/2 M pa P1yis WP3 s + 3/4 D1 pus P i Myt P> + 1/2 Pt iy Mpso s WPA iy

+ 1/2 P My i WP 13 — 294" Py MpaosaPn + 1/2 Dipi M o W35

— 1/2P1 pua My s D1y D3” 1/ 4D 41y Ty jaD1°D3 15 — 1/4 04”3 1y Mpaspua D1 o
— 1/2 P4y My jioP1 D1 s — 2 Mo s P P + 1/ 2 0 i M i P8 — 1/ 2001 a1y WD3
— 1/ 20 s Lo VD3 15 — P4 Mpaas P31 Plysa + Py Popn Mo pia W

— 1/4D1 N a3, PLps + 1/2 1 s i D3y P

— /40 0 P1 D3 D3 s — 1/ A0 1 D1 1ia D3P pas + 1/2 D1 Nt pa P gir Pty
+ 1/2 Pa iy M pia PLyis U — Mpaopa Pypir Ppis DL — Pa” DLy Mo o D3

— 1/Ap1°D3 ju Nuspa P32 — 1/AD1° D30 s pa P1 iz

— 1/2 Ny pa Py WP g — 1/ A D12 D iy Py M iy + VP4 M i P

+ P4 Mo pa M s ¥ — VPLps Mo o Popis — 1/ 2 Do My s P W

— 1/4 P4 s s s P11 P3” + 1/ 2 Wi D1,y P3°D3 14

— 1/2 P8 Ny jaP1 D315 + 1/ 4AD1 N D3, 113D3, 10 — 1/2 My s D141 D3P s
— 1/4D4” D3,y Muspa D3 iz + 1/2 Doy Pagis s aP3” + 1/2 Pty P pas My paa
+ 1/2 Mg s P1pn P1P3 s — 1/2 D4 i piaP3,005 D1 gin

+ 1/2 Mg pa D1,y PLyo W — 1/2 4P g M s P1ps + 1/4 s a D1, P i D3
+ 1/4D1° iy Mg Pagan + 1/2 P4 i P30 M paP1” + 1/2 Pty M pua D1y W
+ 1/ 4D iy My D1y P3° + 1/ 21 1aP3 s M jaP3° — 1/ AN s P10 P33, 105
— 1/2 My psPLpn VP33 + 1/ 4 M3 a D1y P1poPa” — 1/ 203, M pia D1, i

— 1/20npy s D3 o Py — 1/2 p42nu3u4nulu2p12 — 1/20P3 1y My ua D3, 112

+ 1/ A D4y Mo D3 Pagir — 1/ 4 Mg D1y P1°P3,05 + P pia Tpis o Piogas W

+ UNpspaMpa ¥ — 1/2P4277u3u477u1u2w = 20Ny 104 P s P31

— UNpgpa My pe W + 1/2 p4277u3u477u1u2u - 1/2 p4,u2p4,p477mu3p42

— 1/2 4”3 pa s s Popiz + 1/2 Pty D31 My s + 1/4 P i D3 1 M a3
— 23 PLpa WPy — 1/ 2 D1 s pia s ™ — Mo PLpa D3 P30

— 1/ ANy D1 3,123 — 1/ A Mg a1 i P3,s D1

+ 1/2 Papia My jio P, pisP3° + 2P0 g M ps WP s — 1/AD4>D1 g Mpir jia P32

— P D3 Mz pa® — 1/2 Py 3, M paP3° — 1/4 4Py My s P

— 1/2 NP1y PLyisP3° + 1/2 D1 104 D3 g1 M s P4

+ 1/2 P4 Pa o M pia P1n — 1/ 291 Mg Maapa® + 1/2 D1 Ny pa My i

— 1/2D3 15 P13 My ja @ — 1/A 03,051 i My jaP3° — 1/4 D103 yua M o P35
+ 1/2 8 s My 13 P3” = VMpnguaPagisPlgs. — Vs P3113 D310

+ 1/2 D1 s My p2P1 D3 15 — Doy Mz WP3, 5+ 1/2 P4 iy i P1 i D3 g1

— P Magua VD3, — 1/ 4DV 11 i3 D3, 1D pua + 1/ 20D g1 M Py

— 1/20D3 10y My s D315 + 1/4 01Dy Mpaspaa P — 1/2 Pty Mpopa 3703, 115
+ 1/ 4D iy My D1y P12+ 1/ 2 D1 ug M i P3°P3.p05 + 2 00y M s W

— 1/2 304 P111 D312 + 1/ 2 D1 My My i P3° + 2 D1, gua My o WP i

+ 1/AD1° i pua My pa Pagas + 3/ 2003 i Mpspa Pz — 314917 Pt iy Mpaapua D3,
— 3/ 203 s My 2 P4” 20D 1 My 2 P1gas + 1/2 P N s P31 Pt o
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+1/2p1°Pa® Ny s + 1/2 U a D315 D302

— 1/2ps® s ua P30 P31 — 1/2 P Mo pa D3, 0101 — 1/2 M ua P1,pa P31V
+ 3/4P1 s P M jaP3” = Vi jaa Moz — 1/2P1° D3 pu My i D30

F Mo ps PLy WP3s — PLPLpa Mz P3,a — /200 s P s Py

—1/2 Unuluzxnmuap?’z — 3/2 D4 s My pa P W + 1/2 p1277u1u3p1,u2p3,u4

+ 3/4 P Mo pis Pty P — 1/2 Pty My ja P11

+ 3/4 D4 P4y M Pz — 1/ 20173 s jaPagiz. — 1/ 494 P3 s M 2 P31
+ VP3Pl + 1/ 2 D4 pia Mo D302 + 1/ 4D s M s P32 P3°

— Mo pua Py WP s+ 1/ 4 M s D1y P1 2P g — 1/ AN 2 15 P in PAZ DY g

+ 3/2 Py My ja WPL s — 1/2 Py Ptpus s ¥ — 5/4 P4 Pty My ja P
— 3/2 N as My ja WPA™ = Pitgus Ty i PLia W + 1/ 4D 1y Ty s P3° Pt o

+ 1/2 Py M i WP, a5 + 3/ 4Pty P gi s pa PA” + Vi Pty Py

+ 3/4 PNy ja P4, s P3 s — PPy Mo ua P

— AP MaopaPLn — 1/2 Dapin Papia My s + 2 P4 P3,p0a Mpsopis P gin

— 1/ 415 P1pa P3 D1 s + Pa Mpaopas PLps Pt VMo pas P31 P

— 1/2 Pt yuy M s P1g1aPa” = Mpaogis @ My s + Mpapas Py D311

F My Py P3,paP3° + PLysa Myan jizPa" P33 + PLysa hir jaP3° Pk

— 2UP1 s M 2 P31 PLpia M 2 P1 Pty + 2 VD3 g My P30

— 1/2 Pty My pis P uaP3” + 1/ 2D 1o i s VP35 — 2P0 i P pun My g W

= 3/2 VN5 14 P31 Py Vs s P1pio D308+ Pk ia Mo jin WP a3

+ P4 N pua s W + DL jua s s W35+ 2 P4 Dty My s Py

+ DU Mo Ty s + PLgaa Ty i VD3 i — Pk Mpaojua P4 D3 s

+ Unu2u477u1u3p32 - 1/2p4277ulu477u2u3p32 -1/2 'U77M1M477M2MBP42

= 1/2 N s P11y WP g — VD3, 104 Myt s P3, s + 1/2 p4477u2u477ulu3

— VP3N s Pypn + 1/ 4D 1s M o P37 D315 — Doy Mpoyaa P3° Py — Piogua Mpaopas W31
+ 1/2 iy MpaapuaP1y12P3° — 5/4P4 N a3 10 Py

- P42p4,u3?7u2u4p3,u1 — NpopaP1,p1 D1, s W + p1,u4?7umgp32p1,u3

— VP s M pa Pl + 1/2 Py Mpapia P10 + 1/2 Pt gag M s P1 Pt o

— PV Mg Paps P30 — 1/ 201 Mpaopua D3, s Py + 1/ 4D 414 s i P47 D3 s
+ 3/4D1°Pa s M pa P31 + 1/ 4P M jiaD3,115P3,0 — 1/2 P My s My i

= 3/ 4y pa DLy P3 P + 1/ 203 My s 03” + 1/ 4 D1 Dy iy s P
— 1/2 P4 s ja Mz + PLpaP3,2 Ma s W + VP M s P30

F UM i M s W+ D13 pa MpiopisP3,s — 2 Py Mpaogua WPA s + 3/4 D iy My o P yus P4

2 2
= U NpspaMprpe — 1/2 DA™ DP3,1ua Mua pa P32 T P,y M ppaP1 o W

+ p42p3,u477u2u3p3,u1 - 1/2 Y22 77M2M3p32p3,ul) (G-Q-l)

G.3 Four gluon planar amplitude at one loop

Summing all the superdiagrams and making the Passarino-Veltman procedure, one obtains for the off shell
planar four gluon amplitude at one loop the decomposition

AL (A (b1) A5 (p2) AS3 (p) AT (1) ) = N Te(T T T T
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(Qu1u2u3u4 DO(P17P47p3)

