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Abstract 

We formulate the dynamical symmetry breaking of the Standard Model 

by a top quark condensate in analogy with BCS theory. The low energy 

effective Lagrangian is the usual Standard Model to leading order in a 

fermion planar-loop approximation, with supplemental relationships con- 

necting masses of top quark, lV boson, and the Higgs boson which now 

appears as a tt boundstate. Precise predictions for ml, and mu+,, are 

obtained by abstracting the compositeness condition for the Higgs boson 

to boundary conditions on the renormalization group equations for the 

full Standard Model at high energy. 
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I. Introduction 

The top quark is now known to be more massive than 60 GeV within the context of 

the Standard Model. Therefore, its coupling to the elementary Higgs scalar is large, 

at least of order gz the SU(2) gauge coupling constant at low energies, and possibly 

larger. Strong coupling suggests that the symmetry breakdown of the Standard Model 

may be a dynamical mechanism which intimately involves the top quark, and several 

authors [1,2], most notably Nambu [I], have recently experimented with this idea. 

Essentially one implements a BCS or Nambu-Jona-Lasinio mechanism in which a 

new fundamental interaction associated with a high energy scale, A, is used to trigger 

the formation of a low energy condensate, (f.r,tR). The bootstrapping of the symmetry 

breaking mechanism to the top quark introduces no fundamental Higgs scalar bosons 

and, by virtue of its economy, leads to new predictions which are in principle testable, 

or which constrain or rule out the mechanism altogether. In particular, we are able 

to derive predictions for mtop and mxipg, in this scheme. 

This is the minimal conceivable dynamical breaking of the Standard Model in 

terms of the relevant number of field degrees of freedom, in which we treat the 

gauge bosons as fundamental. The usual Cabibbo-Kobayashi-Makawa structure 

and fermion mass spectrum is readily accomodated, but bona fide predictions of mix- 

ing angles and light quark masses are not derivable until one specifies the dynamics at 

the scale A more precisely. The usual one-Higgs-doublet Standard Model emerges as 

the low energy effective Lagrangian, but with new constraints that lead to nontrivial 

predictions. 

We begin with an analysis of the gauged Nambu-Jona-Lasinio mechanism [3] ap- 

plied to the Standard Model, within the approximation of keeping only the effects 

of the fermionic determinant as described below. This yields the “bare” mass rela- 

tionships, but the most important new results which emerge are the compositeness 
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conditions pertaining to the Higgs boson boundstate, with an otherwise conventional 

low energy effective Lagrangian for the Standard Model. We translate these condi- 

tions into boundary conditions at the scale A on the renormalization group equations 

for the full theory, which now includes the effects of gauge boson and Higgs boson 

loops, etc. Certain renormalization group trajectories are thereby associated with 

the existence of composite structure. These lead to precise predictions for mlop and 

maims,, which are very insensitive to the scale of new physics, A. 

We show that the compositeness condition is the statement that the induced 

wave-function renormalization constant, 2 a, for the Higgs field H must vanish at 

the scale A. It is just this condition, coupled to our demand for a symmetry breaking 

solution to the theory at low energies, which enables one to “predict” the mass of 

the top quark and the mass of the dynamical scalar Higgs boson. The composite 

theory is effectively a strongly coupled (Higgs-Yukawa and quartic Higgs couplings) 

Standard Model at the scale A. The low energy predictions that emerge are governed 

by i&a-red renormalization group fixed-points [4,5]. The top quark is predicted to 

lie near 230 GeV for A N 10’s GeV. We discuss in some detail the consistency of these 

predictions with the collection of experimental results that constitute the so-called p 

parameter bound, and we conclude that it ia premature to de out top quark masaea 

as high aa - 260 to N 280 GeV. 

Our preliminary goai is to make precise the definition of the minimal dynamical 

symmetry breaking scheme beginning with a well-defined quantum field theory at the 

scale A. We imagine that at some high energy scale, A, the Standard Model contains 

only the usual quark, lepton and gauge boson degrees of freedom, but no fundamental 

Higgs scalar. We then introduce a new effective four-fermion vertex with coefficient, 

G, of order l/A”. This interaction must, of course, be electroweak gauge invariant. If 

we consider, for discussion, the approximation in which all quarks and leptons other 
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than the top quark are massless we may then define the theory at the scale A to be: 

L = Lkimtis + G( @;t&‘@i~) (1.1) 

where i runs over SU(2) indices and L bnerie contains the usual gauge invariant fermion 

and gauge boson kinetic terms, but there is no Higgs field in L. The model readily 

generalizes to a more realistic msss spectrum, as well as a multiple effective Higgs 

doublet scheme as described below in Section III. 

We first consider a solution based upon the effects of the fermionic determinant 

alone, i.e., a fermion bubble approximation. This is equivalent to a large-llr,d, ex- 

pansion in the limit in which the QCD coupling constant is set to zero, and it captures 

nonperturbative features of the theory from the point of view of a small-coupling con- 

stant expansion. We demand a self-consistent dynamical solution to the gap equation 

for the mass of the top quark, given in terms of an induced vacuum matrix element of 

the form (Et). This will generate poles in the scalar and pseudoscalar channels, cor- 

responding to a physical state with a mass of 2mt and zero-mass Goldstone bosom, 

respectively. From the vector boson vacuum polarization analysis we determine the 

electroweak vector boson masses in terms of the top quark mass. Moreover, we will 

see that the low energy induced Lagrangian has all of the renormalization properties, 

and is indistinguishable from, the Standard Model with a single Higgs doublet. The 

essential results of this analysis are presented in Section II, while the full technical 

details are given in Appendices A and B. 

The central result is that the physical Higgs boson is composite and the top quark 

and Higgs boson masses become related to the observable electroweak scale. Here we 

do not address the usual problem of the gauge hierarchy, i.e., how we can naturally 

maintain the hierarchy of scales MW << A. It should be noted, however, that the 

quadratic divergence fine-tuning problem is isolated in the gap equation sector of this 

analysis; once the gap equation is satisfied for a symmetry breaking scale of order 



-4- FERMILAB-Pub-89/127 

Mw, there is no further fine-tuning needed. 

We emphasize that the predictions of the fermionic determinant analysis are in- 

herently limited. The discussion of this approximation will be presented in Section 

II, but we emphasize that it is intended only as a schematic for the full theory, i.e., 

the fermionic determinant analysis should be viewed only as a model discussion of the 

actual physical situation. It neglects, e.g., radiative corrections due to gauge bosons 

and propagation of the composite Higgs boson itself. It is only upon abstracting the 

compositeness conditions to the full theory that we obtain reliable predictions for 

mtop ad mRipp* 

Thus we begin in Section II with a digest of the fermionic determinant analysis, 

with the full technical details given in Appendix A and B. In Section III we write 

the effective Lagrangian in terms of the induced low energy composite particles. In 

Section IV we present the analysis of the full theory and give precise results that 

include all of the effects in the Standard Model. We discuss the viability of the 

results in light of the most stringent limits on mt, from the “p parameter” analysis 

in Section 1V.B. In Section V we present OUI conclusions and compare our results to 

other recent works. 
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II. Fermionic Determinant Approximation 

The present discussion summarizes how the dynamical symmetry breaking mechanism 

through top quark condensation works in the approximation of keeping only fermionic 

loops, or, equivalently, to leading order in l/N, with the QCD coupling constant set to 

zero. This section is mostly a digest of results, and a more detailed discussion is given 

in Appendix A & B. We presently ignore all gauge boson and composite-Higgs boson 

radiative corrections. The “bare” relationships emerge between the composite Higgs 

boson, top quark and W boson masses. These relationships are only approximate, and 

in Section IV we will give the precise predictions, after abstracting the compositeness 

conditions to the full theory. 

