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Introduction

The N = 4 Super Yang-Mills (SYM) theory can be considered as the most symmetric gauge theory.
It has the maximal possible number of supersymmetry charges for a gauge theory without gravity and has
only two parameters, i.e. the number of colors N of the gauge group SU(N) and the gauge coupling constant
g. It is a conformal field theory even at the quantum level [1] since its β-function vanishes to all orders of
perturbation theory. This is why one refers to N = 4 SYM as a finite quantum field theory.
The AdS/CFT correspondence [2] claims that it is dual to string theory on an AdS5 × S5 space-time
background and relates the local gauge invariant operators of N = 4 SYM theory to string states. This has
motivated a great work in studying the correlation functions of gauge invariant operators in N = 4 SYM.
In the last years a remarkable progress has been achieved also in the study of scattering amplitudes which
in N = 4 SYM theory have a very simple structure.

At one loop an amplitude of a non-supersymmetric theory can be decomposed in a linear combination
of bubble, triangle and box scalar integrals0.1 , i.e. integrals with two, three and four internal propagators
respectively, plus a rational function of the kinematical invariants. The integrals are called scalar since no
loop-momentum factors appear in the numerator of the integrand.
In an amplitude of a supersymmetric gauge theory the rational function is vanishing. Moreover, in N = 4
SYM the high degree of supersymmetry implies that in the on shell amplitudes only boxes have-non vanishing
coefficients. These can be determined only by the knowledge of the branch cut singularities of the amplitude.
This is done by the so called (generalized) unitarity method [46]-[53] which extracts all information from on
shell physical states without using Feynman diagrams which involve unphysical off shell states.

In the large N (or planar) limit, the N = 4 SYM on shell scattering amplitudes exhibit remarkable
properties such as a duality between gluon amplitudes and the expectation value of Wilson loops for closed
polygons bounded by light-like edges both at strong [3] and at weak coupling [4], [76]-[78].
Moreover, additional symmetries emerge for the on shell planar amplitudes. In fact, the computation of
the planar four gluon amplitude [98]-[101] by generalized unitarity methods has allowed to discover a new
symmetry not manifest at the Lagrangian level. This is the dual conformal symmetry [75]-[78], which is
called dual since it acts on the momentum variables. It is not related, at least not in an obvious way, to
the conventional conformal symmetry of N = 4 SYM, but it is connected to the conformal symmetry of the
dual light-like Wilson loop. Later it was discovered that this symmetry extends to a dual superconformal
symmetry [86]-[87], which is an exact symmetry of all planar tree level amplitudes of N = 4 SYM.
Both the algebra of the conventional and the dual superconformal symmetry have finite dimension. But
it has been shown [88] that the commutation of the generators of these two algebras gives rise to the
infinite dimensional algebra of a Yangian symmetry, under which tree level amplitudes are invariant. One
could expect to have an infinite-dimensional symmetry algebra as a manifestation of the integrability of the
theory. In N = 4 SYM integrability has been observed in the study of the spectrum of the scaling anomalous
dimensions of gauge invariant composite local operators. This spectrum is governed by the Hamiltonian of
a quantum spin chain which is integrable since it has an infinite number of conserved charges [5].
These extra symmetries give rise to the prospect to find an exact result for all the on shell-amplitudes of
the theory. In fact, a recursive formula for the all loop integrand of planar scattering amplitudes in N = 4
SYM with manifest Yangian symmetry is given in [6].

But at the loop level the fate of these symmetries is not clear. Even if N = 4 SYM is finite in the
ultraviolet, its scattering amplitudes have infrared (IR) divergences since they involve massless particles.
The generalized unitarity method, which has been employed to obtain the amplitudes of the N = 4 SYM,

0.1In the following we will refer to bubble, triangle and box scalar integrals also simply as bubbles, triangles and box.
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assumes from the beginning of the computation that the particles are on-shell, i.e p2 = 0, and uses dimen-
sional regularization to regularize these IR divergences. Dimensional regularization breaks dual conformal
symmetry since to be unbroken this symmetry requires that the space-time dimension is kept equal to four.
In fact, the on shell planar four gluon amplitude is expressed in terms of dimensionally regularized Feynman
integrals. On the other hand, if one allows the external particles to be off-shell, i.e. p2 6= 0, and keeps the
space-time dimension equal to four then the integrals appearing in the computation up to four loop are
finite in the IR and are exactly covariant under the dual conformal symmetry. Thus, a regulator for IR
divergences which preserves dual conformal symmetry is given by the off-shell regularization, i.e. by letting
the external particles to have p2 6= 0. The use of this regulator in the computation of amplitudes implies
that one loses manifest gauge invariance and can no more employ unitarity techniques which are intrinsically
on shell but instead has to employ the conventional Feynman diagrams.
Up to now the only off shell four point amplitude which has been computed is that with four gluons in the
background field gauge [17]. As happens in the on shell dimensional regularized amplitude, in this off shell
version of the amplitude appears only the box scalar integral which is dual conformal covariant and so dual
conformal symmetry is present even in the off shell regime in this gauge.
Hence, it is important to know if in a different (supersymmetric) gauge this symmetry is still present or is
lost, or in other words if the dual conformal symmetry in the off shell regime depends or not on the choice
of the gauge.

We have computed the off shell four scalar amplitude Aoff shell
1 loop

(
φφ†φφ†

)
and the off shell four gluon am-

plitude Aoff shell
1 loop

(
Aµ1Aµ2Aµ3Aµ4

)
in a N = 1 supersymmetric gauge at one loop. We have found that in

these amplitudes there are integrals which are not dual conformal covariant. In fact, the decomposition in

scalar integrals of Aoff shell
1 loop

(
φφ†φφ†

)
contains triangles, while that of Aoff shell

1 loop

(
Aµ1Aµ2Aµ3Aµ4

)
contains

triangles as well as bubbles. Both triangles and bubbles are not dual conformal covariant. Therefore, the
presence of the dual conformal symmetry for the off shell amplitudes depends on the choice of the gauge.
Moreover, triangles are finite in the ultraviolet (UV), while bubbles are UV divergent integrals. In spite of
the presence of these UV divergent integrals in its decomposition, the gluon amplitude is UV finite since
the sum of all the divergent terms arising from the bubbles vanishes ( see sections 3.6.2, 3.6.5 ).

There is another issue related to the off shell regime. It may happen that the on shell limit p2 → 0 of
an off-shell amplitude differs from the on-shell dimensional regularized version of the amplitude where the
on shell condition is imposed from the beginning, i.e.

lim
p2→0

Aoff shell 6≡ Aon shell
dim. reg.. (0.0.1)

This is due to terms which are absent if one assumes the on shell condition from the beginning, but give a
non-vanishing result if one computes the off shell amplitude and then considers its on shell limit (see section
(3.4) ).

However, we have found that for both Aoff shell
1 loop

(
φφ†φφ†

)
and Aoff shell

1 loop

(
Aµ1Aµ2Aµ3Aµ4

)
, the on-shell limit

of the off-shell amplitudes coincides with the on-shell dimensional regularized version of the amplitudes, i.e.

lim
p2→0

Aoff shell
1 loop

(
φφ†φφ†

)
≡ Aon shell

dim. reg.

(
φφ†φφ†

)
,

lim
p2→0

Aoff shell
1 loop

(
Aµ1Aµ2Aµ3Aµ4

)
≡ Aon shell

dim. reg.

(
Aµ1Aµ2Aµ3Aµ4

)
. (0.0.2)

Another theory we have studied in this thesis is the so called β deformation of N = 4 SYM. It is a theory
obtained by modifying the superpotential of N = 4 SYM in such a way to break SUSY down to N = 1 but
maintaining the property of conformal invariance and finiteness. The superpotential of the β deformation
depends on two complex parameters, i.e. h and β which gives the name of the theory.
In [96] it has been shown that in the planar limit and with β real, all the amplitudes of the β deformation
coincide with the ones of N = 4 up to phase factors.
We have studied some n−point correlation functions with n ≥ 4 (or equivalently off shell amplitudes) in the
case of complex β. More precisely, we have considered the correlation functions with four and six vector
superfields < V a1V a2V a3V a4 > and < V a1V a2V a3V a4V a5V a6 > respectively. We have also considered the
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’mixed’ chiral-vector correlation functions with a chiral, an antichiral and two or three vector superfields
< Φa1Φ† a2V a3V a4 > and < Φa1Φ† a2V a3V a4V a5 > respectively (the flavor indices are omitted). We have
found that these Green’s functions are not equal to their value in N = 4 SYM, but receive non planar
corrections.
The thesis is organized as follows.
In the first chapter we review super Feynman diagrams, i.e. the perturbation theory in superspace which
represents the technique we have used to derive our results.
In the second chapter we discuss the decomposition of one loop amplitudes with particular attention to
the case of supersymmetric gauge theories. We describe the Passarino-Veltman method to reduce one loop
integrals in a basis of scalar integrals. We also discuss the decomposition of amplitudes as far as color factors
are concerned.
The third chapter is devoted to the presentation of our results.
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Chapter 1

Superspace perturbation theory

This chapter deals with superspace, superfields and Super Feynman rules.
Superspace is an extension of ordinary space-time by the introduction of fermionic coordinates. It allows
to keep supersymmetry manifest and to calculate the quantum behavior of supersymmetric theories more
easily since a single superdiagram correspond to many component fields diagrams.
In section 1.1 we briefly review supersymmetry transformations, chiral and vector superfields and the form
of the lagrangian with manifest N = 1 supersymmetry .
Section 1.2 presents the algebra of supercovariant derivatives D, also named D-algebra, which is useful in
the calculations of superdiagrams.
Sections 1.3 and 1.4 respectively treat the propagators and the interactions vertices as originally constructed
by Salam and Strathdee in [7] and for N = 1 Super Yang-Mills in [8].
In section 1.5, we review a new version of super Feynman-rules formulated in ref. [19] (also named improved
super Feynman rules ).
In section 1.6 we present some examples of computation of superdiagrams by applying both the old and
the new versions of super Feynman rules. Also, we give a brief discussion about the regularization of
supersymmetric theories.
In this chapter we have followed closely [14] and [17].

1.1 Supersymmetry and Superspace

According to the Coleman-Mandula theorem [9], the most general symmetry group with bosonic generators
of a quantum field theory having a mass gap is the direct product P × G, where P is the Poincaré group
and G is an internal symmetry group.
The direct product implies at the level of algebra that the generators of the Poincaré group, i.e. space-time
translations Pµ and Lorentz transformations Mµν , commute with the generators T a of G

[T a, Pµ] = [T a,Mµν ] = 0. (1.1.1)

Hence, for a generic quantum field theory the Poincaré algebra cannot be extended in a non trivial way .
If one allows the presence of fermionic generators, one can enlarge the Poincaré algebra. In fact supersym-
metry (for a review see [10] - [18]) is obtained adding to the Poincaré generators the fermionic generators
QI

α and Q̄α̇I , (α, α̇ = 1, 2), which transform as spinors under the Lorentz group (for the conventions see
Appendix A).
The supersymmetry (or in brief SUSY) algebra is

{QI
α, Q̄α̇J} = 2σµα α̇Pµδ

I
J ,

{QI
α, Q

J
β} = 0, {Q̄α̇I , Q̄β̇J} = 0

[QI
α, Pµ] = 0, [Q̄α̇I , Pµ] = 0

[Mµν , Q
I
α] = −(σµν)

β
α Q

I
β

[Mµν , Q̄
α̇I ] = −(σ̄µν)

α̇
β̇
Q̄β̇I . (1.1.2)
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where the indices I, J run from 1 to the total number of supersymmetries N . This chapter deals only
with N = 1 SUSY, so in the following the indices I, J will be dropped. Moreover in the algebra (1.1.2) we
have neglected possible central charges.
The Poincaré group acts naturally on the space-time coordinates xµ. Thus, having added fermionic genera-
tors, it is straightforward to enlarge the space-time by introducing two anticommuting fermionic coordinates
θα and θ̄α̇. This extended space is called superspace. An arbitrary function F(x, θ, θ̄) on superspace ( called
also superfield ) can always be expanded as a polynomial in θ and θ̄:

F(x, θ, θ̄) = f0(x)+θ
αf1α(x)+θ̄α̇f̄

2α̇(x)+θθf3(x)+θ̄θ̄f4(x)+ θσµθ̄f5µ(x)+θθθ̄α̇f̄
α̇
6 (x)+θ̄θ̄θ

αf7α(x)+θθθ̄θ̄ D(x),
(1.1.3)

since the product of any three or more components of θ (or θ̄) vanishes

θαθβθγ = θ̄α̇θ̄β̇ θ̄γ̇ = 0. (1.1.4)

A representation of Qα and Q̄α̇ as differential operators in superspace can be found in such a way that an
infinitesimal susy transformation is:

δǭ,ǫF ≡ F(x+ δx, θ + ǫ, θ̄ + ǭ)−F(x, θ, θ̄) = i(ǫQ+ ǭQ̄)F . (1.1.5)

Here δx and the representation of Qα and Q̄α̇ can be determined using the SUSY algebra (1.1.2) and the
Baker-Campbell-Hausdorff formula eAeB = eA+B+[A,B]/2 (valid if the commutator [A, [A,B]] vanishes 1.1)
for the product of two susy transformations U(x2, ǫ2, ǭ2) ·U(x1, ǫ1, ǭ1), where U(xi, ǫi, ǭi) = ei(xµPµ+ǫiQ+ǭiQ̄)

Thus one obtains

δxµ = −iθσµǭ+ iǫσµθ̄,

Qα = −i(∂α + iσµ
αβ̇
θ̄β̇∂µ),

Q̄α̇ = i(∂̄α̇ + iθβσµβα̇∂µ), (1.1.6)

where ∂α ≡ ∂/∂θα and ∂̄α̇ ≡ ∂/∂̄θ̄α̇ (see Appendix A). The product of any three or more components of ∂
(or ∂̄) vanishes and we will write ∂∂ and ∂̄∂̄ for ∂α∂α and ∂̄α̇∂̄

α̇ respectively. Dimensional analysis requires
that θ and ǫ have the mass dimension [θ] = [ǫ] = −1/2, while [∂α] = 1/2 .
The SUSY transformation of a superfield induces for the component field D(x) in (1.1.3) the transformation
δD(x) = ∂µK

µ(x) where Kµ(x) is a vector function on space-time. Since δD is a four divergence and
assuming that the surface terms can be discarded, any D−term, i.e the coefficient of θθθ̄θ̄ in a superfield,
produces in the lagrangian density an action invariant under susy.
A D−term is also denoted as D(x) = [F ]D = [F ]θθθ̄θ̄ =

∫
d4θF(x, θ, θ̄).

1.1.1 Chiral and Vector superfields

The superfield (1.1.3) is reducible in the sense that one can impose on it constraints which are preserved by
SUSY transformations.
We shall consider two kinds of constraints: chirality and reality. To this end let us introduce the super-
covariant derivatives Dα and D̄α̇

Dα ≡ ∂α − iσµ
αβ̇
θ̄β̇∂µ,

D̄α̇ ≡ −∂̄α̇ + iθβσβα̇∂µ. (1.1.7)

They anticommute with the SUSY generators Q and Q̄, i.e. {Dα, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Qβ} =

{D̄α̇, Q̄β̇} = 0 which implies [Dα, ǫQ] = 0, etc... if one contracts Qα with the fermionic parameter ǫα

These relations imply that DαF = 0 and D̄α̇F = 0 are SUSY invariant constraints. In fact under a SUSY
transformation one has that F → F ′ = F + δǫF , hence if DαF = 0 then

1.1Since in this case, schematically, A and B are of the form P +Q+ Q̄, from [P,Q] = 0, [P, P ] = 0 and {Q, Q̄} = P we have
[A,B] = P and indeed [A, [A,B]] = 0

6



DαF ′ = DαF +Dα(δǫF) = DαF +Dα(iǫQF) = 0 + iǫQ(DαF) = 0. (1.1.8)

Moreover the product of any three or more components of Dα (D̄α̇) is equal to zero

DαDβDγ = 0, D̄α̇D̄β̇D̄γ̇ = 0. (1.1.9)

We will write DD (D̄D̄) for DαDα (D̄α̇D̄α̇) respectively. A superfield Φ(x, θ, θ̄) which satisfies the constraint

D̄α̇Φ(x, θ, θ̄) = 0, (1.1.10)

is called chiral (left-handed) superfield, while a superfield Φ† that satisfies DαΦ
† = 0 is called antichiral

(right-handed) superfield. To find the general expression of a chiral superfield, it is useful to define new
coordinates yµ = xµ − iθσµθ̄. It results that D̄α̇y

µ = 0 and D̄α̇θ
α = 0. Thus a left-handed chiral superfield

is a function of y and θ only: Φ(y, θ) = φ(y) +
√
2θψ(y) + θθF (y) (the

√
2 is a convention). Expanding this

expression in θ and θ̄ gives

Φ(y, θ) = φ(x)− iθσµθ̄∂µφ(x)−
1

4
θθθ̄θ̄∂µ∂µφ(x) +

√
2θψ(x) +

i√
2
θθ∂µψσ

µθ̄ + θθF (x). (1.1.11)

The SUSY transformation induces on the component field F (x) in (1.1.11) the transformation δF (x) =
∂µH

µ whereHµ is a vector function. This implies that
∫
d4xF (x) is invariant under susy. It is called F -term

and is also denoted by F (x) = [F ]F = [F ]θθ =
∫
d2θΦ.

Similar expressions are valid for a right-handed superfield, which is a function of ȳµ = xµ+ iθσµθ̄ and θ̄, i.e.
Φ†(ȳ, θ̄) = φ∗(ȳ) +

√
2θ̄ψ̄(ȳ) + θ̄θ̄F ∗(ȳ). Expanding this in θ and θ̄ gives

Φ†(ȳ, θ̄) = φ∗(x) + iθσµθ̄∂µφ
∗(x)− 1

4
θθθ̄θ̄∂µ∂µφ

∗(x) +
√
2θ̄ψ̄(x)− i√

2
θ̄θ̄θσµ∂µψ̄ + θ̄θ̄F ∗(x). (1.1.12)

Chiral superfields do not contain spin-1 bosons. To describe gauge fields another kind of superfield
(called the vector superfield) is introduced. It is characterized by the reality condition V = V †. This leads
to the following decomposition for V

V (x, θ, θ̄) = C(x) +
√
2θχ(x) +

√
2θ̄χ̄(x) + θθS(x) + θ̄θ̄S∗(x) + θσµθ̄Aµ(x)

+ θθ θ̄

(
λ̄(x)− i√

2
σ̄µ∂µχ(x)

)
+ θ̄θ̄ θ

(
λ(x)− i√

2
σµ∂µχ̄(x)

)
+

1

2
θθ θ̄θ̄

(
D(x)− 1

2
∂µ∂µC(x)

)
(1.1.13)

One can also find a supersymmetric generalization of a guage transformation. First we note that if Λ is
a left-handed chiral superfield, iΛ− iΛ† is a vector superfield. Second, replacing in (1.1.11) Φ with iΛ , the
transformation1.2

V → V
′

= V + iΛ− iΛ† (1.1.14)

implies that Aµ transforms like an abelian gauge field

Aµ → A
′

µ = Aµ − 2∂µ Im(φ)

C → C
′

= C + 2Re(φ)

χ→ χ
′

= χ+ ψ

S → S
′

= S + F

λ→ λ
′

= λ

D → D
′

= D. (1.1.15)

So λ and D are invariant. The parametrization of the coefficients of θθθ̄, θ̄θ̄θ and θθθ̄θ̄ in the expansion
(1.1.13) is chosen so as to have these simple transformations.

1.2In the following discussion, we will also use the notation V Λ to indicate a gauge transformed superfield instead of V
′

.
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One can choose a particular gauge, called the Wess-Zumino gauge, where C
′
, χ

′
, S

′
in V

′
vanish by imposing

that 2Re(φ) = −2C, ψ = −χ, F = −S. Thus the vector supermultiplet reduces to D, Aµ and λ

VWZ(x, θ, θ̄) = θσµθ̄Aµ(x) + θθ θ̄λ̄(x) + θ̄θ̄ θλ(x) +
1

2
θθθ̄θ̄D(x) (1.1.16)

This gauge-fixing leaves the abelian U(1) gauge freedom, since no condition is imposed on Im(φ). The
Wess-Zumino gauge breaks manifestly supersymmetry because the conditions C

′
= χ

′
= S

′
= 0 can-

not be maintained under a supersymmetry transformation. In fact an infinitesimal susy transformation
δǫVWZ = iǫQ

(
VWZ

)
generates, among many others, a term iǫQ

(
θ̄θ̄ θλ(x)

)
= θ̄θ̄ǫλ. Such a term corresponds

to a S(x) component field that is absent in (1.1.16).
However, simultaneously with a supersymmetry transformation V → V

′
= V + δǫǭV , we can perform a com-

pensating gauge transformation generated by a chiral superfield Λ in order to leave the Wess-Zumino gauge
invariant: V

′ → V
′′

WZ = V
′ − iΛ† + iΛ with V

′′

WZ being in the form (1.1.16). Let us note that eq.(1.1.16)
implies that in this gauge V n = 0 if n ≥ 3

1.1.2 The N = 1 supersymmetric Lagrangian

Now we turn to the case of a non-abelian symmetry. We shall consider a gauge group G with the generators
T a of the group in the representation R of G. The generators T a satisfy

[T a, T b] = ifabcTc, Tr(T aT b) = τRδ
ab, (1.1.17)

where fabc are the real antisymmetric structure constants of G and τR is a normalization constant. We
define Λ and V as matrices having elements Λij ≡ ΛaT a

ij, Vij ≡ V aT a
ij , where Λa is a chiral superfield and

V a is a vector superfield, both in the adjoint representation of G. 1.3

Assume that there is a set of chiral superfields transforming in the representation R of G, i.e.

ΦΛ
i = [e−igΛa Ta

]i jΦj, (1.1.18)

or infinitesimally δΦΛ
i = −igΛa(T a)i jΦj. Since Λa is a superfield, ΦΛ is a superfield as well.

To construct a Lagrangian invariant under supersymmetry and under gauge transformations, one can observe
that V can be exponentiated since from (1.1.13) one sees that it has zero mass dimension.Then the term

Tr[Φ†egV Φ]θθθ̄θ̄ = [Φ†
i (e

gV )ijΦj]θθθ̄θ̄ (1.1.19)

is invariant under supersymmetry because is a D−term. Also it is invariant under a gauge transformation
(1.1.18) provided that egV transforms according to

egV → egV
Λ
= e−iΛ†

egV eiΛ. (1.1.20)

To obtain an infinitesimal gauge transformation up to terms linear in Λ (Λ†), one has to apply the Baker-
Campbell-Haussdorff formula to eq.(1.1.20)

egV
Λ
= egV+i(Λ−Λ†)+ i

2
g[V,Λ+Λ†]+ i

12
g2[V,[V,Λ−Λ†]]+.... (1.1.21)

Hence, logarithm of eq.(1.1.21) gives

δV Λ ≡ V Λ − V = Ĥ(V )Λ + Ĥ†(V )Λ† +O(Λ2) (1.1.22)

where the linear operators Ĥ(V ), Ĥ†(V ) on Λ, Λ† are defined as

Ĥ(V )Λ ≡ iΛ+
i

2
g[V,Λ] +

i

12
g2[V, [V,Λ]] + . . .

Ĥ†(V )Λ† ≡ −iΛ† +
i

2
g[V,Λ†]− i

12
g2[V, [V,Λ†]] + . . . . (1.1.23)

1.3Although V and Λ are matrices the expansion (1.1.13) and the discussion on the Wess-Zumino gauge remain the same.
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If the group G is abelian, then eq.(1.1.22) is equal to eq.(1.1.14).
In literature, one can also find this formal expression for an infinitesimal gauge transformation1.4

δV Λ = iL gV
2
[(Λ† + Λ) + cothL gV

2
(Λ† + Λ)] (1.1.24)

where the Lie derivative LXY is defined as

LXY = [X,Y ]. (1.1.25)

Applying this definitions and expanding in power series the function coth in eq.(1.1.24) , one can prove that
eq.(1.1.24) coincides with eq.(1.1.22).

Eq.(1.1.19) provides the kinetic terms for the fields in the chiral supermultiplet and their interaction
with the fields in the vector supermultiplet.
The kinetic terms for the fields in the vector supermultiplet and the interaction terms between them are
constructed from the supersymmetric field strengths

Wα = D̄D̄e−gV Dαe
gV , W̄α̇ = DDegV D̄α̇e

−gV (1.1.26)

Eq.(1.1.9) implies that these superfields are chiral D̄α̇Wα = DαW̄α̇ = 0. Furthermore, it can be shown
that under a guage transformation (1.1.20) they transform as

Wα →WΛ
α = e−iΛWαe

iΛ, W̄α̇ → W̄Λ
α̇ = e−iΛ†

W̄α̇e
iΛ†

(1.1.27)

Therefore a term of the form Tr[WαWα]θθ (and similarly Tr[W̄α̇W̄
α̇]θ̄θ̄) is gauge-invariant and is also

susy invariant because it is a F -term.
Finally, the mass and interaction terms for the component fields of the chiral superfields are obtained from
the so called superpotential W(Φi):

W(Φi) = hiΦi +
1

2
mijΦiΦj +

1

3!
λijkΦiΦjΦk, (1.1.28)

In order to have a renormalizable Lagrangian, W(Φi) can contain at most cubic terms , i.e. coupling
constants with mass dimension equal or bigger than zero. In (1.1.28) mij and λijk are symmetric in their
indices and the factors 1/2 and 1/3! are only a conventional choice.
Note that W(Φi) is a chiral superfield since it is a product of chiral superfields . Thus the F-term W(Φi)θθ =∫
d2θW(Φi) is susy invariant and is also invariant under the group G if each term in (1.1.28) is gauge

invariant. (For instance, hi can be non zero only for fields Φi invariant under G).

From the discussion above it follows that the most general Lagrangian with N = 1 susy is1.5

LN=1 =
1

128g2τR
Tr

[
WαWα + W̄α̇W̄

α̇

]

F

+

[
Φ†
i (e

gV )ijΦj

]

D

+

[
W(Φi) +W†(Φ†

i )

]

F

=
1

128g2τR
Tr

[ ∫
d2θWαWα +

∫
d2θ̄W̄α̇W̄

α̇

]
+

∫
d4θΦ†

i(e
gV )ijΦj +

∫
d2θW(Φi) +

∫
d2θ̄W†(Φ†

i )

(1.1.29)

1.2 D-algebra

The computation of correlation functions and Feynman diagrams in superspace is greatly simplified if one
makes use of the relations involving supercovariant derivatives (see also the Appendix B).

1.4For a derivation of eq.(1.1.24) see [15].
1.5the factor 1/128 is chosen to have a simple form for the propagator of the vector superfield.
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Integration relations

First, there are some identities regarding the integration by parts with supercovariant derivatives. Assuming
that surface terms

∫
d4x∂µ(. . .) vanish, under a space-time integral

∫
d4x the superderivatives Dα,Dα, D̄α̇

and D̄α̇ can be substituted with ∂α,−∂α,−∂̄α̇ and ∂̄α̇ respectively. Moreover, the product of any three or
more components of ∂ (or ∂̄) vanishes and integration with respect to the Grassmann variables is equivalent
to differentiation (see the Appendix A). Thus, if F(x, θ, θ̄) is a generic superfield, then

∫
d2θF =

1

4
∂∂F (1.2.1a)

∫
d2θ̄F =

1

4
∂̄∂̄F (1.2.1b)

∫
d2θ∂αF =

1

4
∂∂∂αF = 0 (1.2.1c)

∫
d2θ̄∂̄α̇F =

1

4
∂̄∂̄∂̄α̇F = 0. (1.2.1d)

From eqs.(1.2.1), it follows also that the following integrals vanish

∫
d4xd2θDαF =

∫
d4xd2θ ∂αF = 0 (1.2.2a)

∫
d4xd2θ̄ D̄α̇F = −

∫
d4xd2θ̄ ∂̄α̇F = 0 (1.2.2b)

∫
d4xd2θDDF = −

∫
d4xd2θ ∂∂F = 0 (1.2.2c)

∫
d4xd2θ̄ D̄D̄F = −

∫
d4xd2θ̄ ∂̄∂̄F = 0 (1.2.2d)

In addition, there are two important identities which allow to extend the partial superspace integrations∫
d4xd2θ, (

∫
d4xd2θ̄) to the full one

∫
d4xd2θd2θ̄ if in the integrand there is an operator D̄D̄(DD)

− 1

4

∫
d4xd2θ D̄D̄F =

1

4

∫
d4xd2θ ∂̄∂̄F =

∫
d4xd2θd2θ̄F (1.2.2e)

− 1

4

∫
d4xd2θ̄DDF =

1

4

∫
d4xd2θ̄ ∂∂F =

∫
d4xd2θ̄d2θF (1.2.2f)

It is also possible to reduce an integral over d4xd2θ(d2θ̄) as an integral over d4x

∫
d4xd2θF =

1

4

∫
d4x∂∂F = −

∫
d4x

DD
4

F (1.2.2g)

∫
d4xd2θ̄F =

1

4

∫
d4x∂̄∂̄F = −

∫
d4x

D̄D̄
4

F (1.2.2h)
∫
d4xd2θd2θ̄F =

1

16

∫
d4xDD D̄D̄F (1.2.2i)

∫
d4xd2θd2θ̄F =

1

16

∫
d4xD̄D̄ DDF (1.2.2j)

Leibnitz rules and integration by parts

From the definition (1.1.7) of the supercovariant derivatives, from the Leibnitz rule for the space-time
derivative ∂µ and for the Grassmann derivatives (A.5.4a)-(A.5.4b), a generalization of the Leibnitz rule for
Dα can be derived

Dα(B1B2) = (DαB1)B2 + B1Dα(B2), (1.2.3a)

Dα(F1B2) = (DαF1)B2 −F1Dα(B2), (1.2.3b)
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Dα(B1F2) = (DαB1)F2 + B1Dα(F2), (1.2.3c)

Dα(F1F2) = (DαF1)F2 −F1Dα(F2), (1.2.3d)

where B1 and B2 are bosonic superfields and F1 and F2 are fermionic ones. The same identities (1.2.3a)-
(1.2.3d) hold if one substitutes Dα with D̄α̇.

Furthermore, under an integral Dα and D̄α̇ can be integrated by parts. In fact from the Leibnitz rules
(1.2.3a)-(1.2.3d) after discarding the surface terms (see eqs.(1.2.2a)-(1.2.2b) with F = B1B2B3), one obtains

∫
d4xd4θ B1(DαB2)B3 = −

∫
d4xd4θ (DαB1)B2B3 −

∫
d4xd4θB1B2(DαB3) (1.2.4a)

∫
d4xd4θB1(D̄α̇B2)B3 = −

∫
d4xd4θ (D̄α̇B1)B2B3 −

∫
d4xd4θB1B2(D̄α̇B3), (1.2.4b)

where B1,B2 and B3 are all bosonic superfields.
Applying repeatedly eqs.(1.2.4a)-(1.2.4b) and considering that DαB and D̄α̇B are anticommuting fermionic
superfields if B is a bosonic one, it follows that (see the Appendix B for other similar formulas)

∫
d4xd4θ B1(DDB2)B3 =

∫
d4xd4θ (DDB1)B2B3 + 2

∫
d4xd4θ (DαB1)B2(DαB3) +

∫
d4xd4θB1B2(DDB3)

(1.2.5a)∫
d4xd4θB1(D̄D̄B2)B3 =

∫
d4xd4θ (D̄D̄B1)B2B3 + 2

∫
d4xd4θ(D̄α̇B1)B2(D̄α̇B3) +

∫
d4xd4θ B1B2(D̄D̄B3).

(1.2.5b)

D-algebra in momentum space

To treat correlation functions in momentum space, it is useful to define the Fourier transform of the superfield
F(x, θ, θ̄):

F(x, θ, θ̄) =

∫
d4p

(2π)4
e−ip·xF(p, θ, θ̄) (1.2.6)

Thus, a derivative ∂µ acting on F(x, θ, θ̄) in momentum space becomes −ipµF(p, θ, θ̄). Hence, to pass from
coordinate to momentum space it is necessary to substitute ∂µ with −ipµ ( and viceversa pµ with i∂µ from
momentum to coordinate space).
We adopt the convention that the momentum pµ appearing in the relation

∂1µ ≡ −ipµ (1.2.7)

with ∂1µ = ∂/∂x1, is the ingoing momentum corresponding to the superspace point (x1, θ1, θ̄1).

∂µ1 ≡ −ipµ

∂µ2 ≡ ipµ
1pµ2

In momentum space the substitution (1.2.7) in eqs.(1.1.7) gives 1.6

Dp
α = ∂α − σµ

αβ̇
θ̄β̇pµ (1.2.8a)

Dp,α = −∂α + θ̄β̇σ̄
µ β̇αpµ (1.2.8b)

D̄p
α̇ = −∂̄α̇ + θβσµβα̇pµ (1.2.8c)

D̄p,α̇ = ∂̄α̇ − σ̄µ α̇βθβpµ (1.2.8d)

1.6The superscript p on Dp and D̄p indicates the ingoing momentum p corresponding to the superspace point z ≡ (x, θ, θ̄).
If the theta variables θ1, θ̄1 have a further label, such as 1 in this case, then we will also use the notation Dp

1α,D
p,α
1 , etc..., to

indicate Dp
1α = ∂1α − σµ

αβ̇
θ̄β̇1 pµ, Dp,α

1 = −∂α
1 + θ̄1 β̇σ̄

µ β̇αpµ, etc... respectively.

In addition, Dα = ǫαβDβ and D̄α̇ = ǫα̇β̇D̄β̇ .
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From (1.2.8a)-(1.2.8d) one can verify the anticommutation relations

{Dα,Dβ} = {D̄α̇, D̄β̇} = 0 (1.2.9a)

{Dα, D̄β̇} = 2σµ
αβ̇
pµ (1.2.9b)

and the identities

DσµD̄ + D̄σ̄µD = 4pµ (1.2.10a)

[Dα, D̄D̄] = 4σµ
αβ̇

D̄β̇ pµ (1.2.10b)

[Dα, D̄D̄] = −4D̄β̇ σ̄
µβ̇α pµ (1.2.10c)

[D̄α̇,DD] = −4Dβσµβα̇ pµ (1.2.10d)

[D̄α̇,DD] = 4σ̄µα̇βDβ pµ, (1.2.10e)

[DD, D̄D̄] = 8DσµD̄ pµ − 16p2 (1.2.10f)

[D̄D̄,DD̄] = 8D̄σ̄µD pµ − 16p2 (1.2.10g)

DαD̄D̄Dα = D̄α̇DDD̄α̇ = −8p2 +
1

2

{
DD, D̄D̄

}
(1.2.10h)

DD D̄D̄ DD = 16p2DD (1.2.10i)

D̄D̄ DD D̄D̄ = 16p2D̄D̄ (1.2.10j)

(See the Appendix B for a derivation )
One can use an analogue of the Leibnitz rules (1.2.3a)-(1.2.3d) and of the integrations by parts (1.2.4a)-
(1.2.5b) also in momentum space (see the Appendix B) .
For example, eqs.(1.2.3a), (1.2.4a) and (1.2.5a) become

Dp
α(B1B2) = (Dq

αB1)B2 + B1Dp−q
α (B2) (1.2.11a)

∫
d4θB1(Dp2

α B2)B3 = −
∫
d4θ (Dp1

α B1)B2B3 −
∫
d4θ B1B2(Dp3

α B3) (1.2.11b)

∫
d4θB1(Dp2Dp2B2)B3 =

∫
d4θ (Dp1Dp1B1)B2B3 + 2

∫
d4θ (Dp1,αB1)B2(Dp3

α B3) +

∫
d4θ B1B2(Dp3Dp3B3)

(1.2.11c)
where B1, B2 and B3 are the Fourier transforms of bosonic superfields. In eq. (1.2.11a) B1 and B2 depend

on the momenta q and p− q respectively. In eqs.(1.2.11b) and (1.2.11c) p1 + p2 + p3 = 0 and B1, B2 and B3

depend on the momenta p1,p2 and p3 respectively . Also, the momentum in the supercovariant derivative
can always be taken as the momentum of the superfield on which it acts.

The fermionic delta function δ

The fermionic delta function can be defined as (see Appendix A) :

δ(2)(θ) = θ2, δ(2)(θ̄) = θ̄2 (1.2.12a)

δ(4)(θ) = δ(2)(θ) δ(2)(θ̄) = θ2θ̄2 (1.2.12b)∫
d4θ δ(4)(θ) =

∫
d4θ θθ θ̄θ̄ = 1, (1.2.12c)

where d4θ = d2θd2θ̄. Using the symbol θ12 for θ12 ≡ θ1 − θ2 and δ12 for δ12 ≡ δ(4)(θ12) = θ212θ̄
2
12 , one can

write ∫
d4θ1 δ12 =

∫
d4θ2 δ12 = 1. (1.2.12d)

From the definitions of D, D̄ and δ12 it follows that

Dp
1α δ12 = −D−p

2α δ12 (1.2.13a)
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D̄p
1α̇ δ12 = −D̄−p

2α̇ δ12 (1.2.13b)

Dp
1Dp

1 δ12 = D−p
2 D−p

2 δ12 (1.2.13c)

D̄p
1D̄

p
1 δ12 = D̄−p

2 D̄−p
2 δ12 (1.2.13d)

(See the Appendix B for a derivation.)

Finally, there are the relations

0 = δ12δ12 = δ12Dαδ12 = δ12D̄α̇δ12 = δ12DDδ12 = δ12D̄D̄δ12 = δ12DαD̄D̄δ12 = δ12D̄α̇DDδ12 etc. (1.2.14a)

while

δ12DD D̄D̄δ12 = 16δ12 (1.2.14b)

δ12D̄D̄ DDδ12 = 16δ12 (1.2.14c)

To put it differently only the product of two D′s and two D̄′s between two δ12s gives non-vanishing result.

1.3 Propagators

1.3.1 The propagator of chiral superfield

The main subject of the next sections will be the computation of correlation functions (in momentum space)
at one loop. The terms correlation functions, correlators, n-points functions and Green’s functions will be
used as synonyms to indicate the same object that is the functional integral given by is

< Tφ1 . . . φn >= N

∫
[dφ]φ1 . . . φn e

iS (1.3.1)

where φi ≡ φ(xi) is a generic field belonging to any representation of the Lorentz group and of a gauge group
G. S is the classical action for the field φ and N is a normalization constant. The symbol T indicates time
ordering and will be omitted below. In the correlator one could also introduce any composite operator O[φ]
build from elementary fields φ. Usually, the classical action can be divided in a free part which is quadratic
in the fields and in an interaction part:

S = Sfree + gSint, (1.3.2)

where g is a coupling constant. If g << 1, one can treat Sint as a perturbation and expand eiSint in Taylor
series in (1.3.1)

< φ1 . . . φn >=
+∞∑

k=0

(ig)k

k!
N

∫
[dφ]φ1 . . . φn (Sint)

k eiSfree =
+∞∑

k=0

(ig)k

k!
< φ1 . . . φn (Sint)

k >free . (1.3.3)

This allows to express the correlator in the interacting theory in terms of the correlators in the free theory.
The Wick theorem gives an algorithm to compute a free correlator, that is a correlator with the action of
the free theory (also named correlator at tree level), such as < φ . . . φ Sk

int >free, . In fact a free correlator
is given by the sum of products of two-point free correlators, also called free propagators or contractions,
for example < φφ >free .