+ Nl,,ulug,ug/m CO(Pl,PB +P4) + N2,u1,u2u3,u4 CO(p1’p4) + N3,u1,u2u3,u4 CO(pl +P4ap3) + N4,,u1u2,u3u4 CO(P4,103)
+ M1 i o g Bo(p1) + M3 iy popspia Bo(ps) + M3 111 pops s Bo(p1 + p3 + pa) + Mu iy py sy Bo(ps3)

+ M5 1 popspia Bo(p1 + pa) + M iy po iz pia By (p3 +p4)) (G.3.1)
Let’s define as
Qv,Nvi,...Nya, My ... Mg (G.3.2)
those parts of the coeflicients
QM1M2M3M47 N17M1M2M3M47 T N4,M1M2M3M47 Ml,u1u2u3u4 e M67M1M2M3M4 (G33)

which multiply the Lorentz structure 1,13 1, D3 -
Defining as before, u = py - p3, v = p1 - p4 and w = p3 - p4, we can write

_ Numg,,

Qv = Dengy,

Deng, =64 (v’ps® — pa®p1°ps® + pa2u® + w?p,® — 2wvu)2

Numg, = —88 v5p34 — 3204w — 24p36v4 —320%w? — ;0481014;032 + 10481012u2 + 1018;042102 — 2p16w2v2
— p1®%uPps? — 24 py"psBprt — 2pa%v%u® — 34 psOpstp? — paPpitw® — 16 0P py

— 88p34v4w — 48p14v2w3 — 6p46p12wvu —20 vp14wup44 + 40 v3p12wup42 + 16p46p12u3

— 16 v*p*wups* + 2 p1Swvups® + 16 vp1 Swps®ps® — 16 vups®p1ps® + 8 v'pr*ps’ps’

+ 2 vp12p46u2 — 10 02p12u2p44 + 16 v3up32p44 + 2 vp14w2p44 + 32 v4up42w

— 6vp1°paps® + 8patvuw 4 60 p1 ps®ps® — 320 wps®ps® + 8 papr*wv® + ps®vPpi*ps’

— 4ps®pr wu + 300 pr w?ps® + p1 %0 pa®ps® — 6uprutpa® — 6 pa®pitups® — 36 pa’prPuvw? — 32 v uPwp,®

+ 8pa u’pr'ps® — 48 p1 psPuvwps® + 48 pr*viuw? — 64 pr*vPutwps® — 16 prtwnps® + 32 pstoup,’

+ 8putprtwd — 64 v wps? + 16;0141}2uw2 —96 v4w2p32 + 320 uw? — 64 p1 2v3w?

— 24 uv4p34 — 2p16p46p32 -8 03u2p44 —40 v4p12w2 — 8p42v4w2 — 30p12v4p34 + 8v2u3p44

— 344 p3*p1® + 16 p1°pa?w® + 64 pa*pr2Pps* + 48 pa®p3?p1Sw? + 36 p1*pauvw?

— 8p14p44u2w + 20 p12vu3p44 + 28 p14p421}w3 — 52 p44p12ku2 + 80 p42p12p34v2u + 32 v3p34wu
+ 8pa p1 ps*w? — 20 p Cupy®ps® + 6 pa v i *ps® — 144 pytps?pr Pvwn

+240°p *w?ps® + 100p1 PpaPw® — 607 p1 pa’ps® + 48 pa®psPpi*v® — 4 p1Swups?
+830°p1?pa*wps® — 16 v?p3tw?p® + 16 v’ pr fwups® — 16 v*p3*ps®u® + 16 p1 *w’ps®u

— 324" ps*pr®vu + 48 psSu”pr *ps® — 56 ups'p1ps® + 84 ps*ps’piPv w?

+ 144 p4”p3*pr*wo® — 96 pa*ps*p1*v — 2080 ps®pr*w? + 64 pa”p1 ps*o® + 16 pa°pr *utw

+ 52 ps*prPwv’ps® — 12 py*pruvps® — 20 p1 O patwps® — 128 papi*ps®viwu

= 320°p3"pr*w — 120%u?p1®pa?pa® — 20 pa®prtwps® + 56 pr*v upspa® + 184 p1*v’pstps?

— 64 pr 2vtwps? — 8 pripstuw? + 200 pa2ps®prtow? — 52 prips?utw® + 32 vtups®ps? — 56 pytoulw

— 52 ps v*u’ps® + 104 py uPpr*ops® + T2 pa*vPup *w® — pr®pa’ps® + 56 v p1*psPwu

— 56 wp34p14p44 + 80 p4203uw2 + 20 p14p42u02p32 —24 vp14p44wp32 — 128 w2v2p42u2 — 28 p14p421)wu2

+152 ps* v uwps® — 16 ps®u® — 16 p1“w? — 80 p1 *ps*wups® + 321 ps*vwps® + 8 p1*pstu’

— 1120°ps*u’ps® + 224 v wups® — 20 p1 *upa®ps® + 8 pa*v’pr*w® + 84 py*ps*wvps® — 56 pr*patuvps”
—30vips*ps® — 32wt?pi? + 64 wPvPu — 48 upstut — 80 vwrp1? — 192 wrvPu? + 192 pyPuPwe?

+ 16p12p42u3wv — 12p16w31} + 12p46vu3 + 48p42w3p12vu — 16;014;042u2w2 + 48p14w31)u — 16 v2u3p32p42
+ 3203u2ps®w + 16 p3tp12patu® 4 16 pstprips®w? + 16 patoups? — 192 vps2uw?pr? 4 256 w?p; 2v?u
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2v2u2 +32 wp12p44p32u2 — 48 ,w3,02p32p12

— 16p44u2w2p12 + 80p44u3wv — 32p12w
+ 96 w2v3p32u + 32 w3p14p42p32 + 32 up14p42p32w2 — 80 u2p12p42p32wv + 32p44wp12u3

+ 32 p42w3p14u + 32 u3p12p44p32 - 16;0142}1031032 + 16 02up32w2p12

— 32 p3*pipsPwon — 48 paloupstw?pr® — 80 pavulpsiw, (G.3.4)
Numpy
Ny = ——4
Denp,,

Denpy,,, = 64 (pa +P3)2 (_P12P42 —2p1%w — p3pi 2 + 0% + 20u + u2) X

(022?32 - p42p12p32 + 1042u2 + w2p12 -2 wvu)2

Numpy,, = 218 ps*ps®pr2wvu® — 140 ps?ps?pr?wvu® — 248 wipr?vudps® + 15 p18ps®wps®

+ 403p3Sp1? — 48 wp1Bv + 60 wvip 2 pst — 104 ps?p1 vt w?u + 72 03p1 2 p32udw + 56 vip Zpstuw — 40 v p1 Ppstuw
+ 128 p3®p1 v w® + 47 psOp1 Svps® + 75 p3tp1 Sups® + 200 p3tp1 0P w — 20 w1 Ops® — 24 wOps?

+160 p3*p120°ps® — T4 03 pr*patw?® — 7203p1 psCps® + 120%pr ps P’

— 5p18p42wp34v — 64 v7wp32 + 48 v5w3p12 — 28p38v2wp14 + 16p34p1403w2

— 195 p3*p1vpy® — 150 up1 Opsw' + 24 vp1Opa®ps® + 380 pstwpr® + 10007 pa®w?pr® — 42 ps°py fwn?
— 28 p4%p1 v w + 720°p1 psps® — 103 ps®pi*vPps® — 8 ps®p1 twr?

—42p15p4®p320® + 4 p1%psOpa*wo + 6 vp1 CpaSw? — T2 pa?ps?vw + 80 vPwipt

+52p1%pa°pst + 10 paSvtwpi® — 102 p1®w’ps®ps® + 2 p1*wpa®ps?t — 96 w?1Ops?

+ 146 v py*pstw + 1170 py ' ps'ps® — 400%p1ps®w — 44 p1 Opstwtv + 254 pyps®pr Pt w

+ 14p1°pa®ps® + 38 p1®patps® — 289 psOps®p1tviw — 140%p1*psPps® + 11207 py  psPu?

+ 4201 ps?pa® — 139 p1Opatpste? — 12uPpspi?t + 6 paBpiSow + 64 whp vt — piPwiops?

+ 100p42p34p12wvu3 —32 w4p12vu3 — 32 w4p12v2u2 — 112 w3p12vu3p32 — 264 w3p12v2u2p42

20202 4 324 py2pstpr 2wou?

— 336 w’p1*v*u’ps”® — 180 ps*ps’p1w
— 288 w3p12v3up42 — 108p42p36p14wvu + 258p44p32p12w1)2u2 — 128 w4p12v3u — 352 w3p12v3up32

+ 14 psps®p1® — 14 py"ps®o® + 804 ps®p3®pr  wPvu + 368 w'pr Tvups?

+ 183 p42p34p14w21)u + 150 p44p32p12w1}3u + 80 w5p14vu — 112 p42p32p12w21}3u + 490 p42p34p12wv3u

+ 412 w4p14vup42 — 44p46p32p14wvu + 336 p44p32p14w2vu + 538 v4p34p12wp42

— 248 py*p3*p1  wou + 63 pa®utpr®ps® + 408 vl ps'prPw? + 157 v ps pi*pst — 21 psSuwip,

+ 6p48w2p16 — 6p18w4v + 56p36p12v5 — 88 v5p36u + 40 v4p38p12 — 28p46u5v

— 42 p46u4122 + 23 p48u4p12 — 44 pyfuSups® — 36 p44u4v2w — 98 pstutvps? + 94 p,Sutp 2w

— 387 p3 1 v’ pa*w — 189 ps®p1 Supa®w® + 95 ps”p1 Svps'w® + 434 pa 1 Ops*w? — 133 ps°py*pstu

— 268 p3°p1 v w?ps® — 25 ps3*pr Cops®w? + 187 ps*pi Supstw — 15 prPwups® + 430 p1 'ps® — 300%py*ps?