A. Gap Equation 

We will begin by summing the planar bubble diagrams in which the four-fermion 

interaction of eq.(l.l) is iterated. We first consider the solution to the gap equation 

for the induced top quark mass. This is indicated as in Fig.(l): 

mt = -;G(ft) 

= ZGNgnt$ J d’l (l’ - mf)-l 

The result of evaluating eq.(2.2) with a momentum space cut-off A is: 

G-’ = 2 (As - n: In(Ar/m:)) . 

(2.1) 

(2.2) 

(2.3) 

Here, we regard G and A as fundamental parameters of the theory and we solve for 

mt. Normally, for very large A, perhaps of order the GUT scale 10’s GeV, we would 

expect the solution of this equation to produce a large mass, mr N A in the broken 
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symmetry phase. We see that a solution for mt N Mw for such large A constitutes 

a fine-tuning problem in that G-i - N,As/8 rrs must then be very small. This is, 

indeed, the usual fine-tuning or gauge hierarchy problem of the Standard Model. 

The gap equation contains a quadratic divergence, corresponding to the usual Higgs 

mass quadratic divergence in the Standard Model. However, the fine-tuning problem 

will be isolated in the gap equation, i.e., once we tune G to admit the desirable 

solution to any given order in l/N., we need cancel no other quadratic divergences in 

other amplitudes. 

B. Scalar and Goldstone Modes 

Let us now assume that the parameters, G, A admit a solution for mt to the gap 

equation, eq.(2.3). We now consider the sum of scalar channel fermion bubbles of 

Fig.(2) generated by the interaction eq.(l.l): 

l?,(p’) = -iG - (iG)‘i/d’+ e’p (T ft(0) ft(x))mncdrd + . . . (2.4) 

A useful technical trick for evaluating this amplitude while simultaneously imple- 

menting the gap equation is given in Appendix A. The result is: 

F.(PZ) = & e [(pa - 4n1:)(4n)-‘J,~ dzlog {A’/(m; - ~(1 - z)p’)}] -i (2.5) 

P, is the propagator for the dynamically generated boundstate, a scalar composite of 

ft. In particular, owing to the pole at p’ = 474, we see that the theory predicts a 

scalar boundstate with a mass of 2ml [l]. This is a standard result quoted for the 

Nambu-Jona-Lasinio model. We emphasize that this is the physical, observable, low 

energy Higgs boson, and that the prediction holds only to leading order in l/NC in 

the absence of gauge boson corrections. 
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This physical particle is a boundstate of Ct, arising by the attractive four-fermion 

interaction at the scale A of eq(l.1). It is a loosely bound state, since it lies on top 

of the threshold for open Et and has vanishing binding energy to this order. The 

prediction cannot be viewed at this stage as a very precise one. In fact, the essential 

point is that this is a composite Higgs boson model and we will give a more precise 

determination of its mass in Section IV upon considering the full renormalization 

group behavior of the theory. 

Notice, furthermore, that solutions exist to eq.(2.3) only for positive G-t, i.e., 

for attractive interactions only. Though the interactions at the high energy scale A 

are attributed to new physics, from the point of view of the low energy physics the 

composite Higgs boson may be viewed as generating the effective interactions. At 

high energy scales approaching A, the composite boson mass-squared is of order G-r 

and is non-propagating. As we evolve to the low energy scales by integrating out the 

fermion loops we will find the composite boson develops a negative mass-squared, 

m& cc G-r - N,A’/W < 0 from eq.(2.3), and a spontaneous symmetry breaking 

occurs. 

Since the mechanism is a dynamical breaking of the continuous SU(2) x U(1) 

symmetry, it must imply the existence of Goldstone modes. Moreover, the symmetry 

breaking transforms as I = i and will produce the same spectrum of Goldstone 

bosons as in the Standard Model Higgs-sector. A Goldstone pole thus appears in the 

bubble sum for the neutral pseudo-scalar channel: 

I’,(p’) = -iG - (iG)‘iJd4x eiP* (T Cyst(O) &y&(z))conncctcd + . . . (2.6) 

By similar manipulations as in eq.(2.5) an d use of the gap equation we find the result: 

dz log { Ar/(m: - ~(1 - z)p’)}] -* (2.7) 

and the Goldstone pole at pz = 0 is seen to occur explicitly. 
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Moreover, charged Goldstone modes appear in the flavored channels corresponding 

to the quantum numbers of the W boson: 

rF = -;G - (;G)%/d’x eip=(Z’ a(1 +-&(O) f(l - .ys)b(~))-~~~ + . . . (2.8) 

whence: 

rF(P’) = & c [(p’)(47r)-IL* d.(l-r)log{A~/((l-z)m~-+)pz)}]-l 

(2.9) 
where we have assumed rnb x 0. 

C. Vector Bosons 

Thus far we have considered only a conventional Nambu-Jona-Lasinio model for the 

symmetry group SU(2) x U(1) in the absence of gauge fields. Now let us consider the 

model with the gauge coupling constants restored. Of course, we have a dynamical 

Higgs-mechanism and the gauge bosons acquire masses by “eating” the dynamically 

generated Goldstone poles. We obtain a second prediction of the theory in the form 

of a relation between the W boson mass and the top quark mass. 

Consider now the inverse propagator of the gauge bosons. We rescale fields to 

bring the gauge coupling constants into the gauge boson kinetic terms, i.e., we write 

the kinetic terms in the form (1/4gz)(F,)a. W e are not integrating over the gauge 

boson fields and need specify no gauge fixing at this stage. Thus, for the W boson 

we have: 

g’“p’) + ; 1 d’x (T hbL(O) 6&(r)) (2.10) 

where g1 is the SU(2) coupling constant. For the T-ordered product we again expand 

in the interaction Lagrangian of eq.(l.l) and sum the planar bubbles, Fig.(3). We 
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assume the top quark has a mass satisfying eq.(2.3), and the gap equation is satisfied 

in the loop expansion, which maintains the gauge invariance. This sum can thus be 

written in terms of the flavor bubbles evaluated in eq.(2.9) (see Appendix A). 

It is useful to write the induced inverse W boson propagator in the form: 

j$L(P)-’ = (P,PvlP’ - !&) - 
1 
&P’ - @TP’) 1 . 

The W boson mass is the solution to the the mass-shell condition: 

M& = p’ = gz(p*)%z(pz) 

while the Fermi constant is the zero-momentum expression: 

GF = &-- 
EVA 

(2.11) 

(2.12) 

(2.13) 

In the bubble approximation we find: 

1 
-= 
HP7 

$ + N.(47r)-‘l’dt 2z(1 - x) 

x log {AZ/(““; t (1 - r)mi - z(1 - t)p’)} (2.14) 

and: 

I = N,(4rr)-’ J,l dz (I& + (1 - r)m;) 

x log { Aa/(+m; + (1 - r)mf - z( 1 - z)pZ)} (2.15) 

At this stage of the approximation it is useful to note the quantitative result for 

rnt in terms of GF. Eq. (2.13) combined with eq.(2.15) gives: 

t?(O) = $ 7z 
F 

Ns(4rr)y J,l(l - +)m: log {A”/((1 - +,m:,} 
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zz ;N,(4n)- %I; log{A”/m:} 

For example, with A = lOis GeV one finds mt x 160 GeV. 