Since the free propagators are the building blocks of the correlators in perturbation theory, this section
will be devoted to the computation of the propagator of the chiral superfield < ΦΦ† >free, while the next
one to the propagator of the vector superfield < V V >free. A peculiarity of a supersymmetric theory is
that both the propagators of Φ and V involve the fermionic delta function δ(4)(θ12), while the propagators
of Φ involves also the supercovariant derivative D.
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Functional derivatives in superspace

In a generic quantum field theory, a correlation function can be obtained from a generating functional by
functional differentiation. To do so in superspace, one needs to extend the definition of functional derivatives
also to superfields.
In the discussion the following notation will be used: the points 1 and 2 in superspace will be represented by
supercoordinates z1 = (x1, θ1, θ̄1) and z2 = (x2, θ2, θ̄2), while the integration measures are d8z ≡ d4x d2θd2θ̄,
d6z ≡ d4x d2θ and d6z̄ ≡ d4xd2θ̄.
A functional derivative for a vector superfield V (z) can be defined with these properties :

δV (z2)

δV (z1)
= δ(8)(z1 − z2) ≡ δ(4)(x1 − x2)δ

(4)(θ12) (1.3.4)

and ∫
d8z2

δV (z2)

δV (z1)
= 1 (1.3.5)

The functional product j · V of two vector superfields V and j is defined as

j · V ≡
∫

d8zj(z)V (z). (1.3.6)

We shall use the symbols j or J(J†) to denote the sources for the superfields in what follows. A source of a
vector superfield is a vector superfield and a source of a chiral (antichiral) superfield is a chiral (antichiral)
superfield.
Integration over all the superspace of a chiral superfield as integrand gives zero. Indeed eqs.(1.2.2e)-(1.2.2f)
and the chirality condition D̄α̇Φ = 0 (DαΦ

† = 0) imply that
∫
d8zΦ(z) = −1

4

∫
d6zD̄D̄Φ = 0 (1.3.7)

∫
d8zΦ†(z) = −1

4

∫
d6z̄DDΦ† = 0. (1.3.8)

So if one has a chiral (antichiral) integrand, one needs to restrict the integration only over d6z(d6z̄).
Thus for chiral and antichiral superfields the functional product is defined as

J · Φ ≡
∫
d6zJ(z)Φ(z) (1.3.9)

J† · Φ† ≡
∫
d6z̄J†(z)Φ†(z), (1.3.10)

with
∫
d6z2

δΦ(z2)

δΦ(z1)
= 1 (1.3.11)

∫
d6z̄2

δΦ†(z2)

δΦ†(z1)
= 1 (1.3.12)

From eq.(1.2.2e), one has that
∫
d6z2

(
−1

4

)
D̄2D̄2δ

8(z2 − z1) =
∫
d8z2δ

8(z2 − z1) = 1 and similarly for the
case with

∫
d6z̄. Hence, the equations (1.3.11) and (1.3.12) are solved by:

δΦ(z2)

δΦ(z1)
= −1

4
D̄2D̄2δ

(8)(z1 − z2) ≡ −1

4
D̄1D̄1δ

(8)(z1 − z2) (1.3.13a)

δΦ†(z2)

δΦ†(z1)
= −1

4
D2D2δ

(8)(z1 − z2) ≡ −1

4
D̄1D̄1δ

(8)(z1 − z2) (1.3.13b)

where we have used eq.(B.1.5c).
The presence of supercovariant derivatives in the propagator of chiral superfield is due to the presence

of DD and D̄D̄ in the previous functional derivatives.
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To find a common formalism for chiral and vector superfields that allows to integrate the former over all
the superspace, one makes use of

D̄D̄ DDΦ = −16∂2Φ (1.3.14)

DDD̄D̄Φ† = −16∂2Φ† (1.3.15)

which are a consequence of (B.1.2i)-(B.1.2j). Let us introduce a set of projection operators Πi = (Π+,Π0,Π−)
defined by 1.7

Π+ ≡ −D̄D̄DD
16∂2

(1.3.16a)

Π− ≡ −DDD̄D̄
16∂2

(1.3.16b)

Π0 ≡
DαD̄D̄Dα

8∂2
≡ D̄α̇DDD̄α̇

8∂2
(1.3.16c)

The form of Π+ and Π− is motivated by eqs.(1.3.14)-(1.3.15) which imply, if Φ is a chiral superfield, that

Π+Φ = Φ, Π−Φ
† = Φ†, (1.3.17)

.
Moreover, if F is a generic superfield, Π+F is a chiral superfield since D̄α̇Π+F = 0 and similarly Π−F

is an antichiral one.
From the D−algebra eqs.(B.1.2), it follows that the operators Πi satisfy

∑
Πi = 1 (1.3.18a)

ΠiΠj = δijΠj . (1.3.18b)

This justifies the name of projectors. Using the chirality of both the superfield Φ and its source J , eq.(1.3.9)
can be written as

J · Φ =

∫
d6zΦΠ+J = −

∫
d6zΦ

D̄D̄
4

DD
4∂2

J = −
∫
d6z

D̄D̄
4

(
Φ
DD
4∂2

J
)
. (1.3.19)

Then, using again eq.(1.2.2e), one has

J · Φ =

∫
d8zΦ

DD
4∂2

J =

∫
d8z
(DD
4∂2

Φ
)
J (1.3.20)

where the last equality is a consequence of the fact in eq.(1.3.19) one could apply the operator Π+ to Φ
instead of J1.8. Similarly for the antichiral superfields, one obtains

J† · Φ† =

∫
d8zΦ† D̄D̄

4∂2
J† =

∫
d8z
(D̄D̄
4∂2

Φ†
)
J† (1.3.21)

Generating Superfunctionals

An n-point correlation function of superfields V ,Φ and Φ† can be obtained by functional derivation from
the following superfunctional

Z[j, J, J†] = N

∫
dV dΦdΦ† exp i(S + j · V + J · Φ+ J† · Φ†), (1.3.22)

1.7the non local operator 1/∂2 is defined in such a way that (1/∂2)g = f ⇒ g = ∂2f .
Partial superspace integrations such as eq.(1.2.4a) in general do not hold if the supercovariant derivatives are multiplied by the
non local operator 1/∂2.

1.8here one cannot naively employ partial integration because of the presence of the non local operator 1/∂2: see footnote
(1.7).
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where j,J and J† are the sources of V ,Φ and Φ†, N is a normalization constant and S is the action.
In fact from the definition (1.3.1), it follows that

in < T V (z1) . . . V (zk)Φ(zk+1) . . .Φ(zm)Φ†(zm+1) . . .Φ
†(zn) >=

=
δnZ[j, J, J†]

δj(z1) . . . δj(zk)δJ(zk+1) . . . δJ(zm)δJ†(zm+1) . . . δJ†(zn)

∣∣∣∣
j=J=J†=0

(1.3.23)

The connected correlation functions < TV (z1) . . . V (zk)Φ(zk+1) . . .Φ(zm)Φ†(zm+1) . . .Φ
†(zn) >C are

given by functional derivation of the superfunctional W

W [j, J, J†] ≡ −i lnZ[j, J, J†], (1.3.24)

and then by evaluating it at j = J = J† = 0

in < TV (z1) . . . V (zk)Φ(zk+1) . . .Φ(zm)Φ†(zm+1) . . .Φ
†(zn) >C=

= i
δnW [j, J, J†]

δj(z1) . . . δj(zk)δJ(zk+1) . . . δJ(zm)δJ†(zm+1) . . . δJ†(zn)

∣∣∣∣
j=J=J†=0

(1.3.25)

The third important superfunctional Γ is the generator of the one particle irreducible correlation functions
(1PI) and is the quantum analog of the classical action. 1PI Green’s functions derive their name from the
fact that they are associated to Feynman graphs that cannot be separated into two disconnected parts by
cutting only one internal line.
Γ is obtained by a Legendre transformation. First, one defines the ’classical’ superfields Φ̃,Φ̃† and Ṽ which
are solutions of the equations of motion

Φ̃ ≡ δW

δJ
, Φ̃† ≡ δW

δJ†
, Ṽ ≡ δW

δj
. (1.3.26)

Then one inverts these relations to obtain the expressions for J , J† and j in terms of Φ̃, Φ̃† and Ṽ . After
substituting them in W , Γ is obtained from

Γ[Φ̃, Φ̃†, Ṽ ] ≡W [j(Φ̃, Φ̃†, Ṽ ), J(Φ̃, Φ̃†, Ṽ ), J†(Φ̃, Φ̃†, Ṽ )]− j · Ṽ − J · Φ̃− J† · Φ̃†. (1.3.27)

The 1PI Green’s functions are given by

< T V (z1) . . . V (zk)Φ(zk+1) . . .Φ(zm)Φ†(zm+1) . . .Φ
†(zn) >1PI=

= i
δnΓ[Φ̃, Φ̃†, Ṽ ]

δṼ (z1) . . . δṼ (zk)δΦ̃(zk+1) . . . δΦ̃(zm)δΦ̃†(zm+1) . . . δΦ̃†(zn)

∣∣∣∣
Φ̃=Φ̃†=Ṽ=0

. (1.3.28)

Since our goal is to find the free propagators, we need only to compute the free part of the generating
superfunctionals Z0[j, J, J

†] and W0[j, J, J
†]

Z0[j, J, J
†] = N0

∫
dV dΦdΦ† exp i(Sfree + j · V + J · Φ+ J† · Φ†) (1.3.29)

W0[j, J, J
†] = −i lnZ0[j, J, J

†] (1.3.30)

where Sfree is the free part of the action which is quadratic in the superfields . From eq.(1.3.25) the free
propagator for the chiral superfield will be

< Φ(z1)Φ
†(z2) >C (free)≡ −i δ2W0

δJ(z1)δJ†(z2)

∣∣∣∣
j=J=J†=0

. (1.3.31)
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Free two-points correlation functions

The free part of the action for amassless chiral superfield is simply Sfree =
∫
d8zΦ(z)Φ†(z) (cf. eqs.(1.1.28)-

(1.1.29) with all the couplings equal to zero (hi = mij = λijk = g = 0) and neglecting the terms which
contain the vector superfields).
This leads to

Z0[J, J
†] = N0

∫
dΦdΦ† exp i

{
Φ† · Φ+ J · Φ+ J† · Φ†

}

= N0

∫
dΦdΦ† exp i

{∫
d8z
[
Φ†(z)Φ(z) + Φ(z)

DD
4∂2

J(z) + Φ†(z)
D̄D̄
4∂2

J†(z)
]}

= N0

∫
dΦdΦ† exp i

{∫
d8z
[1
2

(
Φ(z) Φ†(z)

)(0 1
1 0

)(
Φ(z)
Φ†(z)

)
+
(
Φ(z) Φ†(z)

)( DD
4∂2 J(z)
D̄D̄
4∂2 J

†(z)

)]}

(1.3.32)

In the second step has been made use of eqs.(1.3.20)-(1.3.21) which allow to express all the integrals as
full superspace integrals

∫
d8z. In the last one, a matrix notation has been employed. To solve the gaussian

integral in eq.(1.3.32), one can use the identity
∫
dx1 . . . dxn exp i

{1
2
−→x TA−→x +−→x T · −→y

}
= c exp

{
− i

2
−→y TA−1−→y

}
(1.3.33)

where −→x and −→y are n−dimensional vectors, A is a symmetric n× n matrix with nonzero determinant and
c is a constant independent on yi . In our case

A = A−1 =

(
0 1
1 0

)
, (1.3.34)

thus eq.(1.3.32) becomes

Z0[J, J
†] = Z0[0, 0] exp

{
− i

2

∫
d8z

(
DD
4∂2 J(z)

D̄D̄
4∂2 J

†(z)
)
A−1




DD
4∂2 J(z)

D̄D̄
4∂2 J

†(z)



}

= Z0[0, 0] exp

{
− i

2

∫
d8z

1

8

(D̄D̄
∂2

J†(z)

) DD
∂2

J(z)

} . (1.3.35)

where J and D̄D̄(∂2)−1J† are chiral superfields, while J† and DD(∂2)−1J are antichiral ones. In eq.(1.3.35)
one can shift the nonlocal operator D̄D̄/∂2 from one factor to the other one, as in eq.(1.3.21) (see also
footnote (1.7)). Thus one can reconstruct the projector Π+ and from eq.(1.3.17) it follows that

Z0[J, J
†] = Z0[0, 0] exp

{
i

∫
d8z
[
J†(z)

1

∂2
J(z)

]}
. (1.3.36)

The functional derivatives δJ(z2)/δJ(z1) and δJ
†(z2)/δJ

†(z1) are (cf. eqs.(1.3.13) )

δJ(z2)

δJ(z1)
= −1

4
D̄1D̄1δ

8(z1 − z2),

δJ†(z2)

δJ†(z1)
= −1

4
D1D1δ

8(z1 − z2).

(1.3.37)

Hence, substituting the eq.(1.3.36) obtained for Z0 in eq.(1.3.31), the expression of the propagator of the
chiral superfield is

< Φ(z1)Φ
†(z2) >free ≡ −i δ2W0[J, J

†]

δJ(z1)δJ†(z2)

∣∣∣∣∣
J=J†=0

= − δ
2 lnZ0[J, J

†]

δJ(z1)δJ†(z2)

∣∣∣∣∣
J=J†=0

= − i

16

D̄1D̄1 D1D1

∂21
δ8(z1 − z2)

, (1.3.38)
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where the last step follows by partial integration of the operator DD and by eq.(B.1.5c). In momentum
space eq.(1.3.38) becomes

< Φ(p1, θ1, θ̄1)Φ
†(−p1, θ2, θ̄2) >free=

i

16p21
D̄p1

1 D̄p1
1 Dp1

1 Dp1
1 δ

(4)(θ12) (1.3.39)

1 2

p1

where p1 is the ingoing momentum corresponding to the superspace point z1 of the chiral superfield Φ(z1).
In the picture above, the convention for the direction of the arrows of the fields is that in a point with a
chiral (antichiral) superfield one has an inward (outward) arrow.
The application of the supercovariant derivatives on δ(4)(θ12) ≡ θ212θ̄

2
12 in eq.(1.3.39) using the formulae in

the Appendix A gives an alternative form for the chiral propagator

< Φ(p1, θ1, θ̄1)Φ
†(−p1, θ2, θ̄2) >free=

i

p21
− i

p21
p1µθ1σ

µθ̄1 +
i

4
θ21 θ̄

2
1 −

i

p21
p1µθ2σ

µθ̄2 +
i

4
θ22θ̄

2
2 +

2i

p21
p1µθ1σ

µθ̄2

− iθ21 θ̄1θ̄2 − iθ̄22θ1θ2 + iθ21 θ̄
2
2 +

i

p21
p1µp1νθ1σ

µθ̄1θ2σ
ν θ̄2 −

i

4
p1µθ1σ

µθ̄1θ
2
2 θ̄

2
2 −

i

4
p1µθ2σ

µθ̄2θ
2
1 θ̄

2
1 −

i

2
p1µθ2σ

µθ̄1θ
2
1 θ̄

2
2

+
i

16
p21θ

2
1 θ̄

2
1θ

2
2θ̄

2
2

(1.3.40)

From the propagator of the chiral superfield one can derive the propagator of its component fields, such
as < φ(p1)φ

∗(−p1) >, or two point mixed correlators between a chiral superfield and its components, such
as < φ(p1)Φ

†(−p1, θ2, θ̄2) >.
The component fields φ,ψ and F and their complex conjugates can be obtained from Φ(Φ†) by differentiation
in θ and then by evaluating at θ = θ̄ = 0

φ(p1) = Φ(p1, θ1, θ̄1)
∣∣∣
θ1=θ̄1=0

(1.3.41a)

ψα(p1) =
1√
2
∂1αΦ(p1, θ1, θ̄1)

∣∣∣
θ1=θ̄1=0

=
1√
2
Dp1

1αΦ(p1, θ1, θ̄1)
∣∣∣
θ1=θ̄1=0

(1.3.41b)

F (p1) =
1

4
∂1∂1Φ(p1, θ1, θ̄1)

∣∣∣
θ1=θ̄1=0

= −1

4
Dp1

1 Dp1
1 Φ(p1, θ1, θ̄1)

∣∣∣
θ1=θ̄1=0

(1.3.41c)

φ∗(p1) = Φ†(p1, θ1, θ̄1)
∣∣∣
θ1=θ̄1=0

(1.3.41d)

ψ̄α̇(p1) = − 1√
2
∂̄1α̇Φ

†(p1, θ1, θ̄1)
∣∣∣
θ=θ̄=0

=
1√
2
D̄p1

1α̇Φ
†(p1, θ1, θ̄1)

∣∣∣
θ=θ̄=0

(1.3.41e)

F ∗(p1) =
1

4
∂̄1∂̄1Φ

†(p1, θ1, θ̄1)
∣∣∣
θ1=θ̄1=0

= −1

4
D̄p1

1 D̄p1
1 Φ†(p1, θ1, θ̄1)

∣∣∣
θ1=θ̄1=0

(1.3.41f)

In eqs.(1.3.41) the Grassmanian derivatives ∂α(∂̄α̇) can be substituted with the supercovariant derivatives
Dα(D̄), because one is evaluating at θ = θ̄ = 0. The introduction of the superderivatives again allows the
use of the D−algebra. We will call eqs.(1.3.41) projection.
From eqs.(1.3.41) and from the expression for the chiral propagator (1.3.39) or (1.3.40) one has

< φ(p1)φ
∗(−p1) >free =< Φ(p1, θ1, θ̄1)Φ

†(−p1, θ2, θ̄2) >free

∣∣∣
θ1=θ̄1=θ2=θ̄2=0

=
i

p21
(1.3.42a)

< ψα(p1)ψ̄α̇(−p1) >free =
i

p21
p1µσ

µ
αα̇ (1.3.42b)
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< F (p1)F
∗(−p1) >free = i (1.3.42c)

and

< φ(p1)Φ
†(−p1, θ2, θ̄2) > =< Φ(p1, θ1, θ̄1)Φ

†(−p1, θ2, θ̄2) >free

∣∣∣
θ1=θ̄1=0

=
i

p21
− i

p21
p1µθ2σ

µθ̄2 +
i

4
θ22θ̄

2
2 (1.3.43a)

< Φ(p1, θ1, θ̄1), φ
∗(−p1) > =

i

p21
− i

p21
p1µθ1σ

µθ̄1 +
i

4
θ21θ̄

2
1 (1.3.43b)

Until now the correlators of the component fields have been derived from the correlators of the superfields.
But one could proceed in the opposite direction and construct the propagator of the chiral superfield from
the propagators of the component fields [18]. The latter can be computed by expanding in components the
free part of the action for chiral superfields which after neglecting surface terms is

Sfree =

∫
d8zΦ†(z)Φ(z) =

∫
d4x

(
iψσµ∂µψ̄ − φ∗∂µ∂

µφ+ F ∗F
)
. (1.3.44)

By inverting these kinetic terms, one can obtain the component propagators (1.3.42). Then, the propagator
of the chiral superfield is obtained by substituting in < Φ(p, θ1, θ̄1)Φ

†(−p, θ2, θ̄2 > the expansions (C.0.3)-
(C.0.4) of Φ(p, θ, θ̄) and Φ†(p, θ, θ̄) and the expressions of the component propagators.

There exists a third form for the chiral propagator:

< Φ(p1, θ1, θ̄1)Φ
†(−p1, θ2, θ̄2 >free=

i

p21
exp

(
− p1µ

(
θ1σ

µθ̄1 + θ2σ
µθ̄2 − 2θ1σ

µθ̄2
))

(1.3.45)

One can verify that the Taylor expansion of eq.(1.3.45) coincides with eq.(1.3.40).

1.3.2 The propagators of vector and superghosts superfields

In this section the expressions for the propagators of the vector V and of the ghost superfields will be
obtained. Before dealing with the quantization of super Yang-Mills(SYM) theories, let us briefly review the
case of ordinary Yang-Mills(YM) theories using the Faddeev-Popov method.

An infinitesimal gauge transformation is given by

δAa ω
µ = Aa ω

µ −Aa
µ = ∂µω

a − gfabcA
b
µω

c

or

δAω
µ = Aω

µ −Aµ = ∂µω + ig[Aµ, ω], (1.3.46)

where ω(x) = ωa(x)T a is an element of the gauge algebra and Aµ(x) = Aa
µ(x)T

a

The YM action is gauge invariant by construction SSYM (Aµ) = SSYM (Aω
µ), hence the naive expression for

the path integral

Z =

∫
dAµ exp iSYM (1.3.47)

is not well defined because the integration is extended over all Aµ’s, even those related by gauge transfor-
mation. Another related problem is that the kinetic (quadratic) operator is not invertible over the set of all
field configurations so that the propagator, needed for doing perturbation theory, cannot be defined unless
one restricts this set, summing over a guage family only once.
To this end, one can introduce a guage invariant functional integral over the gauge group ∆G(Aµ), also
called Faddeev-Popov determinant

∆G(Aµ) =

∫
dω δ[G(Aω

µ)− f(x)] (1.3.48)
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where dω is the Haar measure with the property that under a change of variables from ω → ω′′ = ω′ω, it
remains invariant dω′′ = dω, G(Aµ) = Ga(Aµ)T

a is a guage variant function of Aµ while f(x) = fa(x)T a is
a field independent function. Introducing in the functional integral a factor 1 = ∆−1

G ∆G leads to

Z = N

∫
dAµ∆

−1
G

∫
dω δ[G(Aω

µ)− f ] exp(iSYM ) (1.3.49)

One can make a change of variables, i.e. a gauge transformation from Aµ to Aω
µ , under which dAµ = dAω

µ .

From the gauge invariance of ∆−1
G and of the action and after renaming the variable of integration back to

Aµ, the result is

Z = N

∫
dAµ∆

−1
G

∫
dω δ[G(Aµ)− f ] exp(iSYM ) (1.3.50)

The integrand is independent of ω and the integral in dω gives an (infinite) constant which can be absorbed
in the normalization N . Therefore Z can be written as

Z = N

∫
dAµ∆

−1
G δ[G(Aµ)− f ] exp

(
iSYM

)
(1.3.51)

By construction Z is independent on both f and G , so one can average Z over f by introducing another
factor 1 in the functional integral in the form 1.9

1 = N
′

∫
df exp

(
− i

ατR

∫
d4xTrf2

)
, (1.3.52)

where α is a parameter. By using δ(G(Aµ)− f)) for the integration in df , one arrives at

Z = N

∫
dAµ∆

−1
G exp i

(
SYM + SGF

)
(1.3.53)

where the constant N has absorbed N
′
and the gauge-fixing part SGF of the action is

SGF = − 1

ατR

∫
d4xTr [G(Aµ)]

2 (1.3.54)

Finally, expressing ∆−1
G in eq.(1.3.53) as a functional integral produces a new term in the action. This can

be done by manipulating the δ− function of eq.(1.3.48). The gauge group can be parametrized by a gauge
parameter ω(x) in such a way that G(Aω

µ) = f(x) for ω = 0. Then 1.10

∆G(Aµ) =

∫
dω δ[G(Aω

µ)− f ] =

∫
dω
(
det

δG
δω

)−1
δ(ω) =

∫
dω δ

(δG
δω
ω
)

=

∫
dωdω′ exp

[ i
τR

Tr
(
ω′ δG
δω
ω
)]
,

(1.3.55)

where we have used the generalization to infinite dimensional spaces of the identities involving δ− functions
in finite dimension ones.1.11 In the last equation δG

δω has to be evaluated at ω = 0 because of the presence
of δ(ω). To obtain ∆−1

G it is enough to replace ωa and ω′a by the Grassmann fields ca(x) and c†a(x) called
ghost fields. So one arrives at

Z[J ] =

∫
dAµ exp i

(
SYM + SGF + SGH + i

∫
d4xJa

µA
a
µ

)
. (1.3.56)

1.9see for the definition of τR eq(1.1.17)
1.10 Here a compact notation has been used. δG

δw
stands for a matrix of functional derivatives δGa(x)

δωb(y)
, δG

δω
ω stands for the

functional product
∫

d4y δGa(x)

δωb(y)
ωb(y) and 1

τR
Trω′ δG

δω
ω stands for

∫

d4xd4y ω′a(x) δG
a(x)

δωb(y)
ωb(y)

1.11In the second step of eq.(1.3.55) has been made use of the generalization of the identity δ
(−→
f (−→x )

)

=
∑

r δ
(−→x−−→x r

)

/
∣

∣ det δfi
δxj

∣

∣,

where −→x r is a zero of
−→
f (−→x ) which is a function from R

N to R
N . The third step follows from the generalization of the identity

involving the vector −→x and a matrix A: δ
(

A−→x
)

= δ(−→x )/
∣

∣

∣
detA

∣

∣

∣
. The last step is the generalization of the integral representation

of the δ− function: δ(
−→
k ) =

∫

d−→x exp(i
−→
k · −→x ). In eq.(1.3.55) the role of −→x is played by ω′ and of

−→
k by δG

δω
ω.

20



where a term with sources has been included and the action for the ghosts Sghost is given by

SGH =
1

τR
Tr
(
c†
δG
δω
c
)
=

∫
d4x d4y c†a(x)

δGa(x)

δωb(y)
cb(y) (1.3.57)

with c(x) = ca(x)T a and similarly for c†(x).
This discussion can be generalized to superspace. It is sufficient to consider only the pure super Yang-Mills
part of the action (1.1.29):

SSYM =
1

128g2τR
Tr

[ ∫
d6zWαWα +

∫
d6z̄W̄α̇W̄

α̇

]
(1.3.58)

The two integrals in eq.(1.3.58) are equal to each other up to the surface term Tr ǫµνρσ
∫
d4xFµνFρσ that

can be neglected. Then, from the definition (1.1.26) of Wα, after integration by parts of the operator D̄D̄
and using eq.(1.2.2e), it follows that

SSYM =
1

64g2τR

∫
d6zTr

(
WαWα

)
=

1

64g2τR

∫
d6zTr

(
D̄D̄e−gV DαegV

)(
D̄D̄e−gV Dαe

gV

)

= − 1

16g2τR

∫
d8zTr

(
e−gV DαegV

)
D̄D̄

(
e−gV Dαe

gV
) (1.3.59)

From the definition of the Lie derivative eq.(1.1.25), one can prove the relation eLXY = eXY e−X by
expanding the exponentials. This allows to write the term e−V Dαe

V as power series in gV

(e−gV Dαe
gV ) = [e−LgV Dα] · 1

= (Dα + [−gV,Dα] +
1

2
[−gV, [−gV,Dα]] +

1

3!
[−gV [−gV, [−gV,Dα]]] + · · · ) · 1

= gDαV +
1

2
g2[(DαV ), V ] +

1

3!
g2[[(DαV ), V ], V ] + · · · (1.3.60)

Note that in the first two lines Dα acts on all the terms on its right. The third line, where Dα acts only on
V , is obtained by developing the expression in the second line.
Thus, inserting the expansion (1.3.60) in eq.(1.3.59) and integrating by parts, one can read the various terms
in powers of V . The part quadratic in V , which is of zeroth order in g, is given by:

S
(2)
SYM =

1

16τR

∫
d8zTr(VDαD̄D̄DαV ) =

1

2τR

∫
d8zTr(V Π0∂

2V ), (1.3.61)

where Π0 is defined in eq.(1.3.16) . In terms of V a, S
(2)
SYM has the form

S
(2)
SYM =

1

2

∫
d8zV aΠ0∂

2V a. (1.3.62)

The operator ∂2Π0 is not invertible because it annihilates the chiral and the antichiral parts of V, that is
Π+V and Π−V , by applying the orthogonality of the projectors cf.(1.3.18). As in YM theory, it is necessary
to introduce a gauge-fixing term to have a quadratic kinetic operator that is invertible in order to derive a
propagator.
In SYM theory a gauge transformation (1.1.20) of the vector superfield involves two gauge functions which
are two superfields with opposite chirality Λ(z) and Λ†(z). Hence, two gauge fixing superfunctions K(V Λ)
and K†(V Λ), one chiral and the other antichiral , have to be introduced so as to define the Faddeev-Popov
superdeterminant

∆K =

∫
dΛdΛ† δ[K(V Λ)− f(z)]δ[K†(V Λ)− f †]. (1.3.63)

Introducing a factor of 1 = ∆−1
K ∆K in the naive expression for the functional integral

Z[0] = N

∫
dV exp i(SSYM ) (1.3.64)
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gives

Z[0] = N

∫
dV exp i

(
SSYM

)
∆−1

K

∫
dΛdΛ† δ[K(V Λ)− f(z)] δ[K†(V Λ)− f †(z)]. (1.3.65)

A convenient choice for K(V Λ) and K†(V Λ) is

K(V ) = −1

4
D̄D̄V (z), K†(V ) = −1

4
DDV (z). (1.3.66)

Moreover, as in the YM case, averaging over f and f † with the weighting factor

∫
dfdf † exp

(
− i

ατR

∫
d8z Trf †(z)f(z)

)
(1.3.67)

leads to

Z[0] = N

∫
dV exp i

(
SSYM + SGF

)
∆−1

K , (1.3.68)

where

SGF = − 1

16ατR

∫
d8zTr

(
D̄D̄VDDV

)
= − 1

32ατR

∫
d8zTr

(
V {D̄D̄,DD}V

)
. (1.3.69)

The second equality follows by partial integration and ciclicity of the trace. The sum of eq.(1.3.61) and
eq.(1.3.69), both quadratic in V , gives:

S
(2)
SYM + SGF =

1

2τR

∫
d8zTr

[
V ∂2V +

1

16

(
1− 1

α

)
V {D̄D̄,DD}V

]
, (1.3.70)

where eq.(B.1.2k) has been used.
Choosing α = 1 makes the terms with fourth order derivatives vanish and hence there is no term of the
form 1

k4
in the vector propagator which would lead to an infrared divergence even off-shell. This is called

the (supersymmetric) Fermi-Feynman gauge (SFF). Thus, one can write

S
(2)
SYM + SSFF

GF =
1

2τR

∫
d8zTr

(
V ∂2V

)
=

1

2

∫
d8z V a∂2V a. (1.3.71)

Including a source term, the free generating superfunctional for V is

Z0[j] = Z0[0]

∫
dV exp i

(
S
(2)
SYM+SSFF

GF +
1

τR
Tr(j ·V

))
=

∫
dV exp i

( ∫
d8z

1

2
V a(z)∂2V a(z)+ja(z)V a(z)

)
.

(1.3.72)
After performing the Gaussian integral by means of eq.(1.3.33), one has for W0[j] = −i lnZ0[j] the result:

W0[j]
SFF = −1

2

∫
d8z ja

1

∂2
ja. (1.3.73)

Hence the two point connected Green’s function is

< V a(z1)V
b(z2) >free= −i δ2W0[j]

δja(z1)δjb(z2)
=

i

∂2
δabδ(8)(z1 − z2). (1.3.74)

In momentum space eq.(1.3.74) becomes

< V a(p1, θ1, θ̄1)V
b(−p1, θ2, θ̄2) >= − i

p21
δabδ(4)(θ12) (1.3.75)

1 2

a b

p1
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As already done for the chiral superfield (cf. 1.3.41), one can obtain the component fields of vector superfield
by applying an appropriate θ derivative on the expression (1.1.13) of V . For example

Aaµ(p1) =
1

2
∂̄1α̇∂1ασ̄

µ α̇αV a(p, θ1, θ̄1)
∣∣∣
θ1=θ̄1=0

= −1

2
D̄1α̇D1ασ̄

µ α̇αV a(p, θ1, θ̄1)
∣∣∣
θ1=θ̄1=0

. (1.3.76)

From this kind of projection one can get the propagator for the component fields (cf. 1.3.42)

< Aaµ(p1)A
bν(−p1) >free =

1

4
σ̄µα̇ασ̄νβ̇β ∂̄1α̇∂1α∂̄2β̇∂2β < V a(p1, θ1, θ̄1)V

b(−p1, θ2, θ̄2 >free

∣∣∣
θ1=θ̄1=θ2=θ̄2=0

= − 2i

p21
ηµνδab.

(1.3.77)

Also, mixed correlators (cf. 1.3.43) can be derived

< Aaµ(p1)V
b(−p1, θ2, θ̄2 >free=

1

2
∂̄1α̇∂1ασ̄

µ α̇α < V a(p1, θ1, θ̄1)V
b(−p1, θ2, θ̄2) >free

∣∣∣
θ1=θ̄1=0

= − 2i

p21
θ2σ

µθ̄2

(1.3.78)
What remains to do is to find an expression for ∆−1

K . One can replace the two δ− functions in eq.(1.3.63)
by the integral representations eq.(1.3.55), introducing the chiral and antichiral parameters Λ′ and Λ′†

respectively. Repeating the steps leading to eq.(1.3.55) with δF
δω ω replaced by δK

δΛΛ+
δK
δΛ†Λ

† and δK†

δΛ Λ+ δK†

δΛ†Λ
†,

one can write 1.12

∆K(V ) =

∫
dΛdΛ†dΛ′dΛ′† exp

i

τR

[ ∫
d6z Tr

(
Λ′
(δK
δΛ

Λ +
δK
δΛ†

Λ†
))

+

∫
d6z̄Tr

(
Λ′†
(δK†

δΛ
Λ+

δK†

δΛ†
Λ†
))]

,

(1.3.80)
To obtain ∆−1

K , the parameters Λ and Λ′ have to be replaced by the anticommuting chiral ghost fields C(z)
and iA(z) where C(z) = Ca(z)T a, A(z) = Aa(z)T a and the ”i” in front of A(z) is a convention.
Thus

∆−1
K =

∫
dCdAdC†dA† exp i

(
SGH

)
, (1.3.81)

where

SGH =
1

τR

[
Tr

(
A
(δK
δΛ

C +
δK
δΛ†

C†
))

+Tr

(
A†
(δK†

δΛ
C +

δK†

δΛ†
C†
))]

. (1.3.82)

As in the YM case, the functional derivatives δK/δΛ and δK†/δΛ† have to be evaluated at Λ = Λ† = 0.
Thus, in K(V Λ), K†(V Λ) and in the expression of δV Λ (see eq.(1.1.22)), only terms linear in Λ(Λ†) have to
be kept

K(V Λ) = −1

4
D̄D̄V Λ = −1

4
D̄D̄

(
V + Ĥ(V )Λ + Ĥ†(V )Λ†

)

K†(V Λ) = −1

4
DDV Λ = −1

4
DD

(
V + Ĥ(V )Λ + Ĥ†(V )Λ†

)
,

SGH becomes

SGH =
i

τR

∫
d8z Tr

[
AĤ(V )C +AĤ†(V )C† −A†Ĥ(V )C −A†Ĥ†(V )C†

]
. (1.3.83)

1.12Here 1
τR

Tr
(

Λ′ δK
δΛ

Λ
)

stands for
∫

d6zd6z′ Λ′a(z) δKa(z)

δΛb(z′)
Λb(z′) and similarly for the other integrals. The terms inside the

parenthesis multiplying Λ′ are chiral, while those multiplying Λ′† are antichiral.
If O is a matrix with bosonic components and M1,M2 are two column vectors then

∫

dM1dM2 exp
(

MT
1 OM2

)

∝
(

detO
)α

(1.3.79)

where α is −1 or +1 if the components of M1,M2 are bosonic or fermionic respectively. In this case M1 =

(

Λ′

Λ′†

)

, M2 =

(

Λ

Λ†

)

and O =

(

δK
δΛ

δK

δΛ†

δK†

δΛ
δK†

δΛ†

)
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From eq.(1.1.24), SGH can be written more compactly as

SGH =
1

τR

∫
d8z (A† −A)L gV

2
[C† + C + cothL gV

2
(C† + C)] (1.3.84)

Substituting the expressions (1.1.23) for Ĥ(V ) and Ĥ†(V ) in eq.(1.3.83) and keeping only the linear and
quadratic terms in V gives

SGH =
1

τR

∫
d8zTr

(
A†C+AC†+

1

2
g(A†−A)[V,C+C†]+

1

12
g2(A†−A)[V, [V,C−C†]]+O(V 4)

)
, (1.3.85)

where the chiral and antichiral terms AC and A†C† vanish because the integration is over the full superspace∫
d8z. The free generating superfunctional for superghosts with source terms is

Z0[η, η
′, η†, η′†] =

∫
dCdC†dAdA† exp i

{
Sfree
GH [C,A,C†, A†]+

1

τR
Tr
(
η ·C+η′ ·A+C† ·η†+A† ·η′†

)}
(1.3.86)

where

Sfree
GH =

1

τR

∫
d8zTr

(
A†C +AC†

)
, (1.3.87)

η · C =

∫
d6z η(z)C(z), C† · η† =

∫
d6z̄ C†(z)η†(z) (1.3.88)

and similarly for A,A†, η′, η′†. Following the same steps as for the propagator of chiral superfield one finds

W0[η, η
′, η†, η′†] =

∫
d8z
(
η′†a

1

∂2
ηa − η†a

1

∂2
η′a
)

(1.3.89)

By functional differentiation of eq.(1.3.89) with respect to the sources of the superghosts, one can obtain
for the propagators of the superghosts

< Ca(p1, θ1, θ̄1)A
†b(−p1, θ2, θ̄2) >free=

i

16p21
δab D̄p1

1 D̄p1
1 Dp1

1 Dp1
1 δ

(4)(θ12) (1.3.90)

Ca A†b
p1

1 2

< Aa(p1, θ1, θ̄1)C
†b(−p1, θ2, θ̄2) >free= − i

16p21
δab D̄p1

1 D̄p1
1 Dp1

1 Dp1
1 δ

(4)(θ12) (1.3.91)

Aa C†b
p1

1 2

Let us stress the minus sign in the propagator < AC† > with respect to the propagator < CA† > and to
the propagator of the chiral superfield (1.3.39).

1.4 Interaction vertices

The complete action containing the ghost, gauge and matter superfields is given by:

STOT = SSYM + SSFF
GF + SGH + SMAT (1.4.1)
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Expanding the sum of the super Yang-Mills part of the action SSYM and the gauge-fixing term SSFF
GF in the

super-Feynman guage (SFF ) up to the fifth order in V gives

SSYM + SSFF
GH =

1

τR

∫
d8zTr

(
1

2
V ∂2V +

g

3!
[V, [V,DαV ]]− g2

4!
[V, [V, [V,DαV ]]] +

g3

5!
[V, [V, [V, [V,DαV ]]]] +O(V 6)

(1.4.2)

By substituting V = V aT a in eq.(1.4.2) and using eqs.(1.1.17), one obtains the self interaction vertices for
V a with explicit color indices

V a1
V a2

V a3

S
(3)
SYM = − i

16
g fa1a2a3

∫
d8z
(
D̄D̄DαV a1

)(
DαV

a2
)
V a3 . (1.4.3)

V a1 V a2

V a3
V a4

S
(4)
SYM = g2 fa1a2bfba3a4

∫
d8z
[ 1

64

(
V a1DαV a2

)(
D̄D̄

(
V a3DαV

a4
))

− 1

48

(
V a1

(
DαV a2

)
V a3

)(
D̄D̄DαV

a4
)]

= g2fa1a2bfba3a4

∫
d8z
[ 1

192

(
D̄D̄DαV a1

)
V a2V a3

(
DαV

a4
)
− 1

32

(
DαV a1

)
V a2

(
D̄α̇DαV

a3
)
D̄α̇V a

4

+
1

64

(
DαV a1

)
V a2

(
DαV

a3
)
D̄D̄V a4

]
.

(1.4.4)

For the quintic vertex see Appendix D.

The interaction terms between the vector superfield and the superghosts is

Sint
GH = SGH −Sfree

GH =
1

τR

∫
d8zTr

(1
2
g(A†−A)[V,C+C†]+

1

12
g2(A†−A)[V, [V,C−C†]]+O(V 4)

)
(1.4.5)

In terms of V a, Ca, etc.. the V-ghost-ghost vertices are given by

V a2 V a2 V a2 V a2

C ′a1 Ca3 Aa1 C†a3 A†a1 Ca3 A†a1 C†a3
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S
(3)
GH =

ig

2
fa1a2a3

∫
d8z
[
−Aa1V a2Ca3 −Aa1V a2C†a3 +A†a1V a2Ca3 +A†a1V a2C†a3

]
(1.4.6)

while the V 2-ghost-ghost vertices are

Aa1 Aa1 A†a1 A†a1Ca4 C†a4 C†a4Ca4

V a2 V a2 V a2 V a2V a3 V a3 V a3 V a3

S
(4)
GH =

g2

12
fa1a2bfa3a4b

∫
d8z
(
Aa1V a2V a3Ca4 −Aa1V a2V a3C†a4 −A†a1V a2V a3Ca4 +A†a1V a2V a3C†a4

)
.

(1.4.7)
Since coth is an odd function, eq.(1.3.84) implies that the only (symbolically written) vertex AV pC, where
p is odd, different from zero is when p = 1.

Finally, if the chiral superfields belong to the representation R of the gauge group with type index i and
also have flavor indices I, SMAT is

SMAT =

∫
d8zΦ†

i,I(e
V )ijΦj,I +

∫
d6zW(Φi,I) +

∫
d6z̄W†(Φ†

i,I) (1.4.8)

where W is the superpotential (see eq.(1.1.28)).
The interaction terms between the matter and gauge superfields is

S
(Φ,V )
int =

∫
d8zΦ†

i,I

[(
eV
)
ij
− δij

]
Φj,I. (1.4.9)

The gauge-matter vertex at order g is

Φ
†
i,I Φj,I

V a

SΦV Φ
int = g

∫
d8zΦ†

i,I(T
a)ijΦj,IV

a. (1.4.10)

where T a are the generators of the gauge group. The gauge-matter vertex at order g2 is

Φ
†
i,I

Φj,I

V a V b

SΦV 2Φ
int =

g2

2

∫
d8zΦ†

i,I(T
a)ik(T

b)kj Φj,I V
aV b. (1.4.11)

The self interaction vertex for the matter superfield is given by the cubic part of W(W†):
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Φi,I

Φj,J

Φk,K

SΦ
int =

1

3!
λIJKijk

∫
d6zΦi

IΦ
j
JΦ

k
K =

1

3!
λIJKijk

∫
d8z Φi

IΦ
j
JΦ

k
K δ2(θ̄). (1.4.12)

Φ
†i
I

Φ
†j
J

Φ
†k
K

SΦ†

int =
1

3!
λ∗ IJKijk

∫
d6z̄Φ†i

I Φ
†j
J Φ†k

K =
1

3!
λ∗ IJKijk

∫
d8z Φ†i

I Φ
†j
J Φ†k

K δ2(θ), (1.4.13)

where the constants λIJKijk have to be invariant both under the gauge group and the flavor group.

Let us note that in the gauge-matter vertices there is always an ingoing chiral line and an outgoing
antichiral line. Instead in the gauge-ghost vertices the two lines can both be chiral or antichiral.

1.5 Improved super-Feynman rules

The form of the superpropagator and the interactions terms discussed above correspond to the original
conventions of [7] and [8].
A modified set of super-Feynman rules was proposed in [19] and leads to a considerable simplification for
chiral superfields. These new conventions adopt for all the superpropagators the expression ±iδ12/p2 and
associate an integral over

∫
d4θ to all the vertices.

In fact one can move the factors −1
4D̄D̄ and −1

4DD in (1.3.13) from the chiral superpropagator, which now
assumes the form

< Φ(p)Φ†(−p) >= i

p2
, (1.5.1)

to the vertices for each chiral (or antichiral) superfield. Symbolically we have

2 1

−1
4D2D2 −1

4D̄1D̄1

i
p2

In the presence of a Φ3 (or Φ†3) vertex this rule has to be additionally modified in order to convert
∫
d2θ

(or
∫
d2θ̄) into

∫
d4θ . In fact, let us consider the part of a superdiagram involving a chiral vertex (in z4)
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p1 + p2

p2
p1

1 2

3

4

The internal chiral lines ending in z4 give

. . .

∫
d2θ4

(iD̄4D̄4D1D1δ14
16p21

) (iD̄4D̄4D2D2δ24
16p22

) ( iD̄4D̄4D3D3δ34
16(p1 + p2)2

)
. . . (1.5.2)

By partial integration of D̄4D̄4 in the first factor since D̄4α̇D̄4β̇D̄4γ̇ = 0, eq.(1.5.2) becomes

. . .

∫
d2θ4

[
− D̄4D̄4

4

((
− iD1D1δ14

4p21

) ( iD̄4D̄4D2D2δ24
16p22

) (iD̄4D̄4D3D3δ34
16(p1 + p2)2

))]
. . . (1.5.3)

Then, from eq.(1.2.2e), it follows that

. . .

