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We examine a classical and quantum dynamics of systems described by the DBI-
type Lagrangian with tachyon-like potentials and corresponding DBI Lagrangians on
(non-)Archimedean spaces. The dynamic of tachyon fields in spatially homogeneous
and in zero-dimensional limits is analysed. A formalism for connecting a wide class
of potentials and DBI Lagrangians with the locally equivalent canonical Lagrangians
is presented. The results for exponentially decaying and inverse cosine hyperbolic
are reviewed and for the potentials of the form V (x) = x−n are discussed in more
details. Classical actions and corresponding quantum propagators are calculated for
these potentials in the Feynman path integral approach, on both Archimedean and non-
Archemedean spaces.
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1. INTRODUCTION

The evolution of the early universe in its early stage should be best described
by quantum cosmology [1]. Due to the size of the universe, which is related to the
Plank scale, it is logical to consider various geometries (in particular nonarchimedean
[2] and noncommutative [3] ones) and the parametrizations of the space-time coor-
dinates: real, p-adic, or even adelic [4].

One of the most challenging periods of the evolution of the Universe, despite
its shortness, is the inflation period, in particular its very beginning. Some of the
best candidates to give some physical background and understanding of the quantum
origin of inflation are string theory, M-theory and string field theory in general.

It can be considered that an inflationary phase is driven by potential energy
of the scalar field (inflaton) whose dynamics is described by Klein-Gordon equation
[5]. However, in recent years other non-standard scalar field actions are used in
cosmology. One of those models, motivated by string theory, is k-inflation [6, 7].

K-inflationary model can be defined by local action for scalar field φminimally
coupled to Einstein gravity:

S =− 1

16πG

∫ √
−gRd4x+

∫ √
−gL(φ,X)d4x, (1)
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where R is the Ricci scalar, g is the determinant of the metric tensor with the com-
ponents gµν and signature (-,+,+,+), L is Lagrangian of the scalar field and X is
“kinetic” term

X =
1

2
gµν∂µφ∂νφ. (2)

One of the particularly attractive models of k-inflation is tachyonic inflation. A
tachyonic Lagrangian

Ltach = L(T,∂µT ) =−V (T )
√

1+gµν∂µT∂νT , (3)

where T is tachyonic scalar field and V (T ) its potential, can be written as non-
standard Lagrangian of DBI-type. The Lagrangian (3) contains potential as a multi-
plicative factor and a square root of derivatives (“kinetic” term).

This model of non-standard Lagrangian and tachyon-like “matter” was pro-
posed by Sen [8]. In this paper we will discuss the simplified, zero-dimensional,
model to understand better the evolution of the tachyon itself, and at least as a toy
model, to explore classical and quantum dynamics of the corresponding “tachyon-
like” particle [9]. At first glance, the “toy” model looks like the classical model of a
particle moving in a constant external field with quadratic “damping”-like term [10].
However, Hamiltonian is conserved quantity for this system [11, 12]. The zero di-
mensional analogue of a tachyon field can be obtained by a standard correspondence:
xi→ t,T → x,V (T )→ V (x). The action and Lagrangians are:

Ltach =−V (x)
√
1− ẋ2, (4)

S =

∫
Ltachdt=−

∫
dtV (x)

√
1− ẋ2. (5)

Besides, the conjugate momenta and Hamiltionian are:

p=
∂Ltach
∂ẋ

=
ẋ√

1− ẋ2
V (x), (6)

Htach(x,p) =
√
p2+V 2(x). (7)

The equation of motion for tachyonic scalar field in a flat space is

ẍ(t)− 1

V (x)

dV

dx
ẋ2(t) =− 1

V (x)

dV

dx
. (8)

In this paper we will focus on a few very interesting tachyonic potentials, and
also completely solvable ones. We will discuss classical and quantum dynamics of
these tachyonic fields, on archimedean spaces described by real numbers. Also, we
briefly discuss the same systems on nonarchimedean spaces (described by p-adic
numbers). The classical canonical transformations are imposed in order to simplify
the equation of motion and to find a locally equivalent “standard” Lagrangian with
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canonical kinetic term which gives the same equation of motion. In a sense, it is
further generalization of the procedure presented in [13].