To what extent is this an accurate prediction for mt? For one, it is valid only in 

leading order of l/NC with gs = 0. This result, moreover, neglects the full dynamical 

effects of gauge bosons and the composite Higgs boson, which should be included in 

the renormalization group running from the scale A to low energies below. We note 

that this result is substantially less than the full Standard Model result as obtained 

in Section IV. 

Analogous results are obtained for the neutral gauge boson masses, but they 

contain no additional information beyond that described here, a consequence of the 

conventional I = j breaking mode. The only technical challenge in the analysis is 

that we now have the mixing between the U(1) and neutral SU(2) gauge bosons 

induced by the difference between the top quark and &quark masses. We give the 

full analysis of this in Appendix A. Moreover, the usual p parameter relationship for 

mt is obtained. 

In Appendix B we observe that the evolution of the coupling constants gi and 

gr (as seen in eq.(2.14)) is equivalent to that given by the renormalization group for 

the truncated model in the bubble approximation (i.e., without gauge coupling con- 

stants). Thus, the effective Lagrangian at scales below A must produce this evolution. 

We thus turn now to a discussion of the effective Lagrangian. 
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III. Low Energy Effective Lagrangian 

A. Induced Higgs Scalar 

In the previous section and Appendices A and B we derived the low energy effects 

of dynamical symmetry breaking provided by a sufficiently attractive four-fermion 

interaction involving the top quark as defined in eq(l.1). We considered a model 

based on a conventional sum of the fermion bubble diagrams associated with the 

leading large-N, limit with gs = 0. This simple model generates dynamical masses 

for the top quark and gauge bosons of the Standard Model, as well as a bound 

state corresponding to the usual physical Higgs scalar of mass 2mt. In Appendix 

B we show that the fermion bubbles yield their conventional contribution to the 

running of the gauge coupling constants and the explicit cut-off dependence can 

be absorbed by appropriate renormalization of these couplings. The effective Higgs 

vacuum expectation value, r?(O), has the normal isospin structure related to the p 

parameter but remains sensitive to the cut-off A as its dependence cannot be absorbed 

by renormalization. Our calculations imply that the effective low-energy dynamics 

is, in fact, just the usual Standard Model with certain constraints on the fundamental 

parameters of the theory. 

We can see the connection with the Standard Model by using a Yukawa form of 

the four-fermion interactions as defined at the cut-off scale A, through the help of a 

static, auxiliary Higgs field, H. We can rewrite eq.(l.l) as: 

L = .L~iwt;c $ gt($LtRH t kc.) - m;H+H (3.1) 

If we integrate out the field H we produce the four-fern&n vertex as an induced 

interaction with G = g:/mi. Note here that rni N A’, and positive, implies an 

attractive interaction. For low energy phenomena we may wish to keep the effective 

Higgs field and integrate out the short distance components of the fermion fields. 
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The analysis of Section II may be interpreted as implying that at scales below the 

cut-off, A, the Higgs field H develops induced, fully gauge invariant, kinetic terms 

and quartic interaction contributions in the effective action. Indeed, we can exactly 

reproduce the results of the previous section if we use the large-N, limit to compute 

the fermion loop contributions. 

The full induced effective Lagrangian will take the form: 

L = Lkinrtic t gt(GLtRH + kc.)+ AL,.,. 

(3.2) 

where D, is the gauge covariant derivative and all loops are now to be defined with 

respect to a low energy scale p. Here AL,.,. is the usual fermion loop contribution 

to the renormalization of the gauge coupling constants as given in Section 1I.C and 

Appendix B. A direct evaluation of the induced parameters in the Lagrangian gives: 

Z, = (4x)-rg:N,log(Ar/$) 

m:, = m; - (4r)-rg:(2N,)(Ar - $) (3.3) 

X0 = (4x)-rg;(2N,)log(Ar/$) 

The Lagrangian of eq(3.2) is exactly the same as the usual low energy Standard 

Model, except that we are not free to renormalize the two induced parameters, Zn 

and Xo, which must remain log-divergent, i.e., have an explicit dependence upon 

A. The mechanism for spontaneous symmetry breaking is now seen in the effective 

Higgs mass which is driven by the additive quadratic dependence upon A to a finite, 

negative value by the fermion loop contributions; the bare mass, mi, requires the 

usual fine-tuning to produce a finite VEV of the Higgs field (or top quark mass). 

If we use the above tree-Lagrangian to estimate the physical spectrum of the low 
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energy theory, we find: 

m = gr (Ho) 

m:, = 4X0 (Ho)’ /~ZH = 4(h/gf)m: = 4m: 

2 = m;/(g: t g:) = ;ZH (Ho)’ = ;(ZH/gf)m: 

= (N,/2)(4rr)-%z:log(Ar/$) 

= 2 (3.4) 

which agree with the previous results for the divergent parts in Section II; we have 

previously noted that the running of the gauge coupling constants are as expected 

in the leading NC approximation. Full agreement with the previous section’s results 

can be achieved by adding the low energy fermion loop corrections to the results of 

eq.(3.4). 

At this point it is useful to anticipate some of the discussion of Section IV concern- 

ing the renormalization group evolution of the quartic Higgs coupling constant. The 

high energy renormalization group running of the Higgs quartic coupling, Aa, as seen 

in eq.(3.3) is consistent with the contribution of a single quark-doublet contribution 

to the renormalization group equation. The conventional Higgs coupling constant 

should be identified with: 

x = x0/z;. (3.5) 

This satisfies, in the full Standard Model, the one-loop renormalization group equa- 

tion: 

16x’ -&A = { 12A2 t 4N.Xgt - 4N.g;) (3.6) 

Here the fermion loops contribute the last two terms, and they are seen to follow from 

combining eq.(3.3) for ZH and Xs. 
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We have seen that the introduction of the four-fern&m terms at the scale A can 

be written in terms of the static Higgs field with Yukawa couplings to the fermions. 

In the large-N, limit the theory evolves at low energy to a complete Standard Model 

with a dynamical Higgs field. The appropriate renormalization group equations are 

just those obtained in the usual Standard Model. The compositeness conditions, 

Zn = A = 0, are associated with the boundary conditions for the running couplings 

at the high energy scale A. The composite Higgs theory can be identified with entire 

renormalization group trajectories of the full Standard Model. This statement is 

exact in the large-N, limit as we have shown by explicit calculation. We conjecture 

that this same identification can be made beyond this approximation. 

At low energy the Standard Model is not dominated by the fermion loop con- 

tributions, and radiative corrections from virtual gauge and Higgs propagation are 

essential. However, we expect that the renormalization group trajectories for the 

composite Higgs theory should be associated with the vanishing of Zn and X for the 

full theory just as the normal Landau ghost poles are associated with the existence of 

composite gauge bosom. Our treatment of the full renormaIization group equations 

is given in Section IV. 