∫
d4θ4

(
− iD1D1δ14

4p21

) (iD̄4D̄4D2D2δ24
16p22

) ( iD̄4D̄4D3D3δ34
16(p1 + p2)2

)
. . . (1.5.4)

Thus, the result is that one of the three factors −1
4D̄4D̄4 has been absorbed to convert

∫
d2θ4 in

∫
d4θ4.

A similar discussion is valid for the Φ†3 vertex and a factor −1
4D4D4. Moreover, if one is computing

1PI diagrams for the effective action, an appropriate superfield is associated to each amputated external
line. If this external superfield is chiral (antichiral), one has to omit the factor −1

4D̄4D̄4 (−1
4D4D4) on the

corresponding amputated external line. We can summarize the so called improved super-Feynman rules for
the computation of the effective action as follows1.13

• for chiral superfields the propagator is < ΦΦ† >= iδ12
p2

, for vectors superfields is < V V >= − iδ12
p2

,

while for the super-ghosts < CA† >= iδ12
p2

and < AC† >= − iδ12
p2

;

•
∫
d4θvert is associated to each vertex with an extra −1

4D̄D̄ ( or −1
4DD ) for each internal chiral (or

antichiral) superfield. In a Φ3 ( Φ†3) vertex one factor of −1
4D̄D̄ (−1

4DD) has to be omitted for
converting

∫
d2θ (

∫
d2θ̄) into

∫
d4θ;

• an appropriate superfield must be associated to each external line. A factor −1
4D̄D̄ ( −1

4DD) has to
be omitted at a vertex for each external chiral (antichiral) superfield;

•
∫

dDk
(2π)D

is associated to each independent loop1.14 and
∫ ∏

pext
d4pext
(2π)4

[
(2π)4δ(4)

(∑
ext pext

)]
for the

external momenta.

The improved super Feynman rules and the use of D− algebra are very useful if one has to compute the
effective action ( or 1PI diagrams ) in superspace. In this case, the external lines have not the factor −1

4D̄D̄
( −1

4DD) with superderivatives. In fact the superderivatives have to be integrated by parts and this leads
to a rapid increase of the terms to compute.
Instead, the conventional super Feynman rules are more appropriate to the computation of reducible dia-
grams. In fact one can use the form (1.3.40) for the chiral propagator which has no explicit superderivatives.
Also, with this method, if one has to calculate Green’s functions with external component fields, one can

1.13these rules give a 1PI superdiagram. To obtain the corresponding term of the effective action Γ an overall factor −i is
needed (see eq.(1.3.28) )
1.14
∫

dDk indicates supersymmetric dimensional regularization (see below)
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project on them from the beginning (see eq.(1.3.43)) without computing before the effective action in su-
perspace.
We have used the technique based on conventional super Feynman rules to obtain the results of chapter
(??) after implementing it in a Maple program. Some of the super-diagrams are calculated also with the
improved Feynman rules and D−algebra to have a check of the correctness of the results.

1.6 Examples of computation in superspace

In this section we apply the formalism introduced before to compute some diagrams with external component
fields. The calculations will employ both the conventional and the improved super Feynman rules.
To simplify the notation we consider a single chiral superfield Φ coupled to an abelian vector superfield

S =

∫
d8zΦ†Φ+

f

3!

∫
d6zΦ3 +

f∗

3!

∫
d6z̄Φ† +

1

64

(∫
d6zWαWα +

∫
d6z̄W̄α̇W̄

α̇

)
+

∫
d8zΦ†egV Φ. (1.6.1)

In the following discussion, φ indicates the scalar component of the chiral supermultiplet, while < i j >p
Φ,

< φ i >p, < iφ∗ >p and < i j >p
V are shortcuts for < Φ(θi, θ̄i, p)Φ

†(θj, θ̄j ,−p) >, < φ(p)Φ†(θi, θ̄i,−p) > ,
< Φ(θi, θ̄i, p)φ

∗(−p) > and < V (θi, θ̄i, p)V (θj , θ̄j,−p) > respectively.

1.6.1 < φφ∗ >1Loop using the conventional Feynman rules

From the vertices of the lagrangian and by the Wick theorem , one can deduce that the super-diagrams
contributing to the amplitude < φφ∗ >1Loop are

We are neglecting diagrams with self-contractions inside a vertex such as

which corresponds to the self-contraction |Φ†V V Φ|. In fact in the Dyson formulation of S-matrix these
contributions are automatically neglected.
In momentum space the first superdiagram

φ∗
p

Φ

Φ

Φ†

Φ†

Φ†

φ
1 2

k + p

k

Φ

p
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gives (see appendix E for the symmetry factor)

−|f |2
2

∫
d2θ1d

2θ̄2

∫
dDk

(2π)D
< 1φ∗ >p< φ2 >p< 12 >k

Φ< 12 >−k−p
Φ . (1.6.2)

In the last expression, one has to substitute eqs.(1.3.40)-(1.3.43). The terms containing θ̄1 or θ2 can
be neglected since chiral integrals

∫
d2θ1 and

∫
d2θ̄2 can be written as

∫
d4θ1 δ

(2)(θ̄1) and
∫
d4θ2 δ

(2)(θ2)
respectively. Hence, the expression (1.6.2) becomes

−|f |2
2

∫
d2θ1d

2θ̄2

∫
dDk

(2π)D
( i
p2
)( i
p2
)( i
k2

+
2i

k2
kµθ1σ

µθ̄2+ iθ
2
1θ̄

2
2

)( i

(k + p)2
− 2i

(k + p)2
(k+p)µθ1σ

µθ̄2+ iθ
2
1θ̄

2
2

)
.

(1.6.3)

The only terms that survive are those involving θ21 θ̄
2
2

−|f |2
2

( i
p2

)2 ∫
d2θ1d

2θ̄2

∫
dDk

(2π)D

( i

k2
iθ21 θ̄

2
2 −

(2i)2

k2(k + p)2
1

2
θ21θ̄

2
2 k · (k + p) +

i

(k + p)2
iθ21 θ̄

2
2

)
. (1.6.4)

Making the integration, one obtains ( i
p2

)2( |f |2
2
p2B0(p)

)
(1.6.5)

where

B0(p) =

∫
dDk

(2π)D
1

k2
1

(k + p)2
. (1.6.6)

The second superdiagram is

φ∗
p

k + p

k

p

1 2

V V
Φ Φ†

Φ
Φ†

φ

In momentum space it is equal to (see Appendix E for the symmetry factor)

−g2
∫
d4θ1d

4θ2

∫
dDk

(2π)D
< 1φ∗ >p< φ2 >p< 21 >−k

Φ < 21 >k+p
V (1.6.7)

The delta δ12 in the correlator < 21 >k+p
V drops one the two θ integrals. Hence, from eqs.(1.3.40)-(1.3.43),

one can write

−g2
∫
d4θ1

∫
dDk

(2π)D
( i
p2

− i

p2
pµθ1σ

µθ̄1 +
i

4
θ21 θ̄

2
1

)( i
p2

− i

p2
pµθ1σ

µθ̄1 +
i

4
θ21 θ̄

2
1

)( −i
(k + p)2

)( i
k2
)
. (1.6.8)

Only terms involving θ21 θ̄
2
1 survive, giving

( i
p2

)2(
− g2p2B0(p)

)
. (1.6.9)

Thus the total result is

< φ(p)φ∗(−p) >1Loop=
( i
p2

)2(
p2B0(p)

)( |f |2
2

− g2
)
. (1.6.10)
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1.6.2 < φφ∗ >1Loop using the improved Feynman rules

Using the improved Feynman rules, the same results can be reproduced but in a little more indirect way.
In fact, first the part of the effective action associated to a 1PI super-diagram is calculated. Thus, one has
an effective vertex Γint as in eq.(1.3.3). After Wick contractions with the external component fields, one
obtains the result.
In the first superdiagram

1 2Φ Φ†

D̄D̄ DD

p

k

k + p

we have indicated the factors −1
4D̄D̄(−1

4DD) on the internal lines and the external superfields Φ (Φ†) on
the external lines. Thus, one has

−|f |2
2

∫
dDp

(2π)D
dDk

(2π)D
d4θ2d

4θ1Φ
†(−p, θ2)

iδ12
(k + p)2

(
(−)

D−k
2 D−k

2

4
(−)

D̄k
1 D̄k

1

4

iδ12
k2

)
Φ(p, θ1) (1.6.11)

where according to our conventions the momentum label on the super-derivative at 1 is k, while that on the
super-derivative at 2 is −k, since the momentum k flows into vertex 1 and out of the vertex 2. The use of
D−algebra allows to express a term in the effective action as an integral over a single d4θ. In fact, in our
case by the identity (B.2.7d), one can replace D̄k

1D̄k
1 by D̄−k

2 D̄−k
2 ; after applying the identity (B.2.7f), a δ12

remains and it allows to eliminate a θ integral giving

|f |2
2

∫
dDp

(2π)D
B0(p)

∫
d4θΦ†(−p, θ)Φ(p, θ). (1.6.12)

Wick contractions with the external φ, φ∗ finally give again (1.6.5).
As for the second super-diagram,

1 2
Φ Φ†

D̄D̄DD

k

p

k + p

the associated part of the effective action is

−g2
∫

dDp

(2π)D
dDk

(2π)D
d4θ2d

4θ1Φ
†(−p, θ2)

−iδ12
(k + p)2

(
(−)

D̄−k
2 D̄−k

2

4
(−)

Dk
1Dk

1

4

iδ12
k2

)
Φ(p, θ1). (1.6.13)

By the same steps as before, one obtains

−g2
∫

dDp

(2π)D
B0(p)Φ

†(−p, θ2)Φ(p, θ1) (1.6.14)

and after Wick contractions, the result is eq.(1.6.9).
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1.6.3 Supersymmetric dimensional regularization

The integral (1.6.6) is logarithmically divergent, so it has to be regularized. Dimensional regularization does
not preserve supersymmetry, that is, it violates certain supersymmetric Ward identities. This is to due to
the fact that a necessary condition for supersymmetry is the equality of fermionic and bosonic degrees of
freedom. This equality in general is lost if the number of space-time dimensions is changed.
A modified version of dimensional regularization called dimensional reduction has been proposed to render
it compatible with SUSY [23]-[25]. In this regularization scheme the momentum integrals are D-dimensional
while the number of field components is kept fixed. Thus γ−matrix algebra and D−algebra is done in
four dimensions, while loop momentum integrals are done in D−dimension. Even dimensional reduction
presents some problems related to the treatment of the Levi-Civita symbol ǫµνρσ when the number of loops
gets large(> 4) [26]. The question whether there exists a supersymmetric regularization scheme valid for
Super Yang-Mills theory to all orders in perturbation theory is open[25]
Another variant of dimensional regularization preserving supersymmetry is the four dimensional helicity
scheme[27]-[29]. As in dimensional reduction, in this scheme all external momenta and polarization vectors
are kept in four dimensions, only the loop momenta are continued to D dimensions.
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Chapter 2

Decomposition of one loop amplitudes

In the last years there has been a great progress in the computation of loop amplitudes by the so called
on shell (or unitarity) methods [46]-[52]. In this approach one reconstructs scattering amplitudes from
their singularities, which are determined by simpler (lower-point and lower loop) amplitudes. Hence all the
information is extracted from on-shell amplitudes, i.e with external physical states without using Feynman
diagrams (which require building blocks with off-shell states).
The power of these methods relies on the possibility to decompose loop amplitudes in a basis of known
integrals. In fact at one loop an amplitude can be reduced to a linear combination of integrals plus a
possible rational function. The coefficients multiplying the integrals can be determined only by the (branch
cut) singularities of the amplitude.
The computation of the remaining rational function R is more complicated. The presence of R is related
to the ultraviolet behavior of the theory under consideration. In fact, it is absent if the loop momentum
integrals of the amplitude satisfy a certain power counting criterion and in this case the amplitude is called
cut-constructible. This happens for the supersymmetric gauge theories which have an improved ultraviolet
behavior with respect to non-SUSY theories because of cancellation between bosons and fermions in the
loop.
In the first section of the chapter we present the notation and discuss a first decomposition of one loop
integrals based on Lorentz covariance. A brief review of ultraviolet and infrared divergences for loop integrals
is also given.
In the second section we discuss in detail the Passarino-Veltman method [42] to reduce one loop integrals
in a basis of known scalar integrals.
The third section deals with the power-counting criterion for the absence of the rational function R in the
decomposition. Moreover, there is a brief presentation of unitarity methods.
In section four we review the proof that gluon amplitudes in super Yang-Mills theories are cut-constructible.
In the last section we discuss another kind of decomposition for the amplitudes which deals with the color
factors and in fact is called color decomposition.
In this chapter we have followed closely [44] and [48].

2.1 One loop integrals

In the computation of one-loop amplitudes or correlation functions, one is faced with a Feynman diagram
with a given topology. For example, let us consider the diagram
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q1

k

k + q1

q2

k + q1 + q2

qm

qm−1

It corresponds to an integral of the form (the following discussion deals only with massless internal lines)

Im[Pr(k)] =

∫
dDk

(2π)D
Pr(k)

k2(k + q1)2(k + q1 + q2)2 . . . (k + q1 + q2 . . . qm−1)2
, (2.1.1)

where qi, i = 1..m are the momenta or sums of the momenta of the external particles which are all assumed
to be incoming. Here m is the number of the interaction vertices (and of the internal propagators) in
the given topology and of the denominators in the integral. Pr(k) is a polynomial of degree r in the loop
momentum k and is a tensor of rank r (for example for r = 2, Pr(k) could be P2(k) = kµkν). The dimension
of space-time is set to D = 4− 2ǫ to regularize the divergences of the integral (see the discussion below).
The integrals Im[Pr(k)] or in short Irm are called m-point tensor integrals of rank r. In the case Pr(k) = 1,
the integrals Im[1] or in short Im are called scalar integrals.
The loop momentum kµ can be contracted with the external momenta and polarization vectors.
We will assume that the external vectors are purely four-dimensional as happens in dimensional reduction
and in the four dimensional helicity scheme ( see section (1.6.3) ). As we will show below, any amplitude
can be written as a linear combination of scalar integrals. In the limit ǫ → 0, one needs to include scalar
integrals with up to four propagators

A1 loop =
∑

j

(
c4;jI4;j + c3;jI3;j + c2;jI2;j

)
+R+O(ǫ), (2.1.2)

where the coefficients c2,j , c3,j , c4,j and R are rational functions of the kinematical invariants and are eval-
uated in D = 4, i.e. are independent on ǫ. The symbol j specifies which combination of the external
momenta enters the scalar integral.
The function R is called the rational part of the decomposition and the scalar integrals I2, I3, I4 with two,
three and four propagators are named bubbles, triangles and boxes respectively.
The decomposition (2.1.2) reduces the calculation of any one-loop amplitude to the determination of both
the coefficients c2,j , c3,j , c4,j and the rational part R, since the analytic expressions of the scalar integrals
are known [30]-[33].
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In literature there is another notation for the scalar integrals I2, I3, I4 which are indicated as B0, C0,D0

respectively.2.1 According to this alternative notation ( we will employ both the notations), the tensor
integrals up to four-point and rank-four ( which are relevant for the discussion below ) are denoted as

B0;B
µ;Bµν(p1) =

∫
dDk

(2π)D
1; kµ; kµkν

k2(k + p1)2
,

C0;C
µ;Cµν ;Cµνρ(p1, p2) =

∫
dDk

(2π)D
1; kµ; kµkν ; kµkνkρ

k2(k + p1)2(k + p1 + p2)2

D0;D
µ;Dµν ;Dµνρ;Dµνργ(p1, p2, p3) =

∫
dDk

(2π)D
1; kµ; kµkν ; kµkνkρ; kµkνkρkγ

k2(k + p1)2(k + p1 + p2)2(k + p1 + p2 + p3)2
(2.1.6)

Using Lorentz symmetry, one can write the bubble tensor integrals Bµ and Bµν as

Bµ(p1) = pµ1 b1(p
2
1), Bµν(p1) = ηµνb00(p

2
1) + pµ1p

ν
1 b11(p

2
1). (2.1.7)

As in [44], we will refer to the coefficients b1(p
2
1), b00(p

2
1), b11(p

2
1) as forms factors or reduction coefficients.

Moreover, we will say that a form factor has m points and rank r if it is associated to an m point tensor
integral of rank r.
Similarly for the triangle tensors integrals, one has

Cµ = pµ1c1 + pµ2c2

Cµν = ηµνc00 + pµ1p
ν
1c11 + pµ2p

ν
2c22 + (pµ1p

ν
2 + pµ2p

ν
1)c12

= ηµνc00 +

2∑

i≤j=1

p
{µ
i p

ν}
j cij

Cµνρ =
2∑

i=1

η{µνp
ρ}
i c00i +

2∑

i≤j≤k=1

p
{µ
i p

ν
j p

ρ}
k cijk (2.1.8)

where the symbol {. . .} denotes completely symmetrization

p
{µ
1 p

ν}
1 = pµ1p

ν
1 , p

{µ
1 p

ν}
2 = pµ1p

ν
2 + pµ2p

ν
1 , (2.1.9)

and we have omitted to indicate the dependence of the c−form factors on p1, p2. For the box tensors integrals
one has

Dµ = pµ1d1 + pµ2d2 + pµ3d3, Dµν = ηµνd00 +
3∑

i≤j=1

p
{µ
i p

ν}
j dij

Dµνρ =

3∑

i=1

η{µνp
ρ}
i d00i +

3∑

i≤j≤k=1

p
{µ
i p

ν
j p

ρ}
k dijk

Dµνργ = η{µνηργ}d0000 +

3∑

i≤j=1

η{µνpρi p
γ}
j d00ij ++

3∑

i≤j≤k≤l=1

p
{µ
i p

ν
j p

ρ
kp

γ}
l dijkl, (2.1.10)

where the dependence of the d−form factors on p1, p2, p3 has not been indicated.

2.1 In dimensional regularization and in its variants, one can neglect the ’tadpole’ scalar integral, indicated in literature as I1
or A0, with a single massless internal propagator

A0 =

∫

dDk

(2π)D
1

k2
. (2.1.3)

In fact, requiring linearity, uniqueness of the result and analyticity in ǫ forces a regulated Feynman integral with a scaleless
integrand

∫

dDk

(2π)D
1

(k2)α
. (2.1.4)

to vanish (see [80] and appendix A of [41]). For the same reason, the integrals

B0;B
µ;Bµν(p1) =

∫

dDk

(2π)D
1; kµ; kµkν

k2(k + p1)2
(2.1.5)

with p21 = 0 can be assumed to vanish. Infact, if p21 = 0, after the Feynman parametrization these can be expressed as integrals
of the form (2.1.4).
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2.1.1 Divergences of the integrals

Ultraviolet divergences

The integrals Irm can have ultraviolet (UV) and/or infrared (IR) divergences.
As far as the UV divergences are concerned, from power counting one has that in four dimensions an integral
Irm is ultraviolet divergent only if the rank r is higher than r ≥ 2m− 4. In a renormalizable quantum field
theory the highest rank r for an m point integral is r = m. Thus, in four dimensions for m ≥ 5 an m point
integral is UV finite and the only UV divergent integrals are

(A0), B0, B
µ, Bµν , Cµν , Cµνρ,Dµνργ , (2.1.11)

while the scalar integrals C0 and D0 are UV finite .
There are various methods to regularize the UV divergences. One can introduce a cut-off Λ for the mo-
mentum of the virtual particles or use dimensional regularization by shifting the dimension of integration
to D = 4− 2ǫ. In the former method, the divergences2.2 appear as powers of ln Λ, in the latter one as poles
in 1/ǫ, i.e. there is the correspondence lnΛUV ↔ 1

ǫ .
In a renormalizable theory at L loops, UV divergences give at most the pole 1/ǫL (or the power (lnΛUV )

L).
Also, the cancellation of UV infinities requires renormalization of the parameters in the Lagrangian.

Infrared divergences

In presence of massless particles, the integrals Irm can have also infrared divergences [36]-[40].
These arise in the integration over the phase-space when one computes the physical measurable cross section
and in the integration over the loop momentum when one computes the loop contributions to an amplitude.
The IR divergences in the phase-space are due to a configuration with an external (on shell) massless particle
which is soft, i.e. with vanishing momentum pµ → 0, or with collinear massless external particles, i.e. with
proportional momenta pi ∝ pj. In a guage theory infrared divergences have an universal form [81]-[83].
As for the loop momentum integral, one can find IR divergences for example in a one-loop diagram with
internal massless propagators and at least one of the external particles which is on shell and massless. The
IR divergences arise in the region of integration over the loop momentum when a virtual particle is on-shell
and soft or collinear to an external massless particle.
In contrast to UV divergences, the IR ones don’t need renormalization, since in the computation of a phys-
ical cross section IR infinities coming from phase-space cancels those produced by loop integration [38]. If
one regularizes IR divergences by dimensional regularization, at one loop a purely soft or a purely collinear
virtual particle gives a pole 1/ǫ, while a soft and collinear virtual particle gives a pole 1/ǫ2. At L loops one
has at most a pole 1/ǫ2L. Dimensional regularization allows to keep the massless external particles on shell
and hence use the on-shell methods (see the introduction) for the computation of amplitudes.
In a massless gauge theory, an alternative regularization for IR infinities is obtained by giving a (small)
mass to the external particles, i.e. to consider them off-shell. This off-shell regularization allows to keep
the dimension of space-time equal to four (see section 3.2). In our results of chapter 3, we will use off-shell
regularization for the IR divergences.
The correspondence between poles in 1/ǫ and powers of lnm2 for IR infinities is the same as for UV ones,
i.e. lnm2

IR ↔ 1
ǫ .

The scalar integrals with massless lines, which are relevant for the following discussion, can have IR diver-
gences as well. In fact the triangles C0 and the boxes D0 with internal massless lines have IR divergences if
at least one of the external legs is massless, while are IR finite if all the external legs are massive. Note that
one has a ’massive’ leg , i.e. q2 6= 0, even in the case of more massless particles i1, i2,etc... that converge at
the same vertex, since in this case the total inflowing momentum is q2 = (pi1 + pi2 + . . .)2 6= 0.
As for the bubble scalar integral B0(p), it is IR divergent if p2 = 0. In dimensional regularization this kind
of integral can be neglected (as the scalar tadpole A0 integral, see footnote 2.1 ).
In ref. [47], one can find the explicit expressions in dimensional regularization of the scalar integrals
B0, C0,D0 in the case where one or more of the external lines are massless. An expression of C0 and
D0 in the case where all the external lines are massive is given in [32]-[34].

2.2we are considering only logarithmic divergences and not power-law divergences
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2.2 Passarino-Veltman decomposition

There are various techniques [42]-[44] to reduce tensor integrals Irm to scalar integrals according to eq.(2.1.2).
We illustrate the technique developed by Passarino and Veltman [42] in the case of up to four point tensor
integrals, since as discussed below an m-point tensor integral with m > 4 can be reduced to these.
In particular, let’s consider Cµν in (2.1.6).
Contracting the Lorentz decomposition of Cµν in (2.1.8) with p1 and p2 one obtains

p1µC
µν = pν1(p

2
1c11 + p1 · p2 c12 + c00) + pν2(p

2
1c12 + p1 · p2 c22),

p2µC
µν = pν1(p1 · p2 c11 + p22 c12) + pν2(p1 · p2 c12 + p22 c22 + c00). (2.2.1)

Using the definition (2.1.6) of Cµν , the left-hand side of eqs.(2.2.1) can be expressed as

p1µC
µν =

∫
dDk

(2π)D
k · p1 kν

k2(k + p1)2(k + p1 + p2)2

p2µC
µν =

∫
dDk

(2π)D
k · p2 kν

k2(k + p1)2(k + p1 + p2)2
(2.2.2)

The scalar products k · p1 and k · p2 in the numerators can be written in terms of the denominators, which
are inverse Feynman propagators, by the identities

k · p1 =
1

2

(
(k + p1)

2 − k2 − p21
)

k · p2 =
1

2

(
(k + p1 + p2)

2 − (k + p1)
2 − p22 − 2p1 · p2

)
. (2.2.3)

Shifting if necessary the variable of integration k → k − p1 to make always appear the term k2 in the
denominator, one can express the right-hand sides of (2.2.2) in terms of triangle tensors of rank one Cµ,
bubble tensors of rank one Bµ and the bubble scalar integral B0. Then one uses the Lorentz decompositions
(2.1.7)-(2.1.8) to write Bµ and Cµ in terms of forms factors b1 and ci.
Finally, equating the expressions multiplying pν1, p

ν
2 in eqs.(2.2.1) with those obtained from eqs.(2.2.2) after

these manipulations, one gets the linear algebraic systems

G2

(
c11
c12

)
=

(
R

[c1]
1

R
[c1]
2

)
, G2

(
c12
c22

)
=

(
R

[c2]
1

R
[c2]
2

)
(2.2.4)

where, following the notation of [44], G2 is the 2× 2 Gram matrix
(

p21 p1 · p2
p1 · p2 p22

)
, (2.2.5)

the constants terms R
[c1]
1 , R

[c1]
2 are

R
[c1]
1 =

1

2

(
b1(p1 + p2)− p21c1(p1, p2) +B0(p2)− 2c00(p1, p2)

)

R
[c1]
2 =

1

2

(
b1(p1)− b1(p1 + p2) + (−p22 − 2p1 · p2)c1(p1, p2)

)
, (2.2.6)

while R
[c2]
1 , R

[c2]
2 are

R
[c2]
1 =

1

2

(
b1(p1 + p2)− b1(p2)− p21c2(p1, p2)

)

R
[c2]
2 =

1

2

(
− b1(p1 + p2) + (−p22 − 2p1 · p2)c2(p1, p2)− 2c00(p1, p2)

)
(2.2.7)

In ref.[44], one can find the constants terms, like R
[c1]
1 , R

[c1]
2 ,etc.., of the linear algebraic systems for all the

form factors up to four point and four rank.
Solving eqs.(2.2.4), one can write all cij as a linear combination of c00, ci, bi, B0

cij → c00, ci, bi, B0, (2.2.8)
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where the symbol → means that the term on the left is a linear combination of the terms on the right.
Let’s note that from eqs.(2.2.4) the coefficient c12 can be determined in two different ways. This gives a
check for the computation.
The form factors c00, d00, d0000

2.3 which multiply only ηµν tensors in eqs.(2.1.8)-(2.1.10) have to be treated
in a little different way.
For example, to determine c00, one contracts with ηµν the expression for Cµν in eq.(2.1.6) and (2.1.8),
obtaining respectively (after shifting k → k − p1 in the integral of eq.(2.1.6))

ηµνC
µν = B0(p2), ηµνC

µν = Dc00 + p21c11 + 2p1 · p2 c12 + p22c22. (2.2.9)

One can equate the right-hand sides of the two equations and note from the two systems in (2.2.4) that the

expression p21c11 + 2p1 · p2 c12 + p22c22 is the sum of R
[c1]
1 and R

[c2]
2 . Hence, using eqs.(2.2.6)-(2.2.7) one can

write

c00 =
1

2(D − 2)

(
B0(p2)−

(
− p22 − 2p1 · p2

)
c2(p1, p2) + p1c1(p1, p2)

)
. (2.2.10)

Note the presence of the dimension of the space-time D in the first factor of eq.(2.2.10).
All the form factors of the tensor integrals with m ≤ 4 have been studied ([42],[44]).
One can write the reduction chain ( taken from [44])2.4

dijkl → d00ij , dijk, cijk, cij , ci, C0,

d00ij → dijk, dij , cij , ci,

d0000 → d00i, d00, c00,

dijk → d00i, dij , cij , ci,

d00i → dij , di, ci, C0,

dij → d00, di, ci, C0,

d00 → di,D0, C0,

di → D0, C0,

−−−−−−−−−−
cijk → c00i, cij , bij , bi,

c00i → cij , ci, bi, B0,

cij → c00, ci, bi, B0,

c00 → ci, C0, B0,

ci → C0, B0,

−−−−−−−−−−
bij → b00, bi

b00 → bi, B0,

bi → B0. (2.2.11)

For the discussion on the rational partR below, it is important to note that the external vectors are assumed
to be purely four dimensional and consequently the contraction procedure just described does not introduce
an explicit dependence on the space-time dimension D in the reduction equations.
This explicit dependence on D (or ǫ) comes from the contraction ηµν η

µν . So it appears in the equations
determining those forms factors in (2.1.6) which multiply at least one ηµν tensor

D ∈ b00, c00, c00i, d00, d00i, d00ii, d0000. (2.2.12)

Hence, from the reduction chain (2.2.11), one has that all the form factors of rank r ≥ 2 are dependent on
D (or ǫ), since in their reduction path there is at least one of the reduction coefficient of (2.2.12).
Also, for the form factors b1(p1), b11(p1), and consequently for all the other form factors depending on them,

2.3the form factors with ’mixed’ indices, i.e. c00i, d00i, d00ij can be computed in both ways. The computation of b00 is trivial
2.4Unlike our discussion, in [44] the internal propagators are supposed to be massive
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one has to distinguish the case p21 = 0 from the case p21 6= 0. In the case p21 6= 0, which is relevant for the off
shell amplitudes of chapter 3, they can be written as (see appendix A of [44])

b1(p1) = −1

2
B0(p1), b11(p1) =

1

4

D

D − 1
B0(p1), (2.2.13)

while, in the case p21 = 0, they vanish (see footnote 2.1).
Following the reduction chain (2.2.11), finally one can express all the form factors for m ≤ 4 as linear

combination of B0, C0,D0.

b00, b11, b1 → B0

ci, c00, cij , c00i, cijk → C0, B0

di, d00 → D0, C0

dij , d00i, dijk, d0000, d00ij , dijkl → D0, C0, B0. (2.2.14)

(2.2.15)

In particular, all the form factors in (2.2.12) are reduced to a linear combination of scalar integrals multiplied
by a coefficient depending on D, for example b00 is

b00(p) = − 1

4(D − 1)
p2B0(p) (2.2.16)

Another important consideration is that even if the form factors ci, dij , dijk, d00i are UV finite, in their
decomposition there is B0 which is UV divergent. Thus expanding in powers of ǫ the B0’s

2.5 present in the
reduction, the sum of all the UV poles 1/ǫ has to give zero. This happens if the sum of all the coefficients
multiplying the B0’s in the decomposition vanishes.
The discussion above can be easily generalized to the case of an m-point tensor integral with m > 4. In
fact, one can express the form factors of an m point tensor integral of rank r in terms of those associated
to an m point integral of rank r − 1 and of those associated to m − 1 point integrals of rank r − 1 or
less. Thus, the iteration of this procedure reduces an m−point tensor integral with m > 4 to box tensor
integrals (m = 4) and scalar m point integrals. As shown above, tensor integrals with m ≤ 4 can be reduced
to bubble, triangle and box scalar integrals. Finally, as proven in [43],[45], if one neglects, in dimensional
regularization, terms of order ǫ, scalar integrals with m > 4 can be reduced to box integrals, i.e.

Im =
∑

c4;jI4;j +O(ǫ), m > 4. (2.2.18)

2.3 Rational parts and cut constructibility

From the considerations above, it follows that any one-loop amplitude can be decomposed as follows

A1 loop =
∑

j

(
c4;j(ǫ)I4;j + c3;j(ǫ)I3;j + c2;j(ǫ)I2;j

)
+O(ǫ), (2.3.1)

where the coefficients of eq.(2.3.1) depend on ǫ unlike the coefficients of eq.(2.1.2) which can be read as
c2;j(ǫ)|ǫ=0 ≡ c2;j , etc...
Rational terms, which are related to ultraviolet singularities, arise if one expands the coefficients of eq.(2.3.1)
in ǫ. In fact, terms of order O(ǫ) cancel the UV poles 1/ǫ giving a finite result2.6.
For an amplitude with massless internal propagators, the only UV divergent scalar integral is B0 (in the
massive case there is also the tadpole integral A0). Therefore, in order to have a rational part R, the
decomposition of a tensor integral has to contain terms of the form

ǫB0(p) = 1 +O(ǫ). (2.3.2)

2.5 In dimensional regularization B0 is [47]

B0(p) =
1

ǫ
− ln p2 + 2− γ, (2.2.17)

where γ is the Euler’s constant.
2.6here UV divergence are assumed to be regularized by dimensional regularization while IR divergence by off-shell regular-

ization
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Let us consider first the case of bubble, triangle and box tensor integrals (m ≤ 4). From the previous
discussion, one can conclude that the tensor integrals of rank r < 2 have R = 0, since all their form factors
are independent of ǫ.
From (2.2.12), (2.2.14) and from the consideration after eq.(2.2.14), it follows that all the reduction coef-
ficients b00, c00, c00i, d00i, d00ii, d0000 contain ǫB0(p). Thus, Bµν , Cµν , Cµνρ,Dµνργ , which are UV divergent
and Dµνρ, which is UV finite, have R 6= 0 because have one of these form factors. For example

Bµν(p) =
(pµpν

3
− ηµν p2

12

)
B0(p) +

1

18

(
pµpν − ηµν p2

)
+O(ǫ). (2.3.3)

On the contrary, Dµν has R = 0, because the dependence on ǫ of its form factors dij is due to d00 which
does not contain B0. Thus, by direct inspection, one has that for m point integrals with m ≤ 4, if the rank
r is r ≤ m− 2 then their decomposition has not rational parts. The only exception to this rule is for r = 1
and m = 2, i.e. for Bµ, which is UV divergent. In fact, its form factor b1 is independent on ǫ and so R = 0.
So one can summarize the condition to have R = 0 as

r ≤ max{m− 2, 1}. (2.3.4)

Higher point-integrals (m > 4) in four dimension are all ultraviolet finite. Also, the Passarino-Veltman
reduction maintains the difference m− r, since at each step the most ultraviolet-singular term has both m
and r reduced by one unit with respect to the previous step. Hence, their reduction path cannot generate
a rational part if the rank is r ≤ m− 2 as stated in (2.3.4). .

Unitarity methods

The importance of having a decomposition (2.1.2) with R = 0 is related to the possibility to construct an
amplitude only by its branch cut singularities [46]-[50].
In fact an amplitude can have singularities. At tree level, these are represented by poles as kinematic
invariants vanish due to an almost on-shell internal propagator. At the loop level, amplitudes can have
poles as well as branch cuts when more than one internal propagators are on shell. The scalar integrals
appearing in (2.1.2) are expressed by logarithms and dilogaritms, which indeed have branch cuts. On the
contrary rational functions can’t have this kind of singularities.
If in the expansion (2.1.2) the rational part is absent R = 0, then the amplitude can be determined only by
the discontinuities across its branch cuts and, as already said in the introduction, if this happens is called
cut-constructible.
In a given channel, one can compute the branch cut discontinuity for both sides of (2.1.2). Since the scalar
bubble, triangle and box integrals Im are all known, their discontinuity ∆Im are known as well. A color-
ordered or planar amplitude (see section 2.5) receives contribution only from diagrams with a particular
cyclic order of the external legs and so can have singularities only in kinematic invariants made out of squares
of sums of cyclically adjacent momenta. This implies [46]-[47] that a planar amplitude can be decomposed
in scalar integrals containing logarithms and dilogarithms which produce cuts that are independent of those
produced by other integrals. Thus, choosing the appropriate channel one can pick up a single term in (2.1.2)

∆A = ci∆Ii (2.3.5)

To determine the coefficient ci from (2.3.5), one has to compute the discontinuity ∆A in a given channel in
a different way. In fact, the unitarity of the S matrix (from this the name of unitarity methods),

SS† = 1 (2.3.6)

implies that the interaction matrix T defined by S = 1 + iT obeys

2ImT = T †T. (2.3.7)

This equation relates terms of different order in perturbation theory. Expanding it in the coupling constant,
one has that the imaginary part of loop amplitudes can be determined from (four dimensional) phase-space
integrals of products of lower-order on shell amplitudes (from this the name on-shell methods) without the
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need of computing all the off-shell Feynman diagrams of a given order in the coupling constant.
In particular, the imaginary part of one-loop amplitudes is related to the product of two tree amplitudes
(this is equivalent to putting on-shell two internal propagators of the one-loop amplitude, i.e. to doing a
’double cut’).
This imaginary part is related to the discontinuity ∆A1 loop across a branch cut in a given channel [54].
A possible rational part of the amplitude has no branch cut singularities and cannot be found by the unitarity
method just described (where the cut is evaluated strictly in four dimensions). If one evaluated the cut in
D dimension, then had information even on the rational part [51], [85]. Hence, amplitudes for which the
condition (2.3.4) is satisfied are cut-constructible.
A generalization of the method just described consists in putting on shell (cutting) three or more propagators
[52]. This technique has been extended also to (on-shell) superspace [53].

2.4 Decomposition of Super Yang-Mills Amplitudes

One-loop color-ordered gluon amplitudes in massless supersymmetric gauge theories satisfy the power-
counting criterion (2.3.4), i.e. they are cut-constructible [46]-[48]. To show this, it is enough to study
only the effective action Γ(Aa

µ) at one loop since the presence of trees attached to the loop does not change
the power-counting of the loop integrand.
The reason why super Yang-Mills theories satisfy the power-counting criterion (2.3.4) is that in the loop di-
agrams of SYM theories there are cancellations between fermionic and bosonic fields which lower the degree
of divergence of the loop integral.