= 5p1Pwiops® + 1700 pr ps®psw — 13 prPwops®ps® — 81 p1%ps®ps®o® — 333 0P p1 s ps®w — 23207 pstuw

+ 155 v*p3®p12pa? + 228 v1psSp1 2w — 40 patuPvw — 16 v paw — 240 ps%p3? + 96 wvtups?

— 130 v*pstu?ps® — 120 vt pstudw — 12205 pstups? — 32w + 127 vp1 Opa®psw + 270 V01 2pawps?

+ 64 w202u4p32 + 168 w2v3u3p42 + 192 w2v3u3p32 + 152 w204u2p42 + 32w3v3u® + 32 w3vtu? — 80 v4p36u2 — 4p4406w
+ p1%07ps® + 247 py*p1 Opsw + 324 ps®p1 Opstw + 96w v utps® — 100 whp; Opy*

— 116 w°p1°ps® + 86 p4®p1°ps® + 36 p4*p1®ps® + 64 ps®p1®ps” + 56 wp1u’ps®

40wy fu?ps? — 4whpio?pa® + 56 whp P ps? — 196w, Ops?p,?

4, 4 2

— 351 pa*p1tpatutw — 68 patprips®u? — 175 ps®pitpsto? + 7 p1 S pstwps®

— 758 patprApsto®w — 209 patp1tpstu? + 96 patutp 2w? + 40 patutpstpi? — 77 psBpsipitu®
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+ 144 py u'prPwps® — 356 paCps®pr vt w + 102 ps ps?pi Sw® + 35 pa®pstp Cw? — 5 p pstpstow

+ 244 psOp3?p1 Pw? + 108 pa®psOp1 Sw? — 76 paps®pr*v? — 475 paPpsp1 v w — 392w ps?p; foPp,

—92 w3p34p1402 — <’56p421fl;0341)2 — 100p44u3p32v3 — 32p42u4p32v2w — 8p46u6 + 128p14w4v2u

+ 24p42u3p3203w — 94p42u3p3403 — 56p44u2p32v4 + 8p42u2p32v4w + 96p14w4vu2 — 128 uv5w2p32

+ 16 w5p14u2 + 32 w5p1402 — 112 w5p16p32 — 88 w4p16p34 — 104 uv5wp32p42 + 256 w3p32p1204 + 472 w2p32p12v4z
— 847 w2p34p1402p42 — 112 w2p36p1402 + 40 ugvgwp34 — 163p46u2w2p14 —24 u403p34 + 32utvw? — 80 u41)3p44
+ 23 u4p46p14 — 112 u3v4p34 —30 u3p46v3 — 16 u304p44 -3 u3p16p46 —19 u3p48p14

— 24 upsSud + 64 wdvtw? — 6u2p46v4 — 451 8wipst 4+ 2p1 Bwps® — 2 p1Bw?pa® + 2p0p1Sw

— 82 p44u2w3p14 — 16p44u7 — 435 p44u2w2p14p32 — 40p42u%13pl4pg2 + 32p42u5w21) + 32 u4p34v2w

+ 128 utvdwps? + T8 utupi Zps® 4+ 176 utvpyiw — 184 utvPp,2ps? — 32 utvwdp? — 32utpytwp

+55utpy pips? — 18u'py v’pr? — 32utv?w?p? + 2utvp *pat + 226 u'psPpi Pops® + 116 uops *patw

+ 16 u*wp1*p3*ps® — 205 p1Swpav?ps® + 2u'ps®prtpso — 34 utpa®v?pi ps® + dutpstwp to

+ 52utvps®pr®pst 4+ 46 u'pstwprt — 3ulprtpsSu — 14247 py p1 w? — 6 uPp Cw?ps® + 44 WP psPups®py

— 48 u3p34vw2p12 — 16p42u5va32 + 16p44u3wv3 — 113 u3p46p14w — 208 u3p421)4p32 -9 u3p16wp44

+ 330 pa 1 + 18P0 pr P pat + 24 wPvw’pyt — 12307 pap1tps® — 3uPpi®pa’ps®

+ 16 WPps?wp1? — 146303 psipi? — 120 WPpatprips® + 50w v?pi%pa® + 160 w3 pa2vtw

+ 6 udprto?pst 4+ 3203 p 2wl prt — 4udp P w? — 56 udp 2udw? + 128 wdvtwps? — 48 utp w3v?

+6 u2p14v3p44 + 28 u203p36p12 — 22 u2p14p4602 + 16 u2w3p14p34 + 26 u2v4p12p44 + 56 u2p44v4w

— 179 u2p48p14w + 18 u2p48p12v2 + 13 u2w2p16p44 + 174 u3p42p32p12wv2 — 110 u3p42p32p14vw — 24 u3p34p12w02
— 72u?ps®p3°p1 w? + 260w’ pa®pstp*v® — 20 wPups®pr tw? + 8 utwip Ops® — 4pytwe® + 12 p Swte?
+ 32 ps*utw?p®ps® — 16 pstudw — 8 ps ulps® — 2p1* v psPw + 121 S0’ ps®w? — 32wpy® — 3200ps°
— 200 p12ps2utw?v? — 2u3prps?we? — 339 udprtpatpstw + 23 udps®psipite — 268 utp tpstow?

— 34’ p1Swpa®ps® — 564 pa®ps'priw + 3744l ps prPpsPv? — 60 PV pi®paPps® + 84 uPvpy *pstps®

— 98w upr fwps® 4+ 6w’ pr pa®ps® + 34uPpy prPwe® + 10w pr fwps® + 6 uPprtwo’ps® — 46 00pstps®

— 104 v6p34w — 16 u2p36v2wp12 - 83 u2vp14p46w — u2p16p42vp34 + 14 u2p46p12wv2 — 16 u2v2p34p14w

— 15u?ps?p1Opstw + 4 u?pSwPops? — 2u203p1%ps® — 14 uPoptps® + 64 0P ps 2w — 160 U0 py2ps>

— 6u?pOps®v — 23 u2p  Cwps® + 16 W0yt — 19200 pst — 40 Ops® — 64 uSups® — 16 upypi® 4+ 40 u5py 2ps©
— 104 u502p44 — 32uwv® + 8uv6p44 -2 up18w4 + 2 up18p48 + 2 up46v5

+ 2upyp1 % — 64 uvdw? — 32uw’p 8 — 144 uv®ps? + 460 w3 p; foupy®

— 21w’ pa® + 51 *0°pstw + p1®0’ps*pa® — 3484 v?p) *psPw® — 86 uPvPwp: *ps*

— 32 u2p42p36p14v — 12 u2v3p14w2 + 136 u2p1402w3 — 64 u2v5wp32 — 176 u2p12v3w3 — 65 u21016p46pg2
—40 u2v4p12w2 — 58 u2p12v4p34 -7 u2p44p34p16 + 94 u2p16p42w3 — 48 u204p12p32p42 + 284 w3p14vup34
— 5u?op Cwps®ps? + 34w vprtw?ps® — Tuop Opatps? + 6 utvPprpaps? — 1120207 p fwPps?

— 1914 p4s®p1*ups® — 6 uPpr wvPps® + 45 u”ps®ps*p1®w® + 360w p1 ' paPvw® + 346 ups v’ pi*ps®

— 168 w?v?u’p *ps” — p1®pa®ups® — 2400p 2w? — 68 p1 w'ps® — 173 p1 PP w?ps®ps® — 4 pa®ps®piOv

— 20?1 Opa?w? + 108 u?v?p1 patps? + 346 u v pi?psPwps? — 257 upatpstpito + 130 uPps®pr tpste?

— 152u?p1%pstwps® — 16 w0 pytpr®w — 192w v*u’ps'pr? — 122 psOp1 *pstou — 119 psp1 psPou

+ 440 u2p12v3p34p42 + 276 u2p42p32p14vw2 — 60 u2p14p32v2w2 — 429 u2vp14p44wp32 — &4 u2p14p42va34
+ 10 u2p14p42wv2p32 + 8u2p16w30 + 32 u6vp42w — 16 u6vp42p32 + 132 p46p32p12u202 + 258p44p34p12u2v2
+ 128 p4Op3®p12uv + 139 pa? ps'pr 2uPv — 621 patps®prtw?v? — 128 pspstpr fwn® + 16 pr?ps*wvu

+ 136 v3wp 2udps? + 26 vip1 fwps® — 2pi3paSow + 244 patpstpi 2odu + 207 papsSpi 2o + 224wl p fowd ps?
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— 15u*p O patow + 76 u20w2p14p34 — 26 u21)3p12p44w — 44 uwp, tpsOp,?

+ 320 v?wps? + 112602 ps%w + 96 u’pr 2patw + T2 udps?p ipy?

—36u°p1°pstv — 88u v ps®ps® — 16 u’pstops® + 10up ®ps®v + 5up: ®ps*w® — upiPwps?