B. Generalizations 

The dynamical model presented here may be generalized in several directions. First, 

it is readily seen that the full Standard Model couplings for fermions, including light 

quarks and leptons, may be incorporated into the structure of the four-fermion La- 

grangian. The Yukawa couplings in eq(3.1) may be generalized to the full set of 

massive fermions: 

L = Lki,,& + g;“( ‘@,~(+*‘3)H t kc.) t g,;““( %;#;(-1’3)F + kc.) 

gii cIJ(@;(‘)q$‘)H’ + kc.) - m;H+H (3.7) 
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where H,? = c;jHjt. The standard Cabibbc-Kobayashi-Maskawa structure can be 

readily input. Also, axion and familon degrees of freedom can occur at the gener- 

alized level of eq.(3.7). Integrating out the static auxiliary Higgs field produces the 

fundamental four-fermion interaction. 

More general four-fern&m interactions may require more than one auxiliary Higgs 

field which then may also become dynamical at low energies. However, while we can 

always introduce spectator Higgs doublets into the Standard Model which do not 

couple to quarks or leptons, all of the composite Higgs bosons must couple to matter 

fields. Thus, the dynamical mechanism is less general than the Standard Model, i.e., 

the four-fermion interactions admit a limited number of “square roots.” An analysis 

of the allowed dynamical Higgs bosons will be given elsewhere. 

The fermion mass matrices observed at low energy depend upon the specific struc- 

ture of the four-fermion interactions introduced at high energy, and no obvious sim- 

plification occurs from the composite Higgs mechanism. We will return to these issues 

elsewhere. 
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IV. Predictions of the Full Standard Model 

A. Renormalization Group Boundary Conditions 

We have seen in section III that the interaction of eq.(l.l) can be described by an 

induced auxiliary Higgs scalar. Below the scale A the field H acquires gauge invariant 

kinetic terms and quartic interactions. The dynamical origin of the Higgs field thus 

implies special boundary conditions on the Higgs-Yukawa and Higgs-quartic coupling 

constants at the Higgs compositeness scale A. 

Consider now the Lagrangian of eq.(3.2): 

L = Lbinetie + gtO(@LtRH + h.C.) 

+z~ID,HI~ - &H+H - +(H+B)’ (4.1) 

We include here the gauge invariant kinetic terms of the Higgs doublet and its quartic 

interaction as well as the wavefunction normalization constant, Za, and the top 

quark will have its own gauge invariant kinetic terms separately for left- and right- 

handed fields with wave-function normalization constants Zt~ and Zta. 

Conventionally one normalizes the kinetic terms of a field theory at any scale, p, 

with a condition that the kinetic terms have free-field theory normalization. That is, 

we may exercise our freedom of resealing the various fields, H, *L, TV, etc., to define 

Z, = 1 and Zlr. = Z1~ = 1, etc. This is accomplished by, e.g., computing 1PI matrix 

elements of the kinetic terms treated as local operators and obtaining perturbative 

expressions for the Zi, and then absorbing these overall multiplicative factors into the 

fields, H + HI&, !i?~ -+ q~/&, tR + tRj&, etc. The coupling constants, 

such as ijt and 1 are then renormalized as usual: 

ZEY 
a = ZRZtLztRStOi 

&H A=---- 
z:, x0 (4.2) 
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where ZHY (Z4a) is the proper vertex renormalization constant for the Higgs-Yukawa 

(Higgs-quartic) interactions, and the “ - ” will henceforth denote quantities in the 

conventional normalization conditions. 

In the present case, however, the Higgs field is dynamical with a vanishing wave- 

function renormalization constant at the scale A. It is useful, therefore, to adopt an 

“unconventional” normalization convention which does not set Z, = 1. At the scale 

A we have a finite coupling constant G = g:jm&, and we are free to define (though 

this is not necessary, as it does not affect the auxiliary nature of H at A) vanishing 

X. That is, we have the following conditions at A (in terms of the unconventional 

normalization): 

gt + constant; 2, -+ 0; A --+ 0. (4.3) 

It is easy to see that the transformation H + H/g*($) with the running Higgs- 

Yukawa coupling &t($) transforms the conventional normalization into that required 

by eq.(4.3). We thus have: 

2, = 1 
l7tYr’) 

-j _ W) 
i%W) 

(4.4) 

(4.5) 

where the u-” will henceforth denote the normalization convention appropriate for 

compositeness. 

The conditions eq.(4.4) and eq.(4.5) all ow us to discuss the compositeness condi- 

tions eq.(4.3) in terms of the usual running couplings &($) and &s) of the Standard 

Model. It is clear that Z, -+ 0 requires gL($) to blow up at A which can be translated 

into a condition for the physical top quark mass. We may utilize the full one-loop 

fl-functions (neglecting light quark masses and mixing%) of the Standard Model: 

4% 1672 z = ($1 _ &&a _ !&l _ +z)~~ (4.6) 
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and, for the gauge couplings: 

with 

167r 2 4Z dt = --ei gi3 

43 4 

ca = s - iN,; c3 = 11 - :h’ g 3 

(4.7) 

(4.8) 

where ND is the number of generations and t = lnp. 

One can see from eq.(4.6) that once SJ~ is sufficiently large, it will diverge as it 

evolves to a higher scale. Neglecting the small gauge contributions for sufficiently 

large gt we have: 

16x 
z da 9 

dt = $ 
d.?x 

equivalently, dt 
9 

=--=cmst<o 
167s (4.9) 

2.r~ thus decreases asymptotically with a linear slope in t = lnp and becomes zero at 

the Landau singularity of &(F’) at A. Although one-loop p-functions do not permit 

an extrapolation all the way to ,!?H = 0, a large part of the linear decrease toward the 

compositeness scale is fully reliable (e.g., 2~ 2 0.08 is within the perturbative regime 

of at S 1). Indeed, lattice gauge theory has confirmed that perturbation theory is 

generally quantitatively reliable in analyzing the initial conditions leading to these 

fixed-points [6]. This behavior is illustrated by the solid lines of Fig.(4) where the 

fuIl eqs.(4.6) and (4.7) are used to numerically plot 2. 

The precise value of the top quark mass will be given by running ?j*(r’) from 

very high values at a given compositeness scale A down to the mass-shell condition 

gt(rn:) = mt/u. For large & the p-function eq.(4.6) is positive and changes slope 

drastically with changes in IJ~. Large initial values for rft at A become small if one 

goes to smaller scales and the nonlinearity focusses a wide range of initial values into a 

small range of final low energy results. Once CJ~ becomes smaller, the slowly changing 

gauge couplings are important. For an estimate one can assume that the gauge 
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couplings are constant which makes clear why the solutions are attracted toward the 

“effective low energy fixed-point” [4]: 

a2(P*) = y fiZ(p2) 

In general, the couplings are only evolved over a finite range oft and the effective 

fixed-point will not always be reached for all initial values. However, for the case of 

the composite Higgs, as discussed here, the fixed-point is always reached. The action 

of the effective fixed-point makes the top quark mass prediction very insensitive to 

the initial high values of the coupling constant close to A. Considering 2, -+ 0, the 

uncertainties of higher orders will show up as an uncertainty in the precise position 

of A (see Fig.(4)). 

In Table I we give the resulting mfh”’ obtained by a numerical solution of the 

renormalization group equations as a function of A. We use Mz = 91.8 GeV and, for 

the gauge couplings: 

&Mz) = 0.127 f 0.009; &A&) = 0.425 & 0.006; &(niiz) = 1.44 i 0.19 (4.11) 

For a different choice of Mz, the entries in Table I must be resealed by Mzl91.8 GeV. 