Background field method

We will study the effective action using the background-field method [54]-[60]. It allows to quantize a gauge
field theory without losing explicit gauge invariance.
In fact in the conventional formulation, one derives Feynman rules from a total Lagrangian which is not
gauge invariant because is the sum of the classical Lagrangian and of gauge-fixing and ghosts terms. Any
physical quantity will be gauge-invariant but quantities with no direct physical interpretation like off-shell
Green functions or counterterms may not be gauge invariant.
Let’s consider a renormalizable gauge theory with vector, spinor and scalar fields ( in this section we are
dealing with conventional (component) fields not superfields). Ghosts fields are also included.
In the background-field method one has to split the gauge field in a ’classical’ background field Aa

Bµ and in
a ’quantum’ field Aa

Qµ

Aa
µ → Aa

B µ +Aa
Qµ (2.4.1)

One can compute the effective action Γ(Aa
Bµ) treating A

a
Bµ as an external fixed field, while Aa

Qµ can appear
only in the internal lines of 1PI diagrams and is the variable of integration in the functional integral.
To find the propagator for Aa

Q, one has to choose a gauge-fixing function. Let’s consider the covariant
derivative Dµ with respect to the background gauge field

Dµ = ∂µ − iAa
B µT

a
R, (2.4.2)

where the T a
R are the generators of the gauge group in the representation R. One can choose a gauge-fixing

function G(AB) dependent on A
a
B

G(AB) = DµAQµ. (2.4.3)

This allows to write a total Lagrangian Ltot, which includes gauge-fixing and ghosts terms, which is gauge-
invariant with respect to the background gauge transformation

Aa
Bµ → Aa

B µ +Dµα
a, (2.4.4)

where αa is the gauge parameter. Under this transformation Aa
Q transform as a matter field in the adjoint

representation.
To compute the effective action Γ(Aa

B) at one loop, one has to drop the terms linear in Aa
Qµ (which are
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associated to reducible diagrams) and consider only terms quadratic in Aa
Q and in the other fields ( since

these are the terms that produce the vertices for the 1PI diagrams at one loop ). After some manipulation
this quadratic part of the lagrangian Lquad can be written as a sum of terms of the form [54]

Φ∆R,(m,n)Φ (2.4.5)

where here Φ is one of the fields in the Lagrangian belonging to the representation R of the gauge group
and to the representation (m,n) of the Lorentz group ( with a notation that uses the isomorphism between
the Lie algebra of the Lorentz group and that of SU(2)× SU(2) ).
The symbol ∆R,(m,n) stands for the operator

∆R,(m,n) = DµD
µ1(m,n) − F a

µνS
µν
(m,n)T

a
R (2.4.6)

where F a
µν is the background tensor field strength associated to Aa

Bµ, S
µν
(m,n) are the generators of the Lorentz

group for the representation (m,n). Thus, assuming to have a guage theory with a Weyl fermion and a
complex scalar both in the representation R of the gauge group, the effective action for the background field
Aa

B at one loop is obtained from

eΓ(A
a
B)1 loop =

∫
DΦei

∫
d4x

∑
Φ∆R,(m,n)Φ

= (det∆R,(0,0))
−1(det∆R,(1/2,0))

1/2(det∆Adj,(1/2,1/2))
−1/2(det∆Adj,(0,0))

+1. (2.4.7)

where the first term in the right-hand side of eq.(2.4.7) comes from the complex scalar, the second from
the Weyl fermion, the third from the vector and the last one from the ghosts (Adj stands for adjoint
representation). For a supersymmetric gauge theory with a vector supermultiplet N = 1 SUSY (which has
a Weyl fermion and a vector) and nc chiral supermultiplets N = 1 SUSY2.7(each with a Weyl fermion and
a complex scalar), eq. (2.4.7) implies that

Γ(Aa
B)1 loop = −nc ln(det∆R,(0,0)) +

(nc + 1)

2
ln(det∆R,(1/2,0))−

1

2
ln(det∆Adj,(1/2,1/2)) + ln(det∆Adj,(0,0))

(2.4.8)
From eq.(2.4.6), by factorizing DµDµ ≡ D2 and by using the identity

ln det(1 +M) = Tr ln(1 +M) = Tr(M)− 1

2
Tr(M2) +

1

3
Tr(M3) + . . . (2.4.9)

where M is an operator, one has schematically

ln det(∆R,(m,n)) = ln det(−D2)Tr(m,n)(1) +O(F 2)Tr(m,n)(S
µ1ν1Sµ2ν2)

+O(F 3)Tr(m,n)(S
µ1ν1Sµ2ν2Sµ3ν3) . . . , (2.4.10)

where F 2 stands for the quadratic term Fµ1ν1Fµ2ν2 , etc.. and we have explicitly written the operator D2

only in the first term. Also, the symbol of trace over color indices has been omitted.
In eq.(2.4.10) the term linear in Fµν is absent since the Lorentz generators are traceless Tr(m,n)S

µν = 0.
As for the first term in eq.(2.4.10) with no Fµν , one has that

Tr(0,0)(1) = 1, Tr( 1
2
,0)(1) = 2, Tr( 1

2
, 1
2
)(1) = 4, (2.4.11)

As said above, in a renormalizable theory for an m point 1PI diagram the power of the loop momentum k
is at most m.
In the Lagrangian the derivative ∂µ inside Dµ acts on Aa

Q, while that inside Fµν acts on Aa
B . It follows

that D2 contains the loop momentum k, while Fµν contains only the external momenta. Thus the leading
behavior in k is given by the first term of eq.(2.4.10). But after substituting eq. (2.4.10) in eq.(2.4.8),
from (2.4.11) one has that the coefficient in front of this term is zero for every value of nc. Therefore, for

2.7a vector supermultiplet N = 2 SUSY can be decomposed in a vector supermultiplet N = 1 plus a chiral supermultiplet,
while a vector supermultiplet N = 4 is formed by a vector supermultiplet N = 1 and three chiral supermultiplet N = 1
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super Yang-Mills theories the leading term in k contains two Fµν . Each Fµν reduces by one the number
of powers of k in the numerator of the loop integrand. It follows that for the effective action for external
gluons and hence for the amplitudes whose external gluons are all gluons, the maximum degree of k in the
loop integrand is m− 2. So these amplitudes verify the criterion (2.3.4) and have no a rational part in their
decomposition, R = 0.
Up to now we have discussed only amplitudes with external gluons. In ref.[47] an argument is given that
extends this result to any amplitude (with any external particle) in a generic supersymmetric gauge theory
with a vector supermultiplet N = 1 coupled to nc chiral supermultiplets N = 1 with no superpotential.
This result is conjectured to be valid even in presence of a superpotential [47].
Moreover, on-shell amplitudes with particles belonging to the same supermultiplet are related by linear
relations due to the supersymmetric Ward identities [61]-[65].
Let us consider the supermultiplet N = 4 SYM which is composed of a vector supermultiplet N = 1 and
three chiral supermultiplets N = 1, i.e. it has one gluon, four Weyl fermions and six real (or three complex)
scalars (see section 3.1). This combination of fields implies that in (2.4.8) the terms with traces of products
of two Sµν

(1/2,0) cancel those with two Sµν
(1/2,1/2). In fact the trace of two Sµν

(1/2,0) gives

Tr(1/2,0)

(
Sµ1ν1Sµ2ν2

)
=

1

2

(
ηµ1µ2ην1ν2 − ηµ1ν2ην1µ2 + iǫµ1ν1µ2ν2

)
. (2.4.12)

The Levi-Civita tensor can be neglected since gives a term of the form FF̃ . The trace of two Sµν
(1/2,1/2) is

Tr(1/2,1/2)

(
Sµ1ν1Sµ2ν2

)
= 2
(
ηµ1µ2ην1ν2 − ηµ1ν2ην1µ2

)
. (2.4.13)

By considering the coefficients appearing in eq.(2.4.8) with nc = 3, one obtains that terms with two Fµν

vanish. The same cancellation happens for terms with three Fµν and hence the first non vanishing term has
four Fµν .
Thus for one loop gluon amplitudes in N = 4 SYM the maximum degree of k in the loop integrand is
m − 4. This implies that the decomposition of these amplitudes contains only boxes, but neither triangles
nor bubbles. Super Ward identities, which for the N = 4 theory have been solved [64]-[65], allow to extend
this result to amplitudes containing also the other particles of the supermultiplet.
In ref.[66] it is shown that other gauge theories have gluon scattering amplitudes free of bubbles and triangles
if the representation of the matter fields satisfy certain conditions.
Also, supergravity with N = 8 SUSY is believed to be closely related to the N = 4 theory and to have an
S-matrix which is free of bubbles and triangles [67].
The discussion above is summarized by the picture below

AnoSUSY
1Loop =

∑
+ + + R +O(ǫ)

ASYM
1Loop =

∑
+ +

AN=4
1Loop

+O(ǫ)

=
∑

+ O(ǫ)

2.5 Color decomposition

In the following, we will deal with N = 4 SYM whose fields belong to the adjoint representation of the gauge
group SU(N). In the case of amplitudes with particles in the adjoint representation, one can use group
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theory to decompose them in color structures given by single traces or product of traces of the generators
of the gauge group [68]-[71] .
The fact that the generators T a of SU(N) form a complete set of traceless hermitian N×N matrices implies
the ’Fierz identities’

(T a) j1
i1
(T a) j2

i2
= δ j2

i1
δ j1
i2

− 1

N
δ j1
i1
δ j2
i2
. (2.5.1)

As can be seen by contracting both the members of the previous equation by δ i1
j1
, the − 1

N term guarantees
the tracelessness condition.
By contracting appropriately both sides of eq.(2.5.1) with the matrix elements of two generic matrices X
and Y , one has the two identities

Tr(T aX)Tr(T aY ) = Tr(XY )− 1

N
Tr(X)Tr(Y )

Tr(T aXT aY ) = Tr(X)Tr(Y )− 1

N
Tr(XY ). (2.5.2)

In the following, we will be interested in the study of the large N limit, which is also called planar since in
this limit the leading contribute is given by planar Feynman diagrams that can be drawn in a plane without
self-intersections. Hence we will neglect the terms with − 1

N in the eqs.(2.5.2).
If one is dealing with a Feynman diagram with particles in the adjoint representation, the vertices provide

products of structure constants of the gauge group fabc, which using (1.1.17) can be written as

fabc = − i

τR
Tr([T a, T b]T c), (2.5.3)

while the propagators give δab factors which allow to contract the color indices coming from different vertices.
Let’s consider a tree diagram like

a1a2

a3
a4

b

After using eq.(2.5.3) to express the structure constants in terms of the generators T a, one obtains products
of traces of the generators, like

Tr(T a1T a2T b)Tr(T bT a3T a4) (2.5.4)

where the index b is contracted.
In the case of tree diagrams, the contracted indices belong always to different traces and using eq.(2.5.2),
one can reduce (2.5.4) to

Tr(T a1T a2T a3T a4). (2.5.5)

So any tree diagram with n external states in the adjoint can be reduced to a sum of single trace terms
terms Tr(T aσ(1)T aσ(2) . . . T aσ(n)), for some permutation σ of the n particles.
This leads to the following decomposition for an amplitude at tree level with n external particle in the
adjoint

Atree
n ({pi, hi, ai}) = gn−2

∑

σ∈Sn/Zn

Tr(T aσ(1)T aσ(2) . . . T aσ(n))Atree
n (σ(p1, h1), . . . , σ(pn, hn)). (2.5.6)

In this equation Atree represents the total amplitude of n particles with momenta pi, i = 1 . . . n, helicities hi
and adjoint indices ai. The factors A

tree
n multiplying the traces are called partial or color-ordered amplitudes

and contain the kinematic information. Sn is the set of all permutations of n objects, while Zn is the subset
of the cyclic permutations which leave invariant the trace and hence also the associated partial amplitudes.
In fact the sum is over all the non-equivalent orderings of the n particles which are (n− 1)! and are denoted
by σ ∈ Sn/Zn ≡ Sn−1.
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This decomposition is useful since the partial amplitudes receive contribution only from planar Feynman
diagrams whose external legs follow the ordering of the color trace associated to the partial amplitude under
consideration. Hence, the singularities of the partial amplitudes can occur only in kinematic invariants made
out of squares of sums of cyclically adjacent momenta.
Moreover, since these color structures are independent, each color ordered partial amplitude has to be gauge-
invariant.

The decomposition (2.5.10) of tree amplitudes is valid for each value of N [48]. At loop level, one has a
similar decomposition, but it is valid only in the large N limit. For example, let’s consider the diagram

a1a2

a3 a4

b

c

d

e

The iterated use of the first of eqs.(2.5.2) finally gives two kind of terms depending on whether generators
with contracted indices are next to each other inside a trace or are separated by other generators

Tr(T a1T a2T bT bT a3T a4)

Tr(T a1T a2T bT a3T bT a4). (2.5.7)

In the first case, since Tr(1) = N , the second of eqs.(2.5.2) gives

N Tr(T a1T a2T a3T a4), (2.5.8)

while in the second case, it gives the product of two traces

Tr(T a1T a2)Tr(T a3T a4). (2.5.9)

This discussion can be generalized to L loops. As before, one can split traces or generate additional powers
of N keeping the number of traces fixed. The terms with T traces at L loops will have an explicit coefficient
NL+1−T .
Hence in the large N limit, the leading term has single-trace color structures NLTr(T a1 . . . T an) , while the
terms with two or more traces have a lower power in N . In the large N limit, at L loops the leading term
can be written as

AL loop
n ({pi, hi, ai})|planar = gn−2(g2N)L

∑

σ∈Sn/Zn

Tr(T aσ(1)T aσ(2) . . . T aσ(n))AL
n(σ(p1, h1), . . . , σ(pn, hn)).

(2.5.10)
’t Hooft suggested that in the planar limit guage theories simplify considerably and can have a stringy
description [72]. The Maldacena’s conjecture gives a concrete realization of this idea [2].
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Chapter 3

Off shell amplitudes in N = 4 SYM

This chapter is devoted to the presentation of our results. In particular, we discuss our computation of
the off shell planar amplitudes ( or equivalently the Green’s functions ) with four external scalars and with
three and four external gluons in the N = 4 SYM theory. Explicit expressions for the three and four gluon
amplitudes can be found in the appendix G.
Moreover, we discuss our results concerning the n−point correlation functions with n ≥ 4 in the β− defor-
mation of N = 4 SYM theory.
For completeness we also review some known results. In fact we discuss the two point function both for
scalars and gluons and the three point function for scalars in N = 4 SYM, which are all vanishing. We give
a discussion of the off-shell planar four gluon amplitude at tree level whose explicit expression can be found
in the appendix G.
Moreover, we discuss the on-shell limit for all the off-shell amplitudes. This chapter is organized as follows.
The first section treats the formulation of N = 4 SYM in terms of N = 1 superfields.
The second section deals with the dual conformal symmetry and the box scalar integral which is covariant
under this symmetry.
In the third section we present our conventions and a brief description of the Maple program which we have
developed to do the computations.
The forth section is devoted to the motivations and the summary of our results.
The fifth and the sixth sections respectively deal with the scalar and the gluon amplitudes.
In the seventh section we discuss the correlation functions in the β− deformation of N = 4 SYM.
In the last section there are our conclusions.
For the first section we have followed [73], while for the second section we have followed [76], [78].

3.1 Formulations of N = 4 SYM with N = 1 superfields

The action of N = 4 super Yang-Mills theory in four dimension was first obtained by dimensional reduction
of N = 1 SYM theory in ten dimensions [84] and has the form ( taken from [78] )

L =
1

τR
Tr
(
− 1

4
FµνF

µν + iλiσ
µDµλ̄

i − 1

2
DµφijD

µφij

+ igλi[λj , φ
ij ] + igλ̄i[λ̄j , φij ] +

g2

4
[φij , φkl][φ

ij , φkl]
)
. (3.1.1)

This form of the lagrangian has no manifest supersymmetry, i.e. it cannot be expressed in terms of super-
fields. In fact, one refers to (3.1.1) as the N = 0 formulation of the N = 4 theory. One can also refer
to (3.1.1) as the N = 0 gauge since for the quantization one introduces a gauge-fixing term which is not
supersymmetric.
One can verify that the lagrangian (3.1.1) is invariant under N = 4 SUSY transformations. Because of
not manifest SUSY, these transformation close only on-shell, i.e. by using the equations of motion, and are
nonlinear in the fields.
Instead, (3.1.1) has manifest R−symmetry SU(4). Indeed, the theory has a vector field Aµ, which is a singlet
under SU(4), four Weyl fermions λ i

α(i = 1..4) which transform in the fundamental 4 of SU(4) and six real
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scalar fields φ ij = −φ ji, (i = 1..4) transforming in the 6 of SU(4). The 6 correspond to an antisymmetric
rank two tensor φ ij of SU(4)3.1. This representation is real since for an antisymmetric tensor φ ij, one can
define the following SU(4) invariant reality condition

φ†ij = φij ≡ 1

2
ǫijklφkl. (3.1.2)

Since all these fields belong to the adjoint representation of the gauge group SU(N), one can express them
with matrices as in (3.1.1) by contraction with the generators of the gauge group, i.e. Aµ = Aa

µT
a,etc..

There are other formulations or gauges in which N = 4 SYM theory can be studied. In our results we have
used a formulation in terms of N = 1 superfields. The field content of the theory is given by one N = 1
vector superfield V = V aT a and three N = 1 chiral superfields Φi = Φa

i T
a, all in the adjoint representation

of the gauge group.
In this formalism the six real scalars are grouped in three complex scalar fields φi which are the scalar
components of the chiral superfields Φi. Three of the Weyl fermions belong to the Φi, while the fourth
fermion belongs to the vector superfield V .
Thus, unlike the N = 0 formulation where all the four fermions are in the same representation of SU(4),
in this formulation the fermions are no longer all explicitly related to each other and only the subgroup
SU(3) × U(1) of the original SU(4) symmetry is manifest. In the N = 1 formulation , the remaining three
supersymmetry transformations and the global SU(4)/SU(3) × U(1) are realized non linearly [20].
The representations of SU(4) decompose in representations of SU(3) according to 6 → 3 + 3∗, 4 → 3 + 1.

The chiral superfields Φi transform in the 3 ( and the antichiral ones Φ†
i in the 3∗), while the vector superfield

V is a singlet of SU(3).
The condition of having manifest N = 1 SUSY and the superfield content leads to the lagrangian to have
the form (1.1.29) where now the chiral superfields have a flavor index in the representation 3 of SU(3).
The only term which remains to be fixed is the superpotential

W ≈ 1

3!
λijkabcΦ

a
iΦ

b
jΦ

c
k. (3.1.3)

But this has to be invariant under the flavor group SU(3) and under the gauge group and so the tensor λijkabc
has to be a singlet under these to groups . The only singlet with three indices in the fundamental of SU(3) is
ǫijk which is completely antisymmetric and so there has to be complete antisymmetry of the adjoint indices
a, b, c as well. Since the only singlet under the gauge group with three indices in the adjoint and completely
antisymmetric is fabc, the superpotential has to be

W ≈ 1

3!
ǫijkfabcΦ

a
iΦ

b
jΦ

c
k

≡ fabcΦ
a
1Φ

b
2Φ

c
3

≡ − i

τR
Tr(Φ1, [Φ2,Φ3]). (3.1.4)

Hence, the action for the N = 4 theory in the gauge N = 1 has the form [19]-[22]

S =
1

τR
Tr
[ ∫

d4x
(
d4θe−gVΦ†

ie
gV Φi +

1

64g2

∫
d2θWαWα + ig

∫
d2θΦ1, [Φ2,Φ3]

+ ig

∫
d2θ̄Φ†

1, [Φ
†
2,Φ

†
3]−

1

16α

∫
d4θDDV D̄D̄V

)]
, (3.1.5)

where we have included the gauge-fixing term but not the superghosts terms and N = 4 SUSY imposes to
have only one coupling constant g. N = 4 SUSY also fixes the numerical factor in front of the superpotential
in eq.(3.1.5).
Expanding this action up to order g2, one can write

S =

∫
d4xd4θ

(1
2
V a∂2V a +Φ†a

i Φa
i + igfa1a2a3Φ

†a1
i V a2Φa3

i − g2

2
fa1a2a3fa3b2b3Φ

†a1
i V a2V b2Φb3

i +O(g3)
)

3.1in fact, the antisymmetric part of the product of two 4 is equivalent to a 6, i.e. 4⊗ 4|anti ≈ 6
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− gfa1a2a3

∫
d4xd2θΦa1

1 Φa2
2 Φa3

3 − gfa1a2a3

∫
d4xd2θ̄Φ†a1

1 Φ†a2
2 Φ†a3

3 (3.1.6)

If one integrates eq.(3.1.5) over the θ variables, eliminate the auxiliary fields by the equations of motion and
chooses theWess-Zumino gauge, one obtains a component field formulation with only symmetry SU(3)×U(1)
manifest. This formulation can be seen to be perfectly equivalent to eq.(3.1.1)3.2 .
There exists also a manifestly N = 2 formulation which uses harmonic superspace [74] and an infinite
number of auxiliary fields. On the contrary, a formulation with manifest N = 4 is not available. It is
important to remark that even if the N = 4 theory is finite, in a non-supersymmetric gauge such as that of
eq.(3.1.1), the gauge dependent propagators do get divergent corrections. On the contrary the propagators
have no or only finite corrections in a supersymmetric formalism [73].
Only the β function, which is gauge independent, vanishes in all the gauges.

3.2 Conformal integrals

The N = 4 theory is conformal invariant even at the quantum level since its β-function vanishes to all
orders of perturbation theory. The conformal properties are manifest when one considers gauge independent
quantities such as correlation functions of gauge invariant composite operators.
It has been observed [98]-[101] that the four-gluon planar amplitude in N = 4 theory has another kind of
conformal symmetry called dual since it acts in momentum space [75]-[78]. This hidden symmetry is not
related, at least not in an obvious way, to the conventional conformal symmetry of N = 4 SYM theory.
The four gluon planar amplitude has been calculated with the generalized unitarity method which employs
the dimensional regularization scheme to regularize the infrared divergences and assumes that the external
legs are on shell, p2i = 0.
The integrals appearing in the on-shell dimensional regularized amplitude up to four loops have a special
property. In fact if one puts their external legs off-shell and keeps the dimension of space-time equal to four,
these integrals are finite and covariant under dual conformal symmetry.
Let’s consider the one-loop amplitude. In this case, there is the one-loop scalar box integral

D0(p1, p2, p3) =

∫
d4k

k2(k + p1)2(k + p1 + p2)2(k + p1 + p2 + p3)2
, (3.2.1)

where we have followed the notation of section 2.13.3 and the space-time dimension is equal to four. To
study its conformal properties, one has to pass to the dual variables xi

p1 = x12, p2 = x23, p3 = x34, p4 = x41, k = x51, (3.2.2)

where xij = xi − xj .
This choice of variables, which are not related to the coordinates of the original coordinate space, automat-
ically satisfies the constraint given by the conservation of momentum

∑
i pi = 0.

Also, one can introduce a dual diagram by associating a dual coordinate to each face delimited by the lines
of the original diagram

p1p2

p3
p4

x2

x3

x4

x5 x1

3.2If one only integrates eq.(3.1.5) over the θ variables, one obtains an action in which all the component fields of the superfields
appear ( even F,C, S,D, etc.. see eqs.(1.1.11)-(1.1.13). Obviously this action is completely equivalent to eq.(3.1.5) [73].

3.3One can find the on-shell dimensional regularized version of the box scalar integral with infrared poles for example in [47],
while its off-shell finite version in [31]-[32].
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By using these variables, the integral (3.2.1) becomes

D0(x1, x2, x3, x4) =

∫
d4x5

x215x
2
25x

2
35x

2
45

. (3.2.3)

It is manifestly invariant under translations and rotations of the x coordinate. To check the covariance
under special conformal transformation, it is convenient to introduce the conformal inversion operator I

I : xµ → xµ

x2
. (3.2.4)

In fact, a special conformal transformation is given by composing an inversion, a translation and another
inversion. Under I, one has

I :
1

x2ij
→

x2ix
2
j

x2ij
, d4x→ d4x

(x2)4
(3.2.5)

Hence, the integral (3.2.3) is covariant under inversion only if the space-time dimension is equal to four

I : D0 →
∫

d4x5
(x25)

4

(x21x
2
5)(x

2
2x

2
5)(x

2
3x

2
5)(x

2
4x

2
5)

x215x
2
25x

2
35x

2
45

= x21x
2
2x

2
3x

2
4D0. (3.2.6)

In fact, in four dimension, the factors x25 provided by the propagators are canceled by those provided by the
measure. Thus, to be unbroken dual conformal symmetry requires that the space-time dimension is kept
equal to four. On the other hand, if one regularizes the infrared divergences of the one loop amplitude with
dimensional regularization, which shifts the dimension of the space-time from four to D = 4 − 2ǫIR (with
ǫIR < 0), then dual conformal symmetry is broken.
On the contrary, dual conformal symmetry is preserved, if one uses the off-shell regularization3.4, i.e. if one
lets the external particles to have p2 6= 0.

Moreover, one can also say that under inversion D0 transforms homogeneously with weight +2 for each
of the coordinates xi. Under dilatations D0 transforms homogeneously as well

xµ → λxµ : D0 → λ−4D0. (3.2.7)

In the four-gluon amplitude at one loop, D0 is multiplied by (p1 + p2)
2(p2 + p3)

2. Expressing this product
with dual variables xi, one obtains

M1 loop(x1, x2, x3, x4) =

∫
d4x5

x213x
2
24

x215x
2
25x

2
35x

2
45

(3.2.8)

which is invariant under all the generators of the dual conformal symmetry.
The covariance of D0 under conformal transformation implies that it can be expressed as a conformally
covariant factor multiplied by a function Φ(1)(s, t) 3.5 of the conformally invariant cross-ratios s and t

D0 =
1

x213x
2
24

Φ(1)(s, t), (3.2.9)

where

s =
x212x

2
34

x213x
2
24

, t =
x214x

2
23

x213x
2
24

(3.2.10)

and the function Φ(1)(s, t) is expressed in terms of logarithms and dilogarithms 3.6 [31]-[32]

Φ(1)(s, t) =
1

λ

[
2Li2(−ρs) + 2Li2(−ρt) + ln

t

s
ln

1 + ρt

1 + ρs
+ ln(ρs) ln(ρt) +

π2

3

]
, (3.2.11)

3.4In this off-shell regularization, the internal propagators 1
k2 remain massless. One could have a different IR regulator by

replacing the massless internal propagators with massive propagators 1
k2+m2 , but in this case dual conformal symmetry would

be broken.
3.5the superscript (1) refers to the fact that the one loop scalar box (or ladder) integral is the first of the series of L loop

ladder integrals whose expression with off-shell external legs is known [31]-[32],[79].
3.6this formula is valid for s, t > 0. See [103] for a discussion of the analytic continuation
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where

λ(s, t) =
√

(1− s− t)2 − 4st, ρ(s, t) = 2(1− s− t+ λ)−1. (3.2.12)

The same function Φ(1)(s, t) appears in the triangle scalar integral C0. In fact due to conformal covariance
one can multiply (3.2.9) by x214 and take the limit x4 → ∞. Thus, one gets

C0(x1, x2, x3) ≡
∫

d4x5
x215x

2
25x

2
35

= lim
x4→∞

x214D0(x1, x2, x3, x4) =
1

x213
Φ(1)( ŝ, t̂ ) (3.2.13)

where ŝ and t̂ are the limit for x4 → ∞ of s and t respectively

ŝ =
x212
x213

, t̂ =
x223
x213

(3.2.14)

Triangle scalar integrals (as well as bubbles) are not conformal integrals.
The infrared limit corresponds to set p2i ≡ x2ii+1 ≡ m2 and take m2 → 0. In this limit s → 0, t → 0

and Φ(1)(s, t) behaves like (ln(m2))2. Thus, in the infrared limit triangles and box scalar integrals have
a logarithmic divergence, as expected ( see section (2.1.1) ). Finally, it is important to note that dual
conformal invariance is a property of planar amplitudes only. In fact, a non-planar box diagram expressed
in terms of the dual variables (3.2.2) doesn’t transform homogeneously under the conformal inversion I.

3.3 Conventions and sketch of the computation

• In the following, we will consider only planar amplitudes, that is only the part of the total amplitudes
containing single trace terms Tr(T a1T a2T a3T a4).

• We recall that we use the following normalization for the generators of the gauge group

Tr(T aT b) =
1

2
δab, (3.3.1)

i.e. τR = 1
2 in eqs.(1.1.17).

• The computations are done with super Feynman diagrams in the N = 1 formulation of the N = 4
SYM theory. In particular we have employed the supersymmetric Fermi-Feynman gauge, i.e. α = 1 in
eq.(1.3.69), since for α 6= 1 one has infrared divergences even in the off-shell regime (see section 1.3.2)
.

• All the external momenta are assumed to be incoming.

• Moreover, the complex scalars belong to the fundamental representation 3 of SU(3), thus they can
have three flavors. For simplicity, in the amplitudes with external scalars we will always assume that
they have the same flavor3.7 and so will omit the flavor index

• We have computed Green’s functions ( or correlation functions or n-point functions ). The correspond-
ing off-shell amplitudes are obtained simply by neglecting ( amputating ) the external propagators.
For example the relation between the Green’s function with four scalars and the corresponding off
shell amplitude is

< φa1(p1)φ
† a2(p2)φ

a3(p3)φ
† a4(p4) >=

( i
p21

i

p22

i

p23

i

p24

)
×Aoff shell

(
φa1(p1)φ

† a2(p2)φ
a3(p3)φ

† a4(p4)
)
.

(3.3.2)

For the scalar integral B0, C0,D0, we will follow the notation of eq.(2.1.6). Here, we give their definitions
and their properties under the dual conformal symmetry when the external legs are off-shell, i.e. p2 6= 0.

3.7The only exception is given by the three point function
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p1

k

k + p1

B0(p1) =

∫
dDk

(2π)D
1

k2(k + p1)2
(3.3.3)

The bubble scalar integral B0 is divergent in the ultraviolet and is not covariant under the dual conformal
symmetry.

p1

p2

p3

k

k + p1k + p1 + p2

C0(p1, p2) =

∫
d4k

(2π)4
1

k2(k + p1)2(k + p1 + p2)2
. (3.3.4)

The triangle scalar integral C0 is finite in the ultraviolet and is not covariant under the dual conformal
symmetry.

p1p4

p3
p2

k

k + p1

k + p1 + p2

k + p1 + p2 + p3

D0(p1, p2, p3) =

∫
d4k

(2π)4
1

k2(k + p1)2(k + p1 + p2)2(k + p1 + p2 + p3)2
(3.3.5)

The box scalar integral D0 is finite in the ultraviolet and is covariant under the dual conformal symmetry.

sketch of the computation

In order to perform the computation we developed a Maple program which is based on the conventional
super Feynman rules (see sections 1.3 and 1.4) and carries out the following operations

• it makes Wick contractions,

52



• computes color factors and extracts the planar terms,

• integrates over the θ variables of the superspace with the chiral propagator as in eq.(1.3.40)

• computes traces of σ matrices and products of Levi− Civita tensors ǫµ1µ2µ3µ4 ,

• performs the Passarino-Veltman reduction.

For a check of the correctness of the results, we have computed the irreducible diagrams of the amplitude
with four scalars also with the improved super Feynman rules and the D−algebra (see sections 1.2 and 1.5
).

3.4 Motivations and summary of the results

In this chapter we have computed the off shell planar amplitudes ( or equivalently the Green’s functions )
with four external scalars, and with three and four external gluons in the N = 4 SYM theory.
The reasons for these computations are the following

• There has been considerable effort motivated by the AdS-CFT correspondence to compute the corre-
lation functions of gauge invariant composite operators in the N = 4 SYM theory , while correlation
functions of elementary fields have received much less attention. In [17] one can find the off-shell
four gluon amplitude computed in the background field gauge, but other four point functions are not
known.

• The dimensional regularization breaks dual conformal symmetry ( see section (3.2) ). To preserve this
symmetry one has to keep the number of space-time dimensions equal to four. To do so, one can use
off shell regularization to regularize IR divergences even if one looses manifest gauge invariance.3.8

In the off shell four gluon amplitude computed in [17] with the background field method, only the box
scalar integral appears. This scalar integral is covariant under dual conformal symmetry ( see section
(3.2) ) and so dual conformal symmetry is present even in the off shell regime in this gauge.
Hence, it is important to know if in a different (supersymmetric) gauge, the decomposition of an off
shell four point amplitude gives only a box scalar integral or also triangle and bubble scalar integrals,
which lack this symmetry.
In our computation in a N = 1 supersymmetric gauge, we have found that the off shell four scalar

amplitude Aoff shell
1 loop

(
φφ†φφ†

)
is built out of a box integral as well as triangles, while the off shell four

gluon amplitude Aoff shell
1 loop

(
Aµ1Aµ2Aµ3Aµ4

)
is built out of a box as well as triangles and bubbles.

Therefore, in the decomposition of these amplitudes appear integrals which are not dual conformal
covariant. In other words, the presence of the dual conformal symmetry for the off shell amplitudes
depends on the choice of the gauge.

• While triangle and box are finite in the ultraviolet, bubbles are UV divergent integrals. We have
found that both the off-shell one loop amplitude with three gluons and that with four gluons have
a decomposition containing bubbles. In spite of the presence of these UV divergent integrals, these
amplitudes are finite since the sum of all the divergent terms arising from the bubbles vanishes.

• In the off-shell regularization, the regulator is obtained by giving a (small) mass m to the external
particles. To remove this regulator one has to set p2i = m2 and take m2 → 0. If one removes the
regulator in the expression of observable quantities, such as cross sections, all the divergent terms
cancel out and the result is finite.
On the other hand, removing the regulator in the amplitudes, which are not observables, produces

3.8In [109], another kind of regularization, called Higgs or massive regularization, is introduced. It regularizes IR divergences
by giving an expectation value to some of the scalar fields. Even if this regularization allows to work in four dimensions, it
breaks dual conformal symmetry. But one can ’deform’ the generators of the symmetry in such a way that Higgs regularization
preserves this extended version of the dual conformal symmetry
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a divergent result. In the following, we will consider the ’on shell limit’ of the off shell amplitude
limp2→0Aoff shell, that is those parts of the off shell amplitude which don’t vanish (but are finite or
divergent) when one removes the regulator (p2 → 0). One can compare this on-shell limit of the off shell
amplitude with the on-shell dimensional regularized version of the amplitude Aon shell

dim. reg. where the on-

shell condition p2 = 0 is imposed from the beginning. It is important to stress that in limp2→0 Aoff shell

the integrals are off-shell regularized, while in Aon shell
dim. reg. they are dimensionally regularized.

It may happen that this on-shell limit limp2→0Aoff shell contains more terms with respect to Aon shell
dim. reg..

In fact, in the off-shell amplitudes there could be contributions such as

p2I(p), (3.4.1)

where I(p) is some term. These contributions cannot be present if one imposes from the beginning the
on shell condition p2 = 0, as happens in the generalized unitarity method which has been employed
in the computation of the four gluon on shell amplitude up to four loops [98]-[101].
If in the on shell limit p2 → 0, the term I(p) behaves like 1

p2
then contributions like (3.4.1) give a non

vanishing result. Hence, in this case one has that limp2→0Aoff shell doesn’t match Aon shell
dim. reg., i.e.

lim
p2→0

Aoff shell 6≡ Aon shell
dim. reg.. (3.4.2)

In our case, this is due to the form factors of the Passarino-Veltman decomposition which are different
depending on whether p2 = 0 or p2 6= 0 (see eqs.2.2.13). Therefore, it is important to compute the off
shell amplitude and then make the on shell limit.
We have found that for the four scalar and four gluon off shell amplitudes, in the on shell limit terms
like (3.4.1) are all vanishing and hence the on-shell limit of the off-shell amplitudes matches the on-shell
dimensional regularized version of the amplitudes, i.e.

lim
p2→0

Aoff shell
1 loop

(
φφ†φφ†

)
≡ Aon shell

dim. reg.

(
φφ†φφ†

)
,

lim
p2→0

Aoff shell
1 loop

(
Aµ1Aµ2Aµ3Aµ4

)
≡ Aon shell

dim. reg.

(
Aµ1Aµ2Aµ3Aµ4

)
(3.4.3)

• We have also studied the so called β deformation of N = 4 SYM. It is a theory obtained by modifying
the superpotential of N = 4 SYM in such a way to break SUSY down to N = 1 but maintaining the
property of conformal invariance and finiteness. The superpotential of the β deformation depends on
two complex parameters, i.e. h and β which gives the name of the theory.
In [96], it has been shown that in the planar limit and with β real, all the amplitudes of the β
deformation coincide with the corresponding amplitudes of N = 4 up to phase factors. In [94] three
point functions of elementary (super)fields have been studied in the case of complex β. It has been
observed that the three point functions involving vector superfields are equal to their value in N = 4
SYM up to two loops.
We have studied some n−point correlation functions with n ≥ 4 (or equivalently off shell amplitudes)
in the case of complex β. In particular, we have considered the correlation functions with four and six
vector superfields < V a1V a2V a3V a4 > and < V a1V a2V a3V a4V a5V a6 > respectively. We have found
that at two loops they are different from to their value in N = 4 SYM, since they receive non planar
corrections.
We have also considered the ’mixed’ chiral-vector correlation functions with a chiral, an antichiral and
two or three vector superfields < Φa1Φ† a2V a3V a4 > and < Φa1Φ† a2V a3V a4V a5 > respectively (the
flavor indices are omitted). Already at one loop they receive a non planar correction with respect to
the corresponding correlation functions of N = 4 SYM.

Summary of the results in N = 4 SYM

The decomposition in scalar integrals of the off shell amplitude with four scalars contains a box and triangles
as well.
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Aoffshell
1loop (φφ†φφ†)

=

+

Q

N1 + N2 + N3 + N4

All the coefficients Q,N1, N2, N3, N4 multiplying the scalar integrals are functions of the external momenta.
In the on shell limit all the terms with triangles vanish. In fact, taking p2i = m2 and considering the limit
m2 → 0, the scalar triangles C0 behave like C0 ≈ (ln(m2))2 (see sections 2.1.1, 3.2), while the coefficients
Ni like Ni ≈ m2. Hence, the product NiC0 vanishes in the on shell limit.

As for the off shell amplitude with three gluons, its decomposition contains a triangle and bubbles as
well

Aoffshell
1 loop (Aµ1Aµ2Aµ3)=

+

Nµ1µ2µ3

M1,µ1µ2µ3 + M2,µ1µ2µ3 + M3,µ1µ2µ3

All the coefficients Nµ1µ2µ3 ,M1,µ1µ2µ3 ,M2,µ1µ2µ3 ,M3,µ1µ2µ3 multiplying the scalar integrals are functions of
the external momenta.
Even if the bubble scalar integrals are divergent in UV, the amplitude remains UV finite since the sum of
the coefficients multiplying the bubbles is zero

M1,µ1µ2µ3 +M2,µ1µ2µ3 +M3,µ1µ2µ3 = 0, (3.4.4)

and hence the sum of all the UV divergent terms vanishes. On shell all the terms with both bubbles and
triangle vanish.

The decomposition of the off shell amplitude with four gluons contains a box as well as triangles and
bubbles

Aoffshell
1 loop (Aµ1Aµ2Aµ3Aµ4)=

+

Qµ1µ2µ3µ4

+ N2,µ1µ2µ3µ4 +N3,µ1µ2µ3µ4 + N4,µ1µ2µ3µ4N1,µ1µ2µ3µ4

+ M1,µ1µ2µ3µ4 + M2,µ1µ2µ3µ4 +M3,µ1µ2µ3µ4 +M4,µ1µ2µ3µ4

+ M5,µ1µ2µ3µ4 + M6,µ1µ2µ3µ4

All the coefficients Qµ1µ2µ3µ4 , N1,µ1µ2µ3µ4 , . . . N4,µ1µ2µ3µ4 ,M1,µ1µ2µ3µ4 , . . .M6,µ1µ2µ3µ4 multiplying the scalar
integrals are functions of the external momenta.
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As in the case of the amplitude with three gluons, the finiteness in the off-shell regime is guaranteed by the
vanishing of the sum of all the coefficients multiplying the bubbles

∑

i=1..6

Mi,µ1µ2µ3µ4 = 0. (3.4.5)

On shell the terms with bubbles and triangles vanish and only the box remains. Hence, as in the case of four
scalars, in the on-shell limit no new integrals appear with respect to the dimensional regularization scheme,
where the on-shell condition is applied from the beginning.
Thus, in this gauge which preservesN = 1 SUSY, the off-shell amplitudes do contain non-conformal integrals,
but in the on-shell limit they vanish.

3.5 Amplitudes with scalars

3.5.1 The two-point function at one loop

The two point function at one loop is zero [19]

+ = 0

In fact, the first superdiagram

a1 a2

p

k

gives

NTr(T a1T a2)
( i
p

)2
(2g2p2)B0(p). (3.5.1)

The second superdiagram

a1 a2

p

k

gives

NTr(T a1T a2)
( i
p

)2
(−2g2p2)B0(p). (3.5.2)

Hence,

< φ† a1(p)φa2(−p) >1Loop= 0 (3.5.3)
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3.5.2 The three-point function at one loop

At one loop, the three point function < φ a1
1 (p1)φ

a2
2 (p2)φ

a3
3 (p3) >1Loop

3.9 gives zero. In fact its only super-
diagram

vanishes.

3.5.3 Four scalar planar amplitude at tree level

At tree level, the planar four-point function < φa1(p1)φ
† a2(p2)φ

a3(p3)φ
† a4(p4) >

planar
tree

is given by the two superdiagrams

+

a1a2

a3 a4

a1

a1a2

a3 a4

p1p2

p3
p4

p1p2

p3
p4

One can impose the conservation of momenta
∑

i pi = 0 to express one momentum in favor of the others
i.e p2 = −p1 − p3 − p4. The result for the planar off-shell amplitude is

Aoff shell
tree

(
φa1(p1)φ

† a2(p2)φ
a3(p3)φ

† a4(p4)
)
= g2Tr(T a1T a2T a3T a4)×

2i
( (p1 + p3)

2

(p1 + p4)2
+

(p1 + p3)
2

(p3 + p4)2

)
(3.5.4)

On shell one can impose further kinematic conditions

p21 = p23 = p24 = 0,

p22 = (p1 + p3 + p4)
2 = 0 ⇒ p1 · p3 = −p1 · p4 − p3 · p4

(3.5.5)

Hence, the on-shell amplitude is given by

Aon shell
tree

(
φa1 φ† a2 φa3 φ† a4

)
= −2i g2Tr(T a1T a2T a3T a4)× (p1 · p3)2

p1 · p4 p3 · p4
≡ −2i g2Tr(T a1T a2T a3T a4)× (p1 · p4 + p3 · p4)2

p1 · p4 p3 · p4
(3.5.6)

3.9In this case the flavor indices have to be all different. In fact, because of the R−symmetry SU(3), the correlation functions
have to be singlet under SU(3). The complex scalars φa

i belong to the fundamental 3 of SU(3). Since the only singlet with
three indices in the fundamental of SU(3) is ǫijk which is completely antisymmetric, all the flavor indices have to be different.
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3.5.4 Four scalar planar amplitude at one loop

At one loop, the planar four-point function is given by one-particle irreducible and reducible superdiagrams

Planar

1Loop =

a1a2

a3 a4

a1a2

a3 a4

1PI

+ + + +

a2
a2

a2

a2

a1

a1

a1

a1

a3

a3 a3

a3

a4

a4 a4

a4

The 1PI part is composed by the superdiagrams

1PI = + +

+ + +
+

a1a2

a3 a4

a1 a1 a1

a1a1
a1

a1

a2 a2 a2

a2
a2

a2 a2

a3 a3 a3

a3

a3a3a3

a4 a4 a4 a4

a4a4

a4
a4

The superdiagram

vanishes, since involves the product of two propagators of the vector superfield and so the product of two
fermionic delta functions δ12δ12 which is zero. The 1PI part of the four-point function is given by the
expression

< φa1 φ† a2 φa3 φ† a4 >planar
1PI = Ng4Tr(T a1T a2T a3T a4)

( i

p21

i

p22

i

p23

i

p24

)
×

(
4p1 · p3 p2 · p4 D0(p1, p4, p3) +

(p2 + p4)
2

2

(
C0(p1, p3 + p4) + C0(p1, p4) + C0(p1 + p4, p3) + C0(p4, p3)

))
.

(3.5.7)

The reducible superdiagrams that contribute are
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=
+ + + +

while the superdiagrams

don’t contribute, because contain the one-loop two-point functions which vanish.
Neither contributes the superdiagram

because of the color factor which gives zero.
The reducible part with the color indices as indicated in the figure

a1a2

a3 a4

has the expression

Ng4Tr(T a1T a2T a3T a4)
( i

p21

i

p22

i

p23

i

p24

) 1

(p1 + p2)2
C0(p1, p3 + p4)×

1

2

(
p21p

2
2 − p21p

2
4 − p22p

2
2 − p22p

2
4 − 4 p21 p2 · p4 − 2 p22p2 · p4 − 2 p24 p1 · p2 − 4 p1 · p2 p2 · p4 + 2 p22 p1 · p4

)
.