+ 24 uw2v5p42 — 32 up44p32v5 + 144p42p36p1202u2 + 140 v2wp12p42u4 + 64 v4p12wp42u2 —24 w2p34p12v3u

+ 116 uv3wps®p1? + 82 psSuPwup ? — 84 pytudw?up? + 16 uPwpr2ps®ps? — 4uPpr®vps®ps? — upi®v?pstw

— 28 upsupaip1? 4+ 176 up1 Svwps® + 60 ups®ow?pi* — 2wvtp 2patw + 9up: Spatwps? — 216 uw?vdp Ppat

— p1®pa’ps’v — 120%p12wps® — 10 p1®ps w?v + 4 p OpstoPw + 16 prfwe® — 260 w0 py *psPw?

+ 3up *pa®wps® — 17up: ®ps®pso — T8up: ps’ps'v — 216 uv®py 'ps®w? + 49 uvPpi ps?pa + 24 up: ®paPpstwo

+ 6up16w2v2p42 + 4up16w2v2p32 — 15 p16p36w02 — 224 u4vp12p42w2 + 152 u03p14p34p42 —14 u03p14p34w

— 32w’ p1®ps’ps® + 24 ups wo® + 12 up; Swv? — 64 uw pi ®ps® — 66 uw p1 ®ps® + 64 ups p1®ps® + 99 up4®p: Ops*

+ 76 vip twips? + 112 w3p12v4p42 + 84 uvtpsOp? + 19 uv3p14p36 —T74 uv5p12p34 + 10w’ pr?pst — 16 uvSps 2w

— 14uvtpsOp1? + 2upsOp1tv + 15upi Bpatw? + 3up®patpst — 4upi Cps®o? + 5upi®psOps? + 10 up: FpsSw

+ 79 uw?p1°pa® + 45 uw’p; O ps® — 24 uwpiOps? — 20 uvPpr 'ps® — 88 uv®psps® + dups®pi v + 2uv®py psPwps’

— 32uv?ps®prtw + 40 ups®p1 OpsOw + 208 uv' pstpr*w + 392 uvtpstprps® + 291 upsp1 Opstw — 347 upy prtpste®

— 17ups®ps°p1w® + 297 upy* ps®p1 *w® — 48 utvw?p1®ps® + 96 ups®ps’pr®w? — 148 up,®ps®pr*v®

+ 256 uw3p32p1402 + 20 uw2p34p1402 + 48 up16wp44vp32 + 26 up48p16w — 160 uv6p32w + 37 11,1916]7481932 — 4up481)3p12
— 12 up14w2v4 + 2 up14v4p44 — 112 uv4p12w3 — 40 u05p12w2 — 32 up14v3w3

— 952 up16vw4 + 28 up3803p12 + 284 up14v2w3p42 + 198 uv4p12p32p44

+ 426 uv'p1*pspaw + 66 uvp1  w?pst — 6 ups ot ps?w + 2upr vt ps®ps®

— 60 uwvPwpr *ps* — Bup1®v?ps*ps® + 215 up1 OpsCpsPw — 147 uv?py*psOps® + 316 up: Cvw’ps®ps’

— 471w py *pa*ps®w + 201 upsSw?p1 v + 36 upsPwupr ! — 28207 wp1 Ops*ps® + 42 p4®ps®pr vt

+ 107 pa®ps?p1®w — 28 p1Bwps? + 20 p1Cv?w? — 36 v ups®w?pr? + 136 p1Pwps’pst — 4vw?p:®ps® + 64 p1Sv*w? ps®
— 50 p16w2p44v2 — 16 p16wp46v2 — 28 up42p32p14w21)2 — 481 up42p34p14v2w — 60 up46wv3p12

— Tup®psv?ps® — Bup1®psv*w + 15 up1®ps* ps*w — Tup, ®v?ps*psw + 173 up1 Sw?ps*v + 60 up: Swps®o

— 19 up1Svps®ps® — 8uv?pr*ps®w + 61 ups®ps®p1®v® + 35 upi Svw’ps® — 18 p1 S0 w?ps® + 56 pr Pw’py*ps’

— 42 p4Bp3?p1*o? + 75 p1Bwpsps? — 2upr fwvtps® — 88 upr M vPw?ps? — 29 ups®psZpitv + 60 up; Cvw?ps? — 320 w?

+ 48 vtprtw?® — 400 pst — Tp1 %o w?ps?t — 4vPwpr*ps® — 96 pa?piSvw® — T5up1 Opstw® + 28 wpr OpsBps?

— 62 w3p14v2p44 — 13p18w3p34 + 168 p32p1 2vow? — 424 ps?p 2v3w?u® + 56 p1 2ps2ulwo

— 4p 8w’ + 14 p Sw?odps?, (G.3.5)

Numpy
Nvz = DenN:;’
Deny,, = 32 (v*ps? — p®p1®ps? + pi?u® + w’pi? — 2wou)’?
Nump,,, = (v2 — p12p42) X (6p44u2 + 12 1)31932 — p14p42u + 12p32v2u — 16 vuw? — 8uwv? — 71912]7441932
+p14wv — uvp44 — p44up12 — 16p32up12p42 — 16 uva42 — 4p32uvp42 — 8p12wuv — 16p32vuw
— 5 p1°pa’uv + 4 pr*wups® — 16 wpi*pa®ps® — 3p1*vps®w — 12 p1*vps®ps® — 8p1’pa’wu
+ 8w?v? + 6p14w2 + 8v3w + 811)31)12 — 16 vuw + 2p12p42u2 + 81)1211,11)2 + 4vp42u2 — p14wp42
— 12p3*p1°pa® — Tp1'ps®pa® + Tp1’ps®o® + 8pa*u® + 20 v*wps® + 7 v ps°ps”
+ 2 v2p42w + 8p42u2w + 8 w2p12p32 + 12 p12w2v — 4p421)2u + 12p34v2
+2ps’w?pr? + 8ps®pa*u’® — pr’pstw + 6 prPwe?), (G.3.6)
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Denny, = 64 (—p3°p1® — 2p3®v — pa®ps® + u® + 2uw + w?) (v?ps® — pa®p1®ps® + pa®u® + wip? — 2wvu)2
Numpyy,, = 15p1%°ps*w + 13 p1®w’ps® — 200°ps*ps® + 40 v ps*w + 66 w?v®p1*ps® — 3p1®ps*w?ps”

+ 148 w0 py*ps* — 15 p1°pawps® + 3 p1®patpsto + 8pa'pr*ps®u + 8 pa®pstpi Pv?

+ 440%p1 'ps®w? — 69 p1®paPpstwo + 48 w2 ps® + 40 p4®psprPviw + 2w Pp *psPps?

— 80p44p14p34vw + 11 p16w202p32 + 17 v3p14p34p42 + 69 v3p14p34w —20 w5p14v — 12 w4p12v3

+ 70 ps®ps®p1 v — 27 ps*ps®pr w®v — 124 ps®ps'pr we — 84 ps®ps®p1 wo

+ u?vpr Opa®ps” + 3uPp1®pa*ps® + 116 patps*pr*utv — 96 py*ps®piPutw

— 96 pa*ps°p1*utw® + 96 pa”ps’pr*wu — 48 pa®pstpr v w? + 232 ps*u’ps®viw + 8 wips’p *v?

— 88 uv3wp34p42 — 176 uv3w3p32 + 32 p42u2w4p12 — 96p42u4w2v — 128p42u3w30 — 8p44u3vag2 — 24p341)3w

3
— 43503yt + 28 p3Svdwps® + 4 psSupsipi? — A8 whprtu? + 6 wprtv? + 24 whpOps?

+ 4w4pl6p42 — 64 w?v?ut — 32w*vPud — 16 w?vtu® — 56 v4p34u2 — 72 v5p34u — 16 v4p36p12 + 12p44u5v

— 18pstutv? — ApsSutpi? + 21 wPvpr tpatps® + 32uPpitpaPupst + 5 uPprpsoPps®

— 403p1*ps® — 2007 p1?ps?t — 28 psOpatpitw + 2407 st — v papst — 1607 ps® + 16 v pstprtutw

+ 28 v2psOpitw — 3202 psutw + 56 psSvtw — 28 v3psOpiZu — 28 paZp1 O3S + 8 V2 paBpsipi? + 6 V3 patpsPuw?
+ pa®p1®pso + 44 pstpa®priw® — 44 pa®piPpstutn + 44 paPpr pstue + 14 pstoPw'p,?

+4p1°pstow? — 2507 ps wpi®ps® — 5 paSpi®psPow® — 4vPptuwt — 1007 py psPut

— 16 pa®p1*ps’utw + 19 up) *pa®ps*o + pr®w? + 28 p4®p1*ps®uv + 16 ps*u’ups® — 19 uv’py *ps*

+ 15upy p1Opst — 160 p1w’v?ps®u — 16 p1°pa*u’w + 4p1*ps*u’v + 59 ups®ps'pr"v?

+ 24 u3v2p12p32w — 76p14w2vp32u2 — 12p44p32p14wvu + 98 v4p34p12w — 150p42p32p14w21}u

— 68 pa2psip Pwvdu — 104p42p34p14wvu + 160 ps2ps®pr 2wou? — 68 wip 2vdu

2 2u2

— 20 wprtou + 56 paZps?pr Pwoud + 128 wpi 2ou® + 8 wip 2 Apatu?