The paper is organized as follows. Following the Introduction, in Section 2
we introduce the canonical transformation to simplify the equation of motion and
enable us to find the standard form Lagrangian, locally equivalent to the initial DBI-
tachyonic one. Section 3 represents a short review of dynamics of systems described
by exponential-like potentials and original results for power function potentials. In
Section 4 we show that all these systems can be considered on non-Archimedean
spaces, i.e. on p-adic number fields, and the main results are presented. We complete
this paper with concluding remarks and suggestions for further investigation.

2. CANONICAL TRANSFORMATIONS

We develop here a “mathematical” method of transforming a class of non-
standard Lagrangians to a canonical form, proposed by Musielak [13] and consi-
dered in [14], where even quadratic Lagrangians were obtained . An extended me-
thod based on the classical canonical transformation (CCT) seems to be very useful,
because the quantization of tachyonic systems, described by a highly nonlinear La-
grangian (3), is an old and obviously hard problem.

It is well known from classical Hamiltonian mechanics [15–17] that a canonical
transformation is a change of canonical variables, for instance (x, p) to new variables
(x̃, p̃), that preserves Hamilton’s equations:

ẋ=
∂H(x,p)
∂p

→ ˙̃x=
∂H̃(x̃, p̃)
∂p̃

, (9)

ṗ=−∂H(x,p)
∂x

→ ˙̃p=−∂H̃(x̃, p̃)
∂x̃

. (10)

To preserve the Hamilton’s equation the transformation (x,p)→ (x̃, p̃) must satisfies
two conditions: to preserve the Poisson brackets ({.}PB):

{x,p}PB = {x̃, p̃}PB = 1, (11)

and Jacobian of the transformation has to be equal to one

J =
∂(x,p)

∂(x̃, p̃)
= 1. (12)

In the theory of CCT there are particular types of functions that lead to canoni-
cal transformations. These types of functions are known as generating functions. In
this paper we will use the generating function that depends on an old momenta p and
a new coordinate x̃ defined as

G(x̃,p) =−pF (x̃), (13)
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where F (x̃) is an arbitrary function in the new coordinate. For the particular generat-
ing function, defined in (13), relations between old coordinates x and new momenta
p̃ are given by

x=− ∂G
∂p

= F (x̃) (14)

p̃=− ∂G
∂x̃

= pF ′(x̃). (15)

The relations that connect old and new variables are

x̃= F−1(x), (16)

p̃= pF ′(x̃), (17)

where F−1(x) is the inverse function of F (x̃). While

F ′(x̃) =
dF (x̃)

dx̃
. (18)

The canonical transformation chosen in this form transforms the equation of motion
(8) to

¨̃x+

(
F ′′(x̃)

F ′(x̃)
−F ′(x̃)d lnV (F (x̃))

dF (x̃)

)
˙̃x
2
+

1

F ′(x̃)

d lnV (F (x̃))

dF (x̃)
= 0. (19)

Unfortunately, this equation of motion still looks quite complicated. However, it was
already said that the function F (x̃) was arbitrary. Now, we can choose the function
F (x̃) in such a way that the second term in (19) vanishes. If the potential V (x) 6= 0,
it can be shown that a good choice is

F−1(x) =

∫ x

x0

dx

V (x)
. (20)

where x0 can be chosen arbitrary. When we define the function F (x̃), using it’s
inverse function F−1(x), the equation of motion (19) simplifies to

¨̃x+
1

F ′(x̃)

d lnV (F (x̃))

dF (x̃)
= 0. (21)

Now, it can be easily seen [13, 18] that the canonical Lagrangian which corresponds
to this equation of motion can be written as

Lquad(x̃, ˙̃x) =
1

2
˙̃x2+

1

2V (F (x̃))2
. (22)
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3. SOME CLASSES OF TACHYONIC POTENTIALS

In this paper we assume that a tachyonic potential V (x) satisfies the following
properties [19]

V (0)> 0, V ′(x > 0)< 0, V (x→∞)→ 0. (23)

There are lot of different potentials of this kind. Here, we apply the “new” CCT me-
thod on already considered tachyonic potentials [10, 14] and discuss one particular,
the power potential case (V (x) = 1

κx ), in more details.