We calculate errors both from the uncertainties of the experimental input and by 

varying the initial conditions at A. For high A the uncertainty in ds(Mz) dominates 

the error while for low A the errors become bigger due to the use of perturbation 

theory. The quoted perturbative errors are obtained by varying the top quark mass 

so that fit = gfZ/4n becomes unity at the scale A, instead of infinity. 

The Higgs boson mass wilI likewise be determined by the evolution of x given by: 

16n’; = 12(p + (gt2 - A)1 + B -a’) (4.12) 
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where: 

A++& (4.13) 

In Fig. (5) we present the results of numerically integrating eq.(4.12) with the corre- 

sponding evolution of gt. 

To understand the behaviour of the solutions for 3 it is convenient to define 

z = igtt-“. The compositeness conditions of eq.(4.3) require that 5 = x/g: -+ 0 as 

,u -+ A. Consider eq.(4.12) with A FZ B z 0: 

16~‘: = 12 gt* (z’ +x/4 - 1) = 12 gt2 (z - z-)(2 -z+) (4.14) 

zi = (-1 f &%)/8; ++ N 0.88; t- N -1.13 (4.15) 

Since the rhs of eq.(4.14) factorizes into gfa x F(Z), and i~t is diverging as we 

approach A, we can see that the variable z = x4-l grows faster than gtZ for z > 

z+. Thus 1 is diverging as it approaches A and we cannot fulfill the compositeness 

conditions on this trajectory. For z = I+ we have an ultraviolet unstable fixed- 

point, and since the p-function (4.14) vanishes, z remains constant and therefore 
i= ---1 gt ++. On the other hand, for Z- 5 z < z +, eq.(4.14) shows that z is driven 

toward the fixed-point Z-. In this case 5 evolves as &-‘z- and wilI tend to zero 

as it approaches A. The ratio ?;/z, approaches a constant, indicating that the two 

quantities do not run independently. 

For the physical Higgs mass we have again two mechanisms which make the predic- 

tion very stable. If we start with the compositeness condition at A then the preceding 

discussion shows that the ultraviolet unstable fixed-point z+ becomes attractive as 

we evolve downwards in scale. This means that i is attracted toward gtt-‘z+ = Z,Z+. 

Once the couplings become smaller the effect of the smoothly varying gauge couplings 

is important which further reduces the sensitivity to the precise initial value at A. 

Thus we conclude that the compositeness condition forces the low energy values close 
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to the i&a-red stable fixed-point. This corresponds to the dashed lines in Fig.(d) and 

the dash-dotted line (b) in Fig.(5). The resulting Higgs boson masses as a function 

of A are also shown in Table I together with their errors. 

It might be noted that the resulting masses correspond to trajectories of X(pz) 

which are positive over most of the range of scale considered. One might be concerned 

about the possibility that the vacuum is unstable if A($) becomes negative at any 

point in the evolution. As one can see from Fig.(5) negative couplings occur only at 

high scales. They are not necessarily a signature of a phase transition in the effective 

Lagrangian, since quartic instabilities favor large vacuum expectation values and thus 

require examination of the full effects of irrelevant operators, etc. 

B. Phenomenological Constraints 

The resulting prediction of the full Standard Model analysis is a top quark mass 

that might be considered large in comparison to certain published theoretical upper 

limits. Indeed, it has been claimed that the p parameter limit implies mt 2 180 to 

200 GeV [7], and this is the most stringent quoted limit. Other constraints follow 

from BOB” mixing, and CP-violation, but these are less restrictive and we will ignore 

them presently. Our principal comments concerning the p parameter limit, are as 

follows: 

(i) The quoted limit of Amaldi et al. arises from the use of a convolution integral 

over mt times a confidence level distribution, which is a function of mt and sin’ t?w, 

The integral averages over all values of sin’ 6’~ and m t. The confidence level distribu- 

tion derives from comparing the results of deep inelastic neutrino scattering (v-DIS) 

[7] to direct determination of A& and Mz and sin” 0~ = As/(1 - AT)M& (as well as 

the other determinations which have larger errors, are thus of less statistical weight, 

and may for the purposes of discussion be ignored presently, though they are included 
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in our figures). Of central importance is the magnitude of the quoted errors of the 

V-DIS, as we comment upon below in (ii). 

We wish to emphasize that the derivation of an ezpected value of mt by convolution 

with the confidence level distribution is not the applicable procedure in evaluating the 

probability that a given theory, which predicts a definite value of ml, is likely. In our 

case, we make no theoretical prediction of sin’ 0 w, thus we should not integrate over 

this parameter. Instead, e.g., we have the luxury of asking which value of sinsew 

maximizes the probability for a given value of mt, and then using that value of 

the parameter in evaluating the probability of the given input value of mt. This is 

operationally inequivalent to obtaining the bound quoted by Amaldi et al. . 

We give in Fig.(G) the confidence level contours (a) equivalent to the Amaldi et 

al. results as presented in their Fig.(5). Indeed, mt - 235 GeV is allowed at the 95% 

confidence level. It should be noted horn the raw data as presented in Fig.(7) that 

there is already a signal that the V-DIS and other results are in slight disagreement, 

given that mt X 60 GeV. 

(ii) In fact, recent reexaminations of the quoted errors in V-DIS suggest that 

these might be larger than previously thought, by as much aa a factor of two [8]. 

In particular, the QCD slow resealing parameterization of the dimuon data favors a 

more liberal error than is used in the Amaldi et al. analysis [8] in the parameter ms, 

from the previous m. = 1.5 f 0.3 GeV to the more liberal 1.3 f 0.5 GeV. The high 

statistics of these experiments owes to copious data in the regime where the charm 

quark is being excited (particularly the narrow band beam CERN experiments), yet 

no slow resealing parameterization is perfect below - 80 GeV (one can imagine an 

exclusive analysis of data above 80 GeV in the FNAL wide-band beam which avoids 

the slow-resealing region, but would then be statistically limited). 

We further emphasize here that m, is a parameter in this analysis, and should not 

be taken literally as the physical charm mass. This implies an approximate doubling 
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of the overall wDIS errors which drastically reduces its statistical weight as well as 

shifting the central values down, leading to a lower mean sin’ Bw. Moreover, since the 

radiative correction, AT [9], is quadratic in me for large mt, this translates into a higher 

upper limit than previously claimed. To give the reader a feeling for this, we note that 

upon replacing m, = 1.5 !c 0.3 GeV by 1.3 f 0.5 GeV, the V-DIS data corresponds 

to the increase in the 90% confidence level mt s 210 to mt S 260 GeV. Thus, in 

Fig.(G) we give the curves (b) representing the confidence level contours for mt with 

the liberalized error assumptions. In Fig.(G) we also present the determination sans 

V-DIS in curves (c) to give the reader a feeling for its statistical weight in deriving 

the top quark mass limit. 

In the left box of Fig.(7) we have displayed several determinations of sin’ 0~ and 

the combined results from four deep inelastic scattering experiments for two different 

values of the fitting parameter m, (1.5 f 0.3 GeV and 1.3 & 0.5 GeV). The middle 

box shows the resulting combined value for sin’8w which is then compared with the 

right box. Note the relatively strong dependence of the result on both m. and its 

error due to the change of the central value and statistical weight. In the right box 

we show sin’& as obtained from A’/(1 - AZ-)&$, and Mw, Mz. The top quark 

mass dependence of Ar leads to a different combined result and we show the result 

for a set of top quark masses (the Higgs mass dependence is very mild and we choose 

200 GeV). The last data point shows the range for sin’ Bw from MW and Mz alone 

using the UA-1 and UA-2 combined results (which gives also a bound for mt). Note 

that the combined scattering data have a small top quark mazs dependence which is 

not displayed here. Compared to the changes in the right box this is an effect which 

is roughly l/6 of the changes in the right box into the opposite direction. 