— 30p4"p1pstw + 40 pa*pr*pstu

+ 16 pa*p1tpstv® — 24 pytutpr®w — 56 patu'ps®pi® + 6 paOpsPpr v’

+ 28 pa®psp1w® — 6 pstps®p1Ow?® — 40 pa®psp1Sw? + 16 ps®psOprtv® + 100 w?ps®py to?

— 24p42u4p3202 — 10p42u3p32v3 — 8p42u2p32v4 + 120 uzv4wp32 + 16 uv5wp32 + 76 w2p32p12v4

+ 56 w2 pstp1tv? 4+ 144 w3 v wps? + 48 pa2ulwip? — 8 palutwo? + 44 p2udwe® — 32 p2utw?p? + 20 w3p Cpst
— 16 w3p14p32u2 + 48 w2p12u3vp32 —24 w5p1202 — 60 w2p14p34uv + 42 v4p34p42w

+ 24 v4p32w3 — 16 vw6p12 — 18 u4vp12p44 — 16 w5vp32p12 + 4w5p12vp42 + 24p14u3p42w2 + 8 u5p46

— u4p48 + 16 u5p44p32 — 32uPwv? — 16 utvPw — 8u4p461) + 16 u4p46w — u3p48w —13 u3p32p48 — 4u4p44vw

+ 32 utps?wpa? + 48 utvw?pi? — 16 upi 2w — 120 pi 2paPwo — 16 W pa>w?pi 2ps? — 8 udw?v?p,?

—32 u3w202p32 — 28 u3p46p12p32 — 7u3p46p12w + 2 u3p4402w — 68 u3p44v2p32 — 48 u3p441012w2

— 44uPps *p1pst — 16 uPpa®pstv? — 24 W psPuwps® 4+ 16w py*psu?® — 64l psCow — 60w pstups?

+ 3u3p1Swps® — 443 ps v + 56 uPpa®pripsiw + 36 wdps v wpi? + 18 upalwpi o — 20 WP psOps?

+ 16 udvtw — 32w w3v® — 8 u2w3p16 — 8u302w2p12 + 12 u3p121}3w + 2 u3v2wp14 — 955 u3p46vp32 + 20 u3vw2p14
-3 u3p44wp14 + 52 u2w203p42 + 2 u2p44v3p32 + 6u2p16w2p42 + 104 u21)3wp34 + 4u2p34vp46 + 20 u2vw3p14

+ 430 p3”ps"wo + 9 U ps°p1®psPw + 946 pa*pr*psPow + 76 uPps®pstpr Pwu + 208 uPps v wps®

+ 5u202ps®ps? 4+ 22 0% patw? + 3upaBp1?ps? — 6 uPpaOpPw? — 4u?p S w?o + WPpsBups? + 24 psSuwu
— 48 u2p42w4v + 32 u2w3v2p32 — 26 u2p1402w2 —24 u2p44w3p12 + 16 u2p14p32w02 + 15 u2p16wp42p32

—44 u2p12v3w2 + 16 u2p42p32w3p12 — 28 u2p34p44p12w + 51 u2p42p32p14vw + 60 uzva34p44

113



— 12 u2p44w2p12v + 104 u2w3p12vp42 + 68 u2p44vp32w2 + 21 u2p46p12p32v + 176 u2p44v2p32w

— 28 u?pytwv + 40w 0w py? + 24 uwp:Ops? + 2uv?pytw® — 3upsSpitw® — 4uvdpyPw® + 28 upytpstpr?
+30ups®ps*pr?t — 22uprv?w’ 4+ Bupytpitw® — 40 uvtw?ps® — 15ups®psSw?pr? + 77 upsCopi *ps*
+32uv’ps*prtw — 115 ups 'vw?p1*ps® — 40 ups®p1°ps*w — 35 up) Swups® — 56 upsw’ps’p1® — 48 upstwpsv®
+ 40 upsSwps*p1® — 5 uv®ps®ps*w — 28 uv® py*ps*w + 3ups®pi*ps*w + 12upCpr*psPow + upi Cwops®

— 6 upr 2patow® — 3up:BpsPwps? 4+ 68 uwip 2ups? + upiBwd — 48 uvtw?® — 32 uvdw® — 56 upsSut — 16 up, Sw?
+ 32uv?w’® — 24 uvp16wp42p32 + 8up14w1)3p32 + 7up16p42w3

— 130 uv4p34p42 —24 uw4v2p12 + 2 up16w3v —15 up46v2p34

— TTups v ps* + 32uv?wips? — 84 uvdps®ps? — 104 uvdpstw? + 32 uv?ps?w? — 28 uv?psSps® + 28 upsOp?ps°
+15up3 pa®p1® + 100 ups*pi*v®pa* — Yups®pa®p1®w?® — 24ups*pr*psw? + 28 ups®ps®pi*v?

— 208 uv’ps*w’p1? — 304 ups®ps”pr* v w® — 21 upy*pr*wvps® — 3up: *pstwps® + 3ups®pi fwps®

+ 28 upsipr tpaw® — 32 upstv?psPw? — 16 uv?psips®w? + 12ups®v?p 2w — 63 uprpsPwops?

+ 84upy*p1”ps®u + 16 ups®pr*ps*w? — 44 upy*pr?pstw® — 76 ups®pr®pstow® + 840 wps®pi® + 8 p1 v psps
+ 16p44u6 — 16p14w3u3 + 16p44u3w3 -8 w5p16 — 16 v6p34 + 7w3p12vp44p32 + 36 w3p1202p42p32

—21 p16vw2p32p42 + 28 w3p14vup42 — 1603w’ — 8w3p14vup32 + 44 w21}2u2p12p42 + 24p14p42w4u

— 232w v*u?ps®p1® + 96 pa*p1 *ps vu + 24 py*pspr uPw — 16w’ py *ps® + 34 pa*ps®prPuv’

— 78 pa*p3?pr2uv — 38 pa®ps®prtw?v? 4 96 ps?psipr fw?u?

— 68 pa?p3*p1iviw — 24 pyPpstpi Poiu

+ 30p14u2p42w21} — 16 vtw? + 32 p42p34p1202u2 — 16 va32p42u4 — 194 w2p32p1203u + 72 uvgwp34p12

— 48 wiups®psu® — TAv'pstup:® + 44 wiopstps®pi? + 16 p3topi*w® — 20 patuPwop?

+ 24 pa2udw?pr?v — 16 wopr? 4+ 8 ulpsSw? — 80 w?ups?pa®u® — 32 pripsuw® — 28 ps®o?p  2pstw

— 15p4®p1*pstw + 16 p3*vup *w® — 8 vl p1?ps" — 28 wupspi®ps® + 80 psPvuprPw? + 98 uPvPwpyPps®

+ 6 p1Svw® + 52 ps20Ppstw? — 8 patvtpst + 3patprtwt + 60 psPops*wip? — 48 patupstw?ps?

— 270%wp1ps*pa® + 36 pav'ps*w® + 15 ps wpy*ps® + 10 ps*vPps®w® — 3paCpitwps® — 8psvPpstulu

+ 11 ps "0 pstw + prPwops® + 24 utv’ps® — 8utv®py® — Bulpytprt — 2utpa®pitv — 154 pypytps?

+ 2440 ps® — p1®0?pst + 4 p1Ovpa®ps® + 20 pr v psPuw

— 11 p3™*pa®pr2wv — 28 ps®vpsuw + 16 ps®pr*w’u — 28 vPpspy *u?

— 23 u3p42p32p14v + 234p42u21)3p32w — 90p42uv3p32w2 + 60 w3p14vp34 + 68 w4p14vp32 + 4p16vw2p34 + 16 u61)p42
+ 8uSvip,? — 40p32v3w4 + 16 v4p34uw + 14 03p1 2ps2u® + p18paZpsto + 104 v4p34w2
+ 64 whv?u? — 48 w5p14u — 24 p46u4p32 + 48 p44u5w + 48 p44u4w2 — 64 p42p34p12wv2u
+ 56 4" ps’ p1°wou + 40 p4®ps®pr*wvu® — 8 ps®psprPwivu — 248 wpr 2 ups® + 96 w'pr *vu® — 16 w ePu’ps®
— 40 ps*pr*pstw® — 16 ' psps® + 248 w? v u’ps®ps® + 56 w1 'ps®ps® — 76 patutps®o + 40 pyOpstp Pu

+16 pa*ps°p1*v® — 92 pa*u’ps*v® — 24 ps uPpstv® — 52ps®prPupatut + 2ps’pi PvPpstu?

—52p3°p1*v?ps*u® + 17 pa*ps*pr *v® + 18 whpr*vps® + 3 pa®ps'pi*v + 63 p1 Cvw’ps®, (G.3.7)

Num
Nyy = ﬁ,
Denp,,, = 64 (ps + p3)2 (—p42p32 + w2) (021032 — pa*p1®ps? + pau? + w?pr® — 2 wvu)2
Numpyy, =104 ps*wvu® + 55 ps®pstw'pr* — 38 p3*papi'w® — 200%ps®py*p1”® + 24 ps®ps*o®w’
+ 96 udvps 2w + 144 ps?wrops®u? — 48 ps2wv?paPu — 2 paZpsipitwiou — 4wt p foups?
+2p4Ops®pr wou + 4 ps psPpr wvu + 2 pa pstpr wou + 8 ps®paSprt — 8 wpy*ps?