3.1. EXPONENTIAL POTENTIAL

As exponentially increasing potential of the form V (x) = eαx does not meet
the conditions (23) we discuss only the case of the exponentially decreasing potential
of the form

V (x) = e−αx, α− const > 0. (24)
Though the equation (20), we introduce the function x̃= F−1(x) as

F−1(x) =
1

α
eαx, (25)

which leads us to the function x= F (x̃) in the form of

F (x̃) =
1

α
ln(αx̃). (26)

Now, the full generating function (13) is

G(x̃,p) =−pF (x̃) =− p
α
ln(αx̃), (27)

and it reduces the equation of motion to the well known form

¨̃x−α2x̃= 0. (28)

It can easily be shown that after applying the transformation (25) and returning
to the original variable x, the equation (28) transforms to

ẍ+αẋ2 = α, (29)

which is equivalent to equation (8) that was obtained in [10].
The “standard” Lagrangian that corresponds to this equation of motion can be

written [13, 14] as

Lquad(x̃, ˙̃x) =
1

2
˙̃x
2
+

1

2
α2x̃2 (30)

Because of the character of equation (20), which connects Lagrangians (4),
including potential (24), and Lagrangian (30) we consider the last one as being “lo-
cally” equivalent to the one presented in (4).
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We have already shown [10, 14, 20] that the corresponding classical action is

Scl(x̃2,T ; x̃1,0) =
α

2
(csch(αT ))

((
x̃21+ x̃

2
2

)
(cosh(αT ))−2x̃1x̃2

)
. (31)

Besides, it is known that the corresponding transition amplitude (quantum propaga-
tor) [21] for the quadatic action can be directly written down

K (x̃2,T ; x̃1,0) =

√
1

2πi~
α

sinh(αT )
ei
Scl(x̃2,T ;x̃1,0)

~ (32)

3.2. INVERSE cosh POTENTIAL

As the second example lets us discuss tachyonic potential in the form

V (x) =
1

cosh(βx)
=

2

eβx+e−βx
, β− const, (33)

and the function x̃= F−1(x) is

F−1(x) =
1

β
sinh(βx), (34)

which means that the function x= F (x̃) is

F (x̃) =
1

β
arcsinh(βx̃). (35)

The full generating function is given by

G(x̃,p) =−pF (x̃) =− p
β

arcsinh(βx̃). (36)

Again, the generating function reduces the equation of motion to the well known
form

¨̃x−β2x̃= 0. (37)

This equation of motion can be derived the from quadratic Lagrangian [13, 14]

Lquad(x̃, ˙̃x) =
1

2
˙̃x
2
+

1

2
β2x̃2. (38)

As in the previous case the classical action can be presented as [14, 20]

Scl(x̃2,T ; x̃1,0) =
β

2
csch(βT )

((
x̃21+ x̃

2
2

)
(cosh(βT ))−2x̃1x̃2

)
. (39)

The corresponding quantum propagator (on Archemedean spaces - real numbers) is

K (x̃2,T ; x̃1,0) =

√
1

2πi~
β

sinh(βT )
ei
Scl(x̃2,T ;x̃1,0)

~ . (40)
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The propagator can also be written in the form [20, 22, 23], more suitable for p-adic
and adelic quantisation and applications.

