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1. Introduction

Scattering amplitudes are the very core of the predictions for observables at particle accel-
erators: cross sections are obtained by convoluting partonic scattering amplitudes, describing the
interaction of the elementary constituents of the colliding hadrons on a smaller time scale, with
universal functions (PDF’s) describing the distributions of such partons inside the protons, which
account for evolution phenomena taking place on a time scale longer than the parton scattering
itself.

In the Transverse-Momentum-Dependent (TMD) factorisation or kT -factorisation approach [1,
2], the amplitudes entering the calculation of cross sections feature particles with off-shell mo-
menta, due to a non vanishing transverse component, which is additional w.r.t. the hadron (longi-
tudinal) momentum fraction carried by the parton.

In order for results to be physical, amplitudes need to be gauge invariant, a property whose def-
inition is far form trivial in case there are off-shell legs. A dramatic improvement in the calculation
of on-shell scattering amplitudes has been achieved ever since 2005, when the BCFW recursion
procedure was first introduced, originally for pure Yang-Mills theories [3, 4] and later extended to
include amplitudes with fermions [5]. The question whether this recursion can be generalised to
amplitudes with off-shell partons was solved in [6] in the case of gluons and extended to amplitudes
with a fermion pair in [7].

2. Definitions

We always consider scattering amplitudes with all particles outgoing. The momentum kµ can
be decomposed in terms of its light-like direction pµ , satisfying p·k = 0 and, if the particle is
off-shell, of a transversal part, following

kµ = x(q)pµ − κ

2
〈p|γµ |q]
[pq]

− κ∗

2
〈q|γµ |p]
〈qp〉

, (2.1)

with qµ an auxiliary lightlike 4-momentum

x(q) =
q·k
q·p

, κ =
〈q|k/|p]
〈qp〉

, κ
∗ =
〈p|k/|q]
[pq]

. (2.2)

The coefficients κ and κ∗ can be shown to be independent of the auxiliary momentum qµ , in the
sense that any other lightlike vector q′ can be used in its place, provided k·q′ 6= 0 and

k2 =−κκ
∗ . (2.3)

We consider to-ordered or dual amplitudes, which contain only planar Feynman graphs and are
constructed with color-stripped Feynman rules. Every scattering amplitude, including the basic
3-point functions with off-shell particles, can be found via the recursion itself, provided one knows
3-point on-shell amplitudes, which can be built from symmetry principles anyway. No use of
Feynman rules is necessary at any step. However, the knowledge of the Feynman rules necessary
to compute off-shell gauge-invariant scattering amplitudes is necessary to properly identify the
poles in the scattering amplitudes (see below) when applying the recursion: they can be found
in [8, 9].
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3. BCFW recursion

For every particle with momentum kµ

i , an orthogonal direction pµ

i is given,

kµ

1 + kµ

2 + · · ·+ kµ
n = 0 momentum conservation

p2
1 = p2

2 = · · ·= p2
n = 0 light-likeness

p1·k1 = p2·k2 = · · ·= pn·kn = 0 . eikonal condition

In the case of an on-shell particle, direction and momentum are the same vector.
The polarisation vectors for gluons can be expressed as

ε
µ

+ =
〈q|γµ |g]√

2〈qg〉
, ε

µ

− =
〈g|γµ |q]√

2[gq]
, (3.1)

where q is the auxiliary lightlike vector and g is a short-hand notation for the gluon momentum.
We denote gluon spinors with the numbers of the corresponding particles, whereas quarks and
antiquarks are always indicated by q and q̄ respectively.

The starting point of the on-shell BCFW recursion relation is the residue theorem

lim
z→∞

f (z) = 0⇒
∮ dz

2πi
f (z)

z
= 0 , (3.2)

where the integration contour encloses all the poles of the rational function f (z) and extends to
infinity, implying that the function at the origin f (0) is given by the sum over the residues at the
single poles in the complex plane,

f (0) =−∑
i

limz→zi f (z)(z− zi)

zi
. (3.3)

Now, if f (z) = A (z), where A (z) is a scattering amplitude which is turned into a function of a
complex variable without spoiling momentum conservation and on-shellness, it is enough to iden-
tify the single poles in z appearing in some of the propagators in order to reconstruct the amplitude
in terms of simpler building blocks. These are found to be products of on-shell lower-point ampli-
tudes times an intermediate propagator, on the ground of general unitarity requirements [3, 4].