4 88p3403w4 _ 108p36v3w2p42 o 8p3402w4p12 + 2p44p16p34w2
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— pa®prtpstu?® — 24 p3Ppstprtw? 4 28 p3SvPw?py®pi? — 31 pytwps®u® + 16 pytwipstp?

—2p4°p1°pstw — wp1®ps® — 2w°p1ps® — pa°p1®ps® — pa®piOps?

+2wp1*v’pa® + 2w p1 Mo ps® — w'p1®ps®pa® + 31 pswpsPupr® — 8 pa®wps®pr*

+ 24 p3*pa®prtw® + paSpitpste? — 24 psPutpstuw + 14 3P wip,?

+ 12 ps*vw’pr ! — 4 ps®v*w’pr? + 32 pstwps®o?pr® — 22p1 20 wpsPps® + 4 pate’ps®

+240%ps%w® + 2pa 1 *pstvPw + patpr ' ps®o® — pa®psPprtu® — 2psOpspr tutw

— 32p1*v*w’u — 16 v*u’ps*w? + 4ps*p3’p1®w® + 2 ps°ps®p Sw® — 6 wips®pr*vps® — 10 p1*psPwps?
+4w’pr v — 15 pa*v’ps®wpr® — 27 pstow’p1 *pa® + 15 psPvwpi *pat — 3w?ps'pito’ps®

+ pa®utw’p* + 24w p *v® + 2ps P’y + patutw’p ps® — 30 ps v w’p) *ps®

— 220 ps w’ps® — 9P psCwps® — 4 p1*psPow’ — 12pa*piPow® — 50%ps wps'p?

— 24 ps*w’pr* + 34 psOp1pstvPw + 9 ps®prPowps® + 3 ps®pi*vw’ps® — 8 ps*w’py*ps®

+ 5401 pstvw + 48 wlups®p1® + 8wOpiPups® + 32 ps*vPwiu + 40 ps*viw’p,?

+ 32w p1%v — 2wy foupst — 62w p1tups®ps® — T8 w'prPupstps® — 150 w'pr*v?psps?

+ 104 w?ops®pstp1? — 148 whops®pap1? — 4 psPopsOpi® + 32 pstups®o®

+ 16 psSuPpstv — 19 ps®prtups® — 19 ps®p1tups® + 3203 ups®ps* + 24 vwlpyt

+ 194 p1*ps®v®u 4+ 19 pyCpr*pstv?u — 32 psSupsPopi® + 4 psCvtps® — 324 prPvups’

— 3ps®v°p1%pst — 5p1tpaupst — 5 pr 2w paPups® — 5p1*u’psCups?

+ 5012 paOpst — 4 psBoPuPps® — 3patpsPpriwv® — pa'OpiPutps?

+ 16 p®uPvps® + 9p1 2w pa®ps? + paPopst — palOvups? — 5 psPouPpst — 4psSupstu

+ 43 p3®0?psSu + 28 p3BuPpstu — 28 p3BupsOpi? — 43 p3Sups®pi® + 15 paPuPpstu

+ 333 ups® + 20 p3SuPps® + 13 s uBps? — 15 p4Pupstpi?® + 9 psSulpi?ps?

— 64 w5v%u — 96 w5p3202u — 48 w5p32up12p42 + 16 w5vp12p34 — 16 w5p44up12

— 32w *pstu — 32 whundps? — 36 wipstoPu + 6 whpsCup? + 56 wuvp2ps? — 16 whup; *psps*
— 4w4p44vup12 — 16 w4p3202up12 — 36 w4p4202up12 — 14 w4p4402p12 — 32w uv?

+ 16 w4v4p42 + 4w403p44 — 32 w3p46u3 + 24 w3p36v3 — 6w2p48u3 + wp410u3

— 16 wpstups®p1? + 96 whpstup: *ps® + 12whp PP ps® — 10w py *patu — 8 whopy tps

— 32wtu?pst — 8wipstvdu + 3w psOpitu — 44 wWipsCopaipi? + 24 wWPpsSuu® — 2wWipsSu
+ 3w?psSup? — 48 wPulpytps® + 28 wPups®piPpsv — 10w pa®pr psPuiu

+ 89w’ psOp1®ups® + 144w py* ps'pr®u + 40 wPps v ups? + 48 wPuPpyPpstu

— 60 wipstuPops? + 8wivPulps® + 10wPpsOpi2u® — 16 w3patup? — 24 wrpytotps?

+ 73 w3p44p32p14u + 32 w3p12u2p44v + 10 w3p46p12vu —10 wgv2p12p44u + 70 w3p44uv2p32
+ 144 w2p34up4402 — 156 w2p46vu2p32 + 42 w2p461)2p32u -2 w2p4gvu2 — 6w2p4603p32

— 16 w2p34u3p44 + 24 w2p46u3p32 + 11)219481912u2 + 16 w2p3602p42u

— 21 w?pstupsOpr? + 44 wpsSupspr? + 9 wpsBups®pr? — 8w?psv?u? — 6 w?pOp 2

+ 51 wu3p32p48 + 64 wu3p46p34 + 4wp481)u3 + wp12u3p48 — 28 wp3803p42 + 32v*w®

+ 36 w?vupsp1 Zps? + 2w opy *psSu? + 48w vdups®pst + 17w psCo?py 2ps?

+ 13w?ps®p1tups® — 18 w’py vPp1®ps® + 35w ups'prpa® + 26 w?pstpr*uv®ps’

— 60 w?ps uPprPops® + 29 w?pr tupsOps® — 8w uPpiPpstps® — 188 wipytuipstv

— 3Lwpa*ps*pi®uPv + 73 psOps?priuw? + 56 uvdwipst — 16 patutwip® — 32 paPuPu’p,?
+ 64p44u3w3v — 64 w402u2p32 + 48p46u4p32w — 24p44u4w2p32 + 120p44p32p12u2w3

+ 88 papstp®utw® + BuvPwpstps® — 80 uvPwps'ps® — 76 wvPwpsOps®
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+ 64 uvdwps?ps? — 32 p42u2w4p12p32 + 80 pa2udwvps? — 72 paludwops? — 160p44u3w2vp3

— 108 p44u3va34 — 64w v?u® + 32 p48u4pg2 + 32 p46u4p34 — 24 p46u4w2 — 32 p44u4w3

+ 10 p46p34p12wvu + 160 p44p34p12w2vu + 84 p44p36p12wvu — 10 p44p32p12w31)u

— 160 p42p32p12w4vu — 132 p42p34p12w30u + 48 w5p12vup32 — 56 w202u2p44p32

+ 88 wivu?py®ps® + 48 w?vPuPpspst — 57 pa®ps*pr®u® — 56 ps®pstpiiu?
— 88 paOpstpi?utw + 48 paSulpsto? + 52 patulpsto? + 24 pytupstoPw — 96 ptwtvu

+ 19 wups®p12ps? — 111 wuPpstops® — 56 wuv?ps®ps? — 10 wu?ps®pr 2ps?

— 45 wu?psSups? — 41 wups®pi2psv — 41 wup46p34p14 + 83 wup461)2p34 + 104 wuv2p36p44

— 96 wups®p12ps® — T3 wupstpsBp1? + 51 wups*pr*vips* — 3wprpsPups?

+ 20 wvPups®ps® — 10 wps®p1®uvps® + 13 wpr *upsSv?ps® + 5 wps®v?ps®u — 60 wpsSupsu®

+ 28 wp38vp44p12 -3 wp410up32p12 + 96p42u2w5v — 32 p44u3w4 — 32 p42w6p12u + 3203w

+ 75 paSp12w?pstv — 5 paBp1?psBo — 5pa®pitpstu — 90 pa*vPpstu’

+ 40 v3w4p12p32 — 24p44v4p34w + 96 w503p32 + 48 v2w6p12 + 5p46v3p36 + 16p44v4p36
— 10ps*pr w® + 64 v wps® — T2ps*v?p3twpr? + 45 pyopstwp® — 108 pa*ups®w’ps®
— 48 v3w?p1?pstps® — 24 psPvtpsPw® — 23 psSuPpspi? — 96 pa*vipstuw?
+ 43 pa*w?prtops® + 20 pa®p1twps® 4+ 5 patvdps®pi? — 80 pstu pstu?

— patprtw?pso + 32vwpi®u + 125 pavPpstwpi? + TpsOpa®pit 4+ 120 ps®ps*
— p1?pa'Oups* — 4 p1?paSow? + 5p1%paSups*w? + 2p1pa®psiu?® — piipa'Opst

— p14p46w4 + 24p34v4w3 — 8p36v4w2,

u Numyy,
1 =
Dean ’

[\

(G.3.8)

Denyy, = 64 (—p1*pa® — 2p1°w — p3?p1® + 0 + 2vu + u?) (02ps? — pa®p1®ps® + pau? + wp1? — 2wou) x

(p4 +p3)2 )

Numyy, = —( —pr*pat = 2p1*w? — 12p1%20pa®ps? — Tpi?patw — 9p3Zpipat — 10 psPw?pr? + 1203 ps?

+ 8v3w + 8p3?v? — 3prtwps® + p12pa®v? — 8pstpiPps® + 4 psPpau® — 12 p3Pupy *ps?