The other reducible parts can be obtained from this one by symmetry. As one can see neither the irreducible
part neither the reducible part have bubbles in their decomposition.
The one loop planar off shell amplitude with four scalars has the expression

Aoff shell
1 loop

(
φa1 φ† a2 φa3 φ† a4

)
=Ng4Tr(T a1T a2T a3T a4)×
(
4p1 · p3 p2 · p4D0(p1, p4, p3)

− p21 p2 · p4 + p22 p1 · p3
(p1 + p2)2

C0(p1, p3 + p4)
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− p21 p2 · p4 + p24 p1 · p3
(p1 + p4)2

C0(p1, p4)

− p23 p2 · p4 + p22 p1 · p3
(p3 + p2)2

C0(p1 + p4, p3)

− p23 p2 · p4 + p24 p1 · p3
(p3 + p4)2

C0(p4, p3)
)
. (3.5.8)

or pictorially

Aoff shell
1 loop =Ng4Tr(T a1T a2T a3T a4)×

(3.5.9)

4p1 · p3 p2 · p4

− 1
(p1+p2)2

(p21 p2 · p4 + p22 p1 · p3)

− 1
(p1+p4)2

(p21 p2 · p4 + p24 p1 · p3)

− 1
(p3+p2)2

(p23 p2 · p4 + p22 p1 · p3)

− 1
(p3+p4)2

(p23 p2 · p4 + p24 p1 · p3)

where we have not eliminated the momentum variable p2 = −p1−p3−p4 to present the result in a more
symmetric form.
Using the conservation of momenta, one obtains for the on-shell limit of the one loop amplitude the expression

Aon shell
1 loop = Ng4Tr(T a1T a2T a3T a4)× 4(p1 · p3)2D0(p1, p4, p3)

= 2iNg2 p1 · p4 p3 · p4Aon shell
tree D0(p1, p4, p3) (3.5.10)

3.6 Amplitudes with gluons

3.6.1 The two-point function at one loop

The two point function < Aa1
µ1
(p)Aa2

µ2
(−p) >1 loop at one loop is given by the superdiagrams

where around the loop chiral superfields, vector superfields and ghost superfields propagate respectively.
The superdiagram with the chiral loop
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a1 a2

p k

gives

NTr(T a1T a2)
(−2i

p

)2
×

∫
dDk

(2π)D
1

k2(k + p)2
3 (

1

2
pµ1pµ2 + ηµ1µ2k

2 + ηµ1µ2 p · k + ikνpτ ǫντµ1µ2) (3.6.1)

The superdiagram with the vector loop

a1 a2

p k

gives

NTr(T a1T a2)
(−2i

p

)2
×

∫
dDk

(2π)D
1

k2(k + p)2
(
3

2
pµ1pµ2 −

5

4
ηµ1µ2p

2) (3.6.2)

Since we have various vertices involving the superghosts (see section 1.4), actually there are four super-
diagrams with the ghost loop

a1 a2

p
k

a1

A

C

C†

A†

a2

C†

A† C

A

a1 a2

p
k

p
k

A

C†
A

C†

a1 a2

p k
A†

C A†

C

which give the total result

NTr(T a1T a2)
(−2i

p

)2
×

∫
dDk

(2π)D
1

k2(k + p)2
(
5

2
ηµ1µ2k

2 +
5

2
ηµ1µ2 p · k +

5

4
ηµ1µ2p

2 +
5

2
ikνpτ ǫντµ1µ2). (3.6.3)

After summing all the contributions and making the Passarino-Veltman reduction (neglecting the tadpole
scalar integral), one has that the two-point function vanishes [19]

< Aa1
µ1
(p)Aa2

µ2
(−p) >1 loop= 0. (3.6.4)

61



3.6.2 Three gluon planar amplitude at one loop

The one loop planar three-point function < Aa1
µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3) >

planar
1 loop has superdiagrams with three

possible topologies (now the pictures don’t indicate bubble or triangle scalar integrals but topologies)

The topology

doesn’t contribute since involves the one loop two point-function which is zero.
The superdiagrams associated to the second topology are

Only the superdiagram with the vector loop contributes since both the superdiagram with the chiral loop
and the superdiagram with the ghost loop give zero since their color factor vanishes.
The superdiagrams of the third topology are

After doing the Passarino Veltman decomposition and substituting p2 with p2 = −p1 − p3, the final
result for the planar off shell amplitude with three gluons is

Aoff shell
1 loop

(
Aa1

µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3)

)
= Ng3Tr(T a1T a2T a3)×

(
M1 ,µ1µ2µ3 B0(p1) +M2 ,µ1µ2µ3 B0(p1 + p3) +M3 ,µ1µ2µ3 B0(p3) +Nµ1µ2µ3 C0(p1, p3)

)
, (3.6.5)

or pictorially (omitting the color indices and the color factor)
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Aoffshell
1 loop (Aµ1Aµ2Aµ3)=

+

Nµ1µ2µ3

M1,µ1µ2µ3 + M2,µ1µ2µ3 + M3,µ1µ2µ3

where the coefficients Nµ1µ2µ3 ,M1,µ1µ2µ3 ,M2,µ1µ2µ3 ,M3,µ1µ2µ3 multiplying the scalar integrals are func-
tions of the external momenta and are given in the appendix G.1.

As already stated, even if in the decomposition there are bubbles, the amplitude is finite since

M1 ,µ1µ2µ3 +M2 ,µ1µ2µ3 +M3 ,µ1µ2µ3 = 0, (3.6.6)

and hence the sum of all the UV terms vanishes.
On shell, one has to impose the conditions

p21 = 0, p23 = 0, p22 = (p1 + p3)
2 = 0 ⇒ p1 · p3 = 0. (3.6.7)

Hence, in the on-shell limit all the terms of the amplitude vanish (see the appendix G.1).

3.6.3 Four gluon planar amplitude at tree level

The planar off-shell amplitude Aoff shell
tree

(
Aa1

µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3)A

a4
µ4
(p4)

)
is obtained by computing the

superdiagrams

a1a2

a3 a4

a1a2

a3 a4

a1a2

a3 a4

The result for Aoff shell
tree

(
Aa1

µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3)A

a4
µ4
(p4)

)
is given in the appendix G.2.

3.6.4 The on-shell limit

To do the on shell limit, one can choose the spinor representation of the polarization vectors as made in the
spinor helicity formalism ( see Appendix F).
Also, one can employ the notation i+, i− to indicate the external gluon i with helicity +1 or −1 respectively.
Using super Ward identities , one can prove that in a SYM theory the on-shell n−gluon amplitudes with all
helicities the same, like Aon shell(1+, 2+, . . . , n+), vanish [48].
The amplitudes with all helicites the same but one, like Aon shell(1−, 2+, . . . , n+) vanish as well. Thus, the
first non-zero n− gluon amplitude (n ≥ 4) has two gluons with helicity −1 and the remaining with helicity
+1 or vice-versa and is usually referred to as the maximally helicity violating (MHV) amplitude.
Let’s consider the amplitude with the configuration (1−, 2−, 3+, 4+) and eliminate one of the momenta, i.e
p2 = −p1 − p3 − p4, in favor of the others.
The polarization vectors λi have to satisfy the condition of trasversality

λi · pi = 0. (3.6.8)
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( We don’t indicate the helicities explicitly. Thus, in the configuration (1−, 2−, 3+, 4+), λ1 stands for λ−1 , λ3
stands for λ+3 , etc.. ). Choosing as reference momenta ( see Appendix F) q1 = q2 = p4, q3 = q4 = p1 or in
brief (p4, p4, p1, p1), one has that the polarization vectors satisfy

λi · λj = 0 except λ2 · λ3 6= 0

λ1 · p4 = λ2 · p4 = λ3 · p1 = λ4 · p1. = 0 (3.6.9)

The amplitude with four gluons has four vector indices and can be decomposed in 138 Lorentz structures
which have three forms (see eqs.(2.1.10) ). The first form (ηη) has two η tensors, like ηµ1µ2ηµ3µ4 , the second
form (ηpp) has one η tensor and two momenta, such as ηµ1µ2p1µ3p3µ4 and the third form (pppp) has four
momenta, like p1µ1p3µ2p1µ3p4µ4 .
Off shell all the 138 Lorentz structures could contribute, but on shell if one chooses the reference momenta
appropriately only a few of them contribute.
In fact, with the choice (p4, p4, p1, p1) for the reference momenta, from eqs.(3.6.8),(3.6.9) one has that after
contracting with the external polarization vectors, only the structures ηµ2µ3p3µ1p3µ4 , p3µ1p1µ2p4µ3p3µ4 and
p3µ1p3µ2p4µ3p3µ4 , corresponding to λ2 ·λ3 λ1 ·p3 λ4 ·p3, λ1 ·p3 λ2 ·p1 λ3 ·p4 λ4 ·p3 and λ1 ·p3 λ2 ·p3 λ3 ·p4 λ4 ·p3
respectively, contribute.
Moreover, while off-shell all these structures are independent, on-shell they can be dependent. In fact, for
example from λ2 · p2 = 0 and λ2 · p4 = 0 it follows that

λ2 · (p1 + p3) = −λ2 · (p2 + p4) = 0 ⇒ λ2 · p1 = −λ2 · p3. (3.6.10)

Thus

λ1 · p3 λ2 · p1 λ3 · p4 λ4 · p3 = −λ1 · p3 λ2 · p3 λ3 · p4 λ4 · p3. (3.6.11)

As for the off shell tree level amplitudeAoff shell
tree

(
Aa1

µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3)A

a4
µ4
(p4)

)
, one has (see the appendix

G.2) that the structures p3µ1p1µ2p4µ3p3µ4 and p3µ1p3µ2p4µ3p3µ4 are not present in the result. Thus, at tree
level the on shell planar amplitude with the configuration (1−, 2−, 3+, 4+) has the expression

Aon shell
tree (1−, 2−, 3+, 4+) = g2 Tr(T a1T a2T a3T a4)

i

2 p3 · p4
λ2 · λ3 λ1 · p3 λ4 · p3. (3.6.12)

3.6.5 Four gluon planar amplitude at one loop

The topologies associated to the 1PI superdiagrams which contribute to the four gluon planar amplitude

at one loop Aoff shell
1Loop

(
Aa1

µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3)A

a4
µ4
(p4)

)
are

The topologies associated to the reducible superdiagrams are

The topologies

64



don’t contribute since they contain the two-point function which is vanishing.

Summing all the superdiagrams and making the Passarino-Veltman procedure, one obtains for the off
shell four gluon planar amplitude at one loop the decomposition

Aoff shell
1 loop

(
Aa1

µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3)A

a4
µ4
(p4)

)
= Ng4Tr(T a1T a2T a3T a4)×

(
Qµ1µ2µ3µ4 D0(p1, p4, p3)

+N1,µ1µ2µ3µ4 C0(p1, p3 + p4) +N2,µ1µ2µ3µ4 C0(p1, p4) +N3,µ1µ2µ3µ4 C0(p1 + p4, p3) +N4,µ1µ2µ3µ4 C0(p4, p3)

+M1,µ1µ2µ3µ4 B0(p1) +M2,µ1µ2µ3µ4 B0(p4) +M3,µ1µ2µ3µ4 B0(p1 + p3 + p4) +M4,µ1µ2µ3µ4 B0(p3)

+M5,µ1µ2µ3µ4 B0(p1 + p4) +M6,µ1µ2µ3µ4 B0(p3 + p4)
)
, (3.6.13)

or pictorially (omitting the color indices and the color factor)

Aoffshell
1 loop (Aµ1Aµ2Aµ3Aµ4)=

+

Qµ1µ2µ3µ4

+ N2,µ1µ2µ3µ4 +N3,µ1µ2µ3µ4 + N4,µ1µ2µ3µ4N1,µ1µ2µ3µ4

+ M1,µ1µ2µ3µ4 + M2,µ1µ2µ3µ4 +M3,µ1µ2µ3µ4 +M4,µ1µ2µ3µ4

+ M5,µ1µ2µ3µ4 + M6,µ1µ2µ3µ4

This off-shell amplitude is finite since the sum of the coefficients of the bubbles vanish

∑

i=1..6

Mi,µ1µ2µ3µ4 = 0 (3.6.14)

and all the UV divergent terms cancel out.
We have found that all the possible (138) Lorentz structures (see eqs.(2.1.10) and section 3.6.4) contribute
to the one loop off-shell four gluon amplitude. In the off-shell regime there cannot be cancellations between
terms containing different Lorentz structures, since off-shell all these Lorentz structures are independent of
each other. Hence, the vanishing of the sum of all the UV terms has to happen for each Lorentz structure
independently of the others. In fact, let’s consider the Lorentz structure ηµ2µ3p3µ1p3µ4 which is relevant for
the on-shell amplitude Aon shell

1 loop (1−, 2−, 3+, 4+) (see section 3.6.4 and the discussion below).
Let’s define as

QV , NV 1, . . . NV 4,M1 . . .M6 (3.6.15)

those parts of the coefficients

Qµ1µ2µ3µ4 , N1,µ1µ2µ3µ4 , . . . N4,µ1µ2µ3µ4 ,M1,µ1µ2µ3µ4 . . .M6,µ1µ2µ3µ4 (3.6.16)
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which multiply this Lorentz structure ηµ2µ3p3µ1p3µ4 . In the appendix G.3 we give the expressions of
QV , NV 1, . . . NV 4,M1 . . .M6. One can verify that for this Lorentz structure the sum of all the coefficients
multiplying the bubbles vanishes, i.e. ∑

i=1...6

Mi = 0.

Moreover, since the NV i are different from zero, one has that, in the decomposition of the off-shell four
gluon amplitude, appear triangles as well.

The on-shell limit

As in section 3.6.4, for the on shell limit let’s consider the configuration (1−, 2−, 3+, 4+) with reference mo-
menta (p4, p4, p1, p1). In this case only the structures ηµ2µ3p3µ1p3µ4 , p3µ1p1µ2p4µ3p3µ4 and p3µ1p3µ2p4µ3p3µ4

contribute.
We have found that in the off-shell one loop amplitude the coefficient multiplying p3µ1p1µ2p4µ3p3µ4 is
equal to the coefficient multiplying p3µ1p3µ2p4µ3p3µ4 . Since one has that λ1 · p3 λ2 · p1 λ3 · p4 λ4 · p3 =
−λ1 · p3 λ2 · p3 λ3 · p4 λ4 · p3 ( see eq.(3.6.11) ), when these two Lorentz structures are contracted with the
external polarization vectors, their sum vanish. Hence, as in the case of the tree level amplitude, for the one
loop amplitude in the on shell limit contributes only the Lorentz structure ηµ2µ3p3µ1p3µ4 .
In the on shell limit, where p21 = 0, i = 1 . . . 4 and p1 ·p3 = −p1 ·p4−p3 ·p4 (see eqs.3.5.5), all the coefficients
multiplying the triangles and those multiplying the bubbles vanish (see the appendix G.3) , i.e.

Non shell
V 1 = . . . Non shell

V 4 = 0, Mon shell
1 = . . .Mon shell

6 = 0.

The only non vanishing coefficient in the on shell limit is QV which gives

Qon shell = −p1 · p4.

Hence, one has

Aon shell
1 loop (1−, 2−, 3+, 4+) = −N g4 Tr(T a1T a2T a3T a4)λ2 · λ3 λ1 · p3 λ4 · p3 p1 · p4D0(p1, p4, p3)

≡ 2iNg2 p1 · p4 p3 · p4Aon shell
tree (1−, 2−, 3+, 4+)D0(p1, p4, p3). (3.6.17)

This result agrees with the expected result as computed in [110].

3.7 Correlation functions in the β-deformed N=4 theory

In [89] Leigh and Strassler found that it is possible to deform the N = 4 SYM, i.e. to modify its superpo-
tential WN=4, obtaining a class of N = 1 SYM theories which has the same superfield content as N = 4
SYM and which maintains conformal invariance and finiteness.
An important example of these theories is represented by the so called β-deformation. It is obtained by
replacing the superpotential of the N = 4 SYM by

WN=4 = 2ig

∫
d6zTrΦ1[Φ2,Φ3] →

Wβ = 2ih

∫
d6zTr

(
eiβΦ1Φ2Φ3 − e−iβΦ1Φ3Φ2

)
, (3.7.1)

where the parameters h and β, which gives the name to the theory, can be considered as complex functions of
the gauge coupling g and expanded in power series in g. The coefficients of the expansions can be determined
by requiring to have conformal invariance.
The gravitational dual of the β deformation in the case of real β has been found in [90].
The superpotential of the β deformation breaksN = 4 SUSY to N = 1 and the original SU(4) R− symmetry
to U(1)R. However, a global U(1)× U(1) survives. Its generators can be chosen to act as follows

U(1)1 : (Φ1,Φ2,Φ3) → (Φ1, e
iϕ1Φ2, e

−iϕ1Φ3)
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U(1)2 : (Φ1,Φ2,Φ3) → (e−iϕ2Φ1, e
iϕ2Φ2,Φ3). (3.7.2)

Also, there is a discrete symmetry Z3 × Z3 which is given by the transformations

(Φ1,Φ2,Φ3) → (Φ2,Φ3,Φ1)

(Φ1,Φ2,Φ3) → (Φ1, ωΦ2, ω
2Φ3), (3.7.3)

with ω3 = 1.
In the case of a theory with N = 1 SUSY and superfields in the adjoint representation, as the β deformation,
to guarantee conformal invariance it is sufficient to impose the finiteness of the propagator of the chiral
superfield < Φa

iΦ
† b
j >.

In any N = 1 supersymmetric gauge theory the only potential divergences are those of the chiral and the
vector propagators < ΦΦ† > and < V V >. In fact,

• from the non renormalization theorem of the superpotential W [19], one has that in the chiral sector
the only divergence is given by the chiral propagator < ΦΦ† >, while the chiral vertex can have only
a finite renormalization. In other words, the beta function of the Yukawa coupling βY depends only
on the anomalous dimension of the chiral superfield γΦ.

• In the gauge sector, one can choose the background field gauge where the renormalization of the
vertices coincides with that of the vector propagator. In any gauge there are Ward identities which
relate βg to γV .

• Moreover, if the chiral superfields belong to the adjoint representation, the divergence of the vector
propagator is related to that of the chiral propagator . This can be seen in the background field gauge
[91] or from the exact form of the βg,NSV Z function for SYM theories found in [92](we recall that its
vanishing is scheme-independent).

• Further, in the β-deformation, because of the discrete Z3 × Z3 symmetry of the action, the matrix
(γΦ)

I
J of γ-functions of the chiral superfields is proportional to the unit matrix in the flavor space

(γΦ)
I
J = γδIJ , (3.7.4)

and so it is enough to require a single condition γ = 0 to ensure conformal invariance.
In other words, in the β-deformation to assure that both the gauge and Yukawa functions βg and βY
vanish and so the theory is conformal invariant, it is sufficient to impose that the chiral propagator
< Φa

1Φ
† b
1 > is finite. The choice of flavor indices is a mere convention since they are all on the same

footing because of the Z3 × Z3 symmetry (in the following we will omit to indicate them).

In the β-deformed theories one can make one further simplification [93],[94].
To find the condition of conformal invariance at a certain order g2n in perturbation theory3.10 instead of
computing the chiral propagator < ΦΦ† >β in the β-deformed theory, it is more convenient to compute the
difference3.11

< Φ(z1)Φ
†(z2) >N=4 − < Φ(z1)Φ

†(z2) >β . (3.7.5)

We already know that the chiral propagator in N = 4 SYM < ΦΦ† >N=4 is finite, thus if the difference
(3.7.5) is finite, the chiral propagator of the β deformation < ΦΦ† >β if finite as well. In the difference, all
the superdiagrams without the chiral vertex, which comes from the superpotential, cancel out. In fact, the
(anti)chiral vertex is the only vertex which is different in the two theories.
Actually, it is only the color factor associated to the vertex which differs in the two theories. In fact, for the
N = 4, one has

WN=4 = 2ig

∫
d6zTrΦ1[Φ2,Φ3]

3.10since the couplings h, β are dependent on g, a diagram of order g2n could have a number of loops lower than n, so in this
case by a calculation to n loops one means a calculation up to order g2n in the coupling constant
3.11in this section it doesn’t make difference whether we work in coordinate or in momentum space since we are interested
essentially in the computation of color factors
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≡ −gfa1a2a3
∫
d6zΦa1

1 Φa2
2 Φa3

3 , (3.7.6)

while for the β-deformation

Wβ = 2ih

∫
d6zTr

(
eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2

)

≡ −h
(
fa1a2a3 cos πβ + da1a2a3 sinπβ

) ∫
d6zΦa1

1 Φa2
2 Φa3

3 , (3.7.7)

where we have introduced the completely symmetric invariant tensor da1a2a3 which (using the normalization
(3.3.1) for the generators of the gauge group) is given by

da1a2a3 = 2Tr
(
T a1{T a2 , T a3}

)
. (3.7.8)

An alternative way to parametrize the superpotential (3.7.1) is the following

Wβ = 2f

∫
d6zTrΦ1[Φ2,Φ3] + 2d

∫
d6z TrΦ1{Φ2,Φ3}

=
(
if fa1a2a3 + d da1a2a3

) ∫
d6z Φa1

1 Φa2
2 Φa3

3 (3.7.9)

where the complex parameters f and d are related to h and β

f = ih cos πβ d = −h sinπβ. (3.7.10)

At order g2 the only superdiagram contributing to (3.7.5) is

As stated above, this superdiagram differs in the N = 4 SYM and in the β-deformation only by the
color factor which factors out from the rest of the diagram which is the same in the two theories (and so its
divergent part is the same ). Hence, the condition for the finiteness of the chiral propagator at order g2 is

given by the vanishing of the difference ∆a,b(g, h, β) of the color factors in the two theories, Fa,b
N=4 and Fa,b

β

respectively
∆a,b(g, h, β) ≡ Fa,b

N=4 −Fa,b
β = 0. (3.7.11)

After computing the colour factors and using that

fa1b1b2fa2b1b2 = Nδa1a2 da1b1b2da2b1b2 =
N2 − 4

N
δa1a2 , (3.7.12)

one has that the finiteness condition at order g2 is given by

|h|2
(
cos πβ cos πβ̄ +

N2 − 4

N2
sinπβ sinπβ̄

)
= g2, (3.7.13)

or in terms of f and d

|f |2 + N2 − 4

N2
|d|2 = g2. (3.7.14)

In the planar limit and with real β, the condition (3.7.13) reduces to

N → ∞ : g2 = |h|2, (3.7.15)

independently of the value of β. In [95], it has been shown that in the planar limit and with β real the
condition (3.7.15) guarantees the conformal invariance to all orders in perturbation theory.
Moreover, all the amplitudes of the β-deformed theory with β ∈ R coincide with the ones of N = 4 up to
phase factors [96].
If β is complex the order g2 condition which is g2 = |h|2 cosh(2πImβ) is not more sufficient to assure
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conformal invariance at higher orders [93]-[94].
The considerations made above for the chiral propagator are valid for any n-point correlation function
〈O1(z1) . . .On(zn)〉 where Oi(zi) is an elementary field or a composite operator (present in both theories).
In fact, to study if a correlation function in the β− deformed theory receives a correction with respect to
N = 4 SYM, one has to compute the difference

< O1(z1) . . .On(zn) >N=4 − < O1(z1) . . .On(zn) >β . (3.7.16)

As before, in the difference all the superdiagrams without chiral vertices don’t contribute and the difference
of each superdiagram in the two theories is given by the difference of the color factors multiplying the rest
of the diagram which is the same in the two theories.
In [94], three point functions, that is the triple chiral (antichiral) vertex, the chiral-antichiral-vector vertex,
the triple vector vertex and the ghost-ghost-vector vertex, have been studied.

At order g3 and order g5 all three vertices with external vector lines are exactly equal to the corresponding
ones in N = 4 SYM. Only the triple chiral vertex has at order g5 a finite non-planar correction. At order
g7 the ghost-ghost-vector vertex is equal to the corresponding vertex in N = 4 SYM, while the other three
vertex receive corrections from non-planar diagrams. Only the triple chiral vertex receives also finite planar
corrections at order g7.
Here we have studied some n−point functions with n ≥ 4. In fact we have considered the correlation function
with four and six vector superfields < V a1V a2V a3V a4 > and < V a1V a2V a3V a4V a5V a6 > respectively.
At one loop3.12, there are no superdiagrams with (anti)chiral vertices contributing to these correlation
functions. So, at one loop these are equal to their N = 4 value.
At two loops, all receive non-planar corrections. Hence, unlike the three point functions, n−point functions
with n ≥ 4 differ from their N = 4 value already at the first order in which there are diagrams with chiral
vertices.
In fact, let’s consider the four point function < V a1V a2V a3V a4 >. The difference between its value in the
N = 4 SYM and in the β-deformation is given by the two superdiagrams

The superdiagram on the left is planar, that on the right is non planar. For each of these two superdiagrams
we have computed the difference between the color factors

∆a1a2a3a4(g, f, d) ≡ Fa1a2a3a4
N=4 −Fa1a2a3a4

β , (3.7.17)

which is a function of g, f and d (we have considered the parametrization of (3.7.9)).
After substituting in (3.7.17) the condition of conformal invariance (3.7.14), we have contracted ∆a1a2a3a4

with all the non-cyclically equivalent traces of four generators Tr(T aσ(1)T aσ(2)T aσ(3)T aσ(4)) with σ ∈ Sn/Zn ≡
Sn−1 (see section 2.5 ).
As already stated in section 2.5, in the large N limit, at two loops, the leading contribution in the colour
factor is given by single-trace terms like N2Tr(T a1T a2T a3T a4).
Also, the contraction of Tr(T a1T a2T a3T a4) with Tr(T aσ(1)T aσ(2)T aσ(3)T aσ(4)) is at most of order O(N4) (for
n generators it would be of order O(Nn)).
Hence, if the contraction

C ≡ ∆a1a2a3a4Tr(T aσ(1)T aσ(2)T aσ(3)T aσ(4)) (3.7.18)

3.12here there is no mismatch between the number of the loops in the diagrams and the order of perturbation theory
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is of order O(N6), then one has a planar correction, while if it is of lower order, we have a non-planar
correction. With the aid of a Maple program, we have obtained the following results for the contractions C
of all the various non-cyclically equivalent traces Tr(T aσ(1)T aσ(2)T aσ(3)T aσ(4)) with the ∆a1a2a3a4 associated
to each of the two superdiagrams

a1

a2
a3

a4

{Tr (a1, a2, a3, a4) ,Tr (a1, a2, a4, a3) ,Tr (a1, a3, a4, a2) ,Tr (a1, a4, a3, a2)}

C = −3

4
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.19)

{Tr (a1, a3, a2, a4) ,Tr (a1, a4, a2, a3)}

C =
3

2
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.20)

a1

a2

a3

a4

{Tr (a1, a2, a3, a4) ,Tr (a1, a2, a4, a3) ,Tr (a1, a3, a4, a2) ,Tr (a1, a4, a3, a2)}

C =
3

4
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.21)

{Tr (a1, a3, a2, a4) ,Tr (a1, a4, a2, a3)}

C = −3

2
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.22)

Here, we have grouped together the traces giving the same contraction C and we have used for the traces a
notation such that, for example, Tr(a1, a2, a3, a4) stands for Tr(T

a1T a2T a3T a4). Since the contractions C are
of order O(N4), one has that the four point function < V a1V a2V a3V a4 > receives a non-planar correction
with respect to its value in the N = 4 SYM.
As for the six point function < V a1V a2V a3V a4V a5V a6 >, we have that the superdiagrams appearing in the
difference < V a1V a2V a3V a4V a5V a6 >N=4 − < V a1V a2V a3V a4V a5V a6 >β and the associated contractions
C are

a1

a2

a3

a4

a5

a6
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{Tr (a1, a2, a3, a4, a5, a6) ,Tr (a1, a2, a6, a5, a4, a3) ,Tr (a1, a3, a4, a2, a6, a5) ,Tr (a1, a3, a4, a5, a6, a2) ,
Tr (a1, a3, a5, a2, a6, a4) ,Tr (a1, a3, a6, a2, a5, a4) ,Tr (a1, a4, a3, a2, a5, a6) ,Tr (a1, a4, a5, a2, a6, a3) ,

Tr (a1, a4, a6, a2, a5, a3) ,Tr (a1, a5, a3, a2, a4, a6) ,Tr (a1, a5, a4, a2, a3, a6) ,Tr (a1, a5, a6, a2, a4, a3) ,

Tr (a1, a6, a3, a2, a4, a5) ,Tr (a1, a6, a4, a2, a3, a5) ,Tr (a1, a6, a5, a2, a3, a4) ,Tr (a1, a6, a5, a4, a3, a2)}

C =
3

16
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 1

)
(3.7.23)

{Tr (a1, a2, a3, a4, a6, a5) ,Tr (a1, a2, a3, a5, a4, a6) ,Tr (a1, a2, a3, a5, a6, a4) ,Tr (a1, a2, a3, a6, a4, a5) ,
Tr (a1, a2, a3, a6, a5, a4) ,Tr (a1, a2, a4, a3, a5, a6) ,Tr (a1, a2, a4, a3, a6, a5) ,Tr (a1, a2, a4, a5, a3, a6) ,

Tr (a1, a2, a4, a5, a6, a3) ,Tr (a1, a2, a4, a6, a3, a5) ,Tr (a1, a2, a4, a6, a5, a3) ,Tr (a1, a2, a5, a3, a4, a6) ,

Tr (a1, a2, a5, a3, a6, a4) ,Tr (a1, a2, a5, a4, a3, a6) ,Tr (a1, a2, a5, a4, a6, a3) ,Tr (a1, a2, a5, a6, a3, a4) ,

Tr (a1, a2, a5, a6, a4, a3) ,Tr (a1, a2, a6, a3, a4, a5) ,Tr (a1, a2, a6, a3, a5, a4) ,Tr (a1, a2, a6, a4, a3, a5) ,

Tr (a1, a2, a6, a4, a5, a3) ,Tr (a1, a2, a6, a5, a3, a4) ,Tr (a1, a3, a4, a2, a5, a6) ,Tr (a1, a3, a4, a6, a5, a2) ,

Tr (a1, a3, a5, a4, a6, a2) ,Tr (a1, a3, a5, a6, a4, a2) ,Tr (a1, a3, a6, a2, a4, a5) ,Tr (a1, a3, a6, a4, a2, a5) ,

Tr (a1, a3, a6, a4, a5, a2) ,Tr (a1, a3, a6, a5, a4, a2) ,Tr (a1, a4, a2, a5, a3, a6) ,Tr (a1, a4, a2, a6, a3, a5) ,

Tr (a1, a4, a3, a2, a6, a5) ,Tr (a1, a4, a3, a5, a6, a2) ,Tr (a1, a4, a3, a6, a5, a2) ,Tr (a1, a4, a5, a2, a3, a6) ,

Tr (a1, a4, a5, a3, a6, a2) ,Tr (a1, a4, a5, a6, a3, a2) ,Tr (a1, a4, a6, a3, a2, a5) ,Tr (a1, a4, a6, a3, a5, a2) ,

Tr (a1, a4, a6, a5, a3, a2) ,Tr (a1, a5, a2, a3, a6, a4) ,Tr (a1, a5, a2, a4, a6, a3) ,Tr (a1, a5, a3, a4, a6, a2) ,

Tr (a1, a5, a3, a6, a2, a4) ,Tr (a1, a5, a3, a6, a4, a2) ,Tr (a1, a5, a4, a2, a6, a3) ,Tr (a1, a5, a4, a3, a6, a2) ,

Tr (a1, a5, a4, a6, a3, a2) ,Tr (a1, a5, a6, a2, a3, a4) ,Tr (a1, a5, a6, a3, a4, a2) ,Tr (a1, a5, a6, a4, a3, a2) ,

Tr (a1, a6, a3, a2, a5, a4) ,Tr (a1, a6, a3, a4, a5, a2) ,Tr (a1, a6, a3, a5, a2, a4) ,Tr (a1, a6, a3, a5, a4, a2) ,

Tr (a1, a6, a4, a3, a5, a2) ,Tr (a1, a6, a4, a5, a3, a2) ,Tr (a1, a6, a5, a2, a4, a3) ,Tr (a1, a6, a5, a3, a4, a2)}

C =
3

16
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.24)

{Tr (a1, a3, a2, a4, a5, a6) ,Tr (a1, a3, a2, a6, a5, a4) ,Tr (a1, a3, a4, a5, a2, a6) ,Tr (a1, a3, a4, a6, a2, a5) ,
Tr (a1, a3, a5, a6, a2, a4) ,Tr (a1, a4, a2, a3, a5, a6) ,Tr (a1, a4, a2, a6, a5, a3) ,Tr (a1, a4, a5, a6, a2, a3) ,

Tr (a1, a5, a2, a3, a4, a6) ,Tr (a1, a5, a2, a6, a4, a3) ,Tr (a1, a5, a4, a3, a2, a6) ,Tr (a1, a6, a2, a3, a4, a5) ,

Tr (a1, a6, a2, a5, a4, a3) ,Tr (a1, a6, a4, a3, a2, a5) ,Tr (a1, a6, a5, a3, a2, a4) ,Tr (a1, a6, a5, a4, a2, a3)}

C = − 3

16
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 2

)
(3.7.25)

{Tr (a1, a3, a2, a4, a6, a5) ,Tr (a1, a3, a2, a5, a4, a6) ,Tr (a1, a3, a2, a5, a6, a4) ,Tr (a1, a3, a2, a6, a4, a5) ,
Tr (a1, a3, a5, a2, a4, a6) ,Tr (a1, a3, a5, a4, a2, a6) ,Tr (a1, a3, a6, a5, a2, a4) ,Tr (a1, a4, a2, a3, a6, a5) ,

Tr (a1, a4, a2, a5, a6, a3) ,Tr (a1, a4, a3, a5, a2, a6) ,Tr (a1, a4, a3, a6, a2, a5) ,Tr (a1, a4, a5, a3, a2, a6) ,

Tr (a1, a4, a6, a2, a3, a5) ,Tr (a1, a4, a6, a5, a2, a3) ,Tr (a1, a5, a2, a4, a3, a6) ,Tr (a1, a5, a2, a6, a3, a4) ,

Tr (a1, a5, a3, a2, a6, a4) ,Tr (a1, a5, a3, a4, a2, a6) ,Tr (a1, a5, a4, a6, a2, a3) ,Tr (a1, a5, a6, a3, a2, a4) ,

Tr (a1, a5, a6, a4, a2, a3) ,Tr (a1, a6, a2, a3, a5, a4) ,Tr (a1, a6, a2, a4, a3, a5) ,Tr (a1, a6, a2, a4, a5, a3) ,

Tr (a1, a6, a2, a5, a3, a4) ,Tr (a1, a6, a3, a4, a2, a5) ,Tr (a1, a6, a4, a2, a5, a3) ,Tr (a1, a6, a4, a5, a2, a3)}
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C = −3

8
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.26)

a1

a2

a3

a4

a5

a6

{Tr (a1, a2, a3, a4, a5, a6) ,Tr (a1, a2, a6, a5, a4, a3) ,Tr (a1, a3, a4, a2, a6, a5) ,Tr (a1, a3, a4, a5, a6, a2) ,
Tr (a1, a3, a5, a2, a6, a4) ,Tr (a1, a3, a6, a2, a5, a4) ,Tr (a1, a4, a3, a2, a5, a6) ,Tr (a1, a4, a5, a2, a6, a3) ,

Tr (a1, a4, a6, a2, a5, a3) ,Tr (a1, a5, a3, a2, a4, a6) ,Tr (a1, a5, a4, a2, a3, a6) ,Tr (a1, a5, a6, a2, a4, a3) ,

Tr (a1, a6, a3, a2, a4, a5) ,Tr (a1, a6, a4, a2, a3, a5) ,Tr (a1, a6, a5, a2, a3, a4) ,Tr (a1, a6, a5, a4, a3, a2)}

C = − 3

16
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 1

)
(3.7.27)

{Tr (a1, a2, a3, a4, a6, a5) ,Tr (a1, a2, a3, a5, a4, a6) ,Tr (a1, a2, a3, a5, a6, a4) ,Tr (a1, a2, a3, a6, a4, a5) ,
Tr (a1, a2, a3, a6, a5, a4) ,Tr (a1, a2, a4, a3, a5, a6) ,Tr (a1, a2, a4, a3, a6, a5) ,Tr (a1, a2, a4, a5, a3, a6) ,

Tr (a1, a2, a4, a5, a6, a3) ,Tr (a1, a2, a4, a6, a3, a5) ,Tr (a1, a2, a4, a6, a5, a3) ,Tr (a1, a2, a5, a3, a4, a6) ,

Tr (a1, a2, a5, a3, a6, a4) ,Tr (a1, a2, a5, a4, a3, a6) ,Tr (a1, a2, a5, a4, a6, a3) ,Tr (a1, a2, a5, a6, a3, a4) ,

Tr (a1, a2, a5, a6, a4, a3) ,Tr (a1, a2, a6, a3, a4, a5) ,Tr (a1, a2, a6, a3, a5, a4) ,Tr (a1, a2, a6, a4, a3, a5) ,

Tr (a1, a2, a6, a4, a5, a3) ,Tr (a1, a2, a6, a5, a3, a4) ,Tr (a1, a3, a4, a2, a5, a6) ,Tr (a1, a3, a4, a6, a5, a2) ,

Tr (a1, a3, a5, a4, a6, a2) ,Tr (a1, a3, a5, a6, a4, a2) ,Tr (a1, a3, a6, a2, a4, a5) ,Tr (a1, a3, a6, a4, a2, a5) ,

Tr (a1, a3, a6, a4, a5, a2) ,Tr (a1, a3, a6, a5, a4, a2) ,Tr (a1, a4, a2, a5, a3, a6) ,Tr (a1, a4, a2, a6, a3, a5) ,

Tr (a1, a4, a3, a2, a6, a5) ,Tr (a1, a4, a3, a5, a6, a2) ,Tr (a1, a4, a3, a6, a5, a2) ,Tr (a1, a4, a5, a2, a3, a6) ,

Tr (a1, a4, a5, a3, a6, a2) ,Tr (a1, a4, a5, a6, a3, a2) ,Tr (a1, a4, a6, a3, a2, a5) ,Tr (a1, a4, a6, a3, a5, a2) ,

Tr (a1, a4, a6, a5, a3, a2) ,Tr (a1, a5, a2, a3, a6, a4) ,Tr (a1, a5, a2, a4, a6, a3) ,Tr (a1, a5, a3, a4, a6, a2) ,

Tr (a1, a5, a3, a6, a2, a4) ,Tr (a1, a5, a3, a6, a4, a2) ,Tr (a1, a5, a4, a2, a6, a3) ,Tr (a1, a5, a4, a3, a6, a2) ,

Tr (a1, a5, a4, a6, a3, a2) ,Tr (a1, a5, a6, a2, a3, a4) ,Tr (a1, a5, a6, a3, a4, a2) ,Tr (a1, a5, a6, a4, a3, a2) ,

Tr (a1, a6, a3, a2, a5, a4) ,Tr (a1, a6, a3, a4, a5, a2) ,Tr (a1, a6, a3, a5, a2, a4) ,Tr (a1, a6, a3, a5, a4, a2) ,

Tr (a1, a6, a4, a3, a5, a2) ,Tr (a1, a6, a4, a5, a3, a2) ,Tr (a1, a6, a5, a2, a4, a3) ,Tr (a1, a6, a5, a3, a4, a2)}

C = − 3

16
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.28)

{Tr (a1, a3, a2, a4, a5, a6) ,Tr (a1, a3, a2, a6, a5, a4) ,Tr (a1, a3, a4, a5, a2, a6) ,Tr (a1, a3, a4, a6, a2, a5) ,
Tr (a1, a3, a5, a6, a2, a4) ,Tr (a1, a4, a2, a3, a5, a6) ,Tr (a1, a4, a2, a6, a5, a3) ,Tr (a1, a4, a5, a6, a2, a3) ,

Tr (a1, a5, a2, a3, a4, a6) ,Tr (a1, a5, a2, a6, a4, a3) ,Tr (a1, a5, a4, a3, a2, a6) ,Tr (a1, a6, a2, a3, a4, a5) ,

Tr (a1, a6, a2, a5, a4, a3) ,Tr (a1, a6, a4, a3, a2, a5) ,Tr (a1, a6, a5, a3, a2, a4) ,Tr (a1, a6, a5, a4, a2, a3)}
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C =
3

16
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 2

)
(3.7.29)

{Tr (a1, a3, a2, a4, a6, a5) ,Tr (a1, a3, a2, a5, a4, a6) ,Tr (a1, a3, a2, a5, a6, a4) ,Tr (a1, a3, a2, a6, a4, a5) ,
Tr (a1, a3, a5, a2, a4, a6) ,Tr (a1, a3, a5, a4, a2, a6) ,Tr (a1, a3, a6, a5, a2, a4) ,Tr (a1, a4, a2, a3, a6, a5) ,

Tr (a1, a4, a2, a5, a6, a3) ,Tr (a1, a4, a3, a5, a2, a6) ,Tr (a1, a4, a3, a6, a2, a5) ,Tr (a1, a4, a5, a3, a2, a6) ,

Tr (a1, a4, a6, a2, a3, a5) ,Tr (a1, a4, a6, a5, a2, a3) ,Tr (a1, a5, a2, a4, a3, a6) ,Tr (a1, a5, a2, a6, a3, a4) ,

Tr (a1, a5, a3, a2, a6, a4) ,Tr (a1, a5, a3, a4, a2, a6) ,Tr (a1, a5, a4, a6, a2, a3) ,Tr (a1, a5, a6, a3, a2, a4) ,

Tr (a1, a5, a6, a4, a2, a3) ,Tr (a1, a6, a2, a3, a5, a4) ,Tr (a1, a6, a2, a4, a3, a5) ,Tr (a1, a6, a2, a4, a5, a3) ,

Tr (a1, a6, a2, a5, a3, a4) ,Tr (a1, a6, a3, a4, a2, a5) ,Tr (a1, a6, a4, a2, a5, a3) ,Tr (a1, a6, a4, a5, a2, a3)}

C =
3

8
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.30)

a1

a2

a3 a4

a5

a6

{Tr (a1, a2, a3, a4, a5, a6) ,Tr (a1, a6, a5, a4, a3, a2)}

C = − 3

16
dd̄N2 (N − 1) (N − 2) (N + 2) (N + 1) (3.7.31)

{Tr (a1, a2, a3, a4, a6, a5) ,Tr (a1, a2, a3, a5, a4, a6) ,Tr (a1, a2, a3, a5, a6, a4) ,Tr (a1, a2, a3, a6, a4, a5) ,
Tr (a1, a2, a4, a5, a6, a3) ,Tr (a1, a2, a4, a6, a5, a3) ,Tr (a1, a2, a5, a4, a6, a3) ,Tr (a1, a2, a5, a6, a4, a3) ,

Tr (a1, a2, a6, a4, a5, a3) ,Tr (a1, a2, a6, a5, a4, a3) ,Tr (a1, a3, a2, a4, a5, a6) ,Tr (a1, a3, a2, a4, a6, a5) ,

Tr (a1, a3, a2, a5, a4, a6) ,Tr (a1, a3, a2, a5, a6, a4) ,Tr (a1, a3, a2, a6, a4, a5) ,Tr (a1, a3, a2, a6, a5, a4) ,

Tr (a1, a3, a4, a5, a6, a2) ,Tr (a1, a3, a4, a6, a5, a2) ,Tr (a1, a3, a5, a4, a6, a2) ,Tr (a1, a3, a5, a6, a4, a2) ,