In order to make a scattering amplitude a rational function of a complex variable z in a way
that suits the off-shel case, two particles are picked up, say i and j, and each particle’s direction is
chosen to be the reference vector for the other, so that their momenta with transverse component
are

kµ

i = xi(p j) pµ

i −
κi

2
〈i|γµ | j]
[i j]

− κ∗i
2
〈 j|γµ |i]
〈 ji〉

kµ

j = x j(pi) pµ

j −
κ j

2
〈 j|γµ |i]
[ ji]

−
κ∗j
2
〈i|γµ | j]
〈i j〉

. (3.4)

Let the shift vector be
eµ =

1
2
〈i|γµ | j] , pi · e = p j · e = e · e = 0 . (3.5)
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The shifted momenta are thus

k̂µ

i = ki + zeµ = xi(p j) pµ

i −
κi− z[i j]

2
〈i|γµ | j]
[i j]

− κ∗i
2
〈 j|γµ |i]
〈 ji〉

k̂µ

j = k j− zeµ = x j(pi) pµ

j −
κ j

2
〈 j|γµ |i]
[ ji]

−
κ∗j + z〈i j〉

2
〈i|γµ | j]
〈i j〉

(3.6)

Momentum conservation and either on-shellness or the eikonal conditions pi · k̂i = 0 and p j · k̂ j = 0
are preserved by the shift (3.6). It is also possible to choose eµ = 1/2〈 j|γµ |i] as shift vector,
implying that the shifted quantities are κ̂∗i and κ j. The changes induced in the momenta or in the
directions by the first shift vector are:

eµ =
1
2
〈i|γµ | j]⇔


i off-shell: κ̂i = κi− z[i j]
i on-shell: |î] = |i]+ z| j]

j off-shell: κ̂∗i = κ∗j + z〈i j〉
j on-shell: | ĵ〉= | j〉− z|i〉

(3.7)

It is basic to the BCFW argument that (3.7) implies that the large z behaviours of the polarisation
vectors of shifted gluons are

eµ =
1
2
〈i|γµ | j]⇒ ε

µ

i− ∼
1
z

and ε
µ

j+ ∼
1
z
, (3.8)

whereas the opposite helicity polarisation vectors of shifted gluons stay constant. It is important
for us, in order for our argument to work in general, to include in our amplitudes the propagators
of the external off-shell particles, who play the same role as the gluon polarisation vectors in the
on-shell case.

Not all of the shift vector choices are suitable to apply the BCFW recursion, because some of
them lead to a violation of the basic hypothesis of the residue theorem

lim
z→∞

A (z) = 0 . (3.9)

In [4] it was found that with the shift vector eµ = 1
2〈i|γ

µ | j] A (z) z→∞−→ 0 for three possible helicity
choices of the shifted particles, namely (hi,h j) = (−,+),(−,−),(+,+). It is easy to obtain a
diagrammatic proof for the first case, that we dub the original BCF prescription, and all of our
results for amplitudes with 1 off-shell particle refer to shifts which reduce to this case or, if eµ =
1
2〈 j|γ

µ |i], to (hi,h j) = (+,−).
As eikonal quark vertices only depend on the direction and eikonal quark propagators can only

contribute powers of z to the denominator, the BCFW argument extends to our case immediately, if
we shift two on-shell gluons. This also works for amplitudes with a fermion pair [5]. Then, if one
of the shifted gluons is off-shell and the other one is on-shell, we require the helicity of the latter to
agree with the original BCF prescription [6]. Finally, if both shifted gluons are off-shell, they both
will contribute a factor 1/z with either shift vector choice. It is quite general that if both shifted
particles are off-shell, BCFW recursion works for both shift vectors. A thorough discussion of all
possible cases can be found in [7].