+ 403pyg% + 8w?? + 5 p32ps®ou + 16 ps?v?u — 8w?p1ips? — 4 p3’p wu — 4dwp, ?ps’

+ 60%ps*w — 25 wp1 *pa®ps® + dups*v + uops® + 8 pa*viu — dpstup® — 12pi*psPwo

— 12p12p42wu + 12 vp42u2 — 4p32p12uw + p12p321)2 + 8p42u3 + 4p32vu2 + v2p44 + 4p32vuw
+ 20 vzwp32 + 4u2p44 — p12p46 + 91)217421932 — 4p12p44v + p12p32uv + 2p12wuv — 8vuw?

+ p1Ppa’uv — 8vuPw + 8 pa*uPw — 2ups*uw — p1tps*w — pr'ps’ps® + 2p12wv2>p12

Numyy,
\/12 =
Denyy,

Denyy, = 64 (—p42pg2 + w2) (02p32 — p42p12p32 +p42u2 + w2p12 — 2wvu) (pa —i—pg)2

(G.3.9)

Numpg, = — ( — 5pa2wups? + 4p3p1Ppat — 4paPw?pi? — pitow + dups®pst + palu — 6 pPuwio + 4pst?

— 4p3tp1®pa? + 8p3Zpau® + p3Zupi®ps? — Swv? + 4ps®psPou + 4w?p,*ps?

— p32p12wv — 8vw> — 2 vw2p12 — 4v2p42w + 4uvp44 + p44up12 — p12p42wv + 2p12p42wu — 12 19321)11)2

+ 5p32p44u + 12 p32p42uw — 12 p32vuw — 41)2wp32 — 4v2p42p32 + 6p44uw — 8vuw? + 8p42uw

+ 8 ps2utw + 12 vps2uw — 4p34vw)p42
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M, = Numpy,
Denyy,
Denpg, = 64 (ps + p3)® (—p12pa? — 2p12w — p3?pr? + v + 2vu + u?) x
(v?ps? — pa®p1%ps? + pa®u? + w?pi? — 2wwvu) (—ps*pi? — 2p3*v — pa®ps? + u? + 2uw + w?)
Numpy, = —24 03p36p12 + 7p14wv3p42 —24 w3p14p34 — 8vp14p46w + 14 w2p12u3p42 + 20 w2u02p34
+ 24w ps* + 9 s upi*ps* — 16 p3*pa®vPw + 15 p1 O ps®opst + 6 patvtw — 6 pstutps®
— pa®pr*w — 5pa°prPwe? — 8v7ps*u’ — 16 v ps*u® — u’pr ps*v® + 41 wps®piPups®
— 18 v%p3tpi 2u? — 16 v2pstprtw — 18 p3tups*v? — 33 patow?pi®ps? + 146 v2ps?p, 2wu?
— 600 p3*p1*u — 80%ps’p1* — 8 v psu + 8 pa®p1®ps® — 69 pa®pr’psPulv
+ 5pa”p1tpstu® — 29 pa®prtpsPwu® — 21 pa®pi®ps®u + 16 ps®pr Opstw
+ 60 pa?p1 pstuv 4 16 py2udv — 24 p2udv® + 6 pyup®w + 4pySulpy? — 24 pyPuPe?
— 5p44u4p12 —14 w2p16p44 + 36 w2p12u3v —21 w2p14p32u2 —10 w3p14u2 + 8w2p12u4
— 3w?ppsuv — 13 w2p16p34 — 15 pSvulps? — 37wp Ops? — 48 wo?ut — 64 wvdu® — 22 p1Sw?ops?
— 16 wv’u — 16 wou® — 48 wutu? + 8v5p42w —8 v5p42p32 + 42 wvu3p12p32 + 26 wvup14p34
— v?psps®w + psOpi®psPow + 2000 s — 120%0Pp1*ps® — uv’pytps® + 8utvpips®
— 10w’ps’u® + 14 ups®ps*p1® — 14 upspr*v® + 8ups®p1 v — 8vu'ps®w + up: *ps®
— p1%0%ps" — p1Swo’ps® + up) Sops®pa® — 6 vt ups®pr® + upiOpstv — upy P ps®
— 4ps°pri*v’u’ — 2p1®wps® — 16 w’p1*v — 35 p1*pstow® + pi®pa*wps® + 180 ps®ps*w?
— 24vps*w’p® — 15 p1 "0 pst — 46 wipiPops® — 22 p1 e’ ps®ps® — 1200 ps?
— 32udvw? — 24 up34w2p14 —12 up36v2p12 -8 u2v2p36 + 8u3va34 + 8p36vuwp12
+ 48 u2vp34p12w — 24 uv3p36 + 8p42u6 — 46 w4p14p42 —40 w4pl4pg2 — 10p44u4w — 17p44u4p32

+ 32w3vu? + 5p14up4402 + 32p3203w3 + 120 w202u2p32 — 8w4p12vu — 16 w5p14

+ 22p42u2w3p12 — 20p42u3w2v —12 vzwp14p44 — p48u3 — 35p44u2p32vw — 2p18w2p32

— p1®patw — Tps®0psu + paups®pr? — 2psPou® — pSuPps® + 8 v pytw® — 10 vp)*psCw?

+ pa®wv® — psPwpi®v + p1*0?ps*w — 12 ps®vpa*u + 18 p3*ups®p1® + 12 psCupspr”

+ TpaPups®p1® + 24 ps®ps°pito — 4 p1*w’ + 29w pytups® — 16 w?pstou’

— 8w?psu’ps® — 18 p1u’ps®psv + 36w psPups®v® + 37 py fwups®v® — 8 pstups?

— 9ps5u3ps? + 8udp1Pps? — 14 ups vt — 11 patuwps®o? — 24 0°ps* + 320*w? + 16 v3w? — 16 p3So?
+160°w” + pa®p1'ps® + 5 pa®pr’u’ — 4pi*patw? + 2p Swo? — piSuPpyt

+8pa*ps’pr* — 19p4%0%u® + 9ps®pstprt — 10 pOpiw® + 1407y 'w® — 32 pstotw

— 44p141)2w3 + 40p46p12wvu + 14 vp14wup44 + 66 v3p12wup42 + p46p12u3 + 62 v2p12wup44
+ 6 p1 Cwoups® + Top: Cwps®ps® + 35 vups®pr®ps® — 140" p1*ps®pa® + 12 vpy *pstu

— 120°p1?uPps? — 350 ups®ps — 54 up1 wpst — Avtups®w + Top: Opsps®

— 12ps v uw — Tvp ' ps®ps® — 6 v wps®pa® — 32 pstprPwv® + 5 psSvPpr®ps’

+ 6 p%p1 wu — 46 v°p1 wps® — P10 pa®ps® — 2up1 u’ps® + 8 ps°p1tups?

+ 65p44p12uvw2 — 56 v3u2wp42 + p44u2p14p32 + 64p14p42uva32 + 1?)2])122}3uw2

+ 62p12v2u2wp42 — 7p14w03p32 — 68p3403up42 —35 p44p14w3 — 8v5wp32 + 66;0142}2uw2

+ 24 v4w2p32 + 48 viuw? + 12p1203w3 — 64 uv4p34 + 2p16p46p32 —44 03u2p44 + 28 v4p12w2

+ 28 pa2vtw? — 38 pi 2vtpst — 50 v udpst

+ 10 pa*ps*p1® — 31 p1%psw® + 21 pa*pr2v?ps? — 23 papsPpiSw? — 27 pr*pauvw?

+ p14p44u2w —21 p12vu3p44 — 115p14p42?)w3 + 51 p44p12ku2 + 32 p42p12p3402u — 16 v3p34wu
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— 334" p1'ps*w? + Tp1Supstps® + 132 pa*ps®piPvwu + 603 p1 *w?ps®

— 28vp1Ops®w® + 120%p1 patps® + 8 pa®ps°pi®v® — 3p1Pwups® — 16 v pstw?p,?

+ 43 0%pr wups® — 66 v2p3 pau? — 22 p1Sw?psPu + 68 ps*pstpr®vu + 14 psSupy *ps”

+ 32ups"p1'ps" — 54 pa®ps’pr*vPw? + 16 pa®pstpr*wo® + 40 s psprto

— 20%ps®p1?w? + 28 pa®p1*ps™v® + 27 psOp1*utw + 5 pytpr P wops®

+32p4 pr 2w ps? + 2p1 Opatwps® + 162 pa®pr*ps*viwu — 48 vPps*pr*w — 54 v u’py *ps®ps’
+ paOp1twps® — 28 pr*vPups®ps® — 16 p1*v’pstps® — 14 pr*vtwps?®

2 2w2

— 19 p1*patuw? — 95 ps®p3Pprtow? — 46 pripsZu 2

— 46 viups?ps? — 60 pato*utw
— 77 pa*v*u?ps? — prtuPpi®ops? + 128 pa®v?upr *w? + p1®pa*ps® + T4vPp1psiwu
+ 16 wps'p1?ps® + 52 paPvPuw® — prtpsPun®ps® + 8upr pstwps® — 4wv?psiu’

+20p1 'paPvwu® — 6 psPvPuwps® — 5psCut — 2215wt + 24 py pytwups® + 48 p1*psPvwps?
— 6p1*patu® — 96 v3psu’ps® + 8 vtwups® + 14 p upsPps® — 64 psvPpr P w?