K∞(x̃2,T ; x̃1,0) = λ∞

(
β

2hsinh(βT )

) β

hsinh(βT )

1/2

∞
×

χ∞

(
− β

2h
csch(βT )

((
x̃21+ x̃

2
2

)
(cosh(βT ))−2x̃1x̃2

))
, (41)

where an arithmetic λ-function and additive character χ∞ are defined as

λ∞(b) = e−
iπ
4
sgn(b), χ∞(a) = e−2πia. (42)

It can easily be seen that in both examples the equations of motions (28) and
(37) and Lagrangians (30) and (38) have the same form which corresponds to an
inverted harmonic oscillator system [24].

3.3. TACHYON POTENTIAL AS A POWER FUNCTION CASE

Power potential is presented as V (x) v xn where n can be any real number.
However, regarding (23), the potential is tachyonic when n< 0. We will discuss here
the simplest case, when n=−1, i.e. the potential is of the form

V (x) =
1

κx
, κ− const > 0, . (43)

A more general case: n ∈Q or n ∈ Z and n < 0 will be discussed elsewhere [25].
The equation of motion (8) for this potential becomes

x(t)x′′(t)+x′(t)2−1

κx(t)
√
1−x′(t)2

= 0, (44)

and its solution is
x(t) =±

√
(C2+ t)2−e2C1 , (45)

where constantsC1 andC2 can be determined from the initial and the final conditions
x(0) = x1 and x(T ) = x2.

The tachyonic Lagrangian (3) for the potential (43) takes the form

L=
1

κ

√√√√1− (T 2−2tT +x12−x22)2

4T 2
(
t2− t(T 2+x12−x22)

T +x12
)×

×

(
t2−

t
(
T 2+x1

2−x22
)

T
+x1

2

)− 1
2

, (46)

and it is obvious this Lagrangian is very complicated to be quantized, in particular,
by path integral method. Because of that we use the CCT we introduced in Section
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2, to find a locally equivalent canonical Lagrangian. We choose

F−1(x) =

x∫
dx

V (x)
=

1

2
κx2, (47)

which leads to the full generating function of the form

G(x̃,p) =−pF (x̃) =−p
√

2

κ
x̃. (48)

Applying this transformation, the equation of motion (44) takes a very simple form

¨̃x(t)−κ= 0, (49)

and the corresponding quadratic Lagrangian [13, 14] is

Lquad(x̃, ˙̃x) =
1

2
˙̃x2+κx̃ (50)

The equation of motion (49) has the same form as the particle-system with
constant (repulsive) force. The solution is well known and for the initial and final
conditions x̃(0) = x̃1 and x̃(T ) = x̃2 the classical trajectory can be written as

x̃(t) =
κ

2

(
t2− tT

)
+
t

T
(x̃2− x̃1)+ x̃1. (51)

The classical action is

Scl =

T∫
0

Lquaddt=
1

2T
(x̃1− x̃2)2+

κT

2
(x̃1+ x̃2)−

κ2T 3

24
. (52)

The action is quadratic and it can be quantized directly using the path integral
method. The transition amplitude for the quadratic action is calculated form [21]:

K (x̃2,T ; x̃1,0) =

√
− 1

2π~i
∂2Scl
∂x̃1∂x̃2

ei
Scl
~ . (53)

In our case, the propagator for the action (52) becomes

K (x̃2,T ; x̃1,0) =

=

√
− i

2π~T
exp

− i
(
κT 4−12κT 2 (x̃1+ x̃2)−12(x̃1− x̃2)2

)
24~T

 , (54)
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or using the equivalent form [22, 23]:

K∞(x̃2,T ; x̃1,0) =λ∞

(
− 1

2h

∂2Scl
∂x̃1∂x̃2

)∣∣∣∣1h ∂2Scl
∂x̃1∂x̃2

∣∣∣∣1/2
∞
×

χ∞

(
− 1

h
Scl(x̃2,T ; x̃1,0)

)
=

λ∞

(
1

2hT

)− 1

hT

1/2

∞
χ∞

(
−Scl(x̃2,T ; x̃1,0)

)
. (55)

It allows us, at least in principle, to describe quantum dynamics of a tachyonic
system with potential (43), respectively (24) and (33), in non-relativistic quantum
limit.