Tr (a1, a3, a6, a4, a5, a2) ,Tr (a1, a3, a6, a5, a4, a2) ,Tr (a1, a4, a2, a5, a3, a6) ,Tr (a1, a4, a2, a6, a3, a5) ,

Tr (a1, a4, a3, a6, a2, a5) ,Tr (a1, a4, a5, a6, a2, a3) ,Tr (a1, a4, a6, a5, a2, a3) ,Tr (a1, a4, a6, a5, a3, a2) ,

Tr (a1, a5, a2, a6, a3, a4) ,Tr (a1, a5, a3, a6, a2, a4) ,Tr (a1, a5, a4, a6, a2, a3) ,Tr (a1, a5, a4, a6, a3, a2) ,

Tr (a1, a5, a6, a4, a2, a3) ,Tr (a1, a5, a6, a4, a3, a2) ,Tr (a1, a6, a3, a5, a2, a4) ,Tr (a1, a6, a4, a5, a2, a3) ,

Tr (a1, a6, a4, a5, a3, a2) ,Tr (a1, a6, a5, a4, a2, a3)}

C = 0 (3.7.32)

{Tr (a1, a2, a3, a6, a5, a4) ,Tr (a1, a4, a5, a6, a3, a2)}

C =
3

16
dd̄N2 (N − 1) (N − 2) (N + 2) (N + 1) (3.7.33)
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{Tr (a1, a2, a4, a3, a5, a6) ,Tr (a1, a2, a4, a5, a3, a6) ,Tr (a1, a2, a4, a6, a3, a5) ,Tr (a1, a2, a5, a3, a4, a6) ,
Tr (a1, a2, a5, a6, a3, a4) ,Tr (a1, a2, a6, a3, a4, a5) ,Tr (a1, a3, a4, a2, a5, a6) ,Tr (a1, a3, a4, a5, a2, a6) ,

Tr (a1, a3, a5, a6, a2, a4) ,Tr (a1, a3, a6, a2, a4, a5) ,Tr (a1, a4, a2, a3, a5, a6) ,Tr (a1, a4, a2, a6, a5, a3) ,

Tr (a1, a4, a3, a2, a6, a5) ,Tr (a1, a4, a3, a6, a5, a2) ,Tr (a1, a4, a5, a2, a3, a6) ,Tr (a1, a4, a6, a2, a3, a5) ,

Tr (a1, a5, a2, a3, a4, a6) ,Tr (a1, a5, a3, a2, a6, a4) ,Tr (a1, a5, a3, a6, a4, a2) ,Tr (a1, a5, a4, a2, a6, a3) ,

Tr (a1, a5, a4, a3, a2, a6) ,Tr (a1, a5, a4, a3, a6, a2) ,Tr (a1, a5, a6, a2, a3, a4) ,Tr (a1, a6, a2, a3, a4, a5) ,

Tr (a1, a6, a2, a5, a4, a3) ,Tr (a1, a6, a3, a2, a5, a4) ,Tr (a1, a6, a3, a5, a4, a2) ,Tr (a1, a6, a4, a3, a2, a5) ,

Tr (a1, a6, a4, a3, a5, a2) ,Tr (a1, a6, a5, a2, a4, a3) ,Tr (a1, a6, a5, a3, a2, a4) ,Tr (a1, a6, a5, a3, a4, a2)}

C =
3

32
dd̄N2 (N − 1) (N − 2) (N + 2) (N + 1) (3.7.34)

{Tr (a1, a2, a4, a3, a6, a5) ,Tr (a1, a2, a5, a3, a6, a4) ,Tr (a1, a2, a5, a4, a3, a6) ,Tr (a1, a2, a6, a3, a5, a4) ,
Tr (a1, a2, a6, a4, a3, a5) ,Tr (a1, a2, a6, a5, a3, a4) ,Tr (a1, a3, a4, a2, a6, a5) ,Tr (a1, a3, a5, a4, a2, a6) ,

Tr (a1, a3, a6, a2, a5, a4) ,Tr (a1, a3, a6, a5, a2, a4) ,Tr (a1, a4, a2, a3, a6, a5) ,Tr (a1, a4, a2, a5, a6, a3) ,

Tr (a1, a4, a3, a2, a5, a6) ,Tr (a1, a4, a3, a5, a6, a2) ,Tr (a1, a4, a5, a2, a6, a3) ,Tr (a1, a4, a5, a3, a2, a6) ,

Tr (a1, a4, a5, a3, a6, a2) ,Tr (a1, a4, a6, a3, a2, a5) ,Tr (a1, a4, a6, a3, a5, a2) ,Tr (a1, a5, a2, a3, a6, a4) ,

Tr (a1, a5, a3, a2, a4, a6) ,Tr (a1, a5, a3, a4, a6, a2) ,Tr (a1, a5, a4, a2, a3, a6) ,Tr (a1, a5, a6, a2, a4, a3) ,

Tr (a1, a5, a6, a3, a2, a4) ,Tr (a1, a5, a6, a3, a4, a2) ,Tr (a1, a6, a2, a3, a5, a4) ,Tr (a1, a6, a2, a4, a5, a3) ,

Tr (a1, a6, a3, a2, a4, a5) ,Tr (a1, a6, a3, a4, a5, a2) ,Tr (a1, a6, a4, a2, a3, a5) ,Tr (a1, a6, a5, a2, a3, a4)}

C = − 3

32
dd̄N2 (N − 1) (N − 2) (N + 2) (N + 1) (3.7.35)

{Tr (a1, a3, a4, a6, a2, a5) ,Tr (a1, a3, a5, a2, a4, a6) ,Tr (a1, a5, a2, a6, a4, a3) ,Tr (a1, a6, a4, a2, a5, a3)}

C =
3

32
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 6

)
(3.7.36)

{Tr (a1, a3, a5, a2, a6, a4) ,Tr (a1, a3, a6, a4, a2, a5) ,Tr (a1, a4, a6, a2, a5, a3) ,Tr (a1, a5, a2, a4, a6, a3)}

C = − 3

32
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 6

)
(3.7.37)

{Tr (a1, a4, a3, a5, a2, a6) ,Tr (a1, a5, a2, a4, a3, a6) ,Tr (a1, a5, a3, a4, a2, a6) ,Tr (a1, a6, a2, a4, a3, a5) ,
Tr (a1, a6, a2, a5, a3, a4) ,Tr (a1, a6, a3, a4, a2, a5)}

C =
9

16
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.38)
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a1

a2

a3 a4

a5

a6

{Tr (a1, a2, a3, a4, a5, a6) ,Tr (a1, a2, a3, a4, a6, a5) ,Tr (a1, a2, a3, a5, a4, a6) ,Tr (a1, a2, a3, a5, a6, a4) ,
Tr (a1, a2, a3, a6, a4, a5) ,Tr (a1, a3, a2, a4, a6, a5) ,Tr (a1, a3, a2, a5, a4, a6) ,Tr (a1, a3, a2, a5, a6, a4) ,

Tr (a1, a3, a2, a6, a4, a5) ,Tr (a1, a3, a2, a6, a5, a4) ,Tr (a1, a4, a2, a6, a3, a5) ,Tr (a1, a4, a3, a5, a2, a6) ,

Tr (a1, a4, a3, a6, a2, a5) ,Tr (a1, a4, a5, a6, a2, a3) ,Tr (a1, a4, a6, a5, a2, a3) ,Tr (a1, a4, a6, a5, a3, a2) ,

Tr (a1, a5, a2, a4, a3, a6) ,Tr (a1, a5, a2, a6, a3, a4) ,Tr (a1, a5, a3, a4, a2, a6) ,Tr (a1, a5, a3, a6, a2, a4) ,

Tr (a1, a5, a4, a6, a2, a3) ,Tr (a1, a5, a4, a6, a3, a2) ,Tr (a1, a5, a6, a4, a2, a3) ,Tr (a1, a5, a6, a4, a3, a2) ,

Tr (a1, a6, a2, a4, a3, a5) ,Tr (a1, a6, a2, a5, a3, a4) ,Tr (a1, a6, a3, a4, a2, a5) ,Tr (a1, a6, a4, a5, a2, a3) ,

Tr (a1, a6, a4, a5, a3, a2) ,Tr (a1, a6, a5, a4, a3, a2)}

C = − 3

16
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.39)

{Tr (a1, a2, a3, a6, a5, a4) ,Tr (a1, a3, a2, a4, a5, a6) ,Tr (a1, a4, a5, a6, a3, a2) ,Tr (a1, a6, a5, a4, a2, a3)}

C = − 3

16
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 1

)
(3.7.40)

{Tr (a1, a2, a4, a3, a5, a6) ,Tr (a1, a2, a4, a3, a6, a5) ,Tr (a1, a2, a5, a3, a4, a6) ,Tr (a1, a2, a6, a3, a4, a5) ,
Tr (a1, a2, a6, a3, a5, a4) ,Tr (a1, a3, a4, a2, a5, a6) ,Tr (a1, a3, a4, a2, a6, a5) ,Tr (a1, a3, a5, a2, a6, a4) ,

Tr (a1, a3, a6, a2, a4, a5) ,Tr (a1, a3, a6, a2, a5, a4) ,Tr (a1, a4, a5, a2, a6, a3) ,Tr (a1, a4, a5, a3, a6, a2) ,

Tr (a1, a4, a6, a2, a5, a3) ,Tr (a1, a5, a4, a2, a6, a3) ,Tr (a1, a5, a4, a3, a6, a2) ,Tr (a1, a5, a6, a2, a4, a3) ,

Tr (a1, a5, a6, a3, a4, a2) ,Tr (a1, a6, a4, a3, a5, a2) ,Tr (a1, a6, a5, a2, a4, a3) ,Tr (a1, a6, a5, a3, a4, a2)}

C =
3

32
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 4

)
(3.7.41)

{Tr (a1, a2, a4, a5, a3, a6) ,Tr (a1, a2, a5, a4, a3, a6) ,Tr (a1, a2, a5, a6, a3, a4) ,Tr (a1, a2, a6, a4, a3, a5) ,
Tr (a1, a2, a6, a5, a3, a4) ,Tr (a1, a3, a4, a5, a2, a6) ,Tr (a1, a3, a4, a6, a2, a5) ,Tr (a1, a3, a5, a4, a2, a6) ,

Tr (a1, a3, a5, a6, a2, a4) ,Tr (a1, a3, a6, a5, a2, a4) ,Tr (a1, a4, a2, a3, a5, a6) ,Tr (a1, a4, a2, a5, a6, a3) ,

Tr (a1, a4, a2, a6, a5, a3) ,Tr (a1, a4, a3, a2, a6, a5) ,Tr (a1, a4, a3, a5, a6, a2) ,Tr (a1, a4, a3, a6, a5, a2) ,

Tr (a1, a4, a5, a2, a3, a6) ,Tr (a1, a4, a6, a2, a3, a5) ,Tr (a1, a5, a2, a3, a4, a6) ,Tr (a1, a5, a2, a6, a4, a3) ,

Tr (a1, a5, a3, a2, a6, a4) ,Tr (a1, a5, a3, a4, a6, a2) ,Tr (a1, a5, a4, a3, a2, a6) ,Tr (a1, a5, a6, a2, a3, a4) ,

Tr (a1, a6, a2, a3, a4, a5) ,Tr (a1, a6, a2, a4, a5, a3) ,Tr (a1, a6, a2, a5, a4, a3) ,Tr (a1, a6, a3, a2, a5, a4) ,

Tr (a1, a6, a3, a4, a5, a2) ,Tr (a1, a6, a3, a5, a4, a2) ,Tr (a1, a6, a4, a3, a2, a5) ,Tr (a1, a6, a5, a3, a2, a4)}

C = − 3

32
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 2

)
(3.7.42)
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{Tr (a1, a2, a4, a5, a6, a3) ,Tr (a1, a2, a6, a5, a4, a3) ,Tr (a1, a3, a4, a5, a6, a2) ,Tr (a1, a3, a6, a5, a4, a2)}

C =
3

16
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 2

)
(3.7.43)

{Tr (a1, a2, a4, a6, a3, a5) ,Tr (a1, a3, a6, a4, a2, a5) ,Tr (a1, a5, a2, a4, a6, a3) ,Tr (a1, a5, a3, a6, a4, a2)}

C = − 3

32
dd̄ (N − 1) (N + 1) (N − 2)2 (N + 2)2 (3.7.44)

{Tr (a1, a2, a4, a6, a5, a3) ,Tr (a1, a2, a5, a4, a6, a3) ,Tr (a1, a2, a5, a6, a4, a3) ,Tr (a1, a2, a6, a4, a5, a3) ,
Tr (a1, a3, a4, a6, a5, a2) ,Tr (a1, a3, a5, a4, a6, a2) ,Tr (a1, a3, a5, a6, a4, a2) ,Tr (a1, a3, a6, a4, a5, a2) ,

Tr (a1, a4, a2, a5, a3, a6) ,Tr (a1, a6, a3, a5, a2, a4)}

C =
3

8
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.45)

{Tr (a1, a2, a5, a3, a6, a4) ,Tr (a1, a3, a5, a2, a4, a6) ,Tr (a1, a4, a2, a3, a6, a5) ,Tr (a1, a4, a3, a2, a5, a6) ,
Tr (a1, a4, a5, a3, a2, a6) ,Tr (a1, a4, a6, a3, a2, a5) ,Tr (a1, a4, a6, a3, a5, a2) ,Tr (a1, a5, a2, a3, a6, a4) ,

Tr (a1, a5, a3, a2, a4, a6) ,Tr (a1, a5, a4, a2, a3, a6) ,Tr (a1, a5, a6, a3, a2, a4) ,Tr (a1, a6, a2, a3, a5, a4) ,

Tr (a1, a6, a3, a2, a4, a5) ,Tr (a1, a6, a4, a2, a3, a5) ,Tr (a1, a6, a4, a2, a5, a3) ,Tr (a1, a6, a5, a2, a3, a4)}

C =
3

32
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 − 2

)
(3.7.46)

a1

a2

a3

a4

a5

a6

{Tr (a1, a2, a3, a4, a5, a6) ,Tr (a1, a2, a5, a6, a3, a4) ,Tr (a1, a4, a3, a6, a5, a2) ,Tr (a1, a6, a5, a4, a3, a2)}

C = − 3

32
dd̄ (N − 1) (N + 1) (N − 2)2 (N + 2)2 (3.7.47)

{Tr (a1, a2, a3, a4, a6, a5) ,Tr (a1, a2, a4, a3, a5, a6) ,Tr (a1, a2, a4, a3, a6, a5) ,Tr (a1, a2, a5, a6, a4, a3) ,
Tr (a1, a2, a6, a5, a3, a4) ,Tr (a1, a2, a6, a5, a4, a3) ,Tr (a1, a3, a4, a5, a6, a2) ,Tr (a1, a3, a4, a6, a5, a2) ,

Tr (a1, a4, a3, a5, a6, a2) ,Tr (a1, a5, a6, a3, a4, a2) ,Tr (a1, a5, a6, a4, a3, a2) ,Tr (a1, a6, a5, a3, a4, a2)}
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C =
3

32
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 4

)
(3.7.48)

{Tr (a1, a2, a3, a5, a4, a6) ,Tr (a1, a2, a3, a6, a4, a5) ,Tr (a1, a2, a4, a5, a3, a6) ,Tr (a1, a2, a4, a6, a3, a5) ,
Tr (a1, a2, a5, a3, a6, a4) ,Tr (a1, a2, a5, a4, a6, a3) ,Tr (a1, a2, a6, a3, a5, a4) ,Tr (a1, a2, a6, a4, a5, a3) ,

Tr (a1, a3, a2, a4, a5, a6) ,Tr (a1, a3, a2, a4, a6, a5) ,Tr (a1, a3, a2, a5, a6, a4) ,Tr (a1, a3, a2, a6, a5, a4) ,

Tr (a1, a3, a4, a5, a2, a6) ,Tr (a1, a3, a4, a6, a2, a5) ,Tr (a1, a3, a5, a4, a6, a2) ,Tr (a1, a3, a5, a6, a2, a4) ,

Tr (a1, a3, a6, a4, a5, a2) ,Tr (a1, a3, a6, a5, a2, a4) ,Tr (a1, a4, a2, a3, a5, a6) ,Tr (a1, a4, a2, a3, a6, a5) ,

Tr (a1, a4, a2, a5, a6, a3) ,Tr (a1, a4, a2, a6, a5, a3) ,Tr (a1, a4, a3, a5, a2, a6) ,Tr (a1, a4, a3, a6, a2, a5) ,

Tr (a1, a4, a5, a3, a6, a2) ,Tr (a1, a4, a5, a6, a2, a3) ,Tr (a1, a4, a6, a3, a5, a2) ,Tr (a1, a4, a6, a5, a2, a3) ,

Tr (a1, a5, a2, a3, a4, a6) ,Tr (a1, a5, a2, a4, a3, a6) ,Tr (a1, a5, a2, a6, a3, a4) ,Tr (a1, a5, a2, a6, a4, a3) ,

Tr (a1, a5, a3, a4, a2, a6) ,Tr (a1, a5, a3, a6, a4, a2) ,Tr (a1, a5, a4, a3, a2, a6) ,Tr (a1, a5, a4, a6, a3, a2) ,

Tr (a1, a5, a6, a3, a2, a4) ,Tr (a1, a5, a6, a4, a2, a3) ,Tr (a1, a6, a2, a3, a4, a5) ,Tr (a1, a6, a2, a4, a3, a5) ,

Tr (a1, a6, a2, a5, a3, a4) ,Tr (a1, a6, a2, a5, a4, a3) ,Tr (a1, a6, a3, a4, a2, a5) ,Tr (a1, a6, a3, a5, a4, a2) ,

Tr (a1, a6, a4, a3, a2, a5) ,Tr (a1, a6, a4, a5, a3, a2) ,Tr (a1, a6, a5, a3, a2, a4) ,Tr (a1, a6, a5, a4, a2, a3)}

C = − 3

32
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 2

)
(3.7.49)

{Tr (a1, a2, a3, a5, a6, a4) ,Tr (a1, a2, a4, a5, a6, a3) ,Tr (a1, a2, a5, a3, a4, a6) ,Tr (a1, a2, a6, a3, a4, a5) ,
Tr (a1, a3, a4, a2, a5, a6) ,Tr (a1, a3, a5, a2, a4, a6) ,Tr (a1, a3, a6, a2, a4, a5) ,Tr (a1, a3, a6, a5, a4, a2) ,

Tr (a1, a4, a3, a2, a6, a5) ,Tr (a1, a4, a6, a2, a3, a5) ,Tr (a1, a4, a6, a5, a3, a2) ,Tr (a1, a5, a3, a2, a6, a4) ,

Tr (a1, a5, a4, a2, a6, a3) ,Tr (a1, a5, a4, a3, a6, a2) ,Tr (a1, a5, a6, a2, a3, a4) ,Tr (a1, a6, a4, a2, a5, a3) ,

Tr (a1, a6, a4, a3, a5, a2) ,Tr (a1, a6, a5, a2, a4, a3)}

C =
3

16
dd̄ (N − 1) (N − 2) (N + 2) (N + 1)

(
N2 + 2

)
(3.7.50)

{Tr (a1, a2, a3, a6, a5, a4) ,Tr (a1, a2, a4, a6, a5, a3) ,Tr (a1, a2, a5, a4, a3, a6) ,Tr (a1, a2, a6, a4, a3, a5) ,
Tr (a1, a3, a4, a2, a6, a5) ,Tr (a1, a3, a5, a6, a4, a2) ,Tr (a1, a4, a3, a2, a5, a6) ,Tr (a1, a4, a5, a6, a3, a2) ,

Tr (a1, a5, a3, a4, a6, a2) ,Tr (a1, a5, a6, a2, a4, a3) ,Tr (a1, a6, a3, a4, a5, a2) ,Tr (a1, a6, a5, a2, a3, a4)}

C =
3

8
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.51)

{Tr (a1, a3, a2, a5, a4, a6) ,Tr (a1, a3, a2, a6, a4, a5) ,Tr (a1, a3, a5, a2, a6, a4) ,Tr (a1, a3, a5, a4, a2, a6) ,
Tr (a1, a3, a6, a2, a5, a4) ,Tr (a1, a3, a6, a4, a2, a5) ,Tr (a1, a4, a2, a5, a3, a6) ,Tr (a1, a4, a2, a6, a3, a5) ,

Tr (a1, a4, a5, a2, a6, a3) ,Tr (a1, a4, a5, a3, a2, a6) ,Tr (a1, a4, a6, a2, a5, a3) ,Tr (a1, a4, a6, a3, a2, a5) ,

Tr (a1, a5, a2, a3, a6, a4) ,Tr (a1, a5, a2, a4, a6, a3) ,Tr (a1, a5, a3, a2, a4, a6) ,Tr (a1, a5, a3, a6, a2, a4) ,

Tr (a1, a5, a4, a2, a3, a6) ,Tr (a1, a5, a4, a6, a2, a3) ,Tr (a1, a6, a2, a3, a5, a4) ,Tr (a1, a6, a2, a4, a5, a3) ,

Tr (a1, a6, a3, a2, a4, a5) ,Tr (a1, a6, a3, a5, a2, a4) ,Tr (a1, a6, a4, a2, a3, a5) ,Tr (a1, a6, a4, a5, a2, a3)}

C = − 3

16
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.52)
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{Tr (a1, a4, a5, a2, a3, a6) ,Tr (a1, a6, a3, a2, a5, a4)}

C =
3

16
dd̄ (N − 1) (N + 1) (N − 2)2 (N + 2)2 (3.7.53)

Since the contractions C are at most of order O(N6), the six point function < V a1V a2V a3V a4V a5V a6 > has
a non-planar correction with respect to its value in the N = 4 SYM ( a planar correction would be of order
O(N8) ).
We have also studied the ’mixed’ chiral-vector correlation functions with a chiral, an antichiral and two or
three vector superfields < Φa1Φ† a2V a3V a4 > and < Φa1Φ† a2V a3V a4V a5 > respectively (the flavor indices
are omitted)

They have a non planar correction already at one loop, which is in this case the first order with diagrams
containing chiral vertices.
In fact, for the correlation function < Φa1Φ† a2V a3V a4 > , the superdiagrams contributing to the difference
between the β deformation and N = 4 SYM and the associated color contractions C are

a1

a2
a3

a4

{Tr (a1, a2, a3, a4) ,Tr (a1, a2, a4, a3) ,Tr (a1, a3, a2, a4) ,Tr (a1, a3, a4, a2) ,
Tr (a1, a4, a2, a3) ,Tr (a1, a4, a3, a2)}

C =
1

2
dd̄

(N − 1) (N − 2) (N + 2) (N + 1)

N
(3.7.54)

a1

a2

a3
a4
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{Tr (a1, a2, a3, a4) ,Tr (a1, a2, a4, a3) ,Tr (a1, a3, a2, a4) ,Tr (a1, a3, a4, a2) ,
Tr (a1, a4, a2, a3) ,Tr (a1, a4, a3, a2)} (3.7.55)

C = −1

2
dd̄

(N − 1) (N − 2) (N + 2) (N + 1)

N
(3.7.56)

Since, the color contractions C are at most of order O(N3), there is a non-planar deviation (a planar
correction would be of order O(N5)). As for the five point correlation function < Φa1Φ† a2V a3V a4V a5 >, the
superdiagrams contributing to the difference between the β deformation and N = 4 SYM and the associated
color contractions C are

a1

a2

a3a4
a5

{Tr (a1, a2, a3, a4, a5) ,Tr (a1, a2, a4, a5, a3) ,Tr (a1, a2, a5, a3, a4) ,Tr (a1, a3, a4, a2, a5) ,
Tr (a1, a3, a5, a2, a4) ,Tr (a1, a4, a2, a3, a5) ,Tr (a1, a4, a5, a2, a3)}

C =
i

4
dd̄ (N − 2) (N + 2) (N + 1) (3.7.57)

{Tr (a1, a2, a3, a5, a4) ,Tr (a1, a2, a4, a3, a5) ,Tr (a1, a2, a5, a4, a3) ,Tr (a1, a3, a2, a4, a5) ,
Tr (a1, a3, a4, a5, a2) ,Tr (a1, a4, a3, a2, a5) ,Tr (a1, a4, a5, a3, a2) ,Tr (a1, a5, a2, a3, a4) ,

Tr (a1, a5, a3, a4, a2) ,Tr (a1, a5, a4, a2, a3)}

C = 0 (3.7.58)

{Tr (a1, a3, a2, a5, a4) ,Tr (a1, a3, a5, a4, a2) ,Tr (a1, a4, a2, a5, a3) ,Tr (a1, a4, a3, a5, a2) ,
Tr (a1, a5, a2, a4, a3) ,Tr (a1, a5, a3, a2, a4) ,Tr (a1, a5, a4, a3, a2)}

C = − i

4
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.59)

79



a1

a2

a3
a4

a5

{Tr (a1, a2, a3, a4, a5) ,Tr (a1, a2, a4, a5, a3) ,Tr (a1, a2, a5, a3, a4) ,Tr (a1, a4, a5, a2, a3) ,
Tr (a1, a5, a2, a3, a4)}

C =
i

4
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.60)

{Tr (a1, a2, a3, a5, a4) ,Tr (a1, a2, a4, a3, a5) ,Tr (a1, a2, a5, a4, a3) ,Tr (a1, a3, a2, a4, a5) ,
Tr (a1, a3, a4, a2, a5) ,Tr (a1, a3, a4, a5, a2) ,Tr (a1, a4, a2, a3, a5) ,Tr (a1, a4, a5, a3, a2) ,

Tr (a1, a5, a2, a4, a3) ,Tr (a1, a5, a3, a2, a4) ,Tr (a1, a5, a3, a4, a2) ,Tr (a1, a5, a4, a2, a3)}

C = 0 (3.7.61)

{Tr (a1, a3, a2, a5, a4) ,Tr (a1, a3, a5, a4, a2) ,Tr (a1, a4, a3, a2, a5) ,Tr (a1, a4, a3, a5, a2) ,
Tr (a1, a5, a4, a3, a2)}

C = − i

4
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.62)

{Tr (a1, a3, a5, a2, a4)}

C =
i

2
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.63)

{Tr (a1, a4, a2, a5, a3)}

C = − i

2
dd̄ (N − 1) (N − 2) (N + 2) (N + 1) (3.7.64)

Since, the color contractions C are at most of order O(N4), there is a non-planar deviation (a planar
correction would be of order O(N6)).
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3.8 Conclusions and Outlook

As for the N = 4 SYM theory, we can summarize our results as follows

• In the off-shell regime dual conformal symmetry depends on the choice of the gauge. In fact, we
have computed in a N = 1 supersymmetric gauge the off-shell planar amplitude with four external

scalars Aoff shell
1 loop

(
φφ†φφ†

)
and with four external gluons Aoff shell

1 loop

(
Aµ1Aµ2Aµ3Aµ4

)
at one loop. The

decomposition of these amplitudes contains non-conformal scalar integrals.

• The on-shell limit of the off-shell amplitudesAoff shell
1 loop

(
φφ†φφ†

)
andAoff shell

1 loop

(
Aµ1Aµ2Aµ3Aµ4

)
matches

the on-shell dimensional regularized version of the amplitudes, i.e.

lim
p2→0

Aoff shell
1 loop

(
φφ†φφ†

)
≡ Aon shell

dim. reg.

(
φφ†φφ†

)
,

lim
p2→0

Aoff shell
1 loop

(
Aµ1Aµ2Aµ3Aµ4

)
≡ Aon shell

dim. reg.

(
Aµ1Aµ2Aµ3Aµ4

)
. (3.8.1)

• The decomposition of the one loop off-shell planar amplitudes with three and four gluons contains
bubble scalar integrals which are divergent in the ultraviolet. In spite of the presence of these UV
divergent integrals, these gluon amplitudes are UV finite since the sum of all the divergent terms
arising from the bubbles vanishes

As for the β deformation of the N = 4 SYM, we have found that at two loops the correlation functions
with four and six vector superfields < V a1V a2V a3V a4 > and < V a1V a2V a3V a4V a5V a6 > receive non planar
corrections with respect to their value in N = 4 SYM.
The ’mixed’ chiral-vector correlation functions with a chiral, an antichiral and two or three vector superfields
< Φa1Φ† a2V a3V a4 > and < Φa1Φ† a2V a3V a4V a5 > receive non planar corrections at one loop.

Outlook

As for the N = 4 SYM theory, one could compute off-shell planar four-point amplitudes at one loop in a
manifestly N = 2 formulation using harmonic superspace. Thus one could see whether in this gauge the
decomposition of the amplitudes gives only box scalar integrals or in other words whether in this gauge dual
conformal symmetry is present or not.
As noted in [76], one should compute at two loop the off-shell planar four gluon amplitude (in a N = 1
supersymmetric gauge) to see whether the on-shell limit of the off-shell amplitude differs from the on-shell
dimensional regularized version of the amplitude where the on shell condition p2 = 0 is imposed from the
beginning.
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Appendix A

Conventions and identities

A.1 Metric

We use the space-time metric tensor

ηµν = ηµν = diag(+1,−1,−1,−1).

Thus the mass shell condition is p2 = m2

A.1.1 Weyl spinors

The two component Weyl spinor ψα (left-handed) and ψ̄α̇ (right handed) belong to the representations
(1/2, 0) and (0, 1/2) of the Lorentz group SO(3, 1) respectively.
They can be also defined as the objects carrying the fundamental representations of the group of complex
2 × 2 matrices with determinant equal to one, Sl(2,C), which is the universal covering group of SO(1, 3).
In fact ψα and ψ̄α̇ transform as

ψ
′

α =M β
α ψβ, ψ̄

′

α̇ = (M∗) β̇
α̇ ψ̄β̇ ,

where M is an element of Sl(2,C). Note that ψα and ψ̄α̇ give inequivalent representations and that ψ̄α̇ is
identified with (ψα)

†.

A.2 Epsilon Tensors

The antisymmetric epsilon tensors ǫαβ, ǫα̇β̇ and their inverse ǫαβ , ǫα̇β̇ have components ǫ12 = ǫ1̇2̇ = −ǫ21 =

−ǫ2̇1̇ = 1 and ǫ12 = ǫ1̇2̇ = −ǫ21 = −ǫ2̇1̇ = −1. Thus:

ǫαβ = ǫα̇β̇ =

(
0 1
−1 0

)
, ǫαβ = ǫα̇β̇ =

(
0 −1
1 0

)
, (A.2.1a)

ǫαβǫ
βγ = ǫγβǫβα = δγα, ǫα̇β̇ǫ

β̇γ̇ = ǫγ̇β̇ǫβ̇α̇ = δγ̇α̇. (A.2.1b)

They are used to lower and raise spinorial indices

ψα ≡ ǫαβψβ , ψα = ǫαβψ
β

,

ψ̄α̇ ≡ ǫα̇β̇ψ̄β̇, ψ̄α̇ = ǫα̇β̇ψ̄
β̇.

One can verify [15] that the transformation of the spinors with upper indices under an element of Sl(2,C)

is ψ
′α = (M−1T )αβψ

β and

ψ̄
′α̇ = (M∗−1T )α̇

β̇
ψ̄β̇
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A.2.1 Spinor contractions

Spinors anticommute. Spinors in the (1/2, 0) representation are contracted ’in the ց direction’

ψχ ≡ ψαχα = ǫαβψβχα = −ǫβαψβχα = −ψβχ
β = χβψβ = χψ (A.2.2)

Spinors in the (0, 1/2) representation are contracted in ’in the ր direction’

ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇ = ǫα̇β̇ψ̄α̇χ̄β̇ = −ǫβ̇α̇ψ̄α̇χ̄β̇ = −ψ̄β̇χ̄β̇ = χ̄β̇ψ̄

β̇ = χ̄ψ̄ (A.2.3)

(χψ)† = (ψχ)† = χ̄ψ̄ = ψ̄χ̄ (A.2.4)

The product of spinor components are proportional to the ǫ tensor

θαθβ = −1

2
ǫαβθθ (A.2.5a)

θαθβ =
1

2
ǫαβθθ (A.2.5b)

θ̄α̇θ̄β̇ =
1

2
ǫα̇β̇ θ̄θ̄ (A.2.5c)

θ̄α̇θ̄β̇ = −1

2
ǫα̇β̇ θ̄θ̄ (A.2.5d)

We also use the notation θ2 and θ̄2 for θαθα and θ̄α̇θ̄
α̇ respectively.

A.3 Sigma matrices

The sigma matrices σµ are defined as

σµ = (1, σ1, σ2, σ3) (A.3.1)

with

1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(A.3.2)

Their natural spinor indices are undotted and dotted lower indices σµαα̇.
The barred sigma matrices with their natural (dotted and undotted upper) indices are

σ̄µ = (1,−σ1,−σ2,−σ3) (A.3.3a)

σ̄µ α̇α = ǫα̇β̇ǫαβ σµ
ββ̇

(A.3.3b)

σµαα̇ = ǫαβǫα̇β̇σ̄
µ ββ̇ (A.3.3c)

σµν ≡ i

4
(σµσ̄ν − σν σ̄µ)

σ̄µν ≡ i

4
(σ̄µσν − σ̄νσµ) (A.3.4)

A.4 Identities for the sigma matrices

Useful identities for the the sigma matrices are

(σµσ̄ν + σν σ̄µ) β
α = 2ηµνδ β

α i.e. σµσ̄ν + σν σ̄µ = 2ηµν1 (A.4.1a)

(σ̄µσν + σ̄νσµ)α̇
β̇
= 2ηµνδα̇

β̇
i.e. σ̄µσν + σ̄νσµ = 2ηµν1 (A.4.1b)

σµαα̇σ̄
ββ̇
µ = 2δ βα δ

β̇
α̇ (A.4.1c)

σµσ̄νσρ = ηµνσρ − ηµρσν + ηνρσµ − iǫµνρτστ (A.4.1d)
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Tr1 = δαα = δα̇α̇ = 2 (A.4.1e)

Tr(σµσ̄ν) = σµαα̇σ̄
να̇α = 2ηµν (A.4.1f)

Tr(σµσ̄νσρσ̄τ ) = 2(ηµνηρτ + ηµτηνρ − ηµρηντ − iǫµνρτ ) (A.4.1g)

θσµξ̄ θσν ξ̄ =
1

2
ηµνθθ ξ̄ξ̄ (A.4.1h)

(χσµψ̄)† = ψσµ †χ̄ = ψσµχ̄ (A.4.1i)

χσµψ̄ = −ψ̄σ̄µχ (A.4.1j)

χ̄σ̄µσν ψ̄ = ψ̄σ̄νσµχ̄ (A.4.1k)

χσµσ̄νψ = ψσν σ̄µχ (A.4.1l)

χσµσ̄νσρψ̄ = −ψ̄σ̄ρσν σ̄µχ (A.4.1m)

χ̄σ̄µσν σ̄ρψ = −ψσρσ̄νσµχ̄ (A.4.1n)

χ̄σ̄µσν σ̄ρστ ψ̄ = ψ̄σ̄τσρσ̄ν σ̄µχ̄ (A.4.1o)

χσµσ̄νσρσ̄τψ = ψστ σ̄ρσν σ̄µχ (A.4.1p)

The totally antisymmetric pseudo-tensor ǫµνρτ satisfies ǫ0123 = −ǫ0123 = −1 The identities (A.4.1j)-(A.4.1p)
can be easily generalized to an arbitrary even or odd number of matrices σµ and σ̄µ.
For example the derivation of (A.4.1l) is A.1

χσµσ̄νψ ≡ χα1σµα1α̇1
σ̄ν α̇1α2ψα2

= ǫα1α3χα3(ǫα1α4ǫα̇1,α̇2σ̄
µ α̇2α4)(ǫα̇1α̇3ǫα2α5σνα5α̇3

)ǫα2α6ψ
α6

= (−ǫα3α1ǫα1α4χα3)σ̄
µ α̇2 α4σνα5α̇3

(−ǫα̇2α̇1ǫ
α̇1α̇3)(−ǫα5α2ǫα2α6)ψ

α6 ,

= −χα4σ̄
µ α̇3 α4σνα5α̇3

ψα5

= ψα5σνα5α̇3
σ̄µ α̇3α4χα4

= ψσν σ̄µχ.

(A.4.2)

where in the second step eqs.(A.3.3b)-(A.3.3c) have been employed and the third one follows from antisym-
metry of ǫ. In the forth step eq.(A.2.1b) has been used, while in the fifth one spinors have been swapped.
Other identities can be found in [97].

A.5 Grassmann differentiation

Let’s consider differentiation with respect Grassmann variables ∂α ≡ ∂/∂θα, ∂α ≡ ∂/∂θα, ∂̄
α̇ ≡ ∂/∂θ̄α̇ and

∂̄α̇ ≡ ∂/∂θ̄α̇

By definition,

∂αθ
β = δ βα (A.5.1a)

∂αθβ = δαβ (A.5.1b)

∂̄α̇θ̄
β̇ = δ β̇α̇ (A.5.1c)

∂̄α̇θ̄β̇ = δα̇
β̇

(A.5.1d)

∂αθβ = −ǫαβ (A.5.1e)

∂αθβ = −ǫαβ (A.5.1f)

∂̄α̇θ̄β̇ = −ǫα̇β̇ (A.5.1g)

∂̄α̇θ̄β̇ = −ǫα̇β̇ (A.5.1h)

A.1A faster way to derive the same result is obtained by observing that in a generic expression one can convert a contraction
of indices in one direction, i.e α . . . α, to another direction by putting a minus sign, i.e. α . . . α = − α . . . α. If these indices
belong to sigma matrices, then one have to convert σ matrices in σ̄ and vice versa.
For example χσµσ̄νψ = χασµ

αα̇σ̄
να̇βψβ = (−)3 χασ̄

α̇ασν
βα̇ψ

β = ψσν σ̄µχ

85



Obviously ∂αθ̄β̇ = ∂αθ̄
β̇ = ∂αθ̄β̇ = ∂αθ̄β̇ = ∂̄α̇θβ = ∂̄α̇θ

β = ∂̄α̇θβ = ∂̄α̇θβ = 0

Indicating ∂/∂θα1 with ∂1α, θ1 − θ2 with θ12 and (θ1 − θ2)
2 with θ212, there are other useful identities

∂1α θ
2
12 = 2θ12α (A.5.2a)

∂̄1α̇ θ̄
2
12 = −2θ̄12α̇ (A.5.2b)

∂α1 θ
2
12 = −2θα12 (A.5.2c)

∂̄α̇1 θ̄
2
12 = 2θ̄α̇12 (A.5.2d)

∂1α θ1θ2 = θ2α (A.5.2e)

∂α1 θ1θ2 = −θα2 (A.5.2f)

∂̄1α̇ θ̄1θ̄2 = −θ̄2α̇ (A.5.2g)

∂̄α̇1 θ̄1θ̄2 = θ̄α̇2 (A.5.2h)

All components of ∂, ∂̄ anticommute with one another

0 = {∂α, ∂β} = {∂̄α̇, ∂̄β̇} = {∂α, ∂̄β̇} (A.5.3)

When ∂α and ∂̄α̇ act on a product, they satisfy the Leibniz rules. If in this product there are fermionic fields
and/or Grassmann coordinates, there can be a minus sign. For example, if ψ and χ are fermionic fields,
then

∂α(ψχ) = (∂αψ)χ− ψ(∂αχ) (A.5.4a)

∂̄α̇(ψχ) = (∂̄α̇ψ)χ− ψ(∂̄α̇χ), (A.5.4b)

Applying the Leibnitz rules (A.5.4a)-(A.5.4b) and eqs.(A.5.1a)-(A.5.1h), one obtains two useful identities
involving ∂∂ ≡ ∂α∂α and ∂̄∂̄ ≡ ∂̄α̇∂̄

α̇

∂∂(θθ) = ∂̄∂̄(θ̄θ̄) = 4 (A.5.5)

In fact ∂α∂α(θ
βθβ) = ∂α(δβα θβ − θβ(−ǫαβ)) = δβαδαβ − ǫαβǫαβ = 4, where we have used eqs.(A.4.1e) and

(A.2.1b). Acting on ∂ or ∂̄ with the epsilon tensor gives a minus sign

ǫαβ∂β = −∂α (A.5.6a)

ǫαβ∂
β = −∂α (A.5.6b)

ǫα̇β̇ ∂̄
β̇ = −∂̄α̇ (A.5.6c)

ǫα̇β̇ ∂̄β̇ = −∂̄α̇ (A.5.6d)

A.6 Grassmann integration

Grassmann integration is defined using the rules

d2θ = −1

4
dθαdθα (A.6.1a)

d2θ̄ = −1

4
dθ̄α̇dθ̄

α̇ (A.6.1b)

d4θ = d2θ̄d2θ (A.6.1c)∫
d2θ =

∫
d2θ̄ =

∫
d2θ θα =

∫
d2θ̄ θ̄α̇ = 0 (A.6.1d)

∫
d2θ θαθβ = −1

2
ǫαβ (A.6.1e)

∫
d2θ̄ θ̄α̇θ̄β̇ =

1

2
ǫα̇β̇ (A.6.1f)

∫
d2θ θθ =

∫
d2θ̄ θ̄θ̄ = 1 (A.6.1g)
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∫
d4θ θθ θ̄θ̄ = 1 (A.6.1h)

The integration measures (A.6.1a)-(A.6.1c) are defined in such a way that (A.6.1g) and (A.6.1h) hold.
Grassmann integration and differentiation are equivalent. In fact

∫
d2θf(θ, θ̄) =

1

4
∂∂f(θ, θ̄) (A.6.2a)

∫
d2θ̄f(θ, θ̄) =

1

4
∂̄∂̄f(θ, θ̄) (A.6.2b)

∫
d2θ∂αf(θ, θ̄) =

∫
d2θ̄∂̄α̇f(θ, θ̄) = 0 (A.6.2c)

∫
d4θf(θ, θ̄) =

1

16
∂∂ ∂̄∂̄f(θ, θ̄) (A.6.2d)

where f(θθ̄) is a generic function of θ and θ̄.