4



P
o
S
(
D
I
S
2
0
1
5
)
1
5
6

Scattering amplitudes in TMD factorisation via BCFW recursion Mirko SERINO

eµ = 1
2〈i|γ

µ | j] eµ = 1
2〈 j|γ

µ |i]
(hi,h j) = (+,+) (hi,h j) = (−,−)

Cg |k̂i] =
√

xi |i] , |k̂i〉= k/i| j]√
xi[i j] |k̂i〉=

√
xi |i〉 , |k̂i] =

k/i| j〉√
xi〈i j〉

κ̂∗j =
〈 j|k/i+k/ j|i]

[ ji] or | ĵ〉= (k/i+p/ j)|i]
[ ji] κ̂ j =

〈i|k/i+k/ j| j]
〈 ji〉 or | ĵ] = (k/i+p/ j)|i〉

〈 ji〉
(hi,h j) = (−,−) (hi,h j) = (+,+)

Dg |k̂ j〉=
√x j | j〉 , |k̂ j] =

k/ j|i〉√x j〈 ji〉 |k̂ j] =
√x j | j] , |k̂ j〉=

k/ j|i]√x j[ ji]

κ̂i =
〈 j|k/ j+k/i|i]
〈i j〉 or |î] = (k/ j+p/i)|i〉

〈i j〉 κ̂∗i =
〈i|k/ j+k/i| j]

[i j] or |î〉= (k/ j+p/i)|i]
[i j]

Table 1: Shifted quantities needed for the evaluation of Cg and Dg residues. The reported helicity of the
on-shell gluon is meant in the case it is on-shell.

3.1 The residues

The single poles in z appear due to the denominators of the gluon or fermion propagators. Our
scattering amplitude A (0) is given by a sum over 4 possible kinds of residues

A (0) = ∑
s=g, f

(
∑
p

∑
h=+,−

As
p,h +∑

i
Bs

i +Cs +Ds

)
. (3.10)

The index s refers to the particle species, namely gluons or fermions; h is the helicity; Kµ denotes
the momentum flowing through the propagators exhibiting poles. The residues in the case of gluon
poles are the following: Ag

p,h are due to the poles which appear in the original BCFW recursion.
The index p stands for the cyclically ordered distributions of the particles into two subsets; the
shifted particles are never on the same sub-amplitude. The pole is due to an intermediate virtual
gluon, whose shifted momentum squared, K2(z), is on-shell for

z =− K2

2e ·K
.

Bg
i residues are due to poles appearing in the auxiliary eikonal quarks propagators whose denomi-

nator vanishes. This means pi ·K̂(z)= 0, where K̂ is the momentum flowing through the propagator.
The location of these poles is

z =−2 pi ·K
2 pi · e

.

If the i-th particle is on-shell, these terms are not present.
Cg and Dg denote the same kind of residues: they appear respectively when the shifted i-th or j-th
gluons are off-shell. They are due to the vanishing of the shifted momentum in the propagator:
k2

i (z) = 0or k2
j(z) = 0. Table 1 summarises the results for Cg and Dg terms which are needed to

carry on computations.
Now fermions: the terms A f

p,h and B f
i are almost exactly the same as in the gluon case, ex-

cept that in the B f
i terms one has an eikonal (anti-)quark and a zero-momentum photon needed to

account for the off shell (anti-)quark If the i-th particle is an on-shell fermion, these terms are not
present.
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h
Admitted on-shell Not admitted on-shell
(hq̄,hg) = (−,+) (hq̄,hg) = (+,+)

C f |k̂q̄] =
√xq̄ |q̄] , |k̂q̄〉=

k/q̄|g]√xq̄[q̄g] |k̂q̄] =
√xq̄ |q̄] , |k̂q̄〉=

k/q̄|g]√xq̄[q̄g]

eµ = 〈q̄|γµ |g]
2 κ̂∗g =

〈g|k/q̄+k/g|q̄]
[gq̄] or |ĝ〉= (k/q̄+p/g)|q̄]