Thus, the oft-quoted stringent limit on mt hinges crucially upon the experimental 

errors in V-DIS when combined with other independent determinations of sin* Bw. It 

does not appear to be in significant conflict with this data to allow mt as large as 260 
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GeV. 

(iii) There are preliminary indications from SLC and CDF that the Z” mass may 

be * 1% lower than the central result of UA-1 and UA-2. Though we are unwilling 

to bet on the ultimate tenability of this result, it should be remarked that this would 

improve the agreement between wDIS and the direct determination for high mt. In 

Fig.(‘l) this corresponds to the upper ends of the ranges of the sin’Bw predictions 

from the direct determination with radiative corrections shown in the right box. 

In summary, we thus feel that it it is premature to reject predictions of a very 

heavy top quark, up to at least - 260 GeV based upon the present situation in these 

experiments. Note that, by incorporating the data with our prediction, we favor 

A Z IO’s GeV, sin’& = 0.210 to 0.220, and the Z” mazs between 90 GeV and 91.5 

GeV. This comes from the fact that the allowed range for sin’ 6’~ becomes smaller 

for the highest possible top quark masses in Fig. (6). This can be translated di- 

rectly into a smaller range for Mz (see e.g.[lO]). Both SLC and LEP should soon 

provide absolute measurements of M,, and CDF a precise determination of the ratio 

Mw/Mz, which can be viewed as consistency tests of this scenario for three gen- 

erations. Our predictions for sin’ 9~ and Mw are conveniently summarized by the 

following equations: 

sin* 0~ = 0.215 f 0.002 + 0.0067(91.1 - Mz) + 0.00017(230 - mt), (4.16) 

Mw = 80.73 f 0.15 + 1.23(Mz - 91.1) + 0.009(mt - 230). (4.17) 

If, ultimately, the theoretical top quark mass prediction is too high to be consistent 

with radiative corrections or subsequent measurements of Mw, Mz, etc., then it is 

still possible, albeit possibly less compelling, to maintain this mechanism by assuming 

that the gap equation (2.2) is saturated by a fourth generation. The top quark then 

plays no important role itself in the symmetry breaking of the Standard Model and 

should have a mass between current lower bounds, but presumably much less than 
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the predictions for the masses of the fourth generation. In Table II we present the 

corresponding predictions for the masses of a degenerate fourth doublet. The resulting 

modified predictions for the Higgs mass as well as the corresponding errors are also 

shown. 

V. Conclusions 

Our principal conclusions are as follows: 

(1) The gauged Nambu-Jona-Lasinio mechanism within the framework of the 

Standard Model, dynamically broken by a strongly coupled top quark which forms a 

condensate (ELta), may be implemented in the fermion loop approximation (or large 

N, with vanishing g3). It yields primitive relationships between Mw and rnt and the 

cut-off A, and the Higgs mass is determined as ma = 277~. The latter relationship has 

been emphasized by Nsmbu [l]. From our point of view, the relationships obtained in 

this part of the analysis are crude, but correctly indicate that the low energy effective 

Lagrangian is the Standard Model with conventional running of coupling constants 

and with the special compositeness condition, 2~ -+ 0 as ~1 + A. 

(2) We infer that 2, + 0 as p --t A is the general compositeness condition for 

the Higgs boson of the full theory. The conventional normalization, 2~ = 1, implies, 

equivalently, that $ and j diverge as p + A. This constraint, in turn, implies that the 

low energy values of these coupling constants are controlled by the renormalization 

group i&a-red fixed-points. Consequently, the low energy results are insensitive to 

the detailed behavior of gt and j as p -+ A. 

(3) We give our results for the full Standard Model as functions of the scale of new 

physics (or Higgs boson compositeness scale), A. Our favored results for ml are the 

lower values, as constrained by phenomenological considerations, hence mtop z 230 

GeV and rn~i~~, z 260 GeV with A z 10” GeV. The mechanism may be adapted 
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to a fourth generation, or a multiple dynamical Higgs scheme, though our primary 

impetus is in the connection with the top quark since the lower mass limits on the 

top quark are suggestive of a strongly coupled system. 

(4) We argue that existing phenomenological bounds on mt are not yet sufficiently 

restrictive to rule out this scheme for large scales A X 10’ GeV. We believe, as per 

the discussion of Section IV.B, that the amended bounds from p parameter analysis 

should be of order tnr 2 260 (mt s 260) GeV at the 90% (95%) confidence level. A 

better understanding of the z+DIS experiments could possibly rule out our mechanism 

involving the top quark dynamics. 

As our discussion has indicated, the compositeness of the auxiliary Higgs field leads 

to predictions for the top quark and Higgs masses which are equivalent to effective 

fixed-point arguments. There is some confusion in the literature on what these fixed- 

points really mean. We emphasize that for us, the fixed-point in gt is that previously 

considered in [4], and is quite distinct from that originally proposed by Pendleton and 

Ross [ll]. The proposal of Pendleton and Ross focussed upon a relationship between 

glq and g3 which causes the ratio of these coupling constants to be fixed for all scales. 

It is thus a “reduction of coupling constants” in the language of Kubo, Sibold and 

Zimmermann, [12]. The reduction is really a far-UV constraint, i.e., one assumes that 

gr must smoothly go to zero with g3, hence the rate of change of logg,/ga must vanish 

asymptotically. Our mechanism is not a coupling constant reduction in this sense, 

and g3 only acts to control gr as we approach the i&a-red. Nonetheless, we were 

driven to consider the i&a-red fixed-point from B specific compositeness condition 

implemented at A. We should remark, however, that with respect to x, the Higgs- 

quartic coupling constant, our mechanism does involve, in some sense, a reduction of 

coupling constants from 1 to & in the sense of [12], but here the couplings are diverging 

together, rather than approaching zero uniformly. Note that previously fixed-point 

ideas have been used primarily to give probabilistic values of low energy parameters 



-27- FERMILAB-Pub-89/127 

irrespective of their the high energy values. We have shown presently that certain 

renormalization group trajectories actually follow from compositeness constraints. 

The derived masses are closely related to the limits obtained from “triviality bounds,” 

in particular, for a given scale,A these are equivalent to the simultaneous uppermost 

allowed values of mtop and maiao,, [13]. 

Marciano has recently considered ideas that appear close to those discussed here 

[14], but in fact differ substantially in implementation and conclusions. In the first 

part Marciano simply emphasizes the Pendleton-Ross [ll, 121 “fixed-point,” indepen- 

dently of consideration of dynamical symmetry breaking, and gives improved values 

using up-to-date input parameters. In the second part of the discussion he considers 

the Higgs to be composite. Here we are in fundamental disagreement on two points: 

(i) At scales /J << A the physical Higgs boson, with gauge invariant kinetic terms, 

must appear in the effective action, so the effects of its propagation should be kept in 

loops, hence the full Standard Model with the effects of a point-like Higgs boson in 

the renormalization group equations are relevant. These effects are neglected in [14). 