A.7 Fermionic delta function

The fermionic delta functions are defined as

δ(2)(θ) = θθ, δ(2)(θ̄) = θ̄θ̄ (A.7.1a)

and satisfy

∫
d2θ δ(2)(θ) =

∫
d2θ̄ δ(2)(θ̄) = 1 (A.7.1b)

δ(4)(θ) = δ(2)(θ)δ(2)(θ̄) = θθ θ̄θ̄ (A.7.1c)
∫
d4θ δ(4)(θ) = 1. (A.7.1d)

(A.7.1e)

We use the symbol δ12 to indicate

δ12 ≡ δ(4)(θ1 − θ2) = δ(4)(θ12) = θ212 θ̄
2
12 (A.7.1f)∫

d4θ1 δ12 =

∫
d4θ2 δ12 = 1. (A.7.1g)

Choosing two points in the superspace with z1 = (x1, θ1, θ̄1) and z2 = (x2, θ2, θ̄2), and denoting d8z ≡ d4xd4θ
one can define

δ(8)(z1 − z2) = δ(4)(θ1 − θ2)δ
(4)(x1 − x2) (A.7.1h)∫

d8z1 δ
(8)(z1 − z2) =

∫
d8z2 δ

(8)(z1 − z2) = 1. (A.7.1i)
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Appendix B

D-algebra

In this appendix we list some useful identities for the superderivatives.

B.1 D-algebra in coordinate space

B.1.1 Definitions

The covariant superderivatives are defined as

Dα = ∂α − iσµ
αβ̇
θ̄β̇∂µ (B.1.1a)

Dα = −∂α + iθ̄β̇σ̄
µ β̇α∂µ (B.1.1b)

D̄α̇ = −∂̄α̇ + iθβσµβα̇∂µ (B.1.1c)

D̄α̇ = ∂̄α̇ − iσ̄µ α̇βθβ∂µ (B.1.1d)

They are spinors and hence satisfy Dα = ǫαβDβ and D̄α̇ = ǫα̇β̇D̄β̇ .

If the theta variables θ1, θ̄1 have a further label, such as 1 in this case, then we will also use the notation

D1α,Dα
1 , etc..., to indicate D1α = ∂1α − iσµ

αβ̇
θ̄β̇1∂µ, Dα

1 = −∂α1 + iθ̄1 β̇ σ̄
µ β̇α∂µ, etc... respectively.

B.1.2 Anticommutation and commutation relations

{Dα,Dβ} = {D̄α̇, D̄β̇} = 0 (B.1.2a)

{Dα, D̄β̇} = 2iσµ
αβ̇
∂µ (B.1.2b)

{Dα, D̄β̇} = 2iσ̄µβ̇α∂µ (B.1.2c)

DσµD̄ + D̄σ̄µD = 4i∂µ (B.1.2d)

[Dα, D̄D̄] = 4iσµ
αβ̇

D̄β̇ ∂µ (B.1.2e)

[Dα, D̄D̄] = −4iD̄β̇ σ̄
µβ̇α ∂µ (B.1.2f)

[D̄α̇,DD] = −4iDβσµβα̇ ∂µ (B.1.2g)

[D̄α̇,DD] = 4iσ̄µα̇βDβ ∂µ, (B.1.2h)

[DD, D̄D̄] = 8iDσµD̄ ∂µ + 16∂∂ (B.1.2i)

[D̄D̄,DD] = 8iD̄σ̄µD ∂µ + 16∂∂ (B.1.2j)

DαD̄D̄Dα = D̄α̇DDD̄α̇ = 8∂2 +
1

2

{
DD, D̄D̄

}
(B.1.2k)

DD D̄D̄ DD = −16∂∂DD (B.1.2l)

D̄D̄ DD D̄D̄ = −16∂∂ D̄D̄ (B.1.2m)
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B.1.3 Leibnitz rules

Dα(B1B2) = (DαB1)B2 + B1Dα(B2) (B.1.3a)

Dα(F1B2) = (DαF1)B2 −F1Dα(B2), (B.1.3b)

Dα(B1F2) = (DαB1)F2 + B1Dα(F2) (B.1.3c)

Dα(F1F2) = (DαF1)F2 −F1Dα(F2) (B.1.3d)

where B1 and B2 are bosonic superfields, while F1 and F2 are fermionic ones.
Note the minus sign in eqs.(B.1.3b) and (B.1.3d).

B.1.4 Integrations by parts

∫
d4xd4θ B1(DαB2)B3 = −

∫
d4xd4θ (DαB1)B2B3 −

∫
d4xd4θB1B2(DαB3) (B.1.4a)

∫
d4xd4θ B1(D̄α̇B2)B3 = −

∫
d4xd4θ (D̄α̇B1)B2B3 −

∫
d4xd4θB1B2(D̄α̇B3) (B.1.4b)

∫
d4xd4θ B1(DDB2)B3 =

∫
d4xd4θ (DDB1)B2B3 + 2

∫
d4xd4θ (DαB1)B2(DαB3) +

∫
d4xd4θB1B2(DDB3)

(B.1.4c)∫
d4xd4θ B1(D̄D̄B2)B3 =

∫
d4xd4θ (D̄D̄B1)B2B3 + 2

∫
d4xd4θ(D̄α̇B1)B2(D̄α̇B3) +

∫
d4xd4θB1B2(D̄D̄B3)

(B.1.4d)∫
d4xd4θF1(DDB2)B3 =

∫
d4xd4θ (DDF1)B2B3 − 2

∫
d4xd4θ(DαF1)B2(DαB3) +

∫
d4xd4θF1B2(DDB3)

(B.1.4e)

where B1,B2,B3 are bosonic superfields, while F1 is a fermionic one.
(Note the minus sign in the second term of the r.h.s of eq.(B.1.4e) with respect to eq.(B.1.4c) since F1 is
fermionic while B1 is bosonic)

B.1.5 D and fermionic delta δ

The action of the superderivatives on the fermionic δ functions is

D1α δ
(8)(z1 − z2) = −D2α δ

(8)(z1 − z2), (B.1.5a)

D̄1α̇ δ
(8)(z1 − z2) = −D̄2α̇ δ

(8)(z1 − z2), (B.1.5b)

D1D1 δ
(8)(z1 − z2) = D2D2 δ

(8)(z1 − z2), (B.1.5c)

D̄1D̄1 δ
(8)(z1 − z2) = D̄2D̄2 δ

(8)(z1 − z2). (B.1.5d)

For the action on products of δ functions one finds

δ12δ12 = δ12Dαδ12 = δ12D̄α̇δ12 = δ12DDδ12 = δ12D̄D̄δ12 = δ12DαD̄D̄δ12 = δ12D̄α̇DDδ12 = 0 (B.1.5e)

δ12DD D̄D̄δ12 = 16δ12 (B.1.5f)

δ12D̄D̄ DDδ12 = 16δ12 (B.1.5g)

B.2 D-algebra in momentum space

The momentum-space counterpart of the above relations is immediate.
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B.2.1 Definitions

Dp
α = ∂α − σµ

αβ̇
θ̄β̇pµ (B.2.1a)

Dp,α = −∂α + θ̄β̇σ̄
µ β̇αpµ (B.2.1b)

D̄p
α̇ = −∂̄α̇ + θβσµβα̇pµ (B.2.1c)

D̄p,α̇ = ∂̄α̇ − σ̄µ α̇βθβpµ (B.2.1d)

Dp,α = ǫαβDp
β and D̄p,α̇ = ǫα̇β̇D̄p

β̇
.

The superscript p on Dp and D̄p indicates the ingoing momentum p corresponding to the superspace point
z ≡ (x, θ, θ̄). Also, the momentum in the supercovariant derivative can always be taken as the momentum
of the superfield on which it act.
If the theta variables θ1, θ̄1 have a further label, such as 1 in this case, then we will also use the notation

Dp
1α,Dp,α

1 , etc..., to indicate Dp
1α = ∂1α − σµ

αβ̇
θ̄β̇1 pµ, Dp,α

1 = −∂α1 + θ̄1 β̇σ̄
µ β̇αpµ, etc... respectively.

B.2.2 Anticommutation and commutation relations

{Dα,Dβ} = {D̄α̇, D̄β̇} = 0 (B.2.2a)

{Dα, D̄β̇} = 2σµ
αβ̇
pµ (B.2.2b)

{Dα, D̄β̇} = 2σ̄µβ̇αpµ (B.2.2c)

DσµD̄ + D̄σ̄µD = 4pµ (B.2.2d)

[Dα, D̄D̄] = 4σµ
αβ̇

D̄β̇ pµ (B.2.2e)

[Dα, D̄D̄] = −4D̄β̇ σ̄
µβ̇α pµ (B.2.2f)

[D̄α̇,DD] = −4Dβσµβα̇ pµ (B.2.2g)

[D̄α̇,DD] = 4σ̄µα̇βDβ pµ, (B.2.2h)

[DD, D̄D̄] = 8DσµD̄ pµ − 16p2 (B.2.2i)

[D̄D̄,DD̄] = 8D̄σ̄µD pµ − 16p2 (B.2.2j)

DαD̄D̄Dα = D̄α̇DDD̄α̇ = −8p2 +
1

2

{
DD, D̄D̄

}
(B.2.2k)

DD D̄D̄ DD = 16p2DD (B.2.2l)

D̄D̄ DD D̄D̄ = 16p2D̄D̄ (B.2.2m)

For instance, the derivation of eq.(B.2.2e) is

[Dα, D̄D̄] = DαD̄β̇D̄β̇ − D̄β̇D̄β̇Dα

= −D̄β̇DαD̄β̇ + 2σµ
αβ̇

D̄β̇pµ − D̄β̇D̄β̇Dα

= D̄β̇DαD̄β̇ + 2σµ
αβ̇

D̄β̇pµ − D̄β̇D̄β̇Dα

= −D̄β̇D̄β̇Dα + 2σµ
αβ̇

D̄β̇pµ + 2σµ
αβ̇

D̄β̇pµ − D̄β̇D̄β̇Dα

= 4σµ
αβ̇

D̄β̇pµ.

(B.2.3)

In the second step Dα has been anticommutated with D̄β̇ (eq.(B.2.2b)), while the third one follows from

D̄β̇DαD̄β̇ = −D̄β̇DαD̄β̇. In the forth step Dα has been anticommutated again with D̄β̇ (eq.B.2.2b) and the

last one follows from D̄β̇D̄β̇Dα = −D̄β̇D̄β̇Dα
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B.2.3 Leibnitz rules

Dp
α(B1B2) = (Dq

αB1)B2 + B1Dp−q
α (B2) (B.2.4a)

Dp
α(F1B2) = (Dq

αF1)B2 −F1Dp−q
α (B2), (B.2.4b)

Dp
α(B1F2) = (Dq

αB1)F2 + B1Dp−q
α (F2) (B.2.4c)

Dp
α(F1F2) = (Dq

αF1)F2 −F1Dp−q
α (F2), (B.2.4d)

where B1 and B2 are the Fourier transform of bosonic superfields , while F1 and F2 of fermionic ones.

B.2.4 Integrations by parts

∫
d4θ B1(Dp2

α B2)B3 = −
∫
d4θ (Dp1

α B1)B2B3 −
∫
d4θB1B2(Dp3

α B3) (B.2.5a)
∫
d4θ B1(D̄p2

α̇ B2)B3 = −
∫
d4θ (D̄p1

α̇ B1)B2B3 −
∫
d4θB1B2(D̄p3

α̇ B3), (B.2.5b)
∫
d4θ B1(Dp2Dp2B2)B3 =

∫
d4θ (Dp1Dp1B1)B2B3 + 2

∫
d4θ (Dp1αB1)B2(Dp3

α B3) +

∫
d4θB1B2(Dp3Dp3B3)

(B.2.5c)∫
d4θ B1(D̄p2D̄p2B2)B3 =

∫
d4θ (D̄p1D̄p1B1)B2B3 + 2

∫
d4θ(D̄p1

α̇ B1)B2(D̄p3,α̇B3) +

∫
d4θ4B1B2(Dp3Dp3B3)

(B.2.5d)∫
d4θF1(Dp2Dp2B2)B3 =

∫
d4θ (Dp1Dp1F1)B2B3 − 2

∫
d4θ(Dp1,αF1)B2(Dp3

α B3) +

∫
d4θF1B2(Dp3Dp3B3)

(B.2.5e)

where B1, B2 and B3 are the Fourier transform of bosonic superfields, while F1 of a fermionic one and
p1+p2+p3 = 0. We have assumed that B1(F1), B2 and B3 depend on the momenta p1, p2 and p3 respectively.

For example, Eqs.(B.2.5a) can be derived simply by using the definition of supercovariant derivatives
(B.2.1a) and the Leibnitz rules for the Grassmann derivatives ∂α and ∂̄α̇.

Eq.(B.2.5c) follows from:

∫
d4θ B1(Dp2Dp2B2)B3 =

∫
d4θB1

(
Dp2α(Dp2

α B2)
)
B3 = −

∫
d4θ (Dp1αB1)(Dp2

α B2)B3 +

∫
d4θB1(Dp2

α B2)(Dp3αB3)

= −
∫
d4θ (Dp1

α Dp1αB1)B2B3 +

∫
d4θ (Dp1αB1)B2(Dp3

α B3)−
∫
d4θ (Dp1

α B1)B2(Dp3αB3)−
∫
d4θ B1B2(Dp3

α Dp3αB3)

=

∫
d4θ (Dp1Dp1B1)B2B3 + 2

∫
d4θ (Dp1αB1)B2(Dp3

α B3) +

∫
d4θB1B2(Dp3Dp3B3)

(B.2.6)

In the second and third step we used repeatedly the integration by part (B.2.5a) making attention of the
fact that Dp2

α B2 and Dp1αB1 are fermionic superfield. In the last step the identity α . . .
α = − α . . .α has been

used.

B.2.5 D and fermionic delta function δ

The action of the superderivatives on the fermionic δ functions in the momentum space is

Dp
1α δ12 = −D−p

2α δ12 (B.2.7a)

D̄p
1α̇ δ12 = −D̄−p

2α̇ δ12 (B.2.7b)

Dp
1Dp

1 δ12 = D−p
2 D−p

2 δ12 (B.2.7c)
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D̄p
1D̄

p
1 δ12 = D̄−p

2 D̄−p
2 δ12 (B.2.7d)

δ12δ12 = δ12Dαδ12 = δ12D̄α̇δ12 = δ12DDδ12 = δ12D̄D̄δ12 = δ12DαD̄D̄δ12 = δ12D̄α̇DDδ12 = 0 (B.2.7e)

δ12DD D̄D̄δ12 = 16δ12 (B.2.7f)

δ12D̄D̄ DDδ12 = 16δ12 (B.2.7g)

Eq. (B.2.7a) can be derived by observing that ∂1αδ12 = ∂1αθ
2
12 = −∂2αθ212 = −∂2αδ12. and that

pµδ12 = −(−pµ)δ12.

Eq. (B.2.7c) follows from

Dp
1D

p
1 δ12 = Dpα

1 Dp
1α δ12 = −Dpα

1 D−p
2α δ12 =

= D−p
2αDpα

1 δ12 = −D−p
2αD−pα

2 δ12 = D−p
2 D−p

2 δ12.
(B.2.8)

In the second and forth steps eq.(B.2.7a) has been used and the third one follows from {D2α,Dα
1 } = 0.

The last one is a consequence of D2αDα
2 = −Dα

2D2α = D2D2.

In eq. (B.2.7e), for example δ12Dαδ12 = 0 follows from

δ12D1αδ12 = θ212θ̄
2
12 (∂1α − σµ

αβ̇
θ̄β̇1 pµ)θ

2
12θ̄

2
12

= θ212θ̄
2
12(2θ12α)θ̄

2
12 − σµ

αβ̇
θ̄β̇1 pµθ

2
12θ̄

2
12 θ

2
12θ̄

2
12

= 0

(B.2.9)

In the second step the relation ∂1αθ
2
12 = 2θ12α has been employed, while the third step is a consequence of

the fact that the product of three or more component of θ12 or of θ̄12 gives zero.
In fact, the only way to have a non zero result is to act with two chiral derivatives ∂α on θ212 and
with two antichiral derivatives ∂̄α̇ on θ̄212. Doing so, one can write δ12D1D1D̄1D̄1δ12 = δ12∂1∂1∂̄1∂̄1δ12 =
δ12(∂1∂1θ

2
12)(∂̄1∂̄1θ̄

2
12) = 16δ12 because DD = ∂∂ + . . ., D̄D̄ = ∂̄∂̄ + . . . and ∂1∂1θ

2
12 = ∂̄1∂̄1θ̄

2
12 = 4 (see

eq.(A.5.5).
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Appendix C

Propagators

The expansion in components of a chiral (antichiral) superfield Φ(x, θ, θ̄) (Φ†(x, θ, θ̄)) is given by

Φ(x, θ, θ̄) = φ(x)− iθσµθ̄∂µφ(x)−
1

4
θθθ̄θ̄∂µ∂µφ(x) +

√
2θψ(x) +

i√
2
θθ∂µψσ

µθ̄ + θθF (x), (C.0.1)

Φ†(x, θ, θ̄) = φ∗(x) + iθσµθ̄∂µφ
∗(x)− 1

4
θθθ̄θ̄∂µ∂µφ

∗(x) +
√
2θ̄ψ̄(x)− i√

2
θ̄θ̄θσµ∂µψ̄ + θ̄θ̄F ∗(x). (C.0.2)

The expansion in components of the Fourier transform of a chiral (antichiral) superfield Φ(p, θ, θ̄) (Φ†(p, θ, θ̄))
is:

Φ(p, θ, θ̄) = φ(p)− pµθσ
µθ̄φ(p) +

1

4
p2θθθ̄θ̄φ(p) +

√
2θψ(p) +

pµ√
2
θθ ψ(p)σµθ̄ + θθF (p) (C.0.3)

Φ†(p, θ, θ̄) = φ∗(p) + pµ θσ
µθ̄φ∗(p) +

1

4
p2 θθθ̄θ̄φ∗(p) +

√
2θ̄ψ̄(p)− pµ√

2
θ̄θ̄θσµψ̄(p) + θ̄θ̄F ∗(p). (C.0.4)

The expansion in components of a vector superfield V (x, θ, θ̄) is

V (x, θ, θ̄) = C(x) +
√
2θχ(x) +

√
2θ̄χ̄(x) + θθS(x) + θ̄θ̄S∗(x) + θσµθ̄Aµ(x)

+ θθ θ̄

(
λ̄− i√

2
σ̄µ∂µχ(x)

)
+ θ̄θ̄ θ

(
λ(x)− i√

2
σµ∂µχ̄(x)

)
+

1

2
θθ θ̄θ̄

(
D(x)− 1

2
∂µ∂µC(x)

)
. (C.0.5)

The expansion in components of the Fourier transform of a vector superfield V (p, θ, θ̄) is

V (p, θ, θ̄) = C(p) +
√
2θχ(p) +

√
2θ̄χ̄(p) + θθS(p) + θ̄θ̄S∗(p) + θσµθ̄Aµ(p)

+ θθ θ̄

(
λ̄(p)− 1√

2
σ̄µpµχ(p)

)
+ θ̄θ̄ θ

(
λ(p)− 1√

2
σµpµχ̄(p)

)
+

1

2
θθ θ̄θ̄

(
D(p) +

1

2
p2C(p)

)
. (C.0.6)

C.1 Propagator of the chiral superfield

< Φ(p1, θ1, θ̄1)Φ
†(−p1, θ2, θ̄2) >free=

i

16p21
D̄p1

1 D̄p1
1 Dp1

1 Dp1
1 δ

(4)(θ12) (C.1.1)

< Φ(p1, θ1, θ̄1)Φ
†(−p1, θ2, θ̄2) >free=

i

p21
− i

p21
p1µθ1σ

µθ̄1 +
i

4
θ21 θ̄

2
1 −

i

p21
p1µθ2σ

µθ̄2 +
i

4
θ22θ̄

2
2 +

2i

p21
p1µθ1σ

µθ̄2

(C.1.2)

− iθ21 θ̄1θ̄2 − iθ̄22θ1θ2 + iθ21 θ̄
2
2 +

i

p21
p1µp1νθ1σ

µθ̄1θ2σ
ν θ̄2 −

i

4
p1µθ1σ

µθ̄1θ
2
2 θ̄

2
2 −

i

4
p1µθ2σ

µθ̄2θ
2
1 θ̄

2
1 −

i

2
p1µθ2σ

µθ̄1θ
2
1 θ̄

2
2

(C.1.3)

+
i

16
p21θ

2
1 θ̄

2
1θ

2
2θ̄

2
2 (C.1.4)

< Φ(p1, θ1, θ̄1)Φ
†(−p1, θ2, θ̄2 >free=

i

p21
exp

(
− pµ

(
θ1σ

µθ̄1 + θ2σ
µθ̄2 − 2θ1σ

µθ̄2
))

(C.1.5)
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C.2 Propagator of the vector superfield

< V a(p1, θ1, θ̄1)V
b(−p1, θ2, θ̄2) >free= − i

p21
δabδ(4)(θ12) (C.2.1)

C.3 Mixed correlators

< φ(p1)Φ
†(−p1, θ2, θ̄2) >free =< Φ(p1, θ1, θ̄1)Φ

†(−p1, θ2, θ̄2) >free

∣∣∣
θ1=θ̄1=0

=
i

p21
− i

p21
p1µθ2σ

µθ̄2 +
i

4
θ22 θ̄

2
2 (C.3.1a)

< Φ(p1, θ1, θ̄1), φ
∗(−p1) >free =

i

p21
− i

p21
p1µθ1σ

µθ̄1 +
i

4
θ21 θ̄

2
1 (C.3.1b)

< Aaµ(p1)V
b(−p1, θ2, θ̄2 >free=

1

2
∂̄1α̇∂1ασ̄

µ α̇α < V a(p1, θ1, θ̄1)V
b(−p1, θ2, θ̄2) >free

∣∣∣
θ1=θ̄1=0

= − 2i

p21
θ2σ

µθ̄2

(C.3.2)
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Appendix D

Interaction vertices for N = 4 SYM

In this appendix we give the expression of the interaction vertices for N = 4 SYM.

The self interaction vertices for the vector superfield V a up to order g3 are

V a1
V a2

V a3

S
(3)
SYM = − i

16
g fa1a2a3

∫
d8z
(
D̄D̄DαV a1

)(
DαV

a2
)
V a3 . (D.0.1)

V a1 V a2

V a3
V a4

S
(4)
SYM = g2 fa1a2bfba3a4

∫
d8z
[ 1

64

(
V a1DαV a2

)(
D̄D̄

(
V a3DαV

a4
))

− 1

48

(
V a1

(
DαV a2

)
V a3

)(
D̄D̄DαV

a4
)]

= g2fa1a2bfba3a4

∫
d8z
[ 1

192

(
D̄D̄DαV a1

)
V a2V a3

(
DαV

a4
)
− 1

32

(
DαV a1

)
V a2

(
D̄α̇DαV

a3
)
D̄α̇V a

4

+
1

64

(
DαV a1

)
V a2

(
DαV

a3
)
D̄D̄V a4

]
.

(D.0.2)
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V a1

V a2

V a3

V a4V a5

S
(5)
SYM = i g3 fa1a2b1fa3b1b2fa4a5b2 ·∫

d8z
[ 1

192

(
V a1DαV a2

)
V a3V a4

(
D̄D̄DαV

a5
)
− 1

96

(
V a1

(
DαV a2

)
V a3

(
D̄D̄

(
V a4DαV

a5
))]

= −i g3fa1a2b1fa3b1b2fa4a5b2
∫
d8z
[ 1

192

(
V a1DαV a2

)
V a3V a4

(
D̄D̄DαV

a5
)

+
1

96

(
V a1DαV a2

)
V a3

(
D̄D̄V a4

)(
DαV

a5
)
+

1

48

(
V a1DαV a2

)
V a3

(
D̄α̇V

a4
)(

Dα̇V a5
)]
.

(D.0.3)

The gauge-matter vertex at order g is

Φ
†a1
I

Φ
a3
I

V a2

SΦVΦ
int = igfa1a2a3

∫
d8zΦ†a1

I V a2Φa3
I . (D.0.4)

where I is the flavor index.
The gauge-matter vertex at order g2 is

Φ
†a1
I

Φ
a4
I

V a2 V a3

SΦV 2Φ
int = −g

2

2
fa1a2bfba3a4

∫
d8z Φ†a1

I V a2V a3Φa4
I . (D.0.5)

The ghost-vector vertices up to order g2 are

V a2 V a2 V a2 V a2

C ′a1 Ca3 Aa1 C†a3 A†a1 Ca3 A†a1 C†a3
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S
(3)
GH =

ig

2
fa1a2a3

∫
d8z
[
−Aa1V a2Ca3 −Aa1V a2C†a3 +A†a1V a2Ca3 +A†a1V a2C†a3

]
(D.0.6)

Aa1 Aa1 A†a1 A†a1Ca4 C†a4 C†a4Ca4

V a2 V a2 V a2 V a2V a3 V a3 V a3 V a3

S
(4)
GH =

g2

12
fa1a2bfba3a4

∫
d8z
(
Aa1V a2V a3Ca4 −Aa1V a2V a3C†a4 −A†a1V a2V a3Ca4 +A†a1V a2V a3C†a4

)

(D.0.7)
The self interaction vertices for the matter superfields are

Φa1
1

Φ
a2
2

Φa3
3

SΦ
int = −g fa1a2a3

∫
d6z Φa1

1 Φa2
2 Φa3

3 (D.0.8)

Φ
†a2
2

Φ
†a1
1 Φ

†a3
3

SΦ†

int = −g fa1a2a3
∫
d6z̄ Φ†a1

1 Φ†a2
2 Φ†a3

3 . (D.0.9)
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Appendix E

Symmetry factors

Feynman rules give the rules for associating analytic expressions to each part of a Feynman diagram, i.e.
propagators, vertices and external points. However, the overall numerical factor has to be determined sep-
arately. This factor is called the symmetry factor of the diagram ( see for example [54],[102] ).
Usually the coefficients of the interaction terms in the Lagrangian are chosen so that the symmetry factor
is one. One can determine the symmetry factor by the symmetry of the diagram, that is by the number of
ways of interchanging components without changing the diagram, but there can be the possibility to be in
doubt. Another way is to count the equivalent Wick contractions which give the same analytic expression.
We have chosen this second way and in this appendix we give some examples.
Here, to simplify the notation, we work in (super)coordinate space. Moreover, below φ is the scalar compo-
nent of the chiral supermultiplet and < i j >Φ, < ij >φ and < ij >φ∗ are shortcuts for < Φ(zi),Φ

†(zj) >,
< φ(xi),Φ

†(zj) > and < Φ(zi), φ
∗(xj) > respectively.

φ∗ φ

3
1 2

4

This diagram corresponds to the Wick contraction

∫
d6z1d

6z̄2 < φ∗(x3)φ(x4)|Φ(z1)Φ(z1)Φ(z1)|Φ†(z2)Φ
†(z2)Φ

†(z2)| > (E.0.1)

It is formed by the two vertices Φ3 and Φ†3, hence it is obtained considering the second order term
i2S2

int

2 in the exponential eiSint (see eq.(1.3.3)). Inside S2 =
(
. . . + Φ3 +Φ†3 . . .

)2
= . . . + 2Φ3Φ†3 + . . ., the

coefficient in front of Φ3Φ†3 is 2. Thus the Taylor expansion gives a factor i2×2
2 = −1.

The other combinatorial factor arises from the Wick contractions. Starting from the left, the first contraction

φ∗(x3)Φ(z1) =< 13 >φ∗ can be done in three different ways because there are three superfields Φ at z1,

and similarly the second contraction φ(x4)Φ
†(z2) =< 42 >φ gives another factor of 3. Then one of the two

remaining superfields Φ at z1 can have two contractions Φ(z1)Φ
†(z2) with the two remaining superfield at

z2. Finally what remains is a superfield at z1 and one at z2 that gives one obliged contraction Φ(z1)Φ
†(z2).

So the factor from the contractions is 3×3×2 which has to be multiplied by 1
3!

1
3! coming from the numerical

constants in front of the superpotential in the action. Thus the total symmetry factor is −1×3×3×2
3!3! = −1

2 .

φ∗ φ

3
1 2

4
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This diagram correspond to the Wick contraction

∫
d8z1d

8z2 < φ∗(x3)φ(x4)|Φ†(z1)V (z1)Φ(z1)|Φ†(z2)V (z2)Φ(z2)| > (E.0.2)

It has two identical vertices (Φ†V Φ)(Φ†V Φ), hence it comes from the second order term
i2S2

int

2 in the

exponential eiSint . Inside S2 =
(
. . .+Φ†V Φ+ . . .

)2
= . . .+(Φ†V Φ)2+ . . ., the coefficient in front of (Φ†V Φ)

is 1. Thus the Taylor expansion gives a factor i2

2 = −1
2 . From the Wick contractions, one has two ways

to connect φ∗(x3) to a Φ†V Φ vertex since we have two identical vertices of this kind. After choosing this
vertex connected to φ∗(x3), then all the contractions are obliged and don’t provide any other combinatorial
factor. Thus, the total symmetry factor is −1

2 × 2 = −1.
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Appendix F

Spinor helicity formalism

The spinor helicity formalism [104]-[108] allows to have extremely compact representations of amplitudes
involving massless particles. In this formalism one expresses the momentum and the polarization vector of
a massless particle of spin one in terms of spinor variables.
Any momentum vector pµ can be represented by a 2 × 2 matrix pαα̇ by contracting pµ with the sigma
matrices σµαα̇

pαα̇ = pµσ
µ
αα̇. (F.0.1)

Any 2× 2 matrix has rank at most two, so it can be written as [104]

pαα̇ = µαµ̃α̇ + λαλ̃α̇, (F.0.2)

where λ, µ are some Weyl spinors belonging to the representation (1/2, 0) of the Lorentz group, while λ̃, µ̃
belong to the representation (0, 1/2).
For a light-like momentum of a massless particle, one has that the determinant of the matrix pαα̇ vanishes
since

det(pαα̇) = p2 = 0. (F.0.3)

In this case the matrix pαα̇ has rank which is at most equal to one and can be written as pαα̇ = λαλ̃α̇, that
is

p2 = 0 ⇔ pαα̇ = λαλ̃α̇. (F.0.4)

If the momentum pµ is real then λ and λ̃ are the complex conjugate of each other, i.e. λ̃ = λ∗. On the
contrary, if one assumes that pµ is complex as in the generalized unitarity methods then λ̃ and λ are not
related by complex conjugation, but are independent.
Let’s consider the case of more than one particle and let’s denote as piµ the momentum of the i−th particle
having the matrix representation piαα̇ = λiαλ̃iα̇. One can introduce the spinor products

< ij >≡< λiλj >≡ ǫβαλi αλj β , [ij] ≡ [λ̃iλ̃j ] ≡ ǫβ̇α̇λ̃
α̇
i λ̃

β̇
i , (F.0.5)

which are antisymmetric and hence < ii >= [ii] = 0. With these definitions a scalar product between the
momenta of two particles can be written as

2pi · pj =< ij > [ij]. (F.0.6)

Polarization vectors

The polarization vectors ǫ±µ of a massless vector particle with helicities +1 or −1 respectively can also be
expressed in terms spinor variables. They have to satisfy the conditions

p · ǫ±µ = 0, (ǫ±)2 = 0, ǫ+ · ǫ− = −1, (F.0.7)

where pµ is the momentum of the particle and as above pµ has the representation pαα̇ = λαλ̃α̇.
Let’s consider an arbitrary reference light-like momentum qµ, i.e. q2 = 0, satisfying the condition q · p 6= 0.
Since q2 = 0, from eq.(F.0.4) one has that qµ can be represented as qαα̇ = µαµ̃α̇ for some spinors µ and µ̃,
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where qαα̇ = qµσ
µ
αα̇.

Then, one can choose for ǫ±µ the representation

ǫ+αα̇ =
µαλ̃α̇
< λµ >

ǫ−αα̇ =
λαµ̃α̇

[λ̃µ̃]
, (F.0.8)

where ǫ±αα̇ ≡ ǫ±µ σ
µ
αα̇. In fact, the representation (F.0.8) satisfies the eqs.(F.0.7).

Changing the reference momentum corresponds to making a gauge transformation. Hence, the on-shell
amplitudes are independent of the choice of the reference momentum, since they are gauge-invariant.
Let’s consider the case of more than one massless vector particle and let’s introduce for the polarization
vector of the i−th particle the notation ǫ±iµ(pi, qi) where the first argument indicates the momentum of the
particle and the second argument the reference momentum.
One can prove the identities

qi · ǫ±i (pi, qi) = 0

ǫ±i (pi, qi) · ǫ±j (pj , qi) = 0

ǫ±i (pi, qi) · ǫ∓j (pj , pi) = 0. (F.0.9)

From these identities, it follows that it is convenient to choose the reference momenta of like-helicity particles
to be the same and to coincide with the external momenta of some of the particles with the opposite helicity.
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Appendix G

Off-shell planar amplitudes

In this appendix we give the explicit expressions for the planar three gluon amplitude at one loop

Aoff shell
1 loop

(
Aa1

µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3)

)
and for the planar four gluon amplitude at tree level

Aoff shell
tree

(
Aa1

µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3)A

a4
µ4
(p4)

)
. We also give the explicit expression of the part of the four gluon

planar amplitude at one loop Aoff shell
1Loop

(
Aa1

µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3)A

a4
µ4
(p4)

)
associated to the Lorentz structure

ηµ2µ3p3µ1p3µ4 which is relevant for the on-shell amplitude Aon shell
1 loop (1−, 2−, 3+, 4+) (see section 3.6.4).

G.1 Three gluon planar amplitude at one loop

After doing the Passarino Veltman decomposition, substituting p2 with p2 = −p1 − p3 and introducing the
variable u ≡ p1 · p3, the final result for the off-shell planar three gluon amplitude is

Aoff shell
1 loop

(
Aa1

µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3)

)
= Ng3Tr(T a1T a2T a3)×

(
M1 ,µ1µ2µ3 B0(p1) +M2 ,µ1µ2µ3 B0(p1 + p3) +M3 ,µ1µ2µ3 B0(p3) +Nµ1µ2µ3 C0(p1, p3)

)
, (G.1.1)

where

M1µ1µ2µ3 =

− 2 p1
4ηµ1µ2p3,µ3 − 4 p1,µ2p1,µ3p1,µ1u+ u2ηµ3µ1p3,µ2 + p3,µ3ηµ1µ2u

2 − 2 ηµ1µ2up3,µ3p1
2

− p1,µ3p3,µ2p3,µ1u+ 2 p1
2ηµ1µ2p1,µ3u+ 2 p1,µ3ηµ1µ2u

2 − p1,µ2p3,µ1p3,µ3u− 2 p3,µ3p3,µ2p1,µ1u

+ 2uηµ3µ1p3,µ2p1
2 + 4 p3,µ2p3,µ1p3,µ3p1

2 + p1,µ3p3,µ2p1,µ1p1
2 + p3,µ3p3,µ2p1,µ1p1

2

− p3,µ3p1,µ1p1,µ2u+ 2 p3,µ3p1,µ1p1,µ2p1
2 − 2 p1,µ3p3,µ2p1,µ1u− p1,µ2p3,µ1p1,µ3u

+ 2 p1,µ2p3,µ1p3,µ3p1
2 − 2 ηµ3µ2up3,µ1p1

2 + p1,µ3p3,µ2p3,µ1p1
2 − p1,µ2ηµ3µ1p1

2p3
2

− p3,µ3ηµ1µ2p1
2p3

2 + 2 p3
2ηµ3µ2p1,µ1u− p3,µ2ηµ3µ1p1

2p3
2 − u2ηµ3µ1p1,µ2

+ p1,µ2p3,µ1p1,µ3p1
2 + 2 p1,µ1ηµ3µ2u

2 − 2 p3,µ1ηµ3µ2p1
2p3

2 , (G.1.2)

M2 ,µ1µ2µ3 =

2 p1
4ηµ1µ2p3,µ3 + 2 ηµ3µ2u

2p3,µ1 + 4 p1,µ2p1,µ3p1,µ1u− 2u2ηµ3µ1p3,µ2 − 2 ηµ3µ2p3
4p1,µ1

+ p3,µ3ηµ1µ2u
2 + 4 ηµ1µ2up3,µ3p1

2 − 2 p1
2ηµ1µ2p1,µ3u− 2 p1,µ3ηµ1µ2u

2 − p1,µ2p3,µ1p3,µ3u− 4 p3,µ2p3,µ1p3,µ3u

+ 2 ηµ3µ2p3,µ1p3
2u+ p3,µ3p3,µ2p1,µ1u− 2uηµ3µ1p3,µ2p1

2 − 4 p3,µ2p3,µ1p3,µ3p1
2 − p1,µ3p3,µ2p1,µ1p1

2

− p3,µ3p3,µ2p1,µ1p1
2 − p3,µ3p1,µ1p1,µ2u− 2 p3,µ3p1,µ1p1,µ2p1

2 + p1,µ3p3,µ2p1,µ1u− 2 p1,µ2p3,µ1p3,µ3p1
2

+ 2 ηµ3µ2up3,µ1p1
2 − p1,µ3p3,µ2p3,µ1p1

2 + p3,µ3ηµ1µ2p1
2p3

2 − 4 p3
2ηµ3µ2p1,µ1u

+ p3,µ3p1,µ1p1,µ2p3
2 + 4 p1,µ1p1,µ2p1,µ3p3

2 − p1,µ1ηµ3µ2p1
2p3

2 + p1,µ2p3,µ1p1,µ3p3
2

+ p1,µ2p3,µ1p3,µ3p3
2 − 2uηµ1µ2p1,µ3p3

2 + p1,µ3p3,µ2p3,µ1p3
2 + 2 p1,µ3p3,µ2p1,µ1p3

2

+ 2uηµ3µ1p1,µ2p3
2 − 2 p1,µ3ηµ1µ2p1

2p3
2 + 2 p3,µ3p3,µ2p1,µ1p3

2 + 2u2ηµ3µ1p1,µ2 − p1,µ2p3,µ1p1,µ3p1
2
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− p1,µ1ηµ3µ2u
2 + 2 p3,µ1ηµ3µ2p1

2p3
2 , (G.1.3)

M3 ,µ1µ2µ3 =

− 2 ηµ3µ2u
2p3,µ1 + u2ηµ3µ1p3,µ2 + 2 ηµ3µ2p3

4p1,µ1 − 2 p3,µ3ηµ1µ2u
2 − 2 ηµ1µ2up3,µ3p1

2 + p1,µ3p3,µ2p3,µ1u

+ 2 p1,µ2p3,µ1p3,µ3u+ 4 p3,µ2p3,µ1p3,µ3u− 2 ηµ3µ2p3,µ1p3
2u+ p3,µ3p3,µ2p1,µ1u+ 2 p3,µ3p1,µ1p1,µ2u

+ p1,µ3p3,µ2p1,µ1u+ p1,µ2p3,µ1p1,µ3u+ p1,µ2ηµ3µ1p1
2p3

2 + 2 p3
2ηµ3µ2p1,µ1u+ p3,µ2ηµ3µ1p1

2p3
2

− p3,µ3p1,µ1p1,µ2p3
2 − 4 p1,µ1p1,µ2p1,µ3p3

2 + p1,µ1ηµ3µ2p1
2p3

2 − p1,µ2p3,µ1p1,µ3p3
2

− p1,µ2p3,µ1p3,µ3p3
2 + 2uηµ1µ2p1,µ3p3

2 − p1,µ3p3,µ2p3,µ1p3
2 − 2 p1,µ3p3,µ2p1,µ1p3

2

− 2uηµ3µ1p1,µ2p3
2 + 2 p1,µ3ηµ1µ2p1

2p3
2 − 2 p3,µ3p3,µ2p1,µ1p3

2 − u2ηµ3µ1p1,µ2 − p1,µ1ηµ3µ2u
2 , (G.1.4)

Nµ1µ2µ3 =

2u3p3,µ2ηµ3µ1 + 4 ηµ1µ2u
3p1,µ3 + 2 p1,µ2p3,µ1p3,µ3u

2 + 4 p1
2ηµ1µ2p1,µ3u

2

− p1,µ2p1
2ηµ3µ1u

2 + p1,µ2p1
4ηµ3µ1p3

2 + p1,µ1p1
4ηµ3µ2p3

2 − 6 ηµ3µ2p3
2p1,µ1u

2

+ 4 ηµ1µ2u
2p1,µ3p3

2 + p3
2p3,µ3ηµ1µ2u

2 + p3
2p3,µ2ηµ3µ1u

2 + 6u2ηµ1µ2p3,µ3p1
2

− p3
4p3,µ3ηµ1µ2p1

2 − 3u2ηµ3µ1p1,µ2p3
2 + 6 ηµ3µ2p3

4p3,µ1p1
2 − 4 ηµ3µ2p3,µ1p3

2u2

+ 6 p1
4p3,µ1ηµ3µ2p3

2 + 5 p3
4p1,µ2ηµ3µ1p1

2 − 4 ηµ3µ2u
2p3,µ1p1

2 + 2 p1
4ηµ1µ2p3,µ3u

− 6 p1
4ηµ1µ2p1,µ3p3

2 − 2 p1,µ3p3,µ2p1,µ1u
2 − 2 p1

4ηµ1µ2p3,µ3p3
2 − 5 p1

4p3,µ2ηµ3µ1p3
2

− 6 p1,µ3p3
4ηµ1µ2p1

2 + 3u2ηµ3µ1p3,µ2p1
2 + 2 ηµ3µ2p3

4p1,µ1p1
2 − p1,µ1p1

2ηµ3µ2u
2

− 2 ηµ3µ2p3
4p1,µ1u− p3

4p3,µ2ηµ3µ1p1
2 + 2 p3,µ3p3,µ2p1,µ1u

2 − 2 p3,µ3p1,µ1p1,µ2u
2

− 4uηµ3µ1p3,µ2p1
2p3

2 − 4 p3,µ1u
3ηµ3µ2 − 4 p3,µ2p3,µ1p3,µ3p1

2p3
2

+ 2 p3,µ3p3,µ2p1,µ1up3
2 + 4uηµ3µ1p1,µ2p1

2p3
2 + 4 p1,µ2p1,µ3p1,µ1p1

2p3
2 − 2 p1,µ2p3,µ1p3,µ3up1

2

− 4 p3,µ2p3,µ1p3,µ3up1
2 + 8 ηµ3µ2p3

2p3,µ1up1
2 − 2 ηµ3µ2up1,µ1p1

2p3
2 − p3,µ3p3,µ2p1,µ1up1

2

+ p1,µ3p3,µ2p3,µ1up3
2 − 8 p1

2ηµ1µ2p1,µ3up3
2 + 2 ηµ1µ2up3,µ3p1

2p3
2 + 4 p1,µ2p1,µ3p1,µ1up3

2

− 2 p3,µ3p1,µ1p1,µ2up1
2 + p1,µ2p3,µ1p3,µ3up3

2 − p3,µ3p3,µ2p1,µ1p1
2p3

2 + 3 p1,µ3p3,µ2p1,µ1p1
2p3

2

+ 2 p1,µ3p3,µ2p1,µ1up3
2 − p1,µ3p3,µ2p3,µ1up1

2 + p3,µ3p1,µ1p1,µ2p1
2p3

2

− 3 p3,µ1p1,µ2p3,µ3p1
2p3

2 − p1,µ3p3,µ2p1,µ1up1
2 + p1,µ2p3,µ1p1,µ3up3

2

− p1,µ2p3,µ1p1,µ3up1
2 + p3,µ3p1,µ1p1,µ2up3

2 − 2u3ηµ3µ1p1,µ2 . (G.1.5)

On shell, one has to impose the conditions

p21 = 0, p23 = 0, p22 = (p1 + p3)
2 = 0 ⇒ u ≡ p1 · p3 = 0. (G.1.6)

Hence, in the on-shell limit all the terms of the amplitude vanish.