[gq̄] κ̂∗g =
〈g|k/q̄+k/g|q̄]

[gq̄] or |ĝ〉= (k/q̄+p/g)|q̄]
[gq̄]

(hg,hq̄) = (−,+) (hg,hq̄) = (−,−)
D f |k̂q̄〉=

√xq̄ |q̄〉 , |k̂q̄] =
k/q̄|g〉√x j〈q̄g〉 |k̂q̄〉=

√xq̄ |q̄〉 , |k̂q̄] =
k/q̄|g〉√x j〈q̄g〉

eµ = 〈g|γµ |q̄]
2 κ̂g =

〈q̄|k/q̄+k/g|g]
〈gq̄〉 or |ĝ] = (k/q̄+p/g)|g〉

〈gq̄〉 κ̂g =
〈q̄|k/q̄+k/g|g]
〈gq̄〉 or |ĝ] = (k/q̄+p/g)|g〉

〈gq̄〉

Table 2: Shifted quantities needed for the evaluation of C f and D f residues in the case in which the antiquark
is shifted. A completely similar pattern holds when q is shifted. The reported helicity of the gluon is meant
in the case it is on-shell.

C f and D f denote exactly the same kind of residues as in the case of gluons. We summarize the
results for C f and D f terms assuming we shift the antiquark. Shifting the quark is exactly the same,
with obvious changes of labels.
All the results needed to work out these C f and D f -residues are listed in Table 2, where the distinc-
tion between choices which are suitable both in the on-shell and off-shell case and in the off-shell
case only is stressed.

4. Some explicit results

We have focuses on amplitudes which always have one fermion pair and only one off-shell
particle. We do not repeat here the explicit derivations of scattering amplitudes, but rather stress a
feature of this off-shell case which is quite different with respect to the on-shell case. In the latter,
all the the mostly-plus MHV amplitudes for Yang-Mills theories with fermions are given by

A (g+1 , . . . ,g
−
i , . . . ,g

−
j , . . . ,g

+
n ) =

〈i j〉4

〈12〉〈23〉 . . .〈n1〉
,

A (q̄+, . . . ,g−i , . . . ,g
+
n ,q

−) =
〈iq〉3〈iq̄〉

〈q̄1〉〈12〉 . . .〈nq〉〈q1〉
. (4.1)

The mostly-minus MHV amplitudes are just obtained by 〈ab〉 ↔ [ba].
In the off-shell case, what stands out with respect to this pattern is that amplitudes with all gluons
having the same helicity, one fermion particle with opposite helicity and one off-shell fermion
particle do not vanish, despite the do vanish in on-shell limit. For example A (q̄∗,q−,g+1 , . . . ,g

+
n ) 6=

0. We call these amplitudes subleading because their analysis and comparison to the proper MHV
amplitudes shows that they carry an extra factor whose absolute value is ∝

√
|k2|, which is 0 when

the particle is on-shell and significantly suppresses the amplitude for small transverse momenta [9].
We have chosen to call MHV the non-vanishing amplitudes featuring the maximum difference
between the numbers of positive and negative helicity particles and, at the same time, not vanishing
in the on-shell case. This classification singles out our subleading amplitudes, which would be the
ones with the highest value of this difference, but it is specifically meant to be an intuitive extension
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of the on-shell case. The structure of a subleading amplitude with an off-shell antiquark is given
by

A (g+1 ,g
+
2 , . . . ,g

+
n−1, q̄,q,g

+
n ) =

−〈q̄q〉3

〈12〉〈23〉 . . .〈q̄q〉〈qn〉〈n1〉
. (4.2)

The case with an off-shell quark is completely analogous, of course.

5. Summary

TMD factorisation requires the computation of gauge-invariant scattering amplitudes with non
vanishing transverse component of the momenta of one or two of the incoming particles. It was
shown that an efficiently tree level evaluation of these amplitudes can be achieved via a generali-
sation of the BCFW recursion relation. This was first done in the pure Yang-Mills case [6], then
fermions were recently included [7]. In particular, 5-point amplitudes with one off-shell parton are
now completely known at tree-level [7].
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