(ii) The compositeness conditions are boundary conditions on & and x, following from 

2, -+ 0 k8 described here, and not the asymptotic smoothness assumptions implied 

Marciano’s work (effectively as in [ll, 121). 

Miransky, et al. ., [Z] have also elaborated Nambu’s idea of a top quark condensate 

driving the breaking of the electroweak interactions, and obtain somewhat different 

results than those presented here. The authors of [Z] focus upon the idea of large 

anomalous dimensions for the four-fermion interaction which is interpreted as a signal 

for dimensional transmutation and the occurence of a scalar Higgs boundstate. We 

do not share this viewpoint. Indeed, the formation of a low mads scalar state, and 

top quark mass term, is fundamentally tied to the fine-tuning of the gap equation 

which then leads to the large-distance propagating composite particles. Without 

this fine-tuning it makes no sense to talk about the scalar boson state, as then 
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the bubble diagrams produce only a perturbative, local renormalization of the four- 

fermion interaction. Anomalous dimensions refer only to the local, short-distance 

renormalization effects, and do not have anything to do with large-distance dynamical 

propagating fields. For example, in QCD we only consider the short-distance gluon 

radiative corrections as comprising the anomalous dimension of a given operator, e.g., 

as in the nonleptonic weak interactions, and which may be arbitrarily large; we do 

not consider the pion propagation to arise as a consequence of, or play a role in 

the anomalous dimension. Thus, we believe that there is a confusion in ref.121 of 

short- and long-distance effects and a lack of discussion of the relevant mechanism 

which leads to long-distance propagating boundstates, i.e., the fine-tuning of the gap 

equation (We note that this should not be confused with the mechanism of walking 

technic&r in which large anomalous dimensions are used justifiably to separate the 

scales of TC and ETC). The vacuum structure of the low energy theory depends 

on the fine-tuning of the composite Higgs mass and both symmetric and broken 

symmetry phases of the theory can only be understood on the basis of the dynamics 

of the composite Higgs field. Although our general approaches are similar, it is not 

clear that the work of Miransky, et al. , includes the full dynamics of the effective field 

theory at low energies as required by our analysis. We should further remark that 

BCS theory has recently been invoked by other authors [16] to conjecture a pattern 

of quark and lepton masses and mixing angles, an approach that is orthogonal to our 

attempt to understand dynamical mechanisms of electroweak symmetry breaking. 

We have seen that our mechanism favors a large top quark mass, suggesting a 

correspondingly large value of A N 1Ors GeV, and a smaller value of sin’&v N 

0.21 to 0.22. These results suggest a number of questions for further analysis, in- 

cluding the possible role of Grand Unified Theories, such as Georgi-Glashow SU(5), 

where our four-term&i interactions could arise from the high energy GUT symme- 

try breaking. Of course, the gap equation solutions for a low energy electroweak 

symmetry breaking demands a fine-tuning, equivalent to the usual gauge-hierarchy 
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problem. Perhaps one is led to a supersymmetric version of this discussion (and we 

remark that in the case of SUSY-SV(5) the fixed point predictions for mt do not 

radically change [15]). Or, the nature of the dynamical breaking may be subtle and 

possibly a new mechanism can be found to solve the fine-tuning problem which locks 

G-’ into approximate equality with N.A’/Sn ‘. It seems to be interesting to explore 

those theories that will provide the effective interaction of eq.(l.l), which was the 

starting point for our analysis, with an eye to understanding the origin of the small 

quark masses and mixing angles. 

We will return to these issues in a more extensive analysis elsewhere. 

We wish to thank Prof. Y. Nambu for several discussions concerning his work, 

Prof. R. Bernstein regarding the p parameter limits and phenomenology, and Prof. 

J. Rosner for useful comments. 
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Appendix A: Fermionic Bubble Approximation 

The present discussion shows how the dynamical symmetry breaking mechanism 

through top quark condensation works in a fermionic bubble approximation in detail. 

We presently ignore all gauge boson and composite-Higgs boson radiative corrections, 

keeping only fermion loops. 

We first recall the solution to the gap equation for the induced top quark mass. 

This is indicated as in Fig.(l) and eq.(Z.l): 

rnt = -;G(lt) (A-1) 

= 2GNcmt& 
/ 

d’l (I” - m:)-l (A.21 

We shall use eq.(A.Z) in what follows. The result of evaluating eq.(A.2) with a 

momentum space cut-off A is as given in eq.(2.3). 

We consider the sum of scalar bubbles of Fig.(2) generated by the interaction 

eq.( 1.1): 

l?,(p’) = -;G - (;G)‘i / d’s eiP= (2’ Et(O) tt(~))-~~~~ + . . . 

We see that we may formally sum the series to obtain: 

(A.3) 

l?,(p’) = -;G 1 -ZGN& d’l (1’--n~;)-~ 
J 

-2GW4m: - P’)$+ / d’l (I’ - mf)-‘((p + l)’ -m:)-’ -;A.4) 1 
Here the second and third terms in the denominator of eq.(AA) come from a rear- 

rangement of the terms in the numerator of the Feynman loop-integral and a shift of 
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the the loop momentum for the fermions. We thus see that the first two terms in the 

denominator of eq.(A.4) cancel by virtue of the gap equation (A.2). Thus, performing 

the loop integrals we arrive at a result: 

l?,(p2) = -& [(4m: - pZ)(4r)-Z jol dzlog {LP/(m: - r(1 - Q)}] -’ (A.5) 
c 

Analogously we obtain the results of eq.(2.7) and eq.(2.9). 

Turning to the W boson vacuum polarization, we have: 

s”“yPz) + ; / d”r (T kr,h(o) BLyvt~(r)) (AJ3) 

where ga is the SU(2) coupling constant. For the T*rdered product we again expand 

in the interaction Lagrangian of eq.(l.l) and sum the planar bubbles, Fig.(3). We 

assume the top quark has a mass satisfying eq.(2.3), and the gap equation is satisfied 

in the loop expansion, which maintains the gauge invariance. Notice that this sum 

can thus be written in terms of the flavor bubbles evaluated in eq.(2.10): 

+w = $v - SWPZ) 
++&J4p [ d Tr 7,(1- 7s)(P + P)-lrv(l -7s)(# + C - ml)-l] 
- ;w)&, J 4 d 1 Tr [ 7,(1- rs)(ll +/)-‘(I +7s)cI --t,-‘] 

y&J [ d’q Tr 7v(1 -r&5 + 8)-‘(I+ 75)(8 - mt)-‘1 

An evaluation of these expressions leads to the result: 
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-#3Pr1 = (P”PYIPZ - 9”“) 
[ 
$P2 

+ p2Nc(4?r)-2 J,l dz 2r(l - z)log {A’/((1 - z)m: - ~(1 - +J’)} 

- m;N&r)-2~1 dz (1 - z)log {A’/((1 - z)m; - ~$1 - z)p’)}] . 

(A-8) 

We see that the overalI inverse propagator is transverse, corresponding to a gauge 

invariant Higgs mechanism. Nonetheless there is a zero for nontrivial momentum, 

corresponding to the induced W boson mass. From these follow eq.(2.11) to eq.(2.16). 