3.4. p-ADIC SHORT CONSIDERATION

Our consideration and calculation until now was done on the real spaces, i.e.
when all quantities are parametrized by real numbers. However, as it was already
stated it would be very important to develop such formalism on nonarchimedean
spaces, i.e. on p-adic number fields (p is prime number). That can be achieved math-
ematically, i.e. formally, by changing the number field fromR=Q∞ toQp and using
p-adic numbers and complex (wave) functions with p-adic arguments [2, 4].

p-Adic string theory is a theory of a scalar field with infinitely many space-time
derivatives [26]. Regarding cosmological inflation, this p-adic tachyon field model
succeeds with inflation where inflatory (tachyonic) models based on the real string
theory fail [26, 27]. In fact, tachyon-inflaton field, or equivalently a tachyon-like
particle in these model rolls slowly in the conventional sense and drives a sufficiently
long period of inflation. In short, for small p, the p-adic field potential is flat enough
and slow roll inflation proceeds in the usual manner. In addition, for very big p the
potential is very steep, but the p-adic scalar field rolls slowly, as a consequence of
the nonlocal nature of the theory [27]. Despite some progress at a classical level, the
quantum aspect of p-adic tachyon field (tachyon-like particle) is still unknown, i.e.
the origin of tachyon driven inflation, in the concrete case.

Moving back to the theory we discussed here, it was shown [22, 23] that the
propagator Kp for a quadratic action, and prime number p, can be written as

Kp(x̃2,T ; x̃1,0) =

=λp

(
− 1

2

∂2Scl
∂x̃2∂x̃1

) ∂2Scl
∂x̃2∂x̃1

1/2

p
χp

(
−Scl(x̃2,T ; x̃1,0)

)
, (56)

where we set h= 1 for simplicity. p-Adic additive character [4] is defined as

χp(a) = e2πi{a}p , (57)
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where {a}p is the fractional part of the p-adic number a. The function λp is an
arithmetic complex-valued function of a p-adic variable. The basic properties of the
λp are

λp(0) = 1, λp(a
2b) = λp(b), |λp(b)|∞ = 1, (58)

λp(a) = 1, |a|p = p2γ , γ ∈ Z. (59)
Finally, we can write the corresponding transition amplitude (56) for our model

(43) in the p-adic case, more precisely for any prime p except p= 2, in the form

Kp(x̃2,T ; x̃1,0) = λp

(
1

2T

)− 1

T

1/2

p
χp

(
−Scl(x̃2,T ; x̃1,0)

)
, (60)

where Scl(x̃2,T ; x̃1,0) is given in (52). It allows us to “determine”, or to describe
quantum dynamics of a tachyon model, and to fix the vacuum state and consider its
(in)stability and transformation. For some mathematical details, adelic generalization
and constrains see for example [2, 4].

4. CONCLUSION

In this paper we discussed the dynamics of the tachyonic field possibly mo-
tivated by its important role in inflation. We started with the tachyonic (DBI type)
Lagrangian, which is highly nonlinear and not suitable for quantization and showed
that it is possible to find a locally equivalent canonical Lagrangian applying (local)
classical canonical transformations.

We made a review of two well-known tachyonic models, discussed the power
function case in more details and calculated the corresponding action. The classical
action in all cases was transformed to a quadratic form, which allowed us to quantize
these systems via the standard Feynman-path integral approach and to calculate the
corresponding propagator in the real and p-adic case. The next natural step is adelic
generalization of the model and consideration of vacuum state (in)stability.

Cosmological application of this investigation is not a straightforward task.
For future work we propose the application of these results towards cosmology in the
Friedmann-Robertson-Walker limits (3+1 dimensions instead of 1-dimensional case
we considered) and “baby” universe approach [28] when instability of a physical
vacuum can be driven by the p-adic sector of tachyon background field at the Planck
scale.
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