G.2 Four gluon planar amplitude at tree level

After substituting p2 with p2 = −p1−p3−p4, introducing the variables u ≡ p1 ·p3, v ≡ p1 ·p4 and w ≡ p3 ·p4,
one obtains for the off-shell planar four gluon amplitude at tree level the result

Aoff shell
tree

(
Aa1

µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3)A

a4
µ4
(p4)

)
= g2 Tr(T a1T a2T a3T a4)

i

(p1 + p4)2(p3 + p4)2
×

(
− 1/2 p4

2p1,µ3ηµ2µ4p1,µ1 − 1/2 p1
2ηµ2µ4p3,µ3p3,µ1

+ 3/4 p4
2p4,µ2ηµ3µ4p3,µ1 − p1,µ3p4,µ1ηµ2µ4p4

2 + 2 ηµ2µ3p4,µ1p3,µ4v

+ 2 ηµ2µ3p4,µ1p3,µ4w + 1/2 p4,µ4ηµ1µ3p1,µ2v + 1/2 ηµ2µ3p1,µ1vp4,µ4

+ p1,µ4ηµ1µ2p4
2p1,µ3 + 1/4 p4,µ2ηµ1µ4p3

2p3,µ3 + 1/2 p4,µ4ηµ1µ2p3
2p1,µ3
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− p1,µ4ηµ1µ3p1,µ2w − 1/4 p4,µ2p4,µ4ηµ1µ3p3
2 − 1/2 ηµ2µ3wηµ1µ4p3

2

+ 3/4 p4
2ηµ1µ4p4,µ3p4,µ2 + 1/4 ηµ2µ3p1,µ1p4

2p4,µ4

− 1/2 ηµ2µ4p1,µ1wp3,µ3 + 3/4 p1,µ3p4,µ2ηµ1µ4p4
2 + 1/2 p4,µ4ηµ2µ3wp4,µ1

+ 1/2 p4,µ2ηµ1µ4wp4,µ3 − 2 p4
2p4,µ3ηµ2µ4p4,µ1 + 1/2 p4,µ4ηµ1µ2wp3,µ3

− 1/2 p1,µ4ηµ1µ3p1,µ2p3
2 + 1/4 p4,µ2ηµ1µ4p1

2p3,µ3 − 1/4 p4
2p3,µ1ηµ3µ4p1,µ2

− 1/2 p4,µ4ηµ1µ2p1
2p1,µ3 − 2 ηµ2µ4p4,µ1p4,µ3v + 1/2 ηµ2µ3ηµ1µ4p4

2u− 1/2 ηµ1µ4p1,µ2wp3,µ3

− 1/2 ηµ1µ4p1,µ2vp3,µ3 − p4
2ηµ2µ3p3,µ1p1,µ4 + p4,µ1p4,µ2ηµ3µ4w

− 1/4 p1
2ηµ1µ4p3,µ3p1,µ2 + 1/2 p1

2ηµ2µ3p3,µ1p4,µ4

− 1/4 ηµ1µ4p1,µ2p3
2p3,µ3 − 1/4 ηµ1µ4p1,µ2p3

2p1,µ3 + 1/2 p1
2ηµ2µ3p4,µ1p4,µ4

+ 1/2 p4,µ2ηµ3µ4p1,µ1v − ηµ2µ4p4,µ1p4,µ3p1
2 − p4

2p1,µ3ηµ1µ2p3,µ4

− 1/4 p1
2p3,µ1ηµ3µ4p3,µ2 − 1/4 p1

2p3,µ1ηµ3µ4p1,µ2

− 1/2 ηµ1µ4p1,µ2wp1,µ3 − 1/4 p1
2p4,µ2p4,µ4ηµ1µ3 + vp4,µ3ηµ1µ4p4,µ2

+ p4
2ηµ2µ4ηµ1µ3v − vp1,µ3ηµ1µ2p4,µ4 − 1/2 p4,µ4ηµ1µ3p1,µ2w

− 1/4 p4,µ4ηµ1µ3p1,µ2p3
2 + 1/2 ηµ2µ3p1,µ1p3

2p3,µ4

− 1/2 p4
2ηµ1µ4p1,µ2p3,µ3 + 1/4 p1

2ηµ1µ4p3,µ3p3,µ2 − 1/2 ηµ2µ4p1,µ1p3
2p4,µ3

− 1/4 p4
2p3,µ1ηµ3µ4p3,µ2 + 1/2 p4,µ1p4,µ2ηµ3µ4p3

2 + 1/2 p4,µ1p4,µ2ηµ3µ4v

+ 1/2 ηµ2µ3p1,µ1p1
2p3,µ4 − 1/2 p4

2ηµ3µ4p3,µ2p1,µ1

+ 1/2 ηµ3µ4p1,µ1p1,µ2w − 1/2 p4
2p1,µ4ηµ1µ3p1,µ2 + 1/4 ηµ3µ4p1,µ1p1,µ2p3

2

+ 1/4 p1
2p4,µ1ηµ3µ4p4,µ2 + 1/2 p4,µ3p3,µ2ηµ1µ4p1

2 + 1/2 p4,µ2ηµ3µ4p1,µ1w

+ 1/4 p4,µ2ηµ3µ4p1,µ1p3
2 + 1/2 p1,µ4p3,µ2ηµ1µ3p3

2 − 1/4 ηµ2µ4p1,µ1p3
2p3,µ3

− 1/2 ηµ2µ4p1,µ1vp3,µ3 + 1/4 ηµ3µ4p1,µ1p1,µ2p4
2 − 1/2 vp3,µ1ηµ3µ4p1,µ2

− 1/2 vηµ1µ3p3,µ2p4,µ4 − 1/2 p4
2ηµ3µ4ηµ1µ2p1

2 − 1/2 vp3,µ1ηµ3µ4p3,µ2

+ 1/4 p4,µ4ηµ2µ3p3
2p4,µ1 − 1/4 ηµ2µ4p1,µ1p1

2p3,µ3 + p4,µ4ηµ1µ2p4,µ3w

+ vηµ3µ4ηµ1µ2u− 1/2 p4
2ηµ3µ4ηµ1µ2w − 2 vηµ2µ4p4,µ3p3,µ1

− vηµ3µ4ηµ1µ2w + 1/2 p4
2ηµ3µ4ηµ1µ2u− 1/2 p4,µ2p4,µ4ηµ1µ3p4

2

− 1/2 p4
2p3,µ4ηµ1µ3p4,µ2 + 1/2 p4,µ3p3,µ2ηµ1µ4w + 1/4 p4,µ3p3,µ2ηµ1µ4p3

2

− 2 ηµ2µ3p1,µ4wp3,µ1 − 1/2 p1
2ηµ3µ4ηµ1µ2w − ηµ2µ3p1,µ4p3

2p3,µ1

− 1/4 ηµ3µ4p1,µ1p3,µ2p3
2 − 1/4 ηµ3µ4p1,µ1p3,µ2p1

2

+ 1/2 p4,µ4ηµ1µ2p4,µ3p3
2 + 2 p1,µ4ηµ1µ2wp1,µ3 − 1/4 p4

2p1,µ3ηµ1µ4p3,µ2

− p4,µ1p3,µ2ηµ3µ4w − 1/2 p4,µ1p3,µ2ηµ3µ4p3
2 − 1/4 p4

2p1,µ3ηµ1µ4p1,µ2

− 1/2 ηµ2µ4p1,µ1p1,µ3p3
2 + 1/2 p1,µ4p3,µ2ηµ1µ3p4

2

+ 1/2 p4
2p4,µ2ηµ3µ4p1,µ1 − 1/2 p1

2ηµ3µ4ηµ1µ2v + 1/2 p1
2ηµ3µ4ηµ1µ2u

− 1/2 p3,µ2p1,µ3ηµ1µ4w − 1/4 p3,µ2p1,µ3ηµ1µ4p3
2 − 1/4 p1

2p3,µ4ηµ1µ2p3,µ3

+ 1/2 p4
2ηµ2µ4ηµ1µ3p3

2 − vηµ2µ4p4,µ3p1,µ1 − vηµ2µ4p3,µ3p3,µ1

+ 1/2 p1,µ4ηµ1µ2p1
2p3,µ3 − p4,µ1ηµ2µ4wp3,µ3 + 1/2 p4

2ηµ1µ3p1,µ2p3,µ4

− p4,µ1ηµ2µ4vp3,µ3 − 1/4 p1
2ηµ1µ3p3,µ2p4,µ4 + 1/2 vp4,µ3ηµ1µ2p4,µ4

− 1/2 vp3,µ4ηµ1µ2p3,µ3 + 1/4 p1
2p4,µ1ηµ3µ4p1,µ2 − 1/2 p4,µ1ηµ2µ4p3

2p3,µ3

+ 1/4 p4,µ2ηµ3µ4p1,µ1p1
2 + 1/2 p1,µ4ηµ1µ2p3

2p3,µ3 + 2 vηµ2µ4ηµ1µ3w

− 1/2 ηµ3µ4p1,µ1p3,µ2w + 1/2 p1
2ηµ2µ4ηµ1µ3p3

2 + 2 p1,µ4ηµ1µ2wp4,µ3

+ 1/4 p1
2p4,µ4ηµ1µ2p4,µ3 + 3/2 vp3,µ1ηµ3µ4p4,µ2 − 3/4 p1

2p4,µ1ηµ3µ4p3,µ2

− 3/2 vηµ3µ4ηµ1µ2p4
2 + 2 vp4,µ3ηµ1µ2p1,µ4 + 1/2 p4

2ηµ1µ4p3,µ3p4,µ2
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+ 1/2 p1
2p4

2ηµ2µ4ηµ1µ3 + 1/2 vηµ1µ4p3,µ3p3,µ2

− 1/2 p4
2ηµ2µ4p3,µ3p3,µ1 − 1/2 p4

2ηµ2µ4p3,µ3p1,µ1 − 1/2 ηµ3µ4p1,µ1p3,µ2v

+ 3/4 p1,µ3p4,µ2ηµ1µ4p3
2 − vηµ1µ4ηµ2µ3w − 1/2 p1

2p3,µ4ηµ1µ3p3,µ2

+ ηµ2µ3p1,µ1wp3,µ4 − p1
2p1,µ3ηµ1µ2p3,µ4 − 1/2 p1

2ηµ2µ4p4,µ3p1,µ1

− 1/2 vηµ1µ4ηµ2µ3p3
2 − 3/2 p4,µ3ηµ1µ4p1,µ2w + 1/2 p1

2ηµ1µ3p1,µ2p3,µ4

+ 3/4 p4
2ηµ2µ3p4,µ1p4,µ4 − 1/2 p4,µ3ηµ1µ4p1,µ2p1

2

+ 3/4 p4
2p4,µ1ηµ3µ4p1,µ2 − 1/2 p1

2p3,µ4ηµ1µ3p4,µ2 − 1/4 p4
2p3,µ4ηµ1µ2p3,µ3

+ vp3,µ4ηµ2µ3p1,µ1 + 1/2 p4,µ4ηµ1µ3p3,µ2w + 1/4 p4,µ4ηµ1µ3p3,µ2p3
2

− ηµ2µ4p1,µ1wp4,µ3 + 1/4 ηµ2µ3p1,µ1p1
2p4,µ4 − 1/4 ηµ2µ3p1,µ1p4

2p1,µ4

+ 3/2 p4,µ2ηµ1µ4wp1,µ3 − 1/2 p4,µ2p4,µ4ηµ1µ3v − 5/4 p4
2p4,µ3ηµ1µ4p1,µ2

− 3/2 ηµ2µ3ηµ1µ4wp4
2 − p4,µ2ηµ1µ3p1,µ4w + 1/4 p4,µ2ηµ1µ4p3

2p4,µ3

+ 1/2 p4,µ2ηµ1µ4wp3,µ3 + 3/4 p4,µ1p4,µ2ηµ3µ4p4
2 + vηµ2µ3p4,µ1p4,µ4

+ 3/4 p4
2ηµ1µ4p4,µ3p3,µ2 − p1,µ3p4,µ1ηµ2µ4p3

2

− p4
2p4,µ3ηµ2µ4p1,µ1 − 1/2 p4,µ2p4,µ4ηµ1µ3w + 2 p4

2p3,µ4ηµ2µ3p4,µ1

− 1/4 ηµ2µ3p1,µ1p3
2p1,µ4 + p4

2ηµ2µ3p1,µ1p3,µ4 + vηµ2µ3p3,µ1p4,µ4

− 1/2 p4,µ2ηµ1µ3p1,µ4p4
2 − ηµ2µ3w

2ηµ1µ4 + ηµ2µ3p4,µ1p3,µ4p1
2

+ ηµ2µ3p4,µ1p3,µ4p3
2 + p1,µ4ηµ1µ2p4

2p3,µ3 + p1,µ4ηµ1µ2p3
2p4,µ3

− 2 vp1,µ3ηµ1µ2p3,µ4 + p1,µ4ηµ1µ2p1
2p4,µ3 + 2 vp3,µ4ηµ2µ3p3,µ1

− 1/2 p4,µ2ηµ1µ3p1,µ4p3
2 + 1/2 p4,µ2ηµ1µ4vp3,µ3 − 2 p1,µ3p4,µ1ηµ2µ4w

− 3/2 vηµ3µ4p3,µ2p4,µ1 + vηµ1µ3p1,µ2p3,µ4 + p4,µ4ηµ1µ2wp1,µ3

+ p4
2ηµ2µ4ηµ1µ3w + p1,µ4ηµ1µ2wp3,µ3 + 2 p4

2p4,µ3ηµ1µ2p1,µ4

+ p1
2ηµ2µ4ηµ1µ3w + p1,µ4ηµ1µ2vp3,µ3 − p4,µ1ηµ2µ4p4

2p3,µ3

+ vηµ2µ4ηµ1µ3p3
2 − 1/2 p4

2ηµ1µ4ηµ2µ3p3
2 − 1/2 vηµ1µ4ηµ2µ3p4

2

− 1/2 ηµ2µ3p1,µ1wp1,µ4 − vp3,µ4ηµ1µ3p3,µ2 + 1/2 p4
4ηµ2µ4ηµ1µ3

− vp3,µ4ηµ1µ3p4,µ2 + 1/4 p4,µ4ηµ1µ2p3
2p3,µ3 − p4,µ1ηµ2µ4p3

2p4,µ3 − p4,µ4ηµ2µ3wp3,µ1

+ 1/2 p4,µ1ηµ3µ4p1,µ2p3
2 − 5/4 p4

2ηµ3µ4p3,µ2p4,µ1

− p4
2p4,µ3ηµ2µ4p3,µ1 − ηµ2µ4p1,µ1p1,µ3w + p1,µ4ηµ1µ2p3

2p1,µ3

− vp4,µ3ηµ1µ4p1,µ2 + 1/2 p4,µ1ηµ3µ4p1,µ2v + 1/2 p4,µ2ηµ1µ4p1
2p4,µ3

− p1
2ηµ2µ4p4,µ3p3,µ1 − 1/2 p1

2ηµ2µ4p3,µ3p4,µ1 + 1/4 p4,µ4ηµ1µ2p4
2p3,µ3

+ 3/4 p1
2p4,µ2ηµ3µ4p3,µ1 + 1/4 p4

2ηµ1µ4p3,µ3p3,µ2 − 1/2 p4
4ηµ3µ4ηµ1µ2

− 3/4 ηµ1µ4p1,µ2p3
2p4,µ3 + 1/2uηµ2µ3ηµ1µ4p3

2 + 1/4 p1
2p4,µ4ηµ1µ3p1,µ2

− 1/2 p4
4ηµ1µ4ηµ2µ3 + p1,µ4p3,µ2ηµ1µ3w + vp4,µ3ηµ1µ4p3,µ2

+ uηµ2µ3ηµ1µ4w + p1
2p3,µ4ηµ2µ3p3,µ1 − 2 p4,µ1ηµ2µ4wp4,µ3 + 3/4 p4,µ4ηµ1µ2p4,µ3p4

2

− v2ηµ3µ4ηµ1µ2 − 1/2 p4
2p3,µ4ηµ1µ3p3,µ2 + p4,µ1ηµ3µ4p1,µ2w

+ p4
2p3,µ4ηµ2µ3p3,µ1 − 1/2 p4,µ4ηµ2µ3p3

2p3,µ1

)
(G.2.1)

G.3 Four gluon planar amplitude at one loop

Summing all the superdiagrams and making the Passarino-Veltman procedure, one obtains for the off shell
planar four gluon amplitude at one loop the decomposition

Aoff shell
1 loop

(
Aa1

µ1
(p1)A

a2
µ2
(p2)A

a3
µ3
(p3)A

a4
µ4
(p4)

)
= Ng4Tr(T a1T a2T a3T a4)×

108



(
Qµ1µ2µ3µ4 D0(p1, p4, p3)

+N1,µ1µ2µ3µ4 C0(p1, p3 + p4) +N2,µ1µ2µ3µ4 C0(p1, p4) +N3,µ1µ2µ3µ4 C0(p1 + p4, p3) +N4,µ1µ2µ3µ4 C0(p4, p3)

+M1,µ1µ2µ3µ4 B0(p1) +M2,µ1µ2µ3µ4 B0(p4) +M3,µ1µ2µ3µ4 B0(p1 + p3 + p4) +M4,µ1µ2µ3µ4 B0(p3)

+M5,µ1µ2µ3µ4 B0(p1 + p4) +M6,µ1µ2µ3µ4 B0(p3 + p4)
)

(G.3.1)

Let’s define as
QV , NV 1, . . . NV 4,M1 . . .M6 (G.3.2)

those parts of the coefficients

Qµ1µ2µ3µ4 , N1,µ1µ2µ3µ4 , . . . N4,µ1µ2µ3µ4 ,M1,µ1µ2µ3µ4 . . .M6,µ1µ2µ3µ4 (G.3.3)

which multiply the Lorentz structure ηµ2µ3p3µ1p3µ4 .
Defining as before, u = p1 · p3, v = p1 · p4 and w = p3 · p4, we can write

QV =
NumQV

DenQV

,

DenQV
= 64

(
v2p3

2 − p4
2p1

2p3
2 + p4

2u2 + w2p1
2 − 2wvu

)2

NumQV
= −88 v5p3

4 − 32 v4w3 − 24 p3
6v4 − 32 v5w2 − p4

8p1
4p3

2 + p4
8p1

2u2 + p1
8p4

2w2 − 2 p1
6w2v2

− p1
6u2p4

4 − 24 p4
4p3

6p1
4 − 2 p4

6v2u2 − 34 p4
6p3

4p1
4 − p4

6p1
4w2 − 16 v3p1

4w2

− 88 p3
4v4w − 48 p1

4v2w3 − 6 p4
6p1

2wvu− 20 vp1
4wup4

4 + 40 v3p1
2wup4

2 + 16 p4
6p1

2u3

− 16 v2p1
2wup4

4 + 2 p1
6wvup4

2 + 16 vp1
6wp4

2p3
2 − 16 vup4

6p1
2p3

2 + 8 v4p1
2p3

2p4
2

+ 2 vp1
2p4

6u2 − 10 v2p1
2u2p4

4 + 16 v3up3
2p4

4 + 2 vp1
4w2p4

4 + 32 v4up4
2w

− 6 vp1
6p4

4p3
2 + 8 p4

4v3uw + 6 v3p1
4p4

2p3
2 − 32 v4wp3

2p4
2 + 8 p4

4p1
2w2v2 + p4

6v2p1
2p3

2

− 4 p4
6p1

4wu+ 30 v2p1
4w2p4

2 + p1
6v2p4

2p3
2 − 6 vp1

4u2p4
4 − 6 p4

6p1
4vp3

2 − 36 p4
4p1

2uvw2 − 32 v3u2wp4
2

+ 8 p4
4u2p1

4p3
2 − 48 p1

4p4
2uvwp3

2 + 48 p1
2v3uw2 − 64 p1

2v2u2wp4
2 − 16 p1

4wv3p3
2 + 32 p3

4v3up4
2

+ 8 p4
4p1

4w3 − 64 v5wp3
2 + 16 p1

4v2uw2 − 96 v4w2p3
2 + 32 v4uw2 − 64 p1

2v3w3

− 24uv4p3
4 − 2 p1

6p4
6p3

2 − 8 v3u2p4
4 − 40 v4p1

2w2 − 8 p4
2v4w2 − 30 p1

2v4p3
4 + 8 v2u3p4

4

− 34 p4
4p3

4p1
6 + 16 p1

6p4
2w3 + 64 p4

4p1
2v2p3

4 + 48 p4
2p3

2p1
6w2 + 36 p1

4p4
2uvw2

− 8 p1
4p4

4u2w + 20 p1
2vu3p4

4 + 28 p1
4p4

2vw3 − 52 p4
4p1

2vwu2 + 80 p4
2p1

2p3
4v2u+ 32 v3p3

4wu

+ 8 p4
4p1

4p3
2w2 − 20 p1

6up4
4p3

2 + 6 p4
4v3p1

2p3
2 − 144 p4

4p3
2p1

2vwu

+ 24 v3p1
2w2p4

2 + 10 vp1
6p4

2w2 − 6 v2p1
4p4

4p3
2 + 48 p4

2p3
6p1

2v2 − 4 p1
6wup4

4

+ 88 v3p1
2p4

2wp3
2 − 16 v2p3

4w2p1
2 + 16 v2p1

4wup4
2 − 16 v2p3

4p4
2u2 + 16 p1

6w2p4
2u

− 32 p4
4p3

4p1
2vu+ 48 p4

6u2p1
2p3

2 − 56up3
4p1

4p4
4 + 84 p4

2p3
2p1

2v2w2

+ 144 p4
2p3

4p1
2wv2 − 96 p4

4p3
4p1

4v − 208 v3p3
2p1

2w2 + 64 p4
2p1

4p3
4v2 + 16 p4

6p1
2u2w

+ 52 p4
4p1

2wv2p3
2 − 12 p4

4p1
2uv2p3

2 − 20 p1
6p4

4wp3
2 − 128 p4

2p1
2p3

2v2wu

− 32 v3p3
4p1

2w − 12 v2u2p1
2p3

2p4
2 − 20 p4

6p1
4wp3

2 + 56 p1
2v3up3

2p4
2 + 184 p1

2v3p3
4p4

2

− 64 p1
2v4wp3

2 − 8 p1
4p4

4uw2 + 200 p4
2p3

2p1
4vw2 − 52 p1

4p3
2v2w2 + 32 v4up3

2p4
2 − 56 p4

4v2u2w

− 52 p4
4v2u2p3

2 + 104 p4
4u2p1

2vp3
2 + 72 p4

2v2up1
2w2 − p1

8p4
4p3

2 + 56 v3p1
2p3

2wu

− 56wp3
4p1

4p4
4 + 80 p4

2v3uw2 + 20 p1
4p4

2uv2p3
2 − 24 vp1

4p4
4wp3

2 − 128w2v2p4
2u2 − 28 p1

4p4
2vwu2

+ 152 p4
2v3uwp3

2 − 16 p4
6u4 − 16 p1

6w4 − 80 p1
4p4

4wup3
2 + 32 p1

4p4
2vwp3

4 + 8 p1
4p4

4u3

− 112 v3p4
2u2p3

2 + 224 v4wup3
2 − 20 p1

4up4
6p3

2 + 8 p4
2v2p1

2w3 + 84 p1
4p4

2wv2p3
2 − 56 p1

4p4
4uvp3

2

− 30 v4p3
4p4

2 − 32w4v2p1
2 + 64w3v3u− 48 vp4

4u4 − 80 vw4p1
4 − 192w2v3u2 + 192 p4

2u3wv2

+ 16 p1
2p4

2u3wv − 12 p1
6w3v + 12 p4

6vu3 + 48 p4
2w3p1

2vu− 16 p1
4p4

2u2w2 + 48 p1
4w3vu− 16 v2u3p3

2p4
2

+ 32 v3u2p3
2w + 16 p3

4p1
2p4

4u2 + 16 p3
4p1

4p4
2w2 + 16 p4

4vu3p3
2 − 192 vp4

2u2w2p1
2 + 256w3p1

2v2u
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− 16 p4
4u2w2p1

2 + 80 p4
4u3wv − 32 p1

2w2v2u2 + 32wp1
2p4

4p3
2u2 − 48w3v2p3

2p1
2

+ 96w2v3p3
2u+ 32w3p1

4p4
2p3

2 + 32up1
4p4

2p3
2w2 − 80u2p1

2p4
2p3

2wv + 32 p4
4wp1

2u3

+ 32 p4
2w3p1

4u+ 32u3p1
2p4

4p3
2 − 16 p1

4vw3p3
2 + 16 v2up3

2w2p1
2

− 32 p3
4p1

2p4
2wvu− 48 p4

2vup3
2w2p1

2 − 80 p4
2v2u2p3

2w, (G.3.4)

NV 1 :=
NumNV 1

DenNV 1

DenNV 1
= 64 (p4 + p3)

2 (−p12p42 − 2 p1
2w − p3

2p1
2 + v2 + 2 vu+ u2

)
×

(
v2p3

2 − p4
2p1

2p3
2 + p4

2u2 + w2p1
2 − 2wvu

)2

NumNV 1
= 218 p4

4p3
2p1

2wvu3 − 140 p4
2p3

2p1
2w2vu3 − 248w3p1

2vu3p4
2 + 15 p1

8p4
2wp3

6

+ 4 v3p3
8p1

4 − 48w5p1
6v + 60w2v4p1

2p4
4 − 104 p3

2p1
2v4w2u+ 72 v3p1

2p3
2u3w + 56 v4p1

2p3
2u2w − 40 v5p1

2p3
2uw

+ 128 p3
2p1

4v3w3 + 47 p3
6p1

6vp4
4 + 75 p3

4p1
6vp4

6 + 200 p3
4p1

2v5w − 20w3p1
6p3

6 − 24w2v6p4
2

+ 160 p3
4p1

2v5p4
2 − 74 v3p1

4p4
4w2 − 72 v3p1

4p4
6p3

2 + 12 v3p1
4p4

2w3

− 5 p1
8p4

2wp3
4v − 64 v7wp3

2 + 48 v5w3p1
2 − 28 p3

8v2wp1
4 + 16 p3

4p1
4v3w2

− 195 p3
4p1

4v3p4
4 − 150 vp1

6p4
2w4 + 24 vp1

6p4
8p3

2 + 38 v5p4
4wp1

2 + 100 v5p4
2w2p1

2 − 42 p4
6p1

4w2v2

− 28 p4
6p1

4v3w + 72 v5p1
2p4

4p3
2 − 103 p3

6p1
4v3p4

2 − 8 p4
8p1

4wv2

− 42 p1
6p4

6p3
2v2 + 4 p1

6p3
6p4

2wv + 6 vp1
6p4

6w2 − 72 p4
2p3

2v6w + 80 v3w4p1
4

+ 52 p1
8p4

6p3
4 + 10 p4

6v4wp1
2 − 102 p1

8w3p4
2p3

2 + 2 p1
8w2p4

2p3
4 − 96w2v6p3

2

+ 146 v4p1
4p3

4w + 117 v4p1
4p3

4p4
2 − 40 v6p1

2p3
2w − 44 p1

6p3
4w3v + 254 p4

4p3
2p1

2v4w

+ 14 p1
8p4

8p3
2 + 38 p1

8p4
4p3

6 − 289 p4
6p3

2p1
4v2w − 14 v6p1

2p3
2p4

2 + 112 v4p1
4p3

2w2

+ 42 v4p1
4p3

2p4
4 − 139 p1

6p4
4p3

4v2 − 12u2p4
10p1

4 + 6 p4
8p1

6vw + 64w4p1
2v4 − p1

8w2vp3
4

+ 100 p4
2p3

4p1
2wvu3 − 32w4p1

2vu3 − 32w4p1
2v2u2 − 112w3p1

2vu3p3
2 − 264w3p1

2v2u2p4
2

− 336w3p1
2v2u2p3

2 − 180 p4
2p3

2p1
2w2v2u2 + 324 p4

2p3
4p1

2wv2u2

− 288w3p1
2v3up4

2 − 108 p4
2p3

6p1
4wvu + 258 p4

4p3
2p1

2wv2u2 − 128w4p1
2v3u− 352w3p1

2v3up3
2

+ 14 p4
10p3

2p1
6 − 14 p4

4p3
2v6 + 804 p4

2p3
2p1

4w3vu+ 368w4p1
4vup3

2

+ 183 p4
2p3

4p1
4w2vu+ 150 p4

4p3
2p1

2wv3u+ 80w5p1
4vu− 112 p4

2p3
2p1

2w2v3u+ 490 p4
2p3

4p1
2wv3u

+ 412w4p1
4vup4

2 − 44 p4
6p3

2p1
4wvu+ 336 p4

4p3
2p1

4w2vu+ 538 v4p3
4p1

2wp4
2

− 248 p4
4p3

4p1
4wvu+ 63 p4

6u4p1
2p3

2 + 408 v4p3
4p1

2w2 + 157 v4p3
4p1

2p4
4 − 21 p4

6w3p1
6

+ 6 p4
8w2p1

6 − 6 p1
8w4v + 56 p3

6p1
2v5 − 88 v5p3

6u+ 40 v4p3
8p1

2 − 28 p4
6u5v

− 42 p4
6u4v2 + 23 p4

8u4p1
2 − 44 p4

4u5vp3
2 − 36 p4

4u4v2w − 98 p4
4u4v2p3

2 + 94 p4
6u4p1

2w

− 387 p3
4p1

4v3p4
2w − 189 p3

2p1
6vp4

2w3 + 95 p3
2p1

6vp4
4w2 + 434 p4

4p1
6p3

4w2 − 133 p4
6p1

4p3
4u2

− 268 p3
2p1

4v3w2p4
2 − 25 p3

4p1
6vp4

2w2 + 187 p3
4p1

6vp4
4w − 15 p1

8w3vp4
2 + 43 v4p1

4p3
6 − 30 v6p1

2p3
4

− 5 p1
8w3vp3

2 + 170 v4p1
4p3

2p4
2w − 13 p1

8w2vp3
2p4

2 − 81 p1
6p4

2p3
6v2 − 333 v3p1

4p4
4p3

2w − 232 v5p3
4uw

+ 155 v4p3
6p1

2p4
2 + 228 v4p3

6p1
2w − 40 p4

4u5vw − 16 v7p4
2w − 24 v7p4

2p3
2 + 96w2v4u2p3

2

− 130 v4p3
4u2p4

2 − 120 v4p3
4u2w − 122 v5p3

4up4
2 − 32w3v6 + 127 vp1

6p4
6p3

2w + 270 v5p1
2p4

2wp3
2

+ 64w2v2u4p3
2 + 168w2v3u3p4

2 + 192w2v3u3p3
2 + 152w2v4u2p4

2 + 32w3v3u3 + 32w3v4u2 − 80 v4p3
6u2 − 4 p4

4v6w

+ p1
6v3p3

6 + 247 p4
4p1

6p3
6w + 324 p4

6p1
6p3

4w + 96w2v2u4p4
2 − 100w4p1

6p4
4

− 116w5p1
6p4

2 + 86 p4
6p1

6p3
6 + 36 p4

4p1
6p3

8 + 64 p4
8p1

6p3
4 + 56w4p1

4u2p4
2

+ 40w4p1
4u2p3

2 − 4w4p1
4v2p4

2 + 56w4p1
4v2p3

2 − 196w4p1
6p3

2p4
2

− 351 p4
4p1

4p3
4u2w − 68 p4

4p1
4p3

6u2 − 175 p4
6p1

4p3
4v2 + 7 p1

6v3p3
2wp4

2

− 758 p4
4p1

4p3
4v2w − 209 p4

4p1
4p3

6v2 + 96 p4
4u4p1

2w2 + 40 p4
4u4p3

4p1
2 − 77 p4

8p3
2p1

4u2
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+ 144 p4
4u4p1

2wp3
2 − 356 p4

6p3
2p1

4u2w + 102 p4
4p3

2p1
6w3 + 35 p4

2p3
4p1

6w3 − 5 p1
8p4

4p3
2vw

+ 244 p4
6p3

2p1
6w2 + 108 p4

2p3
6p1

6w2 − 76 p4
2p3

8p1
4v2 − 475 p4

2p3
6p1

4v2w − 392w3p3
2p1

4v2p4
2

− 92w3p3
4p1

4v2 − 56 p4
2u4p3

4v2 − 100 p4
4u3p3

2v3 − 32 p4
2u4p3

2v2w − 8 p4
6u6 + 128 p1

4w4v2u

+ 24 p4
2u3p3

2v3w − 94 p4
2u3p3

4v3 − 56 p4
4u2p3

2v4 + 8 p4
2u2p3

2v4w + 96 p1
4w4vu2 − 128uv5w2p3

2

+ 16w5p1
4u2 + 32w5p1

4v2 − 112w5p1
6p3

2 − 88w4p1
6p3

4 − 104uv5wp3
2p4

2 + 256w3p3
2p1

2v4 + 472w2p3
2p1

2v4p

− 847w2p3
4p1

4v2p4
2 − 112w2p3

6p1
4v2 + 40u3v3wp3

4 − 163 p4
6u2w2p1

4 − 24u4v3p3
4 + 32u4v3w2 − 80u4v3p4

4

+ 23u4p4
6p1

4 − 112u3v4p3
4 − 30u3p4

6v3 − 16u3v4p4
4 − 3u3p1

6p4
6 − 19u3p4

8p1
4

− 24u3p3
6v3 + 64u3v4w2 − 6u2p4

6v4 − 45 p1
8w3p4

4 + 2 p1
8wp4

8 − 2 p1
8w2p4

6 + 2 p4
10p1

6w

− 82 p4
4u2w3p1

4 − 16 p4
4u7 − 435 p4

4u2w2p1
4p3

2 − 40 p4
2u2w3p1

4p3
2 + 32 p4

2u5w2v + 32u4p3
4v2w

+ 128u4v3wp3
2 + 78u4vp1

2p4
6 + 176u4v3p4

2w − 184u4v3p4
2p3

2 − 32u4vw3p1
2 − 32u4p4

2w2p1
4

+ 55u4p4
4p1

4p3
2 − 18u4p4

4v2p1
2 − 32u4v2w2p1

2 + 2u4vp1
4p4

4 + 226u4p3
2p1

2vp4
4 + 116u4vp1

2p4
4w

+ 16u4wp1
2p3

4p4
2 − 205 p1

6wp4
4v2p3

2 + 2u4p4
2p1

4p3
2v − 34u4p4

2v2p1
2p3

2 + 4u4p4
2wp1

4v

+ 52u4vp4
2p1

2p3
4 + 46u4p4

4wp1
4 − 3u3p1

4p4
6v − 142u3p4

4p1
4w2 − 6u3p1

6w2p4
2 + 44u3p3

6vp4
2p1

2

− 48u3p3
4vw2p1

2 − 16 p4
2u5wvp3

2 + 16 p4
4u3wv3 − 113u3p4

6p1
4w − 208u3p4

2v4p3
2 − 9u3p1

6wp4
4

+ 33u3p4
8p1

2v + 18u3v3p1
2p4

4 + 24u3vw3p1
4 − 123u3p4

6p1
4p3

2 − 3u3p1
6p4

4p3
2

+ 16u3p3
2w3p1

4 − 14u3v3p3
4p1

2 − 120u3p4
4p1

4p3
4 + 50u3v2p1

2p4
6 + 160u3p4

2v4w

+ 6u3p1
4v2p4

4 + 32u3p4
2w3p1

4 − 4u3p1
4v2w2 − 56u3p1

2v3w2 + 128u3v4wp3
2 − 48u3p1

2w3v2

+ 6u2p1
4v3p4

4 + 28u2v3p3
6p1

2 − 22u2p1
4p4

6v2 + 16u2w3p1
4p3

4 + 26u2v4p1
2p4

4 + 56u2p4
4v4w

− 79u2p4
8p1

4w + 18u2p4
8p1

2v2 + 13u2w2p1
6p4

4 + 174u3p4
2p3

2p1
2wv2 − 110u3p4

2p3
2p1

4vw − 24u3p3
4p1

2wv2

− 72u3p4
2p3

2p1
4w2 + 260u3p4

2p3
4p1

2v2 − 20u3vp3
2p1

4w2 + 8u2w3p1
6p3

2 − 4 p1
4w2v5 + 12 p1

6w3v3

+ 32 p4
2u4w2p1

2p3
2 − 16 p4

4u6w − 8 p4
4u6p3

2 − 2 p1
4v5p3

2w + 12 p1
6v3p3

2w2 − 32w6p1
6 − 32 v6p3

6

− 200 p1
2p3

2u3w2v2 − 2u3p1
4p3

2wv2 − 339u3p1
4p4

4p3
2w + 23u3p4

2p3
4p1

4v − 268u3p1
4p4

2vw2

− 3u3p1
6wp4

2p3
2 − 56u3p4

2p3
4p1

4w + 374u3p4
4p1

2p3
2v2 − 60u3v3p1

2p4
2p3

2 + 84u3vp1
4p4

4p3
2

− 98u3vp1
4wp4

4 + 6u3v2p1
4p4

2p3
2 + 34u3p4

4p1
2wv2 + 10u3v2p1

4wp4
2 + 6u2p1

4wv3p4
2 − 46 v6p3

4p4
2

− 104 v6p3
4w − 16u2p3

6v2wp1
2 − 83u2vp1

4p4
6w − u2p1

6p4
2vp3

4 + 14u2p4
6p1

2wv2 − 16u2v2p3
4p1

4w

− 15u2p4
2p1

6p3
4w + 4u2p1

6w2vp3
2 − 2u2v3p1

2p4
6 − 14u2vp1

4p4
8 + 64u2v5p4

2w − 160u2v5p4
2p3

2

− 6u2p1
6p4

6v − 23u2p1
6wp4

6 + 16u2v5p4
4 − 192u2v5p3

4 − 4u2p1
6p4

8 − 64u6vp4
4 − 16u6p4

4p1
2 + 40u5p1

2p4
6

− 104u5v2p4
4 − 32uw3v5 + 8uv6p4

4 − 2up1
8w4 + 2up1

8p4
8 + 2up4

6v5

+ 2up4
10p1

6 − 64uv6w2 − 32uw5p1
6 − 144uv6p3

4 + 460w3p1
4vup4

4

− 2 p1
4wv5p4

2 + 5 p1
6v3p3

4w + p1
6v3p3

4p4
2 − 348u3v2p1

2p4
2w2 − 86u2v2wp1

4p4
4

− 32u2p4
2p3

6p1
4v − 12u2v3p1

4w2 + 136u2p1
4v2w3 − 64u2v5wp3

2 − 176u2p1
2v3w3 − 65u2p1

6p4
6p3

2

− 40u2v4p1
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2 + 15 p4
2u2w2p1

2p3
2 − 4u3p3

4vp4
2

− 10w3p1
2vup3

2 − p4
8p3

2u2 + 16w4v2u− 2w4up1
4 − 2w4up1

2p4
2 + 4w4p4

2uv + 4w3p1
2u2v

+ 2w3uvp4
4 + 8w3p4

2v2u− 2w3u2p4
4 − w2p4

6u2 − wp4
6u3 + 8wp3

6v3 − 4w3vp4
2u2

+ 16w2u3vp3
2 − 12w2p3

4vup1
2, (G.3.12)

M5 =
NumM5

DenM5

,

DenM5 = 64
(
v2p3

2 − p4
2p1

2p3
2 + p4

2u2 + w2p1
2 − 2wvu

)
×

(
−p32p12 − 2 p3

2v − p4
2p3

2 + u2 + 2uw + w2
)

NumM5 =
(
2 v + p1

2 + p4
2
) (
vu− wv + up4

2 − p1
2w
) (

4u+ 4 v + p4
2 + 4w + p1

2 + 4 p3
2
)
, (G.3.13)

M6 = 0 (G.3.14)

In the on shell limit, where p21 = 0, i = 1 . . . 4 and p1 · p3 = −p1 · p4 − p3 · p4, i.e. u = −v − w, all the
coefficients multiplying triangles and those multiplying bubbles , vanish

Non shell
V 1 = . . . Non shell

V 4 = 0, Mon shell
1 = . . .Mon shell

6 = 0.
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The only non vanishing coefficient in the on shell limit is QV which gives

Qon shell
V = −v ≡ −p1 · p4.
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