Analogous results are obtained for the neutral gauge boson masses. Presently we 

consider the inverse propagator of the neutral gauge bosons as a 2 x 2 matrix of the 

form: 

&%(P)-’ = [ ‘F 1;g;] (fP’-YP1) 

+ii d% J [ [;$i;; !$I;{ 1; !j;;; ;i;;{ ] (A.91 

where gl is the U(1) coupling constant. Here the currents are the usual SU(2) and 

U(1) neutral currents in the unmixed basis: 

Jo .= = CL-& - &-ypbL. (A.10) 

JP - ” - $(fiy,tL + 6,yy,,bL) + ;(Eaqh) - ;(6mMbn) (A.ll) 

and the numerical factors in the individual terms of j: are the U(1) weak-hypercharges. 
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Again we expand in the interaction Lagrangian of eq.( 1.1) and sum the planar bub- 

bles, Fig.(3). This can be evaluated to yield: 

= WP”lP2 -s’“) 
llS12(PZ) 

o l,g;(p’)] pz - [ J1 ;‘I “‘(P.)J 

(A.12) 

where: 

1 

sl20= 
-$ + ;(4~)-~~~ dr 2r(l- z) { $v’.log {As/(m: - ~(1 - z)p’)} 

+ +og {A’/# - x(1- x)P’)}} (A.13) 

and: 

1 

s:o= 
-$ + ;(4r)-” J,l dx 2+(1- x) { ;&log {A’/(m; - ~(1 - z)p’)} 

+ $Y4og {A’/($ - ~(1 - =)P’)}} (A.14) 

and, finally: 

2(p2) = $N,(4n)-’ J,l dr 2+(1 - x)p’ log 
i 

ml - x( 1 - z)pl 

m: - x( 1 - z)pl 

+ ;N,m:(4n)-s i’dx log {Az/(m: - ~(1 - z)p’)} 

+ $n:(4a)-2 /ol dr log {As/(m; - ~(1 - +)p’)} (A.15) 
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Appendix B: Renormalization of Gauge Coupling 

Constants 

We thus see that the gauge couplings are subject to logarithmic evolution between 

the scales A and Mw. We may write the low energy gauge coupling constants from 

eq.(A.13): 

1 
-=~+;I?~(4s)-2(~log{A’/rn~}+~log{A~/m~}} 
d(O) sl2 

(B-1) 

and: 
1 

- = A+ $,(4s)-’ (Flog {AS/m;} + i log {A’/,;}} 
d(O) s: 

U3.2) 

We also have the running of gs from the W boson propagator, eq.(2.14): 

1 
- = 1 + N,(4x)-’ J,l dr 24 1 - z) log {A”/(rm; + (1 - z)m:)} 
d(O) s: 

(B.3) 

We see that the high energy renormalization group running of gz implied by the 

net coefficients of the log A in eq.(B.3) and eq.(A.13) is identical. Thus the high 

energy running in the unbroken phase corresponding to momenta p’ >> rn: will be 

consistently that given by either of eq.(B.3) or eq.(A.13). Moreover, the high energy 

running of gz is consistent with one generation quark-doublet contribution to the 

usual ,&function: 

16~’ -g-p, = (-$ + +Tlq + $1 s; 
1 (B.4) 

where np (nl) is the number of quark (lepton) doublets. Thus, the coefficient of log A 

in eq.(B.3) or eq.(A.13) corresponds to n, = 1 in the second term on the rhs of 

eq.(B.4). 

Similarly, the high energy running of g1 may be read off from eq.(B.2) and again 

is consistent with a single quark doublet contribution to the usual renormalization 
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group equation: 

167? &l = ($Q% + w} s: (B.5) 

The fact that this is just the normal renormalization group running of these cou- 

pling constants from the single iso-doublet of quarks in the Standard Model (neglect- 

ing all other contributions, such as gauge boson loops) indicates that the low energy 

effective Lagrangian at this orderis just the Standard Model. 

The further renormalization effects below the scale mt are radiative corrections 

that show up at low energy, e.g., neutrino scattering for Q’ << A$. These involve, 

essentially, the extrapolation from the on-shell W and 2 mssses to the low energy 

measured sin’ 0” and CF. Does the model lead to new effects here? 

We see that: 

G$=v’(O) = +.(4*)-‘{m~log{A’/m:)+m~log{Az/m~}} w-5) 

and: 

2(o) = N&n)-fdr {m; + (1 - +:}l*g {A’/+: + (I- +:)} 

NC = 7J(0)l+ $4*p m: + m: - 
i 

$yrnJ~ l*g(dlm:) 
t 1 

(B-7) 

The difference in V(O)s and ~(0)s is just the usual correction to the p-parameter due to 

weak isospin breaking effects. Thus, there are no additional corrections here beyond 

the usual Standard Model results. This is analogous to well known results of Carter 

and Pagels (171 
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Figure Captions 

Figure 1: Diagrammatic representation of the gap equation. 

Figure 2: Bubble sum generated by the four-fermion interaction. 

Figure 3: The planar loops contributing to gauge boson propagators. 

Figure 4: The renormalization group evolution of the wave-function nor- 

malization constant 2~ (solid lines) and quartic coupling i (dashed lines) 

for three different scales A. Initial values of 1 are chosen to be precisely 

on the fixed-point. Both quantities go to zero at p = A. 

Figure 5: The evolution of 1 for different initial values and A = 10’s 

GeV. In (a) the initial value is chosen slightly above the fixed-point and 1 

diverges at A. In this case the compositeness condition cannot be fulfilled. 

Case (b) corresponds to evolution on the low energy attractive fixed-point. 

The cases (c) - (f) show that the low energy result is insensitive to the 

initial conditions at A. ,$?H is also plotted as a solid line. 

Fig. 6: Allowed regions for mt and sin’ Bw for three error hypotheses in 

the V-DIS experiments. The solid lines (90% CL) and dashed lines (95% 

CL) are drawn for (a) m. = 1.5 c!c 0.3 GeV (equivalent to Amaldi et al. [7] 

with ma N 250 GeV); (b) m. = 1.3kO.5 GeV apropos [B]; (c) disregarding 

deep inelastic scattering data to indicate its statistical weight in the limit 

on mt. 

Fig. 7: Comparison of sin’ 0~ from different experiments with Mw, Mz 

and radiative corrections. The left box shows data from different experi- 

ments where radiative corrections for rnt = 45 GeV and mn = 100 GeV 

have been included [a]. The middle box shows the combined result which 

should be compared with Mw, MZ and radiative corrections displayed in 

the right box. 
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Table I: The predictions for the physical top-quark and Higgs boson mass for 

different scales A. One loop p-functions are used with g!(Mz) = 0.127 ?C 0.009, 

gi(Mz) = 0.425 f 0.006, a.y(Mz) = 0.115 f 0.015 and Mz = 91.8 GeV as input. 

The numbers are obtained for the central value of these input data and requiring 

the on-shell condition m(m) = m. Variation of the gauge couplings within their 

errors results to a very good approximation in a change of 33 GeV for the top 

mass and f4 GeV for the Higgs mass. The rows labeled “pert. n show the change 

in the result if we change the couplings at the cutoff to unity instead of infinity, 

as a measure of the errors induced by using perturbation theory. 

Table II: Predictions for a degenerate fourth-generation quark doublet with 

the same input data as in Table I. The top-quark and the fourth-generation 

leptons arc assumed to be much lighter than this quark doublet. The variation 

of the gauge couplings results in a change of 3~7 GeV for the quark masses and 

&5 Get’ for the Higgs mass. 