+ 12p14p42wv2p32 + 36p14p44uvp32 —30 v4p34p42 — 32 w4v2p12 + 80 w3vdu — 20 vp44u4

- 70 vw4p14 + 32w?v3u? — 68])42u3wv2 — 28p16w31) — 17p46vu3 + 14p42w3p12vu — 27p14p42u2w2
— 30p14w30u - 94 v2u3p32p42 + 56 03u2p32w + 21p34p12p44u2 — 29p34p14p42w2

— 65 patoudps? + 84 vps2ulw?p? + 104 wipi?v?u + 45 pytutw®p 2 — 52 patudwo + 148 pr Pw?v?u?

+ 43 wp1 *py ps’u® — 52w v ps®p1” + 128 w v ps®u — 85 wpy 'psps®

— 67 up1 *pa’ps*w® + 49 up1*ps*ps*wo + 5 pstwpi*u® — 67 ps*w’prtu — 194’ pi*ps*ps®

— 121 p1fow?ps? + 196 v2ups®w?p1? + 106 p3*p1 2ps®wou + 81 ps2vupsw?p,

— 50 pa*v*u’ps*w — 7p1patow + 140 prPwps® + pi®pa’pst — 16 utwpr v + 8u’py fw?

— 120 pr wps® — 120%p3*p1®pa® — Tups®® + 2ups®p1* — ups®o® + upsp1®

— 24 uw?p1 8 + 40 u?ps?wpi v — 28 udp 2w — 13 Wl psSvw — 2u?pSwps® — 24 Wp 2w — 2 WPV wp,?
+ 56 w2 vw?p1? — 2upitwv + TupsBpi®v — 12wotp 2w + 12upa®piips® 4+ 12 uv®p2ps®

+ 2 u02p44w2 + 27 up46p12w2 + 8up16w2v —20 up16w2p32 -9 up46w02 + 9up48wp12

+ dup: Pvpsw + Tup: Cwps®ps® — 4u'ps®ps* — dpsuwpt — ApsPowpr® — 8utpsPpsiw
—8pr*wu’ps® — dpiPwiupst — 41 vw’p*pst + 4p1*pstuip,’

— 4u%p4?ps®v — 8 p3PprPuw? — 4 p3ipPuw? + 16 psZouw® + 8 pstoutw? — 4udwpy®ps?

+ 16 p1*ps*u’ps*w — 8u”papsvw + 20 p3*pr*uw’ ps® + 8 ps°pr*uwps® — 9 pytvpst

+ 61 pa*w’pi*ups® + 16 p3*pa*pr*wv — 85 ps*pa’w’pr v — 8v°ps®ps® + 1207 pstu?

+ 40 v2ps?udw + 48 v2ps?uw® + 8 pytp12pstu — 17 pytulpsto + 2 pr2psude?

+ 60 v2p34p12uw — 952 v3p34u2 + 16p42u5w + 8;042u4w2 + 16 w3p12u3 + 8 w4p12u2 — 32w?vut
— 16 wivu® — 20 02p34p42uw — 29p42p12p34vw2 + 22 p42p14p34uw + 11p42p12p34vu2

+ 54 pa pr?ps uw — 37 pap1ps*utw + 7 papi®psPuw® — 36 pa®u'psio — 25 pyulpsiu

+ 10 pa2u®ps?ow? — 40 wpi 2ps?v — 69 w3 p1ps?u 4+ 102 w?p1 2ps?vu? — 58 pa2udwups?

+ Tpa?uPw?pr’ps® — 320’ pstops® + 24 ups®p1*ps®o — 6w v?p *ps”

— w201 pa® — WPpaps®pi® — 12w Poups? — 8uv’ps® 4+ 16 whou — 34 wrup

+ 611)411,19121942 + 60 w3p12u20 + 24 w3p42v2u — 7wp46u3 — 6p32p12v4u + 4w3vp42u2 + 16 w2u3vp32

+ 16 w?p3 oup,?, (G.3.11)
My = Numyy,
Denpy,

Denpg, = 64 (ps +p3)* x (v2ps? — pa®p1?ps? + pa®u? + w?pi? — 2wou) x (—pa?ps® + w?) x
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(=ps*m? — 2p3%v — pa®ps® + u? + 2uw + w?)

Numy, = 4w3p14p34 + 4p36v2wp12 + 20 w2p44vup32 -2 w2p12u3p42 — 32 w2u02p34 — 4wu202p34

+ p32paSw?pi? — 8 psipa®viw — 10wpsSuPps? + 2wpaCpi*ups® + 2 wpsSpsiuv

+ 3patow’pi®ps® — 5pa®uups® — 2patwips®pi® — dpstwpstv® + 4psSwpstp?

—2w?pytud — 16 wOps?p1? — 8w’pr®v — 8v3psPpa*w? — 2ps*wpr? — 4 pstp Pt

— 8w*v’ps® — 28v7pstw® — dupstw’pr® — 4w'piPups® — wipi'ps® — w'pi'ps®

+ 16 w3v?u? — 16p32v3w3 + 8 w2v2u2p32 — 4w4p12vu -2 w5p14 — 2p42u2w3p12 — 8p42u3w2v

— 14 ps uPpsow — w3p44up12 -2 w2p44vu2 — 24 w?ps2ulps? + 32w pstups®v®

— 4ps*uips® — 4psSulps® + 8 patuwpso? + patp1 ' psPw? + 10 patpsPpr fown

— 6v%pstw’p1? — 40%pspsu® — paSuPpi®ps® — 6 pa’psPpiivPw? — 4pyPpstpiPwo
2,2

— pa®ps?prtow? — ApstvPu’ps® — pytuPpiPups® + dwps'pitpat + 8wivipsPu

2

+ 21 patwups? — 2ps?wiprPou — ps'piPpatu® + pytp tpatu® — Apstoudps?

Pwp® — dps P wo — 2wpr*pytpsPu® — 12wP0ps®py?

+ 2vps*uPw?pr? — pa
— 2w’p1*pa®ps® + 4upy*ps®ps*w® — 2u’p *pa®psPwu — pytwp Pu’

— p2wpitu — 2 p1tow?ps® + 10 pstpr *paPwuu + 24 paPvups®w?pr® — 4 paPviu’psiu

— 8p3%upa®pr’w — 4psPvw’p® — 8u'psps*w — 8 prPwtups® — vw’py ps’

— 4u2p42p36v — 24p32p12uw4 — 4p34p12uw3 + 48p32vu2w3 + 8;19341}u2u)2 — 4u3wp42p34
+4ps*ps®vPw + 16 pr *p3tupa®w — 4 pstups® — 8 pauPpsPu® + duPpspstow

+ 36 p3"pr uw’ps® + 8 ps°pruwps® — 4ps*p1®pstw — 8 pytulpstu

— 16 pa*uw’ps? — dpPutw?pst + 32 whvups® + 8wivups® + 20 pa®wpiipst + 4 pa*w?pr?ps”
+ 16 ps*vps*w?u + 8 pa*vps®wu + 8 pa*w’pi*ups® + 8 p3*patpi*wv — 6 p3®ps*wipr
—2pstvPpstu? — 81)31)3411)2 — 16 02p32w4 —8whp;2 — 1002 p3tpsw? — 8 vPpsuw?
+ 3p4°p1°ps’w + 5 pa'prPpstw® — 9pstutpstu — 8paPutw! — 5 pytups
— 8py” 2

— pa®p1?p3tow? + 2 ps®prtpstuw — paPpiZpstou® + 10 patpr ipstuw

utw? — 16 py wdwd — 8w4p12u2 — 16 w5p12u + 16 wvu 4+ 16 w3vu® + 802p34p42uw

— pa?pi?ps?udw 4+ 19 pa®prps*uw® — 13 patu?psiw? — 13 patulps®w — 4wpy *p3®ps?

+ 14 pPuPps®ow® — 12w'pr *ps®v — wPprps®u — patwp® + 2w?pr *psPou

+ 26 w3vup32p42 + 10 wvup34p44 + 32 whou? — 12p42u3va32 + 15 p42u2w2p12p32 — 4u3p34vp42

—10 w3p12vup32 — p48pgzu2 + 16 whv?u — 2 w4up14 —2 11)411,19121942 + 4w4p42uv + 4w3p12u2v

+ 2 wguvp44 + 8w3p42v2u —2 w3u2p44 — w2p46u2 — wp46u3 + 8wp36v3 — 4w3vp42u2
+ 16 w?udvps? — 12w?pstoup: 2, (G.3.12)
N
a, — Numasy.
Den

Denyy, = 64 (02P32 — pa®p1®p3? + paPu® + wlp? — 2wou) X
(—P32P12 — 2p3%v — ps?ps® + u? + 2uw + w2)
Numary = (20 +pr* +pa?) (vu = wo + ups® = prw) (du+4v+p® +dw+p® +4pg®),  (G3.13)

Mg =0 (G.3.14)

In the on shell limit, where p% =0,i=1...4and p; - p3 = —p1 - P4 — pP3 - P4, i.6. u = —v — w, all the
coeflicients multiplying triangles and those multiplying bubbles , vanish

N‘o/rishell - . N{}ZShell — 0’ Mlon shell _ o M60n shell _ 0.
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The only non vanishing coefficient in the on shell limit is )y, which gives

hell _
QY ™" = —v=—p1 - ps.
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